

1 **Manipulation of carotenoid metabolism stimulates biomass and stress tolerance in tomato**

2 Jose G. Vallarino¹, Jianing Mi², Ivan Petřík³, Ondřej Novák³, Sandra M. Correa¹, Monika
3 Kosmacz^{1,2}, Michel Havaux⁴, Manuel Rodriguez-Concepcion⁵, Salim Al-Babili², Alisdair R.
4 Fernie¹, Aleksandra Skirycz^{1,6}, Juan C. Moreno^{1,2*}

5 ¹Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1 D-14476, Potsdam-
6 Golm, Germany.

7 ²Center for Desert Agriculture, Biological and Environmental Science and Engineering Division
8 (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

9 ³Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of
10 Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech
11 Republic.

12 ⁴Aix-Marseille University, CEA, CNRS UMR7265, BIAM, CEA/Cadarache, F-13108 Saint-Paul-
13 lez-Durance, France.

14 ⁵Institute for Plant Molecular and Cell Biology (IBMCP) UPV-CSIC, 46022 Valencia, Spain.

15 ⁶Boyce Thompson Institute, Cornell University, Ithaca, NY, United States.

16

17 *Corresponding author. Email: juancamilo.morenobeltran@KAUST.edu.sa

18

19 **Running title:** Carotenoid metabolism influences biomass and stress tolerance

20

21

22

23

24

25

26

27

28

29

30

31 The author(s) responsible for distribution of materials integral to the findings presented in this
32 article in accordance with the policy described in the Instructions for Authors (www.plantcell.org)
33 is (are): Juan C. Moreno (juancamilo.morenobeltran@KAUST.edu.sa)

34

35 **ABSTRACT**

36 Improving yield, nutritional value and tolerance to abiotic stress are major targets of current
37 breeding and biotechnological approaches that aim at increasing crop production and ensuring food
38 security. Metabolic engineering of carotenoids, the precursor of Vitamin-A and plant hormones that
39 regulate plant growth and response to adverse growth conditions, has been mainly focusing on
40 provitamin A biofortification or the production of high-value carotenoids. Here, we show that the
41 introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars
42 simultaneously improved photosynthetic capacity and tolerance to various abiotic stresses (e.g.,
43 high light, salt, and drought), caused an up to 77% fruit yield increase and enhanced fruit's
44 provitamin A content and shelf life. Our findings pave the way for developing a new generation of
45 crops that combine high productivity and increased nutritional value with the capability to cope
46 with climate change-related environmental challenges.

47

48 **Keywords:** abiotic stress tolerance, apocarotenoids, biomass and yield, β -carotene, carotenoids,
49 metabolites and lipids, photoprotection, phytohormones, plant architecture, xanthophylls.

50

51 INTRODUCTION

52 Climate change and the increasing world population are serious challenges facing world agriculture
53 (Pareek et al., 2020). Indeed, current estimates indicate that food production should be doubled by
54 2050 (Ort et al., 2015; Xu, 2016). However, global warming and the anthropogenic activities that
55 affect agricultural ecosystems and subsequent crop yield render this doubling a very difficult goal to
56 achieve. Moreover, abiotic stresses, and especially salinity and drought, cause considerable crop
57 losses, with yield reductions of almost 50% (Hussain et al., 2019; Roy et al., 2014). Therefore, a
58 new generation of crops with enhanced fitness—as exemplified, for instance, by simultaneously
59 improved photosynthetic efficiency, stress tolerance, and yield—are urgently needed to meet the
60 desired levels of crop productivity. In the past decade, photosynthesis and photorespiration have
61 been the preferred targets for manipulation to improve plant yield (Ding et al., 2016; Lopez-
62 Calcagno et al., 2019; Simkin et al., 2017; Simkin et al., 2015; South et al., 2019; Timm et al.,
63 2015). For example, two breakthrough genetic strategies for manipulating the xanthophyll cycle
64 (manipulation of three genes) and glycolate metabolism (introduction of five genes) have
65 documented increases in plant biomass of between 15% and 37%, respectively, in the cash crop
66 tobacco (Kromdijk et al., 2016; South et al., 2019). However, to date, neither of these strategies
67 have been demonstrated to work in food crops. Moreover, similar manipulation of the xanthophyll
68 cycle in *Arabidopsis* resulted in a contradictory reduction in plant biomass (Garcia-Molina and
69 Leister, 2020), bringing into question the general applicability of this method.

70 Another possibility for manipulating plant yield and fitness in crops might be provided by the
71 carotenoids (e.g., β -carotene), which are isoprenoid pigments that rank among the most important
72 plant secondary metabolites due to the diverse functions they fulfil in photosynthesis and signaling.
73 Within chloroplasts, carotenoids like β -carotene and xanthophylls are key components of
74 photosynthetic membranes and form pigment-protein complexes that are essential for
75 photoprotection (Niyogi and Truong, 2013; Xu et al., 2020). β -carotene is also the precursor of
76 abscisic acid (ABA) and strigolactones (SLs), so alterations in carotenoid content can affect
77 hormone content and subsequent plant development and physiology (Al-Babili and Bouwmeester,
78 2015; Nambara and Marion-Poll, 2005). In recent years, new signaling and growth-promoting
79 functions have been reported for carotenoid-derived molecules (commonly referred to as
80 apocarotenoids), including β -cyclocitral (β -cc), dihydroactinidiolide (dhA), and zaxinone (Zax)
81 (D'Alessandro et al., 2018; D'Alessandro et al., 2019; Dickinson et al., 2019; Hou et al., 2016;
82 Wang et al., 2019). In animals, carotenoids consumed in the diet are also cleaved to produce
83 retinoids (including vitamin A) and other molecules with signaling and health-promoting properties

84 (Rodriguez-Concepcion et al., 2018). β -carotene is the main precursor of vitamin A in animals and
85 the main precursor of several apocarotenoids and plant hormones in plants; therefore, increased
86 accumulation of β -carotene might indirectly influence plant growth and development, as well as
87 improve the nutritional value. β -carotene is produced by the action of lycopene β -cyclase (LCYB),
88 indicating a potential for genetic manipulation of the expression of this gene as a two-for-one
89 solution to improve both the fitness and the nutritional value of the chosen crop.

90 In our previous work, we expressed the LCYB-encoding *DcLCYB1* gene from carrot (*Daucus*
91 *carota*) in tobacco and demonstrated growth-promoting and developmental effects of this gene
92 (Moreno et al., 2020). Interestingly, these tobacco lines also showed enhanced tolerance to abiotic
93 stresses, in addition to enhancement of biomass, yield, and photosynthetic efficiency (Moreno et al.,
94 2021). These beneficial effects were mainly triggered by an enhanced accumulation of the
95 phytohormones ABA and gibberellic acid (GA), but they were also a result of the greater
96 photoprotection afforded by the accumulation of xanthophylls. We therefore hypothesized that any
97 LCYB-encoding gene, independent of its origin (plant or bacterial), might trigger similar beneficial
98 effects to those observed with the carrot *DcLCYB1* gene in tobacco (Moreno et al., 2020).

99 In the present study, we explored this hypothesis using previously generated tomato cultivars that
100 overexpress three different *LCYB* genes (from plant and bacterial origins) following plastid or
101 nuclear transformation. We confirmed that the overexpression of any *LCYB* gene is sufficient to
102 trigger a molecular response that results in modulation of carotenoid (pro-vitamin A) and hormone
103 content, with a subsequent alteration in plant architecture, photosynthetic efficiency, stress
104 tolerance, and yield.

105

106 **RESULTS**

107 **Tomato productivity under different environmental conditions**

108 Given our recent findings that expression of the carrot *DcLCYB1* gene resulted in increased
109 photosynthetic efficiency, photoprotection, stress tolerance, plant biomass, and yield in tobacco
110 (Moreno *et al.*, 2021; Moreno *et al.*, 2020), we decided to evaluate whether manipulation of LCYB
111 activity could confer similar growth advantages in an economically important food crop. We tested
112 our hypothesis by exploiting the availability of several tomato cultivars overexpressing different
113 LCYB-encoding genes. In particular, we used a Red Setter cultivar with a nuclear construct
114 overexpressing a tomato LCYB (line H.C.) and two transplastomic lines expressing LCYB-
115 encoding genes from daffodil in the IPA6+ background (line pNLyc#2) or from the bacterium
116 *Erwinia uredovora* (renamed *Pantoea ananatis*) in the IPA6- background (line LCe) (see Materials
117 and Methods; **Table S1**). Growth evaluation under different climate conditions (fully controlled,
118 semi-controlled, and uncontrolled conditions) revealed robust and homogeneous changes in plant
119 height (increased and reduced plant height for transplastomic and nuclear lines, respectively) of the
120 transgenic lines in comparison to their respective wild type in all climate conditions (**fig. S1**). Due
121 to the robustness of the phenotypes, we selected the semi-controlled conditions (greenhouse) to
122 perform a detailed molecular and physiological characterization of this phenomenon. Interestingly,
123 the pNLyc#2 and LCe transplastomic lines showed longer stems than their respective wild-type
124 plants, thereby allowing a more spaced allocation of their leaves along the stem. By contrast, the
125 H.C. nuclear line showed reduced plant height (**Fig. 1A-C**). In addition, leaves from pNLyc#2 were
126 larger than the IPA6+ leaves, while leaves from the H.C. line were smaller than those from its wild
127 type R.S. (**fig. S2A, D**). By contrast, leaves from the LCe line showed sizes similar to the wild type
128 (**fig. S2G**). The fruit size was similar to the wild type in the pNLyc#2 line but was slightly larger in
129 the LCe line (**fig. S2J**), while the fruit from the H.C. line were considerably larger when compared
130 to those from its respective wild type (**fig. S2B, E, H, J**).

131 Plant biomass was assessed in all the lines to determine plant productivity. Interestingly, the
132 different *LCYB* transgenic lines showed different biomass partitioning when comparing leaves,
133 stem, and fruit (**Fig. 1M-O**). For instance, the transplastomic pNLyc#2 showed a clear increase in
134 plant height (~30%) and stem biomass (45%), but no changes in leaf biomass or leaf number (**Fig.**
135 **1J, K M, N**). In addition, fruit biomass (37%) and fruit number were reduced, although the fruit
136 size observed in pNLyc#2 was similar to the wild type (**Fig. 1L**). By contrast, the H.C. line showed
137 reduced plant height (40%) and stem biomass (30%), but no changes in leaf biomass (**Fig. 1J, M,**
138 **N**). Interestingly, the H.C. line displayed a reduced number of leaves compared to the wild type

139 (Fig. 1K). In addition, the H.C. fruit biomass was increased by 77% compared to the wild type R.S.
140 (Fig. 1O), in line with the increased fruit number and size displayed by this genotype (Fig. 1H, L).
141 The LCe transplastomic line showed increased plant height (~20%) and leaf biomass (17%), but no
142 significant changes in stem biomass (Fig. 1J, M, N). Its fruit biomass was increased up to 45%
143 relative to the wild type IPA6- (Fig. 1O). In this line, the leaf and fruit number remained the same
144 as in the wild type (Fig. 1K, L). Seed production in pNLyc#2 and LCe transplastomic lines was
145 lower than in their wild types, while H.C. seed production was approximately 1000% higher than in
146 its respective wild type (Fig. 1P-R). Biomass quantification in plants grown under fully controlled
147 and uncontrolled conditions showed similar patterns of biomass redistribution (as in the
148 greenhouse) in the different plant tissues (figs. S3 -S4), but also revealed delayed and accelerated
149 development for the pNLyc#2 and H.C. lines, respectively, while the LCe line showed wild-type-
150 like development (figs. S4-S5).

151

152 ***LCYB*-overexpressing lines show different carotenoid profiles in leaves and fruit**

153 We sought further insights into the different biomass accumulation patterns in leaves and fruit in the
154 transgenic lines by investigating carotenoid accumulation in both organs, since an altered carotenoid
155 content might affect hormone content and, thereby, plant growth. Transgenic lines expressing plant
156 *LCYBs* showed a reduction in total leaf carotenoid content, with strong decreases in lutein and a
157 lesser decrease in neoxanthin, but strong increases in violaxanthin and zeaxanthin levels. In
158 addition, the H.C. line displayed a slight reduction in β -carotene levels. By contrast, the total
159 carotenoid content in the bacterial *LCYB*-expressing LCe line remained essentially the same as in
160 the wild type, with some slight reductions in β -carotene and zeaxanthin levels in the leaves (Fig. 2A
161 and fig. S6A, C, E).

162 In the fruit, the total carotenoid content in the transplastomic pNLyc#2 and LCe lines was
163 unchanged, while the total carotenoid content was reduced in the H.C. line. Transgenic lines
164 expressing plant *LCYBs* showed a strong accumulation of fruit β -carotene and strong reductions in
165 lycopene, lutein, and phytoene, while an increase in β -carotene was only observed for the bacterial
166 *LCYB*-expressing LCe line (Fig. 2A and fig. S6B, D, F). In addition, carotenoid-rich crystal
167 structures were observed by confocal microscopy in the fruit of the transgenic lines (fig. S7). Due to
168 the possibility that other isoprenoid pathways might have been affected by *LCYB* expression
169 (Moreno *et al.*, 2020), we also determined the chlorophyll and tocopherol (vitamin E) content in the
170 leaves and fruit (fig. S8). Chlorophyll contents remain unchanged in the pNLyc#2 and H.C. lines

171 (with the exception of a slight reduction in chlorophyll b in the H.C. line), while γ - and α -tocopherol
172 contents were increased. The LCe line showed a reduction in α -tocopherol (**fig. S8**). By contrast, the
173 tocopherol content (α , δ , and γ -tocopherol) increased strongly in fruit of the pNLyc#2 line, while
174 remaining unaltered in the H.C. and LCe lines (**fig. S8**).

175 **Hormone metabolism is altered in *LCYB*-overexpressing lines**

176 Altered β -carotene accumulation might influence the content of β -carotene-derived and/or
177 isoprenoid-derived hormones (e.g., ABA and Gas, respectively), thereby influencing plant growth
178 and development. Therefore, we profiled the plant hormones to gain further insights into their
179 contribution to the observed growth phenotype. The lines were characterized by significant
180 increases in ABA and jasmonic acid (JA) for pNLyc#2; ABA reduction and GA₁ and IAA
181 increments for H.C.; and ABA and GA₁ reductions and JA and JA-Ile increments in LCe in leaves
182 (**Fig. 2B**). By contrast, stronger significant changes in hormone content were found in fruit. ABA,
183 JA, and JA-Ile were increased, while indole acetic acid (IAA), the most bioactive auxin (Aux), was
184 reduced in both the pNLyc#2 and H.C. lines but increased in the LCe line (**Fig. 2B**). In addition, SA
185 was increased only in the pNLyc#2 line, whereas isopentenyladenine (iP), an active cytokinin (CK),
186 was increased in the pNLyc#2 and LCe lines (**Fig. 2B**). Phaseic acid, a bioactive ABA catabolite,
187 showed increased and reduced contents in the pNLyc#2 and H.C. lines, respectively. Intermediates
188 of the ABA, GA, Aux, CKs, and JA metabolic pathways were also differentially affected in leaves
189 and fruit (**fig. S9-10**).

190

191 **Effects of carotenoid accumulation on apocarotenoid metabolism in leaves and fruit**

192 β -carotene and xanthophylls are the main precursors of non-hydroxylated and hydroxylated
193 apocarotenoids, respectively. Growth-promoting and signaling properties of some apocarotenoids
194 (e.g., β -cyclocitral and zaxinone) have been reported in rice, tomato, and *Arabidopsis* (Dickinson et
195 al., 2019; Wang et al., 2019). These previous findings and the altered pigment content observed in
196 the leaves and fruit of the transgenic lines led us to profile apocarotenoid species in order to
197 determine their contribution to the observed phenotypes (**Fig. 2C and fig. S11-15**). In leaves, non-
198 hydroxylated apocarotenoids showed few increases or wild-type-like accumulation (**fig. S12**), in
199 line with the wild-type-like β -carotene content in the transgenic lines. By contrast, hydroxylated
200 apocarotenoids showed strong reductions due to a strong decrease in lutein content (**fig. S13**). The
201 non-hydroxylated apocarotenoids in fruit showed a strong and significant accumulation (due to
202 enhanced β -carotene content; **fig. S14**), while the hydroxylated apocarotenoids exhibited strong

203 reductions due to the lower lutein content in the fruit (**fig. S14**). Growth regulators, such as β -cc and
204 Zax, were mainly found at reduced levels in the leaves and fruit (**Fig. 2C**). Other apocarotenoids
205 with biological activity, such as β -ionone, showed enhanced accumulation in the fruit (**fig. S11**).

206 **Primary metabolites and lipid metabolism are altered in leaves and fruit of *LCYB*-expressing**
207 **lines**

208 The strong changes in pigment, hormone, and apocarotenoid contents led us to investigate the
209 impact of these changes on other metabolic pathways. GC-MS metabolite profiling showed
210 significant changes in sucrose and its derivatives (e.g., fructose, galactinol, raffinose), glycolytic
211 intermediates (e.g., glucose, G6P, Fru6P) and TCA cycle intermediates (e.g., malate and fumarate)
212 in the leaves and fruit of the transgenic lines (**Fig. 3B; fig. S16**). These changes were reflected, for
213 instance, in changes in G6P-derived compounds (e.g., trehalose, maltotriose, maltose, *myo*-inositol,
214 and erythritol) and amino acids derived from glycerate (e.g., O-acetylserine [OAS]), pyruvate (e.g.,
215 valine, alanine, leucine), shikimate (e.g., phenylalanine and tryptophan), malate (e.g., aspartic acid,
216 asparagine, β -alanine, and methionine), and 2-oxoglutarate (e.g., glutamic acid, glutamine, GABA,
217 and ornithine) (**Fig. 3B**). In addition, due to the structural function of carotenoids (β -carotene and
218 xanthophylls) in membrane composition, together with lipids, we determined the lipid composition
219 in leaves and fruit. Lipid profiling revealed no significant differences in the leaves, while marked
220 significant differences were observed, mainly for structural lipids, in the fruit of pNLyc#2 and H.C.
221 lines (**Fig. 3B; fig. S17**). In the fruit of pNLyc#2, a total of 17 galactolipids (GLs) (e.g., mono- and
222 di-galactosyldiacylglycerol, [MGDG and DGDG, respectively]) and 32 phospholipids (PLs) (e.g.,
223 phosphatidylcholine [PC], phosphatidylethanolamine [PE], phosphatidylglycerol [PG], and
224 phosphatidylserine [PS]) exhibited significant changes in their ratio abundances (**Fig. 3B**), with
225 levels of nine GLs reduced and eight increased, while the trend for PLs differed, where abundance
226 rations were reduced for seven PLs and increased for 25 PLs. The general trend for sulfolipids (SLs)
227 (e.g., sulfoquinovosyl diacylglycerol [SQDG]) and di- and tri-acylglycerols (DAGs/TAGs) was a
228 reduced abundance, with the exception of two SL species (**Fig. 3B**). By contrast, in the H.C. line,
229 most of the lipid species that showed significantly different levels displayed a reduced ratio
230 abundance, with a few exceptions (e.g., two DAGs, four TAGs, one PC, and two PEs) that showed
231 increased content (**Fig. 3B**).

232

233 **Photosynthetic parameters are influenced by carotenoid accumulation and plant architectural**
234 **changes in tomato *LCYB*-expressing lines**

235 The changes in plant growth and architecture induced by modifications in pigment and hormone
236 contents prompted subsequent analysis of several photosynthetic parameters. Photosynthetic
237 measurements were performed in tomato plants (49 days old) grown under greenhouse conditions
238 (**fig. S18**). CO₂ assimilation was significantly increased for the H.C. line, relative to its wild type,
239 whereas the transplastomic lines were the same as their wild types (**Fig. 4A**). Despite some
240 unaltered photosynthetic parameters, the ΦPSII, which reflects plant fitness, was increased in all the
241 lines (**Fig. 4B**). Interestingly, NPQ(T) was reduced in the H.C. line but was unaltered in the
242 transplastomic lines, in agreement with the observed ΦNPQ (**Fig. 4C and fig. S18H**). Conductance
243 was also reduced in the pNLyc#2 line and increased in the H.C. and LCe lines (**fig. S18F**). The
244 rETR was unchanged in the transplastomic pNLyc#2 and LCe lines but was increase in the H.C.
245 line (**fig. S18G**). These results suggest that the nuclear H.C. line is the one with the most enhanced
246 photosynthetic efficiency, despite its smaller shoot size.

247

248 ***LCYB*-expressing lines show enhanced abiotic stress tolerance and shelf life**

249 The increases in xanthophyll and hormone contents were further assessed, given their functions in
250 photoprotection and stress tolerance, by exposing the transgenic lines to abiotic stress. Leaves of the
251 pNLyc#2 and H.C. transgenic lines, which had higher xanthophyll content, showed high light
252 tolerance, as measured by the luminescence produced by the accumulation of lipid peroxides (**Fig.**
253 **4D**). The LCe line showed no significant increase in high light tolerance (**Fig. 4D**). In addition, all
254 the transgenic lines showed higher growth rates when exposed to either water deficit or salinity
255 treatments (for 10 and seven days, respectively) when compared to their wild type counterparts
256 (**Fig. 4E-F and fig. S19**). An extended fruit shelf-life has previously been reported in tomato and
257 other fruit due to enhanced ABA content or to the content of other primary metabolites (e.g.,
258 putrescine), so we also examined fruit shelf-life in the transgenic lines. All transgenic lines showed
259 enhanced shelf-life at different time points after harvest when compared to their respective wild
260 types (**Fig. 4G and fig. S20**).

261

262 **DISCUSSION**

263 The tomato is one of the most important fruit and vegetable crops worldwide, but its productivity is
264 affected by several abiotic stresses that have deleterious effects on fruit number and size, as well as
265 on fruit quality (Gerszberg and Hnatuszko-Konka, 2017). In the present study, we have
266 demonstrated that *LCYB* expression has beneficial effects on tomato plant fitness, stress tolerance,
267 and biomass, regardless of the *LCYB* genetic origin, tomato cultivar, or genetic transformation
268 strategy (**Table S1**). However, the mechanisms by which the introduction of a *LCYB* gene
269 modulates plant growth and development, photosynthetic efficiency, and stress tolerance remain
270 unresolved. *LCYB* catalyzes the conversion of lycopene to β -carotene, a step previously
271 characterized as a metabolic hot spot in tobacco (Kossler et al., 2021; Moreno *et al.*, 2020). The
272 metabolic hot spot focused on β -carotene reflects its multiple functions in several molecular and
273 physiological processes (e.g., photosynthesis, oxidative stress). In addition, β -carotene serve as
274 precursor of xanthophylls (photoprotection), hormones (growth, development, and stress response),
275 and growth regulators (**Fig. 5A**). Thus, changes in carotenoid content could directly influence
276 photosynthesis, antioxidant properties, and pigment content, while also indirectly influencing
277 hormone and apocarotenoid content (ABA, SLs, β -cc) and, consequently, plant growth,
278 development, and stress responses (Al-Babili and Bouwmeester, 2015; Nambara and Marion-Poll,
279 2005; Wang *et al.*, 2019).

280 Feedback mechanisms between carotenoids, methylerythritol phosphate (MEP), and ABA
281 pathways, can also influence carotenoid accumulation in maize, rice, Arabidopsis, and tomato (Bai
282 et al., 2009; Beyer et al., 2002; Qin et al., 2007; Romer et al., 2000). Enhanced *PSY* expression in
283 etiolated Arabidopsis seedlings also resulted in enhanced carotenoid levels via post-translational
284 accumulation of *DXS* mRNA, which stimulated the supply of MEP substrates (Rodriguez-Villalon
285 et al., 2009b; a). Thus, any alteration in the expression of a carotenogenic gene can impact the
286 expression of other carotenoid genes, as well as key genes from other isoprenoid pathways (e.g.,
287 *DXS*, *GA20ox*, *CHL*), as observed in *DcLCYB1* tobacco lines (Moreno *et al.*, 2020). This reflects a
288 close interconnection between the isoprenoid pathways (**Fig. 5A**) and suggests that any disturbance
289 in the metabolic flux of a particular isoprenoid pathway (e.g., carotenoid pathway) may affect other
290 plastidial isoprenoid-related pathways. Notably, isoprenoids are also the precursors of gibberellins
291 (GAs), brassinosteroids, and cytokinins (CKs), so any disturbance in the isoprenoid flux might
292 influence hormone contents, with subsequent impacts on plant growth, development, and stress
293 tolerance (Gudesblat and Russinova, 2011; Ha *et al.*, 2012; Hedden and Phillips, 2000; Krishna,
294 2003; Schaller et al., 2015; Tran *et al.*, 2007). In fact, the transgenic tomato lines analyzed here are

295 evidence of carotenoids as a metabolic hot spot (**Fig. 5**) because, despite the differences in their
296 genetic background, these tomato lines universally displayed changes in carotenoids,
297 apocarotenoids, and hormone contents (**Fig. 2**) that resulted in altered growth regulation and
298 biomass partitioning in different tissues (**Fig. 1 and figs. S1-4**). These changes were furthermore
299 reflected in plant biomass accumulation, resilience to abiotic stresses, and crop productivity (**Fig. 1**
300 **and Fig. 4D-F**).

301 The hormonal changes and their effects on primary metabolism can explain the changes in biomass
302 accumulation and stress tolerance (Moreno *et al.*, 2021; Moreno *et al.*, 2020; Sheyhakinia *et al.*,
303 2020; Yoshida *et al.*, 2014). For instance, gibberellins (GAs) control many aspects of growth (e.g.,
304 plant height, internode length) and plant development. Bioactive GAs (GA_4 and GA_1) function as
305 key players in plant growth and development in *Arabidopsis*, tobacco, and rice, with GA_4 showing
306 the highest bioactivity (Cowling *et al.*, 1998; Gallego-Giraldo *et al.*, 2008; Talon *et al.*, 1990;
307 Ueguchi-Tanaka *et al.*, 2007). Both the bioactive GAs are produced from GA_{12} by the non-13-
308 hydroxylation (GA_4) and the early-13-hydroxylation (GA_1) pathways (Magome *et al.*, 2013).
309 Interestingly, manipulation of GA biosynthetic genes (e.g., *COPALYL SYNTHASE*, *GA3oxidase 1*,
310 *GA20oxidase 1*) in *Arabidopsis*, tobacco, and rice, showed opposite GA_4 and GA_1 accumulation
311 patterns (Fleet *et al.*, 2003; Gallego-Giraldo *et al.*, 2008; Magome *et al.*, 2013). In our lines, the
312 longer stems and internode lengths (**Fig. 1A, C, J, and fig. S18A, D**) in the transplastomic lines
313 suggest an enhanced GA_4 content. However, the GA_4 level was below the detection limit in the
314 material we profiled in our study, although we detected a reduction in GA_1 , which could potentially
315 reflect an increase in GA_4 in the transplastomic lines. By contrast, the shorter stem and internodes,
316 together with enhanced GA_1 content, in the H.C. line suggest a possibly decreased GA_4 content
317 (**Fig. 1B, J, and fig. S18A, D**).

318 The reduced-growth phenotype is in line with the reduced plant size previously reported in ABA-
319 deficient mutants of tomato (Nitsch *et al.*, 2012). However, a similar ABA reduction in LCe, which
320 shows an opposite phenotype to H.C. (longer stem and internodes), suggests that the interaction
321 between GA_4 and ABA might direct plant height, as previously observed in *DcLCYB1* tobacco lines
322 (Moreno *et al.*, 2020). In addition, reductions in β -cyclocitral and/or zaxinone in the transplastomic
323 lines (**Fig. 2C**) suggest that they are not involved in the observed growth phenotype, while
324 reductions in both metabolites might contribute to the smaller growth phenotype observed in the
325 H.C. line (**Fig. 1**). The enhanced ABA and JA ($p=1.1e^{-3}$ and $p=4e^{-3}$; **Fig. 2B and fig. S9**) contents in
326 pNLyc#2 are likely responsible for its salt and drought tolerance (**Fig. 4E, F, and fig. S19**), as

327 previously shown in Arabidopsis and tobacco (Kazan, 2015; Moreno *et al.*, 2021; Moreno *et al.*,
328 2020; Yoshida *et al.*, 2014).

329 An enhanced ABA content may have caused stomatal closure, as reflected in the observed reduction
330 in stomatal conductance (**fig. S18F**). This reduction would conceivably impede an enhancement of
331 photosynthetic efficiency (**Fig. 4A-C, and fig. S18F-I**). By contrast, the H.C. and LCe lines
332 displayed a slightly reduced ABA content and enhanced conductance; however, only the H.C. line
333 showed enhanced photosynthetic efficiency (higher CO₂ assimilation, rETR, and ΦPSII; **Fig. 4A-C**,
334 **and fig. S18F-I**). Although these lines showed reduced ABA content, they both showed enhanced
335 salt and drought tolerance, suggesting the participation of an ABA-independent pathway. In fact,
336 JA/JA-Ile are involved in salt and drought tolerance in Arabidopsis and rice (Hazman *et al.*, 2019;
337 Kazan, 2015). Increases in JA and JA-Ile (p=0.05 and p<1e⁻⁴; **Fig. 2B and fig. S9**) in the LCe line
338 supported the higher drought and salt tolerance observed in this line. However, the H.C. line
339 showed reductions in ABA and no changes in JA, but a significant increase in IAA (p=0.03; **Fig. 2B**
340 **and fig. S9**).

341 IAA has been reported to enhance salt and drought tolerance in white clover, Arabidopsis, and rice
342 (Shani *et al.*, 2017; Sharma *et al.*, 2013; Shi *et al.*, 2014; Zhang *et al.*, 2020), supporting its
343 enhanced tolerance to these abiotic stresses (**Fig. 4E, F, and fig. S19**). In addition, several
344 osmoprotectants, which are neutral molecules that help the organisms to persist during severe
345 osmotic stress (Singh *et al.*, 2015), were enhanced in the transgenic lines (**Fig. 3A**). Increased ABA
346 and JA contents were previously reported to enhance the synthesis of osmoprotectants (e.g., sugars,
347 polyamines) under abiotic stress conditions to counteract harmful effects (Alcazar *et al.*, 2006;
348 Sheyhakinia *et al.*, 2020; Toumi *et al.*, 2010; Wang *et al.*, 2020). In line with this evidence,
349 increases in sugars (raffinose, fructose, G6P, glucose, trehalose), sugar alcohols (*myo*-inositol,
350 erythritol) and polyamines (putrescine) in leaves can also contribute to enhanced stress tolerance in
351 our transgenic lines (**Fig. 3A, Fig. 4E, F, and fig. S19; Table S1**).

352 The increased xanthophyll content in leaves could further enhance photoprotection and therefore
353 impart high light tolerance (pNLyc#2 and H.C.; **Fig. 4D**). In the fruit, stronger increases in β-
354 carotene content caused stronger changes in hormone content, thereby impacting fruit dry matter
355 (up to 67–77% in semi-controlled and uncontrolled conditions, respectively), size, and number, as
356 well as seed production (**Fig. 1, Fig. 2A, B, and fig. S4; Table S1**), making the fruit rich in pro-
357 vitamin A and enhancing its nutritional value. Fruit growth is influenced by CKs, Aux, GA, and
358 ABA (Quinet *et al.*, 2019). Transgenic fruit differentially accumulate IAA, iP, ABA, and GA
359 intermediates, suggesting that their interaction may have led to the observed fruit growth

360 phenotypes (**Fig. 1G-I, and fig. S2B, C, E, F, H, I, fig. S4C, D, G, H, K, L, fig. S5, fig. S8B, fig.**
361 **S10**).

362 Unfortunately, GA_1 , which was reported to be the most bioactive GA influencing fruit growth
363 (Garcia-Hurtado et al., 2012), was under the detection limit in fruit in our experiments, but its
364 content might explain the large increase in fruit size in the H.C. line. Furthermore, changes in the
365 hormonal network might confer additional advantages to the shoots or fruit. Recently, Diretto et al.
366 showed that the enhanced shelf-life of *LCYB*-expressing tomato lines was due to increased ABA
367 content and its negative impact on ethylene content (Diretto et al., 2020). Increased ABA content in
368 the pNLyc#2 and H.C. lines conferred longer fruit shelf-life compared to the wild type (**Fig. 4G**
369 **and fig. S20**). However, in the LCe line, which also showed enhanced shelf-life, the ABA content
370 was unchanged, suggesting that shelf-life might be controlled by other factors. Indeed, polyamines
371 (e.g., spermidine, putrescine) are known anti-senescence agents which increase fruit firmness, delay
372 ethylene emission and the climacteric respiratory burst, and induce mechanical stress resistance
373 (Valero et al., 2002). The highest ornithine and putrescine content ($p < 0.05$) was observed in the
374 LCe line, and this could contribute to the enhanced shelf-life observed in the fruit of this line (**Fig.**
375 **3A; Table S1**).

376 Accumulation of sugars and derivatives (e.g., raffinose, galactinol, *myo*-inositol, and trehalose) and
377 amino acids (e.g., Val, Asp, Asn, Thr, Glu, Gln, and Ala) in fruit were reported to confer tolerance
378 to chilling injury and resistance to pathogens and several postharvest stress conditions (Bang et al.,
379 2019; Farcuh et al., 2018; Lauxmann et al., 2014; Luengwilai et al., 2018). Accumulation of these
380 metabolites would be expected to confer valuable post-harvest traits to our tomatoes apart from the
381 enhanced shelf-life and their higher pro-vitamin A content.

382 The use of transgenic tomato lines with different cultivar and genetic backgrounds allowed us to
383 demonstrate that i) *LCYB* overexpression can be used to modulate growth (different biomass
384 partitioning between leaf and fruit) and fruit yield in a crop, and ii) the positive growth regulatory
385 effect conferred by the carrot *DcLCYB1* gene in tobacco (Moreno et al., 2020) can be also conferred
386 by other LCYBs (e.g., tomato, daffodil, and bacteria) in leaves and/or fruit. However, the different
387 genetic origins of the chosen *LCYB* genes also introduced specific changes in each line (**Table 1**;
388 **fig. S21**). Therefore, the selection of the transgene should be carefully analyzed before using it for
389 biotechnological purposes.

390 In conclusion, while some of the differences at the phenotypic (e.g., biomass partitioning; **Table 1**;
391 **fig. S21**) and molecular levels observed in the transgenic lines might reside in the different

392 cultivars, transformation methods, and *LCYB* genetic origins (**Table S1**), many similarities can be
393 explained by the modulation of molecular processes, such as carotenoid and hormone
394 accumulations (see above; **fig. S21**). Despite the observed specific changes in carotenoid, hormone,
395 and metabolite accumulation in leaves and fruit of the transgenic lines (**Table 1**; **Table S2-3 and**
396 **fig. S21**), the similar responses in these lines can be attributed to changes in specific hormones (salt
397 and drought tolerance are most likely conferred by increases in ABA and JA for pNLyc#2, IAA for
398 H.C., and JA and JA-Ile for LCe; **Table 1**; **fig. S21**) and/or metabolites (e.g., putrescine-enhanced
399 shelf-life). However, other observed contrasting phenotypes (e.g., plant height and seed yield) were
400 probably caused by specific interactions between hormones and/or their ratios, as well as the
401 connection between carotenoids and other non-isoprenoid hormones (e.g., IAA), and these remain
402 to be investigated. Nevertheless, modulation of the content of main components of the hormonal
403 network in each transgenic line resulted in enhanced abiotic stress tolerance, extended fruit shelf
404 life, and increased biomass (favoring shoot and/or fruit in the different lines), along with the
405 enhanced nutritional value conferred by the higher β -carotene content in the fruit (**Table 1**; **fig.**
406 **S21**). All these features are highly desirable traits for crop improvement (especially stress tolerance
407 and higher biomass/yield) considering the worldwide climate change and its consequences for food
408 crop production. This type of bioengineering is a promising strategy that can be exported to cereal
409 crops (e.g., rice) that, in general, do not accumulate high levels of carotenoids but whose yield must
410 be greatly increased by 2050.

411

412 METHODS

413 Plant material and growth conditions

414 Tomato wild type (*S. lycopersicum* cvs. IPA6+/lutein, IPA6-/without lutein and isogenic Red
415 Setter/R.S.), transplastomic (pNLyc#2 and LCe), and nuclear (high carotenoid/H.C.) lines (Apel and
416 Bock, 2009; D'Ambrosio et al., 2004; Wurbs et al., 2007) were raised from seeds germinated on
417 soil. The transgenic lines harbor *LCYB* genes from daffodil, tomato, and bacteria (*Erwinia*
418 *uredovora*). Two of the selected lines were obtained by plastid DNA transformation (pNLyc#2 and
419 LCe) and the other line by Agrobacterium-mediated nuclear DNA transformation (H.C.; **Table S1**).
420 Transplastomic lines expressing the *LCYB* gene from daffodil or *Erwinia uredovora* (pNLyc#2 and
421 LCe, respectively) were generated via plastid transformation using particle bombardment. The
422 homoplasmic state (i.e., the absence of residual copies of the wild-type genome) of ~22 plants was
423 assessed by subjecting the transgenic plants to double-resistance tests (spectinomycin and
424 streptomycin, 500 mg l⁻¹) on synthetic media and by RFLP analysis (Apel and Bock, 2009; Wurbs

425 *et al.*, 2007). Due to the homoplasmic state (meaning that plastid DNA was equally modified in all
426 chloroplasts of the transgenic lines) and to the similar phenotype observed in these lines, we
427 selected one line per genotype (pNLyc#2 and LCe) to carry out the experiments described in this
428 work. The H.C. nuclear line (plus other six LCYB transgenic lines) was obtained via *Agrobacterium*
429 transformation. All seven transgenic lines expressing the tomato *LCYB* were confirmed by Southern
430 blot experiments and by the intense orange color in their fruit in comparison to the isogenic Red
431 Setter control. In addition, northern blot and qPCR experiments confirmed higher transcript
432 accumulations in the transgenic lines in leaves and fruit than in the isogenic wild type Red Setter
433 control (D'Ambrosio *et al.*, 2004; Giorio *et al.*, 2007). Based on this evidence and the similar
434 phenotype obtained in all nuclear lines, we selected the H.C. line with the highest β -carotene levels
435 for the experiments in this work.

436 Wild type and transgenic lines were grown side by side, and randomly allocated, in the greenhouse
437 (semi-controlled conditions) under standard conditions (16 h/8 h day/night regime, 450–800 μmol
438 photons $\text{m}^{-2} \text{s}^{-1}$ combination of artificial light and sunlight, 24 °C, and 65 % relative humidity).
439 Plant height, leaf and fruit number, internode length, and seed yield were recorded. Fully expanded
440 mature source leaves (the 5th leaf) were harvested from six-week-old wild type and transgenic *LCYB*
441 tomato plants ($n=5$) grown in the greenhouse. Fruits were analyzed as five biological replicates
442 from 16-week-old tomato plants. Each biological replicate consisted of a pool of three different
443 fruits from one individual plant.

444

445 **Physiological measurements and biomass quantification**

446 The T5 generation wild type (R.S.) and nuclear transformed (H.C.) and wild type (IPA6+ and IPA6)
447 and T3 transplastomic homoplasmic lines (pNLyc#2 and LCe) were grown directly on soil. Plants
448 were grown for three weeks in a controlled environment (100–250 $\mu\text{mol m}^{-2} \text{s}^{-1}$, 23 °C) and then
449 transferred to fully controlled (plant chamber/530 and 53 $\mu\text{mol m}^{-2} \text{s}^{-1}$ red and white light
450 respectively, 16/8 h photoperiod, 70 % relative humidity and 24 °C), semi-controlled
451 (greenhouse/average light intensity: 170–380 $\mu\text{mol m}^{-2} \text{s}^{-1}$, maximum light intensity: 1200 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and 24 °C), and uncontrolled conditions (polytunnel/natural climate conditions during spring-
452 summer 2019 in Potsdam, Germany). In each climate condition, plants were grown side by side and
453 they were randomly distributed with at least 50 cm of space between each other. Physiological
454 parameters, such as plant height and leaf and fruit number, were recorded through development (10
455 to 60–70 days of growth under the different climate conditions) and/or before performing the

457 biomass experiment. Plant biomass for plants grown in fully controlled conditions was assessed in
458 11-week-old plants (only the biomass of the aerial part, leaf and stem, was recorded). Plant (leaves
459 and stem) and fruit biomass for plants grown under semi-controlled conditions was assessed in two
460 groups of 8- and 16-week-old plants, respectively. The first group was grown for quantification of
461 the leaves and stem ($n=5-6$), and the second was grown for the assessment of fruit biomass ($n=5$).
462 Both groups were grown in parallel and harvested at different time points (eight and 16 weeks,
463 respectively). The biomass of plants grown under uncontrolled conditions in the polytunnel was
464 measured in 12-week-old tomato plants. In this case, the leaf, stem and fruit biomass was recorded
465 from the same plants. Briefly, leaves, stem, and fruit were separated and the fresh weight was
466 recorded immediately. Subsequently, the leaves, stem, and fruit were dried at 70 °C for five days,
467 and the dry weight was recorded. Five (biomass) to ten (plant height) biological replicates were
468 used for each experiment under the different climate conditions. For fruit size quantification, the
469 area of three fully ripened fruit detached from three different greenhouse-grown 16-week-old
470 tomato plants was quantified using ImageJ software.

471

472 **Photosynthesis measurements**

473 Wild type and transgenic lines were raised from seeds and grown for three weeks under fully
474 controlled conditions in a phytotron (250 μmol photons $\text{m}^{-2} \text{s}^{-1}$, 16 h/8 h day/night, 22 °C day/18 °C
475 night, 70% relative humidity; pots of 7 cm diameter). The plants were then transferred to the
476 greenhouse (16 h/8 h day/night regime, 450–800 μmol photons $\text{m}^{-2} \text{s}^{-1}$ combination of artificial and
477 sun light, 24 °C, 65 % relative humidity), randomly allocated, and acclimated for four weeks before
478 the photosynthetic measurements (49-day-old plants). Photosynthetic parameters, such as CO_2
479 assimilation, conductance, and relative electron transport rate (rETR), were measured with a Li-
480 6400XT portable photosynthesis system equipped with a leaf chamber fluorometer (Li-Cor Inc.,
481 Lincoln, NE, USA). The measurements were performed during the mornings on fully expanded
482 leaves under growth light conditions (greenhouse, 450 μmol (photons) $\text{m}^{-2} \text{s}^{-1}$ of PAR), with the
483 amount of blue light set at 10% of the photosynthetically active photon flux density to optimize
484 stomatal aperture. The reference CO_2 concentration was set at 400 μmol CO_2 mol^{-1} air. All
485 measurements were performed using a 2 cm^2 leaf chamber maintained with a block temperature of
486 25°C and a flow rate of 300 mmol air min^{-1} . The rETR was calculated according to the method
487 described in (Krall and Edwards, 1992). In addition, total non-photochemical quenching (NPQT),
488 (Φ_{PSII}), (Φ_{NPQ}), and (Φ_{NO}) were measured in the same plants with a MultiSpec (Photosync)
489 instrument (Kuhlgert et al., 2016; Tietz et al., 2017). All measurements were conducted during the

490 early morning (9:00–11:00 am) in the same part of the 7th leaf from seven-week-old plants (growing
491 in 20 cm diameter pots). Five to 12 plants were used for the measurements.

492

493 **Water deficit and salinity treatments**

494 Water deficit and salinity treatments were performed under greenhouse conditions. Tomato seeds
495 were sown and raised under control conditions in a phytotron. After three weeks, the seedlings were
496 transferred to the greenhouse and acclimated for four days. The plants were randomized and placed
497 30 cm apart. For water deficit experiments, control plants (wt and transgenic) were watered once
498 per day (50–200 mL per plant, depending of their water requirements), whereas stressed plants were
499 not watered. Plant height and leaf number were recorded before the stress treatment was initiated
500 (day 0) and again at day 10 of the stress conditions. Phenotypes were recorded by photography at
501 the same time points. For salinity stress, plants were watered with 100 mL of water or 100 mL salt
502 solution (NaCl 200 mM) once per day for seven days. Plant height and leaf number were recorded
503 at day 0 before the onset of the stress treatment and seven days later. At day seven, the stress
504 treatment was discontinued and all plants were watered with 100 mL water for one more week. The
505 plants were photographed again at two weeks after the stress onset (one week of salt treatment and a
506 subsequent week of water only). All tomatoes were grown in 13 cm diameter pots for the stress
507 experiments in the greenhouse. Five to six biological replicates were used for measurements of
508 control and stress-treated plants.

509

510 **Photooxidative stress**

511 Leaf discs (1.2 cm diameter) were floated on water at 10 °C and simultaneously exposed for 18 h to
512 strong white light (photon flux density/PFD, 1200 mmol photons m⁻² s⁻¹) produced by an array of
513 light-emitting diodes. The stressed leaf discs were then placed on wet filter paper for measurement
514 of autoluminescence emission after a 2 h dark adaptation, as previously described (Birtic et al.,
515 2011). The emission signal was imaged with a liquid nitrogen-cooled charge-coupled device (CCD)
516 camera (VersArray 1300B, Roper Scientific), with the sensor operating at a temperature of -110 °C.
517 The acquisition time was 20 min, and on-CCD 2 × 2 binning was used, leading to a resolution of
518 650 × 670 pixels. As previously shown, the imaged signal principally emanates from the slow
519 decomposition of the lipid peroxides that accumulated in the samples during the oxidative stress
520 treatment (Birtic *et al.*, 2011).

521

522 **Shelf-life experiments**

523 Tomato fruits ($n=5$) were harvested from 16-week-old wild type and transgenic lines and kept for
524 seven weeks at 23°C and a relative humidity ~20%. The fruit phenotype was recorded 0, 8, 16, 24,
525 32, 40, and 48 days after detachment from the plant.

526

527 **Microscopy analysis**

528 Fully ripened tomato fruits were detached from 12-week-old tomato plants for further microscopy
529 analysis. Lycopene and β -carotene (Lyc+ β -car) were observed with a Leica DM6000B/SP5
530 confocal laser-scanning microscope (Leica Microsystems, Wetzlar, Germany), following a
531 previously published protocol (D'Andrea et al., 2014). The Lyc+ β -car signal was visualized using
532 laser excitation of 488 nm and emission between 400 and 550 nm. The total fluorescence of the
533 generated micrographs was quantified using the ROI function in Fiji software, based on collected
534 data from three different tomato fruits from each line.

535

536 **HPLC analysis of pigments**

537 Plastid isoprenoids (chlorophylls, carotenoids, and tocopherols) were extracted and quantified as
538 described previously (Emiliani et al., 2018).

539

540 **Hormone quantification**

541 Levels of endogenous phytohormones (cytokinins, auxins, jasmonates, abscisates, gibberellins, and
542 salicylic acid) were determined in five biological replicates of freeze-dried tomato leaves and fruit,
543 according to a modified method described previously (Simura et al., 2018). Briefly, samples
544 containing 1 mg DW of biological material were extracted in an aqueous solution of 50%
545 acetonitrile (v/v). A mixture of stable isotope-labeled standards of phytohormones was added to
546 validate the LC-MS/MS method. Crude extracts were loaded onto conditioned Oasis HLB columns
547 (30 mg/1 ml, Waters) and washed with 30% aqueous acetonitrile. Flow-through fractions containing
548 purified analytes were collected and evaporated to dryness in a vacuum evaporator. The
549 chromatographic separation was performed using an Acquity I class system (Waters, Milford, MA,
550 USA) equipped with an Acquity UPLC® CSH C18 RP column (150 \times 2.1 mm, 1.7 μ m; Waters).
551 The eluted compounds were analyzed using a triple quadrupole mass spectrometer (Xevo™ TQ-XS,
552 Waters) equipped with an electrospray ionization source. Data were processed with Target Lynx
553 V4.2 software, and final concentration levels of phytohormones were calculated by isotope dilution
554 (Rittenberg and Foster, 1940).

555

556 **Metabolite profile analysis**

557 The methyl *tert*-butyl ether (MTBE) extraction buffer was prepared and samples extracted as
558 described by Salem et al. (Salem et al., 2016). For metabolites, the chromatograms and mass spectra
559 were evaluated using ChromaTOF 1.0 (Leco, www.leco.com) and TagFinder v.4. (Luedemann et
560 al., 2008) software, respectively. The mass spectra were cross-referenced using the Golm
561 Metabolome database (Kopka et al., 2005). Data are reported following the standards (**Dataset S1**
562 and **S2**) suggested by Fernie et al. (Fernie et al., 2011).

563

564 **Lipid profile analysis**

565 After MTBE extraction, the lipid-containing fraction was dried, resuspended, and analyzed by LC-
566 MS. Samples were run in negative and positive mode (**Datasets S3 and S4**). The mass spectra were
567 processed with the Refiner MS 7.5 (Genedata) and Xcalibur software.

568

569 **Statistical and data analyses**

570 Statistical analysis was performed using GraphPad Prism (version 5.0) or R environment (version
571 3.5.2 <https://www.R-project.org/>). Growth and plant productivity were quantified by conducting a
572 set of several experiments. First, growth curves (based on plant height) for all the transgenic lines
573 and their respective wild types were determined for plants grown under fully controlled (plant
574 chamber), semi-controlled (greenhouse), and uncontrolled (polytunnel/ “field” experiment)
575 conditions. Ten plants were used for each environmental condition ($n=10$). The physiological
576 parameters (plant height, leaf number, fruit number) and plant productivity (fresh and dry matter of
577 leaves, stems, and fruit) were quantified on plants grown under fully controlled ($n=5$), semi-
578 controlled ($n=5-10$), and uncontrolled conditions ($n=5-10$). Fruit fresh and dry matter were
579 quantified for the semi-controlled and uncontrolled conditions. Seed yield was quantified in an
580 independent experiment as the total seed production of 12 transgenic and wild type plants for each
581 genotype. Photosynthetic analysis was performed on plants grown under semi-controlled conditions
582 ($n=5-12$). Water deficit and salinity stress experiments were performed on three-week-old tomato
583 plants grown under greenhouse conditions ($n=5-6$). A non-paired two-tailed Student t-test was
584 performed to compare each transgenic line with their respective wild type using GraphPad Prism
585 software. Pigment, metabolite, lipid, and hormone quantifications were performed on five to six
586 tomato plants grown under semi-controlled conditions. Pigments and hormones ($n=5$) were

587 analyzed with the unpaired two-tailed Student t-test to compare each transgenic line with their
588 respective wild type using GraphPad Prism software. For metabolomics ($n=5$), data mining,
589 normalization, clustering, and graphical representation were performed using R Software. For lipid
590 analysis, the output data were normalized to the internal standard and the amount of dry sample
591 used for the analysis (**Datasets S5 and S6**).

592 For statistical analysis, the MetaboAnalyst webserver was used (Chong et al., 2019; Pang et al.,
593 2020). The data were auto-scaled and normalized. The differences in the distribution of lipid
594 profiles among the transgenic lines were visually explored by principal component analysis (PCA).
595 The supervised partial least squares discriminant analysis (PLS-DA) was used when the separation
596 obtained with PCA was inadequate. Significant differences were determined among the transgenic
597 lines and their respective wild types with the non-parametric Wilcoxon rank-sum test ($n=5$). The
598 patterns of the lipid species that changed across the groups of samples were further investigated by
599 building heatmaps based on the calculated lipid ratios for the transgenic lines and their respective
600 wild types.

601

602 AUTHOR CONTRIBUTIONS

603 J.C.M: Conceived the project and the experimental design, performed growth, biomass and yield,
604 salt and drought stress, and fruit shelf-life experiments. J.G.V. and J.C.M.: performed
605 photosynthetic experiments with Li-Cor and Multispec, respectively, and performed metabolite
606 extraction and sample preparation (J.C.M.), and data analysis (J.G.V.). J.M. and S.A.: performed
607 apocarotenoid extraction, sample preparation and data analysis. O.N. and I.P.: performed
608 hormonomics analysis. M.R-C.: performed carotenoid extraction and quantification; S.C. and
609 J.C.M.: performed data analysis from lipidomics and lipid extraction, respectively. M.H.: performed
610 high light stress experiments and lipid peroxide quantification. M.K. and J.C.M.: performed
611 microscopy analysis with assistance of J.C.M. JCM wrote the paper with special input from J.G.V.,
612 A.R.F., M.R-C., A.S. and all other coauthors.

613

614 ACKNOWLEDGMENTS

615 We are grateful to Prof. Dr. Lothar Willmitzer for his support and advice. We thank Prof. Dr. Ralph
616 Bock (Max Planck Institute of Molecular Plant physiology, Golm, Germany) and Dr. Caterina
617 D'Ambrosio (Centro Ricerche Metapontum Agrobios, ALSIA, Italy) for kindly providing the

618 transplastomic pNLyc#2 and LCe seeds and the homozygous nuclear High Caro (H.C.) lines,
619 respectively. We thank Dr. Camila Caldana and Anne Michaelis for providing the GC facility and
620 running the GC samples, respectively, and Maria Rosa Rodriguez-Goberna for technical support
621 related with pigment analysis (supported by grant BIO2017-84041-P from the Spanish AEI). In
622 addition, we thank Hana Martíková and Petra Amakorová for their help with phytohormone
623 analyses. The hormonomics work was funded by the Ministry of Education, Youth and Sports of the
624 Czech Republic (European Regional Development Fund-Project “Plants as a tool for sustainable
625 global development” No. CZ.02.1.01/0.0/0.0/16_019/0000827), and the Internal Grant Agency of
626 Palacký University (IGA_PrF_2021_011).

627

628 **DECLARATION OF INETERESTS**

629 The authors declare no competing interests.

630

631 **Figure legends**

632 **Fig. 1. Tomato plant yield under semi-controlled conditions in the greenhouse. (A-F)**

633 Nine-week-old wild type (IPA6+, R.S., and IPA6-) and transgenic tomato lines (pNLyc#2, H.C.,
634 and LCe) grown under greenhouse conditions. **(G-I)** Tomato fruits from 16-week-old wild type and
635 transgenic tomato lines grown under greenhouse conditions (top view). **(J-O)** Plant height, leaf and
636 fruit number, and dry weight biomass (leaf, stem, and fruit) of wild type and transgenic tomato
637 lines. **(P-R)** Seed yield of wild type and transgenic tomato lines grown under greenhouse
638 conditions. Seed production was measured as the total weight of seeds produced by 12 independent
639 tomato plants of each genotype. Five to 10 biological replicates were used **(J-O)**. Unpaired two-
640 tailed Student t-test was performed to compare transgenic lines with the wild type. wt: wild type;
641 R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β -cyclase from *Erwinia*. Scale bar: 10 cm.

642 **Fig. 2. Carotenoid and hormone metabolism in leaf and fruit of *LCYB*-expressing tomato**

643 **lines. (A)** Carotenoid pathway (left) and carotenoid composition (right) in leaves and fruits of wild
644 type (IPA6+, R.S., and IPA6-) and *LCYB* transgenic lines (pNLyc#2, H.C., and LCe) grown in the
645 greenhouse. **(B)** Hormone profile in leaves and fruits of wild type and transgenic *LCYB* lines (see
646 **figs. S9-10**). **(C)** Quantification of apocarotenoids with conserved growth-promoting properties (β -
647 cyclocitral/ β -cc and zaxinone/Zax) in leaves and fruits (see **figs. S11-15**). Leaf samples were
648 collected from the 5th leaf of each of the five biological replicates used per line (six-week-old
649 plants). Fully ripened fruits were collected from 16-week-old tomato plants (from five different
650 biological replicates, each biological replicate comprising a pool of 3 fruits). Unpaired two-tailed
651 Student t-test was performed to compare transgenic lines with the wild type. In **A**, *: p < 0.05, **: p
652 < 0.005 ***: p < 0.0005; in **B**, *: p < 0.05. wt: wild type; R.S.: Red Setter; H.C.: high carotene;
653 LCe: lycopene β -cyclase from *Erwinia*; LOD: limit of detection; F.C.: fold change. Viol:
654 violaxanthin; car: carotene; Zea: zeaxanthin; Neo: neoxanthin; Lyc: lycopene; Phyt: phytoene; Lut:
655 lutein. ABA: abscisic acid; PA: phaseic acid; IAA: indole acetic acid; iP: isopentenyladenine; GA:
656 gibberellins; SA: salicylic acid; JA: Jasmonic acid; Ile: isoleucine; Eth.: ethylene; isop.: isoprenoids.
657 PSY: phytoene synthase; PDS: phytoene desaturase; ZDS: z-carotene desaturase; CRTISO:
658 carotene isomerase; CHX: carotenoid hydroxylase; VDE: violaxanthin de-epoxidase; ZEP:
659 zeaxanthin epoxidase; NXS: neoxanthin synthase.

660 **Fig. 3. Metabolic reshaping in leaves and fruits by *LCYB* expression in tomato. (A)** Primary

661 metabolite profiling in leaves and fruits of wild type (IPA6+, R.S., and IPA6-) and *LCYB* transgenic
662 tomato lines (pNLyc#2, H.C., and LCe). A non-paired two-tailed Student t-test was performed to
663 compare each transgenic line with their wild type (p<0.05; n=5 biological replicates). **(B)** Lipid

profile in fruits of *LCYB* transgenic tomato lines. The lipid profile in leaves is reported; however, no significant changes were observed (**fig. S17**). Wilcoxon's test was performed to compare transgenic lines with their wild types ($p<0.05$; $n=5$ biological replicates). Changes are shown as the log2 fold change between the transgenic lines and their respective wild type controls (for more details see **fig. S16-17**). Asterisks represent significant changes. OG: oxoglutarate; orn: ornithine; GABA: gamma aminobutyric acid; suc: sucrose; fru: fructose; glc: glucose; G6P: glucose-6-phosphate; Fru6P: fructose-6-phosphate; OAS: o-acetylserine; glucar. lac: glucarate-1,4-lactone; DAG: diacylglycerol; DGDG: di-galactosyldiacylglycerol; MGDG: mono-galactosyldiacylglycerol; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PS: phosphatidylserine; SQDG: sulfoquinovosyl diacylglycerol; TAG: triacylglycerol.

Fig. 4. Photosynthetic parameters, stress tolerance, and shelf life of transgenic *LCYB* tomato lines. (A) CO_2 assimilation. (B) Φ_{PSII} . (C) Total non-photochemical quenching (NPQT). CO_2 assimilation was measured with a Li-Cor instrument and Φ_{PSII} and NPQT with a MultiSpec instrument (Photosync). Photosynthetic parameters were measured from leaves of seven-week-old wild type (IPA6+, R.S., and IPA6-) and transgenic (pNLyc#2, H.C., and LCe) tomato lines grown under greenhouse conditions. All measurements, and especially NPQT, were performed without a dark adaptation period, as described in Tietz et al. (31). Five to 12 biological replicates were used for each photosynthetic measurement. (D) Lipid peroxidation imaging and quantification of tomato leaf discs (six-week-old plants) exposed to a light intensity of $2000 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ and a temperature of 7°C degrees. (E) Water deficit and salt treatments in three-week-old wild type and transgenic lines ($n=5-6$) grown in the greenhouse in 13 cm pots (see material and methods). Plant height was recorded before and after water deficit and salt treatments. (F) Growth rate (plant height) ratio between transgenic lines and their respective wild type controls. Plant height was measured before (0 days) and after stress onset (10 days for water deficit and seven days for salt treatments) and the growth rate was calculated under control and stress conditions. (G) Tomato shelf life in wild type and transgenic tomato fruits. Tomato fruits from wild type and transgenic lines were harvested from 15-week-old tomato plants. Shelf life was recorded at 48 days post-harvest (see **fig. S20** for other time points). A non-paired two-tailed Student t-test was performed to compare transgenic lines with the wild type. wt: wild type; R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β -cyclase from *Erwinia*.

Fig. 5. Proposed model for *LCYB*-mediated plant fitness enhancement. (A) Schematic representation of isoprenoid pathways connected by the common precursor GGPP. Conversion of lycopene into β -carotene represents a major key regulatory point in the branching of the carotenoid

697 pathway. The greater β -carotene production is used for greater production of xanthophylls
698 (photoprotection) and hormone synthesis (modulation of plant growth, development, and stress
699 tolerance). Feedback regulation between *LCYB*, *PSY*, and *DXS* might be controlling the production
700 of GGPP and therefore influencing the content of other isoprenoids (e.g., GAs, tocopherols, and
701 chlorophylls). **(B)** Metabolic and physiological changes in leaves (left side) and fruits (right side) of
702 the high carotene (H.C.) tomato transgenic line showing the influence on yield, stress tolerance,
703 photosynthetic efficiency, pro-vitamin A content, and fruit shelf life (for comparison with
704 transplastomic lines see **fig. S21**). Increases (red), reductions (blue), no changes (black), or
705 compounds under the detection limit by the hormonomics approach (grey), are shown. Metabolites
706 (e.g., carotenoids, apocarotenoids, hormones, lipids) with different accumulation profiles (increases
707 and decreases in different metabolites) are shown both in red and blue. Put: putrescine; Orn:
708 ornithine; Lut: lutein; β -car: β -carotene; Tocs: tocopherols; Chls: chlorophylls; Apocar:
709 apocarotenoids; GAs: gibberellins; Viol: violaxanthin; Zea: zeaxanthin; BRs: brassinosteroids; iP:
710 isopentenyladenine.

711 **Table 1.** Summary of phenotypic and molecular changes in leaves and fruits of transgenic *LCYB*-
712 expressing tomato lines

713 **REFERENCES**

714 **Al-Babili, S., and Bouwmeester, H.J.** (2015). Strigolactones, a novel carotenoid-derived plant
715 hormone. *Annu Rev Plant Biol* **66**:161-186. 10.1146/annurev-arplant-043014-114759.

716 **Alcazar, R., Cuevas, J.C., Patron, M., Altabella, T., and Tiburcio, A.F.** (2006). Abscisic acid
717 modulates polyamine metabolism under water stress in *Arabidopsis thaliana*. *Physiol Plantarum*
718 **128**:448-455. 10.1111/j.1399-3054.2006.00780.x.

719 **Apel, W., and Bock, R.** (2009). Enhancement of carotenoid biosynthesis in transplastomic
720 tomatoes by induced lycopene-to-provitamin A conversion. *Plant Physiol* **151**:59-66.
721 10.1104/pp.109.140533.

722 **Bai, L., Kim, E.H., DellaPenna, D., and Brutnell, T.P.** (2009). Novel lycopene epsilon cyclase
723 activities in maize revealed through perturbation of carotenoid biosynthesis. *Plant J* **59**:588-599.
724 10.1111/j.1365-313X.2009.03899.x.

725 **Bang, J., Lim, S., Yi, G., Lee, J.G., and Lee, E.J.** (2019). Integrated transcriptomic-metabolomic
726 analysis reveals cellular responses of harvested strawberry fruit subjected to short-term exposure
727 to high levels of carbon dioxide. *Postharvest Biol Tec* **148**:120-131.
728 10.1016/j.postharvbio.2018.11.003.

729 **Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., and Potrykus, I.** (2002). Golden
730 Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic
731 engineering to defeat vitamin A deficiency. *J Nutr* **132**:506S-510S. 10.1093/jn/132.3.506S.

732 **Birtic, S., Ksas, B., Genty, B., Mueller, M.J., Triantaphylides, C., and Havaux, M.** (2011). Using
733 spontaneous photon emission to image lipid oxidation patterns in plant tissues. *Plant J* **67**:1103-
734 1115. 10.1111/j.1365-313X.2011.04646.x.

735 **Chong, J., Wishart, D.S., and Xia, J.** (2019). Using MetaboAnalyst 4.0 for Comprehensive and
736 Integrative Metabolomics Data Analysis. *Curr Protoc Bioinformatics* **68**:e86. 10.1002/cpbi.86.

737 **Cowling, R.J., Kamiya, Y., Seto, H., and Harberd, N.P.** (1998). Gibberellin dose-response regulation
738 of GA4 gene transcript levels in *Arabidopsis*. *Plant Physiol* **117**:1195-1203. 10.1104/pp.117.4.1195.

739 **D'Alessandro, S., Ksas, B., and Havaux, M.** (2018). Decoding beta-Cyclocitral-Mediated Retrograde
740 Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative
741 Stress. *Plant Cell* **30**:2495-2511. 10.1105/tpc.18.00578.

742 **D'Alessandro, S., Mizokami, Y., Legeret, B., and Havaux, M.** (2019). The Apocarotenoid beta-
743 Cyclocitric Acid Elicits Drought Tolerance in Plants. *iScience* **19**:461-473.
744 10.1016/j.isci.2019.08.003.

745 **D'Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., Stigliani, A.L., and
746 Cellini, F.** (2004). Virtually complete conversion of lycopene into beta-carotene in fruits of tomato
747 plants transformed with the tomato lycopene beta-cyclase (tlcy-b) cDNA. *Plant Science* **166**:207-
748 214. 10.1016/j.plantsci.2003.09.015.

749 **D'Andrea, L., Amenos, M., and Rodriguez-Concepcion, M.** (2014). Confocal laser scanning
750 microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato
751 fruit. *Methods Mol Biol* **1153**:227-232. 10.1007/978-1-4939-0606-2_16.

752 **Dickinson, A.J., Lehner, K., Mi, J., Jia, K.P., Mijar, M., Dinneny, J., Al-Babili, S., and Benfey, P.N.**
753 (2019). beta-Cyclocitral is a conserved root growth regulator. *Proc Natl Acad Sci U S A* **116**:10563-
754 10567. 10.1073/pnas.1821445116.

755 **Ding, F., Wang, M., Zhang, S., and Ai, X.** (2016). Changes in SBPase activity influence
756 photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. *Sci
757 Rep* **6**:32741. 10.1038/srep32741.

758 **Diretto, G., Frusciante, S., Fabbri, C., Schauer, N., Busta, L., Wang, Z.H., Matas, A.J., Fiore, A.,
759 Rose, J.K.C., Fernie, A.R., et al.** (2020). Manipulation of beta-carotene levels in tomato fruits

760 results in increased ABA content and extended shelf life. *Plant Biotechnology Journal* **18**:1185-
761 1199. 10.1111/pbi.13283.

762 **Emiliani, J., D'Andrea, L., Ferreyra, M.L.F., Maulion, E., Rodriguez, E., Rodriguez-Concepcion, M., and Casati, P.** (2018). A role for beta,beta-xanthophylls in *Arabidopsis* UV-B photoprotection. *J Exp Bot* **69**:4921-4933. 10.1093/jxb/ery242.

763 **Farcuh, M., Rivero, R.M., Sadka, A., and Blumwald, E.** (2018). Ethylene regulation of sugar
764 metabolism in climacteric and non-climacteric plums. *Postharvest Biol Tec* **139**:20-30.
767 10.1016/j.postharvbio.2018.01.012.

768 **Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A.J., Saito, K., Fraser, P.D., and DeLuca, V.** (2011). Recommendations for reporting metabolite data. *Plant Cell* **23**:2477-2482. 10.1105/tpc.111.086272.

771 **Fleet, C.M., Yamaguchi, S., Hanada, A., Kawaide, H., David, C.J., Kamiya, Y., and Sun, T.P.** (2003).
772 Overexpression of AtCPS and AtKS in *Arabidopsis* confers increased ent-kaurene production but no
773 increase in bioactive gibberellins. *Plant Physiol* **132**:830-839. 10.1104/pp.103.021725.

774 **Gallego-Giraldo, L., Ubeda-Tomas, S., Gisbert, C., Garcia-Martinez, J.L., Moritz, T., and Lopez-Diaz, I.** (2008). Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes
775 with different gibberellin sensitivity. *Plant Cell Physiol* **49**:679-690. 10.1093/pcp/pcn042.

777 **Garcia-Hurtado, N., Carrera, E., Ruiz-Rivero, O., Lopez-Gresa, M.P., Hedden, P., Gong, F., and Garcia-Martinez, J.L.** (2012). The characterization of transgenic tomato overexpressing gibberellin
778 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the
779 gibberellin biosynthetic pathway. *J Exp Bot* **63**:5803-5813. 10.1093/jxb/ers229.

781 **Garcia-Molina, A., and Leister, D.** (2020). Accelerated relaxation of photoprotection impairs
782 biomass accumulation in *Arabidopsis*. *Nat Plants* **6**:9-12. 10.1038/s41477-019-0572-z.

783 **Gerszberg, A., and Hnatuszko-Konka, K.** (2017). Tomato tolerance to abiotic stress: a review of
784 most often engineered target sequences. *Plant Growth Regul* **83**:175-198. 10.1007/s10725-017-
785 0251-x.

786 **Giorio, G., Stigliani, A.L., and D'Ambrosio, C.** (2007). Agronomic performance and transcriptional
787 analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under
788 field conditions. *Transgenic Res* **16**:15-28. 10.1007/s11248-006-9025-3.

789 **Gudesblat, G.E., and Russinova, E.** (2011). Plants grow on brassinosteroids. *Curr Opin Plant Biol* **14**:530-537. 10.1016/j.pbi.2011.05.004.

791 **Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S.** (2012). Cytokinins:
792 metabolism and function in plant adaptation to environmental stresses. *Trends Plant Sci* **17**:172-
793 179. 10.1016/j.tplants.2011.12.005.

794 **Hazman, M., Suhnel, M., Schafer, S., Zumsteg, J., Lesot, A., Beltran, F., Marquis, V., Herrgott, L., Miesch, L., Riemann, M., et al.** (2019). Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal
795 Catabolic Pathways in Rice upon Wounding and Salt Stress. *Rice (N Y)* **12**:45. 10.1186/s12284-019-
797 0303-0.

798 **Hedden, P., and Phillips, A.L.** (2000). Gibberellin metabolism: new insights revealed by the genes.
799 *Trends Plant Sci* **5**:523-530. 10.1016/s1360-1385(00)01790-8.

800 **Hou, X., Rivers, J., Leon, P., McQuinn, R.P., and Pogson, B.J.** (2016). Synthesis and Function of
801 Apocarotenoid Signals in Plants. *Trends Plant Sci* **21**:792-803. 10.1016/j.tplants.2016.06.001.

802 **Hussain, H.A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., et al.** (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes,
803 yield, nutrient uptake and oxidative status in maize hybrids. *Sci Rep* **9**:3890. 10.1038/s41598-019-
804 40362-7.

806 **Kazan, K.** (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. *Trends Plant
807 Sci* **20**:219-229. 10.1016/j.tplants.2015.02.001.

808 **Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P.,**
809 **Weckwerth, W., Gibon, Y., Stitt, M., et al.** (2005). GMD@CSB.DB: the Golm Metabolome
810 Database. *Bioinformatics* **21**:1635-1638. 10.1093/bioinformatics/bti236.

811 **Kossler, S., Armarego-Marriott, T., Tarkowska, D., Tureckova, V., Agrawal, S., Mi, J., Perez da**
812 **Sousa, L., Aurel Schottler, M., Schadach, A., Frohlich, A., et al.** (2021). Lycopene β -cyclase
813 expression influences plant physiology, development and metabolism in tobacco plants. *Journal of*
814 *Experimental Botany* 10.1093/jxb/erab029.

815 **Krall, J.P., and Edwards, G.E.** (1992). Relationship between Photosystem-II Activity and Co₂
816 Fixation in Leaves. *Physiol Plantarum* **86**:180-187. DOI 10.1111/j.1399-3054.1992.tb01328.x.

817 **Krishna, P.** (2003). Brassinosteroid-Mediated Stress Responses. *J Plant Growth Regul* **22**:289-297.
818 10.1007/s00344-003-0058-z.

819 **Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., and Long, S.P.** (2016).
820 Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.
821 *Science* **354**:857-861. 10.1126/science.aai8878.

822 **Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M.I., Roth, M.G., Bi, K.,**
823 **TerAvest, D., Weebadde, P., et al.** (2016). MultispeQ Beta: a tool for large-scale plant phenotyping
824 connected to the open PhotosynQ network. *R Soc Open Sci* **3**:160592. 10.1098/rsos.160592.

825 **Lauxmann, M.A., Borsani, J., Osorio, S., Lombardo, V.A., Budde, C.O., Bustamante, C.A., Monti,**
826 **L.L., Andreo, C.S., Fernie, A.R., Drincovich, M.F., et al.** (2014). Deciphering the metabolic
827 pathways influencing heat and cold responses during post-harvest physiology of peach fruit. *Plant*
828 *Cell Environ* **37**:601-616. 10.1111/pce.12181.

829 **Lopez-Calcagno, P.E., Fisk, S., Brown, K.L., Bull, S.E., South, P.F., and Raines, C.A.** (2019).
830 Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse
831 and field-grown transgenic tobacco plants. *Plant Biotechnol J* **17**:141-151. 10.1111/pbi.12953.

832 **Luedemann, A., Strassburg, K., Erban, A., and Kopka, J.** (2008). TagFinder for the quantitative
833 analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling
834 experiments. *Bioinformatics* **24**:732-737. 10.1093/bioinformatics/btn023.

835 **Luengwilai, K., Beckles, D.M., Roessner, U., Dias, D.A., Lui, V., and Siriphanich, J.** (2018).
836 Identification of physiological changes and key metabolites coincident with postharvest internal
837 browning of pineapple (*Ananas comosus* L.) fruit. *Postharvest Biol Tec* **137**:56-65.
838 10.1016/j.postharvbio.2017.11.013.

839 **Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T.,**
840 **Kawaide, H., Kamiya, Y., and Yamaguchi, S.** (2013). CYP714B1 and CYP714B2 encode gibberellin
841 13-oxidases that reduce gibberellin activity in rice. *Proc Natl Acad Sci U S A* **110**:1947-1952.
842 10.1073/pnas.1215788110.

843 **Moreno, J.C., Martinez-Jaime, S., Kosmacz, M., Sokolowska, E.M., Schulz, P., Fischer, A.,**
844 **Luzarowska, U., Havaux, M., and Skirycz, A.** (2021). A Multi-OMICs Approach Sheds Light on the
845 Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the
846 Carrot lycopene β -cyclase1 Gene. *Frontiers in Plant Science* **12**:103389/fpls.2021.624365.

847 **Moreno, J.C., Mi, J., Agrawal, S., Kossler, S., Tureckova, V., Tarkowska, D., Thiele, W., Al-Babili,**
848 **S., Bock, R., and Schottler, M.A.** (2020). Expression of a carotenogenic gene allows faster biomass
849 production by redesigning plant architecture and improving photosynthetic efficiency in tobacco.
850 *Plant J* **103**:1967-1984. 10.1111/tpj.14909.

851 **Nambara, E., and Marion-Poll, A.** (2005). Abscisic acid biosynthesis and catabolism. *Annu Rev*
852 *Plant Biol* **56**:165-185. 10.1146/annurev.arplant.56.032604.144046.

853 **Nitsch, L., Kohlen, W., Oplaat, C., Charnikhova, T., Cristescu, S., Michieli, P., Wolters-Arts, M.,**
854 **Bouwmeester, H., Mariani, C., Vriezen, W.H., et al.** (2012). ABA-deficiency results in reduced
855 plant and fruit size in tomato. *J Plant Physiol* **169**:878-883. 10.1016/j.jplph.2012.02.004.

856 **Niyogi, K.K., and Truong, T.B.** (2013). Evolution of flexible non-photochemical quenching
857 mechanisms that regulate light harvesting in oxygenic photosynthesis. *Curr Opin Plant Biol* **16**:307-
858 314. 10.1016/j.pbi.2013.03.011.

859 **Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson,
860 M.R., Hibberd, J.M., Long, S.P., et al.** (2015). Redesigning photosynthesis to sustainably meet
861 global food and bioenergy demand. *Proc Natl Acad Sci U S A* **112**:8529-8536.
862 10.1073/pnas.1424031112.

863 **Pang, Z., Chong, J., Li, S., and Xia, J.** (2020). MetaboAnalystR 3.0: Toward an Optimized Workflow
864 for Global Metabolomics. *Metabolites* **10**:103390/metabo10050186.

865 **Pareek, A., Dhankher, O.P., and Foyer, C.H.** (2020). Mitigating the impact of climate change on
866 plant productivity and ecosystem sustainability. *J Exp Bot* **71**:451-456. 10.1093/jxb/erz518.

867 **Qin, G., Gu, H., Ma, L., Peng, Y., Deng, X.W., Chen, Z., and Qu, L.J.** (2007). Disruption of phytoene
868 desaturase gene results in albino and dwarf phenotypes in *Arabidopsis* by impairing chlorophyll,
869 carotenoid, and gibberellin biosynthesis. *Cell Res* **17**:471-482. 10.1038/cr.2007.40.

870 **Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., and
871 Lutts, S.** (2019). Tomato Fruit Development and Metabolism. *Front Plant Sci* **10**:1554.
872 10.3389/fpls.2019.01554.

873 **Rittenberg, D., and Foster, G.L.** (1940). A NEW PROCEDURE FOR QUANTITATIVE ANALYSIS BY
874 ISOTOPE DILUTION, WITH APPLICATION TO THE DETERMINATION OF AMINO ACIDS AND FATTY
875 ACIDS. *Journal of Biological Chemistry*:737-744.

876 **Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., Hornero-
877 Mendez, D., Limon, M.C., Melendez-Martinez, A.J., Olmedilla-Alonso, B., Palou, A., et al.** (2018).
878 A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and
879 health. *Prog Lipid Res* **70**:62-93. 10.1016/j.plipres.2018.04.004.

880 **Rodriguez-Villalon, A., Gas, E., and Rodriguez-Concepcion, M.** (2009a). Phytoene synthase activity
881 controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-
882 grown *Arabidopsis* seedlings. *Plant J* **60**:424-435. 10.1111/j.1365-313X.2009.03966.x.

883 **Rodriguez-Villalon, A., Gas, E., and Rodriguez-Concepcion, M.** (2009b). Colors in the dark: a model
884 for the regulation of carotenoid biosynthesis in etioplasts. *Plant Signal Behav* **4**:965-967.
885 10.4161/psb.4.10.9672.

886 **Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., and Bramley, P.M.**
887 (2000). Elevation of the provitamin A content of transgenic tomato plants. *Nat Biotechnol* **18**:666-
888 669. 10.1038/76523.

889 **Roy, S.J., Negrao, S., and Tester, M.** (2014). Salt resistant crop plants. *Current Opinion in
890 Biotechnology* **26**:115-124. 10.1016/j.copbio.2013.12.004.

891 **Salem, M.A., Juppner, J., Bajdzienko, K., and Giavalisco, P.** (2016). Protocol: a fast,
892 comprehensive and reproducible one-step extraction method for the rapid preparation of polar
893 and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample.
894 *Plant Methods* **12**:45. 10.1186/s13007-016-0146-2.

895 **Schaller, G.E., Bishopp, A., and Kieber, J.J.** (2015). The yin-yang of hormones: cytokinin and auxin
896 interactions in plant development. *Plant Cell* **27**:44-63. 10.1105/tpc.114.133595.

897 **Shani, E., Salehin, M., Zhang, Y., Sanchez, S.E., Doherty, C., Wang, R., Mangado, C.C., Song, L.,
898 Tal, I., Pisanty, O., et al.** (2017). Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA
899 Transcriptional Repressors. *Curr Biol* **27**:437-444. 10.1016/j.cub.2016.12.016.

900 **Sharma, R., Priya, P., and Jain, M.** (2013). Modified expression of an auxin-responsive rice CC-type
901 glutaredoxin gene affects multiple abiotic stress responses. *Planta* **238**:871-884. 10.1007/s00425-
902 013-1940-y.

903 **Sheyhakinia, S., Bamary, Z., Einali, A., and Valizadeh, J.** (2020). The induction of salt stress
904 tolerance by jasmonic acid treatment in roselle (*Hibiscus sabdariffa* L.) seedlings through
905 enhancing antioxidant enzymes activity and metabolic changes. *Biologia* **75**:681-692.
906 10.2478/s11756-020-00444-8.

907 **Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., and Chan, Z.** (2014). Modulation of auxin content in
908 *Arabidopsis* confers improved drought stress resistance. *Plant Physiol Biochem* **82**:209-217.
909 10.1016/j.plaphy.2014.06.008.

910 **Simkin, A.J., McAusland, L., Headland, L.R., Lawson, T., and Raines, C.A.** (2015). Multigene
911 manipulation of photosynthetic carbon assimilation increases CO₂ fixation and biomass yield in
912 tobacco. *J Exp Bot* **66**:4075-4090. 10.1093/jxb/erv204.

913 **Simkin, A.J., Lopez-Calcagno, P.E., Davey, P.A., Headland, L.R., Lawson, T., Timm, S., Bauwe, H.,**
914 **and Raines, C.A.** (2017). Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose
915 1,6-bisphosphate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO₂
916 assimilation, vegetative biomass and seed yield in *Arabidopsis*. *Plant Biotechnol J* **15**:805-816.
917 10.1111/pbi.12676.

918 **Simura, J., Antoniadi, I., Siroka, J., Tarkowska, D., Strnad, M., Ljung, K., and Novak, O.** (2018).
919 Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. *Plant Physiol*
920 **177**:476-489. 10.1104/pp.18.00293.

921 **Singh, M., Kumar, J., Singh, S., Singh, V.P., and Prasad, S.M.** (2015). Roles of osmoprotectants in
922 improving salinity and drought tolerance in plants: a review. *Rev Environ Sci Bio* **14**:407-426.
923 10.1007/s11157-015-9372-8.

924 **South, P.F., Cavanagh, A.P., Liu, H.W., and Ort, D.R.** (2019). Synthetic glycolate metabolism
925 pathways stimulate crop growth and productivity in the field. *Science*
926 **363**10.1126/science.aat9077.

927 **Talon, M., Koornneef, M., and Zeevaart, J.A.** (1990). Endogenous gibberellins in *Arabidopsis*
928 *thaliana* and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5
929 mutants. *Proc Natl Acad Sci U S A* **87**:7983-7987. 10.1073/pnas.87.20.7983.

930 **Tietz, S., Hall, C.C., Cruz, J.A., and Kramer, D.M.** (2017). NPQ(T) : a chlorophyll fluorescence
931 parameter for rapid estimation and imaging of non-photochemical quenching of excitons in
932 photosystem-II-associated antenna complexes. *Plant Cell Environ* **40**:1243-1255.
933 10.1111/pce.12924.

934 **Timm, S., Wittmiss, M., Gamlien, S., Ewald, R., Florian, A., Frank, M., Wirtz, M., Hell, R., Fernie,**
935 **A.R., and Bauwe, H.** (2015). Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes
936 Photosynthesis and Photorespiration of *Arabidopsis thaliana*. *Plant Cell* **27**:1968-1984.
937 10.1105/tpc.15.00105.

938 **Toumi, I., Moschou, P.N., Paschalidis, K.A., Bouamama, B., Ben Salem-Fnayou, A., Ghorbel, A.W.,**
939 **Mliki, A., and Roubelakis-Angelakis, K.A.** (2010). Abscisic acid signals reorientation of polyamine
940 metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. *J*
941 *Plant Physiol* **167**:519-525. 10.1016/j.jplph.2009.10.022.

942 **Tran, L.S., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki,**
943 **K.** (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response
944 to abscisic acid, drought, and salt stress in *Arabidopsis*. *Proc Natl Acad Sci U S A* **104**:20623-20628.
945 10.1073/pnas.0706547105.

946 **Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X.,**
947 **Ashikari, M., Kitano, H., Yamaguchi, I., et al.** (2007). Molecular interactions of a soluble gibberellin
948 receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. *Plant Cell* **19**:2140-2155.
949 10.1105/tpc.106.043729.

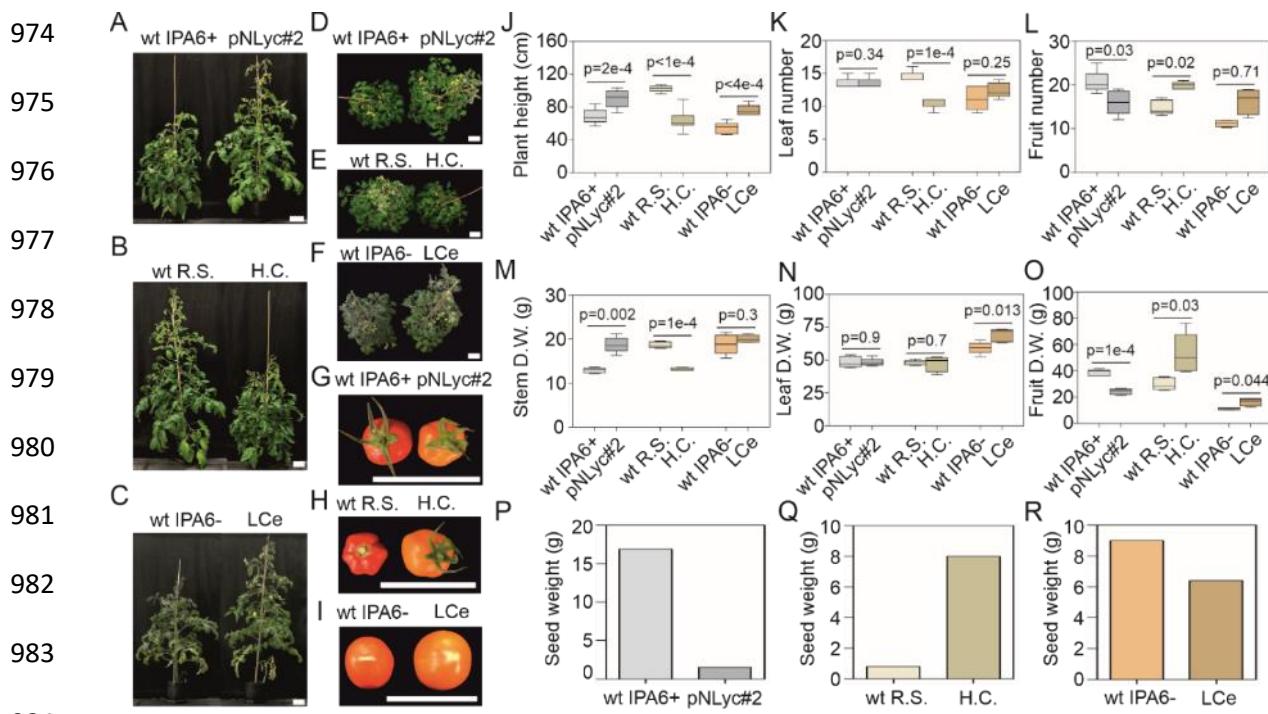
950 **Valero, D., Martinez-Romero, D., and Serrano, M.** (2002). The role of polyamines in the
951 improvement of the shelf life of fruit. *Trends Food Sci Tech* **13**:228-234. Pii S0924-2244(02)00134-
952 6
953 Doi 10.1016/S0924-2244(02)00134-6.

954 **Wang, J., Song, L., Gong, X., Xu, J.F., and Li, M.H.** (2020). Functions of Jasmonic Acid in Plant
955 Regulation and Response to Abiotic Stress. *Int J Mol Sci* **21**ARTN 144610.3390/ijms21041446.

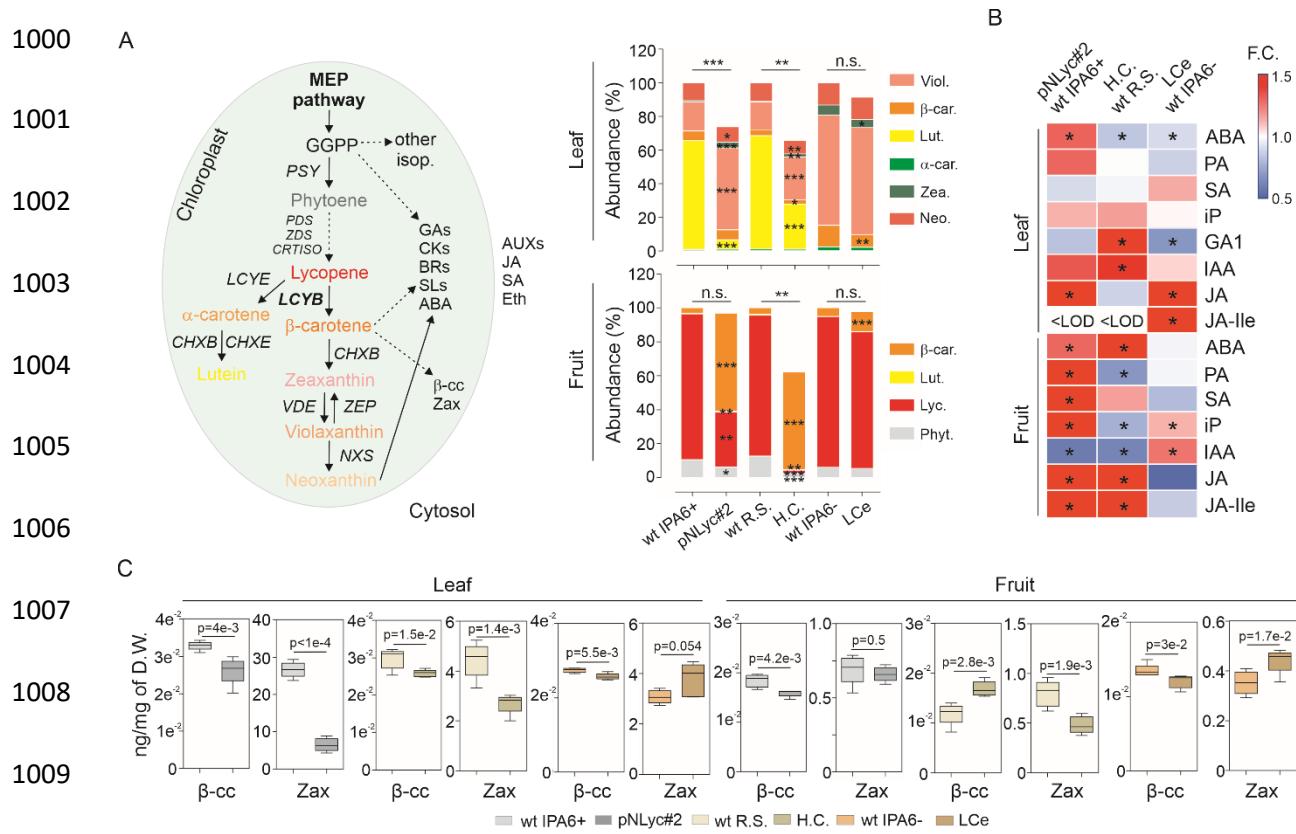
956 **Wang, J.Y., Haider, I., Jamil, M., Fiorilli, V., Saito, Y., Mi, J., Baz, L., Kountche, B.A., Jia, K.P., Guo,
957 X., et al.** (2019). The apocarotenoid metabolite zaxinone regulates growth and strigolactone
958 biosynthesis in rice. *Nat Commun* **10**:810. 10.1038/s41467-019-08461-1.

959 **Wurbs, D., Ruf, S., and Bock, R.** (2007). Contained metabolic engineering in tomatoes by
960 expression of carotenoid biosynthesis genes from the plastid genome. *Plant J* **49**:276-288.
961 10.1111/j.1365-313X.2006.02960.x.

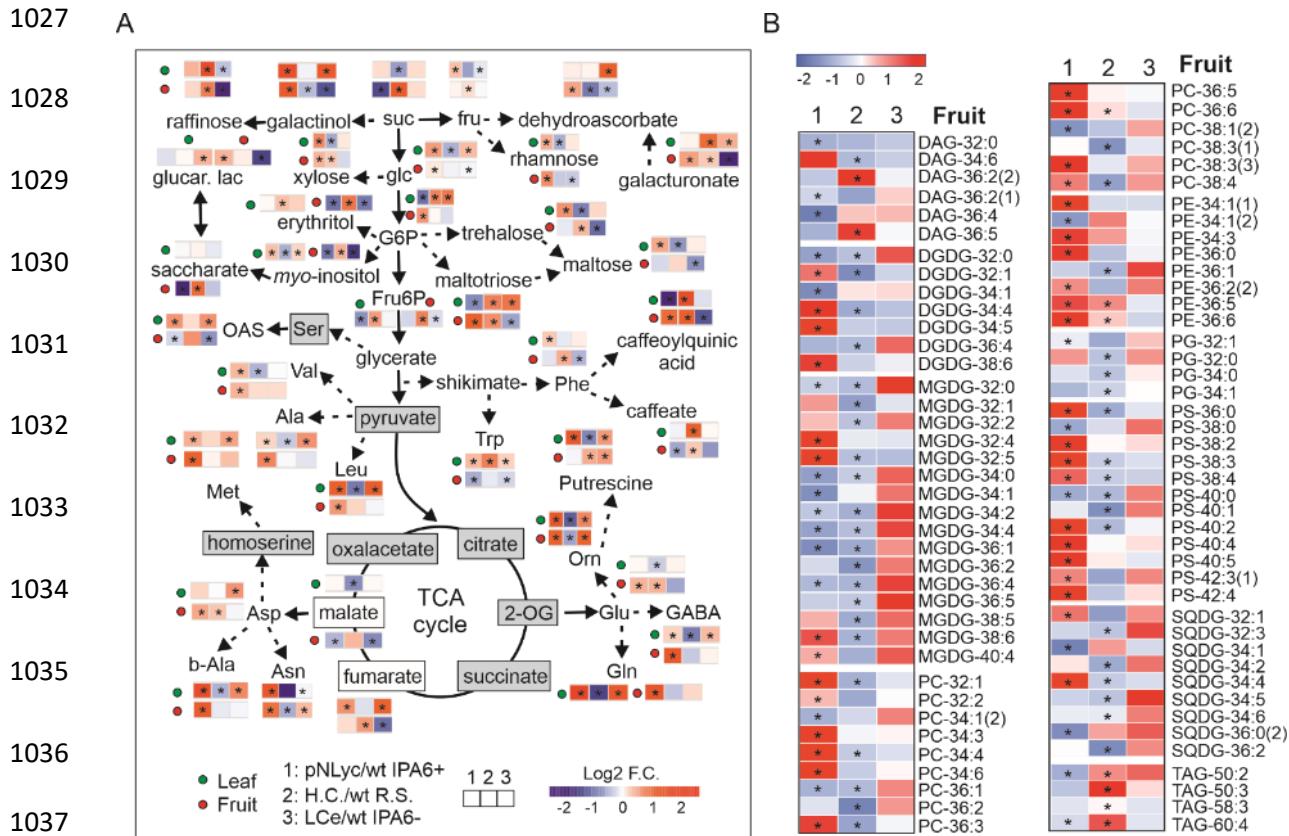
962 **Xu, P., Chukhutsina, V.U., Nawrocki, W.J., Schansker, G., Bielczynski, L.W., Lu, Y., Karcher, D.,
963 Bock, R., and Croce, R.** (2020). Photosynthesis without beta-carotene. *eLife* **9**10.7554/eLife.58984.


964 **Xu, Y.** (2016). Envirotyping for deciphering environmental impacts on crop plants. *Theor Appl
965 Genet* **129**:653-673. 10.1007/s00122-016-2691-5.

966 **Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K.** (2014). ABA-dependent and ABA-
967 independent signaling in response to osmotic stress in plants. *Curr Opin Plant Biol* **21**:133-139.
968 10.1016/j.pbi.2014.07.009.


969 **Zhang, Y., Li, Y., Hassan, M.J., Li, Z., and Peng, Y.** (2020). Indole-3-acetic acid improves drought
970 tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and
971 inhibiting senescence genes. *BMC Plant Biol* **20**:150. 10.1186/s12870-020-02354-y.

972


973 **Figures**

985 **Fig. 1. Tomato plant yield under semi-controlled conditions in the greenhouse. (A-F)** Nine-week-old
986 wild type (IPA6+, R.S., and IPA6-) and transgenic tomato lines (pNLyc#2, H.C., and LCe) grown under
987 greenhouse conditions. **(G-I)** Tomato fruits from 16-week-old wild type and transgenic tomato lines
988 grown under greenhouse conditions (top view). **(J-O)** Plant height, leaf and fruit number, and dry weight
989 biomass (leaf, stem, and fruit) of wild type and transgenic tomato lines. **(P-R)** Seed yield of wild type and
990 transgenic tomato lines grown under greenhouse conditions. Seed production was measured as the total
991 weight of seeds produced by 12 independent tomato plants of each genotype. Five to 10 biological
992 replicates were used **(J-O)**. Unpaired two-tailed Student t-test was performed to compare transgenic lines
993 with the wild type. wt: wild type; R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β -cyclase from
994 *Erwinia*. Scale bar: 10 cm.

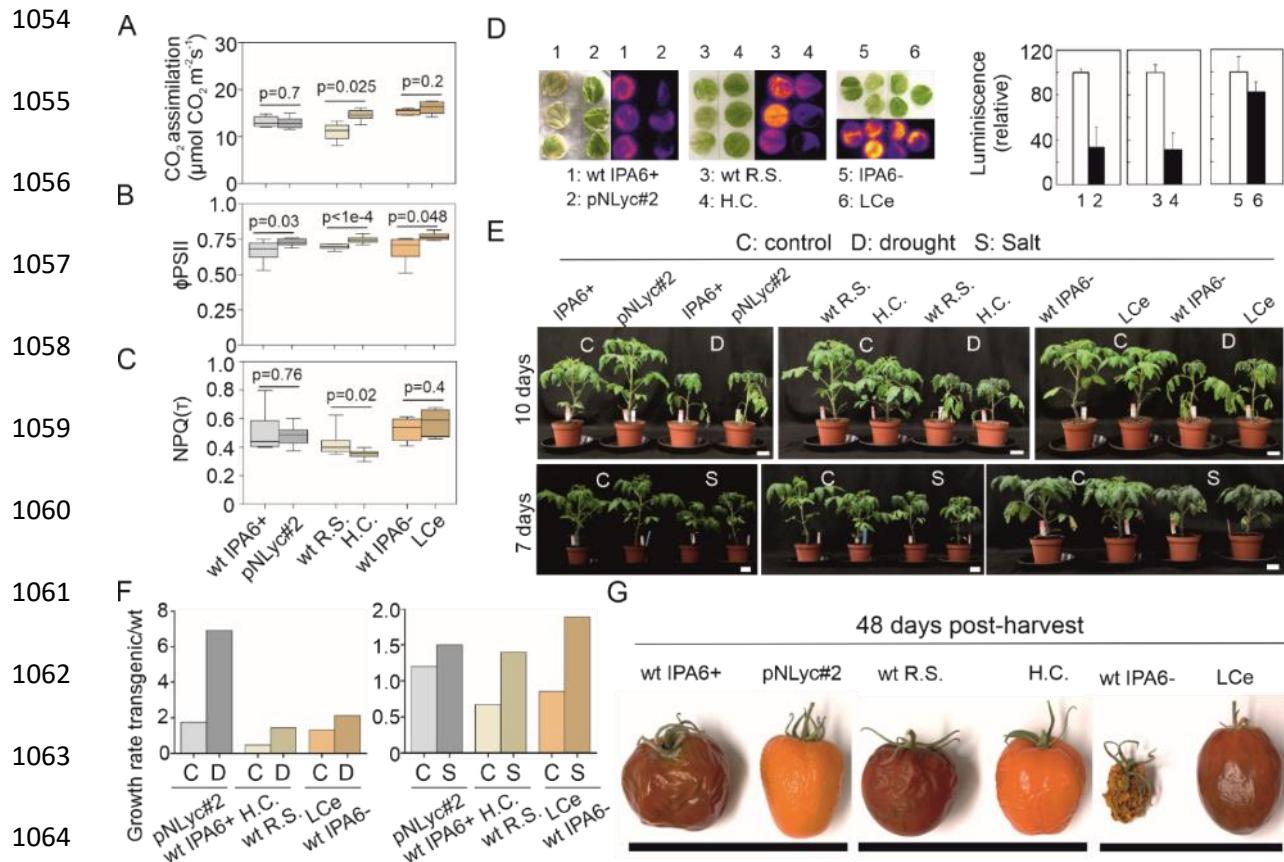

Fig. 2. Carotenoid and hormone metabolism in leaf and fruit of *LCYB*-expressing tomato lines. (A)
1010 Carotenoid pathway (left) and carotenoid composition (right) in leaves and fruits of wild type (IPA6+,
1011 R.S., and IPA6-) and *LCYB* transgenic lines (pNLyc#2, H.C., and LCe) grown in the greenhouse. (B)
1012 Hormone profile in leaves and fruits of wild type and transgenic *LCYB* lines (see **figs. S9-10**). (C)
1013 Quantification of apocarotenoids with conserved growth-promoting properties (β -cyclocitral/ β -cc and
1014 zaxinone/Zax) in leaves and fruits (see **figs. S11-15**). Leaf samples were collected from the 5th leaf of
1015 each of the five biological replicates used per line (six-week-old plants). Fully ripened fruits were
1016 collected from 16-week-old tomato plants (from five different biological replicates, each biological
1017 replicate comprising a pool of 3 fruits). Unpaired two-tailed Student t-test was performed to compare
1018 transgenic lines with the wild type. In **A**, *: $p < 0.05$, **: $p < 0.005$ ***: $p < 0.0005$; in **B**, *: $p < 0.05$. wt:
1019 wild type; R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β -cyclase from *Erwinia*; LOD: limit of
1020 detection; F.C.: fold change. Viol: violaxanthin; car: carotene; Zea: zeaxanthin; Neo: neoxanthin; Lyc:
1021 lycopene; Phyt: phytoene; Lut: lutein. ABA: abscisic acid; PA: phaseic acid; IAA: indole acetic acid; iP:
1022 isopentenyladenine; GA: gibberellins; SA: salicylic acid; JA: Jasmonic acid; Ile: isoleucine; Eth.:
1023 ethylene; isop.: isoprenoids. PSY: phytoene synthase; PDS: phytoene desaturase; ZDS: z-carotene
1024 desaturase; CRTISO: carotene isomerase; CHX: carotenoid hydroxylase; VDE: violaxanthin de-
1025 epoxidase; ZEP: zeaxanthin epoxidase; NXS: neoxanthin synthase.

Fig. 3. Metabolic reshaping in leaves and fruits by *LCYB* expression in tomato. (A) Primary metabolite profiling in leaves and fruits of wild type (IPA6+, R.S., and IPA6-) and *LCYB* transgenic tomato lines (pNLyc#2, H.C., and LCe). A non-paired two-tailed Student t-test was performed to compare each transgenic line with their wild type ($p<0.05$; $n=5$ biological replicates). **(B)** Lipid profile in fruits of *LCYB* transgenic tomato lines. The lipid profile in leaves is reported; however, no significant changes were observed (fig. S17). Wilcoxon's test was performed to compare transgenic lines with their wild types ($p<0.05$; $n=5$ biological replicates). Changes are shown as the log₂ fold change between the transgenic lines and their respective wild type controls (for more details see fig. S16-17). Asterisks represent significant changes. OG: oxoglutarate; orn: ornithine; GABA: gamma aminobutyric acid; suc: sucrose; fru: fructose; glc: glucose; G6P: glucose-6-phosphate; Fru6P: fructose-6-phosphate; OAS: o-acetylserine; glucar. lac: glucarate-1,4-lactone; DAG: diacylglycerol; DGDG: di-galactosyldiacylglycerol; MGDG: mono-galactosyldiacylglycerol; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PS: phosphatidylserine; SQDG: sulfoquinovosyl diacylglycerol; TAG: triacylglycerol.

1052

1053

1065 **Fig. 4. Photosynthetic parameters, stress tolerance, and shelf life of transgenic LCYB tomato lines.**

1066 (A) CO₂ assimilation. (B) ΦPSII. (C) Total non-photochemical quenching (NPQT). CO₂ assimilation was
1067 measured with a Li-Cor instrument and ΦPSII and NPQT with a MultiSpec instrument (Photosync).
1068 Photosynthetic parameters were measured from leaves of seven-week-old wild type (IPA6+, R.S., and
1069 IPA6-) and transgenic (pNLyc#2, H.C., and LCe) tomato lines grown under greenhouse conditions. All
1070 measurements, and especially NPQT, were performed without a dark adaptation period, as described in
1071 Tietz et al. (31). Five to 12 biological replicates were used for each photosynthetic measurement. (D)
1072 Lipid peroxidation imaging and quantification of tomato leaf discs (six-week-old plants) exposed to a
1073 light intensity of 2000 μmol photons m⁻² s⁻¹ and a temperature of 7°C degrees. (E) Water deficit and salt
1074 treatments in three-week-old wild type and transgenic lines ($n=5-6$) grown in the greenhouse in 13 cm
1075 pots (see material and methods). Plant height was recorded before and after water deficit and salt
1076 treatments. (F) Growth rate (plant height) ratio between transgenic lines and their respective wild type
1077 controls. Plant height was measured before (0 days) and after stress onset (10 days for water deficit and
1078 seven days for salt treatments) and the growth rate was calculated under control and stress conditions. (G)
1079 Tomato shelf life in wild type and transgenic tomato fruits. Tomato fruits from wild type and transgenic
1080 lines were harvested from 15-week-old tomato plants. Shelf life was recorded at 48 days post-harvest (see

1081 **fig. S20** for other time points). A non-paired two-tailed Student t-test was performed to compare
1082 transgenic lines with the wild type. wt: wild type; R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β -
1083 cyclase from *Erwinia*.

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

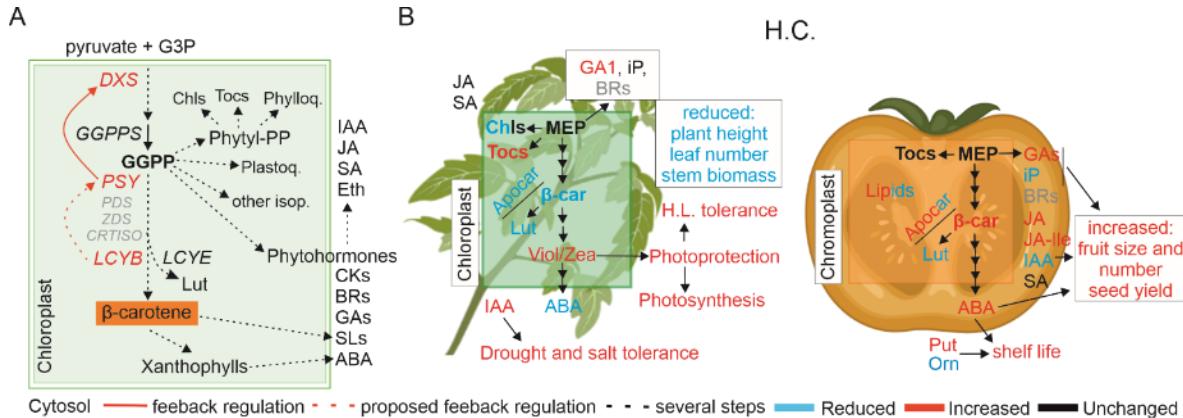
1097

1098

1099

1100

1101


1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112 **Fig. 5. Proposed model for LCYB-mediated plant fitness enhancement. (A)** Schematic representation of isoprenoid pathways connected by the common precursor GGPP. Conversion of lycopene into β -carotene represents a major key regulatory point in the branching of the carotenoid pathway. The greater β -carotene production is used for greater production of xanthophylls (photoprotection) and hormone synthesis (modulation of plant growth, development, and stress tolerance). Feedback regulation between *LCYB*, *PSY*, and *DXS* might be controlling the production of GGPP and therefore influencing the content of other isoprenoids (e.g., GAs, tocopherols, and chlorophylls). **(B)** Metabolic and physiological changes in leaves (left side) and fruits (right side) of the high carotene (H.C.) tomato transgenic line showing the influence on yield, stress tolerance, photosynthetic efficiency, pro-vitamin A content, and fruit shelf life (for comparison with transplastomic lines see **fig. S21**). Increases (red), reductions (blue), no changes (black), or compounds under the detection limit by the hormonomics approach (grey), are shown. Metabolites (e.g., carotenoids, apocarotenoids, hormones, lipids) with different accumulation profiles (increases and decreases in different metabolites) are shown both in red and blue. Put: putrescine; Orn: ornithine; Lut: lutein; β -car: β -carotene; Tocs: tocopherols; Chls: chlorophylls; Apocar: apocarotenoids; GAs: gibberellins; Viol: violaxanthin; Zea: zeaxanthin; BRs: brassinosteroids; iP: isopentenyladenine.

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133 **Tables**

1134 **Table 1.** Summary of phenotypic and molecular changes in leaves and fruits of transgenic LCYB-
1135 expressing tomato lines.

Phenotype	Leaf/Shoot			Fruit		
	pNLyc#2	H.C.	LCe	pNLyc#2	H.C.	LCe
Plant height	increased	reduced	increased	---	---	---
Leaf number	n.c.	reduced	n.c.	---	---	---
Internode length	increased	reduced	increased	---	---	---
Photosynthesis	n.c.	increased	n.c.	---	---	---
Days to flowering	increased	reduced	n.c.	---	---	---
Fruit number	---	---	---	n.c.	increased	n.c.
Fruit size	---	---	---	n.c.	increased	increased
Stem D.W.	increased	reduced	n.c.	---	---	---
Leaf D.W.	n.c.	n.c.	increased	---	---	---
Fruit D.W.	---	---	---	n.c.	increased	n.c.
β-carotene	n.c.	reduced	reduced	increased	increased	increased
Xanthophylls	increased	increased	reduced	reduced	reduced	n.d.
β-cyclocitral	reduced	reduced	reduced	increased	increased	reduced
Zaxinone	reduced	reduced	n.c.	n.c.	reduced	increased
ABA	increased	reduced	reduced	increased	increased	n.c.
SA	n.c.	n.c.	n.c.	increased	n.c.	n.c.
iP	n.c.	n.c.	n.c.	increased	reduced	increased
GA ₁	n.c.	increased	reduced	< LOD	< LOD	< LOD
GA ₄	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
IAA	n.c.	increased	n.c.	reduced	reduced	increased
JA	increased	n.c.	increased	increased	increased	n.c.
JA-Ile	< LOD	< LOD	increased	increased	increased	n.c.
H.L. tolerance	increased	increased	n.c.	---	---	---
Drought tolerance	increased	increased	increased	---	---	---
Salt tolerance	increased	increased	increased	---	---	---
Shelf life	---	---	---	increased	increased	increased

1136 *<LOD: below limit of detection; n.c.: not changed; R.S.: Red Setter; H.C.: high carotene; LCe: lycopene β-cyclase
1137 from *Erwinia*.

1138

1139

1140

1141

1142

1143

Parsed Citations

Al-Babili, S., and Bouwmeester, H.J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. *Annu Rev Plant Biol* 66:161-186. 10.1146/annurev-arplant-043014-114759.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Alcazar, R., Cuevas, J.C., Patron, M., Altabella, T., and Tiburcio, A.F. (2006). Abscisic acid modulates polyamine metabolism under water stress in *Arabidopsis thaliana*. *Physiol Plantarum* 128:448-455. 10.1111/j.1399-3054.2006.00780.x.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Apel, W., and Bock, R. (2009). Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. *Plant Physiol* 151:59-66. 10.1104/pp.109.140533.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bai, L., Kim, E.H., DellaPenna, D., and Brutnell, T.P. (2009). Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. *Plant J* 59:588-599. 10.1111/j.1365-313X.2009.03899.x.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bang, J., Lim, S., Yi, G., Lee, J.G., and Lee, E.J. (2019). Integrated transcriptomic-metabolomic analysis reveals cellular responses of harvested strawberry fruit subjected to short-term exposure to high levels of carbon dioxide. *Postharvest Biol Tec* 148:120-131. 10.1016/j.postharvbio.2018.11.003.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Beyer, P., Al-Babili, S., Ye, X., Lucca, P., Schaub, P., Welsch, R., and Potrykus, I. (2002). Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. *J Nutr* 132:506S-510S. 10.1093/jn/132.3.506S.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Birtic, S., Ksas, B., Genty, B., Mueller, M.J., Triantaphylides, C., and Havaux, M. (2011). Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. *Plant J* 67:1103-1115. 10.1111/j.1365-313X.2011.04646.x.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chong, J., Wishart, D.S., and Xia, J. (2019). Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. *Curr Protoc Bioinformatics* 68:e86. 10.1002/cpb1.86.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cowling, R.J., Kamiya, Y., Seto, H., and Harberd, N.P. (1998). Gibberellin dose-response regulation of GA4 gene transcript levels in *Arabidopsis*. *Plant Physiol* 117:1195-1203. 10.1104/pp.117.4.1195.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Alessandro, S., Ksas, B., and Havaux, M. (2018). Decoding beta-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. *Plant Cell* 30:2495-2511. 10.1105/tpc.18.00578.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Alessandro, S., Mizokami, Y., Legeret, B., and Havaux, M. (2019). The Apocarotenoid beta-Cyclocitric Acid Elicits Drought Tolerance in Plants. *iScience* 19:461-473. 10.1016/j.isci.2019.08.003.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., Stigliani, A.L., and Cellini, F. (2004). Virtually complete conversion of lycopene into beta-carotene in fruits of tomato plants transformed with the tomato lycopene beta-cyclase (tlcy-b) cDNA. *Plant Science* 166:207-214. 10.1016/j.plantsci.2003.09.015.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

D'Andrea, L., Amenos, M., and Rodriguez-Concepcion, M. (2014). Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit. *Methods Mol Biol* 1153:227-232. 10.1007/978-1-4939-0606-2_16.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dickinson, A.J., Lehner, K., Mi, J., Jia, K.P., Mijar, M., Dinneny, J., Al-Babili, S., and Benfey, P.N. (2019). beta-Cyclocitral is a conserved root growth regulator. *Proc Natl Acad Sci U S A* 116:10563-10567. 10.1073/pnas.1821445116.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ding, F., Wang, M., Zhang, S., and Ai, X. (2016). Changes in SBPase activity influence photosynthetic capacity, growth, and tolerance to chilling stress in transgenic tomato plants. *Sci Rep* 6:32741. 10.1038/srep32741.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Diretto, G., Frusciante, S., Fabbri, C., Schauer, N., Busta, L., Wang, Z.H., Matas, A.J., Fiore, A., Rose, J.K.C., Fernie, A.R., et al. (2020). Manipulation of beta-carotene levels in tomato fruits results in increased ABA content and extended shelf life. *Plant Biotechnology Journal* 18:1185-1199. 10.1111/pbi.13283.
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Emiliani, J., D'Andrea, L., Ferreyra, M.L.F., Maulion, E., Rodriguez, E., Rodriguez-Concepcion, M., and Casati, P. (2018). A role for beta,beta-xanthophylls in *Arabidopsis* UV-B photoprotection. *J Exp Bot* 69:4921-4933. 10.1093/jxb/ery242.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Farcuh, M., Rivero, R.M., Sadka, A., and Blumwald, E. (2018). Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. *Postharvest Biol Tec* 139:20-30. 10.1016/j.postharvbio.2018.01.012.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fernie, A.R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., Carroll, A.J., Saito, K., Fraser, P.D., and DeLuca, V. (2011). Recommendations for reporting metabolite data. *Plant Cell* 23:2477-2482. 10.1105/tpc.111.086272.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fleet, C.M., Yamaguchi, S., Hanada, A., Kawaide, H., David, C.J., Kamiya, Y., and Sun, T.P. (2003). Overexpression of AtCPS and AtKS in *Arabidopsis* confers increased ent-kaurene production but no increase in bioactive gibberellins. *Plant Physiol* 132:830-839. 10.1104/pp.103.021725.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gallego-Giraldo, L., Ubeda-Tomas, S., Gisbert, C., Garcia-Martinez, J.L., Moritz, T., and Lopez-Diaz, I. (2008). Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. *Plant Cell Physiol* 49:679-690. 10.1093/pcp/pcn042.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Garcia-Hurtado, N., Carrera, E., Ruiz-Rivero, O., Lopez-Gresa, M.P., Hedden, P., Gong, F., and Garcia-Martinez, J.L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. *J Exp Bot* 63:5803-5813. 10.1093/jxb/ers229.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Garcia-Molina, A., and Leister, D. (2020). Accelerated relaxation of photoprotection impairs biomass accumulation in *Arabidopsis*. *Nat Plants* 6:9-12. 10.1038/s41477-019-0572-z.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gerszberg, A., and Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. *Plant Growth Regul* 83:175-198. 10.1007/s10725-017-0251-x.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Giorio, G., Stigliani, A.L., and D'Ambrosio, C. (2007). Agronomic performance and transcriptional analysis of carotenoid biosynthesis in fruits of transgenic HighCaro and control tomato lines under field conditions. *Transgenic Res* 16:15-28. 10.1007/s11248-006-9025-3.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gudesblat, G.E., and Russinova, E. (2011). Plants grow on brassinosteroids. *Curr Opin Plant Biol* 14:530-537. 10.1016/j.pbi.2011.05.004.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L.S. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. *Trends Plant Sci* 17:172-179. 10.1016/j.tplants.2011.12.005.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hazman, M., Suhnel, M., Schafer, S., Zumsteg, J., Lesot, A., Beltran, F., Marquis, V., Herrgott, L., Miesch, L., Riemann, M., et al. (2019). Characterization of Jasmonoyl-Isoleucine (JA-Ile) Hormonal Catabolic Pathways in Rice upon Wounding and Salt Stress. *Rice (N Y)* 12:45. 10.1186/s12284-019-0303-0.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hedden, P., and Phillips, A.L. (2000). Gibberellin metabolism: new insights revealed by the genes. *Trends Plant Sci* 5:523-530. 10.1016/s1360-1385(00)01790-8.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hou, X., Rivers, J., Leon, P., McQuinn, R.P., and Pogson, B.J. (2016). Synthesis and Function of Apocarotenoid Signals in Plants. *Trends Plant Sci* 21:792-803. 10.1016/j.tplants.2016.06.001.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hussain, H.A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao, C., et al. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. *Sci Rep* 9:3890. 10.1038/s41598-019-40362-7.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. *Trends Plant Sci* 20:219-229. 10.1016/j.tplants.2015.02.001.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., et al. (2005). GMD@CSB.DB: the Golm Metabolome Database. *Bioinformatics* 21:1635-1638. 10.1093/bioinformatics/bti236.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kossler, S., Armarego-Marriott, T., Tarkowska, D., Tureckova, V., Agrawal, S., Mi, J., Perez da Sousa, L., Aurel Schottler, M., Schadach, A., Frohlich, A., et al. (2021). Lycopene β -cyclase expression influences plant physiology, development and metabolism in tobacco plants. *Journal of Experimental Botany* 10.1093/jxb/erab029.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krall, J.P., and Edwards, G.E. (1992). Relationship between Photosystem-II Activity and CO₂ Fixation in Leaves. *Physiol Plantarum* 86:180-187. DOI 10.1111/j.1399-3054.1992.tb01328.x.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Krishna, P. (2003). Brassinosteroid-Mediated Stress Responses. *J Plant Growth Regul* 22:289-297. 10.1007/s00344-003-0058-z.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kromdijk, J., Glowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., and Long, S.P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. *Science* 354:857-861. 10.1126/science.aai8878.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M.I., Roth, M.G., Bi, K., TerAvest, D., Weebadde, P., et al. (2016). MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. *R Soc Open Sci* 3:160592. 10.1098/rsos.160592.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lauxmann, M.A., Borsani, J., Osorio, S., Lombardo, V.A., Budde, C.O., Bustamante, C.A., Monti, L.L., Andreo, C.S., Fernie, A.R., Drincovich, M.F., et al. (2014). Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. *Plant Cell Environ* 37:601-616. 10.1111/pce.12181.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lopez-Calzagno, P.E., Fisk, S., Brown, K.L., Bull, S.E., South, P.F., and Raines, C.A. (2019). Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. *Plant Biotechnol J* 17:141-151. 10.1111/pbi.12953.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luedemann, A., Strassburg, K., Erban, A., and Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling experiments. *Bioinformatics* 24:732-737. 10.1093/bioinformatics/btn023.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luengwilai, K., Beckles, D.M., Roessner, U., Dias, D.A., Lui, V., and Siriphanich, J. (2018). Identification of physiological changes and key metabolites coincident with postharvest internal browning of pineapple (*Ananas comosus* L.) fruit. *Postharvest Biol Tec* 137:56-65. 10.1016/j.postharvbio.2017.11.013.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Magome, H., Nomura, T., Hanada, A., Takeda-Kamiya, N., Ohnishi, T., Shinma, Y., Katsumata, T., Kawaide, H., Kamiya, Y., and Yamaguchi, S. (2013). CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. *Proc Natl Acad Sci U S A* 110:1947-1952. 10.1073/pnas.1215788110.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moreno, J.C., Martinez-Jaime, S., Kosmacz, M., Sokolowska, E.M., Schulz, P., Fischer, A., Lizarowska, U., Havaux, M., and Skirycz, A. (2021). A Multi-OMICs Approach Sheds Light on the Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the Carrot lycopene β -cyclase1 Gene. *Frontiers in Plant Science* 12:103389/fpls.2021.624365.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Moreno, J.C., Mi, J., Agrawal, S., Kossler, S., Tureckova, V., Tarkowska, D., Thiele, W., Al-Babili, S., Bock, R., and Schottler, M.A. (2020). Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. *Plant J* 103:1967-1984. 10.1111/tpj.14909.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. *Annu Rev Plant Biol* 56:165-185. 10.1146/annurev.arplant.56.032604.144046.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nitsch, L., Kohlen, W., Oplaat, C., Charnikhova, T., Cristescu, S., Michieli, P., Wolters-Arts, M., Bouwmeester, H., Mariani, C., Vriezen, W.H., et al. (2012). ABA-deficiency results in reduced plant and fruit size in tomato. *J Plant Physiol* 169:878-883. 10.1016/j.jplph.2012.02.004.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Niyogi, K.K., and Truong, T.B. (2013). Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. *Curr Opin Plant Biol* 16:307-314. 10.1016/j.pbi.2013.03.011.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ort, D.R., Merchant, S.S., Alric, J., Barkan, A., Blankenship, R.E., Bock, R., Croce, R., Hanson, M.R., Hibberd, J.M., Long, S.P., et al. (2015). Redesigning photosynthesis to sustainably meet global food and bioenergy demand. *Proc Natl Acad Sci U S A* 112:8529-8536. 10.1073/pnas.1424031112.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pang, Z., Chong, J., Li, S., and Xia, J. (2020). MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. *Metabolites* 10:103390/metabo10050186.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Pareek, A., Dhankher, O.P., and Foyer, C.H. (2020). Mitigating the impact of climate change on plant productivity and ecosystem sustainability. *J Exp Bot* 71:451-456. 10.1093/jxb/erz518.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Qin, G., Gu, H., Ma, L., Peng, Y., Deng, X.W., Chen, Z., and Qu, L.J. (2007). Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in *Arabidopsis* by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. *Cell Res* 17:471-482. 10.1038/cr.2007.40.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Quinet, M., Angosto, T., Yuste-Lisbona, F.J., Blanchard-Gros, R., Bigot, S., Martinez, J.P., and Lutts, S. (2019). Tomato Fruit Development and Metabolism. *Front Plant Sci* 10:1554. 10.3389/fpls.2019.01554.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rittenberg, D., and Foster, G.L. (1940). A NEW PROCEDURE FOR QUANTITATIVE ANALYSIS BY ISOTOPE DILUTION, WITH APPLICATION TO THE DETERMINATION OF AMINO ACIDS AND FATTY ACIDS. *Journal of Biological Chemistry*:737-744.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M.C., Melendez-Martinez, A.J., Olmedilla-Alonso, B., Palou, A., et al. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. *Prog Lipid Res* 70:62-93. 10.1016/j.plipres.2018.04.004.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodriguez-Villalon, A., Gas, E., and Rodriguez-Concepcion, M. (2009a). Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown *Arabidopsis* seedlings. *Plant J* 60:424-435. 10.1111/j.1365-313X.2009.03966.x.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Rodriguez-Villalon, A., Gas, E., and Rodriguez-Concepcion, M. (2009b). Colors in the dark: a model for the regulation of carotenoid biosynthesis in etioplasts. *Plant Signal Behav* 4:965-967. 10.4161/psb.4.10.9672.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W., and Bramley, P.M. (2000). Elevation of the provitamin A content of transgenic tomato plants. *Nat Biotechnol* 18:666-669. 10.1038/76523.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roy, S.J., Negrao, S., and Tester, M. (2014). Salt resistant crop plants. *Current Opinion in Biotechnology* 26:115-124. 10.1016/j.copbio.2013.12.004.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salem, M.A., Juppner, J., Bajdzienko, K., and Giavalisco, P. (2016). Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. *Plant Methods* 12:45. 10.1186/s13007-016-0146-2.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schaller, G.E., Bishopp, A., and Kieber, J.J. (2015). The yin-yang of hormones: cytokinin and auxin interactions in plant development. *Plant Cell* 27:44-63. 10.1105/tpc.114.133595.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shani, E., Salehin, M., Zhang, Y., Sanchez, S.E., Doherty, C., Wang, R., Mangado, C.C., Song, L., Tal, I., Pisanty, O., et al. (2017). Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. *Curr Biol* 27:437-444. 10.1016/j.cub.2016.12.016.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sharma, R., Priya, P., and Jain, M. (2013). Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. *Planta* 238:871-884. 10.1007/s00425-013-1940-y.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sheyhakinia, S., Bamary, Z., Einali, A., and Valizadeh, J. (2020). The induction of salt stress tolerance by jasmonic acid treatment in roselle (*Hibiscus sabdariffa* L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes. *Biologia* 75:681-692. 10.2478/s11756-020-00444-8.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Shi, H., Chen, L., Ye, T., Liu, X., Ding, K., and Chan, Z (2014). Modulation of auxin content in *Arabidopsis* confers improved drought stress resistance. *Plant Physiol Biochem* 82:209-217. 10.1016/j.plaphy.2014.06.008.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simkin, A.J., McAusland, L., Headland, L.R., Lawson, T., and Raines, C.A. (2015). Multigene manipulation of photosynthetic carbon assimilation increases CO₂ fixation and biomass yield in tobacco. *J Exp Bot* 66:4075-4090. 10.1093/jxb/erv204.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simkin, A.J., Lopez-Callegano, P.E., Davey, P.A., Headland, L.R., Lawson, T., Timm, S., Bauwe, H., and Raines, C.A. (2017). Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphosphate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO₂ assimilation, vegetative biomass and seed yield in *Arabidopsis*. *Plant Biotechnol J* 15:805-816. 10.1111/pbi.12676.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Simura, J., Antoniadi, I., Siroka, J., Tarkowska, D., Strnad, M., Ljung, K., and Novak, O. (2018). Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. *Plant Physiol* 177:476-489. 10.1104/pp.18.00293.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Singh, M., Kumar, J., Singh, S., Singh, V.P., and Prasad, S.M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. *Rev Environ Sci Bio* 14:407-426. 10.1007/s11157-015-9372-8.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

South, P.F., Cavanagh, A.P., Liu, H.W., and Ort, D.R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. *Science* 363:10.1126/science.aat9077.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Talon, M., Koornneef, M., and Zeevaart, J.A. (1990). Endogenous gibberellins in *Arabidopsis thaliana* and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. *Proc Natl Acad Sci U S A* 87:7983-7987. 10.1073/pnas.87.20.7983.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tietz, S., Hall, C.C., Cruz, J.A., and Kramer, D.M. (2017). NPQ(T) : a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. *Plant Cell Environ* 40:1243-1255. 10.1111/pce.12924.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Timm, S., Witmiss, M., Gamien, S., Ewald, R., Florian, A., Frank, M., Wirtz, M., Hell, R., Fernie, A.R., and Bauwe, H. (2015). Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of *Arabidopsis thaliana*. *Plant Cell* 27:1968-1984. 10.1105/tpc.15.00105.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tourni, I., Moschou, P.N., Paschalidis, K.A., Bouamama, B., Ben Salem-Fnayou, A., Ghorbel, A.W., Mliki, A., and Roubelakis-Angelakis, K.A. (2010). Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. *J Plant Physiol* 167:519-525. 10.1016/j.jplph.2009.10.022.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tran, L.S., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in *Arabidopsis*. *Proc Natl Acad Sci U S A* 104:20623-20628. 10.1073/pnas.0706547105.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ueguchi-Tanaka, M., Nakajima, M., Katoh, E., Ohmiya, H., Asano, K., Saji, S., Hongyu, X., Ashikari, M., Kitano, H., Yamaguchi, I., et al. (2007). Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. *Plant Cell* 19:2140-2155. 10.1105/tpc.106.043729.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Valero, D., Martinez-Romero, D., and Serrano, M. (2002). The role of polyamines in the improvement of the shelf life of fruit. *Trends Food Sci Tech* 13:228-234. Pii S0924-2244(02)00134-6

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Doi 10.1016/S0924-2244(02)00134-6.

Wang, J., Song, L., Gong, X., Xu, J.F., and Li, M.H. (2020). Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. *Int J Mol Sci* 21ARTN 144610.3390/ijms21041446.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang, J.Y., Haider, I., Jamil, M., Fiorilli, V., Saito, Y., Mi, J., Baz, L., Kountche, B.A., Jia, K.P., Guo, X., et al. (2019). The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. *Nat Commun* 10:810. 10.1038/s41467-019-08461-1.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wurbs, D., Ruf, S., and Bock, R. (2007). Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. *Plant J* 49:276-288. 10.1111/j.1365-313X.2006.02960.x.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, P., Chukhutsina, V.U., Nawrocki, W.J., Schansker, G., Bielczynski, L.W., Lu, Y., Karcher, D., Bock, R., and Croce, R. (2020). Photosynthesis without beta-carotene. *Elife* 9:10.7554/eLife.58984.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. *Theor Appl Genet* 129:653-673. 10.1007/s00122-016-2691-5.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yoshida, T., Mogami, J., and Yamaguchi-Shinozaki, K. (2014). ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. *Curr Opin Plant Biol* 21:133-139. 10.1016/j.pbi.2014.07.009.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhang, Y., Li, Y., Hassan, M.J., Li, Z., and Peng, Y. (2020). Indole-3-acetic acid improves drought tolerance of white clover via activating

auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. BMC Plant Biol 20:150. 10.1186/s12870-020-02354-y.

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)