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Abstract 21 

SARS-CoV-2 has had a disproportionate impact on non-hospital healthcare settings such as long-term 22 

care facilities (LTCFs). The communal nature of these facilities, paired with the high-risk profile of 23 

residents, has resulted in thousands of infections and deaths and a high case fatality rate. To detect pre-24 

symptomatic infections and identify infected workers, we performed weekly surveillance testing of staff at 25 

two LTCFs which revealed a large outbreak at one of the sites. We collected serum from staff members 26 

throughout the study and evaluated it for binding and neutralization to measure seroprevalence, 27 
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seroconversion, and type and functionality of antibodies. At the site with very few incident infections, we 28 

detected that over 40% of the staff had preexisting SARS-CoV-2 neutralizing antibodies, suggesting prior 29 

exposure. At the outbreak site, we saw rapid seroconversion following infection. Neutralizing antibody 30 

levels were stable for many weeks following infection, suggesting a durable, long-lived response. 31 

Receptor-binding domain antibodies and neutralizing antibodies were strongly correlated. The site with 32 

high seroprevalence among staff had two unique introductions of SARS-CoV-2 into the facility through 33 

seronegative infected staff during the period of study but these did not result in workplace spread or 34 

outbreaks. Together our results reveal that high seroprevalence rate among staff can contribute to herd 35 

immunity within a workplace and protect against subsequent infection and spread within a facility.  36 

 37 

Introduction 38 

The emergence of SARS-CoV-2 and resultant COVID-19 pandemic threaten healthcare systems across 39 

the world [1, 2]. Long-term care facilities (LTCFs) are a significant venue for SARS-CoV-2 transmission 40 

and outbreaks and LTCF resident deaths account for almost half of all U.S. COVID-19 deaths to date [3, 41 

4]. This is due to many factors including the communal nature of LTCFs and the high-risk health profile of 42 

residents [5, 6]. LTCF staff have the potential to introduce the virus into the facilities, where it can spread 43 

among staff, residents, and be exported back into the community. Additionally, staff at these facilities 44 

tend to resist vaccination [7-10]. We therefore began weekly SARS-CoV-2 surveillance testing of staff at 45 

LTCFs and observed significant facility-associated outbreaks [11]. In parallel with surveillance testing, we 46 

collected blood to determine seroprevalence, monitor seroconversion and characterize antibody 47 

responses in these populations. 48 

Generation of specific, neutralizing and long-lived antibodies is a key component of adaptive immunity. 49 

Studies conducted after the SARS and MERS epidemics of 2003 and 2012 respectively, revealed that 50 

the majority of recovered individuals generated antibodies; however, it is unclear whether this immunity 51 

was sufficient to provide protection against re-infection [12, 13]. Many studies have sought to define the 52 

antibody response following SARS-CoV-2 infection [14, 15]. These include studies on hospitalized 53 
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COVID-19 patients [16-19], asymptomatic individuals [20, 21], and retrospective serological studies [22-54 

25]. The vast majority of infected individuals seroconvert and generate IgA, IgM and IgG-specific 55 

antibodies within 3 weeks of infection [15]. Age, sex, hospitalization, severity of infection, and other 56 

factors have all been shown to modulate the level, kinetics and durability of the antibody response 57 

following infection [21, 26-29]. Recent work has revealed that up to 7 months after infection, while 58 

absolute binding antibody levels might decline, neutralizing antibodies are long-lived, and persist at 59 

stable levels [30-36]. 60 

We therefore sought to characterize the antibody responses to SARS-CoV-2 in staff at two LTCFs by 61 

sampling serum at regular time intervals; during and post-outbreak. Using these samples, we measured 62 

antibody binding to two commonly used SARS-CoV-2 antigens, full length spike and receptor-binding 63 

domain (RBD), and neutralization of live SARS-CoV-2 virus. Our data clearly demonstrate the 64 

development of SARS-CoV-2 binding and neutralizing antibodies approximately 1-2 weeks post-65 

infection, during the period of observation for the outbreak facility. Our data also reveal that the facility 66 

with high seroprevalence did not have any outbreaks during the study period, despite the introduction of 67 

the virus into the facility on two independent occasions. These results suggest that high seroprevalence 68 

(>40%) and levels of neutralizing antibodies can contribute to outbreak resistance through herd 69 

immunity. Additionally, we find that up to four months post-infection, neutralizing antibody levels are 70 

stable and durable.  71 

 72 

Materials and Methods 73 

Human specimens. This study was reviewed and approved by the Colorado State University IRB under 74 

protocol number 20-10057H. Participants were consented and enrolled in our study and promptly 75 

informed of all test results. Staff represent all job classifications, including those in direct patient care 76 

roles (nurses, physical therapists, etc.) and non-direct patient care roles (custodial, administrative, etc.). 77 

SARS-CoV-2 vRNA surveillance testing. Nasal swabs were collected, processed and tested for viral 78 

RNA as described previously [11]. Briefly, swabs were collected by trained personnel and placed in tubes 79 
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containing viral transport media. RNA was extracted, and qRT-PCR performed using the CDC 2019-80 

nCoV primers and probes [37], or the ThermoFisher Scientific TaqPathTM COVID-19 Combo Kit, under 81 

Food and Drug Administration (FDA) Emergency Use Authorization (EUA). 82 

Serum collection and processing. Whole blood was collected in BD Vacutainer® blood collection 83 

tubes (catalog #368660). Samples were incubated for 30-60 minutes at room temperature to ensure clot 84 

formation, spun at 1300xg for 10 minutes at 25°C with gradual acceleration and deceleration, sera were 85 

aliquoted and stored at -20°C. Prior to use, sera were heat inactivated at 56°C for 30 minutes, then 86 

stored at 4°C. 87 

Spike and RBD binding assays. RBD and spike ELISAs were modified from Amanat et al. [38]. Clear 88 

flat-bottom immune 96 well plates were coated at 2µg/mL with SARS-CoV-2 protein (Sino) and incubated 89 

overnight at 4°C. Samples were diluted 1:50 in diluent (1% milk powder, tween, PBS), and added to 90 

plates for 2 hr at room temperature after 1 hr of blocking (PBS, milk powder, tween). Positive controls 91 

included convalescent COVID-19 patient serum (gift of Raymond Goodrich) and monoclonal antibody 92 

CR3022 (Absolute Antibody). Charcoal inactivated pooled human serum collected in 2015 was used as a 93 

negative control (Jackson Immuno Research). Plates were washed 3X, then anti-human IgG HRP diluted 94 

1:3000 (PBS, 1% milk, tween) was added for 1 hr. Plates were washed 3X, then indicator was added and 95 

incubated for 10 minutes (SigmaFast OPD, Sigma). Reactions were stopped with 3M HCl and plates 96 

were read at 490nm with a Multiskan® Spectrum spectrophotometer.  97 

The cutoffs for classifying ELISA results as positive/negative were based on the average optical density 98 

(OD) values across two replicates. For each binding assay, the OD cutoff was specified as that which 99 

maximizes concordance with the SARS-CoV-2 neutralization assay results, specifically that maximizing 100 

the sum of the percent positive agreement (PPA) and the percent negative agreement (PNA), akin to 101 

Youden’s index. The resulting empirical PPA and PNA are 98% and 97% for the RBD binding assay, and 102 

99% and 92% for the spike binding assay.   103 

SARS-CoV-2 neutralization assay. Vero cells were plated one day prior to infection. Heat inactivated 104 

sera were serially diluted in DMEM containing 1% FBS, mixed with ~50 PFU SARS-CoV-2 (2019-105 
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nCoV/USA-WA1/2020 strain), and incubated for 1 hr at 37°C. Virus-antibody mixture was added to cells, 106 

incubated for 1 hr at 37°C, then overlaid with tragacanth media. Cells were incubated for 2 days at 37°C, 107 

then fixed and stained with 30% ethanol and 0.1% crystal violet. Plaques were counted manually. 108 

SARS-CoV-2 whole genome sequencing. Sequencing was performed as previously described [11]. 109 

Briefly, cDNA was generated using SuperScript IV, PCR amplification was performed with ARTIC tiled 110 

primers and Q5 High-Fidelity polymerase. PCR products were purified, libraries were prepared using 111 

KAPA HyperPrep Kit and unique index primers. Libraries were sequenced on the Illumina MiSeq V2 112 

using 2 x 250 paired-end reads. Sequencing data were processed, quality checked, and consensus 113 

sequences determined.  114 

 115 

Results 116 

SARS-CoV-2 surveillance testing. We performed nasal surveillance testing for SARS-CoV-2 viral RNA 117 

of staff at two long-term care facilities over a 4-6 month period (Site A, July-Oct 2020, Site B, June-Dec, 118 

2020, Fig. 1). Samples were collected at the workplace. Site A previously experienced a large outbreak 119 

in June immediately before our surveillance testing began, with 26 staff and 47 residents testing positive, 120 

whereas at Site B no symptomatic or asymptomatic cases had been diagnosed prior to our surveillance 121 

testing. Staff were tested at least once per week, approximately 180 unique individuals at each site 122 

participated in testing, with an average of 100 staff at site A and 85 staff at site B testing weekly (Fig. 123 

1a). Positive tests and percent positivity varied by facility, with site A only experiencing two positive tests 124 

(from two different staff members) throughout their entire 17-week testing period (Fig. 1b & c). Site B 125 

experienced a large outbreak with over 15% of staff testing positive at its peak, and 24 unique staff 126 

testing positive throughout the 18-week study (Fig. 1b & c). We collected serum samples from staff at 127 

both sites every 3-5 weeks, spanning the 5-month surveillance period, including a timepoint immediately 128 

prior to and immediately following an outbreak in early September at site B (Fig. 1c). 129 

SARS-CoV-2 antibody binding and specificity. Sera from staff at both sites were evaluated for the 130 

presence and levels of polyclonal antibodies capable of binding to recombinant spike and receptor-131 
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binding-domain (RBD) proteins (Fig. 2a). At site A, spike and RBD binding seropositivity were 132 

approximately 40-50% over the 17-week study, with high agreement between the two antigens. 133 

Conversely, at site B, binding seropositivity at the start of the study, immediately prior to the large 134 

outbreak, was low (~12%), but rapidly rose to ~35%, post-outbreak (Fig. 2a). At site A, spike and RBD 135 

antibody binding levels gradually declined over the first 8 weeks, suggesting recent infection and 136 

progression from an acute to convalescent stage (Fig. 2b). At site B, binding levels quickly increased 137 

immediately following the outbreak and were stable over the following weeks (Fig. 2b).  138 

SARS-CoV-2 serum neutralization. Sera were next evaluated for their ability to neutralize live SARS-139 

CoV-2 virus using a standard plaque reduction neutralization test, and their 50% neutralization titers 140 

were calculated (Fig. 3). In agreement with antibody binding results, site A had 40-50% neutralizing 141 

seropositivity which was maintained throughout the study, whereas at site B, rapidly increased from 10% 142 

to 35% between the first sample and subsequent weeks (Fig. 3a). At site A, neutralizing titers were 143 

highly stable over the 17-week study, whereas at site B, neutralizing titers rose as individuals became 144 

infected, decreased following the acute response, and were stable during convalescence (Fig. 3b). 145 

Neutralizing antibody levels of individuals at site B that were infected prior to the beginning of the study 146 

where highly stable over the 18-week study, suggesting they were infected weeks/months prior (Fig. 3b).  147 

Relationship between SARS-CoV-2 polyclonal antibody binding and neutralization. To better 148 

understand the relationship between binding and functionally neutralizing antibodies, spike and RBD 149 

binding levels and neutralizing titers were compared (Fig. 4). At both sites, spike and RBD levels were 150 

highly positively correlated (p<0.0001, Spearman r>0.7), suggesting the majority of spike antibodies bind 151 

within the RBD (Fig. 4a & d). At site A, there was a small population (3.9%) of samples with spike 152 

binding antibodies that are negative for RBD (Fig. 4a). Both spike and RBD antibody binding levels are 153 

highly correlated to neutralizing titers (p<0.0001, Spearman r>0.7) (Fig. 4b, c, e, f); however, at both 154 

sites, RBD-binding antibodies are more strongly correlated to neutralization (Fig. 4c & f).  155 

Kinetics of SARS-CoV-2 antibody levels post-infection. At site B, many individuals became infected 156 

and seroconverted during the course of the study. Therefore, in these individuals, we calculated the days 157 

post-infection (first positive vRNA nasal test) relative to seroconversion and levels of antibody binding 158 
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and neutralization (Fig. 5). Spike binding antibody levels were high within 30 days of positive PCR test 159 

and remained high throughout the monitoring period (Fig. 5a). RBD binding levels were more variable 160 

and dynamic with some individuals generating RBD-specific antibodies within 10 days following infection, 161 

whereas one individual took over 60 days to seroconvert (Fig. 5b). Neutralizing antibody titers were also 162 

variable and dynamic across individuals, though most individuals generated high levels within a month 163 

following infection (Fig. 5c). In 85% of individuals, RBD-binding and neutralizing antibody levels 164 

decreased during the first 2-3 months following infection then stabilized (Fig. 5b & c, dashed lines). 165 

When comparing the relationship between binding and neutralizing antibodies stratified by timing post-166 

infection, we again saw RBD and neutralizing antibody levels generally decrease ~30 days post-167 

infection, whereas spike antibodies were highly stable (Fig. 5d). Additionally, binding and neutralizing 168 

antibodies were highly correlated regardless of timing post-infection (p<0.0005). 169 

Phylogenetic analyses reveal lack of workplace SARS-CoV-2 spread. While site A did not 170 

experience any outbreaks during our surveillance testing, two individual staff members tested positive 171 

during the course of our study (Fig. 1b). These infections did not result in outbreaks or spread to other 172 

staff (Fig. 2a & 3a). The two individuals that tested positive for SARS-CoV-2 vRNA (two weeks apart on 173 

9/22 and 10/6), provided serum samples in the weeks preceding their infections. Both individuals lacked 174 

detectable binding or neutralizing antibodies prior to infection and were thus immunologically naïve (Fig. 175 

6a & b). To determine if the two viruses were genetically related, and therefore likely acquired from one 176 

another, viral genomes from the cases were sequenced. Both viruses contained shared single nucleotide 177 

polymorphisms (SNPs) relative to a reference strain (WA01), however they also contained 13 unique 178 

SNPs that strongly distinguish one from the other (Fig. 6c), suggesting two independent infections. 179 

 180 

Discussion 181 

Weekly surveillance testing revealed facility-specific SARS-CoV-2 infection rates. Site B experienced a 182 

large outbreak with 34 of the staff testing positive, whereas site A only had two positive tests out of 183 

greater than 1600 samples total. The high infection rate of staff at site B matches the incidence rates in 184 
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staff at other LTCFs during outbreaks [11, 39-41], highlighting how quickly the virus can spread amongst 185 

long term care facility staff. Conversely, the low incidence of SARS-CoV-2 infection amongst staff at site 186 

A paired with the high seroprevalence suggests prior exposure and protection. Interestingly, at site A far 187 

more staff had antibodies than had previously tested positive for vRNA, suggesting a high fraction of 188 

asymptomatic infections, as has been documented in other facilities [40, 42, 43].  189 

Two individuals at site A were vRNA positive for SARS-CoV-2 during the monitoring period. Full genome 190 

analysis of RNA recovered from these individuals revealed a significant number of genetic differences 191 

between the two isolates, suggesting they were acquired independently outside of work as two unique 192 

instances of community transmission. Our findings that staff at site A have high pre-existing 193 

seroprevalence (>40%) prior to intensive monitoring suggests this facility experienced a prior outbreak 194 

and had a level of herd immunity that limited spread of the virus from two positive staff members [44]. It 195 

is possible that other control measures and policies instituted at the time of monitoring, such as negative 196 

pressure isolation space [45], surveillance and monitoring systems and quarantine of positive staff [39, 197 

46-48], environmental cleaning [49, 50], and others [51], additionally contributed to protection against 198 

outbreaks. It is notable that at both sites, seroprevalence reached a maximum of 40% during the study 199 

period, suggesting this might correspond to a level of herd immunity when coupled with other 200 

preventative measures. 201 

Seroconversion and antibody levels were measured and characterized using three measures, binding to 202 

spike and RBD, and neutralization of live SARS-CoV-2 virus. We found that immediately following 203 

infection, antibody levels peaked during the acute phase then gradually decreased during 204 

convalescence. Neutralizing antibody levels were highly stable for at least 4 months post-infection, 205 

consistent with results reported by others [30, 34, 36]. Antibodies that bound to spike antigen were 206 

detected earlier and more consistently than antibodies binding to RBD; however, RBD-binding antibody 207 

levels correlated most strongly with neutralizing titers, a result reported in other studies [52-56]. Within 208 

our cohort, there are only four samples (0.57%) that neutralize SARS-CoV-2 but do not bind RBD. These 209 

likely neutralize through a mechanism other than blocking receptor interactions [57-59]. Since RBD-210 

binding antibodies can be detected using high-throughput platforms such as ELISAs, whereas live-virus 211 
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neutralization assays require BSL3 facilities, are lower throughput, and take longer, our observations that 212 

RBD-binding antibodies are strongly correlated with neutralization suggest the more convenient binding 213 

assay may, in some circumstances, serve as a substitute for functional anti-viral assays.  214 

SARS-CoV-2 infection results in an immune response that includes the development of neutralizing 215 

antibodies [14, 15]. These antibodies provide some degree of protection against reinfection with SARS-216 

CoV-2; however, their persistence and durability are unknown, and human correlates of antibody-based 217 

protection are lacking [60-62]. SARS-CoV-2 outbreaks at LTCFs can lead to high levels of 218 

seroprevalence that can limit spread within facilities [63]. Without complete herd immunity, there are still 219 

non-immune naïve individuals who can become infected and spread the virus, possibly leading to 220 

secondary outbreaks [64]. In our study, we observed that 40% seroprevalence in one facility, coupled 221 

with enhanced environmental controls, afforded apparent protection against subsequent outbreaks 222 

compared to a facility with low levels of pre-existing seroconverted workers. Due to the high risk of 223 

infection of vulnerable individuals, vaccination of staff and residents in LTCFs were among the highest 224 

priority for vaccination [65]. Immunity from natural infections, in addition to vaccine-elicited immunity has 225 

drastically reduced the burden of SARS-CoV-2 in many LTCFs [66-68]. This immunity paired with 226 

additional infection control measures will continue to reduce the incidence and prevalence of SARS-CoV-227 

2 infection and mortality in these vulnerable facilities.  228 
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 238 

Legends 239 

Figure 1. SARS-CoV-2 vRNA surveillance testing at two LTCFs. a) Total number of staff tested 240 

weekly as part of vRNA nasal surveillance testing. b) Number of positive vRNA tests recorded each 241 

week at sites A and B. c) vRNA positivity expressed as percent positive at each site. Timing of sera 242 

collections relative to surveillance testing are indicated by red circles and arrows. 243 

Figure 2. SARS-CoV-2 polyclonal antibodies bind spike and RBD. Polyclonal immune sera from sites 244 

A and B were evaluated for a) their ability to bind recombinant spike (solid) and RBD (dash) protein. N 245 

indicates number of samples tested each week. b) Level of spike and RBD binding as determined by 246 

absorbance reading. Dashed line represents Youden cut-offs. 247 

Figure 3. Polyclonal antibodies neutralize SARS-CoV-2 virus. Polyclonal immune sera from sites A 248 

and B were evaluated for: a) Ability to neutralize SARS-CoV-2 virus. N indicates number of samples 249 

tested each week. b) Neutralizing antibody levels over time. PRNT50 represents the serum dilution factor 250 

required to neutralize 50% of virus. Dashed line represents limit of detection (20). Non-neutralizing 251 

samples are graphed at half the limit of detection (10). 252 

Figure 4. Spike binding, RBD binding and neutralizing antibody levels are highly correlated. 253 

Samples from site A (a-c) and site B (d-f) were graphed by spike and RBD binding levels (a, d), spike 254 

binding and neutralization titers (b, e) and RBD binding and neutralization titers (c, f). Spike and RBD 255 

dashed lines represent Youden cut-offs. PRNT50 represents the serum dilution factor required to 256 

neutralize 50% of virus. PRNT50 dashed line represents limit of detection (20). Non-neutralizing samples 257 

are graphed at half the limit of detection (10). Two-tailed, nonparametic Spearman correlation is noted in 258 

graphs. 259 

Figure 5. Trends in binding and neutralizing antibody levels vary over time. Individuals at site B 260 

who were infected during the course of the surveillance study were sampled up to 180 days post 261 

infection. a) Spike binding, b) RBD binding, and c) neutralizing antibody levels are graphed by days post-262 

first vRNA positive test.  d) Samples are stratified by days post-infection, and graphed by spike binding, 263 
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RBD binding and neutralization titers. Arrows show trend of data over time. Spike and RBD dashed lines 264 

represent Youden cut-offs. PRNT50 represents the serum dilution factor required to neutralize 50% of 265 

virus. PRNT50 dashed line represents limit of detection (20). Non-neutralizing samples are graphed at 266 

half the limit of detection (10). Two-tailed, nonparametic Spearman correlation is noted in graphs. 267 

Figure 6. Two seronegative individuals at site A became vRNA positive with unique strains. a, b) 268 

Spike binding, RBD binding and neutralizing antibody levels relative to timing of surveillance vRNA 269 

testing indicated these two individuals were seronegative prior to infection (N – SARS-CoV-2 negative, P 270 

– SARS-CoV-2 positive). c) Viral RNA from positive surveillance testing was deep sequenced, and 271 

consensus sequence compared to the WA01 SARS-CoV-2 reference sequence. Single nucleotide 272 

polymorphisms (SNPs) shared between both site A sequences relative to reference are shown as black 273 

lines. Unique SNPs between site A sequences are shown as red lines. 274 

 275 
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