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Abstract

Adaptive radiation of fishes was long thought to be possible only in lacustrine environments.
Recently, several studies have shown that also riverine and stream environments provide the
ecological opportunity for adaptive radiation. In this study, we report on a riverine adaptive
radiation of six ecomorphs of cyprinid hillstream fishes of the genus Garra in a river located in
the Ethiopian Highlands in East Africa. Garra are predominantly highly specialized algae-scrapers
with a wide distribution ranging from Southeastern Asia to Western Africa. However, adaptive
phenotypic diversification in mouth type, sucking disc morphology, gut length and body shape
have been found among these new species in a single Ethiopian river. Moreover, we found two
novel phenotypes of Garra (‘thick-lipped’ and ‘predatory’) that were not described before in this
species-rich genus (>160 species). Mitochondrial and genome-wide data suggest monophyletic,
intra-basin evolution of Garra phenotypic diversity with signatures of gene flow from other local
populations. Although sympatric ecomorphs are genetically distinct and can be considered to being
young species as suggested by genome-wide SNP data, mtDNA was unable to identify any genetic
structure suggesting a recent and rapid speciation event. Furthermore, we found evidence for a
hybrid origin of the novel ‘thick-lipped’ phenotype, as being the result of the hybridization of two
other sympatrically occurring species. Here we highlight how, driven by ecological opportunity,
an ancestral trophically highly specialized lineage is likely to have rapidly adaptively radiated in
a riverine environment, and that this radiation was promoted by the evolution of novel feeding

strategies.
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Introduction
Unravelling the mechanisms underpinning the biological diversity remains a major challenge in
evolutionary biology. With more than 28,000 species, teleost fishes are the most diverse lineage
of vertebrates, and thus an ideal system to address questions regarding diversification. The
stunning phenotypic diversity of bony fishes has largely been produced through the process of
adaptive radiation, the rapid proliferation of multiple ecologically distinct species from a common
ancestor (Schluter, 2000). One of the most extraordinary examples of both adaptive radiation and
explosive diversification is represented by the cichlid fishes inhabiting the East African Great
Lakes (Kocher, 2004). According to Losos (2010) and Givnish (2015) adaptive radiation and
explosive diversification are distinct phenomena: the former may or may not result in, or be
accompanied by the latter. The evolutionary success of the cichlids, unmatched among vertebrates,
has been promoted by a combination of different factors, where a dominant role has been played,
for example, by limited dispersal (because of territoriality and mouth-brooding) and sexual
selection for nuptial coloration and mating behavior (Henning & Meyer, 2014; Meyer, Kocher,
Basasibwaki, & Wilson, 1990; Seehausen, 2000; Wagner, Harmon, & Seehausen, 2012). It has
been suggested, however, that trophic radiation had preceded the diversification driven by other
factors at least in cichlids of Lake Tanganyika (Muschick et al., 2014), a cradle of all other East
African haplochromine radiations (Salzburger, Mack, Verheyen, E., & Meyer, 2005). Adaptive
radiations and diversification bursts were found not only in cichlids, but also in other fish groups,
even though in smaller scale, and often in a parallel manner - coregonids, Arctic charrs, and
sticklebacks (e.g. Broderson, Post, & Seehausen, 2018; DeFaveri & Merila, 2013; Jacobs et al.,
2020; McKinnon & Rundle, 2002; Praebel et al., 2013; Peichel et al., 2001; Schluter, 2000;
Skulason, 1999; Terekhanova et al., 2014) - some of the best known examples of intralacustrine
radiations.

The most supported cases of monophyletic, closely related fish species that are believed to

have arisen through an adaptive radiation event have been described from lakes rather than rivers
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(Meyer et al. 1990; Seehausen, 2006; Sturmbauer, 1998; Taylor, 1999). For long time, riverine
environment has not been considered suitable for adaptive radiation because of its unstable
hydrological regimes, reduced habitat diversity and the commonly shallow and narrow
watercourses that might facilitate gene flow (Seehausen & Wagner, 2014). However, during the
last two decades, examples of fish adaptive radiations occurring in rivers have been reported
(Burress et al., 2018; Dimmick, Berendzen, & Golubtsov, 2001; Levin, Simonov, Dgebuadze,
Levina, & Golubtsov, 2020; Melnik, Markevich, Taylor, Loktyushkin, & Esin, 2020; Pialek,
Ri¢an, Casciotta, Almirén, & Zrzavy, 2012; Schwarzer, Misof, Ifuta, & Schliewen, 2011;
Whiteley, 2007). Although several cases of riverine diversification of cichlid fishes are considered
as remnants of adaptive radiations occurred in the palaeo-Lake Makgadikgadi before it dried up
back in the Holocene (Joyce et al., 2005), mounting evidence suggests that some fish species flocks
of other species than cichlids have diversified within rivers (Burress et al., 2018; Levin et al., 2019;
2020; Melnik et al., 2020; Pialek et al., 2012)

In the present study, we investigate a highly diverse fish group that presumably adaptively
radiated in riverine environments. The genus Garra is a species-rich lineage of labeonine cyprinids
comprising more than 160 species and is distributed from Southeast Asia to West Africa (Fricke,
Eschmeyer, & Van der Laan, 2021; Yang et al., 2012). Garra are mostly moderate-sized fish
(usually less than 20 cm in length) with sucking gular disc that inhabit the rhithron zone of river
systems (Kottelat, 2020). They are predominantly highly specialized algae scrapers that graze
periphyton from rocks and stones using widened jaws equipped with horny scrapers. However,
adaptations to still waters such as caves or lacustrine environment have been documented in the
Garra, although rarely, accompanied by a reduction of the gular disc and a change of the foraging
strategy from algae scraping to planktivory (Geremew, 2007; Kottelat, 2020; Segherloo et al.,

2018; Stiassny & Getahun, 2007; www.briancoad.com).

The Ethiopian Highlands are recognized as a center of Garra diversity within Africa

(Golubtsov, Dgebuadze, & Mina, 2002; Stiassny & Getahun, 2007), where 13 described species
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out of the total 23 found in Africa are recorded (Moritz, EI Dayem, Abdallah, & Neumann, 2019).
An assemblage of six Garra ecomorphs exhibiting extreme morphological diversity was recently
discovered in the Sore River (the White Nile Basin) in southwestern Ethiopia during a survey of
the Ethiopian fishes (Golubtsov, Cherenkov, & Tefera, 2012). In particular, two of the six forms
display features not found elsewhere within the generic range: a form with a pronounced predatory
morphology (large-sized, large-mouthed, with reduced sucking disk and a short gut that is equal
to body length) and one with ‘rubber’ lips and prolonged snout region (Fig. 1, Table 1). The other
four forms from the Ethiopian Garra assemblage drastically differ in mouth and gular disc
morphology as well as in body shape (Fig. 1).

Fig. 1.

Our goals were twofold: i) to investigate the morpho-ecological relationships of six Garra
sympatric ecomorphs from the Sore River, and ii) to test whether this assemblage has evolved
sympatrically. In detail, we aimed at elucidating the population structure and evolutionary history
of these ecomorphs using both mitochondrial DNA (mtDNA, cytochrome b) and genome-wide
nuclear loci obtained with a double digest restriction-site associated DNA (ddRAD) approach.

Table 1.

Materials and Methods

Study area

The Sore River is a headwater tributary of the Baro-Akobo-Sobat drainage in the White Nile basin,
(south-western Ethiopia, northern East Africa). It drains the Ethiopian Highlands close to the
south-western escarpment. The region is covered by moist Afromontane forest that is drastically
shrinking in the last decades due to agricultural development (Dibaba, Soromessa, & Workineh,
2019). The Sore is a rather little river with a length of ca. 160 km, its catchment area is ca. 2000
km? and characterized by substantial seasonal variation of rainfall (dry season from December to

March) (Kebede, Diekkriiger, & Moges, 2014). In comparison, the Italian Tiber River length is
4
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406 km, its catchment area is 17375 km? (https://en.wikipedia.org/wiki/Tiber). Elevation
difference between the Sore source (altitude of ca. 2215 m asl, above sea level) and its confluence
with the Gabba (Geba) River (alt. 963 m asl) is 1.25 km. The Sore River basin shares drainage
boundaries with two of six major watersheds of Ethiopia: Blue Nile in the north-east and Omo-
Turkana in the south-east.

We sampled the middle reaches of the Sore River at two sites: (1) at the City of Metu
(8°18'42" N 35°35'54" E, alt. 1550 m asl) and (2) ca. 35 km downstream along the river course
(8°23'56" N 35°26'18" E, alt. 1310 m asl). The river width at the rapids sampled was 20-40 m at
the beginning of the rainy season, depth <1 m, bottom consisted of rocks and large boulders. Fish
fauna of the river segment under consideration includes (apart from Garra spp.) a species flock of
Labeobarbus (Levin et al., 2020), Enteromius cf. pleurogramma (Boulenger 1902), Labeo cf.
cylindricus Peters 1852, Labeo forskalii Riippell 1835, Chiloglanis cf. niloticus Boulenger 1900
(at the lower site only), and introduced Coptodon zillii (Gervais 1848). Presence of the stony loach
(Afronemacheilus) reported by Getahun and Stiassny (1998) from the Sore River at Metu could no
longer be confirmed (Melaku, Abebe Getahun, & Wakjira, 2017; Prokofiev & Golubtsov, 2013,
present study). Attempts to re-sample a stony loach by intensive electrofishing in 2012 have
resulted in the discovery of the enormous morphological Garra diversity in the Sore River
(Golubtsov et al., 2012). A hundred kilometers westward, from the lowland part (alt. ca. 500 m
asl) of the same river drainage >100 fish species are recorded (Golubtsov & Darkov, 2008;
Golubtsov, Darkov, Dgebuadze, 1995;) and >115 species from the Sudd and White Nile in Sudan

and South Sudan (Moritz et al., 2019; Neumann, Obermaier, & Moritz, 2016;).

Sampling
Garra samples from the Sore River were collected using a battery driven electrofishing device
(LR-24 Combo Backpack, Smith-Root, USA), cast and frame nets in June 2012 and April 2014.

In 2011-2014 comparative Garra samples were collected from nine sites in six main Ethiopian
5
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basins (Fig. 2, Table S1). Fish sampling was conducted under the umbrella of the Joint Ethiopian-
Russian Biological Expedition (JERBE) with the permissions of National Fisheries and Aquatic
Life Research Center (NFALRC) under Ethiopian Institute of Agricultural Research (EIAR) and
Ethiopian Ministry of Science and Technology (presently Ministry of Innovation and Technology).
Fish were killed with an overdose of an anesthetic MS-222, first preserved in 10% formalin and
then transferred to 70% ethanol. From each specimen fin tissue samples were fixed with 96%
ethanol. Some fish specimens were pictured using a Canon EOS 50D camera. All specimens
(Supplementary Table S1) are deposited at the A.N. Severtsov Institute of Ecology and Evolution,

at the Russian Academy of Sciences, Moscow, under provisional labels of JERBE.

Fig. 2.

Morphological analysis

Morphometry

The 28 morphometric characters from 107 individuals of all ecomorphs from the Sore River were
examined following Hubbs and Lagler (1958) with additions from Menon (1964): standard length
(SL), head length (HL), snout length (R), eye diameter (O), postorbital distance (PO), interorbital
distance (10), head width (HW), head height at nape (HH), head height at mid-of-eye (Hh), mouth
width (MW), disc length (DL), disc width (DW), maximal body height (H), minimal body height
at caudal peduncle (h), predorsal length (PL), postdorsal length (PDL), prepelvic length (PPL),
preanal length (PAL), caudal peduncle length (CPD), dorsal fin base length (DFL), dorsal fin depth
(DFP), anal fin base length (AFL), anal fin depth (AFD), pectoral fin length (PFL), ventral fin
length (VFL), pectoral-ventral fin distance (PV), ventral-anal fin distance (VA), and distance
between anal opening and anal fin (DAA). Measurements were done using a digital caliper (to
nearest 0.1 mm). All measurements were performed by one operator for the purpose of consistency

as recommended by Mina, Levin, and Mironovsky (2005).
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Measured individuals had body length varied from 43.6 to 185.0 mm SL: ecomorph 1 (71.5-
151.0), ecomorph 2 (70.9-160.2), ecomorph 3 (49.3-100.6), ecomorph 4 (49.3-90.6), ecomorph 5
(43.6-81.0; one individual had outstanding length - 185.0), ecomorph 6 (118.4; 139.4) (defined as
in Fig. 1 and Table 1), intermediate phenotypes (59.3-105.2). The proportions of head and body
were used for principal component analysis (PCA) - measurements of head parts were divided for
head length and measurements of body parts were divided for standard length. Data was scaled.
The gular disc in some specimens of ecomorph 5 was greatly reduced which hampered the
detection of its borders. For the purpose of justification of the values of this character, the identical
intermediate values were arbitrarily assigned for all specimens of this ecomorph. PCA was done

using prcomp script implemented in R with a variance-covariance matrix.

Gut length and preliminary assay of a diet
Intestines were taken out from the body cavity of 62 preserved specimens of all ecomorphs except
for no. 6 (represented by only two specimens), and measured using a ruler to the nearest 1 mm.
The sample size for each ecomorph is provided in Table 2. The standard length (SL) of examined
individuals varied from 40 to 131 mm, one individual of ecomorph 5 had outstanding length - 185
mm. The ratio of gut length (GL) to SL was used for subsequent analyses. The Kruskall-Wallis
test for multiple independent samples with Benjamini-Hochberg method of control of false
discovery rate (FDR) (Benjamini & Hochberg, 1995) of p-value was applied to check a
significance of differences at p<0.05. The dependence of GL on SL was visualized using
scatterplots and regressions. R-packages ggplot2 and PMCMR were used to create plots and to test
statistical significance of differences.

Diet was assessed for the same individuals, whose intestine length was measured. The main
ecological and systematic groups were registered using stereo-microscope Micromed MC-2-
ZOOM and microscope Olympus CX41. A composite measure of diet, an index of relative

importance, IRI (Hart, Calver, & Dickman, 2002), was used to assess contribution of different
7
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components to a diet. The diet components were grouped in several items i) periphyton, ii) benthos,

iii) macrophytes, and iv) others.

DNA sampling, extraction, amplification, and sequencing - mtDNA data

DNA samples (n=107) were collected from Garra inhabiting the Sore River near the City of Metu
in 2012 and 2014 from all six forms (see Table 2 for details). For comparison additional DNA
samples (n=20) were collected from 8 Garra species inhabiting all main drainages of Ethiopia (10
localities — see map of sampling in Fig. 2). Total genomic DNA was extracted from ethanol-
preserved fin tissues using the BioSprint 15 kit for tissue and blood (Qiagen). Sequences of the
mitochondrial gene, cytochrome b (cytb) of 989 bp length, were amplified (see PCR conditions in
Supplementary Material S2; Palumbi, 1996; Perdices & Doadrio, 2001). PCR products were
visualized on 1% agarose gels, purified with ExoSAP-IT™ and sequenced at the Papanin Institute
of Biology of Inland Waters (Russian Academy of Sciences) using an ABI 3500 sequencer. All
new sequences were deposited in GenBank (Accession Numbers: xxx -will be provided upon

acceptance, see Supplementary Table S1).

Table 2.

Analysis of mtDNA data

All sequences were aligned and edited using the MUSCLE algorithm (Edgar, 2004) as
implemented in MEGA 6.0 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). A final set that
includes also comparative material from Genbank (African and non-African Garra as well as

outgroups) encompassed 143 cytb sequences (https://www.ncbi.nlm.nih.gov) (Table S1).

Akrokolioplax bicornis and Crossocheilus burmanicus were included as outgroups according to

previously published phylogenies (Yang et al., 2012).
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Gene tree reconstruction was performed using both maximum-likelihood (ML) and Bayesian
inference (BI) approaches. Prior to these analyses all sequences were collapsed into common
haplotypes using ALTER software (Glez-Pena, Gémez-Blanco, Reboiro-Jato, Fdez-Riverola, &
Posada, 2010). We determined the best fit models of nucleotide substitution for each codon
position of cytb and optimal partitioning scheme using either ModelFinder (as implemented in 1Q-
TREE 1.6.12; Kalyaanamoorthy, Minh, Wong, Von Haeseler, & Jermiin, 2017; Nguyen, Schmidt,
Von Haeseler, & Minh, 2015) or PartitionFinder 2.1.1 (Lanfear, Calcott, Ho, & Guindon, 2012)
under Bayesian Information Criterion (BIC). The partition scheme selected by ModelFinder
(codon position 1 - K2P+R2; codon position 2 - HKY+F+I1; codon position 3 - TN+F+G4) was
subsequently used in ML search with 1Q-TREE, using 1 000 bootstrap replicates.

Bayesian phylogenetic inference (BI) was carried out in MrBayes v. 3.2.6 (Ronquist et al.,
2012). The selected partition scheme was following: codon position 1 with K80+I+G, codon
position 2 with HKY+1, and codon position 3 with GTR+G. Two simultaneous analyses were run
for 107 generations, each with four MCMC chains sampled every 500 generations. Convergence
of runs was assessed by examination of the average standard deviation of split frequencies and the
potential scale reduction factor. In addition, stationarity was confirmed by examining posterior
probability, log likelihood, and all model parameters by the effective sample sizes (ESSS) in the
program Tracer v1.6 (Rambaut, Suchard, Xie, & Drummond, 2014). The gene trees resulting in
ML and BI analyses were visualized and edited using FigTree v.1.4.4 (Rambaut, 2014). A
haplotype network was constructed using the median joining algorithm (Bandelt, Forster, & Rohl,

1999) in PopArt 1.7 (Leigh & Bryant, 2015).

ddRAD-seq library preparation
High molecular weight DNA was isolated from fin tissue preserved in ethanol using QlAamp DNA
Mini Kit (Qiagen, Germany) or obtained by purification of salt method extracted DNA (Aljanabi

& Martinez, 1997) using CleanUp Standard kit (Evrogen, Moscow). The dsDNA quantity was
9
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measured using dsDNA HS Assay Kit for fluorometer Qubit 3 (Life Technologies, USA). ddRAD-
library was constructed following the quaddRAD protocol (Franchini, Monné Parera, Kautt, &
Meyer, 2017) using restriction enzymes Pstl and Mspl. In total, 77 DNA samples of Garra
ecomorphs from the Sore River (see Table 2) and 11 DNA samples from five other species of
Ethiopian Garra from adjacent basins were sequenced by two independent runs of Illumina
HiSeq2500 and Illumina X Ten (2 x 150 bp paired-end reads). The raw sequencing data were

demultiplexed by the sequencing provider using outer Illumina TruSeq dual indexes.

Processing of RAD-seq data
The resulting reads were trimmed for remaining adapters and low quality reads Cutadapt

implemented in the Trim Galore 0.4.5 package (https://github.com/FelixKrueger/TrimGalore -

Martin, 2011). Read quality was assessed with FastQC 0.11.7 (Andrews & Krueger, 2010) and
MultiQC 1.7 (Ewels, Magnusson, Lundin, & Killer, 2016) before and after trimming. Further
demultiplexing of individually barcoded samples, construction and cataloging of RAD-loci, and
SNP calling were done with STACKS 2.41 package (Catchen, Hohenlohe, Bassham, Amores, &
Cresko, 2013). Identification and removal of PCR duplicates were done using the ‘clone_filter’
module of STACKS). STACKS module ‘process_radtags’ was used to demultiplex reads by the
dual index inner barcodes and obtain separate fastq files for each individual. Samples that failed
to produce more than 100 000 reads were excluded from further processing. To additionally
evaluate data quality and identify possible contaminated samples, the reads were mapped to the
reference genome of common carp Cyprinus carpio (GCF_000951615.1) using bowtie2 2.3.5
(Langmead & Salzberg, 2012) with ‘--local-sensitive’ presettings. Then, only Read 1 (R1) files
were used for downstream processing and analyses. Prior to next steps, these R1 reads were
trimmed at their 3™ ends to a uniform length of 130 bp to reduce the influence of sequencing error
(due to declined base quality at 3™ end).

The de novo pipeline of STACKS was used to assemble loci and perform genotype calling.
10
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We selected optimal parameters using the approach suggested by Paris, Stevens, & Catchen
(2017). Following the aforementioned procedure, we found that minimum stack depth (-m) of 5,
distance allowed between stacks (-M) of 3, and the maximum distance required to merge catalog

loci (-n) of 5 provided the best balance between data quality and quantity for our dataset (Fig. S1).

Population genomic analyses

Individual genotypes of sympatric Garra ecomorphs from the Sore River were exported to a vcf
file using the ‘populations’ module of STACKS with the following settings: (i) loci genotyped in
at least 90% of samples (-r 0.90) were kept; (ii) SNPs with a minor allele frequency (--min-maf)
less than 0.04 and a maximum observed heterozygosity (--max_obs_het) above 0.99 were pruned;
(iii) only single SNP per RAD locus was retained, to avoid inclusion of closely linked SNPs. We
applied VCFtools 0.1.16 (Danecek et al., 2011) for further filtering of the dataset based on mean
coverage and fraction of missing data for each sample. Samples with more than 20% of missing
data were blacklisted and excluded from further analyses. Thus, a high-quality dataset of 679 SNPs
and 77 individuals was obtained and used for downstream population genetics analyses.

First, Principal Component Analysis (PCA) was performed using the ‘g/Pca’ function of the
R-package adegenet 2.1.1 (Jombart, 2008; Jombart & Ahmed, 2011). Next, rmaverick 1.0.5
(former MavericK; Verity & Nichols, 2016) was used to infer population structure. This program
estimates evidence for different numbers of populations (K), and different evolutionary models via
generalised thermodynamic integration (GTI). A range of K values between 1 and 10 were
explored, using 300 000 burn-in MCMC iterations and 10 000 sampling iterations. Convergence
of MCMC was automatically tested every 1 000 burn-in iterations by activating option
‘auto_converge’. This allows exit burn-in iterations when convergence is reached and immediately
proceeds to sampling iterations. Parameter ‘rungs’ was set to 10 (number of multiple MCMC
chains with different ‘temperature’ to run simultaneously). Both no admixture and admixture

models were run, and compared by plotting values of the posterior distribution and overall model
11
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evidence in log space (log-evidence) (Fig. S2-S5). According to this comparison, the admixture
model is decisively supported over the no admixture model, and used here to report the results.
The same protocol was followed for consecutive hierarchical rmaverick runs for the identified
clusters. Finally, global and pairwise Reich-Patterson Fst values (Reich, Thangaraj, Patterson,
Price, & Singh, 2009) with respective 95% confidence intervals for ecomorphs/genetic clusters
were calculated using the R script from Junker et al. (2020). Basic genetic diversity statistics were
calculated using the ‘populations’ module of STACKS.

To test for the gene flow between ecomorphs\genetic clusters, we used the Patterson’s D
statistic (ABBA-BABA test), along with the fs-ratio statistic (Patterson et al., 2012) and its f-
branch metric (Malinsky et al., 2018), as implemented in Dsuite 0.4 software package (Malinsky,
Matschiner, & Svardal, 2021). Patterson's D statistic is a widely used and robust tool to detect
introgression between populations or closely related species, and to distinguish it from incomplete
lineage sorting (ILS). The fs-ratio statistic is a similar method aiming to estimate an admixture
fraction. The f-branch metric is based on fs-ratio results and serves to assign gene flow evidence
to specific branches on a phylogeny. These tests were performed on a group containing
ecomorphs\genetic clusters 2b, 3, 4, and 6, while the rest were used as outgroup (in accordance

with the results of our phylogenomic analysis).

Phylogenomic analyses

IQ-TREE 2.0.5 (Minh et al., 2020) was used for ML phylogenetic analyses of RAD-seq data. First
dataset included one to three specimens of each Garra ecomorph from the Sore river and other
Ethiopian Garra species from adjacent basins. Multiple sequence alignments of all loci and
respective partition files were created using the ‘--phylip-var-all’ option of ‘populations” module
of STACKS package. Heterozygous sites within each individual were encoded using IUPAC

notation. During the analysis each RAD-locus was treated as a separate partition with independent

12
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best-fit substitution model. Node support values were obtained using ultrafast bootstrap procedure
(Hoang, Chernomor, von Haeseler, Minh, & Vinh, 2018) with 1 000 replicates. We also used
SVDQuartets algorithm (Chifman & Kubatko, 2014) as implemented in PAUP* 4.0a168
(Swofford, 2003) to perform species-tree inference under the multi-species coalescent model using
18,988 SNPs (single random SNP per locus, minor allele frequency cutoff 0.04, maximum
observed heterozygosity cutoff: 0.99). Node support was estimated with 1 000 bootstrap replicates.

The second dataset consisted of all genotyped specimens of sympatric Garra ecomorphs
from the Sore River and a single, most closely related outgroup (G. cf. dembeensis from the
Barokalu River, as revealed by the analysis of the first phylogenomic dataset that included samples
from all the localities in Figure 2). It was analysed with 1Q-TREE as described above, except for
GTR+G substitution model was used for each partition. The phylogenetic trees were visualized

and edited using FigTree 1.4.4 (Rambaut & Drummond, 2008).

Results
Trophic Morphology
PCA of head and body proportions of six sympatric ecomorphs from the Sore River revealed five
well-defined clusters (Fig. 3A). Four clusters represent ecomorphs 3, 4, 5, and 6, while the fifth
includes individuals from ecomorphs 1 and 2. The ecomorph 5 is the most divergent. PC1
explained 72.3% of the total variance, while PC2 10.2%. The eigenvector with the highest
eigenvalues for PC1 were head proportions - nine of ten most loaded ones (especially gular disc
proportions, mouth width, interorbital distance, and snout length). The same pattern was detected
for PC2 - nine of ten most loaded characters belonged to head proportions (mainly disc length,
mouth width, height of head at nape and at eyes etc. - see Table S2 for details).

After excluding ecomorph 5, the ecomorphs 1 and 2 became more distinguishable with low

overlapping (Fig. 3B). The PC1 explained 73.8% of variance, while PC2 8.1%. The most loaded
13
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eigenvectors of both PC1 and PC2 were from head proportions with few more contributions of
some body proportion characters (see Table S3). The difference between ecomorphs 1 and 2
revealed in PC2 is explained by height of head at both nape and eyes, interorbital distance, head
width, body height as well as other characters (Table S3).

Fig. 3.

Gut length and preliminary data on diet
Gut length broadly varied consistently between ecomorphs (Fig. 3C). Shortest guts (107-160 %
SL) were detected in ecomorph 5 suggested a predatory trophic type, while the longest guts were
recorded in ecomorphs 1 (285-799 % SL) and 2 (354-555 % SL) that possessed the well-developed
gular disc and therefore are specialized algal grazers, as also shown by their gut contents (see
below). Other ecomorphs had intermediate values gut lengths: ecomorph 3 - 124-295 % SL, and
ecomorph 4 - 175-513 % SL, respectively. Broad intra-group variation is explained by increase of
gut length with body length detected in some ecomorphs (Fig. 3D). Nevertheless, the similar-sized
individuals are divergent in gut length at the same manner that presented in Fig. 3C. Ecomorph 5
having the shortest gut displays even a slight decrease of gut length ontogenetically that was
previously reported for piscivorous mode of feeding among African cyprinids (Levin et al., 2019).
The preliminary inspection of gut content revealed differences in the diet between some
ecomorphs. Ecomorphs 1 and 2 had permanently filled intestines full of periphyton (diatom, green,
and charophyte algae; IR1 =99.98% for ecomorph 1, and IR1 =97.99% for ecomorph 2) and, rarely
other items (larvae of water insects - mayflies, chironomids, simulids). The ecomorph 3 had a half-
filled gut with dominating periphyton (IRI = 86.3%) with a notable portion of insect larvae (7.62%
- predominantly chironomids, also mayflies, and simulids) and macrophytes (5.97%). Ecomorph
4 had fewer filled intestines compared to ecomorph 3 however with strongly dominating
periphyton in diet (IRl = 99.49%). The gut of ecomorph 5 (shortest gut) frequently was empty

14
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including the largest individual (SL=185 mm). When guts were filled, benthos-associated prey

was strongly prevalent (IRl = 99.31%; mayflies and chironomids).

Mitochondrial data

Both Bl and ML analyses of cytb revealed monophyly of the Garra from the Sore River (Fig. 4A).
The closest relative (and ancestor lineage) is from the Barokalu River, a tributary of the Baro River
(White Nile drainage). Both Sore and Barokalu rivers share watershed in the Baro system and
sampled localities are separated just ca. 50 km by land. Divergence between Garra populations
from the Sore and Barokalu is low (p-distance = 0.010540.0028) and comparable with maximum
intra-divergence in the Sore radiation (p-distance = 0.011140.0033). Being combined together
White Nile lineage is a sister to the large clade of Ethiopian Garra from Blue Nile and Lake Tana,
Atbara-Nile, Ethiopian Rift Valley, and Omo-Turkana basins.

At the same time, our phylogenetic analyses revealed that Ethiopian Garra are non-
monophyletic (Fig. 4A). Some lineages are of more ancient origin and closer to Asian lineages (G.
tibanica from Indian Ocean basin) or to lineages from West Africa (e.g. G. vinciguerra from Blue
Nile basin). Matrilineal tree of Ethiopian Garra includes up to 12 lineages. Taking into account
some species cluster together in one lineage like three species from Lake Tana or that some species
were unavailable, we conclude cladogenesis of Garra in Ethiopia Highlands has been more

diversified than considered previously (Stiassney & Getahun, 2007).

Fig. 4.

The Sore lineage is composed of two sub-lineages or haplogroups highlighted by yellow and
green (Fig. 4A-B). Haplotype net constructed on 107 cytb sequences confirms presence of two
main haplogroups. The core haplotypes of these haplogroups are separated by 5 substitutions. Four

of six ecomorphs (2, 3, 4, and 5) share both haplogroups. The ‘green’ haplogroup is prevalent in
15
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number of haplotypes (18), and number of individuals (88), and found in five ecomorphs.
Ecomorph 1 is presented exclusively in this haplogroup. In contrast, the ‘yellow’ haplogroup (Fig.
4B) is smaller, with only different 9 haplotypes found in 19 individuals (= 17.7 % of the individuals
analyzed). One individual of ecomorph 4 is rather distant (6 substitutions) from the core haplotype
of this haplogroup. ‘Yellow’ haplogroup consists of five ecomorphs as well. However, ecomorph
4 is much more frequently represented in this haplogroup (42 % of all individuals) compared to

‘green’ one (6.97 %).

RAD-seq data

Raw reads statistics is given in Supplementary File S1.

Nuclear phylogeny

The phylogeny of Ethiopian Garra based on a concatenated set of RAD-loci sequences (23,365
partitions and 3,075,180 total sites with 0% missing data) is generally similar to that based on
mtDNA data (Fig. 4) but it has more strongly supported nodes, as it is based on many more variable
sites (Fig. 5A). Sympatric ecomorphs clustered together and form monophyletic lineages, sister to
the population from the same riverine basin - Baro drainage in White Nile system (Fig. 5A-B).
Closest relative to Garra from White Nile system is Garra lineage in the G. dembeensis complex
from neighbor drainage - Omo-Turkana system. The G. vinciguerrae from the Blue Nile (which
recorded in Ethiopia for the first time in the current study) is ancestor lineage for both White Nile
and Omo-Turkana lineages. The most divergent lineages, G. makiensis and G. tibanica, are from

Ethiopian Rift Valley and Indian Ocean basins, respectively.

Fig. 5.
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Compared to mitochondrial data, the nuclear phylogenomic tree shows much better
segregation of Garra ecomorphs from the Sore River (Fig. 5A). Ecomorphs 3, 4, and 6 form
monophyletic clusters, while other ecomorphs are divided into two (nos. 1 and 5) or even three
(no. 2) clusters. We assign two distantly located branches of both ecomorph 1 (generalized) as
1a/1b as well as ecomorph 2 (stream-lined) as 2a/2b according to population genomics analyses
done below (Fig. 6-8). Ecomorphs 1 and 2 from one hand, and other ecomorphs from another hand
form two clusters within Sore River adaptive radiation according to SVDQ species tree (Fig. 5B).
Ecomorphs 3 (narrow-mouth), 4 (wide-mouth), and 6 (thick-lipped) are most recently diverged
branches according to SVDQ-tree but the nodes are weakly supported (Fig. 5B).

Relationships among the Sore River sympatric ecomorphs based on analysis of all samples
and full RAD-loci sequences (> 7000 loci and > 0.96 Mbp length sequences) are presented in Fig.
6. The ML analysis highly support the monophyly of each ecomorph except for ecomorph 2. The
most basal lineage is ecomorph 2, which in turn, is paraphyletic, suggesting, possibly, that there is
another 7™ cryptic species that we could not distinguish phenotypically. Four individuals along
with one individual of intermediate phenotype represent another lineage that we call 2b (Fig. 6).
Lineage 2a is sister all other ecomorphs that are divided for two subclades - one includes only
ecomorph 1 individuals (which, in turn is subdivided into what we call - 1a-1b), while another
includes all other ecomorphs - 3, 4, 5, 6, and above mentioned 2b. That latter lineage is composed
of lineages, each containing samples of particular ecomorphs except for several samples which
were intermediate in their phenotypes (Fig. 6). Ecomorph 6 (thick-lipped mouth) is resolved as
sister to the 2b lineage albeit with an apparent rather deep last common ancestor. Generally, the
placement of clade 2a as sister to all other Garra from the Sore River, that is characterized by a

well-developed gular disc (type C), might suggest that this an ancestral condition of this radiation.

Fig. 6.
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Population genomics

Principle component analyses of the 679 nuclear SNPs of sympatric ecomorphs revealed
several well-defined clusters that correspond to the phenotypic differentiation (Fig. 7). Ecomorph
1 (composed of two genetic sub-clusters 1a-1b), genetic cluster 2a, ecomorphs 3 and 4 are not
overlapping, while clusters of 2b and ecomorph 5 broadly overlap. Thick-lipped ecomorph (6)
interestingly (although it is difficult to place since we only found two individuals that we could

include in this study) could not be identified by PCA as a distinct cluster.

Fig. 7.

The analysis of population structure with admixture revealed an optimum of three genomic
clusters that correspond to the i) ecomorph 1 + 2a lineage, ii) ecomorphs 3 + 4, and iii) ecomorph
5+ 2b lineage (Fig. 8, Upper row, K3). Ecomorph 6 is characterized by admixture of two clusters

from ecomorphs 3 and 4.

Fig. 8.

Subsequent analysis of each cluster (=lineage) revealed hierarchical subdivision. Thus
ecomorph 1 and genetic lineage 2a each are also identified as cluster in the admixture analysis
(Fig. 8 middle row, K=2). Although ecomorphs 3, 4, 5, and lineage 2b are supported as
independent evolutionary units based on several types of genetic analyses, few individuals in all
of these show signs of historical gene flow based on the admixture analysis (Fig. 8). While the two
individuals from ecomorph 6 in our study seem most clearly be composed of genetic contributions
by ecomorphs 3 (36.8-47.5%) and genetic lineage 2b (51.3-62.3%), possibly supporting a hybrid
origin hypothesis. Interestingly, one more individual with combination of the same genomic

clusters but with the opposite ratio (54.0% from ecomorph 3 and 43.9 % from lineage 2b) had no
18
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thick-lipped features (the main phenotypic diagnostic feature for ecomorph 6) and was
phenotypically assigned to ecomorph 3 (Fig. 8). One more level of population subdivision was
detected in ecomorph 1 (Fig. 8) with two genomic clusters (lineages 1a and 1b) of high degree of
admixture. It suggests heterogeneous genomic structure of the generalized ecomorph as a result of
secondary contact.

All Reich Fst pairwise comparisons were statistically significant with values ranging from
0.10 (lineages 1a vs. 1b) to 0.46 (ecomorphs 2b vs. 6) (Fig. 9). The ecomorph 6 Fst values were

the highest (0.39-0.46).

Fig. 9.

As the rmaverick analysis suggested a notable level of admixture between lineage 2b and
ecomorphs 3, 4, and 6 (Fig X), which form a single monophyletic cluster in our phylogenomic
analysis (Fig 8), we performed a number of tests to distinguish between gene flow (introgression)
and incomplete lineage sorting (ILS). The obtained D statistic was positive and significant for a
number of comparisons (Table 3.). Visualization of f-branch metric (which is based on fs-ratio

results) highlighting introgression between ecomorphs/genetic lineages 2b and 3, 6 and 3, 5and 3

(Fig 9).

Table 3.

The eighth genetic clusters possess from three (ecomorph 6) to 38 private alleles (ecomorph 4)
(Table 4). The ecomorph 6 has also the lowest heterozygosity (Ho = 0.00058) as well as nucleotide
diversity (Pi = 0.00054) compared to all other ecomorphs (Ho = 0.00104-0.00128; Pi = 0.00121-

0.00091) (Table 4).
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Table 4.

Discussion

Our study provides genetic support for the hypothesis of the evolution of an adaptive radiation in
a riverine environment. By analyzing trophic features and sucking disc variation, as well as trophic
ecology, we show morpho-ecological diversification of the cyprinid fish Garra dembeensis into
six distinct ecomorphs. First, diversification of two novel phenotypes (thick-lipped and predatory)
in the Sore River has evolved rapidly, an event that can be classified as burst of speciation sensu
Givnish (2015). Second, adaptive radiation resulted in the origin of several highly specialized
lineages of algae scrapers, i.e. specialized ancestor adaptively radiates giving rise to eco-
morphological diverse lineages, that seem to be not only ecologically, but also reproductively

isolated from each other and can be considered the new species.

Eco-morphological diversification and adaptive radiation of Garra

The genus Garra is currently comprised of more than 160 species (Fricke et al., 2021; Yang et al.,
2012). Only 23 of which occur in Africa (Moritz et al., 2019). So far, 13 described species were
reported from Ethiopia (Golubtsov et al., 2002; Stiassny & Getahun, 2007). In this study, we
discovered six additional distinct ecomorphs that originated through adaptive radiation in the Sore
River, and thus might warrant the description of five-six new African Garra species.

The ecomorphs of the Sore’s Garra are exceptionally diverse in trophic and sucking disc
morphology. Two novel phenotypes for the whole genus Garra — ‘thick-lipped” and ‘predatory’ -
have superficial similarities to Lake Tana large barbs species/morphotypes, e.g., thick-lipped barb
L. negdia (Riippell, 1836) and predatory L. gorguari (Riippell, 1836) (Nagelkerke & Sibbing,
1997). This high degree of variation in the sucking disc in Sore’s Garra can be observed - from

well-developed disc with free posterior margin to complete absence. Such a degree of
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morphological diversity concentrated in one riverine spot of Ethiopian Highlands would seem to
satisfy the requirements of a diversification burst (sensu Givnish, 2015).

Divergent feeding-related morphology and gut content analysis suggest trophic
specialization of Garra sympatric forms. This is consistent with other cases of adaptive radiation
among Ethiopian cyprinids, where trophic resource partitioning promoted diversification -
Labeobarbus spp. in Lake Tana (Sibbing, Nagelkerke, Stet, & Osse, 1998) as well as in the Genale
River (Levin et al., 2019). The most common foraging strategy among Garra is scraping of
periphyton from stones and rocks (Hamidan, Jackson, & Britton, 2016; Matthes, 1963). This is
predominant in Sore’s Garra ecomorphs 1 and 2 that have long gut (4-5 times longer than body
length) filled with periphyton and detritus. The ecomorphs 1 and 2 are divergent mainly in body
shape. The latter has streamlined appearance and probably is adapted for life in more rapid flowing
water. Ecomorph 3 has shorter gut length (ca. 2-times longer than body length) and a mixed diet
with significant additions of benthic invertebrates. Ecomorph 5 has an extremely short gut, whose
length is as long as the fish body. Short gut is a strong marker for predatory/piscivory feeding
strategy in fishes, including cyprinids (Nagelkerke, 1997; Sibbing et al., 1998; Wagner, Mclntyre,
Buels, Gilbert, & Michel, 2009, Zandona, Auer, Kilham, & Reznick, 2015). Predatory Garra from
the Sore River have 4-5-times shorter gut length than congeneric periphyton feeders and twice
shorter gut than that of piscivory large-mouthed ecomorph of Labeobarbus from the Genale River,
Ethiopia (Levin et al., 2019). We found an empty gut in many individuals of ecomorph 5, while
small-sized fishes had gut filled with insects. Ecomorph 4 has a rather long intestine and
predominantly periphyton in diet, but it is characterized by distinctly divergent mouth phenotype
compared to ecomorphs 1 and 2 (Fig. 3). The gut of thick-lipped phenotype (ecomorph 6) was not
analyzed because of the extreme rarity of samples. Hypertrophied lips (or ‘rubber lips’) of fishes
Is an adaptation to foraging on benthos hidden between rock crevices on pebble and rock fragments
via increased sucking power by sealing cracks and grooves (Baumgarten, Machado-Schiaffino,

Henning, & Meyer, 2015; Machado-Schiaffino, Henning, & Meyer, 2014; Matthes, 1963; Ribbink,
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Marsh, Marsh, & Sharp, 1983). This phenotype is widely distributed among other cyprinid fish,
the Labeobarbus spp., inhabiting lakes and rivers of Ethiopian Highlands (Mina, Mironovsky, &
Dgebuadze, 1996; Mironovsky, Mina, & Dgebuadze, 2019; Nagelkerke, Sibbing, van den
Boogaart, Lammens, & Osse, 1994) including the Sore River (Levin et al., 2020), but it was never
detected among Garra species. Our study shows that the thick-lipped mouth phenotype represents
an evolutionary novelty within the Garra lineage that most probably resulted from hybridization
events between ecomorphs 2 (lineage 2b) and 3 because its genome had an admixture from these
genetic lineages. Hybridogenic origin of the Garra’s thick-lipped phenotype may corroborate
results of recent experimental study demonstrating the importance of hybridization in generating
of functional novelty of ecological relevance in relation to trophic resources unavailable for
parental species in cichlids (Selz & Seehausen, 2019). The origin of novel thick-lipped phenotype
in the genus Garra is of particular interest in light of knowledge of non-hybrid origin of
hypertrophied lips from ancestors with normally developed lips in cichlid fishes (Baumgarten et
al., 2015; Machado-Schiaffino et al., 2017). Interestingly, there might only be a single locus
involved in producing the hypertrophied cichlid phenotype (Kautt et al., 2020), the genomic basis
of the lip phenotypes in Garra remains unknown.

Another novel phenotype for Garra detected in the Sore River is the “predatory” niche. A
conspicuously piscivory trophic strategy is rare among Cypriniformes, presumably because they
have a toothless jaw. Nevertheless, this feeding strategy is quite common among cyprinid fishes
inhabiting water bodies of Ethiopian Highlands. For example, seven of the total 15 endemic
Labeobarbus spp. found in Lake Tana are predatory on fish (Nagelkerke et al., 1994; Sibbing et
al., 1998); that evolved multiple times among riverine populations of the genus Labeobarbus
(Levin et al., 2020).

To our knowledge, only one sympatric diversification has previously suggested for Garra —
the intralacustrine complex including three species inhabited Lake Tana in Ethiopia (Geremew,

2007; Stiassny & Getahun, 2007). This diversification resulted in divergent phenotypes (gular
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discs varies from well-developed to reduced size) and ecology (one form is pelagic - G. tana) and
can be considered as a recent speciation as suggested by the absence of mtDNA divergence among
these species (Tang, Getahun, & Liu, 2009). Unfortunately, little is known about morpho-
ecological and genetic diversity of this Lake Tana radiation. Sympatric divergence was also
recently proposed as the most likely mechanisms for the origin of two blind Garra species, G.
typhlops and G. lorestanensis, inhabited the same cave in Zagros Mountains, Iran (Segherloo et

al., 2018).

Possible scenarios of evolution of Garra’s adaptive radiation in the Sore River

Both mtDNA and genome-wide SNPs data support monophyly of the Sore’s Garra as well as their
recent speciation based on low genetic divergence between the nearest ancestor and Sore River’s
ecomorphs. The closest relative and ancestor of the Sore River diversification inhabits the same
subbasin of the White Nile in Ethiopia, therefore suggesting an intra-basin diversification of Garra
there. On the one hand, mtDNA data might have failed to distinguish sympatric ecomorphs
because of high level of shared genetic diversity caused by ILS and introgression, this latter
highlighted by D-statistic calculated with the genome-wide nuclear data. On the other hand, the
SNP data support a reproductive isolation among closely-related ecomorphs despite few
individuals having intermediate phenotypes and genetic admixture. Hybrid origin of intermediate
phenotypes might suggest that reproductive isolation barriers are not complete yet.

Patterns of haplotype net (numerous haplotypes occurring in the same phenotypes) as well
as SNP data (presence of more genetic clusters than phenotypes) could also suggest secondary
contact of local sub-isolated populations. The riverine net of Ethiopian Highlands was significantly
influenced by several episodes of dramatic volcanism and tectonism until the Quaternary
(Ferguson et al., 2010; Hutchison et al., 2016; Prave et al., 2016). Thus, riverine net fragmentation,
isolation or sub-isolation of some riverine parts, and captures of headwaters is a likely scenario

given the geological history of Ethiopian Highlands (Mége, Purcell, Pochat, & Guidat, 2015), also
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supported by genetic studies on other Ethiopian fishes (Levin et al., 2019; 2020). Concerning the
Sore River, while waterfalls and rapids are rather frequent, no geological data that support its
connection to other basins are known. In our view, the most reliable evolutionary scenario for the
origin of the riverine adaptive radiation in the Garra species group draws upon a combination of
allopatric and sympatric stages of speciation with hybridization and admixture. A comparable
evolutionary history was detected in the Labeobarbus adaptive radiation in the Genale River
(Ethiopia), which is part of the extended ancient riverine net in Juba-Wabe-Shebelle drainage
(Levin et al., 2019).

Speciation with gene flow was detected in several studies (e.g. Feder, Egan, & Nosil, 2012;
Fruciano, Franchini, Raffini, Fan, & Meyer, 2016; Kautt, Machado-Schiaffino, & Meyer, 2016;
Kautt et al., 2018; Kautt et al., 2020; Machado-Shiaffino et al., 2017; Malinsky et al., 2018; Puebla,
2009; Rougeux, Bernatchez, & Gagnaire, 2017; Schwarzer et al., 2011; Smadja & Butlin, 2011;
Zheng & Ge, 2010). Notably, it has been shown as genetic admixture between divergent
populations/lineages may be a key factor in promoting rapid ecological speciation (Jacobs et al.,
2020; Kautt et al., 2016; Kautt et al., 2020; Martin et al., 2015; Marques, Meier, & Seehausen,
2019). Moreover, ancient hybridization is widely considered one of the most important factors
driving the spectacular cichlid adaptive radiations in the Great African Lakes (lIrissari et al., 2018;
Meier et al.,, 2017; Verheyen, Salzburger, Snoeks, & Meyer, 2003). Seemingly, ancient
introgressive hybridization could be a trigger for small-scaled repeated adaptive radiations among
the Arctic charrs Salvelinus (Lecaudey et al., 2018). Furthermore, hybridization is the main
mechanism generating polyploid lineages in fishes (tetraploid, hexaploid etc. - Braasch &
Postlethwait, 2012), whose complex genomes constitute the raw material for the rapid origin of
sympatric forms (e.g. Schizothorax in Central Asia - Berg, 1914; Burnashev, 1952; Terashima,
1984; Labeobarbus in Africa - Levin et al., 2020; Mina et al., 1996; Nagelkerke et al., 1994;
Vreven, Musschoot, Snoeks, & Schliewen, 2016). Nevertheless, all described Garra, including the

Ethiopian species, have diploid genomes (Krysanov & Golubtsov, 1993).
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Adaptive radiation in riverine environment
Most adaptive radiations of fishes were reported from the lacustrine environment (e.g., Fryer &
lles 1972; Seehausen & Wagner, 2014). However, increasing evidence suggest that adaptive
radiation can take place in other aquatic environments (e.g., marine, riverine) (Burress et al., 2018;
Dimmick et al., 2001; Feulner, Kirschbaum, & Tiedemann, 2008; Levin et al., 2019; 2020; Melnik
et al., 2020; Matchiner, Hanel, & Salzburger, 2011; Pialek et al., 2012; Puebla, 2009; Whiteley,
2007). Several other cases of potential riverine adaptive radiations that includes > 3 sympatric
ecomorphs exist, although they were not been tested with genetic methods yet - for instance, snow
trout from Central Asia (Berg, 1914; Burnashev, 1952), barbs Poropuntius and Neolissochilus
from Southeastern Asia (Roberts, 1998; Roberts & Khaironizam, 2008). Among cichlids, one of
the first riverine adaptive radiations examined genetically were from Southern Africa (Joyce et al.,
2005). However, the authors of this study suggested that the adaptive radiation occurred in the
lacustrine environment in the palaeo lake Makgadikgadi that dried up in the Holocene (Joyce et
al., 2005). Other cichlid adaptive radiations from the rivers of Western Africa (Schwarzer et al.,
2011), Southern America (Burress et al., 2018; Pialek et al., 2012;) as well as four independently
evolved riverine radiations of labeobarbs from East Africa (Levin et al., 2020), have instead took
place in riverine drainages without known lacustrine conditions in the past.

The Garra lineage is adapted to fast and torrent waters. It possesses a morphological novelty
- gular sucking disc - used to cling on the bottom of swift waters. This novelty allowed Garra to
be distributed widely in highlands and montane zones from Southeastern China to Western Africa.
Only a few species were found in the lacustrine environment (Lake Tana — Stiassny & Getahun,
2007) or in caves (e.g. Banister, 1984; Coad, 1996; Kruckenhauser, Haring, Seemann, & Sattmann,
2011; Mousavi-Sabet & Eagderi, 2016), indicating their potential to adapt to steady waters.

Despite the riverine network is generally considered more open to gene flow compared to

landlocked water bodies, mountain and highland are an exception to this rule. The Ethiopian
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Highlands are a volcanic massif of flood and shield volcano basalts 0.5-3.0 km thick that form
spectacular trap topography (1500-4500 m) flanking the Main Ethiopian Rift (Prave et al., 2016).
The geological history of the Ethiopian Highlands was tectonically very dynamic and rich in
volcanic episodes from Oligocene to Pleistocene time with very recent episodes (Prave et al.,
2016). The volcanic activity has been severe enough to deleteriously affect the biota and cause
major disruptions in ecosystems. This hypothesis found support in the inferred evolutionary
history of the Labeobarbus in East Africa. The earliest fossil records of Labeobarbus were found
in the Ethiopian Rift Valley and dated back to the late-Miocene (Stewart & Murray, 2017), but
most of the Ethiopian lineages are younger (Pleistocene origin) (Beshera, Harris, & Mayden, 2016;
de Graaf, Megens, Samallo, & Sibbing, 2010; Levin et al., 2020). The tectonic activity of the
region could have favored local isolation via the formation of waterfalls (e.g., 33 kya the Blue Nile
basaltic blockade formed Tis-Isat waterfall - Prave et al., 2016) or river net fragmentation (Juba-
Wabe-Shebelle drainage Meége et al., 2015) along with climatic oscillations resulted to
disconnection of water bodies during aridization (Benvenutti et al., 2002). Periodically, it resulted
in vacant habitats and ecological opportunity (reviewed by Stroud & Losos 2018) for new species
to exploit similar to islands or crater lakes (Burress et al., 2018).

The Garra’s diversification burst in the Sore River was detected in the riverine segment at
an altitude range of 1310-1550 m asl, that is within the range of four riverine diversifications of
the Labeobarbus detected throughout Ethiopian Highlands: 1050-1550 m (Levin et al., 2020).
Despite the generally broader elevation gradient (175-2000 m asl - Levin et al., 2020) of the
Labeobarbus species complex, the diversification bursts were only detected in mid-upper reaches.
We believe that a combination of two factors might explain this observation: i) fauna in mid-upper
reaches is poorer compared to lower reaches, where a more diversified fauna might have already
filled the available ecological niches necessary for an adaptive radiation to unfold; ii) the biotopes

are more diverse compared to the most upper reach, that means vacant niches are available.
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Five endemic, and one introduced non-Garra species were recorded in the Sore River in the
study area (data of this study). This is an extremely low number compared to more than 110 fish
species (Golubtsov & Darkov, 2008, and our data) recorded in the Baro River at Gambella at 440m
altitude (our data) to which the drainage of the Sore River belongs with a distance of ~150km
between compared localities. The segment of the Sore River where Garra’s diversification was
detected is rather rich in biotope complexity - pools are alternating pools slow currents, rift areas
and rapids (Fig. S6). The depauperated fauna was suggested to provide the ecological opportunities
for riverine adaptive radiations similar to the in Southeastern cyprinids of the genus Poropuntius
(Roberts, 1998) and South America cichlids of the Crenicichla due to relaxed competition and
vacant niches might have provided ecological opportunities for sympatric speciation by trophic
specializations (Burress et al., 2018).

We discovered six new species within the genus Garra in the Sore River. Given that the
same riverine segment is home for another riverine diversification of fishes represented by four
phenotypically diverged ecomorphs of the genus Labeobarbus (Levin et al., 2020), we consider
the Sore River to being a hot-spot of riverine diversification in the Ethiopian Highlands that
requires conservation management. The Ethiopian Highlands are home for several young fish
radiations - a large lacustrine diversification among cyprinids (15 species/morphotypes - Mina et
al., 1996; Nagelkerke et al., 1994; Nagelkerke et al., 2015) as well as small-sized diversifications
of Garra (three species — Stiassny & Getahun, 2007) and Enteromius (two species - de Graaf,
Megens, Samallo, & Sibbing, 2007; Dejen et al., 2002) - all in Lake Tana, and five riverine
adaptive radiations of cyprinids each including from four to seven species (Golubtsov, 2010;
Golubtsov, Korostelev, & Levin, 2021; Levin et al., 2019; 2020; Mina, Mironovsky, Golubtsov,
& Dgebuadze, 1998; current study), highlighting this region’s importance as a hotspot for fish

speciation that is in need of additional research on ecological speciation processes.
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1190
1191
1192
1193
1194
1195
1196
1197  Table 1. Common names of the six ecomorphs of African Garra from the Sore River, and the
1198 reliminary qualitative descriptions used in the field to identify each form.
Name used in the text Basal description

No. 1, ‘generalized’ Well-developed round-shaped gular disc of type C with free
posterior margin (disc classification follows Stiassny &
Getahun, 2007). Body shape is generalized for Garra.
No. 2, ‘stream-lined’ Slender stream-line body with slim caudal peduncle and
increased pectoral fins. Disc of type C.
No. 3, ‘narrow-mouth’ | Disc is reduced in size, elongated, oval-shaped (closer to type
A). Narrow mouth often with groove on lower jaw.
No. 4, ‘wide-mouth’ Disc is reduced in size, triangle-shaped. Wide mouth with
significantly enlarged labellum (sensu Kottelat, 2020). Disc of
type B in degree of development.
No. 5, ‘predator’ Completely or almost completely reduced gular disc (type A
when presented). Wide head and mouth. This ecomorph
achieves larger size compared to others. Largest individuals
have nuchal hunch and almost terminal mouth with a bony
projection on the lower jaw and matching incision on the upper
jaw.
No. 6, ‘thick-lipped’ Greatly developed lips, referred to as ‘rubber lips’ (Matthes,
1963). Intermediate lobe of the lower lip is ball-shaped and
unattached. Gular disc is greatly reduced, oval-shaped (type A).
Only two individuals recorded.

1199
1200
1201

1202  Table 2. DNA and morphology sample numbers of Garra ecomorphs from the Sore River.

Ecomorphs Morphology MtDNA | RAD-seq

Measurements | Gut length

and diet

1 27 18 27 22
2 17 7 19 13
3 19 13 18 11
4 20 10 17 13
5 15 14 24 11
6 2 - 2 2
Intermediate | 6 - 5 5
phenotype
Total 106 62 112 77
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1204

1205

1206

1207
1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

Table 3. Results of Patterson’s D statistic (ABBA-BABA test) and f4-ratio test on selected genetic
clusters of Garra from the Sore River.

P1 | P2 | P3 | D statistic | Z-score | p-value | f4-ratio | BBAA | ABBA | BABA
4 3 6 0.1176 5.3829 <0.0001 (0.1128 2275 [235.0 |1855
2b |3 5 0.0650 3.107/8 0.0009 0.4226 2535 [246.5 |216.4
2b |6 3 0.0646 2.3475 0.0095 |0.2854 2156 |217.3 |[190.9
4 3 2b 10.0624 3.8143 <0.0001 (0.1237 2646 (2414 |213.0
4 3 5 0.0492 3.6742 0.0001 0.3277 276.2 (2474 | 2242
2b |6 5 0.0327 1.4755 0.0700 0.2051 248.6 [203.4 |190.5
4 6 5 0.0304 1.5315 0.0628 0.2330 2245 [226.5 |213.2
6 3 5 0.0199 0.9380 0.1741 0.1641 2442 [204.7 |196.8
2b (4 5 0.0178 1.0774 0.1406 0.1134 2459 |[246.3 237.7
2b |6 4 0.0040 0.1592 0.4368 |0.0151 2446 |197.8 |[196.3
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Table 4. Summary of the ecomorphs’ genetic diversity indices averaged over 89 070 loci (both

variant and fixed).

Ecom [ No. of No. of Heterozygosity Coefficient of Nucleotide
orphs | private polymorphic inbreeding (Fis) | diversity
* aNIIeIes, loci, % Observed | Expected + SE (Pi) = SE
P (Ho) = SE | (He) + SE
la 19 0.42 0.00128+ [0.00116+ |-0.00014+0.0015 | 0.00121+
0.00008 0.00007 0.00007
1b 18 0.40 0.00128+ |[0.00113+ [-0.00019+0.0011 [ 0.00119+
0.00008 0.00007 0.00007
2a 27 0.41 0.00124+ |[0.00114+ |-0.00007+0.0012 | 0.00120+
0.00008 0.00007 0.00007
2b 9 0.24 0.00104+ [ 0.00079+ | -0.00023+0.0012 | 0.00091+
0.00008 0.00006 0.00007
3 20 0.43 0.00127+ |[0.00107+ | -0.00037+0.0013 | 0.00111+
0.00008 0.00006 0.00007
4 38 0.43 0.00109+ [ 0.001+ -0.00008+0.0015 | 0.00104+
0.00007 0.00006 0.00006
5 33 0.44 0.00126= [0.00115+ |-0.00011+0.0019 | 0.00120+
0.00008 0.00007 0.00007
6 3 0.10 0.00058+ [ 0.0004+ -0.00006£0.0004 | 0.00054+
0.00007 0.0000 0.00006

* - letters ‘a’ and ‘b’ assign genetic lineages within ecomorphs 1 and 2.

v


https://doi.org/10.1101/2021.05.04.442598
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.04.442598; this version posted May 4, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1233

1234

1235

1236 Fig. 1A. Garra ecomorphs 1-3 from the Sore River: 1 - ‘generalized’: 136 mm SL; 2 -
1237  ‘stream-lined’: 99 mm SL; 3 - ‘narrow-mouth’: 100 mm SL.

1238

1239

1240

1241  Fig. 1B. Garra ecomorphs 4-6 from the Sore River: 4 - ‘wide-mouth’: 100 mm SL; 5 - ‘predator’:
1242 193 mm SL; 6 - ‘thick-lipped’: 128 mm SL.
41
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35°E 40°E 45°E

15°N
15°N

Gulf of Aden

10°N
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Blue Nile basin
Ethiopian Rift Valley basin
Indian Ocean basin

5°N
5°N

Lake Tana
Omo-Turkana basin
Tekeze basin

White Nile basin

35°E 40°E 45°E

Fig. 2. Sampling sites of Garra in Ethiopian Highlands and Ethiopian Rift Valley; loc. 1-2 are in
the Sore River.
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Fig. 3. (A) PCA of body and head proportions of six sympatric ecomorphs from the Sore River
(n=107); (B) PCA of body and head proportions of five sympatric ecomorphs from the Sore River
(n=90) excluding the most divergent sample, ecomorph 5. X designates intermediate phenotypes;
(C) Gut length of five sympatric Garra ecomorphs from the Sore River represented as violin
boxplots. Middle points are the means, and the box show the range respectively, samples are
combined and each contains between 7 (ecomorph 2) and 18 (ecomorph 1) individuals, for a total
of 62 individuals. Different lowercase letters above the boxplots indicate significant differences
between ecomorphs (p < 0.05, Kruskal-Wallis test with BH adjustment of p-value); (D)
Dependence of gut length on body length in five Garra ecomorphs from the Sore River with
smooth local regression lines (Loess regression).
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Fig. 4. (A) Consensus tree of relationships among the Ethiopian Garra from all main drainages
based on cytb sequences. Bayesian posterior probabilities (before slash) from BI analysis and
bootstrap values from ML analysis (after slash) above 0.5/50 are shown; asterisks represent
posterior probabilities/bootstrap values of 1/100. Scale bar and branch lengths provide the
expected substitutions per site. The green and yellow colors highlight two branches of Garra in
the Sore River. (B) Median-joining haplotype network of the Garra from the Sore River, based on
107 cytb sequences (989 bp length). ‘Green” haplogroup includes ecomorphs 1-5, while ‘yellow’
haplogroup includes ecomorphs 2-6. Black dots represent hypothetical intermediate haplotypes.
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Fig. 5. (A) ML phylogenetic tree of Ethiopian Garra based on RAD-loci sequences - 23,365 loci;
3,075,180 bp and (B) SVDQ species tree. Each locus was treated as a separate partition with
GTR+G substitution model and heterozygous sites within each individual encoded using IUPAC

notation. Black dots designate 100% bootstrap support, and only values above 50% are given.
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1356  Fig. 6. ML phylogeny of sympatric Garra ecomorphs from the Sore River based on concatenated
1357  RAD-loci sequences (7,370 loci; 969,450 bp). Each locus was treated as a separate partition with
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GTR+G substitution model. Heterozygous sites within each individual encoded using IUPAC
notation. The individual samples are colored based on the color scheme of Fig. 4 and intermediate
(putative hybrids) phenotypes are depicted in another color. The genetic clusters proportions
inferred by rmaverick analysis are shown to the right of sample numbers. Black points designate
100% bootstrap support.
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Fig. 7. Principal Component Analysis (PCA) based on 679 nuclear SNPs of sympatric Garra
ecomorphs from the Sore River. Points (individuals) and 95% confidence ellipses are colored by
phenotype/genetic cluster. Crosses assign intermediate phenotypes.
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Fig. 8. Hierarchical rmaverick results for sympatric ecomorphs of Garra from the Sore River,
based on 679 nuclear SNPs. Each column of the barplot shows individual assignments to one of
the inferred genetic clusters. Independent runs of rmaverick are indicated by a solid black line
above a plot, along with an inferred value of K.
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Fig. 9. Left - pairwise Reich Fst values (points) with their respective 95% confidence
intervals (horizontal lines) for Garra genetic lineages from the Sore River based on 679 SNPs.
Right - heat map of f-branch metric for selected ecomorphs/lineages of the Garra Sore radiation.
The used guide tree is shown along the x and y axes (in ‘laddered’ form along the y axis). The
matrix shows the inferred f-branch metric, reflecting excess allele sharing between the branch of
the ‘laddered’ tree on the y axis (relative to its sister branch) and the branches defined on the x
axis.
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