

Chronic Aryl Hydrocarbon Receptor Activity Phenocopies Smoking-induced Skeletal Muscle Impairment

Trace Thome^{1*}, Kayla Miguez^{2*}, Alexander Willms³, Angela R. de Souza³, Vijayendran Chandran⁴, Sarah S. Burke⁵, Yana Goddard⁶, Carolyn Baglole³, Maria-Eleni Anagnostou⁵, Jean Bourbeau³, R. Thomas Jagoe³, Jose Morais³, Tanja Taivassalo⁷, Terence Ryan^{1*} and Russell T. Hepple^{5,7,*}

¹Department of Applied Physiology & Kinesiology, University of Florida, USA. ²Department of Kinesiology and Physical Education, McGill University, CANADA. ³Research Institute of the McGill University Health Center, McGill University, CANADA. ⁴Department of Pediatrics, University of Florida, USA. ⁵Department of Physical Therapy, University of Florida, USA. ⁶Department of Medicine, University of Florida, USA. ⁷Department of Physical Medicine and Rehabilitation, University of Florida, USA.

^bDepartment of Medicine, University of Florida, USA. ^cDepartment of Physiology & Functional Genomics, University of Florida, USA

*These authors contributed equally.

These authors contributed equally.

Correspondence:

Russell T. Hepple

Department of Physical Therapy

University of Florida

1225 Center Drive

Gainesville, FL

USA 32610

Phone: 352 294-8703

Email: rthepple@ufl.edu

Author Contributions:

TT. Performed cell culture experiments, performed qPCR in cell culture and human critical limb ischemia patient muscle samples, generated figures; KM. Performed smoking mouse experiments; AM. Performed smoking mouse experiments; ARdS. Assisted with mouse smoke exposures; VC. Performed bioinformatics on Quantseq dataset; SSB. Immunolabeled neuromuscular junctions in AAV-CAAHR treated mouse muscle, and performed qPCR in human COPD muscle samples; SA. Performed qPCR of mouse muscle following smoke exposure; YG. Isolated RNA for Quantseq; CJB. Contributed to design of mouse smoke exposures; MA. Imaged, and quantified NMJs; JB. Recruited COPD patients; RTJ. Performed muscle biopsies; JM. Performed muscle biopsies; TT. Contributed to study design in COPD patients; TER. Led design of cell culture experiments, AAV experiments; RTH. Led overall design of study, oversaw smoking mouse analyses, wrote first draft of manuscript.

Grant Support: CIHR MOP 119583 (RTH), University of Florida Start-up Funds (RTH), University of Florida Opportunity Seed Fund (TER), Bloomberg-Manulife Scholarship (KM).

Running Head: Chronic AHR activation impairs skeletal muscle

The authors declare that they have no conflict of interest.

Datasets generated and analyzed in this study are available at Gene Expression Omnibus, GEO accession: GSE151099.

51

52 **ABSTRACT**

53 **Background:** COPD patients exhibit skeletal muscle atrophy, denervation, and reduced
54 mitochondrial oxidative capacity. Whilst chronic tobacco smoke exposure is implicated in COPD
55 muscle impairment, the mechanisms involved are ambiguous. The aryl hydrocarbon receptor
56 (AHR) is a ligand-activated transcription factor that activates detoxifying pathways with numerous
57 exogenous ligands, including tobacco smoke. Whereas transient AHR activation is adaptive,
58 chronic activation can be toxic. On this basis, we tested the hypothesis that chronic smoke-
59 induced AHR activation causes adverse muscle impact. **Methods:** We used clinical patient muscle
60 samples, and *in vitro* (C2C12 myotubes) and *in vivo* models (mouse), to perform gene expression,
61 mitochondrial function, muscle and neuromuscular junction morphology, and genetic
62 manipulations (adeno-associated virus-mediated gene transfer). **Results:** 16 weeks tobacco
63 smoke exposure in mice caused: muscle atrophy, neuromuscular junction degeneration, and
64 reduced oxidative capacity. Similarly, smoke exposure reprogrammed the muscle transcriptome,
65 with down-regulation of mitochondrial and neuromuscular junction genes. In mouse and human
66 patient specimens, smoke exposure increased muscle AHR signaling. Mechanistically,
67 experiments in cultured myotubes demonstrated that smoke condensate activated the AHR,
68 caused mitochondrial impairments, and induced an AHR-dependent myotube atrophy. Finally,
69 to isolate the role of AHR activity, expression of a constitutively active AHR mutant without smoke
70 exposure caused atrophy and mitochondrial impairments in cultured myotubes, and muscle
71 atrophy and neuromuscular junction degeneration in mice. **Conclusions:** These results establish
72 that chronic AHR activity, as occurs in smokers, phenocopies the atrophy, mitochondrial
73 impairment and neuromuscular junction degeneration caused by chronic tobacco smoke
74 exposure.

75 **Keywords:** smoking, cachexia, sarcopenia, neuromuscular junction

76 INTRODUCTION

77 Smoking is a major risk factor for several diseases, including chronic obstructive pulmonary
78 disease (COPD), cardiovascular disease, and many cancers [41]. Interestingly, patients with
79 smoking-related disease often exhibit skeletal muscle atrophy, where atrophy reduces quality of
80 life, increases hospitalizations, and increases the risk of death [20, 24]. Whereas the role of
81 chronic tobacco smoking in developing COPD is well-established [23], and tobacco smoke is
82 known to have dose-dependent adverse impact on skeletal muscle [11], the cellular mechanisms
83 by which smoking contributes to the muscle impairment often seen in COPD patients are poorly
84 understood.

85 Interestingly, numerous constituents of tobacco smoke activate the aryl hydrocarbon receptor
86 (AHR) [19], a ligand-activated transcription factor best known for mediating the toxic effects of
87 2,3,7,8-tetrachlorodibenzodioxin (dioxin) [27]. Activation of the AHR regulates cytochrome P450
88 enzymes such as Cyp1A1 and Cyp1B1, as well as antioxidant pathways that include NAD[P]H
89 quinone dehydrogenase and sulfiredoxin [27, 38]. Whereas the AHR plays an important role in
90 normal development [30], chronic AHR activation can have pathological consequences due to
91 mitochondrial-mediated oxidative stress [1] for various organ systems [28], including the brain
92 and nervous system, reproductive organs, heart, liver, and immune system [6]. Notably, although
93 the impact of chronic AHR activity in muscle has not been directly studied, chronic exposure to
94 environmental AHR agonists, including dioxin [25], tobacco smoke [47] and pesticides [48], is
95 associated with muscle atrophy.

96 On the basis of the above, we sought to determine whether AHR signaling is elevated in
97 skeletal muscle of smokers, and test the hypothesis that chronic AHR activation, with or without
98 tobacco smoke exposure, induces adverse muscle affect. Consistent with this hypothesis, genes
99 indicative of AHR activation are elevated in muscle of smokers and tobacco smoke condensate
100 in cultured myotubes causes muscle atrophy that is prevented by antagonizing AHR signaling.
101 Furthermore, knock-in of a constitutively active mutant of the AHR causes myotube atrophy and

102 impaired mitochondrial function *in vitro*, and in mice causes muscle atrophy and neuromuscular
103 junction degeneration; changes that are similar to those induced by chronic smoke exposure. We
104 conclude that chronic smoking-induced AHR activation has an important role in causing adverse
105 muscle impacts, such as those commonly seen in patients with COPD.

106

107 **Methods**

108 Smoking Mouse Model: To model the impact of chronic tobacco smoke exposure on skeletal
109 muscle, we used a smoking mouse model that we have previously described [17]. The first set of
110 experiments were designed to establish the impact of chronic smoke exposure on muscle mass,
111 muscle fiber size, mitochondrial function, and extent of neuromuscular junction denervation in
112 limb muscle using male C57BL/6 mice (n=24) obtained from the in-house colony at the Research
113 Institute of the McGill University Health Center (RI-MUHC). The second set of experiments were
114 designed to provide information about the impact of chronic smoke exposure on motor axons,
115 and extend observations to breathing muscle, using male C57BL/6-elite mice (n=15) purchased
116 from Charles River. In this latter respect, the C57BL/6-elite mice differ from C57BL/6 mice in that
117 the former are raised under conditions where specific infectious agents are excluded from the
118 colony to maintain a virus antigen free condition. In both sets of experiments, mice were
119 maintained on a 12:12 dark/light schedule in the RI-MUHC vivarium, housed 1-4 per cage and
120 provided with water and food *ad libitum*. All procedures in mice were done in compliance with the
121 regulations of the Canadian Council on Animal Care and with prior approval from the McGill
122 University Animal Care Committee (protocol 5933).

123 Tobacco smoke exposures were done using a SCIREQ InExpose System (SCIREQ, Montreal,
124 QC, CANADA) and used a smoking protocol approved by the Federal Trade Commission (1 puff
125 per min per cigarette, where each puff was 2 s in duration and 35 ml in volume). Mice in the smoke
126 exposed group were exposed for 60 min twice per d, 5 d per week, for 16 weeks (first set of
127 experiments: n=13; second set of experiments: n=8). Mice in the Air exposure group (first set of

128 experiments: n=11; second set of experiments: n=7) were brought to the same room as the smoke
129 exposure system but remained in their cages. Particulate matter density during smoke exposures
130 were maintained between 4.0 and 6.0 mg·m⁻³·min⁻¹ (measured by MicroDust Pro, Casella, Buffalo
131 NY, USA). The sample size used in each assay is indicated below.

132

133 Tissue Harvest: Mice in the first set of experiments were sacrificed by CO₂ asphyxiation followed
134 by cervical dislocation, 24 h after their last smoke or Air exposure. The soleus (Sol), plantaris
135 (Plan), gastrocnemius (Gas), and diaphragm (Dia) muscles were rapidly removed, dissected free
136 of connective tissue and fat, and weighed. The tibialis anterior (TA) in 5 animals per group (Air,
137 TS) was also removed and prepared for neuromuscular junction labeling as previously described
138 [17], and is briefly described below. The central tendon and crural Dia were separated from the
139 whole Dia and discarded. A portion of the remaining costal Dia was prepared for mitochondrial
140 function assays (see below). Similarly, the right Sol was used in mitochondrial function assays,
141 whereas the left Sol was mounted for histology. The right and left plantaris muscles were flash-
142 frozen in liquid N₂ immediately following weighing to be used in transcriptional analyses (see
143 Quantseq, below).

144 Mice in the second set of experiments were sacrificed by cervical dislocation after
145 anesthetizing with ketamine (1 ml per g body mass), 48 h after their last smoke or Air exposure.
146 The Dia was removed and prepared as above to isolate the crural Dia. The crural Dia was then
147 prepared for neuromuscular junction labeling as detailed below.

148

149 Histology: For mice in the first set of experiments, the entire left Sol muscle was mounted in
150 Cryomatrix embedding resin (Thermo Scientific, USA) and frozen in liquid isopentane that had
151 been chilled to the point of freezing in liquid N₂, and was then stored at -80°C until processed.
152 Muscles were cut on a cryostat (-18°C) to 10-μM sections, labeled for laminin to demarcate

153 muscle fiber borders, and imaged on a Zeiss Axio Imager M2 fluorescence microscope. Briefly,
154 10 μ m thick muscle cross-sections were rehydrated with PBS (pH 7.2) and then blocked using
155 goat serum (10% in PBS) by incubating for 1 h at room temperature. The sections were then
156 incubated overnight at 4°C with polyclonal anti-laminin (1:1000; ThermoFisher Scientific) primary
157 antibody diluted in blocking solution. The muscle sections were then washed three times in PBS
158 before being incubated for 1 h in the dark at room temperature with Alexa Fluor 488 IgG secondary
159 antibody (A-11008, 1:500; ThermoFisher Scientific) diluted in blocking solution. Muscle cross-
160 sections were then washed three times in PBS, and coverslips were applied to slides using
161 Prolong Gold (ThermoFisher Scientific; P36930) as mounting medium. Slides were imaged using
162 a Zeiss Axio Imager (Zeiss, Germany). Fiber size was assessed using Image J on tiled images
163 on an average of 277 ± 33 fibers per muscle using a systematic sampling strategy to provide
164 unbiased estimates (n=6 mice per group).

165
166 Neuromuscular Junction Morphology: We have reported some indices of neuromuscular junction
167 morphology from the TA muscle of the animals studied in the first set of experiments in our
168 previous publication [17]. Briefly, TA muscles were washed (3 x 5 min) in PBS and fixed overnight
169 at 4°C in 4% paraformaldehyde. The deep (oxidative) portion of the fixed muscles were then
170 mechanically separated into smaller bundles. Muscle bundles were incubated overnight at 4°C in
171 a blocking solution consisting of 5% normal goat serum, 5% BSA, and 2% Triton X-100 in PBS.
172 Pre-synaptic motoneuron terminals were then labeled by incubating bundles overnight at 4°C in
173 the same blocking solution to which had been added a mouse anti-synaptophysin antibody
174 (AB8049 Abcam, USA; 1:25 dilution). The following morning bundles were washed (5 x 30 min)
175 in a blocking solution containing 5% normal goat serum and 5% BSA in PBS, and then incubated
176 overnight at 4°C with AF594-conjugated goat anti-mouse IgG1 secondary antibody (A21125,
177 Invitrogen, USA; 1:500 dilution) and AF488-conjugated α -bungarotoxin (B13422, Life

178 Technologies, USA; 1:500 dilution) to visualize the synaptophysin labeling and the AChR cluster
179 on the muscle fiber, respectively. After incubation, muscle bundles were washed (5 x 45 min) in
180 the blocking solution, and mounted onto slides with ProLong Gold Antifade Mountant (P36930,
181 Life Technologies, USA).

182 For mice in the second set of experiments, a portion of the costal Dia was prepared as the
183 TA above, with the exception that in addition to labeling for synaptophysin and α -bungarotoxin,
184 we also labeled for neurofilament 200 (NF200) to label the motor axons. Briefly, after being
185 harvested the costal Dia was immediately washed in 1 x PBS solution for 20 min. Using 2%
186 paraformaldehyde (PFA) solution, Dia muscles were fixed for 4 h at room temperature, washed
187 (1 x 20 min, followed by 3 x 5 min), and stored in 1 x PBS solution at 4°C for 1 to 36 h prior to
188 permit batch processing for neuromuscular junction labeling. The length of this storage time was
189 randomized amongst the two groups. Costal Dia was then cut widthwise into smaller pieces and
190 incubated overnight at 4°C in blocking solution as in TA (above). Muscles were then incubated in
191 blocking solution containing rabbit anti-heavy NF200 primary antibody (N4142 Sigma, Germany;
192 1:200 dilution) and anti-synaptophysin antibody (1:25 dilution as above). The following morning
193 bundles were washed (5 x 60 min) in a blocking solution containing 5% normal goat serum and
194 5% BSA in PBS, and then incubated overnight at 4°C with AF594-conjugated goat anti-mouse
195 IgG1 secondary antibody (A21125, ThermoFisher, USA; 1:500 dilution), Cy5 goat anti-rabbit IgG
196 (H&L) (A10523, ThermoFisher, USA; 1:200) and AF488-conjugated α -bungarotoxin (B13422, Life
197 Technologies, USA; 1:500 dilution). Muscle bundles were washed (5 x 60 min) in the blocking
198 solution, stored in blocking solution overnight at 4°C, and then mounted onto slides with ProLong
199 Gold as above.

200

201 Neuromuscular Junction Imaging: Both TA (mice in first set of experiments) and Dia (mice in
202 second set of experiments) muscles labeled for neuromuscular junction structures were imaged

203 using an LSM880 confocal microscope (Carl Zeiss, Germany) with a 63x oil-immersion objective
204 by generating image stacks (optical slice thickness = 1.0 μm). Image stacks were then analyzed
205 as maximum intensity projections using Image J. For the first set of experiments where only the
206 AChRs and motoneuron terminals were labeled in TA muscles, analyses focused on identifying
207 the fraction of neuromuscular junctions lacking motoneuron terminals (=no synaptophysin
208 opposing the α -bungarotoxin-labeled AChRs). For the second set of experiments where we
209 labeled the motor axons (NF200), terminals (synaptophysin) and AChRs (α -bungarotoxin) in Dia
210 muscle, our measurements were based upon an analysis scheme developed by Jones and
211 colleagues [15] that assessed structural features of the motor axons, the motoneuron terminals,
212 and the AChR clusters.

213

214 Mitochondrial Function and Content: As noted in the description of the Tissue Harvest (above),
215 for animals in the first set of experiments the right Sol and a portion of the Dia were used in
216 mitochondrial function assays, using methods we have described previously [42]. Briefly, freshly
217 dissected muscle was immediately placed in ice-cold stabilizing Solution A (2.77mM CaK₂EGTA,
218 7.23mM K₂EGTA, 6.56 MgCl₂, 0.5mM dithiothreitol, 50mM K-MES, 20mM imidazol, 20mM
219 taurine, 5.3mM Na₂ATP, 15mM phosphocreatine). The muscles were then dissected into smaller
220 bundles of muscle fibers in Solution A on ice under a stereomicroscope, before being placed in 6
221 ml of Solution A supplemented with 200 μL of a 50 $\mu\text{g}\cdot\text{ml}^{-1}$ saponin solution and incubated on ice
222 on a shaking platform for 30 min. Fiber bundles were then washed (3 x 5 min) in Solution B (2.77
223 mM CaK₂EGTA, 7.23 mM K₂EGTA, 1.38 mM MgCl₂, 0.5 mM dithiothreitol, 100 mM K-MES, 20
224 mM imidazol, 20 mM Taurine, 3 mM K₂HPO₄) supplemented with 2 mg \times ml⁻¹ of bovine serum
225 albumin (BSA). Washed fiber bundles weighing 3-6 mg were then placed in each of the two
226 chambers of an Orobos Oxygraph O2K (Orobos, Austria), in Solution B maintained at 37°C.
227 The rate of respiration was then measured in response to the following substrate-inhibitor

228 protocol: (1) glutamate (10 mM) and malate (5 mM), (2) ADP (5 mM), (3) succinate (20 mM), (4)
229 cytochrome C (10 μ M), (5) antimycin A (10 μ M), and (6) ascorbate (12.5 mM) and the artificial
230 electron donor N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD; 1.25 mM).

231 Following the mitochondrial respiration assessment, remaining Sol and Dia fiber bundles
232 were blotted dry using a Kimwipe, and frozen in liquid N₂ for use in determining the amount of the
233 mitochondrial outer membrane protein, voltage dependent anion channel (VDAC). Briefly,
234 approximately 10 mg of muscle was homogenized in a MM400 robot homogenizer (Retsch,
235 Germany) with 10 x weight per volume of extraction buffer (50 mM Tris base, 150 mM NaCl, 1%
236 Triton X-100, 0.5% sodium deoxycolate, 0.1% sodium dodecyl sulfate, and 10 μ l·ml⁻¹ Protease
237 Inhibitor Cocktail (Sigma, USA)). Following 2 h gentle agitation at 4°C, samples were centrifuged
238 at 12,000 g at 4°C for 20 min. The supernatant was then removed and samples were diluted in 4
239 x Laemli buffer to a final protein concentration of 2 μ g·ml⁻¹ before boiling for 5 min at 95°C. We
240 then performed immunoblotting by loading 20 μ g of tissue protein onto a 12% acrylamide gel,
241 electrophoresed by SDS-PAGE and then transferred to polyvinylidene fluoride membranes (Life
242 Sciences) blocked for 1 h with 5% (w/v) semi-skimmed milk at room temperature. Gels were then
243 probed overnight at 4°C with mouse monoclonal anti-VDAC (ab14734, Abcam; 1:1000). Ponceau
244 staining was done to permit normalizing to protein loading. After washing, membranes were
245 incubated with HRP-conjugated secondary antibody (Abcam; diluted in 5% milk) at room
246 temperature for 1 h. Protein bands were detected by SuperSignalTM West Pico Chemiluminescent
247 Substrate (Thermo Scientific, USA) and imaged with a G-Box chem imaging system.

248
249 Quantseq Analysis: Flash frozen plantaris muscles from mice studied in the first set of
250 experiments were used in analyses of the muscle transcriptome response to chronic smoke
251 exposure. Frozen muscle tissue (30 mg) was homogenized using the Fisherbrand Bead Mill 4
252 and total RNA was extracted from homogenates using the RNeasy Tissue Mini Kit (Qiagen),

253 according to manufacturer's instructions. RNA concentration and purity (A260/A280 ratios >1.8)
254 were assessed using a spectrophotometer. RNA was also tested for suitable mass (RiboGreen)
255 and integrity (Agilent TapeStation), reverse transcribed to complementary DNA (Lexogen
256 QuantSeq 3' FWD), and sequenced on a HiSeq 4000 instrument (Illumina) in the UCLA
257 Neuroscience Genomics Core laboratory, following the manufacturers' standard protocols.
258 Sequencing targeted mean 7 million 65-nt single-stranded reads per sample, which were mapped
259 to the mouse transcriptome and quantified as transcripts per million mapped reads using the
260 STAR aligner. All sequencing data were uploaded to Illumina's BaseSpace in real-time for
261 downstream analysis of quality control. Raw Illumina (fastq.gz) sequencing files were downloaded
262 from BaseSpace, and uploaded to Bluebee's genomics analysis platform
263 (<https://www.bluebee.com>) to align reads against the mouse genome. After combining treatment
264 replicate files, a DESeq2 application within Bluebee (Lexogen Quantseq DE 1.2) was used to
265 identify significant treatment-related effects on transcript abundance (relative to controls) based
266 on a false discovery rate (FDR) p-adjusted value <0.1.

267

268 Construction of co-expression networks: A weighted signed gene co-expression network was
269 constructed using the normalized dataset to identify groups of genes (modules) associated with
270 chronic smoke exposure following a previously described algorithm[31, 50]. Briefly, we first
271 computed the Pearson correlation between each pair of selected genes yielding a similarity
272 (correlation) matrix. Next, the adjacency matrix was calculated by raising the absolute values of
273 the correlation matrix to a power (β) as described previously[50]. The parameter β was chosen
274 by using the scale-free topology criterion[50], such that the resulting network connectivity
275 distribution best approximated scale-free topology. The adjacency matrix was then used to define
276 a measure of node dissimilarity, based on the topological overlap matrix, a biologically meaningful
277 measure of node similarity[50]. Next, the genes were hierarchically clustered using the distance
278 measure and modules were determined by choosing a height cutoff for the resulting dendrogram

279 by using a dynamic tree-cutting algorithm[50]. Utilizing this network analysis, we identified
280 modules (groups of genes) differentially expressed across different sample data sets after chronic
281 smoke exposure and calculated the first principal component of gene expression in each module
282 (module eigengene). Next, we correlated the module eigengenes with chronic smoke exposure
283 treatment to select modules for functional validation. Gene ontology and pathway enrichment
284 analysis was performed using the DAVID platform[14] (DAVID, <https://david.ncifcrf.gov/>). A list of
285 differentially regulated transcripts for a given modules were utilized for enrichment analyses.
286 Datasets generated and analyzed in this study are available at Gene Expression Omnibus, GEO
287 accession: GSE151099.

288

289 Human Muscle Biopsies: Muscle biopsies were obtained by the Bergstrom method from two
290 clinical populations with a high smoking incidence (COPD and Critical Limb Ischemia [CLI]).
291 Vastus lateralis muscle biopsies were obtained from 9 ambulatory male COPD patients (aged 58-
292 77 y) and 6 healthy adult controls (aged 20-72 y) from our previous report [17]. As previously
293 reported [17], these biopsies were obtained with approval from the Institutional Review Board for
294 human studies at the Montreal Chest Institute (Montreal, Canada; #BMC-08-026) and Research
295 Institute of the McGill University Health Center (#BMC-06-015). All subjects provided written
296 informed consent. Of the 9 COPD patients, 6 were former smokers (age: 65.5 ± 6.8 y; FEV-1:
297 1.08 ± 0.33 L; PaO_2 : 74.7 ± 15.8 mmHg; PaCO_2 : 41.7 ± 5.1 mmHg) and 3 were current smokers
298 (age: 63.7 ± 4.0 y; FEV-1: 1.16 ± 0.43 L; PaO_2 : 68.3 ± 8.1 mmHg; PaCO_2 : 42.0 ± 6.2 mmHg).
299 Gastrocnemius muscle biopsies were obtained from 18 patients with CLI undergoing limb
300 amputation classified as either current smokers (n=8; 58.4 ± 7.0 y; Ankle brachial index: $0.59 \pm$
301 0.15) or non-smokers (never smoked or quit more than 2 years prior to tissue acquisition; n=10;
302 59.7 ± 8.5 y; Ankle brachial index: 0.63 ± 0.23). Biopsies were acquired with approval by the
303 institutional review board at the University of Florida (Gainesville, FL, USA; IRB201802025). All

304 participants were fully informed about the research and informed consent was obtained. In both
305 cases, 20 mg pieces of muscle were fast-frozen in liquid N₂ for subsequent mRNA analysis
306 (described below). All human studies were carried out according to the Declaration of Helsinki.
307

308 **Muscle Cell Culture:** Murine skeletal C2C12 myoblasts were obtained from ATCC, USA (CRL-
309 1772) and cultured in Dulbecco's Modified Eagle Medium + GlutaMAX (DMEM: Cat. No. 10569,
310 Gibco, USA) supplemented with 10% Fetal Bovine Serum (FBS: Cat. No. 97068, VWR, USA) and
311 1% Penicillin/Streptomycin (Cat. No. 15140, Gibco, USA) at standard culture conditions (37°C in
312 5% CO₂). All cell experiments were performed with 3-4 biologically independent cell samples. To
313 generate mature myotubes, confluent myoblast cultures were subjected to serum withdrawal by
314 switching DMEM medium from 10% FBS to 2% adult horse serum. This differentiation medium
315 was changed every 24 hours for six days to form mature myotubes. For experiments involving TS
316 extract (TSE) treatment, TSE was obtained from Murty Pharmaceuticals (USA) and used at a final
317 concentration of 0.02%. TSC was prepared by smoking University of Kentucky's 3R4F Standard
318 Research Cigarettes on an FTC Smoke Machine. The Total Particulate Matter (TPM) on the filter
319 was calculated by the weight gain of the filter. From the TPM, the amount of DMSO to be used
320 for extraction to prepare a 4% (40 mg/mL) solution is calculated. The condensate is extracted with
321 DMSO by soaking and sonication. For experiments involving genetic knockdown (shRNA) of the
322 AHR, myotubes were transfected 48h prior to TSE exposure. For experiments involving chemical
323 AHR antagonism with 25 µM resveratrol or 1 µM CH223191, chemical antagonists were provided
324 to cells three hours before TSE and remained throughout the entire treatment period (24h).
325

326 **Measurement of Myotube Viability:** Cell viability was assessed by incubating live myotubes with
327 10 µM Ethidium Homodimer-1 (EtHD-1, Cat. No. 46043, Millipore Sigma, USA) and 1 µM Calcein
328 AM (to label live myotubes). EtHD-1 is a cell-impermeant viability indicator that is strongly
329 fluorescent when bound to DNA. Myotubes treated with 0.25% Triton X-100 in HBSS to

330 permeabilize cell membranes were used as a positive control. EtHD-1 positive nuclei were
331 quantified and expressed as a percentage of the Triton X-100 treated control cells using custom
332 batch processing routines in Cell Profiler (The Broad Institute, USA).

333

334 Myotube Respiration and ROS Production: Myotube respiration and superoxide production were
335 performed as previously described [44]. For respiration measurements, high resolution
336 respirometry was performed using an Oxygraph-2K (Austria). Myotubes were gently
337 rinsed with PBS, trypsinized to detach from well plates, and collected using centrifugation at 500
338 g. The resulting myotubes were resuspended in 2.5ml of Buffer Z (105 mM K-MES, 30 mM KCl,
339 1 mM EGTA, 10 mM K₂HPO₄, 5 mM MgCl₂-6H₂O, 2.5 mg/ml BSA, pH 7.1) supplemented with
340 glucose (10mM) and pyruvate (5mM). An aliquot of the myotube suspension was used to measure
341 protein content to normalize respiration rates accordingly. Cells were loaded into the oxygraph
342 chamber (O2K, Oxygraph-2K, Austria) and respiration was measured at 37°C. Basal oxygen
343 consumption (J_{O_2}) was measured in intact myotubes followed by a titration of carbonyl cyanide
344 4-(trifluoromethoxy)phenylhydrazone (FCCP; 250nM-1.5 μ M) to stimulate maximal uncoupled
345 respiration, followed by the addition of rotenone (0.01 mM) and antimycin A (0.005 mM) to account
346 for non-mitochondrial oxygen consumption.

347

348 To assess mitochondrial superoxide production, live myotubes were washed twice with Hanks
349 balanced salt solution (HBSS) and incubated with 500nM MitoSOX for 15 min in HBSS prior to
350 imaging. Live images at 20x were captured using and Evos FL2 Auto fluorescent microscope
351 using automated capture to avoid any human bias. MitoSOX positive area was calculated using
352 automated analysis routines created in Cell Profiler (Broad Institute, USA). All processing
353 procedures were performed uniformly over the entire set of images using batch processing modes
354 to avoid any human bias.

355

356 Measurement of Myotube Area: Myotube area was measured as previously described [4, 26].
357 Treated myotubes were gently washed with PBS, fixed with 1:1 methanol:acetone for ten minutes
358 at -20°C, left to air dry for 10 min, and incubated with primary antibody against sarcomeric myosin
359 (MF 20 was deposited to the DSHB by Fischman, D.A. (Product MF 20; DSHB Hybridoma Bank,
360 USA) at 1:25 in blocking solution (PBS + 5% goat serum + 1% BSA) for one hour at 37°C. Cells
361 were then washed 3x in PBS, followed by incubation with 1:250 secondary antibody
362 (AlexaFluor594, mouse IgG2b; ThermoFisher, USA) for one hour at 37°C. Cells were imaged
363 using automated capture routines on an Evos FL Auto 2 inverted fluorescent microscope
364 (ThermoFisher, USA) and analyzed using custom written routines in CellProfiler (Broad Institute,
365 USA) to assess MF20+ area (myotube area). All processing procedures were performed uniformly
366 over the entire set of images using batch processing modes to avoid any human bias.

367
368 Plasmid Construction and AAV Production/Delivery: AAV backbones were obtained from Cell
369 Biolabs, USA (Cat. No. VPK-411-DJ). The AAV-CMV-GFP plasmid was developed by inserting
370 a CMV promoter and GFP (ZsGreen1) into a promoterless AAV vector (Cat. No. VPK-411-DJ;
371 Cell BioLabs, USA) using In-Fusion Cloning (Cat. No. 638911; Takare Bio, USA). To generate a
372 constitutively active AHR (CAAHR) vector, the mouse AHR coding sequence was PCR amplified
373 from genomic DNA obtained from a C57BL6J mouse such that the ligand binding domain (amino
374 acids 288-421) was deleted as previously described for the murine AHR [2], and subsequently
375 cloned into the pAAV-CMV vector using In-Fusion cloning. To generate inducible shRNA vectors
376 to knockdown the murine AHR, the pLKO.1 cloning plasmid was obtained from Addgene, USA
377 (Cat. No. 10878) [29]. The shRNA cassette from the pLKO.1 plasmid was PCR amplified and
378 subsequently inserted into a promoterless AAV plasmid (CellBio Labs, USA). A knockdown
379 sequence for the murine AHR (TRCN0000055409 was obtained from Millipore-Sigma) and
380 inserted into the resulting pAAV-shRNA cloning vector using Agel and EcoRI restriction sites. For

381 muscle cell culture experiments, plasmids were transfected into C2C12 cells using Xfect reagent
382 (Cat. No. 631324; Takara Bio, USA) according to manufacturer instructions.

383
384 AAV-DJ were produced using triple-transfection of HEK293T cells using the DJ-packaging kit
385 from Cell Biolabs, USA (Cat. No. VPK-411-DJ). AAV purification was performed ~72h after triple-
386 transfection using purification kits from Takara Bio, USA (Cat. No. 6666) according to
387 manufacturer instructions. Purified AAVs were titered using a qPCR based kit (Cat. No. 6233;
388 Takara Bio, USA). The TA muscle of each mouse received a 5×10^{10} vg of either AAV-GFP or
389 AAV-CAAHR using several small volume (~7-8 μ l) injections to ensure adequate spatial
390 distribution across the muscle.

391
392 Real-time qPCR: We performed real-time qPCR to assess the impact of TS exposure on
393 components of the AHR signaling pathway in C2C12 muscle cell culture and human muscle
394 samples from CLI and COPD patients. Total RNA was extracted from treated C2C12 myotube
395 cultures using Trizol-Phenol Reagent (Invitrogen; Cat. No. 15596026) as described by
396 manufacturer's instructions. RNA quantity and quality was assessed using UV-spectroscopy
397 (ThermoFisher Scientific; Nanodrop 2000). cDNA was generated from 500 ng RNA using
398 Superscript IV (ThermoFisher; Cat. No. 18091200) according to manufacture directions. Real-
399 time PCR (RT-PCR) was performed on a Quantstudio 3 (ThermoFisher Scientific) using Taqman
400 Fast Advanced Master mix (ThermoFisher Scientific; Cat. No. 4444963) and Taqman FAM-
401 labeled probes for AHR (ThermoFisher Scientific; Mm00478932_m1), CYP1A1 (ThermoFisher
402 Scientific; Mm00487218_m1), or CYP1B1 (ThermoFisher Scientific; Mm00487229_m1)
403 multiplexed with VIC-labeled probe for 18S (ThermoFisher Scientific; Hs03003631_g1). Relative
404 gene expression was calculated using $2^{-\Delta\Delta CT}$ from the respective control group for each
405 experiment.

406 For the human patient samples, ~20 mg pieces of snap-frozen muscle tissue were placed into
407 an eppendorf tube containing TRIzol (1mL/mg; Life Sciences Technologies, Carlsbad, CA, USA),
408 and RNA was extracted per manufacturers specifications. RNA concentration and purity
409 (A260/280 ratios >1/8) were assessed using a Nanodrop 2000 (ThermoFisher Scientific) or
410 BioTek Powerwave HT spectrophotometer (BioTek Instruments, Winooski, VT, USA). RNA (0.5-
411 1 µg) was reverse-transcribed to cDNA using LunaScript RT SuperMix Kit (New England Biolabs,
412 Ipswich, MA, USA). TaqMan gene expression assays with FAM-labeled probes were purchased
413 from ThermoFisher Scientific (Carlsbad, CA, USA) to quantify expression of CYP1A1
414 (ThermoFisher Scientific; Hs01054797_g1), CYP1B1 (ThermoFisher Scientific;
415 Hs00164383_m1), or AHRR (ThermoFisher Scientific; Hs01005075_m1). Real-time qPCR was
416 performed on these targets using TaqMan Universal Master Mix (ThermoFisher Scientific) and a
417 Quantstudio 3 Real-Time PCR system (Applied Biosystems, Waltham, MA, USA). Samples were
418 run in triplicate and eukaryotic 18S (ThermoFisher Scientific; Hs03003631_g1) was used as an
419 endogenous control. Relative gene expression was calculated using $2^{-\Delta\Delta CT}$ from the respective
420 control group.

421
422 Statistics: The specific statistics used in each experiment are detailed in the legends for each
423 figure. Generally, differences between groups were detected by Student's t-test (2
424 groups/conditions), Analysis of Variance and a Sidak post-hoc test (3 or more groups/conditions),
425 or Two-way Analysis of Variance and a Sidak post-hoc test (3 or more groups/conditions and two
426 factors per group). P-values are stated in the legends for each figure, where P-values <0.05 were
427 considered statistically significant. Values are presented as means \pm Standard Deviation.

428
429
430

431 **Results**

432 Chronic Tobacco Smoke Exposure in Mice Adversely Affects Skeletal Muscle. To model an
433 approximate smoking level of 1.5 packages of cigarettes per day over a 10-y period in humans,
434 we exposed male mice to tobacco smoke for 60 min, 2x/d, 5d/week for 16 weeks (Fig. 1A). We
435 observed lower body mass (Fig. 1B) and significant atrophy across a range of muscle phenotypes
436 and function (Fig. 1C), accompanied by significant atrophy of individual muscle fibers (Fig. 1D).
437 Muscle mounts to reveal neuromuscular junction morphology (Fig. 1E) in tibialis anterior (the
438 fraction of abandoned endplates on this muscle has been previously published [17]) and
439 diaphragm muscles revealed fragmentation of the acetylcholine receptor clusters and reduced
440 motor axon diameter with chronic smoke exposure, and this was accompanied by a significant
441 fraction of endplates lacking a detectable motoneuron (lack of synaptophysin; indicative of muscle
442 fiber denervation) in both muscles (Fig. 1F). In addition, although chronic smoke exposure did not
443 affect the protein abundance of the outer mitochondrial membrane protein voltage dependent
444 anion channel, oxidative capacity was impaired as evident from a reduced maximal state III
445 respiratory capacity in soleus and diaphragm muscles (Fig. 1G), suggesting the presence of an
446 intrinsic mitochondrial oxidative defect in muscle with chronic smoke exposure. Next, we
447 performed unbiased transcriptomics analysis (Fig. 2A-B) of skeletal muscle from control and
448 smoke-exposed mice. Differential gene expression and network analysis found three major gene
449 hubs showing robust reprogramming of the neuromuscular junction, myofibril/sarcomere, and the
450 mitochondrion (Fig. 2C-E),

451

452 Response of Skeletal Muscle AHR Signaling to Smoke Exposure. Various constituents of tobacco
453 smoke have been shown to activate the AHR using a mouse hepatoma cell line [19]. To establish
454 whether skeletal muscle responds to smoke exposure by up-regulating established AHR-
455 regulated transcripts, we first determined the impact of 5 x 60 min acute smoke exposures
456 performed over a 2.5-day period in mice on AHR signaling in skeletal muscle. This analysis

457 revealed a trend ($P=0.07$) to an increase in the down-stream AHR effector Cyp1A1 with smoke
458 exposure (Fig. 3A). Next, we examined the impact of smoking in human patients with two different
459 diseases associated with chronic smoking and muscle atrophy: COPD [23] and critical limb
460 ischemia (a severe form of peripheral artery disease) [22]. Consistent with observations in smoke-
461 exposed mice, COPD patients that were current smokers had ~25-fold increased Cyp1A1
462 expression compared to COPD patients who were former smokers and compared to non-smoking
463 control subjects (Fig. 3B). Similarly, muscle from active smoking critical limb ischemia patients
464 had significant increases in the AHR-regulated transcripts Cyp1A1 and Cyp1B1, compared to
465 non-smokers (Fig. 3C).

466

467 *Tobacco Smoke Condensate Causes Atrophy and Impairs Mitochondrial Function.* Using a
468 C2C12 myotube culture system, we showed that treatment of mature myotubes with 0.02%
469 tobacco smoke condensate did not cause appreciable cell death (Fig. 4A) but dramatically
470 upregulated Cyp1A1 expression (confirming AHR activation) (Fig. 4B), and induced myotube
471 atrophy (Fig. 4C). Smoke condensate also increased mitochondrial ROS emission (Fig. 4D) and
472 reduced maximal oxidative capacity (Fig. 4E) in myotubes. We then showed that genetically
473 antagonizing AHR signaling using a short hairpin RNA targeting the AHR (Fig. 4F) reduced
474 Cyp1A1 expression in response to smoke condensate (Fig. 4G). Importantly, shAHR prevented
475 the muscle atrophy induced by smoke condensate (Fig. 4H). A similar attenuation of smoke-
476 induced Cyp1A1 expression (Fig. 4I) and myotube atrophy (Fig. 4J) was obtained when treating
477 with the chemical AHR antagonists resveratrol [10] or CH223191 [18].

478

479 *Chronic AHR Activity Without Smoke Exposure Causes Adverse Muscle Impact.* To establish the
480 impact of chronic AHR activity independent of tobacco smoke we constructed a mutant of the
481 AHR that lacks the ligand binding domain and demonstrates constitutive activity (CAAHR; Fig.
482 5A), as done previously by another group [6]. Treatment of myotubes with AAV-CAAHR increased

483 AHR expression 40-fold and increased Cyp1A1 10-fold relative to AAV-GFP treatment (Fig. 5B).
484 Similar to observations with smoke condensate (Fig. 4), AAV-CAAHR treatment caused myotube
485 atrophy (Fig. 5C), increased mitochondrial ROS, and impaired oxidative capacity (Fig. 5D).

486 To establish the impact of chronic AHR activity independent of smoke exposure *in vivo*, we
487 injected AAV containing the CAAHR mutant under the control of a cytomegalovirus promotor into
488 one tibialis anterior muscle of C57BL6/J mice, and the contralateral tibialis anterior with AAV-
489 Green Fluorescent Protein (Fig. 6A). AAV-CAAHR injection caused a >50-fold increase in AHR
490 expression and a ~7-fold increase of Cyp1A1 (Fig. 6B). Similar to findings in AAV-CAAHR treated
491 myotubes (Fig. 5C), and in mice chronically exposed to smoke (Fig. 1), muscle mass was reduced
492 in the AAV-CAAHR injected limb in 3 out of 4 treated animals 12 weeks following AAV injection
493 (Fig. 6C). In addition, AAV-CAAHR injection caused neuromuscular junction degeneration (Fig.
494 6D) that was characterized by acetylcholine receptor cluster fragmentation, reduced motor axon
495 diameter, and a significant accumulation of endplates that lacked the motoneuron (Fig. 6E).

496

497 **Discussion**

498 Long-term smoking is the primary cause of COPD and a significant fraction of patients develop
499 muscle atrophy that predisposes them to worse clinical outcomes, including a greater risk of death
500 [24]. Similarly, long-term smokers without disease also exhibit atrophy and reduced markers of
501 mitochondrial oxidative capacity [21, 32], and chronic smoking in mouse models causes: muscle
502 atrophy [9], reduced muscle oxidative capacity [11], and degeneration of the neuromuscular
503 junction [16]. Despite this, the mechanisms by which smoking causes adverse muscle impact are
504 poorly understood. In this respect, the AHR is a ligand-activated transcription factor responsive
505 to a wide variety of environmental contaminants [27], including tobacco smoke [19], and chronic
506 AHR activation can be toxic [28]. On this basis, we tested the hypothesis that chronic AHR
507 activation, with or without tobacco smoke exposure, induces skeletal muscle atrophy,
508 mitochondrial dysfunction and neuromuscular junction degeneration.

509

510 *Impact of Chronic TS Exposure on Skeletal Muscle.*

511 Based upon species-specific lifespan [3, 45], we modeled approximately a decade of 1-1.5
512 packs per day smoking behavior in humans by exposing mice to mainstream tobacco smoke for
513 2 h per d, 5 d per wk, for 16 wk. Smoke exposure in mice caused: muscle atrophy across a range
514 of muscle phenotypes, muscle fiber atrophy, and reduced oxidative capacity. Furthermore,
515 chronic smoke exposure induced pre- (reduced motor axon diameter, motoneuron terminal loss)
516 and post-synaptic (acetylcholine receptor cluster fragmentation) neuromuscular junction
517 alterations in both limb muscle and breathing muscle. Unbiased transcriptomics analysis supports
518 these observations by showing that gene networks regulating mitochondria and the
519 neuromuscular junction were amongst the most severely impacted with 16 wk smoke exposure.
520 Furthermore, tobacco smoke condensate treatment of C2C12 myotubes induced a robust
521 atrophy, elevated mitochondrial reactive oxygen species (higher mitoSox positive area) and
522 impaired oxidative capacity. These observations are consistent with other studies suggesting that
523 chronic smoking is a precipitating factor in the erosion of oxidative capacity [35, 36], muscle
524 atrophy [46], and accumulation of denervated muscle fibers in muscle of COPD patients [17].

525

526 *Skeletal Muscle AHR Signaling with Smoke Exposure.*

527 Whilst adverse effects of smoking on skeletal muscle are relatively well-known and are
528 attributed to a wide variety of chemicals within smoke [11], the mechanisms by which these
529 chemicals adversely affect muscle are not well understood. The AHR is a ligand-activated
530 transcription factor that regulates cytochrome P450 enzymes such as Cyp1A1 and Cyp1B1, as
531 well as antioxidant pathways that include NAD[P]H quinone dehydrogenase and sulfiredoxin [27,
532 38]. Notably, the AHR has a wide variety of endogenous and exogenous ligands, including
533 constituents of tobacco smoke [19]. Under normal (non-activated) conditions, most of the AHR
534 pool is located in the cytoplasm and is bound with several chaperone proteins that prevent its

535 nuclear translocation. However, upon ligand binding the chaperone proteins are released and
536 permit the AHR to enter the nucleus where it binds to the AHR Nuclear Translocase. The
537 AHR/AHR Nuclear Translocase dimer then binds to the so-called dioxin response element of
538 target gene promotors to activate their transcription [27]. Whereas the AHR plays an important
539 role in normal development [30], chronic AHR activation can have pathological consequences
540 due to mitochondrial-mediated oxidative stress [1] for various organ systems [28], including the
541 brain and nervous system, reproductive organs, heart, liver, and immune system [6]. To date, no
542 studies have considered AHR-dependent toxicity in skeletal muscle, despite muscle atrophy being
543 a unifying characteristic of conditions associated with chronic exposure to AHR ligands, including
544 dioxin poisoning [25], chronic kidney disease [39], exposure to the herbicide Agent Orange [48],
545 and long-term smoking [24].

546 To our knowledge, only three prior studies have mentioned the AHR in the context of skeletal
547 muscle. One study showed that reduced AHR network gene expression was amongst the
548 changes seen in a microarray of human muscle following resistance exercise training [34]. A
549 second study detailed differential impact of exposure to the AHR agonist dioxin in skeletal muscle
550 precursor cells depending upon their expression of the transcription factor Pax3 [12]. A third study
551 was not focused on muscle *per se*, but used C2C12 muscle cells as a model to gain insight to the
552 role of the AHR in cancer [5]. This last study showed that AHR activation in C2C12 muscle cells
553 caused elevated mitochondrial reactive oxygen species and mitochondrial stress signaling in
554 muscle cells [5], which is similar to other cell types where AHR activation increases mitochondrial
555 reactive oxygen species generation and suppresses oxidative capacity [8, 40, 51]. Notably, our
556 study is the first to address the impact of chronic tobacco smoke exposure on AHR signaling and
557 its downstream consequences in skeletal muscle. In this respect, brief smoke exposure (5
558 repeated 60 min exposures over a 2.5 d period) in mice caused increased Cyp1A1 expression in
559 limb muscle ($P=0.07$). Furthermore, our data from patients with diseases for which smoking is a
560 key risk factor show a robust elevation of AHR signaling in skeletal muscle exclusively in current

561 smokers. Thus, our data establish that the AHR pathway in skeletal muscle is responsive to
562 tobacco smoke.

563

564 Dependence of Smoke-induced Muscle Atrophy on AHR Signaling.

565 Similar to *in vivo* observations in mouse and human skeletal muscle, treatment with tobacco
566 smoke condensate in C2C12 myotubes *in vitro* robustly increased AHR signaling. Furthermore,
567 smoke condensate exposure caused myotube atrophy without inducing cell death. Smoke
568 condensate also increased mitochondrial reactive oxygen species emission and reduced
569 oxidative capacity in myotubes. Not only did genetic antagonism using shRNA against the AHR
570 attenuate Cyp1A1 expression with smoke condensate, it also prevented the smoke-induced
571 atrophy. We further showed that the chemical AHR antagonists resveratrol [10] and CH223191
572 [18] also attenuated smoke-induced Cyp1A1 expression and myotube atrophy. These are the first
573 data to establish that tobacco smoke exposure induces muscle atrophy in myotube culture and
574 that this depends upon AHR signaling. As such, our results implicate an important role for smoke-
575 induced AHR activation in the adverse muscle effects of chronic smoking.

576

577 The Impact of Chronic AHR Activity in Skeletal Muscle Independent of Smoke Exposure.

578 Previous studies have highlighted the toxicity that occurs with chronic AHR activation. This
579 was first established in the context of dioxin poisoning where knockout of the AHR prevented
580 much of the adverse responses to dioxin [13]. This was further advanced in studies showing that
581 chronic AHR activity alone, induced by engineering mice to express a constitutively active AHR
582 mutant, phenocopies many aspects of dioxin poisoning [6, 7]. However, these previous studies
583 had not considered skeletal muscle. Thus, to establish the impact of chronic AHR activity in
584 skeletal muscle, independent of tobacco smoke exposure, we constructed a mutant of the AHR
585 that lacks the ligand binding domain and demonstrates constitutive activity, as has been done
586 previously [6]. We then inserted this mutant into skeletal muscle using AAV in *in vitro* and *in vivo*

587 models. In cultured C2C12 myotubes CAAHR transduction increased expression of both the AHR
588 and its downstream target Cyp1A1, and, similar to tobacco smoke condensate, caused myotube
589 atrophy and impaired mitochondrial function. Similar to these *in vitro* effects, 12 weeks following
590 CAAHR transduction in tibialis anterior muscle of mice there was an increased expression of both
591 the AHR and Cyp1A1 relative to the contralateral Green Fluorescent Protein transduced limb.
592 Furthermore, CAAHR transduction reduced tibialis anterior muscle mass in 3 out of 4 animals
593 relative to the contralateral limb, and induced remarkably similar alterations in pre-synaptic and
594 post-synaptic structures of the neuromuscular junction to those seen with chronic smoke
595 exposure. Thus, in multiple respects, our studies show that chronic AHR activity alone yields
596 muscle changes that are very similar to the impact of chronic smoke exposure in mice.

597

598 Potential Role of Chronic AHR Activity in Skeletal Muscle Impairment in COPD.

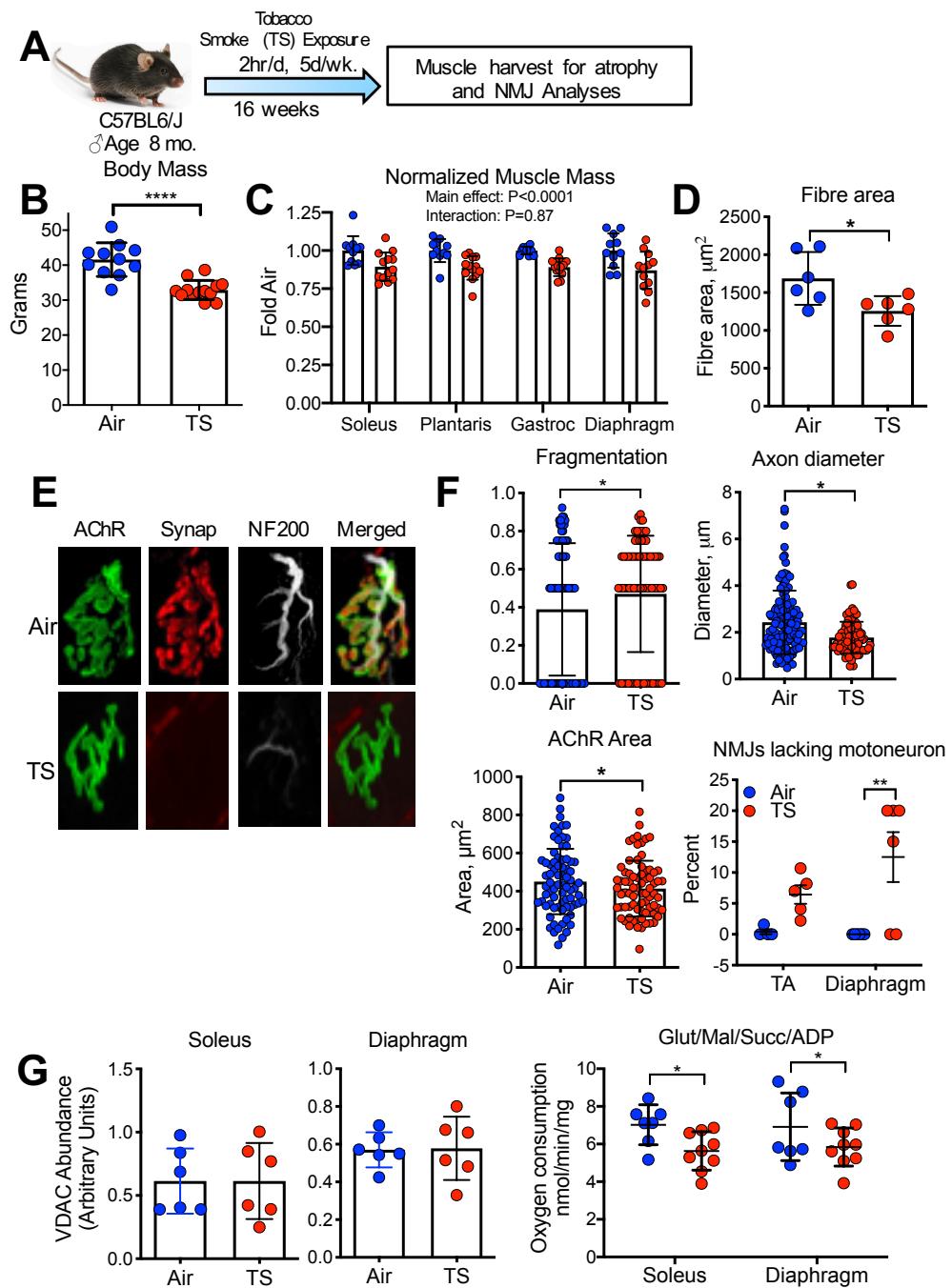
599 The etiology of skeletal muscle impairment in COPD is multifactorial owing to the complexities
600 of the disease pathophysiology (inflammation, oxidative stress, hypoxemia, hypercapnia, etc.)
601 [24], and is also likely to include factors that precede disease onset. In this latter respect, long-
602 term smoking is the most important proximate cause of COPD, and adverse effects of smoke
603 exposure on muscle independent of disease are well-established [11, 21, 46]. Previous studies
604 have identified a vast array of signaling pathways within skeletal muscle that respond to tobacco
605 smoke exposure [33, 37, 43], but the AHR has not been considered previously. Indeed, although
606 established AHR agonists including dioxins and polycyclic aromatic hydrocarbons are present in
607 tobacco smoke [49], there may be thousands of chemicals at varying concentrations in tobacco
608 smoke that are capable of activating the AHR [19]. On this basis, understanding the impact of
609 chronic AHR activation in skeletal muscle is likely important to understanding the mechanisms
610 involved in smoking-induced muscle impairment. In this respect, we show that smoke exposure
611 robustly activates the AHR pathway in skeletal muscle, that this causes AHR-dependent atrophy,
612 and that AHR activity in the absence of smoke exposure induces similar alterations in muscle as

613 chronic smoke exposure. The significance of these observations is that they provide the first
614 indication that chronic AHR activity induced by smoking is part of the complex etiology behind
615 skeletal muscle impairment in COPD, and establish a rationale for preclinical therapeutic
616 approaches targeting the AHR pathway.

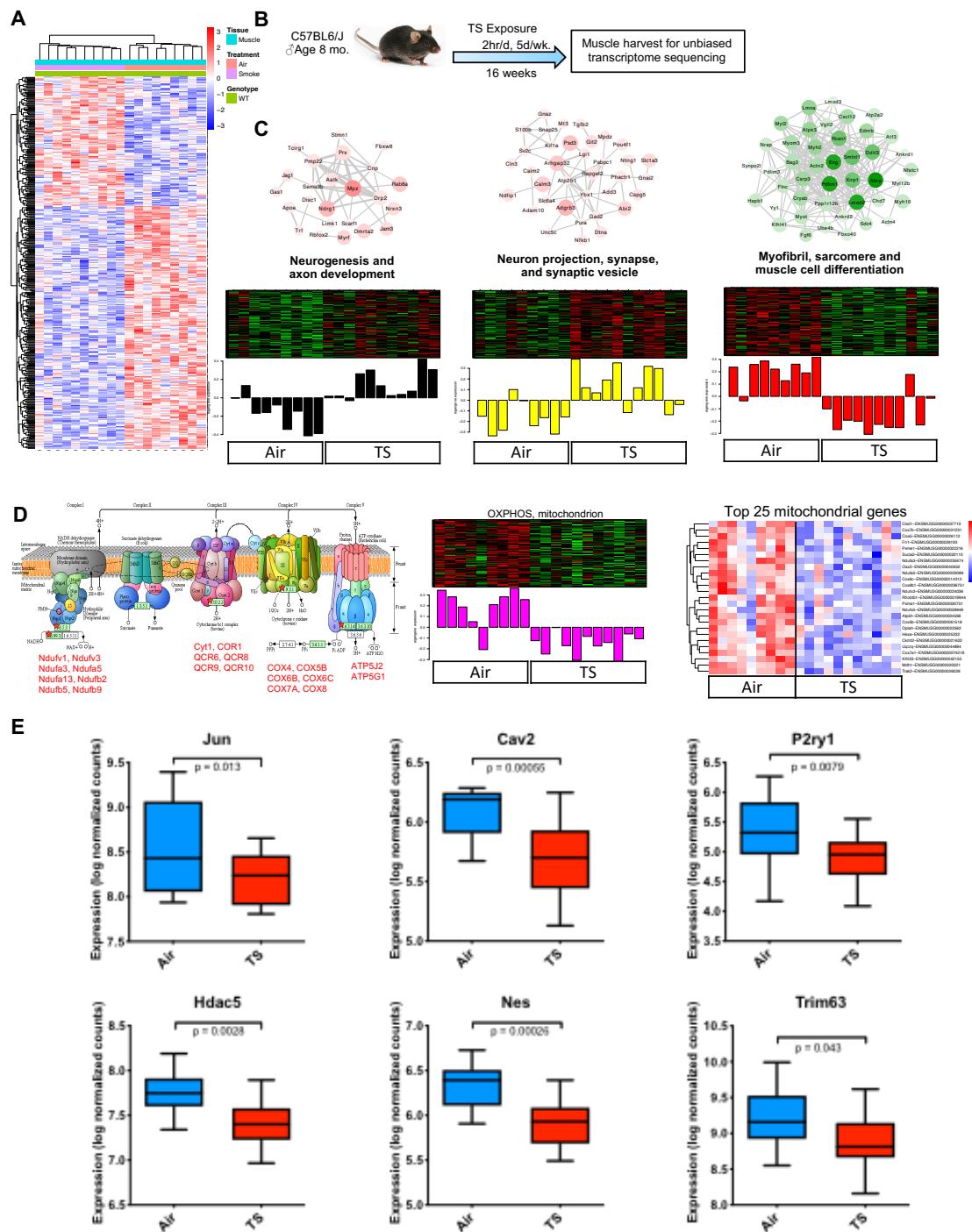
617

618

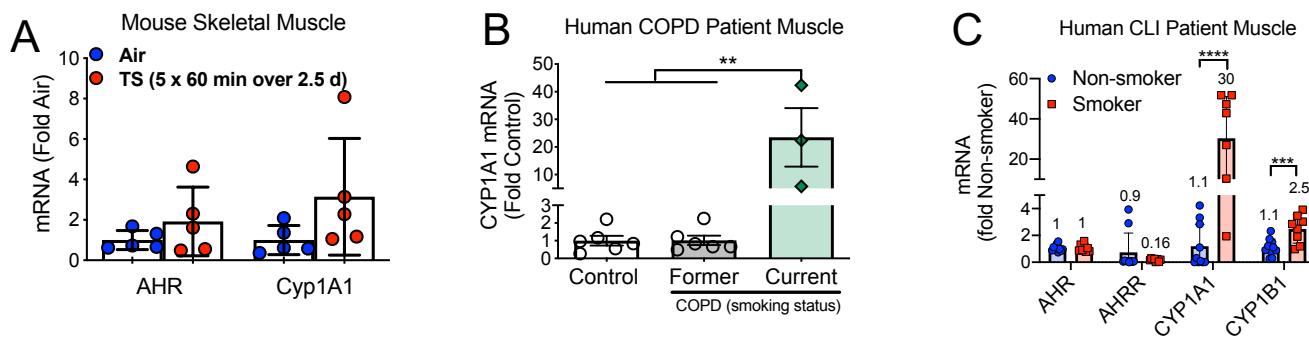
619 *Conclusions*

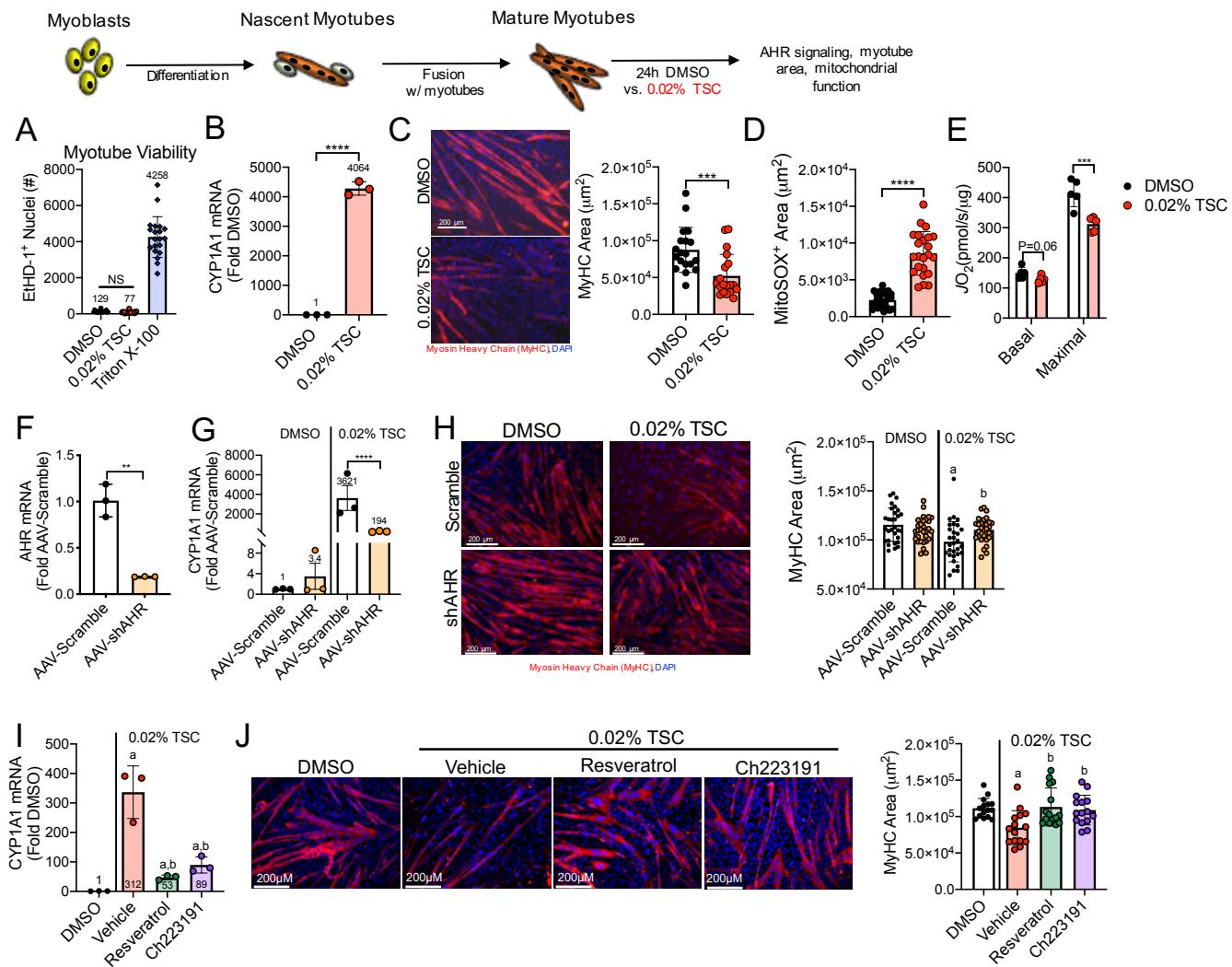

620 Muscle atrophy predisposes patients with TS-related diseases, such as COPD, to poor health
621 outcomes that include greater mortality. To help us understand the mechanisms by which chronic
622 smoking contributes to muscle impairment in COPD patients, the objective of our study was to
623 test the hypothesis that chronic smoking-mediated activation of the AHR induces adverse muscle
624 affect. Consistent with our hypothesis, we showed that tobacco smoke condensate caused
625 myotube atrophy in an AHR-dependent manner. Similarly, knock-in of a constitutively active AHR
626 mutant caused myotube atrophy and mitochondrial dysfunction. Finally, knock-in of a
627 constitutively active AHR mutant in mouse muscle caused atrophy and produced similar changes
628 in neuromuscular junction morphology as 16 wk of smoke exposure in a smoking mouse model.
629 On the basis of our results, we suggest that chronic smoke-induced activation of the AHR plays
630 an important role in the adverse muscle alterations seen in COPD patients that predispose them
631 to exacerbated health outcomes.

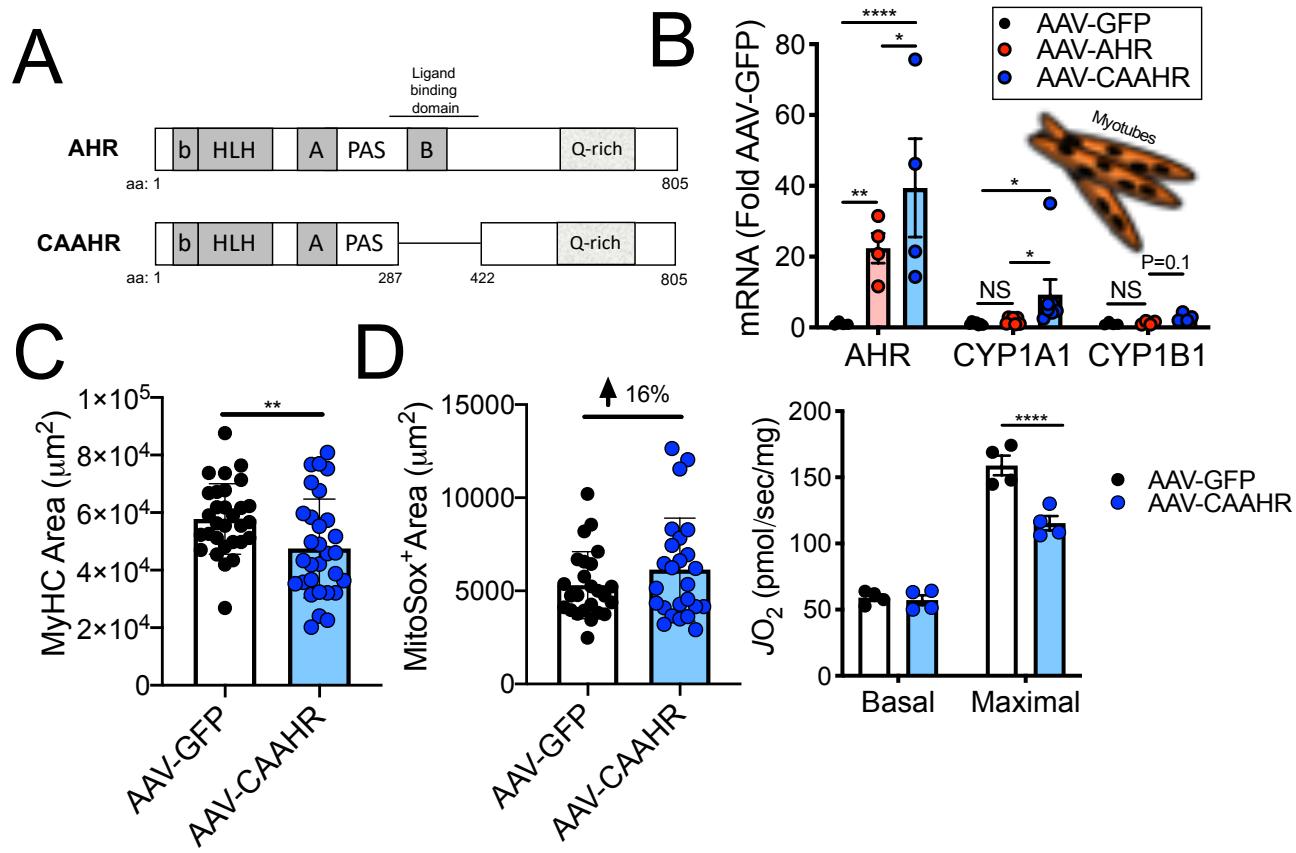
- 632 1. Aly HA, Domenech O Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-
633 tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes. *Toxicol Lett* (2009)
634 191:79-87
- 635 2. Andersson P, McGuire J, Rubio C et al. A constitutively active dioxin/aryl hydrocarbon
636 receptor induces stomach tumors. *Proc Natl Acad Sci U S A* (2002) 99:9990-9995
- 637 3. Austad SN, Masoro EJ (2001) Concepts and theories of aging. In: *Handbook of the biology*
638 of aging. Academic Press, San Diego, p 1-22
- 639 4. Berru FN, Gray SE, Thome T et al. Chronic kidney disease exacerbates ischemic limb
640 myopathy in mice via altered mitochondrial energetics. *Sci Rep* (2019) 9:15547
- 641 5. Biswas G, Tang W, Sondheimer N et al. A distinctive physiological role for $\text{IkappaB}\beta$ in
642 the propagation of mitochondrial respiratory stress signaling. *J Biol Chem* (2008)
643 283:12586-12594
- 644 6. Brunnberg S, Andersson P, Lindstam M et al. The constitutively active Ah receptor (CA-
645 Ahr) mouse as a potential model for dioxin exposure--effects in vital organs. *Toxicology*
646 (2006) 224:191-201
- 647 7. Brunnberg S, Andersson P, Poellinger L et al. The constitutively active Ah receptor (CA-
648 Ahr) mouse as a model for dioxin exposure - effects in reproductive organs. *Chemosphere*
649 (2011) 85:1701-1706
- 650 8. Bucher S, Le Guillou D, Allard J et al. Possible Involvement of Mitochondrial Dysfunction
651 and Oxidative Stress in a Cellular Model of NAFLD Progression Induced by
652 Benzo[a]pyrene/Ethanol CoExposure. *Oxid Med Cell Longev* (2018) 2018:4396403
- 653 9. Caron MA, Morissette MC, Theriault ME et al. Alterations in skeletal muscle cell
654 homeostasis in a mouse model of cigarette smoke exposure. *PLoS One* (2013) 8:e66433
- 655 10. Ciolino HP, Daschner PJ, Yeh GC Resveratrol inhibits transcription of CYP1A1 in vitro by
656 preventing activation of the aryl hydrocarbon receptor. *Cancer Res* (1998) 58:5707-5712
- 657 11. Degens H, Gayan-Ramirez G, Van Hees HW Smoking-induced skeletal muscle dysfunction:
658 from evidence to mechanisms. *Am J Respir Crit Care Med* (2015) 191:620-625
- 659 12. Der Vartanian A, Quetin M, Michineau S et al. PAX3 Confers Functional Heterogeneity in
660 Skeletal Muscle Stem Cell Responses to Environmental Stress. *Cell Stem Cell* (2019)
661 24:958-973 e959
- 662 13. Fernandez-Salguero PM, Hilbert DM, Rudikoff S et al. Aryl-hydrocarbon receptor-deficient
663 mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. *Toxicol Appl*
664 *Pharmacol* (1996) 140:173-179
- 665 14. Huang Da W, Sherman BT, Lempicki RA Systematic and integrative analysis of large gene
666 lists using DAVID bioinformatics resources. *Nature protocols* (2009) 4:44-57
- 667 15. Jones RA, Reich CD, Dissanayake KN et al. NMJ-morph reveals principal components of
668 synaptic morphology influencing structure-function relationships at the neuromuscular
669 junction. *Open Biol* (2016) 6
- 670 16. Kapchinsky S, Vuda M, Miguez K et al. Smoke-induced neuromuscular junction
671 degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary
672 disease. *J Physiol* (2018)
- 673 17. Kapchinsky S, Vuda M, Miguez K et al. Smoke-induced neuromuscular junction
674 degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary
675 disease. *J Physiol* (2018) 596:2865-2881


- 676 18. Kim SH, Henry EC, Kim DK et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid
677 (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced
678 toxicity by antagonizing the aryl hydrocarbon receptor. *Mol Pharmacol* (2006) 69:1871-
679 1878
- 680 19. Kitamura M, Kasai A Cigarette smoke as a trigger for the dioxin receptor-mediated
681 signaling pathway. *Cancer Lett* (2007) 252:184-194
- 682 20. Kitzman DW, Nicklas B, Kraus WE et al. Skeletal muscle abnormalities and exercise
683 intolerance in older patients with heart failure and preserved ejection fraction. *Am J*
684 *Physiol Heart Circ Physiol* (2014) 306:H1364-1370
- 685 21. Larsson L, Orlander J Skeletal muscle morphology, metabolism and function in smokers
686 and non-smokers. A study on smoking-discordant monozygous twins. *Acta Physiol Scand*
687 (1984) 120:343-352
- 688 22. Lu JT, Creager MA The relationship of cigarette smoking to peripheral arterial disease. *Rev*
689 *Cardiovasc Med* (2004) 5:189-193
- 690 23. Lundback B, Lindberg A, Lindstrom M et al. Not 15 but 50% of smokers develop COPD?--
691 Report from the Obstructive Lung Disease in Northern Sweden Studies. *Respiratory*
692 *medicine* (2003) 97:115-122
- 693 24. Maltais F, Decramer M, Casaburi R et al. An official American Thoracic Society/European
694 Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive
695 pulmonary disease. *Am J Respir Crit Care Med* (2014) 189:e15-62
- 696 25. Max SR, Silbergeld EK Skeletal muscle glucocorticoid receptor and glutamine synthetase
697 activity in the wasting syndrome in rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin.
698 *Toxicol Appl Pharmacol* (1987) 87:523-527
- 699 26. Mcclung JM, Mccord TJ, Ryan TE et al. BAG3 (Bcl-2-Associated Athanogene-3) Coding
700 Variant in Mice Determines Susceptibility to Ischemic Limb Muscle Myopathy by Directing
701 Autophagy. *Circulation* (2017) 136:281-296
- 702 27. McIntosh BE, Hogenesch JB, Bradfield CA Mammalian Per-Arnt-Sim proteins in
703 environmental adaptation. *Annu Rev Physiol* (2010) 72:625-645
- 704 28. Mitchell KA, Elferink CJ Timing is everything: consequences of transient and sustained AhR
705 activity. *Biochemical pharmacology* (2009) 77:947-956
- 706 29. Moffat J, Grueneberg DA, Yang X et al. A lentiviral RNAi library for human and mouse
707 genes applied to an arrayed viral high-content screen. *Cell* (2006) 124:1283-1298
- 708 30. Nebert DW Aryl hydrocarbon receptor (AHR): "pioneer member" of the basic-
709 helix/loop/helix per-Arnt-sim (bHLH/PAS) family of "sensors" of foreign and endogenous
710 signals. *Prog Lipid Res* (2017) 67:38-57
- 711 31. Oldham MC, Horvath S, Geschwind DH Conservation and evolution of gene coexpression
712 networks in human and chimpanzee brains. *Proceedings of the National Academy of*
713 *Sciences of the United States of America* (2006) 103:17973-17978
- 714 32. Orlander J, Kiessling KH, Larsson L Skeletal muscle metabolism, morphology and function
715 in sedentary smokers and nonsmokers. *Acta Physiol Scand* (1979) 107:39-46
- 716 33. Patel MS, Donaldson AV, Lewis A et al. Klotho and smoking - An interplay influencing the
717 skeletal muscle function deficits that occur in COPD. *Respiratory medicine* (2016) 113:50-
718 56

- 719 34. Phillips BE, Williams JP, Gustafsson T et al. Molecular networks of human muscle
720 adaptation to exercise and age. *PLoS Genet* (2013) 9:e1003389
- 721 35. Picard M, Godin R, Sinnreich M et al. The mitochondrial phenotype of peripheral muscle
722 in chronic obstructive pulmonary disease: disuse or dysfunction? *Am J Respir Crit Care
723 Med* (2008) 178:1040-1047
- 724 36. Puente-Maestu L, Perez-Parra J, Godoy R et al. Abnormal mitochondrial function in
725 locomotor and respiratory muscles of COPD patients. *The European respiratory journal*
726 (2009) 33:1045-1052
- 727 37. Rom O, Kaisari S, Aizenbud D et al. Cigarette smoke and muscle catabolism in C2
728 myotubes. *Mech Ageing Dev* (2013) 134:24-34
- 729 38. Sarill M, Zago M, Sheridan JA et al. The aryl hydrocarbon receptor suppresses cigarette-
730 smoke-induced oxidative stress in association with dioxin response element (DRE)-
731 independent regulation of sulfiredoxin 1. *Free Radic Biol Med* (2015) 89:342-357
- 732 39. Schardong J, Marcolino MaZ, Plentz RDM Muscle Atrophy in Chronic Kidney Disease. *Adv
733 Exp Med Biol* (2018) 1088:393-412
- 734 40. Senft AP, Dalton TP, Nebert DW et al. Mitochondrial reactive oxygen production is
735 dependent on the aromatic hydrocarbon receptor. *Free Radic Biol Med* (2002) 33:1268-
736 1278
- 737 41. Services USDOHaH (2014) The health consequences of smoking - 50 years of progress: A
738 report of the surgeon general. In: Services USDoHaH, Prevention CfDCa, Promotion
739 NCfCDPaH, Health OoSa (eds), Atlanta
- 740 42. Spendiff S, Vuda M, Gouspillou G et al. Denervation drives mitochondrial dysfunction in
741 skeletal muscle of octogenarians. *J Physiol* (2016) 594:7361-7379
- 742 43. Tang K, Wagner PD, Breen EC TNF-alpha-mediated reduction in PGC-1alpha may impair
743 skeletal muscle function after cigarette smoke exposure. *J Cell Physiol* (2010) 222:320-
744 327
- 745 44. Thome T, Salyers ZR, Kumar RA et al. Uremic metabolites impair skeletal muscle
746 mitochondrial energetics through disruption of the electron transport system and matrix
747 dehydrogenase activity. *Am J Physiol Cell Physiol* (2019)
- 748 45. Turturro A, Witt WW, Lewis S et al. Growth curves and survival characteristics of the
749 animals used in the biomarkers of aging program. *J Gerontol a-Biol* (1999) 54:B492-B501
- 750 46. Van Den Borst B, Koster A, Yu B et al. Is age-related decline in lean mass and physical
751 function accelerated by obstructive lung disease or smoking? *Thorax* (2011) 66:961-969
- 752 47. Van Den Borst B, Slot IG, Hellwig VA et al. Loss of quadriceps muscle oxidative phenotype
753 and decreased endurance in patients with mild-to-moderate COPD. *J Appl Physiol* (1985)
754 (2013) 114:1319-1328
- 755 48. Yi SW, Hong JS, Ohrr H et al. Agent Orange exposure and disease prevalence in Korean
756 Vietnam veterans: the Korean veterans health study. *Environ Res* (2014) 133:56-65
- 757 49. Zemann A (2011) Smoke Chemistry. In: *Cigarette Smoke Toxicity*. Wiley-VCH Verlag GmbH
758 & Co. KGaA, p 55-66
- 759 50. Zhang B, Horvath S A general framework for weighted gene co-expression network
760 analysis. *Statistical applications in genetics and molecular biology* (2005) 4:Article17


- 761 51. Zhou B, Wang X, Li F et al. Mitochondrial activity and oxidative stress functions are
762 influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes.
763 Molecular medicine reports (2017) 16:174-180
764 52. von Haehling S, Morley JE, Coats AJS, Anker SD. *Ethical guidelines for publishing in the*
765 *Journal of Cachexia, Sarcopenia and Muscle: update 2017. J Cachexia Sarcopenia Muscle*
766 *2017;8: 1081-1083.*
767


Figure 1. Male mice were exposed to mainstream TS for 60 min twice per d, 5 d per week, for 16 wk (A), and this caused a significant reduction in both body mass (B) ($n = 11-13/\text{group}$) and muscle mass across various muscles (C) ($n = 11-13/\text{group}$) and mean myofiber size in the soleus muscle (D) ($n = 6/\text{group}$). Neuromuscular junctions were labeled in TA muscle (AChRs, synaptophysin for motoneuron terminals) and Dia muscle (AChRs, synaptophysin, and NF200 for motor axons) and imaged by confocal microscopy (E). TS exposure caused AChR fragmentation ($n = 75$ NMJs from 6 mice/group), a reduction in axon diameter ($n = 86-115$ NMJs from 6 mice/group) and AChR area ($n = 75$ NMJs from 6 mice/group), and a significant accumulation of endplates that lacked detectable motoneuron terminals (lack of synaptophysin opposing AChRs) ($n = 6$ animals/group) (F). Although the mitochondrial outer membrane protein VDAC was no different between TS and Air exposed mice ($n = 6/\text{group}$), maximal ADP stimulated respiration with both complex I and II substrates was significantly reduced in soleus and diaphragm muscles from TS-exposed mice (G) ($n = 7-9/\text{group}$). Error bars = standard deviation. * $P < 0.05$, ** $P < 0.01$, **** $P < 0.0001$ using either two-tailed students *t*-test or ANOVA.


Figure 2. (A) Heatmap of differential gene expression analysis of RNAseq data from the plantaris muscle of mice exposed to (B) normal air or tobacco smoke for 16 weeks. The heatmap shows hierarchical clustering of 434 differentially expressed genes between air (n = 10) and TS-treated (n = 11) mice. (C) Network analysis of muscle gene expression profile changes identified significant 'nodes' corresponding to features related to the neuromuscular junction and myofibril. Node size (fold change) and color (p-value) (red = upregulation and green = downregulation) denotes extent of differential expression. Heatmaps depicting the expression of genes (rows) across samples (columns) for each node (red corresponds to gene upregulation and green to downregulation). (D) Additional significant gene nodes included oxidative phosphorylation and the mitochondrion with relevant heatmaps for all 140 genes in this node as well as the top 25 differentially expressed. (E) Boxplot representation of the expression levels of the genes associated with neuromuscular junction in air and smoke treated muscle samples. Non-parametric Wilcoxon test was used to compare differences between the datasets.

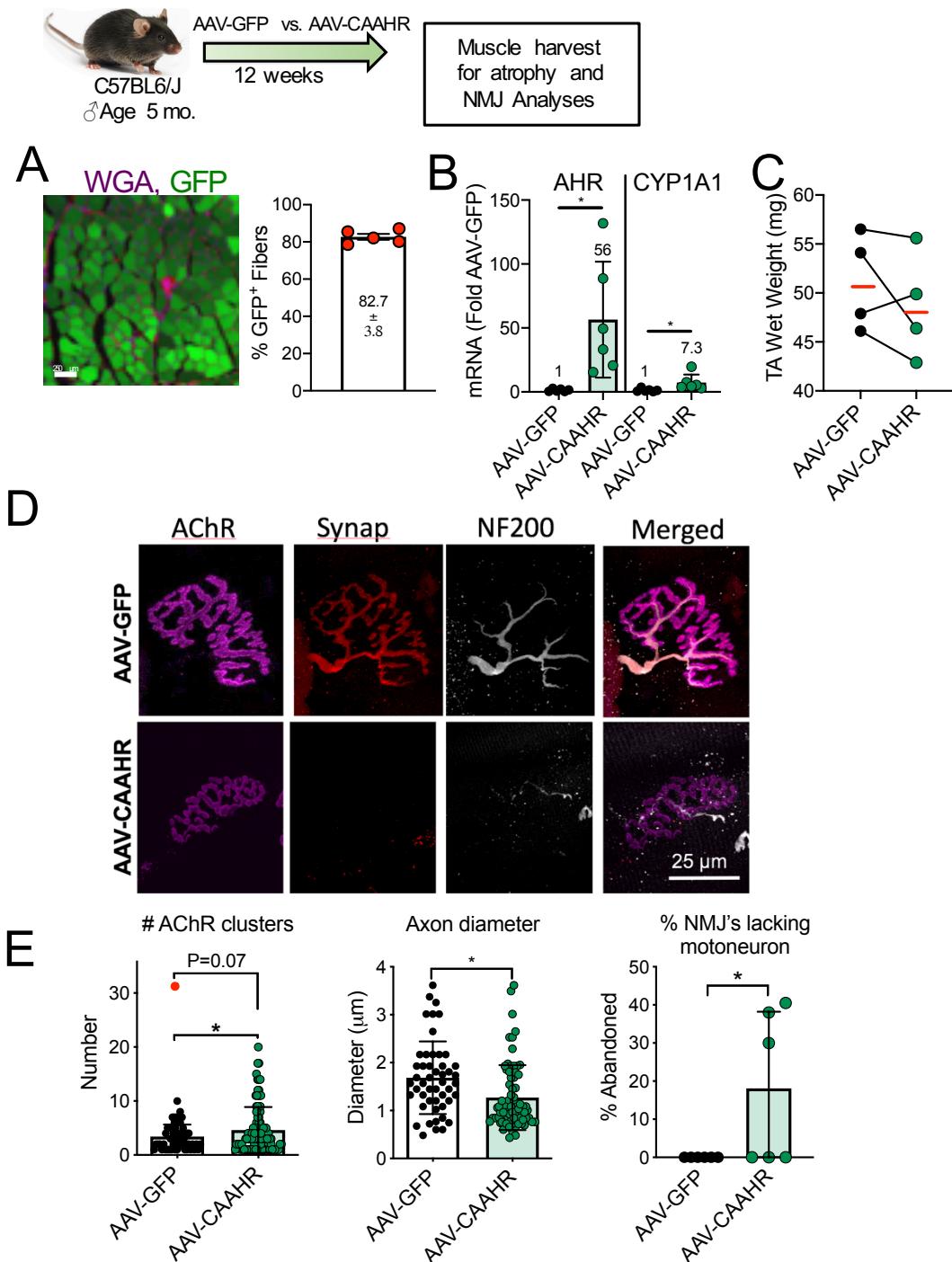

Figure 3. Smoking increases AHR signaling in mouse and human skeletal muscle. (A) Skeletal muscle from mice exposed to tobacco smoke (TS) exhibited elevated AHR and CYP1A1 mRNA expression ($n = 5$ /group). (B) CYP1A1 mRNA expression in muscle biopsy specimens from human COPD patients and age-matched controls ($n = 3-6$ /group). (C) AHR signaling is elevated in critical limb ischemia (CLI) patient muscle specimens obtained from smokers ($n = 8-10$ /group). Statistical analysis performed by unpaired Student's *t*-test or one-way ANOVA with Sidak post-hoc testing when necessary. ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$. Error bars = standard deviation.

Figure 4. Tobacco smoke condensate causes myotube atrophy that is rescued by AHR antagonism. Treatment of C2C12 myotubes with tobacco smoke condensate (TSC) did not alter myotube viability (A) (n = 20/group), but resulted in increased CYP1A1 mRNA expression (B) (n = 3/group) and caused myotube atrophy (C) (n = 19/group), elevated mitochondrial ROS production (D) (n = 23/group), and impaired mitochondrial respiration (E) (n = 5/group). Expression of a short hairpin targeting the AHR (shAHR) decreased AHR mRNA expression (F) (n = 3/group) and attenuated CYP1A1 expression with TSC (G) (n = 3/group), and rescued myotube atrophy (H) (n = 30/group). Pharmacologic antagonism of the AHR with resveratrol (25 μM) or CH223191 (1 μM) decreased CYP1A1 mRNA (I) (n = 3/group) and rescued myotube atrophy (J) (n = 15/group). Statistical analysis performed by unpaired Student's *t*-test or one-way ANOVA with Sidak post-hoc testing when necessary. **P<0.01, ***P<0.001, ****P<0.0001, ^aP<0.05 vs. DMSO (within group), ^bP<0.05 vs. between-group control (vehicle or AAV-Scramble). Error bars = standard deviation. NS = not significant.

Figure 5. Viral-mediated expression of a constitutively active AHR causes myotube atrophy and mitochondrial impairments. (A) Simplified map showing the development of a constitutively active AHR (CAAHR) through deletion of the ligand binding domain. (B) AHR related mRNA signaling in myotubes (n = 4/group). (C) Quantification of myotube area (n = 30/group), and (D) mitochondrial ROS production (n = 25/group) and respiratory capacity with expression of AAV-GFP (control) or AAV-CAAHR (n = 4/group). Statistical analysis performed by unpaired Student's *t*-test or one-way ANOVA with Sidak post-hoc testing when necessary. *P<0.05, **P<0.01, ***P<0.0001. Error bars = standard deviation. NS = not significant.

Figure 6. Viral-mediated expression of a constitutively active AHR in C57BL6/J mice causes muscle atrophy and NMJ degeneration. (A) Representative image and quantification of GFP+ myofibers of mouse TA muscle with AAV delivery (n = 5). (B) mRNA levels of AHR and CYP1A1 confirm constitutive AHR signaling in mouse muscles that received AAV-CAAHR (n = 5-6/group). (C) Wet weight of TA muscles from mice indicate smaller muscle size in AAV-CAAHR treated muscle (n = 4/group). (D) Representative images of NMJ morphology. (E) Quantitative analysis of NMJ morphology including acetylcholine receptor clusters (n = 60-100 NMJs from 5 mice/group), motor neuron axon diameters (n = 49-71 NMJs from 5 mice/group), and the percentage of NMJ's lacking a motor neuron (indicative of denervation) (n = 6/group). Statistical analysis performed by unpaired Student's t-test. *P<0.05. Error bars = standard deviation.