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Highlights  
 

- We implement and validate a co-simulation approach of a spiking network model for 
subcortical regions in and around the basal ganglia and interface it with mean-field 
network models for each cortical region. 

- Our simulations are based on a normative connectome including detailed tracts 
between the cortex and the basal ganglia regions combined with subject-specific 
optimized weights for a healthy control and a patient with Parkinson’s disease. 

- We provide proof of concept by demonstrating that the implemented model shows 
biologically plausible dynamics during resting state including decreased thalamic 
activity in the virtual patient and during virtual deep brain stimulation including 
normalized thalamic activity and distributed altered cortical activity predominantly in 
frontal regions. 

- The presented co-simulation model can be used to tailor deep brain stimulation for 
individual patients. 

 
 
Abstract 
 
Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative 
diseases as an effective symptomatic treatment. However, its mechanisms of action within 
the brain network are still poorly understood. Many virtual DBS models analyze a 
subnetwork around the basal ganglia and its dynamics as a spiking network with their details 
validated by experimental data. However, connectomic evidence shows widespread effects 
of DBS affecting many different cortical and subcortical areas. From a clinical perspective, 
various effects of DBS besides the motoric impact have been demonstrated. The 
neuroinformatics platform The Virtual Brain (TVB) offers a modeling framework allowing us 
to virtually perform stimulation, including DBS, and forecast the outcome from a dynamic 
systems perspective prior to invasive surgery with DBS lead placement. For an accurate 
prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, 
which we combine with TVB via our previously developed co-simulation environment. This 
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multiscale co-simulation approach builds on the extensive previous literature of spiking 
models of the basal ganglia while simultaneously offering a whole-brain perspective on 
widespread effects of the stimulation going beyond the motor circuit. In the first 
demonstration of our model, we show that virtual DBS can move the firing rates of a 
Parkinson’s disease patient’s thalamus - basal ganglia network towards the healthy regime 
while, at the same time, altering the activity in distributed cortical regions with a pronounced 
effect in frontal regions. Thus, we provide proof of concept for virtual DBS in a co-simulation 
environment with TVB. The developed modeling approach has the potential to optimize DBS 
lead placement and configuration and forecast the success of DBS treatment for individual 
patients. 
 
Keywords: basal ganglia, thalamus, The Virtual Brain, multiscale co-simulation, deep brain 
stimulation, Parkinson’s disease, spiking neuron models 
 
 
Introduction 
 
Deep brain stimulation (DBS) is a neuromodulation technique that has shown beneficial 
effects for patients suffering from many different neurological disorders (Horn, 2019; Horn & 
Fox, 2020). DBS is an essential element in the therapeutic regime for movement disorders 
like Parkinson’s disease (PD) (Deuschl et al., 2006; Vitek et al., 2020), dystonia (Kupsch et 
al., 2006) and essential tremor (Koller et al., 1997). It provides a treatment option for 
selected cases of medication-refractory epilepsy (Salanova et al., 2015) and obsessive-
compulsive disorder (OCD) (Anderson & Ahmed, 2003; Franzini et al., 2010; Nuttin et al., 
2008). For major depression (Mayberg et al., 2005), Tourette’s syndrome (Ackermans et al., 
2011), Huntington's disease (Gruber et al., 2014) and alcohol addiction (U. J. Müller et al., 
2009), DBS has shown first treatment successes and is clinically applied on an experimental 
basis. Albeit the initial implantation surgery, DBS is a reversible neuromodulation technique, 
in contrast to a permanent effect after a surgical lesion (Horn & Fox, 2020). Despite the 
benefits of DBS for many diseases, underlying mechanisms are so far poorly understood. At 
various scales of the brain, attempts have been made to model the outcome of DBS, from 
single-neuron to whole-brain models (Humphries et al., 2018). However, a multiscale model 
to bridge these different scales in a single DBS model has yet to be developed. 
 
The most extensive research for DBS has been performed in movement disorders, which 
share pathology of the interactions between basal ganglia (BG), thalamus and cortex 
(Plotkin & Goldberg, 2019). The BG are anatomically defined by the striatum and the 
pallidum, which can be further separated in globus pallidus internus (GPi) and externus 
(GPe). Functionally, the regions of the subthalamic nucleus (STN) and the substantia nigra, 
whose degeneration is a key factor in the pathogenesis of PD (Damier et al., 1999; Fearnley 
& Lees, 1991), are often included in the BG because of their strong interactions with it (Albin 
et al., 1989). In the following, the term BG refers to “basal ganglia and related nuclei” 
(Lanciego et al., 2012) according to the widely used understanding as a functional unit of the 
extrapyramidal system (Heimer, 1983).  
 
The hypothesis that PD patients often suffer from a decreased activity level in the thalamic 
region causing the motor function to be impaired, resulting in bradykinesia or akinesia, has a 
long history (DeLong, 1990; Humphries et al., 2018; Jahanshahi et al., 2015). This 
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decreased activity in the thalamus is probably caused by pathological hyperactivity of the 
globus pallidus as a failure symptom of the dopaminergic system (Dostrovsky et al., 2002), a 
theory first formulated by the classical rate model of the BG (Albin et al., 1989). The clinically 
most relevant stimulation targets for PD are the GPi and STN (Horn & Fox, 2020). It is a 
common approach to model the neurons of these key regions for DBS as a network, 
employing mathematical descriptions of neuronal behavior and interactions (Yu et al., 2020). 
Previous studies found alterations in several important pathways through the BG (direct, 
indirect and hyperdirect pathway, Figure 1) (Nambu et al., 2002) when simulating DBS. 
Models of a single neuron and its axon cables propose that STN-DBS causes GPi to fire at a 
regular frequency (Rubin et al., 2012). An extensive amount of previous literature exists 
modeling the connection from STN to GPe, the striatal microcircuit and different subparts of 
the cortico-basal-ganglia-thalamo-cortical loop as spiking networks (Yu et al., 2020). These 
subnetwork studies often include validation of the model details (parameters as well as 
results) with experimental data and suggest that STN-DBS changes the efferences of the 
BG to the thalamus by suppressing the burst firing of the GPi (Guo et al., 2008; Rubin & 
Terman, 2004). A recent application of subnetwork models shows that STN stimulation 
causes short-term depression of its own activity (Rosenbaum et al., 2014). This short-term 
depression theory was validated with empirical data from rodents and primates, where STN-
DBS eliminated beta-band oscillations in the GPi in Parkinsonian primate brains (Moran et 
al., 2012). Another class of models including electrical fields and volume of tissue 
information proposes that STN stimulation causes heterogeneous effects for different 
neurons depending on their distance to the electrode (Hahn & McIntyre, 2010; Humphries & 
Gurney, 2012; McIntyre & Hahn, 2010). These volumetric models explain the heterogeneous 
effects on the firing rates of GPi neurons, observed experimentally in primates (Hahn et al., 
2008; Hashimoto et al., 2003). 
 
Most previously established models are based on a priori assumptions about dynamic 
changes in PD, i.e., assuming differences between PD and healthy subjects with regard to 
their functional connectivity strengths or their activity levels of striatal projection neurons 
(Humphries et al., 2018). Though these assumptions are well justified by empirical findings, 
they critically influence the model outcomes. In contrast, Hamker and colleagues proposed a 
data-driven spiking model of the BG (Baladron et al., 2019; Maith et al., 2020), that is a 
generic BG model has been fit to the individual subject data by optimizing its parameters 
such that features of the simulated activity correlated with the same features of the 
measurements. Recently, Maith et al. (2020) fitted this BG model for 20 PD patients after 
DBS implantation and 15 healthy controls with individual resting-state functional magnetic 
resonance imaging (fMRI) data. However, the whole cortex was so far modeled as a single 
spiking network node, lacking a whole-brain perspective. This computational model was 
implemented with the software Artificial Neural Network architect (ANNarchy), used for spike 
and rate coding of neuronal populations, as well as a combination of both in a single network 
(Vitay et al., 2015). Network models in ANNarchy are defined through equations written in 
“natural language”. ANNarchy has been used to implement models of the BG pathways 
(Baladron et al., 2019; Baladron & Hamker, 2020; Gönner et al., 2020; Maith et al., 2020; 
Villagrasa et al., 2018), spatial attention and vision (Bergelt & Hamker, 2019; Jamalian et al., 
2017; Larisch et al., 2020) and learning and memory (Gönner et al., 2017; J. Müller et al., 
2018; Schmid et al., 2019).   
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The single-neuron and subnetwork models of the BG successfully suggest underlying 
mechanisms for the improvement of PD hypokinesia symptoms during DBS. However, they 
are not sufficient in describing the multitude of other effects that DBS potentially has on PD 
patients, e.g., rigidity, tremor and cognitive or behavioral changes (Irmen et al., 2019). 
Therefore, extending local DBS effects of the cortex-BG-thalamus loop towards a large-
scale network should be the next goal in understanding DBS effects.  
 
Previous studies explored mean-field approaches simulating the whole-brain perspective for 
virtual DBS (Saenger et al., 2017; van Hartevelt et al., 2014). Mean-field models make use 
of a physical simplification to enable simulating the average or so-called mean-field behavior 
of large populations. Simulating the whole brain with mean-field modeling has shown that 
DBS brought the patients’ dynamical regime closer to a healthy one (Saenger et al., 2017; 
van Hartevelt et al., 2014). Specifically, van Hartevelt and colleagues (2014) showed that 
STN-DBS has widespread structural and functional effects after long-term use analyzing 
diffusion tensor imaging (DTI) data of a single PD patient. However, they needed to exclude 
the STN from their analysis as controls were missing MRI data of this region. Saenger et al. 
(2017) analyzed the fMRI data of 10 PD patients under both conditions DBS switched on 
and off and performed virtual DBS for different candidate regions, demonstrating their effects 
for the whole-brain dynamics. This first application of testing DBS effects on the whole-brain 
dynamics was performed on the group level, while an extension towards the individual level 
is required before clinical application. 
 
With respect to whole-brain mean-field simulations, The Virtual Brain (TVB, 
thevirtualbrain.org) (Ritter et al., 2013; Sanz Leon et al., 2013) offers a neuroinformatics 
platform to simulate the effects of a virtual DBS. This in silico computation of the whole-brain 
effects of DBS requires only the MRI data of an individual patient as an input. Simulated 
brain activity with TVB reproduces empirical phenomena accurately over different modalities 
(Schirner et al., 2018). Applying TVB in combination with simulated stimulation has shown 
the connection between different stimulation targets and functional resting-state networks 
based on normative surface-based human brain data (Spiegler et al., 2016). Spiegler and 
colleagues recently reproduced this finding of activating functional resting-state networks 
through focal stimulation for the mouse brain, where the results were in line with 
experimental data of optogenetic stimulation (Spiegler et al., 2020). Transcranial direct 
current stimulation simulated with TVB based on a normative connectome (Kunze et al., 
2016) resembled empirical electroencephalography (EEG) findings. However, virtual DBS 
has not yet been investigated with TVB. 
 
The different computational studies demonstrating the effects of PD and/or DBS on the BG 
network, from single-neuron studies to whole-brain networks, exemplify the multiscale nature 
of this research field (Humphries et al., 2018). So far, the whole-brain DBS modeling 
literature stands isolated from the extensive literature on spiking neural networks of the BG. 
Only region-wise properties have been compared. None of the dynamical insights from the 
spiking network literature have been incorporated into the mean-field modeling approaches 
of DBS. Therefore, in this study, we aim to demonstrate the framework for a multiscale co-
simulation approach of virtual DBS. Our goal is to bridge the microscale of single neurons 
towards the recorded whole-brain signals in one simulation framework, which permits a 
holistic and comprehensive integration of existing findings. To run whole-brain mean-field 
simulations and additionally simulate any region’s fine-scale neuronal dynamics, including 
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spikes generated by inhibitory and excitatory neurons inside the region, we can use the 
recently developed TVB-multiscale co-simulation toolbox (Schirner et al., 2021). TVB-
multiscale extends TVB to perform multiscale co-simulations, whereby most of the nodes are 
simulated with TVB as mean-field models, and a few selected nodes are modeled as spiking 
networks by another suitable simulator.  
 
In this study, we combine the detailed spiking network model by Maith et al. (2020) for the 
BG with mean-field simulations in TVB for all cortical regions. We interface the spiking 
network software ANNarchy with TVB to build the TVB-ANNarchy co-simulation framework 
(Schirner et al., 2021). As an underlying connection between BG and cortical regions, we 
utilize a recently published normative connectivity atlas of these tracts (Petersen et al., 
2019) and combine it with individually - that is subject-specific - fitted probabilities and 
weights from Maith et al. (2020) for the connections among the BG regions. As a first proof 
of concept, we simulate resting-state conditions for an exemplary control and PD patient 
network and perform virtual DBS targeting STN and GPi in the patient network. Next, we 
validate our model by comparing the effects of virtual DBS against results from literature. 
Our study addresses the following limitations of previous whole-brain DBS modeling studies: 

1) We incorporate a previously validated spiking network model of the subnetwork of 
the BG within our whole-brain modeling. 

2) We use an underlying (normative) connectome, which includes the STN, and 
combine it with individually fitted connectivity data to create an individual patient and 
control multiscale network. 

In this way, we offer a computational model that holds the potential to be easily translated 
towards the individual patient level and used as a ‘sandbox’ model before future DBS 
surgeries. 
 
 
Materials and Methods 
 
Spiking network model for the basal ganglia 
 
The spiking network model and its dynamics (including parameters) were taken from a 
previous publication (Maith et al., 2020) (Figure 1). Eight neuronal populations were 
included, each with different properties. The cortex consisted of 600 excitatory neurons 
coupled with 150 inhibitory neurons (possessing a self-inhibitory connection). From the 
excitatory population of the cortex, spikes were transmitted to the STN, as well as the 
striatum. The striatum was modeled with two different inhibitory neuronal populations, the 
direct (dSN) and the indirect (iSN) striatal spiny projection neurons, each with a self-
inhibitory connection. The GPe and GPi were each represented by inhibitory neurons with a 
self-inhibitory connection. The thalamus was also modeled as a spiking network node. 
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Figure 1: Structure of the basal ganglia spiking model. Previously published detailed basal 
ganglia (BG) model by (Maith et al., 2020). We implemented this model inside our TVB-ANNarchy 
framework with the underlying previously optimized connection weights and probabilities for the data 
of one control and one PD patient (taken from (Maith et al., 2020)). The direct pathway is shown here 
as the path from the excitatory cortical neurons over the direct striatal projection neurons to the GPi. 
Similarly, the indirect pathway goes from the cortex, over the indirect spinal projection neurons and 
the GPe towards the GPi. The third pathway through the BG is the cortex-STN-GPi pathway, which is 
also called the hyperdirect pathway. CxExcit: excitatory population of the cortex; CxInh: inhibitory 
population of the cortex; GPi: internal globus pallidus; GPe: external globus pallidus; STN: 
subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, indirect 
striatal spiny projection neurons; Thal: thalamus; excit.: excitatory; inhib.: inhibitory; conn.: connection.  
 
Each spiking network population was modeled by an enhanced version of the Izhikevich 
model (Izhikevich, 2004; Maith et al., 2020). For details of this previously published model, 
we refer to the Supplementary Material. Maith et al. (2020) optimized the connection 
probabilities and weights between the nodes to fit empirical fMRI blood-oxygen-level-
dependent (BOLD) signal correlation data for each individual and each hemisphere 
separately. We used this optimized data from one of the controls and one of the patients (left 
hemisphere only). We selected these subjects as representatives of their groups because 
their regional firing rates were close to the respective mean values. 
 
Multiscale co-simulation of TVB and ANNarchy 
 
Every node in the TVB network represents a brain region and its dynamics are simulated 
with a mean-field approximation. The nodes are connected with weights and delays 
(computed from tract lengths given a transmission speed) that can be determined for 
individual subjects employing DTI. As a mean-field model for the cortical regions, we chose 
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the reduced Wong-Wang-model (Deco et al., 2013), which is often used to replicate fMRI 
data (Aerts et al., 2018; Klein et al., 2021) (details in the Supplementary Material). For an 
overview of all variables used in this study, we refer to Supplementary Table 1. In the TVB-
multiscale framework (Schirner et al., 2021), co-simulation is based on the concept of TVB 
“proxy” nodes that are created inside the spiking network (Figure 2). TVB “proxy” nodes are 
either stimulating devices, thereby mimicking TVB cortex node dynamics (i.e., mean-field 
spiking rates) and coupling to the spiking nodes, or output (e.g., recording) devices, thereby 
extracting spiking dynamics to be transmitted to TVB. Thus, TVB and the spiking network 
simulator communicate on the level of neuronal populations’ mean-field activities. TVB-
multiscale, which is continuously expanding, is freely available on github (github.com/the-
virtual-brain/tvb-multiscale) and interfaces TVB with different spiking network simulators 
(currently Neural Simulation Technology (NEST) (Eppler et al., 2008) and ANNarchy).  
 
Since the previous BG model implementation was fitted with empirical data using ANNarchy 
(Maith et al., 2020), we built an interface between ANNarchy and TVB. We developed 
python code to incorporate the ANNarchy simulator into TVB-multiscale (details in the 
Supplementary Material). We validated our implementation of the spiking network by Maith 
et al. (2020) against the authors’ original ANNarchy code by performing short simulations 
without noise for the two selected subjects (Supplementary Table 3).  
 

 
Figure 2: Implementation of the interface for the multiscale model. (A) TVB to ANNarchy 
coupling is channeled via TVB “proxy” nodes in the ANNarchy network, implemented as neuronal 
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populations generating correlated spike trains. Thus, the instantaneous mean-field spike rate is 
transformed into individual neurons’ spike trains for the respective time interval. (B) ANNarchy to TVB 
state update via the ANNarchy monitors, which record the spikes for each time interval  to 
compute the population’s spike rate. This spike rate then overwrites the respective TVB state variable. 
 
Each TVB cortex mean-field node  (prime notation for nodes modeled only as mean-fields 
nodes in TVB) couples to a node  modeled in ANNarchy (notation without prime for the 
spiking regions) via the instantaneous spike rate variable , which drives a population of 

 neurons (same size as for the excitatory cortex node of the spiking network 
by Maith et al. (2020)) generating correlated spike trains 

, 
where  stands for the spike time  of the neuron with index  in the population of the 
“proxy” node  and  is the Kronecker delta. The generated spikes were weighted by  
and delayed by  based on the TVB connectome and the optimized weights for each 
subject (see below). For details of the spike trains’ generation, we refer to the 
Supplementary Material.  
 
In the other direction, each node  modeled in ANNarchy updates the state of the 
corresponding TVB mean-field node  since it is still represented in the TVB model and 
couples to TVB nodes . The update utilizes an ANNarchy monitor that records spikes for 
each TVB time step. The recorded spikes are converted to an instantaneous population 
mean rate that overwrites an auxiliary TVB state variable, called the input rate . The 
latter drives a linear integration equation of another auxiliary TVB state variable, named 
integrated rate , which, in its turn, acts as a smoothing low pass filter  

 
to have time series similar to the TVB mean-field ones, where  is the time 
constant of the integration and 

  
provides the number of spikes per second. Finally, the integrated rate  overwrites the 
state variable  of the TVB model. All the rest of the TVB mean-field nodes  follow the 
equations of the mean-field model described in the Supplementary Material. We simulated 
two ANNarchy time steps (of ) for every TVB time step ( ). 
 
Underlying connectivity 
 
To connect the TVB nodes and the spiking network simulator, we needed to assign 
connectivity weights for the paths between the BG regions and the cortex. Acquiring 
accurate data for those tracts is challenging because structural MRI data inherits many 
limitations (Jones et al., 2013; Thomas et al., 2014). Recently, Petersen et al. (2019) 
published a state-of-the-art axonal pathway atlas for the human brain that combines 
previous results from histological and imaging data literature with expert knowledge of 
neuroanatomists and brain-imaging scientists who collaborated on defining those tracts 
applying a holographic visualization technique (Petersen et al., 2019) (details to be found in 
the Supplementary Material). We used this normative tract data by Petersen et al. (2019) to 
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include a fine-grained parcellation for the BG and the thalamus (based on CIT-168 brain 
atlas (Pauli et al., 2018)) and detailed data of their pathways to and from the cortical regions 
because of its current use for clinical DBS planning (Noecker et al., 2021). Whereas Maith et 
al. (2020) used the motoric parts of the BG regions only (Horn et al., 2019), we used the 
complete BG regions as a first approach. For the cortex, the automated anatomical labeling 
(AAL) atlas parcellation was applied (Rolls et al., 2015; Tzourio-Mazoyer et al., 2002). The 
files were transformed to the DBS Intrinsic Template Atlas (DISTAL) space (Ewert et al., 
2018) and the number of streamlines between each region pair was counted. This procedure 
resulted in a whole-brain matrix for the pathways between the cortex and the BG structures. 
 
Some additional preparation steps have been performed on the connectome. As a first 
demonstration and because Maith et al. (2020) also treated the hemispheres in isolation, we 
focused on the left hemisphere only. Thus, all regions belonging to the right hemisphere and 
the vermis have been deleted from the connectome together with all their connections. 
Additionally, the connections from the inhibitory neuronal populations in the BG (GPe, GPi 
and striatum) to any cortical regions have been set to zero as they are not biologically 
plausible from a functional perspective of movement regulation, leaving in this direction only 
the connections from the thalamus and the STN to the cortex. The resulting connectome 
included 57 regions (for a list of all included regions: Supplementary Table 4). Its weights 
were normalized by the sum of all the incoming connection weights of the corresponding 
region and by the 99th percentile of all weights. 
 
The previous work of Maith et al. (2020) optimized the connection probabilities and weights 
among BG regions per individual to best fit the empirical fMRI data. To personalize the 
normative connectome, we replaced the network among the BG and thalamus regions with 
the optimized weights computed by Maith et al. (2020) for the control subject and the PD 
patient, respectively (Figure 3). This ‘hybrid’ connectome constituted normative connectome 
weights among the cortex regions and between cortex and BG but included individually fitted 
connection weights and probabilities for the spiking network of the BG. For the presentation 
and for determining the couplings between the two scales, we adjusted the normative 
weights to be in the same range of values as the optimized connection weights by scaling 
them with the ratio  between the 95th percentiles of both weight distributions. The 
global coupling  of the TVB mean-field model was set for each subject to , 
i.e., we are canceling the above normalization for the weights among the TVB nodes (see 
next section for the exact procedure of selecting the value of 15). The conduction speed was 
set to , thus, determining the time delay of couplings among all nodes of the multiscale 
model. The tract lengths among all regions were approximated by the Euclidean distance 
between their center coordinates (Supplementary Figure 2).  
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Figure 3: Underlying connectome. The optimally fitted connectivity data from Maith et al. (2020) for 
the left hemisphere of the analyzed control and patient (upper panels) overrode the within-BG 
connection weights inside the connectome (red square) based on (Petersen et al., 2019). Each entry 
in any of the three colored matrices represents the normalized number of streamlines that start in the 
region marked on the vertical axis and end in the region marked on the horizontal axis. The brain 
network in the lower panel shows all connections taken from the individually fitted weights and the BG 
regions in red and the other regions in blue with the connections taken from the normative 
connectome of the atlas by Petersen et al. (2019) represented in black. For visualization purposes, all 
isolated nodes have been disregarded. GPi: internal globus pallidus; GPe: external globus pallidus; 
STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: striatum, 
indirect striatal spiny projection neurons; Thal: thalamus; Str: striatum. 
 
Fitting the co-simulation model to individual dynamics 
 
We implemented the previous BG model by Maith et al. (2020) inside our TVB-ANNarchy 
framework (Figure 4). For the multiscale model (“TVB-cortex model”), we replaced the 
spiking node “cortex” with the whole brain connectomic model in TVB (Figure 5). However, 
the input from the multitude of the TVB mean-field nodes leads to different driving dynamics 
of the spiking network than in Maith et al. (2020). We aimed for TVB driving dynamics that 
would exhibit (a) a mean firing rate across all TVB nodes of  similar to motor 
cortex neurons at rest (Velliste et al., 2014), where the range of rate values across TVB 
regions is determined by the structural connectome; (b) low amplitude random fluctuations of 
the rate around the equilibrium point of the above mean rate, resembling the rate dynamics 
of the cortex node in Maith et al. (2020) (c) some correlation among the neurons’ spiking, 
which in Maith et al. (2020) is due to the internal connectivity of the spiking cortex node 
populations. We set the operation point of the TVB mean-field network by progressively 
increasing global coupling  until an equilibrium point was reached (for ) with 
a mean firing rate across the whole TVB brain approaching  from below via a few “trial 
and error” simulations. After the equilibrium point was approximated, we increased the 
additive white noise to a standard deviation of 10-4 allowing small fluctuations around the 
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equilibrium point without changing the pattern of nodes with higher firing rates 
(Supplementary Figure 3 displays a characteristic TVB time series during co-simulation).  
 

 
Figure 4: Schematic overview of our study design. The basal ganglia (BG) model of one control 
and one Parkinson’s disease patient were taken from the previous study (Maith et al., 2020). Next, we 
implemented the previous model inside our TVB-ANNarchy framework, not yet activating TVB, the so-
called “spiking-cortex model”. We confirmed that this implementation reaches similar firing rates as 
the one from the previous study (step “confirm”). As a second step, we replaced the spiking-cortex 
node with mean-field simulations using TVB. To stay in the range of the previously confirmed firing 
rates for the BG regions, we fine-tuned the connection weights from TVB to ANNarchy for the TVB-
cortex models of the control and the patient. So far, all of the described modeling steps were taken in 
resting-state conditions. As a third step, we stimulated the STN and the GPi as two frequently 
targeted regions virtually (virtual DBS) and analyzed the effects for the BG spiking network as well as 
for the cortical regions. We analyzed whether virtual DBS could bring the patient’s brain dynamics 
closer to the healthy one. Whenever there is a brain next to the model (even when it is grayed out), 
the simulation took place inside the TVB-ANNarchy environment. 
 
For the multiscale TVB-cortex model, the three connections from cortex to STN, dSN and 
iSN were substituted by the respective set of connections from each of the corresponding 
TVB nodes (Figure 5). For scaling these connections, we created a “spiking-cortex model” 
by substituting the cortex node of the network from Maith et al. (2020) with an ANNarchy 
spike generator identical to the one used as TVB “proxy” nodes (Supplementary Material). 
The spiking-cortex model acted as the “bridge” between the noisy TVB cortex driving the 
multiscale model and the Izhikevich population spiking cortex of Maith et al. (2020). With this 
model, we performed resting-state simulations for both subjects. Then, we tuned - again via 
a few “trial and error” co-simulations - three interface factors , 

, scaling all TVB connections to STN, dSN and iSN, respectively, to 
approximate the mean population rates of the spiking-cortex model (Figure 5, 
Supplementary Table 1). These interface factors multiply the TVB connectome weights  
resulting in the interface weights  (Figure 2A). This step was also taken 
to ensure that dSN and iSN can receive different input while the striatum connectivity is 
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equally strong for them. This way, the sum across all TVB nodes  is the resulting total 
weight of the cortex input to the BG spiking populations, which then has an effect close to 
the one of the optimized weights in Maith et al. (2020). The final mean firing rates were 
approximated within  for all spiking populations except for the thalamus of the control 
network, which was within  (Supplementary Table 5, Supplementary Figure 4).  
 
 

 
Figure 5: Structure of the co-simulation model. The cortex node was replaced by a whole-brain 
network simulated with The Virtual Brain. The interactions among the cortical regions were simulated 
with a mean-field model and The Virtual Brain (TVB). The computational spiking model was simulated 
with ANNarchy. Together, these two models for the multiscale network, the so-called TVB-cortex 
model. Interactions between the mean-field and the spiking model were defined by the connection 
weights of the underlying connectome between all involved region pairs. Connections from cortical 
regions toward the spiking network (i.e., in our case toward dSN, iSN and STN) were bundled 
together for each of the regions receiving input from the cortex. In addition, the bundled connections 
were weighted with the interface weights ,  to regulate the incoming 
driving activity of the network. CxExcit: excitatory populations of the cortex; GPi: internal globus 
pallidus; GPe: external globus pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny 
projection neurons; iSN: striatum, indirect striatal spiny projection neurons; Thal: thalamus; excit.: 
excitatory; inhib.: inhibitory; conn.: connection.  
 
For the results of the TVB-cortex simulations, we simulated each condition 10 times, 
randomly selecting initial conditions for the TVB state from a normal distribution with mean 
equal to the initial conditions used originally for fitting the resting-state simulations and 
standard deviation 0.1 (Supplementary Material). The simulation length for all of our 
simulations was . After each simulation, we computed the mean firing rate over the 
last .  
 
Implementation of the DBS stimulus 
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Besides the resting-state co-simulations, we applied a stimulus to our multiscale model 
(starting at  and lasting till the end) inside either GPi or STN as possible target 
regions (Figure 5). We simulated the propagation of these stimuli and the whole-brain 
response to them to provide a first proof of concept of the possibilities of this kind of 
multiscale modeling. We tested the virtual DBS stimuli within the spiking-cortex network and 
the TVB-cortex simulation model. 
 
To the GPi, we applied a constant inhibitory current stimulus of an amplitude of  
aiming at reducing its firing rate and therefore disinhibiting the thalamus. For the other DBS 
simulations, we applied two realistic stimuli to STN, a monophasic and biphasic pulse-like 
current because the former is the most commonly implemented stimulus in previous DBS 
simulation studies (Yu et al., 2020) and the latter is used in clinical practice (Krauss et al., 
2021) (Figure 6). The monophasic stimulus is adapted from (Michmizos & Nikita, 2011) and 
the biphasic stimulus is similar to the one used in (Liu et al., 2020) (details in the 
Supplementary Material). 
 

 
Figure 6: STN-DBS stimulus patterns. One cycle of the (A) biphasic and (B) monophasic stimuli 
applied for the virtual DBS targeting the STN region. 
  
 
Effects of the stimuli on cortical regions 
 
To investigate the effects of the different stimuli on the cortex, we compared our resting-
state TVB-cortex simulations with the simulations including the stimuli for the patient 
network. We also investigated cortical differences between the resting-state condition of the 
control and the patient. For these comparisons, we calculated the region-wise difference of 
cortical firing rates between simulations. Firing rates were averaged over the last  of 
a simulation. In the resting-state case of comparing the patient and the control, we 
subtracted the average firing rates of the control’s resting-state simulation from the ones 
obtained with the patient network. For evaluating the cortical effects of the different stimuli, 
we subtracted the resting-state average firing rates from the ones of the stimulus-induced 
time series. In addition, the resulting regional differences were normalized by the mean 
difference over the obtained regional differences, for each subtraction separately. 
 
All of our code is publicly available (https://github.com/the-virtual-brain/tvb-
multiscale/tree/Meier_etal_ExpNeur2021). 
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Results 
 
For the whole-brain co-simulation model, we visualized the raster plots of the spiking-
network regions for the four conditions, resting-state, GPi-DBS, STN-DBS with a 
monophasic and STN-DBS with a biphasic stimulus (Figure 7). Comparing the resting-state 
firing rates, the largest difference between the patient and the control can be found in the 
thalamus (Figure 8 and Supplementary Table 4). The stimuli caused the biggest changes in 
firing rate in the stimulated regions themselves (STN or GPi, respectively) and also in the 
thalamus (Figure 8 and Supplementary Table 4). The GPi-DBS simulation induced 
disinhibition of the thalamus from the GPi, allowing the thalamus to fire more than in the 
resting-state condition. Both STN-DBS simulations, however, also showed increased 
thalamic activity compared to the resting state but together with an increased firing in the 
GPi (Figure 8). Compared with the resting-state firing of the control, the patient seems to 
come closer to the rates of the control in multiple regions of the BG during all DBS scenarios 
(Figure 8). The common mechanism over all three stimulation protocols was the increase in 
thalamic activity. Thus, the thalamus firing rate seems to “normalize” toward the healthy 
regime during virtual DBS.  
 

 
Figure 7: Resting-state and DBS simulation results of the full co-simulation model 
implemented in TVB-ANNarchy for the patient network. The cortex is represented by the full-scale 
TVB model with a neural-mass model for each region, i.e., the TVB-cortex model results are 
displayed. The raster plots of the regions simulated with ANNarchy are shown here. On the y axis, the 
200 neurons are listed in the respective region. Each dot in the raster plot represents a spike time of 
an individual neuron. Vertical black bars in the raster plot, thus, represent synchronous firing activity 
of all neurons. Mean firing rates are calculated based on the last 1000ms of each simulation. (A) 
Results of the resting-state simulation for the patient’s network. (B) Results of a virtual DBS 
simulation targeting the GPi with an inhibitory continuous current stimulus. The disinhibiting effect of 
the GPi stimulation (from 400ms onwards) towards the thalamic activity can be observed in the 
visualized raster plots. (C) Results of a virtual DBS simulation targeting the STN with a biphasic 
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stimulus. (D) Results of a virtual DBS simulation targeting the STN with a monophasic stimulus. The 
red vertical lines in the plots represent the start of the respective stimulus. Red (green) arrows 
visualize inhibitory (excitatory) connections among the regions. Region names written in red (green) 
color-code an inhibitory (excitatory) population. GPi: internal globus pallidus; GPe: external globus 
pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; iSN: 
striatum, indirect striatal spiny projection neurons; Thal: thalamus. 
 

 
Figure 8: Average firing rates obtained by different simulations of the TVB-cortex model. For 
each of the six spiking regions, the first and second bar represent the resting-state condition for the 
control and the patient, respectively. The latter three bars correspond to the three virtual DBS 
simulations, i.e., GPi-DBS, STN-DBS applying a biphasic and a monophasic stimulus. The height of 
the bar represents the firing rate (in Hz) averaged over the last 1000ms of the respective simulation 
and over the 10 simulation repetitions. The error bars have the length of twice the standard deviation 
over the average firing rates obtained over these 10 repetitions. For the thalamic firing rate, we 
observe a lower firing rate for the resting-state simulation of the patient compared to the control. After 
stimulation, the firing rate of the thalamus increased. GPi: internal globus pallidus; GPe: external 
globus pallidus; STN: subthalamic nucleus; dSN: striatum, direct striatal spiny projection neurons; 
iSN: striatum, indirect striatal spiny projection neurons; Thal: thalamus. 
 
For the spiking-cortex model, the effects of the stimuli could not be traced further towards 
the cortical regions since this model is isolated and lacks embedding in the whole-brain 
network. Comparing the resting-state activities of the cortical regions between patient and 
control showed an increased average firing rate in the frontal regions and a decreased firing 
rate in the postcentral gyrus for the patient (Figure 9A). Regarding the cortical effects of 
stimulation for the TVB-cortex model, we plotted the differences measured by the average 
firing rate between the resting-state and each stimulus simulation per cortical region on the 
template brain in Figure 9B-D. In all three virtual DBS simulations, the largest induced 
changes among the cortical regions were found in the frontal lobe and additionally in the 
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postcentral gyrus for the monophasic STN stimulus. Altered levels of firing rates induced in 
the GPi and STN by the stimuli appear to be conveyed towards these cortical regions 
altering their activity with respect to the resting state. Concerning the specific regions, the 
middle frontal gyrus and insula were for all three stimuli among the top five regions regarding 
the most increased firing rates induced by the stimulus. Interestingly, only the STN 
monophasic stimulus created a slight reduction of firing rate in the supplementary motor 
area.  
 

 
Figure 9: Effects of the stimuli on cortical regions. We plotted the differences in averaged firing 
rate over the last 1000ms of the simulation time on the template brain, subtracting the average rate 
obtained from one condition from the other. In addition, the resulting regional differences were 
normalized by the mean difference over the obtained regional differences for each subtraction 
separately. (A) The normalized difference in average firing rates is shown when subtracting the 
resting-state simulation results of the control from the ones of the patient. (B) The normalized 
difference in average firing rates is shown when subtracting the GPi stimulus simulation results from 
the resting-state simulation results of the patient. STN biphasic and (C) The normalized difference in 
average firing rates is shown when subtracting the STN monophasic stimulus simulation results from 
the resting-state simulation results of the patient. (D) The normalized difference in average firing rates 
is shown when subtracting the STN biphasic stimulus simulation results from the resting-state 
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simulation results of the patient. Thus, red (blue) colors indicate an increased (decreased) average 
firing rate of that specific region compared with the resting-state condition of the control (A) or the 
resting-state condition of the patient (B-D). Since our simulations are limited to the left hemisphere, 
we visualized the differences only for the left hemisphere. 
 
 
Discussion 
 
In this study, we introduced a multiscale modeling strategy for the brain network, which 
allows to model the spiking network dynamics of the BG subnetwork in detail while 
simultaneously offering a whole-brain perspective of the evolving dynamics. We showed a 
first proof of concept that this new resulting TVB-multiscale model generates biologically 
plausible activity in resting state and after virtual DBS. This model has the potential to 
forecast DBS effects for different locations and different configurations on an individual 
patient level. 
 
Our presented results show that the DBS stimulus introduced on our patient network causes 
disinhibition of the thalamus, leading to an increased firing rate during stimulation compared 
to resting state. Even though our results are in line with the hypotheses formulated by the 
classical rate model (Albin et al., 1989), conflicting evidence from clinical studies suggests a 
broader perspective as reduced thalamic activity alone neither explains all symptoms of PD 
nor all existing therapeutic effects (Eisinger et al., 2019; Marsden & Obeso, 1994; 
Rodriguez-Oroz et al., 2009). As for the direct effect of the stimulus on the target region, the 
recent theory of short-term depression states that STN-DBS blocks the transfer of low-
frequency oscillations downstream, e.g., towards GPe and GPi, and brings the thalamic 
activity back to healthy functioning (Humphries et al., 2018). Other theories exist about the 
effects of the DBS stimulus being of excitatory, inhibitory or disruptive nature on its 
neighboring areas and a consensus has yet to be reached in this research field (Chiken & 
Nambu, 2016). Still, our results show that the thalamic activity was brought back to healthy 
functioning by DBS, which is in line with the general mechanism of DBS (Humphries et al., 
2018).  
 
The increased firing rates of the thalamus during our STN-DBS simulations are not caused 
by decreased GPi activity, which cannot be explained by the classical direct/indirect pathway 
model of BG. Empirical evidence supports the observed increased firing rates of GPi during 
STN stimulation (Reese et al., 2011), which were assumed to overwrite pathological activity 
patterns. One recent computational modeling study with optogenetic data of rodents has 
shown that increased GPi activity, when synchronized, is able to drive excitatory thalamic 
responses despite the inhibitory nature of the connection (Liu et al., unpublished results). 
The proposed underlying mechanism is that bursts of inhibition from GPi to thalamus can 
cause hyperpolarization and then post-inhibitory rebound firings of thalamus neurons. Post-
inhibition spikes or bursts are characteristic behavior of the Izhikevich neuronal model used 
in this study (Izhikevich, 2004). Taking this unclear mechanism of pacing into account, our 
model provides computational evidence supporting a more connectomic effect leading to 
thalamic activation.   
  
There have not been previous studies of multiscale co-simulation of DBS. PD is a multiscale 
disease (Kerr et al., 2013) with pathological mechanisms at many different scales, from 
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deterioration observed in single neurons up to large-scale brain dynamics. Thus, in the 
attempt of modeling the broad perspective of potential treatment effects, one should also no 
longer focus on a single scale. One previous study embedded a spiking network for BG 
regions inside a neural field model for the cortex (Kerr et al., 2013). However, this previous 
modeling strategy did not subdivide the cortex mean-field model further into separate 
regions nor did the authors simulate DBS. 
 
Compared to spiking models that encompass the BG regions only, our presented model can 
show whole-brain effects of stimulation going beyond the motor cortex. The presented 
results show an increase in overall activity in cortical regions for all of the three applied 
stimuli. This result is in line with the theory that PD patients have lower thalamic activity and, 
thus, a weaker driving activity from the thalamus towards the cortex. Subsequently, the 
cortex reacts with an increase of activity to the DBS-induced disinhibition of the thalamus. 
The frontal regions and the insula seem to be most impacted by all three different stimuli, 
measured by an increase in firing rate. The insula is linked strongly with non-motor 
symptoms in PD (Christopher et al., 2014) and a previous study reported a BOLD signal 
increase in the insula during STN-DBS (Kahan et al., 2012). The middle and inferior frontal 
gyrus also demonstrated one of the biggest shifts between DBS-OFF and DBS-ON condition 
measuring fMRI (Saenger et al., 2017). Interestingly, the monophasic stimulus applied on 
STN provoked a slight decrease of activity in the supplementary motor area in our results. 
This finding is in line with experimental results showing that DBS weakens excessive phase-
locking interactions in the motor areas of PD patients (de Hemptinne et al., 2015). 
Supplementary motor areas, which are located at the transition between primary motor 
areas and prefrontal cortex, are involved in intentional movement initiation (Goldberg, 1985) 
and their impaired function is supposed to contribute to PD symptoms (Jacobs et al., 2009). 
Direct stimulation of supplementary motor areas with transcranial magnetic stimulation leads 
to improved freezing of gait symptoms in PD (Kim et al., 2018; Shirota et al., 2013), while 
dopaminergic medication can be related to improved supplementary motor area activation 
and improved motoric functions (Jenkins et al., 1992; Rascol et al., 1994). STN DBS in PD 
has been shown in fMRI (Stefurak et al., 2003) and positron emission tomography 
(Ceballos-Baumann et al., 1999) studies to activate motor as well as premotor areas, 
concordant with the simulated patterns in this work. 
 
Our spiking network relies on a high level of biological realism with regards to spatio-
temporal dynamics. Space refers to the fact that the spiking network receives input from 
different brain regions of TVB, which is closer to the reality regarding the multitude of 
different white matter connections between the cortex and the BG (Lenglet et al., 2012). 
More realistic time modeling implies the specific mean-field model dynamics that are 
chosen, as opposed to other studies, in which spiking networks are driven by Poisson spike 
trains, white noise or harmonic oscillations (Humphries et al., 2006; Park et al., 2011; 
Terman et al., 2002). The former approach of driving these spiking networks with noise 
seems to be an abstract view of the biologically underlying phenomena (Kerr et al., 2013).  
 
There are still several open challenges in the field of DBS research that a virtual testing 
environment could potentially address. First, the exact placement of the electrodes seems 
crucial for the clinical outcome for patients. For PD and OCD, recent studies have shown 
that the connectivity profile of the brain area encompassing the inserted electrode predicts 
clinical outcome measures for patients (Baldermann et al., 2019; Horn et al., 2017, 2019; 
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Joutsa et al., 2018). This phenomenon was validated for dystonia (Corp et al., 2019; 
Okromelidze et al., 2020), essential tremor (Al-Fatly et al., 2019) and epilepsy (Middlebrooks 
et al., 2018). Testing the effects of different placement strategies before surgery could 
provide simulation-based advice for neurosurgeons. In this first co-simulation approach for 
DBS, we modeled stimuli targeting the GPi or STN area directly and completely. The clinical 
reality looks more complex (Krauss et al., 2021). The different sub-areas within the STN, for 
example, are involved in different pathways, i.e., the sensorimotor, associative and limbic 
loop. As most DBS systems provide several lead contacts to choose, the precise stimulus 
location is a common problem in clinical fine-tuning of DBS. With the upcoming of more 
detailed brain atlases, one could easily extend our used parcellation towards a finer grid 
inside the BG and model these subparts separately. Here, we presented the scaffold model 
that can be fine-tuned towards a more realistic model in a straight-forward manner. Second, 
so far, little individual information is considered for each patient and often the electrodes are 
placed based on normative data (Horn & Fox, 2020). Fitting an individual TVB model for 
patients provides a more personalized approach based on individual structural and 
functional imaging or electrophysiological data. TVB has previously been applied to help with 
predictions of clinical features for individual patients. Using individual positron emission 
tomography images, EEG slowing in patients with AD could be inferred from Abeta 
accumulation with the help of TVB (Stefanovski et al., 2019). Recently, a study has shown 
that the TVB feature of simulated mean local field potential frequency per brain region 
significantly improves the classification of individuals as AD patients, mild cognitive 
impairment patients or healthy controls using machine learning (Triebkorn et al., 2021). For 
epilepsy patients, TVB has successfully been applied to optimize the determination of the 
resection and epileptic zone per individual before surgery (An et al., 2019).  
 
A personalized virtual brain including structural data and dynamics based on MRI data is 
flexible in exploring other neuromodulation techniques with little extra effort. The hypothesis 
is that neuromodulation techniques can move the brain network dynamics between the 
diseased and healthy state (Figure 10). With the current study, we have made a first attempt 
to “control” brain network dynamics by modeling stimulation in the brain of a PD patient. 
There is evidence that PD patients could also benefit from other neuromodulation 
techniques (Brittain & Cagnan, 2018). For example, a first study found that transcranial 
magnetic stimulation (TMS) of the supplementary motor area helps to improve the motoric 
symptoms of PD patients (Shirota et al., 2013). With our co-simulation framework, we can 
potentially analyze the impact of such a stimulation originating on the surface and follow the 
complete loop of cortico-basal-ganglia-thalamic-cortex connectivity. The flexibility of the 
presented virtual model could help with finding the best therapy for each individual patient.  
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Figure 10: Schematic overview of “controlling” brain dynamics from one state to another 
using The Virtual Brain. Different interventions, e.g., deep brain stimulation (DBS), transcranial 
magnetic stimulation (TMS) or pharmacological interventions, can shift the brain dynamics from one 
state to another. These neuromodulation techniques hold the potential to alter the brain dynamics 
from a diseased brain towards a healthy target brain. Using The Virtual Brain, we aim to explore the 
different pathways leading to healthy functioning in a virtual environment for individual patients. 
 
The applied data-driven model from Maith et al. (2020) does not make use of any prior 
assumptions regarding the pathological PD activity within the BG network, which stands in 
contrast to many previous models (Leblois et al., 2006; Lindahl & Hellgren Kotaleski, 2016). 
Fitting the outcomes of a model with empirical data from patients and controls offers an 
alternative approach to determining BG and whole-brain model dynamics. With this primarily 
data-driven approach, Maith et al. (2020) found many similarities of the obtained personal 
models of individual PD patients with physiological findings of PD, such as lower firing rates 
in the thalamus. 
 
Our study inherits some limitations. In this proof-of-concept study, we modeled the TVB 
input that drives the spiking BG network with the reduced Wong-Wang mean-field model 
(Deco et al., 2013). In an improved version of this model, we could adjust the TVB mean-
field dynamics to qualitatively correspond better with the original spiking network of 
Izhikevich neurons (Maith et al., 2020) by taking advantage of existing mean-field 
approximations of such networks (Nicola & Campbell, 2013; Visser & Van Gils, 2014). Such 
a choice would allow a more accurate analytical and computational determination of the 
large-scale brain dynamics (e.g., involved bifurcations) and inform the interface modeling 
between the two scales accordingly (e.g., in terms of scaling or more complex 
transformations). Further, alternatives to correlated spike trains’ generators for converting 
the TVB mean-field nodes’ rates into spike trains of TVB “proxy” nodes could be more 
effective in mimicking the Izhikevich spiking cortex node dynamics. All of the above options 
can be better explored by an upcoming computationally optimized version of the TVB-
multiscale toolbox, implementing parallel co-simulation, allowing for a systematic exploration 
of the parameter space of the multiscale model to better fit individual neuroimaging data. So 
far, we fitted the virtual co-simulation brains to two individuals, which can be easily extended 
to larger cohorts with the only necessary data being DTI and either fMRI or 
electrophysiological data to fit the model dynamics accurately. The well-known characteristic 
of PD patients to demonstrate hyper-synchronization in the beta band ( ) in the 
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sensorimotor network and the STN (Cruz et al., 2011; Whitmer et al., 2012) is reversed by 
DBS (Kühn et al., 2008; Wingeier et al., 2006). Our approach did not yet incorporate 
modeling the electrophysiological signatures of virtual DBS. However, TVB has often been 
used to monitor EEG-like activity from simulated time series and TVB-multiscale will soon 
also be equipped for this monitoring. Short-term plasticity probably plays an essential role in 
DBS effects (Milosevic et al., 2018), which has not yet been implemented in our model. 
Similarly, long-term plasticity effects due to DBS probably exist in structural and functional 
networks (van Hartevelt et al., 2014). With the spiking model allowing for an implementation 
of plasticity rules, we could explore its effects on the whole-brain dynamics with our model in 
future work. Moreover, our BG network misses the substantia nigra region as a crucial factor 
influencing PD dynamics and so far, we limited our analyses to a single (left) hemisphere. 
 
 
Conclusions 
 
In this study, we presented a co-simulation model for the BG as a spiking network together 
with TVB mean-field simulations for the whole brain. Our results show biologically plausible 
effects of virtual DBS performed in this multiscale modeling framework, bringing the patient’s 
network dynamics of the BG closer to the healthy regime. The presented model offers a 
bridge between the different scales affected by DBS in the brain. It has the potential to be 
used as a ‘sandbox’ model for individual patients suffering from different neurological 
disorders prior to surgical interventions. Different strategies for DBS lead placements and 
configurations can be tested and evaluated. Future work needs to validate this model in 
larger patient cohorts and establish its link with clinical post-surgery improvement.  
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