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ABSTRACT

Non-typhoidal Salmonella enterica imposes a significant burden on human and animal health in
South Africa. However, very little is known about lineages circulating among animals and animal
products in the country on a genomic scale. Here, we used whole-genome sequencing (WGS) to
characterize 63 Salmonella enterica strains (n = 18, 8, 13, and 24 strains assigned to serotypes
Dublin, Hadar, Enteritidis, and Typhimurium, respectively) isolated from livestock, companion
animals, wildlife, and animal products in South Africa over a 60-year period. Within-serotype
phylogenies were constructed using genomes sequenced in this study, as well as publicly available
genomes representative of each respective serotype’s (i) global (n = 2,802 and 1,569 S. Dublin and
Hadar genomes, respectively) and (ii) African (n = 716 and 343 S. Enteritidis and Typhimurium
genomes, respectively) population. For S. Dublin, the approaches used here identified a largely
antimicrobial-susceptible, endemic lineage circulating among humans, animals, and food in South
Africa, as well as a lineage that was likely recently introduced from the United States. For S. Hadar,
multiple South African lineages harboring streptomycin and tetracycline resistance-conferring
genes were identified. African S. Enteritidis could be primarily partitioned into one largely
antimicrobial-susceptible and one largely multidrug-resistant (MDR) clade, with South African
isolates confined to the largely antimicrobial-susceptible clade. S. Typhimurium strains sequenced
here were distributed across the African S. Typhimurium phylogeny, representing a diverse range
of lineages, including numerous MDR lineages. Overall, this study provides insight into the
evolution, population structure, and antimicrobial resistome composition of Sal/monella enterica
in Africa.

IMPORTANCE
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Globally, Salmonella enterica is estimated to be responsible for more than 93 million illnesses and
150,000 deaths annually. In Africa, the burden of salmonellosis is disproportionally high; however,
WGS efforts are overwhelmingly concentrated in world regions with lower salmonellosis burdens.
While WGS is being increasingly employed in South Africa to characterize Salmonella enterica,
the bulk of these efforts have centered on characterizing human clinical strains. WGS data derived
from non-typhoidal Salmonella enterica serotypes isolated from non-human sources in South
Africa is extremely limited. To our knowledge, the genomes sequenced here represent the largest
collection of non-typhoidal Salmonella enterica isolate genomes from non-human sources in South
Africa to date. Furthermore, this study provides critical insights into endemic and ecdemic non-
typhoidal Sal/monella enterica lineages circulating among animals, foods, and humans in South
Africa and showcases the utility of WGS in characterizing animal-associated strains from a world

region with a high salmonellosis burden.
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INTRODUCTION

Livestock, domestic animals, and wildlife can serve as potential reservoirs for non-
typhoidal Sa/monella enterica (1, 2). As a zoonotic foodborne pathogen, Salmonella enterica can
be transmitted from these animal reservoirs to humans, either via direct contact with infected
animals or along the food supply chain (2, 3); however, evolutionary lineages within the
Salmonella enterica species may vary in terms of their host specificity, geographic distribution,
and the severity of illness that they cause in a given host (2, 4). Salmonella enterica serotype
Typhimurium (S. Typhimurium), for example, can infect a broad range of species, while serotype
Dublin (S. Dublin) is largely adapted to cattle, but can cause rare but frequently invasive infections
in humans (5-11).

Due to its importance as a pathogen from both a human and animal health perspective,
there is a strong incentive to monitor the evolution and spread of Sa/monella enterica in animals
and animal products (12, 13). Furthermore, there has been growing concern that Salmonella
enterica can acquire antimicrobial resistance (AMR) determinants in livestock environments,
which can make infections in humans and animals more difficult and costly to treat (14, 15). To
this end, whole-genome sequencing (WGS) is being increasingly employed to characterize
Salmonella enterica from animals (e.g., livestock, companion animals, and wildlife) and animal
products, as WGS can not only replicate many important microbiological assays in silico (e.g.,
prediction of serotype, AMR), but provide additional data that can be used to characterize isolates
(e.g., identification of genome-wide single nucleotide polymorphisms [SNPs], core- and whole-
genome multi-locus sequence typing [MLST], pan-genome characterization) (16-19).

In South Africa, the bulk of Salmonella enterica WGS efforts have focused on

characterizing human clinical strains associated with illnesses and/or outbreaks (20-25). WGS-
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92  based studies querying Salmonella enterica strains isolated from non-human sources in South

93  Africa are limited (26), and little is known regarding which lineages are circulating among

94  animals in the country (27). Here, we used WGS to characterize 63 South African Salmonella

95  enterica strains isolated from animals and animal products over the course of 60 years (i.e.,

96  between 1960 and 2019). Using phylogenomic approaches, we characterized the isolates

97  sequenced here within the context of publicly available genomes representative of the global (for

98  S. Dublin and S. Hadar) and African (for S. Enteritidis and S. Typhimurium) Salmonella enterica

99  populations. The results presented here will provide critical insights into the evolution,
100  population structure, and AMR dynamics of Salmonella enterica in Africa.
101  RESULTS
102 Four serotypes are represented among the animal-associated South African Salmonella
103 enterica strains sequenced here. A total of 63 Salmonella enterica strains were isolated from
104  animals and animal products in South Africa and underwent WGS (Supplemental Table S1). All
105 isolates underwent in silico serotyping using both (i) SISTR (using its core-genome MLST
106  [cgMLST] approach) and (ii) SeqSero2 (Supplemental Table S1); serotypes assigned using both
107  methods were identical for all isolates (63 of 63 isolates, 100%; Supplemental Table S1).
108  Furthermore, genomes of all isolates sequenced here clustered among publicly available
109  Salmonella genomes assigned to their respective serotypes (28), with no observed polyphyly
110  within serotypes among isolates sequenced here (Figure 1; note that all S. Hadar genomes
111  sequenced here clustered among a genome previously serotyped as S. Istanbul, which was
112 serotyped as S. Hadar in silico using both SISTR and SeqSero2).
113 Four serotypes were represented among isolates sequenced in this study: S. Dublin, S.

114  Hadar, S. Enteritidis, and S. Typhimurium, assigned to 18, 8, 13, and 24 isolates, respectively
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115  (Figure 1 and Supplemental Table S1). Strains were isolated from bovine sources (from feces,
116  meat, or organs; n = 25), poultry (from feces, meat, or organs; n = 22), swine (from feces, meat,
117  or organs; n = 6), unknown sources (n = 3), fish (from food products; n = 2), avian sources (feces
118  from each of an ostrich and a pigeon; n = 2), a rhinoceros (n = 1), ovine sources (from feces; n =
119 1), and from a cat (from feces; n = 1; Supplemental Table S1). Strains were isolated from one of
120  six provinces in South Africa: Gauteng (n = 27), Western Cape (n = 7), KwaZulu-Natal (n = 2),
121  Eastern Cape (n = 2), North-West (n = 1), Mpumalanga (n = 1), and Free State (n = 1); the
122 provinces from which an additional 22 strains were isolated were unknown (Supplemental Table
123 Sl1).

124 AMR in Salmonella enterica isolated from animals and animal products in South Africa is
125 acquired sporadically. The 63 Salmonella genomes sequenced here underwent in silico
126  AMR/stress response determinant, plasmid replicon, and virulence factor detection (Figure 2 and
127  Supplemental Figures S1 and S2). In total, 59 different AMR/stress response determinants were
128  detected among the 63 isolates, with 18 unique AMR/stress response determinant
129  presence/absence profiles observed (based on AMR/stress response determinants detected using
130 AMRFinderPlus; Figure 2) (29). The number of different AMR/stress response determinants
131  detected per genome ranged from five to 24; nearly two-thirds of all genomes sequenced in the
132 current study (40 of 63, 63.5%) harbored six AMR/stress response determinants (the median per
133 genome) or less (Figure 2). Six “core” AMR/stress response determinants (asr, golS, golT, mdsA,
134 mdsB, sinH) were observed in over 90% of the isolates sequenced here (59 of 63 isolates; 93.7%),
135  four of which were detected in all 63 isolates (asr, golS, golT, sinH; Figure 2). The remaining 53

136  AMR/stress response determinants were detected in less than 20% of the genomes sequenced here;
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137 46 of these (46 of 59 total unique AMR determinants, 78.0%) were present only sporadically and
138  were detected in two or fewer genomes (Figure 2).

139 In total, 17 different plasmid replicons were identified among all 63 genomes, representing
140 22 wunique plasmid replicon presence/absence profiles (detected using ABRicate, the
141  PlasmidFinder database, and minimum nucleotide identity and coverage thresholds of 80 and 60%,
142 respectively; Figure 2) (30). Genomes harbored one to seven different plasmid replicons, with a
143 median of two per genome (Figure 2). Two plasmid replicons, IncFIB(S) and IncFII(S), were
144  detected in over half of all genomes sequenced here (detected in 32 and 49 of 63 genomes, 50.8%
145  and 77.8%, respectively; Figure 2). Over half of all plasmid replicons (10 of 17 unique plasmid
146  replicons; 58.8%) were detected in two or fewer genomes (Figure 2).

147 Additionally, a total of 181 different virulence factors were identified among the 63
148  genomes, with 24 unique virulence factor presence/absence profiles represented (detected using
149  ABRicate, the Virulence Factor Database [VFDB], and minimum nucleotide identity and coverage
150  thresholds of 70 and 50%, respectively; Figure 2 and Supplemental Table S2). Genomes harbored
151 146 to 171 different virulence factors, with a median of 165 (Figure 2 and Supplemental Table
152 S2). Over 75% of all unique virulence factors detected among the isolates sequenced in this study
153  were present in all genomes (137 of 181 unique virulence factors, 75.7%; Supplemental Table S2).
154  Only 13 virulence factors were detected in fewer than half of the genomes sequenced here (Figure
155 2).

156 A largely antimicrobial-susceptible S. Dublin ST10 lineage circulating in South Africa
157 encompasses isolates from livestock, food, and human sources. A maximum likelihood (ML)
158  phylogeny constructed using the 18 South African sequence type 10 (ST10) S. Dublin isolates

159  sequenced here, plus 2,784 publicly available ST10 S. Dublin genomes, partitioned the vast
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160  majority of genomes (2,738 of 2,802 genomes, 97.7%) into two major S. Dublin ST10 clades
161  (Figure 3 and Supplemental Figure S3), which is consistent with previous observations (31).
162  Referred to hereafter as “S. Dublin Major Clade I”” and “S. Dublin Major Clade 11", the two major
163  clades encompassed 1,787 and 951 genomes, respectively (Figure 3 and Supplemental Figure S3).
164  While both major clades encompassed strains isolated from Asia, Europe, North America, and
165  South America, the vast majority of North American ST10 S. Dublin belonged to Major Clade I
166 (1,641 of 1,656 S. Dublin ST10 strains from North America, 99.1%; Figure 3 and Supplemental
167  Figure S3). Members of Major Clade I shared a most recent common ancestor (MRCA) dated to
168  circa 1959 (95% confidence interval [CI] of [1452.88, 1959.00]; Figure 3 and Supplemental Figure
169  S3). Notably, multi-drug resistant (MDR) S. Dublin, which often possess IncA/C2 plasmids and
170  acquired AMR determinants that confer resistance to aminoglycosides, beta-lactams, phenicols,
171  sulfonamides, and tetracyclines (31), were almost exclusively confined to a large, primarily North
172 American subclade within S. Dublin Major Clade I (referred to hereafter as the “S. Dublin Large
173 Subclade”; Figure 3 and Supplemental Figure S3). Conversely, members of S. Dublin Major Clade
174 Il shared a MRCA dated to circa 1945 (95% CI[1274.31, 1985.00]), primarily contained European
175  isolates (893 of 951 Major Clade II genomes, 93.9%), and largely did not possess any acquired
176 ~ AMR determinants (Figure 3 and Supplemental Figure S3).

177 All 18 South African S. Dublin isolates sequenced in this study belonged to S. Dublin Major
178  Clade I (Figure 3 and Supplemental Figure S3); however, 17 of the 18 isolates clustered together
179  within a small subclade of Major Clade I (referred to hereafter as the “S. Dublin Small Subclade”;
180  Figure 4), while the remaining isolate clustered among isolates in the S. Dublin Large Subclade
181  (Supplemental Figure S4). Notably, within the S. Dublin Small Subclade, the 17 animal- and

182  animal product-associated South African isolates sequenced here clustered among all seven
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183  publicly available S. Dublin genomes from South Africa, all of which were reported to have been
184  isolated from human sources (Figure 4). This well-supported South African-specific S. Dublin
185 lineage (referred to hereafter as the “South African S. Dublin Clade”), which contained animal-,
186  animal product-, and human-associated strains isolated over a span of 60 years (i.e., 1960-2020)
187  from the Gauteng, Eastern Cape, Western Cape, and North-West provinces, was predicted to share
188  a common ancestor dated to circa 1960 (95% CI [1496.07, 1960.00], 98% UltraFast Bootstrap
189  Support; Figure 4). Members of this South African lineage, like the S. Dublin Small Subclade more
190  broadly, were largely pan-susceptible, with AMR determinants detected only sporadically; a single
191  strain, isolated in 2007 from poultry meat in the Western Cape province
192  (FOO _ 2007 SouthAfrica WesternCape AF 0930SE—S25), possessed streptomycin resistance
193  gene aadAl and sulfonamide resistance gene su/l (Figure 4). Taken together, these results indicate
194  that a largely AMR-susceptible South African-specific S. Dublin lineage has been circulating
195  among animals, foods, and humans in the country for decades.

196 Only one South African S. Dublin genome was not a member of the South African S.
197  Dublin Clade within the S. Dublin Small Subclade (Supplemental Figure S4). This strain (i.e.,
198  FOO _ 2016 SouthAfrica EasternCape AF 7509SE-S59), which was isolated in 2016 from
199  poultry meat in South Africa’s Eastern Cape province, clustered among North American isolates
200  in the S. Dublin Large Subclade (Supplemental Figure S4). This strain most closely resembled a
201  bovine-associated strain from California isolated in 2004, and the two shared a common ancestor
202 circa 2004 (95% CI [1973.4, 2004.00]; Supplemental Figure S4). Notably, despite clustering
203  among MDR S. Dublin strains from North America, neither of these strains harbored any acquired
204  AMR genes, nor did they harbor the IncA/C2 plasmid characteristic of MDR S. Dublin from the

205  United States (Supplemental Figure S4). These results indicate that a separate S. Dublin lineage
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206  may have only recently been introduced into South Africa from North America, a hypothesis that
207  was further supported by subsequent investigation into the origin of the isolate: the poultry meat
208  from which strain FOO 2016 SouthAfrica EasternCape AF 7509SE-S59 was isolated had been
209  imported from North America and sold in a supermarket in South Africa’s Eastern Cape province.
210 All 18 §. Dublin isolates sequenced in this study, as well as all seven publicly available
211 South African S. Dublin genomes, were members of S. Dublin Major Clade I (Figure 3 and
212 Supplemental Figure S3). These 25 South African genomes, 24 of which formed a well-supported
213 subclade within Major Clade I, were the only African genomes detected in S. Dublin Major Clade
214 I (Figure 3 and Supplemental Figures S3-S4). S. Dublin Major Clade II did not contain any African
215  genomes (Figure 3). However, 18 genomes from the African continent were among the few
216  genomes (i.e., 64 of 2,802 S. Dublin genomes, 2.3%) that fell outside of the two major S. Dublin
217  clades (Figure 3). These genomes were reported to have been derived from strains isolated from
218  animals, food, and humans in Ethiopia, Gambia, Nigeria, and Benin, and none harbored any
219  acquired AMR genes (Figure 3); interestingly, they clustered among human-associated genomes
220  from Asia (i.e., Taiwan), Europe (i.e., France and the United Kingdom), and North America (i.e.,
221  Canada and the United States), forming a 52-genome, well-supported clade with a common
222 ancestor dated to circa 1957 (95% CI [1142.96, 2003.00], 100% UltraFast Bootstrap Support;
223 Figure 3).

224 South Africa harbors multiple S. Hadar ST33 lineages with streptomycin and tetracycline
225  resistance-conferring genes. A ML phylogeny was constructed using the eight South African
226  ST33 S. Hadar isolates sequenced here, plus 1,561 publicly available ST33 S. Hadar genomes
227  (Figure 5). Notably, the majority of S. Hadar genomes harbored AMR genes aph(3")-Ib and

228  aph(6)-1d (n=1,314 and 1,347 of 1,569 S. Hadar genomes, 83.7% and 85.9%, respectively; Figure
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229 5). Also known as strd and strB, respectively, aph(3")-Ib and aph(6)-1d confer resistance to
230  streptomycin. The majority of S. Hadar genomes additionally harbored tet(4), which confers
231  resistance to tetracycline (n = 1,320 of 1,569 S. Hadar genomes, 84.1%; Figure 5). All eight S.
232 Hadar strains sequenced in this study, which were derived from strains isolated between 1962 and
233 2017, were among the strains that harbored all of streptomycin resistance-conferring aph(3")-1b
234 and aph(6)-1d and tetracycline resistance-conferring tet(4) (Figure 5).

235 Seven of eight S. Hadar genomes sequenced in this study clustered at or near the tree root,
236  which was dated to circa 1962 (95% CI [1571.93, 1962.00]). These seven South African strains,
237  which had been isolated between 1962 and 2017 from bovine sources (feces and meat), poultry
238  (meat), a rhinoceros, and an unknown source, were most closely related to a publicly available
239  genome of a S. Hadar strain isolated in 2018 from chicken in South Africa (Figure 5).

240 The remaining isolate sequenced in this study (i.e., BOV_1990 XX ARCZA NEWI19-
241  S113) was relatively distantly related to the other South African isolates sequenced here (Figure
242 5). Isolated from bovine feces in 1990, this strain was most closely related to a S. Hadar strain
243  isolated from the spleen of a dog (Canis lupus familiaris) in the United States in 1988; however,
244  these strains were relatively distant, sharing a common ancestor that existed circa 1982 (95% CI
245 [1705.27, 1985.00]; Figure 5). While it is unclear exactly when this particular lineage was
246  introduced into South Africa, these results indicate that multiple S. Hadar lineages have circulated
247  in livestock populations in the country.

248  One largely antimicrobial-susceptible clade and one largely MDR clade are represented
249  among S. Enteritidis ST11 from Africa. A ML phylogeny was constructed using the 13 South
250  African ST11 (n = 12) and ST366 (n = 1) S. Enteritidis isolates sequenced here, plus (i) 697

251  publicly available ST11 S. Enteritidis genomes of strains isolated from the African continent and
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252 (ii) all publicly available ST366 S. Enteritidis genomes (n = 10; Figure 6 and Supplemental Figure
253 S)).

254 Notably, one strain sequenced here (i.e., POL 2002 XX NEW34-S128), isolated from
255  poultry meat in 2002, was assigned to ST366. Currently, there are only 15 ST366 genomes that
256  arepublicly available for download, six of which have a known collection year and isolation source
257  and meet the quality standards used in this study (via Enterobase, accessed 18 February 2021).
258  This can be contrasted with ST11, of which there are 50,755 publicly available genomes (via
259  Enterobase, accessed 18 February 2021). The ST366 strain sequenced here was a member of a
260  well-supported clade (100% UltraFast Bootstrap support), which contained eight additional
261  publicly available genomes that shared a common ancestor dated to circa 1885 (95% CI [809.09,
262 2002.00]; Figure 6 and Supplemental Figure S5). In addition to the poultry-associated ST366 strain
263  sequenced here, this clade contained all six publicly available ST366 genomes, which were all
264  isolated from human sources in South Africa (n = 3), Zambia (n = 2), and the United Kingdom (n
265 = 1); additionally, this clade contained two ST11 genomes of strains isolated from humans in
266  Malawi (Figure 6 and Supplemental Figure S5). None of the genomes in this clade harbored any
267  known AMR determinants (Figure 6 and Supplemental Figure S5). Interestingly, the ST366 isolate
268  from the United Kingdom is the only publicly available ST366 strain from outside of Africa (via
269  Enterobase, accessed 18 February 2021), indicating that this particular ST may have a geographic
270  association.

271 The remaining 12 S. Enteritidis strains sequenced in this study were assigned to ST11 and
272  were confined to a large, well-supported (100% UltraFast Bootstrap support) 517-isolate clade
273 (referred to hereafter as “African S. Enteritidis ST11 Major Clade I"’), which shared a common

274  ancestor dated to circa 1551-1801 (depending on the tree root/isolate set used in Figure 6 and
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275  Supplemental Figure S5, respectively; 95% CI [-639.57, 1955.0] and [738.65, 1955.00],
276  respectively). Notably, isolates within African S. Enteritidis ST11 Major Clade I were largely pan-
277  susceptible and acquired AMR determinants only sporadically; among the 12 ST11 isolates
278  sequenced here, only three possessed AMR genes (Figure 6 and Supplemental Figure S5).

279 Overall, we found that the South African ST11 genomes sequenced in this study belonged
280  to a largely antimicrobial-susceptible lineage, which showcased AMR only sporadically. This can
281  be contrasted with a second major clade comprising 181 S. Enteritidis genomes (i.e., African S.
282  Enteritidis ST11 Major Clade II; Figure 6); the majority of isolates in this clade were predicted to
283 be MDR, as they possessed AMR genes conferring resistance to beta-lactams (blarem.i),
284  streptomycin (aph(3")-1b, aph(6)-1d), sulfonamides (sull, sul2), chloramphenicol (catA2),
285  trimethoprim (dfrA7), and tetracycline (tet(4); Figure 6). Unlike African S. Enteritidis ST11 Major
286  Clade I, which encompassed 340 South African isolates, no Major Clade II isolates were found in
287  South Africa (Figure 6); rather, African S. Enteritidis ST11 Major Clade II primarily included
288  isolates from the Democratic Republic of the Congo (DRC; n = 72) and Malawi (n = 55), as well
289  as from Senegal and Mali (n = 12 each), Nigeria (n = 10), Kenya (n = 7), Burkina Faso (n = 5),
290 Rwanda and Guinea (n = 2), the Central African Republic (CAR), Congo, Ivory Coast, and
291  Madagascar (n = 1 each; Figure 6).

292  South Africa harbors numerous antimicrobial susceptible and MDR S. Typhimurium
293  lineages. A ML phylogeny was constructed using the 24 South African ST19 (n = 23) and ST34
294  (n=1)S. Typhimurium isolates sequenced here, plus publicly available S. Typhimurium genomes
295  of strains isolated from the African continent assigned to (i) ST19 (n = 315) and (ii) ST34 (n = 4;
296  Figure 7 and Supplemental Text). The 24 S. Typhimurium strains sequenced in this study were

297  distributed across the African S. Typhimurium phylogeny, representing a diverse range of lineages,
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298  and eight (33.3%) possessed one or more AMR genes (Figure 7 and Supplemental Text). Notably,
299  some African S. Typhimurium lineages were distributed across the African continent, while others
300  were strongly associated with a particular region/country (Figure 7 and Supplemental Text). When
301  compared to genomes from a previous study of S. Typhimurium from New York State that have
302  been shown to be representative of the human- and bovine-associated S. Typhimurium population
303  in the United States as a whole (32), only five of 24 S. Typhimurium strains sequenced here
304 (20.8%) shared a common ancestor with one or more New York State strains after 1900
305  (Supplemental Figure S6 and Supplemental Text). This indicates that many of the strains
306  sequenced here are not closely related to S. Typhimurium lineages circulating among cattle and
307  humans in the United States. Below, we discuss some of these major African S. Typhimurium
308 clades in detail (see the Supplemental Text for discussions of additional lineages).

309 A S. Typhimurium DT104-like clade emerged in Africa in the twentieth century as
310  antimicrobial-susceptible and later acquired MDR. A S. Typhimurium strain sequenced here
311  (PIG_2002_FS 040ST-S45), isolated in 2002 from swine meat in South Africa’s Free State
312 province, clustered within a 69-isolate clade, which shared a common ancestor dated circa 1884
313 (95% CI[1153.59, 1956.00]; denoted as the “Large Mixed/DT104 Clade” in Figure 7). This large
314  clade contained a mixture of human-, animal-, environmental, and food-associated isolates from
315  Senegal (n = 16), Gambia (n = 13), Tunisia (n = 10), Benin (n = 7), Ethiopia (n = 6), Morocco (n
316 =4), DRC and South Africa (n = 3 each), Madagascar (n = 2), Algeria, Cameroon, Egypt, Kenya,
317 and Tanzania (n = 1 each). The strain isolated in this study possessed five AMR genes:
318  streptomycin resistance-conferring aadA2, beta lactamase blacarp-2, chloramphenicol resistance-
319  conferring floR, sulfonamide resistance-conferring su/l, and tetracycline resistance-conferring

320  tet(G) (Figure 7). Notably, when compared to genomes from a previous study of S. Typhimurium
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321  in the United States (New York State) (32), this isolate clustered among DT104 strains isolated
322 from dairy cattle and humans, sharing a common ancestor dated circa 1975 (95% CI [1467.42,
323 1999.00]; Supplemental Figure S6).

324 Within the Large Mixed/DT104 Clade in the African S. Typhimurium phylogeny (Figure
325  7), the DT104-like strain sequenced here (PIG 2002 FS 040ST-S45) was part of a 14-isolate
326  subclade, which shared a common ancestor dated circa 1939 (95% CI [1623.18, 1960.00]).
327  Notably, the four most distant members of this subclade, corresponding to strains isolated (i) in
328 1960 from a dog in Algeria, (ii) in 1970 and (iii) 1975 from unknown sources in Morocco, and (iv)
329  in 1967 from a human in Morocco, were the only strains within this subclade that did not possess
330 any AMR genes (Figure 7). The Moroccan strain isolated in 1975 was additionally reported to
331 have itself been phage typed as DT104. The remaining ten genomes, which included the DT104-
332 like strain sequenced here, clustered together, sharing a common ancestor dated circa 1980 (95%
333 CI[1932.92,2001.00]; Figure 7). Nine of these ten genomes possessed the five AMR genes listed
334  above, which confer resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and
335 tetracycline (ACSSuT; one 2005 isolate from a camel in Ethiopia clustered among these genomes,
336  but possessed only aadA2 and sull, while another strain, isolated in 2005 from poultry in Ethiopia,
337  possessed all five AMR genes, as well as kanamycin resistance gene aph(3')-lIa and tetracycline
338  resistance gene tet(M); Figure 7). This is noteworthy, as the ACSSuT AMR profile is often seen
339  as characteristic of MDR D104 (33). Using the most parsimonious explanation for the acquisition
340 of its MDR phenotype, the clade of African DT104-like isolates identified here emerged as
341  antimicrobial-susceptible circa 1939 (95% CI [1623.18, 1960.00]) and acquired the MDR

342 phenotype between 1966 and 1980 (95% CI [1820.78, 2001.00]; Figure 7).
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343  An antimicrobial-susceptible S. Typhimurium clade, which emerged in South Africa after
344 2000, encompasses isolates from produce, fish, poultry, and avian sources. Four additional
345  isolates sequenced in this study were contained within a 20-isolate clade, which shared a common
346  ancestor dated to circa 1900 (95% CI [1220.88, 1974.00]; denoted in Figure 7 as the “Vegetable
347 ZA Clade”). No AMR genes were detected in any genomes within this clade, including the four
348  strains sequenced here, which were all isolated from South Africa’s Western Cape province (two
349  strains isolated in 2019 from fish food products, one in 2004 from ostrich feces, and one in 2003
350  from poultry meat; Figure 7). Interestingly, these isolates clustered among (i) 13 publicly available
351  genomes, all derived from food-associated strains isolated in 2015 in South Africa (i.e., 4 from
352 cabbage, 3 from carrots, 2 from lettuce, 2 from plant salad, and one from each of spinach and red
353  onion) and (ii) one strain isolated from human feces in Addis Ababa, Ethiopia, sharing a common
354  ancestor dated circa 2003 (95% CI [1746.59, 2003.00]; Figure 7). Members of this clade
355  additionally shared a common ancestor with a strain isolated in 2013 from swine feces in Addis
356  Ababa, Ethiopia, which was predicted to have existed circa 1990 (95% CI [1620.12, 2003.00];
357  Figure 7). The most distant member within the clade was a strain isolated in 1974 from Burkina
358  Faso (Figure 7).

359 DISCUSSION

360 Endemic Salmonella enterica lineages are circulating among animals and animal products in
361  South Africa and may infect humans. Geography plays an important role in shaping bacterial
362  pathogen population structure, including that of Salmonella enterica, and different geographic
363  regions may harbor their own endemic lineages (31, 34-38). Here, we observed numerous endemic
364  Salmonella enterica lineages circulating among animals and animal products in South Africa,

365  some of which encompassed human clinical isolates. Within the global S. Dublin ST10 phylogeny,
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366  for example, we identified a largely AMR-susceptible South Africa-specific clade, which has been
367 circulating among animals, foods, and humans in the country for decades. While S. Dublin is
368 largely considered to be a bovine-adapted serotype, human infections caused by S. Dublin are
369  frequently invasive and may result in severe illness and/or death (5-11, 39, 40). In South Africa,
370  invasive non-typhoidal salmonellosis is a serious public health concern: in 2019, over 25% of all
371  non-typhoidal salmonellosis cases reported to the Group for Enteric, Respiratory and Meningeal
372  disease Surveillance in South Africa (GERMS-SA) were invasive (825 and 2,437 reported invasive
373  and non-invasive non-typhoidal salmonellosis cases, respectively; 25.3%) (41). While S. Dublin
374  is not among the most common serotypes isolated from human clinical cases in South Africa (41),
375  routine veterinary surveillance has revealed that S. Dublin is frequently isolated from animal
376  sources in the country, particularly cattle (42). Further WGS efforts are needed to provide insight
377 into the evolution and between-host transmission dynamics of the endemic South African S.
378  Dublin lineage identified in this study.

379 In addition to the endemic South African S. Dublin lineage, we identified a clade of South
380  African animal- and animal product-associated S. Hadar ST33 strains, which clustered near the
381  root of the global S. Hadar ST33 phylogeny. First described as a novel Salmonella serotype in
382 1954 (43), S. Hadar was reported to have been responsible for several cases of diarrheal illness in
383  Israel (43). Reportedly, serotype S. Hadar was rarely isolated prior to 1971; however, in the mid-
384  1970s, S. Hadar quickly became the second-most common cause of human nontyphoidal
385  salmonellosis in the United Kingdom (44-46). Consistent with these observations, the South
386  African S. Hadar clade identified here shared a common ancestor dated circa 1962 and contained
387  strains isolated from the 1960s through 2018. In South Africa specifically, S. Hadar is not among

388  the top serotypes associated with human clinical cases (41); however, S. Hadar has been commonly
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389  isolated from animals and animal associated-environments in the country for nearly two decades
390 (42,47, 48). The results presented here indicate that an endemic S. Hadar ST33 lineage has been
391  circulating among animals in South Africa for over fifty years; however, future WGS efforts
392  querying S. Hadar strains from around the world—historical strains isolated prior to the 1970s, in
393  particular—are needed to refine estimates as to when this particular lineage emerged.

394 In addition to the S. Dublin ST10 and S. Hadar ST33 endemic South African lineages, we
395 observed that African S. Enteritidis ST11 could largely be partitioned into one largely
396  antimicrobial-susceptible and one largely MDR clade. South African S. Enteritidis ST11, including
397  those sequenced here, were confined to the largely antimicrobial-susceptible clade. These results
398  are consistent with those observed in a previous study of S. Enteritidis in Africa (25), in which a
399  geographically distinct MDR S. Enteritidis lineage was identified in Africa’s Central/East regions
400 and rarely detected in South Africa. Since 2012, S. Enteritidis has been the serotype most
401  commonly isolated from human clinical cases in South Africa (41). Among animals, S. Enteritidis
402  has been one of the most frequently isolated serotypes in South Africa for decades, particularly
403  from poultry-associated sources (42, 47, 48). Our results further support that South African S.
404  Enteritidis, which is one of the most common Salmonella enterica serotypes circulating among
405  animals and humans in the country, acquires AMR only sporadically and is, on a genomic scale,
406  distinct from MDR S. Enteritidis lineages circulating in other regions of Africa. Collectively, our
407  study reveals that endemic lineages of several non-typhoidal Salmonella enterica serotypes are
408  circulating among animals and animal products in South Africa, some of which may occasionally
409  infect humans.

410  WGS can differentiate endemic and ecdemic Salmonella enterica lineages. Pathogenic bacteria

411  not previously endemic to a given geographic region can be introduced into that region through
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412  the movement of humans, food, and/or animals (23, 36, 49, 50). In addition to observing
413 Salmonella enterica lineages that were likely endemic to South Africa, our study identified
414  numerous lineages that were likely to have been introduced into the country only recently. One S.
415  Dublin isolate sequenced in this study, for example, clustered among isolates from the United
416  States, indicating that this strain had been introduced into South Africa only recently. S. Dublin
417  from the United States has previously been shown to be distinct from S. Dublin strains isolated in
418  other world regions on a genomic scale (31), and the United States was one of the leading poultry
419  exporters to South Africa in 2016 (i.e., the year the ecdemic S. Dublin strain sequenced here was
420  isolated) (51). Our recent introduction hypothesis was further supported by metadata indicating
421  that this strain had been isolated from poultry meat imported from North America and sold in a
422  supermarket in South Africa’s Eastern Cape province.

423 We observed similar results for S. Hadar: one S. Hadar strain sequenced in this study was
424 more closely related to S. Hadar from the United States than to its South African counterparts,
425  which all formed a clade near the global S. Hadar ST33 phylogeny root (44-46). Unlike the S.
426  Dublin strain sequenced here, which was likely introduced into South Africa from imported
427  poultry meat, it is unclear exactly how the unique S. Hadar lineage sequenced here was introduced
428  into the country, as its representative strain was isolated from bovine feces in 1990 and shared a
429  common ancestor circa 1982 with a canine-associated S. Hadar strain isolated in 1988 in the United
430  States. Future WGS efforts querying S. Hadar may provide insight into this lineage and its
431  emergence in South Africa.

432 The S. Typhimurium isolates sequenced here were distributed across the African S.
433  Typhimurium phylogeny, indicating that South Africa harbors numerous S. Typhimurium

434  lineages. Since 2012, S. Typhimurium has been the second-most common non-typhoidal
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435  Salmonella enterica serotype isolated from human clinical cases in South Africa (after S.
436  Enteritidis) and in 2019 was the most common serotype isolated from human clinical cases in the
437  Eastern Cape province (41). S. Typhimurium has additionally been one of the most frequently
438  isolated serotypes from animals and wildlife in South Africa for decades, and it is frequently
439  isolated from a broad range of hosts (e.g., cattle, poultry, equine, sheep/goats, feline, rhinoceros)
440 (42, 47, 48). Interestingly, we identified a largely AMR-susceptible, primarily South African S.
441  Typhimurium clade, which contained isolates from produce, fish, poultry, and avian sources, and
442 one human clinical isolate from Ethiopia (referred to above as the “Vegetable ZA Clade”), which
443  was predicted to have been introduced into the country recently (i.e., after the year 2000). It is
444  unclear exactly where this lineage originated and how it was introduced into South Africa, but
445  future WGS efforts may elucidate this.

446 We additionally identified a S. Typhimurium clade, which contained the genomes of strains
447  assigned to phage type DT104. MDR DT104 was responsible for a global epidemic in the 1990s,
448  during which it was increasingly isolated from a broad range of animals (e.g., cattle, poultry, pigs,
449  sheep), as well as human clinical cases (52). Notably, DT104 was predicted to have emerged as
450  antimicrobial-susceptible circa 1948, later acquiring its MDR phenotype circa 1972 (33). The
451  results observed here are consistent with these findings, as the DT104 clade identified here
452  emerged as antimicrobial-susceptible circa 1939 and acquired the MDR phenotype between ~1966
453  and =1980. The DT104 clade identified here spanned multiple African regions, and South African
454  DT104-like genomes were distributed across the clade, indicating that South Africa may have been
455  subjected to multiple DT104 introduction events and/or between-country transmission events;
456  however, the lack of available DT104-like genomes from South Africa (i.e., one sequenced here

457  and two publicly available genomes) and the African continent as a whole limits our ability to say
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458  this conclusively. Taken together, our results further highlight the strengths of WGS in Salmonella
459  source tracking, both within and between countries and continents (53-55), and showcase the
460  ability of WGS-based approaches to differentiate endemic and ecdemic lineages.

461  WGS of historical isolates from under-sequenced geographic regions can provide novel
462  insights into pathogen evolution and diversity. Worldwide, Salmonella enterica has been
463  estimated to be responsible for more than 93 million illnesses and more than 150,000 deaths
464  annually (56). In Africa, the disease burden imposed by Salmonella enterica is particularly
465  significant; mortality and disability adjusted life years (DALYs) due to diarrheal disease and
466  invasive infections caused by non-typhoidal serotypes are consistently higher in Africa than in
467  other world regions (57). However, despite the disproportionally high incidence and burden of
468  salmonellosis and other foodborne illnesses, the bulk of publicly available genomic data derived
469  from Salmonella enterica has come from regions with lower burdens (57, 58); for example, among
470  all Salmonella enterica genomes in Enterobase (accessed 7 April 2021), over 80% were derived
471  from strains reported to have been isolated in North America and Europe (128,517 and 104,910
472  genomes from North America and Europe, respectively; 233,427 of 291,362 total Salmonella
473  enterica genomes).

474 Here, we used WGS to characterize 63 Salmonella enterica strains isolated from animals
475  and animal products in South Africa over a 60-year time span, which, to our knowledge, represents
476  the most extensive WGS-based characterization of non-human-associated non-typhoidal
477  Salmonella enterica in the country to date. Importantly, numerous genomes sequenced here
478  belonged to lineages that were phylogenetically distinct from those circulating in more heavily
479  sequenced/sampled regions of the world, such as North America and Europe. For example, as

480  observed here, some African S. Dublin ST10 isolates do not belong to the two major S. Dublin
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481  STI10 clades circulating primarily in North America and Europe, indicating that S. Dublin isolates
482  representing clades outside of the two major North American- and European- associated clades are
483  likely circulating in other countries around the world, including African countries outside of South
484  Africa. Similarly, the few available S. Enteritidis ST366 genomes are derived from strains
485  primarily isolated in Africa. Future WGS efforts in Africa will likely provide insight into the
486  evolution and emergence of these lineages, as well as novel clades and those underrepresented in
487  public databases. Overall, this study offers a glimpse into the genomics of non-typhoidal
488  Salmonella enterica lineages circulating among livestock, domestic animals, wildlife, and animal
489  products in South Africa. Future WGS-based studies querying greater numbers of isolates from
490  animal, food, and environmental sources are needed to better understand the evolution, population
491  structure, and AMR dynamics of this important pathogen.

492  MATERIALS AND METHODS

493  Isolate selection. The isolates used in this study were recovered from samples submitted

494  between 1957 and 2019 at Bacteriology laboratory: Onderstepoort Veterinary Research, South
495  Africa, as part of routine diagnostics services which includes isolation and serotyping of

496  Salmonella strains. Therefore, a total of 73 isolates representing (i) four major Salmonella

497  enterica serotypes (i.e., Dublin, Enteritidis, Hadar, and Typhimurium) in the country (42, 48)

498  from (ii) various geographical locations in the country, (iii) different sources of isolation (animal
499  and animal products), and (iv) animal species (livestock, companion animals, wildlife) were

500 randomly selected for sequencing in this study. The isolates were preserved as lyophilized and
501  revived by inoculation into brain heart infusion (BHI) broth and incubated at 37°C for 18-24

502  hours.
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503  Whole-genome sequencing. Genomic DNA was extracted from BHI broth cultures using the
504  High Pure PCR template preparation kit (Roche, Potsdam, Germany) according to the

505  manufacturer’s instructions. WGS of the isolates was performed at the Biotechnology Platform,
506  Agricultural Research Council, South Africa. DNA libraries were prepared using TruSeq and
507  Nextera DNA library preparation kits (Illumina, San Diego, CA, USA), followed by sequencing
508  on [llumina HiSeq and MiSeq instruments (Illumina, San Diego, CA, USA).

509 Initial data processing and quality control. Quality control, adapter removal, decontamination,
510 and error correction of the raw sequencing data was performed using BBDuk v. 37.90

511  (https://jgi.doe.gov/data-and-tools/ bbtools/bb-tools-user-guide/bbduk-guide/), and SPAdes v.
512 3.12.0 (59) was used to create a de novo assembly for each isolate. FastQC v. 0.11.5

513  (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the quality of

514  the paired-end reads associated with each isolate (n = 73 isolates total; 21, 15, 11, and 26 isolates
515  assigned to serotypes Dublin, Enteritidis, Hadar, and Typhimurium, respectively) (60), and

516 QUAST v. 4.5 (61) was used to assess the quality of the associated assembled genome

517  (Supplemental Table S1). The lineage workflow (i.e., “lineage wf”’) implemented in CheckM v.
518  1.1.3 (62) was additionally used to identify potential contamination in each assembled genome,
519  as well as to assess genome completeness (Supplemental Table S1). MultiQC v. 1.8 (63) was
520  used to assess the quality of all genomes in aggregate. Several low-quality isolate genomes with
521  >5% contamination and/or <95% completeness were identified (n = 3, 2, 3, and 2 low-quality
522  isolate genomes assigned to serotypes Dublin, Enteritidis, Hadar, and Typhimurium,

523  respectively) and were thus omitted from further analysis, yielding a final set of 63 Salmonella

524  enterica genomes used in subsequent steps (Supplemental Table S1).
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525  In silico serotyping and multi-locus sequence typing. All 63 assembled Salmonella enterica
526  genomes (see section “Initial data processing and quality control” above) underwent in silico
527  serotyping using the command line implementations of (i) the Salmonella In Silico Typing
528 Resource (SISTR) v. 1.1.1 (18) and (ii) the k-mer based workflow implemented in SeqSero2 v.
529  1.1.1 (17) (Supplemental Table S1). Each genome additionally underwent in silico seven-gene

530  MLST using mlst v. 2.9 (https://github.com/tseemann/mlst) and the seven-gene scheme available

531  for Salmonella enterica (--scheme 'senterica’) in PubMLST (64, 65) (Supplemental Table S1).

532  Reference-free SNP identification and phylogeny construction. The 63 Salmonella enterica
533  genomes sequenced in this study were compared to 442 of the 445 Salmonella genomes described
534 by Worley, et al. (28) (three genomes did not have publicly available sequence read archive [SRA]
535  data at the time of access, i.e., 20 February 2019). The SRA toolkit v. 2.9.6 was used to download
536  paired-end reads for each of the 442 publicly available genomes (66, 67), which were then
537  assembled into contigs using SPAdes v. 3.8.0 (59), using k-mer sizes of 21, 33, 55, 77, 99, and
538 127, and the “careful” option. SNPs were identified among all 505 assembled Sa/monella genomes
539  with kSNP3 v. 3.92 (68, 69), using the optimal k-mer size determined by Kchooser (k= 19). The
540  resulting core SNP alignment was supplied as input to IQ-TREE v. 1.5.4 (70), which was used to
541  construct a ML phylogeny using the optimal ascertainment bias-aware nucleotide substitution
542 model identified using ModelFinder (based on its Bayesian Information Criteria [BIC] value) (71)
543  and 1,000 replicates of the Ultrafast Bootstrap method (72, 73). The resulting ML phylogeny

544  (Figure 1) was annotated using FigTree v. 1.4.4 (http:/tree.bio.ed.ac.uk/software/figtree/). All

545  reference-free SNP identification and ML phylogeny construction steps described above were
546  repeated to identify SNPs among the 63 Salmonella enterica genomes sequenced here, with

547  publicly available genomes excluded; the resulting ML phylogeny was annotated in R v. 3.6.1 (74)
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548 using the bactaxR package (75) and its dependencies ggtree (76, 77), ape (78), dplyr (79),
549  phylobase (80), phytools (81), and reshape2 (82) (Figure 2 and Supplemental Table S2).

550 In silico AMR determinant, plasmid replicon, and virulence factor detection. AMR
551  determinants were identified within each of the 63 Salmonella genomes sequenced in this study,
552 using each of the following pipelines: (i) AMRFinderPlus v. 3.9.3 (29), (ii) ABRicate v. 1.0.1

553 (https://github.com/tseemann/abricate), and (iii) ARIBA v. 2.14.6 (83) (Figure 2 and Supplemental

554  Figure S1). For the AMRFinderPlus pipeline, Prokka v. 1.13 (84) was used to annotate each of the
555 63 assembled genomes; the resulting GFF (.gff) and FASTA (.faa and .ffn) files were used as input
556  for AMRFinderPlus, which was used to identify AMR and stress response determinants in each
557  genome, using the Sal/monella organism option and the most recent AMRFinderPlus database
558  (database v. 2020-11-09.1, accessed 21 November 2020). For the ABRicate pipeline, AMR
559  determinants were identified in each assembled genome using the NCBI AMR database (--db ncbi;
560  accessed 19 April 2020) (29) and minimum identity and coverage thresholds of 75 (--minid 75)
561 and 50% (--mincov 50), respectively. For the ARIBA pipeline, ARIBA’s getref and prepareref
562 commands were used to download and prepare the latest version of the ResFinder database
563  (accessed 14 February 2021), respectively (85). ARIBA’s run command was then used to identify
564 AMR determinants in each genome, using the paired-end reads associated with each isolate as
565  input.

566 ABRicate and ARIBA were additionally used to detect plasmid replicons within each of
567  the 63 Salmonella genomes sequenced in this study using the PlasmidFinder database (30) (Figure
568 2 and Supplemental Figure S2). For the ABRicate pipeline, assembled genomes were used as input,
569  and plasmid replicons were detected in each genome (--db plasmidfinder; PlasmidFinder database

570  accessed 19 April 2020) using minimum identity and coverage thresholds of 80 (--minid 80) and
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571  60% (--mincov 60), respectively. For the ARIBA pipeline, ARIBA’s getref and prepareref
572  commands were used to download and prepare the latest version of the PlasmidFinder database
573  (accessed 14 February 2021), respectively. ARIBA’s run command was then used to identify
574  plasmid replicons in each genome, using paired-end reads associated with each isolate as input.
575  ABRicate was further used to detect virulence factors in each genome, using the Virulence Factor
576  Database (VFDB; --db vfdb, accessed 19 April 2020) (86, 87), using minimum identity and
577  coverage thresholds of 70 (--minid 70) and 50% (--mincov 50), respectively (Figure 2 and
578  Supplemental Table S2).

579  Construction of time-scaled S. Dublin phylogenies. To compare the 18 S. Dublin isolates
580  sequenced in this study to publicly available S. Dublin genomes, all genomes meeting each of the
581  following conditions were downloaded via Enterobase (accessed 27 December 2020, n = 2,784;
582  Supplemental Table S3): (i) genomes were assigned to sequence type (ST) 10 (i.e., the ST to which
583  all of the S. Dublin isolates sequenced in this study were assigned/approximately assigned) using
584  the Achtman seven-gene MLST scheme for Salmonella; (i1) genomes had an exact year of isolation
585  reported in Enterobase’s “Collection Year” field; (iii) genomes could be assigned to a known
586  isolation source, with “Laboratory” strains excluded, per Enterobase’s “Source Niche” field; (iv)
587  genomes could be assigned to a known country of isolation, per Enterobase’s “Country” field (88,
588  89). All 2,802 assembled S. Dublin genomes underwent in silico plasmid replicon and AMR
589  determinant detection using ABRicate v. 1.0.1 and the PlasmidFinder and NCBI AMR databases,
590  respectively, as described above (see section “In silico AMR determinant, plasmid replicon, and
591  virulence factor detection” above).

592 Parsnp and HarvestTools v. 1.2 (90) were used to identify core SNPs among all 2,802 S.

593  Dublin genomes (2,784 publicly available genomes, plus the 18 sequenced here), using the closed
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594  chromosome of STIO §. Dublin str. USMARC-69838 (NCBI Nucleotide Accession
595 NZ CP032449.1) as a reference and Parsnp’s implementation of PhiPack to remove
596  recombination (91). Clusters were identified within the resulting core SNP alignment using
597  RhierBAPs v. 1.1.3 (92, 93), R v. 4.0.0, and three clustering levels. IQ-TREE v. 1.5.4 (70) was
598  used to construct a ML phylogeny using (i) the resulting core SNPs as input; (ii) an ascertainment
599  bias correction (to account for the use of solely variant sites), corresponding to constant sites
600 estimated using the GC content of the reference chromosome  (-fconst
601 1171365,1282543,1281883,117722); (iii) the optimal nucleotide substitution model selected using
602  ModelFinder (71), based on its corresponding BIC value (i.e., the TVM+I model); (iv) 1,000
603  replicates of the UltraFast bootstrap approximation (72).

604 The resulting ML phylogeny was rooted and time-scaled using LSD2 v. 1.4.2.2 (94) and
605  the following parameters: (i) tip dates corresponding to the year of isolation associated with each
606  genome; (ii) a fixed substitution rate of 2.79x10”7 substitutions/site/year (i.e., the substitution rate
607  estimated in a previous study of S. Typhimurium phage type DT104) (33); (iii) constrained mode
608  (-c), with the root estimated using constraints on all branches (-r as); (iv) variances calculated using
609  input branch lengths (-v 1); (v) 1,000 samples for calculating confidence intervals for estimated
610  dates (-f 1000); (vi) a sequence length of 4,913,018 (i.e., the length of the reference chromosome;
611  -s4913018). The resulting phylogeny was annotated using the bactaxR package in R (Figure 3).
612  All aforementioned S. Dublin SNP calling and phylogeny construction steps were repeated to
613  construct time-scaled ML phylogenies using the following subsets of S. Dublin genomes: (i)
614  members of a large S. Dublin clade, which contained all 18 S. Dublin isolates sequenced in this
615  study (i.e., “S. Dublin Major Clade I”’, n = 1,787 genomes; Supplemental Figure S3); (ii) a smaller

616  clade within S. Dublin Major Clade I, which contained 17 of the 18 S. Dublin isolates sequenced
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617  here (i.e., the “S. Dublin Small Subclade”, n = 78; Figure 4); (iii) a larger clade within S. Dublin
618  Major Clade I, which contained one S. Dublin isolate sequenced here (i.e., the “S. Dublin Large
619  Subclade”, n =1,709; Supplemental Figure S4).

620  Construction of time-scaled S. Hadar phylogeny. To compare the eight S. Hadar isolates
621  sequenced in this study to publicly available S. Hadar genomes, all genomes meeting each of the
622  following conditions were downloaded via Enterobase (accessed 10 January 2021, n = 1,562;
623  Supplemental Table S4): (i) genomes were assigned to ST33 (i.e., the ST to which all of the S.
624  Hadar isolates sequenced in this study were assigned) using the Achtman seven-gene MLST
625  scheme for Salmonella; (ii) genomes had an exact year of isolation reported in Enterobase’s
626  “Collection Year” field; (iii) genomes could be assigned to a known isolation source, with
627  “Laboratory” strains excluded, per Enterobase’s “Source Niche” field; (iv) genomes could be
628  assigned to a known country of isolation, per Enterobase’s “Country” field (88, 89). All 1,570
629  assembled S. Hadar genomes underwent in silico plasmid replicon and AMR determinant detection
630 using ABRicate v. 1.0.1 and the PlasmidFinder and NCBI AMR databases, respectively, as
631  described above (see section “In silico AMR determinant, plasmid replicon, and virulence factor
632  detection” above).

633 Parsnp and HarvestTools v. 1.2 (90) were used to identify core SNPs among all 1,570 S.
634  Hadar genomes (1,562 publicly available genomes, plus the eight sequenced here), using the
635  closed chromosome of ST33 S. Hadar str. FDAARGOS 313 (NCBI Nucleotide Accession
636 NZ CP022069.2) as a reference and Parsnp’s implementation of PhiPack to remove
637  recombination (91). Clusters were identified within the resulting core SNP alignment using
638  RhierBAPs v. 1.1.3 (92, 93), R v. 4.0.0, and three clustering levels. IQ-TREE v. 1.5.4 (70) was

639  used to construct a ML phylogeny using (i) the resulting core SNPs as input; (ii) an ascertainment
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640  bias correction (to account for the use of solely variant sites), corresponding to constant sites
641  estimated wusing the GC content of the reference chromosome  (-fconst
642  1179063,1283051,1279961,1174705); (iii) the optimal nucleotide substitution model selected
643  using ModelFinder (71), based on its corresponding BIC value (i.e., the K3Pu+I model) (95); (iv)
644 1,000 replicates of the UltraFast bootstrap approximation (72). All aforementioned SNP calling
645 and phylogeny construction steps were repeated, with a single outlier genome from the United
646  Kingdom (Enterobase Assembly Barcode SAL GBO0368AA AS) removed, yielding a 1,569-
647  isolate S. Hadar phylogeny that was used in subsequent steps.

648 The resulting ML phylogeny was rooted and time-scaled using LSD2 v. 1.4.2.2 (94) and
649  the following parameters: (i) tip dates corresponding to the year of isolation associated with each
650  genome; (ii) a fixed substitution rate of 2.79x10”7 substitutions/site/year (i.e., the substitution rate
651  estimated in a previous study of S. Typhimurium phage type DT104) (33); (iii) constrained mode
652  (-c), with the root estimated using constraints on all branches (-r as); (iv) variances calculated using
653  input branch lengths (-v 1); (v) 1,000 samples for calculating confidence intervals for estimated
654  dates (-f 1000); (vi) a sequence length of 4,916,780 (i.e., the length of the reference chromosome;
655  -s4916780). The resulting phylogeny was annotated using the bactaxR package in R (Figure 5).
656  Construction of time-scaled S. Enteritidis phylogenies. To compare the 13 S. Enteritidis isolates
657  sequenced in this study to publicly available S. Enteritidis genomes, all genomes meeting each of
658 the following conditions were downloaded via Enterobase (accessed 27 December 2020, n = 697,
659  Supplemental Table S5): (i) genomes were assigned to ST11 (i.e., the ST to which 12 of the 13 S.
660  Enteritidis isolates sequenced in this study were assigned/approximately assigned) using the
661  Achtman seven-gene MLST scheme for Sa/monella; (i1) genomes had an exact year of isolation

662  reported in Enterobase’s “Collection Year” field; (iii) genomes could be assigned to a known
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663  country of isolation within the African continent, per Enterobase’s “Country” and “Continent”
664 fields, respectively (88, 89). Additionally, one isolate sequenced here was assigned to ST366, a
665 ST that differs from ST11 by a single allele (i.e., purE). As such, all ST366 genomes available in
666  Enterobase were additionally downloaded (n = 10), and those with known isolation years and
667  country/continents of isolation (n = 6; three isolates from South Africa, two from Zambia, and one
668  from the United Kingdom) were used in subsequent steps. All 716 assembled S. Enteritidis
669  genomes underwent in silico plasmid replicon and AMR determinant detection using ABRicate v.
670  1.0.1 and the PlasmidFinder and NCBI AMR databases, respectively, as described above (see
671  section “In silico AMR determinant, plasmid replicon, and virulence factor detection” above).
672 Parsnp and HarvestTools v. 1.2 (90) were used to identify core SNPs among all 716 S.
673  Enteritidis genomes (703 publicly available genomes, plus the 13 sequenced here), using the closed
674  chromosome of STI11 S. Enteritidis str. OLF-SE10-10052 (NCBI Nucleotide Accession
675 NZ CP009092.1) as a reference and Parsnp’s implementation of PhiPack to remove
676  recombination (91). Clusters were identified within the resulting core SNP alignment using
677  RhierBAPs v. 1.1.3 (92, 93), R v. 4.0.0, and three clustering levels. IQ-TREE v. 1.5.4 (70) was
678  used to construct a ML phylogeny using (i) the resulting core SNPs as input; (ii) an ascertainment
679  bias correction (to account for the use of solely variant sites), corresponding to constant sites
680 estimated using the GC content of the reference chromosome  (-fconst
681  1127671,1230753,1225740,1125726); (iii) the optimal nucleotide substitution model selected
682  using ModelFinder (71), based on its corresponding BIC value (i.e., the TVM+I model); (iv) 1,000
683  replicates of the UltraFast bootstrap approximation (72).

684 The resulting ML phylogeny was rooted and time-scaled using LSD2 v. 1.4.2.2 (94) and

685  the following parameters: (i) tip dates corresponding to the year of isolation associated with each
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686  genome; (ii) a fixed substitution rate of 2.20x10”7 substitutions/site/year (i.e., the substitution rate
687  estimated in a previous study of S. Enteritidis) (96); (iii) constrained mode (-c), with the root
688  estimated using constraints on all branches (-r as); (iv) variances calculated using input branch
689  lengths (-v 1); (v) 1,000 samples for calculating confidence intervals for estimated dates (-f 1000);
690  (vi) a sequence length of 4,709,890 (i.e., the length of the reference chromosome; -s 4709890).
691 The resulting phylogeny was annotated using the bactaxR package in R (Figure 6). All
692  aforementioned S. Enteritidis SNP calling and phylogeny construction steps were repeated to
693  construct an additional time-scaled ML phylogeny using ST11 isolates within a major clade in the
694  African S. Enteritidis phylogeny (referred to here as “African S. Enteritidis ST11 Major Clade 17,
695 n=517; Supplemental Figure S5). RhierBAPs v. 1.1.3 (92, 93) and R v. 4.0.0 were additionally
696  used to identify clusters within the resulting core SNP alignment, using three clustering levels.

697  Construction of time-scaled S. Typhimurium phylogenies. To compare the 24 S. Typhimurium
698  isolates sequenced in this study to publicly available S. Typhimurium genomes, all genomes
699  meeting each of the following conditions were downloaded via Enterobase (accessed 27 December
700 2020, n=319; Supplemental Table S6): (i) genomes were assigned to either ST19 (the ST to which
701 23 of the 24 S. Typhimurium isolates sequenced in this study were assigned/approximately
702  assigned) or ST34 (the ST of the remaining isolate, which differs from ST19 by a single allele,
703  dnaN) using the Achtman seven-gene MLST scheme for Salmonella; (ii) genomes had an exact
704  year of isolation reported in Enterobase’s “Collection Year” field; (iii) genomes could be assigned
705  to a known country of isolation within the African continent, per Enterobase’s “Country” and
706  “Continent” fields, respectively (88, 89). All 343 assembled S. Typhimurium genomes underwent

707  in silico plasmid replicon and AMR determinant detection using ABRicate v. 1.0.1 and the
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708  PlasmidFinder and NCBI AMR databases, respectively, as described above (see section “In silico
709  AMR determinant, plasmid replicon, and virulence factor detection” above).

710 Parsnp and HarvestTools v. 1.2 (90) were used to identify core SNPs among all 343 S.
711  Typhimurium genomes (319 publicly available genomes, plus the 24 sequenced here), using the
712 closed chromosome of STI19 S. Typhimurium str. LT2 (NCBI Nucleotide Accession
713 NC 003197.2) as a reference and Parsnp’s implementation of PhiPack to remove recombination
714 (91). Clusters were identified within the resulting core SNP alignment using RhierBAPs v. 1.1.3
715 (92,93), R v. 4.0.0, and three clustering levels. IQ-TREE v. 1.5.4 (70) was used to construct a ML
716  phylogeny using (i) the resulting core SNPs as input; (ii) an ascertainment bias correction (to
717  account for the use of solely variant sites), corresponding to constant sites estimated using the GC
718  content of the reference chromosome (-fconst 1160904,1268422,1268221,1159903); (iii) the
719  optimal nucleotide substitution model selected using ModelFinder (71), based on its corresponding
720  BIC value (i.e., the TVM+I model); (iv) 1,000 replicates of the UltraFast bootstrap approximation
721 (72).

722 The resulting ML phylogeny was rooted and time-scaled using LSD2 v. 1.4.2.2 (94) and
723 the following parameters: (i) tip dates corresponding to the year of isolation associated with each
724 genome; (ii) a fixed substitution rate of 2.79x10”7 substitutions/site/year (i.e., the substitution rate
725  estimated in a previous study of S. Typhimurium phage type DT104) (33); (iii) constrained mode
726  (-c), with the root estimated using constraints on all branches (-r as); (iv) variances calculated using
727  input branch lengths (-v 1); (v) 1,000 samples for calculating confidence intervals for estimated
728  dates (-f 1000); (vi) a sequence length of 4,857,450 (i.e., the length of the reference chromosome;
729 -5 4857450). The resulting phylogeny was annotated using the bactaxR package in R (Figure 7).

730  All aforementioned S. Typhimurium SNP calling and phylogeny construction steps were repeated
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731  to construct an additional time-scaled ML phylogeny, using the 24 isolates sequenced here and 87
732 human- and bovine-associated S. Typhimurium isolates from a previous study of the serotype in
733 New York State in the United States (32) (n = 111; Supplemental Figure S6).

734 Data availability. Illumina reads for genomes sequenced in this study are available in the

735  National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under
736  BioProject accession PRINA727588. Metadata for the Salmonella enterica genomes sequenced
737  in this study are available in Supplemental Table S1. Enterobase

738  (https://enterobase.warwick.ac.uk/ ) metadata for the publicly available genomes used in this

739  study are available in Supplemental Tables S3-S6.
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1077  FIGURE LEGENDS

1078

1079  Figure 1. Maximum likelihood phylogeny constructed using core SNPs identified among 505
1080  Salmonella isolate genomes. Publicly available genomes are denoted by black tip labels (n =
1081  442), while genomes of strains isolated in conjunction with this study are denoted by tip labels
1082  colored by serotype (n = 63). The phylogeny is rooted at the midpoint with branch lengths
1083  reported in substitutions per site. Core SNPs were identified among all genomes using kSNP3,
1084  while the phylogeny was constructed and annotated using IQ-TREE and FigTree v. 1.4.4,
1085  respectively.

1086

1087  Figure 2. Maximum likelihood phylogeny constructed using core SNPs identified among the
1088  genomes of 63 Sal/monella strains isolated in conjunction with this study. Tip label colors denote
1089 isolate serotypes, and branch labels denote ultrafast bootstrap support percentages out of 1,000
1090  replicates (selected for readability). The heatmap to the right of the phylogeny denotes the
1091  presence and absence of (i) plasmid replicons (blue), (ii) antimicrobial resistance (AMR) and
1092  stress response determinants (orange), and (iii) variably detected virulence factors (purple) in
1093  each genome. The phylogeny is rooted at the midpoint with branch lengths reported in

1094  substitutions per site. Core SNPs were identified among all genomes using kSNP3. Plasmid
1095  replicons were identified using ABRicate and the PlasmidFinder database, using minimum
1096  identity and coverage thresholds of 80 and 60%, respectively. AMR and stress response

1097  determinants were identified using AMRFinderPlus. Virulence factors were identified using
1098  ABRicate and VFDB, using minimum identity and coverage thresholds of 70 and 50%,

1099  respectively. Virulence factors detected in all genomes were excluded for readability
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1100  (Supplemental Table S2). The phylogeny was constructed and annotated using [Q-TREE and
1101  bactaxR/ggtree, respectively. DUBN, S. Dublin; ENTR, S. Enteritidis; HADR, S. Hadar; TYPH,
1102 S Typhimurium.

1103

1104  Figure 3. Maximum likelihood phylogeny constructed using core SNPs identified among 2,802
1105  S. Dublin genomes (2,784 publicly available genomes, plus 18 sequenced here). Tip label colors
1106  denote the continent from which each strain was reported to have been isolated. Clade labels
1107  denote major clades assigned in this study and are shown to the right of tip labels. The heatmap
1108  to the right of the phylogeny denotes: (i) whether an isolate was sequenced in conjunction with
1109 this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments obtained using
1110  RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons (blue) and (iv)
1111  antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted and time-
1112 scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were identified
1113 among all genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI
1114  AMR determinant database, and minimum identity and coverage thresholds of 75 and 50%,
1115  respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder database,
1116  using minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny
1117  was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.

1118

1119  Figure 4. Maximum likelihood phylogeny constructed using core SNPs identified among 78 S.
1120  Dublin genomes within the S. Dublin Small Subclade (61 publicly available genomes, plus 17
1121  sequenced here). Tip label colors denote the continent from which each strain was reported to

1122 have been isolated. A pink clade label to the right of the tip labels denotes a clade of South
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1123 African isolates, which encompasses 17 of the 18 S. Dublin isolates sequenced in this study, plus
1124 seven publicly available South African isolates. The heatmap to the right of the phylogeny

1125  denotes: (i) whether an isolate was sequenced in conjunction with this study (dark pink) or not
1126  (gray; “Study”); the presence and absence of (ii) plasmid replicons (blue) and (iii) antimicrobial
1127  resistance (AMR) determinants (orange). The phylogeny was rooted and time-scaled using

1128  LSD2, with branch lengths reported in years (X-axis). Core SNPs were identified among all
1129  genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI AMR
1130  determinant database, and minimum identity and coverage thresholds of 75 and 50%,

1131  respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder database,
1132 using minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny
1133 was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.

1134

1135  Figure 5. Maximum likelihood phylogeny constructed using core SNPs identified among 1,569
1136  S. Hadar genomes (1,561 publicly available genomes, plus eight sequenced here). Tip label
1137  colors denote the continent from which each strain was reported to have been isolated. The

1138  heatmap to the right of the phylogeny denotes: (i) whether an isolate was sequenced in

1139  conjunction with this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments
1140  obtained using RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons
1141  (blue) and (iv) antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted
1142 and time scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were
1143 identified among all genomes using Parsnp. AMR determinants were identified using ABRicate,
1144 the NCBI AMR determinant database, and minimum identity and coverage thresholds of 75 and

1145  50%, respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder
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1146  database, using minimum identity and coverage thresholds of 80 and 60%, respectively. The
1147  phylogeny was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.
1148

1149  Figure 6. Maximum likelihood phylogeny constructed using core SNPs identified among 716
1150  African S. Enteritidis genomes (703 publicly available genomes, plus 13 sequenced here). Tip
1151  label colors denote the region/country from which each strain was reported to have been isolated
1152 (based on African regions as defined by the African Union, 25 April 2021). Clade labels shown
1153 to the right of the phylogeny tip labels denote major clades discussed in the main text. The

1154  heatmap to the right of the phylogeny denotes: (i) whether an isolate was sequenced in

1155  conjunction with this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments
1156  obtained using RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons
1157  (blue) and (iv) antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted
1158  and time-scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were
1159  identified among all genomes using Parsnp. AMR determinants were identified using ABRicate,
1160  the NCBI AMR determinant database, and minimum identity and coverage thresholds of 75 and
1161  50%, respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder
1162  database, using minimum identity and coverage thresholds of 80 and 60%, respectively. The
1163  phylogeny was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.
1164

1165  Figure 7. Maximum likelihood phylogeny constructed using core SNPs identified among 343
1166  African S. Typhimurium genomes (319 publicly available genomes, plus the 24 sequenced here).
1167  Tip label colors denote the region/country from which each strain was reported to have been

1168  isolated (based on African regions as defined by the African Union, 25 April 2021). Clade labels
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1169  denote clades discussed in either the main manuscript or the Supplemental Text. The heatmap to
1170  the right of the phylogeny denotes: (i) whether an isolate was sequenced in conjunction with this
1171  study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments obtained using

1172 RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons (blue) and (iv)
1173  antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted and time-
1174  scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were identified
1175 among all genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI
1176 ~ AMR determinant database, and minimum identity and coverage thresholds of 75 and 50%,
1177  respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder database,
1178  using minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny
1179  was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.

1180
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Figure 1. Maximum likelihood phylogeny constructed using core SNPs identified among 505 Sa/monella isolate genomes. Publicly available genomes
are denoted by black tip labels (n = 442), while genomes of strains isolated in conjunction with this study are denoted by tip labels colored by serotype
(n = 63). The phylogeny is rooted at the midpoint with branch lengths reported in substitutions per site. Core SNPs were identified among all genomes
using kSNP3, while the phylogeny was constructed and annotated using IQ-TREE and FigTree v. 1.4.4, respectively.
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Figure 2. Maximum likelihood phylogeny constructed using core SNPs identified among the genomes of 63 Sal/monella strains isolated in conjunction
with this study. Tip label colors denote isolate serotypes, and branch labels denote ultrafast bootstrap support percentages out of 1,000 replicates
(selected for readability). The heatmap to the right of the phylogeny denotes the presence and absence of (i) plasmid replicons (blue), (ii) antimicrobial
resistance (AMR) and stress response determinants (orange), and (iii) variably detected virulence factors (purple) in each genome. The phylogeny is
rooted at the midpoint with branch lengths reported in substitutions per site. Core SNPs were identified among all genomes using kSNP3. Plasmid
replicons were identified using ABRicate and the PlasmidFinder database, using minimum identity and coverage thresholds of 80 and 60%, respectively.
AMR and stress response determinants were identified using AMRFinderPlus. Virulence factors were identified using ABRicate and VFDB, using
minimum identity and coverage thresholds of 70 and 50%, respectively. Virulence factors detected in all genomes were excluded for readability
(Supplemental Table S2). The phylogeny was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively. DUBN, S. Dublin; ENTR, S.
Enteritidis; HADR, S. Hadar; TYPH, S. Typhimurium.
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Figure 3. Maximum likelihood phylogeny constructed using core SNPs identified among 2,802 S. Dublin genomes (2,784 publicly available genomes,
plus 18 sequenced here). Tip label colors denote the continent from which each strain was reported to have been isolated. Clade labels denote major
clades assigned in this study and are shown to the right of tip labels. The heatmap to the right of the phylogeny denotes: (i) whether an isolate was
sequenced in conjunction with this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments obtained using RhierBAPS (“RhierBAPS”);
the presence and absence of (iii) plasmid replicons (blue) and (iv) antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted and
time-scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were identified among all genomes using Parsnp. AMR
determinants were identified using ABRicate, the NCBI AMR determinant database, and minimum identity and coverage thresholds of 75 and 50%,
respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder database, using minimum identity and coverage thresholds of 80
and 60%, respectively. The phylogeny was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.
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Figure 4. Maximum likelihood phylogeny constructed using core SNPs identified among 78 S. Dublin genomes within the S. Dublin Small Subclade
(61 publicly available genomes, plus 17 sequenced here). Tip label colors denote the continent from which each strain was reported to have been
isolated. A pink clade label to the right of the tip labels denotes a clade of South African isolates, which encompasses 17 of the 18 S. Dublin isolates
sequenced in this study, plus seven publicly available South African isolates. The heatmap to the right of the phylogeny denotes: (i) whether an isolate
was sequenced in conjunction with this study (dark pink) or not (gray; “Study”); the presence and absence of (ii) plasmid replicons (blue) and (iii)
antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted and time-scaled using LSD2, with branch lengths reported in years
(X-axis). Core SNPs were identified among all genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI AMR determinant
database, and minimum identity and coverage thresholds of 75 and 50%, respectively. Plasmid replicons were identified using ABRicate and the
PlasmidFinder database, using minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny was constructed and annotated
using IQ-TREE and bactaxR/ggtree, respectively.
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Figure 5. Maximum likelihood phylogeny constructed using core SNPs identified among 1,569 S. Hadar genomes (1,561 publicly available genomes,
plus eight sequenced here). Tip label colors denote the continent from which each strain was reported to have been isolated. The heatmap to the right of
the phylogeny denotes: (i) whether an isolate was sequenced in conjunction with this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster
assignments obtained using RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons (blue) and (iv) antimicrobial resistance
(AMR) determinants (orange). The phylogeny was rooted and time scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were
identified among all genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI AMR determinant database, and minimum
identity and coverage thresholds of 75 and 50%, respectively. Plasmid replicons were identified using ABRicate and the PlasmidFinder database, using
minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny was constructed and annotated using IQ-TREE and
bactaxR/ggtree, respectively.
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Figure 6. Maximum likelihood phylogeny constructed using core SNPs identified among 716 African S. Enteritidis genomes (703 publicly available genomes, plus 13
sequenced here). Tip label colors denote the region/country from which each strain was reported to have been isolated (based on African regions as defined by the
African Union, 25 April 2021). Clade labels shown to the right of the phylogeny tip labels denote major clades discussed in the main text. The heatmap to the right of
the phylogeny denotes: (i) whether an isolate was sequenced in conjunction with this study (dark pink) or not (gray; “Study”); (ii) level 1 cluster assignments obtained
using RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons (blue) and (iv) antimicrobial resistance (AMR) determinants (orange). The
phylogeny was rooted and time-scaled using LSD2, with branch lengths reported in years (X-axis). Core SNPs were identified among all genomes using Parsnp. AMR
determinants were identified using ABRicate, the NCBI AMR determinant database, and minimum identity and coverage thresholds of 75 and 50%, respectively.
Plasmid replicons were identified using ABRicate and the PlasmidFinder database, using minimum identity and coverage thresholds of 80 and 60%, respectively. The
phylogeny was constructed and annotated using IQ-TREE and bactaxR/ggtree, respectively.
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Figure 7. Maximum likelihood phylogeny constructed using core SNPs identified among 343 African S. Typhimurium genomes (319 publicly available
genomes, plus the 24 sequenced here). Tip label colors denote the region/country from which each strain was reported to have been isolated (based on
African regions as defined by the African Union, 25 April 2021). Clade labels denote clades discussed in either the main manuscript or the Supplemental
Text. The heatmap to the right of the phylogeny denotes: (i) whether an isolate was sequenced in conjunction with this study (dark pink) or not (gray;
“Study™); (ii) level 1 cluster assignments obtained using RhierBAPS (“RhierBAPS”); the presence and absence of (iii) plasmid replicons (blue) and (iv)
antimicrobial resistance (AMR) determinants (orange). The phylogeny was rooted and time-scaled using LSD2, with branch lengths reported in years
(X-axis). Core SNPs were identified among all genomes using Parsnp. AMR determinants were identified using ABRicate, the NCBI AMR determinant
database, and minimum identity and coverage thresholds of 75 and 50%, respectively. Plasmid replicons were identified using ABRicate and the
PlasmidFinder database, using minimum identity and coverage thresholds of 80 and 60%, respectively. The phylogeny was constructed and annotated

using IQ-TREE and bactaxR/ggtree, respectively.
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