

1 Functional architecture of neural circuits for leg proprioception in *Drosophila*

2 Chenghao Chen^{1,2}, Sweta Agrawal^{1,*}, Brandon Mark^{1,*}, Akira Mamiya^{1,*},

3 Anne Sustar¹, Jasper S Phelps³, Wei-Chung Allen Lee³, Barry J Dickson², Gwyneth M Card², John C Tuthill^{1**}

4 ¹Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA

5 ²Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA

6 ³Department of Neurobiology, Harvard Medical School, Boston, MA, USA

7 *Equal contributions

8 **Correspondence and Lead Contact: tuthill@uw.edu

10 Abstract

11 To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the
12 *Drosophila* leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here,
13 we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that
14 signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for
15 local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals
16 across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory
17 information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for
18 processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg
19 movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a
20 resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.

22 Introduction

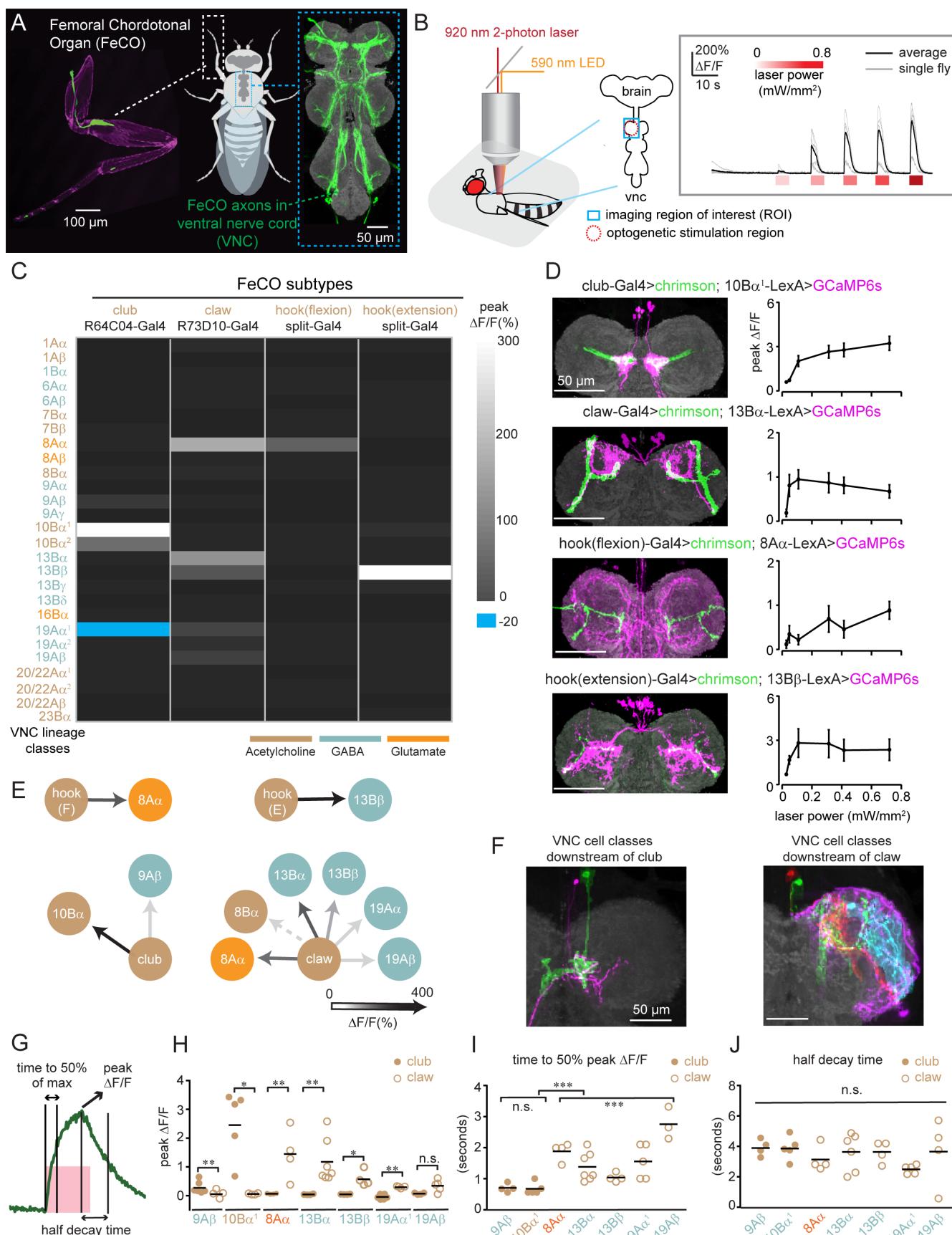
23 Proprioception, the sense of limb position and movement, plays an indispensable role in motor control by providing
24 continuous sensory feedback to motor circuits in the central nervous system. Proprioception is important for inter-
25 leg coordination during locomotion (Bidaye et al., 2018; Burrows, 1996), stabilization of body posture (Bässler and
26 Büschges, 1998; Zill et al., 2004) and motor learning (Bässler et al., 2007; Takeoka et al., 2014). Loss of limb
27 proprioception impairs locomotion and motor control (Akay et al., 2014; Mendes et al., 2013). Thus, mapping neural
28 circuits that process proprioceptive information is a prerequisite to understanding the role of proprioception in motor
29 flexibility and recovery from injury.

30 Proprioception relies on mechanosensory neurons embedded in joints and muscles throughout the body, which are
31 referred to as proprioceptors. Different types of proprioceptors detect distinct features of body kinematics. In
32 vertebrates, Golgi tendon organs detect mechanical load on the body, while muscle spindles encode muscle fiber
33 length and contraction velocity (Tuthill and Azim, 2018; Windhorst, 2007). Proprioceptors in invertebrates detect
34 similar features. The three predominant classes of proprioceptors in insects are campaniform sensilla, hair plates,
35 and chordotonal neurons (Tuthill and Wilson, 2016b). Dome-shaped campaniform sensilla encode mechanical load
36 by detecting strain in the cuticle (Zill et al., 2004), hair plates act as joint limit detectors (French and Wong, 1976),
37 and chordotonal neurons detect multiple features of joint kinematics (Burns, 1974; Matheson and Field, 1995).
38 Although they differ in structure, the common functional properties of vertebrate and invertebrate proprioceptors
39 suggest that they have convergently evolved to encode similar mechanical features (Tuthill and Azim, 2018).

40 Compared to other primary senses, the organization of central circuits for leg proprioception remains poorly
41 understood. Pioneering work in larger insect species, such as the locust (Burrows, 1996) and stick insect (Büschges,
42 1989) characterized the anatomy and physiology of central proprioceptive neurons. However, most of this prior
43 work relied on sharp-electrode recordings from single neurons, which made it challenging to understand how they
44 operate collectively as a circuit to control behavior. Understanding circuit-level architecture and function is aided
45 by the existence of genetic tools to label, manipulate, and record from identified classes of neurons. Such genetic
46 tools have recently become available for proprioceptive circuits in the *Drosophila* ventral nerve cord (VNC), the

47 invertebrate analog of the spinal cord (Court et al., 2020). An additional advantage of *Drosophila* is the existence
48 of an electron microscopy (EM) volume of the adult VNC (Phelps et al., 2021), which enables synapse-level
49 reconstruction of VNC circuits. Together, the combination of genetic tools and connectomics data provides an
50 opportunity to link connectivity and function of central circuits for leg proprioception.

The largest proprioceptive organ in the *Drosophila* leg is the femoral chordotonal organ (FeCO), which is composed of ~152 mechanosensory neurons (Kuan et al., 2020) located in the proximal femur and attached to the tibia by a series of tendons (Figure 1A). Calcium imaging has revealed that *Drosophila* FeCO neurons can be divided into three basic subtypes: claw neurons encode tibia position, hook neurons encode movement direction, and club neurons encode bidirectional movement and vibration (Mamiya et al., 2018). The axons of each subtype project to distinct regions of the VNC. This organization suggests that signals from different FeCO subtypes may be processed by separate downstream neurons (Figure 1A, right). However, apart from three specific VNC cell classes (Agrawal et al., 2020), little is known about how information from different FeCO subtypes is integrated by downstream circuits in the *Drosophila* VNC that underlie sensation and guide movement of the leg.

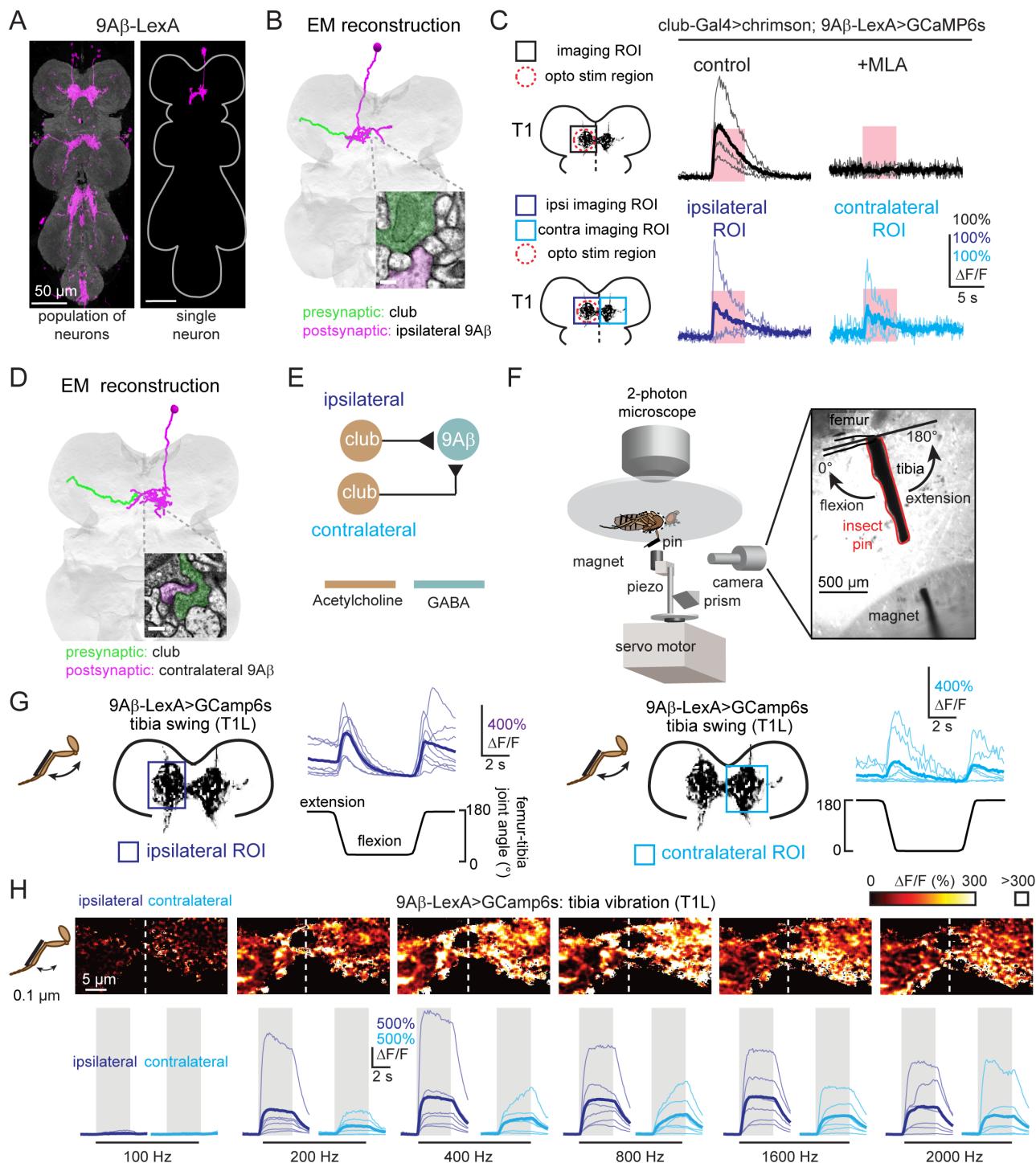

60 In this study, we elucidate the logic of sensory integration within leg proprioceptive circuits of the *Drosophila* VNC.
61 We first combined two-photon calcium imaging of second-order VNC neurons with optogenetic stimulation of
62 specific FeCO subtypes. This strategy, named “functional connectivity”, has previously been used to map the
63 structure of visual (Morimoto et al., 2020) and navigation (Franconville et al., 2018) circuits in *Drosophila*. Our
64 functional connectivity analysis identified separate circuits for processing tibia vibration and position/movement.
65 We further analyzed spatial and multimodal integration in three specific classes of central neurons. Using spatially
66 targeted optogenetic stimulation to map receptive-field structure, we found that each class either integrates sensory
67 information from multiple FeCO subtypes or from the same FeCO subtype across multiple legs. Finally, we find
68 that inhibition sculpts the adaptation dynamics of second-order neurons encoding leg movement and vibration. Our
69 results demonstrate that diverse proprioceptive signals from different sensory neuron subtypes and locations on the
70 body are directly integrated by second-order neurons and reveal separate central pathways for processing of external
71 substrate vibration and internal self-generated leg joint kinematics.

Results

We began by creating genetic driver lines to specifically manipulate the activity of each FeCO subtype with optogenetics. Using an anatomical screen of existing driver lines (Jenett et al., 2012; Tirian and Dickson, 2017), we created intersectional Split-Gal4 lines that specifically label club, claw, and hook neurons (Figure S1A), which we previously found encode tibia movement/vibration, position, and direction (Mamiya et al., 2018). To measure the proprioceptive tuning of the neurons labeled by each Split-Gal4 line, we used 2-photon calcium imaging while swinging the tibia between flexion and extension (Figure S1C-D). In addition to confirming the proprioceptive encoding of each subtype, these experiments identified a new FeCO subtype which responds to tibia extension in a directionally-tuned manner. The projections of these neurons are slightly different from the flexion-tuned hook neurons (Figure S1D); therefore, we refer to this new FeCO subtype as “hook-extension”.

With improved tools to specifically target FeCO subtypes, we next sought to identify their downstream partners in the VNC. The VNC is composed of about 20,000 neurons that develop from 34 hemilineages (Harris et al., 2015). Neurons within a hemilineage are anatomically (Shepherd et al., 2019) and transcriptionally (Allen et al., 2020; Lacin and Truman, 2016) similar; they also use the same primary neurotransmitter (Lacin et al., 2019). By visually screening a collection of LexA driver lines, we identified 27 LexA lines that sparsely labeled VNC neurons from each hemilineage that anatomically overlapped with FeCO axons (Figure S2). We denote driver lines that label different neuron classes within the same hemilineage using Greek letters, e.g., 9A α , 9A β , etc.

90 In *Drosophila*, most neurons release one of three canonical neurotransmitters: acetylcholine, GABA, and glutamate
 91 (Allen et al., 2020; Bates et al., 2019). Fast excitation is primarily mediated by acetylcholine, while inhibition is
 92 mediated by GABA and glutamate. We were able to infer the neurotransmitter released by each VNC neuron class
 93 (Figure 1C, E), based on their hemilineage identity (Lacin et al., 2019) .


Figure 1. Building a functional connectivity map between FeCO sensory neurons and central neurons in the fly VNC. (A) Left: a confocal image of the foreleg (T1) of *Drosophila melanogaster*. The FeCO cell bodies (left) and (axons) are labelled by GFP (green) driven by *iav*-Gal4. Cuticle auto-fluorescence is magenta (left) and the VNC neuropil stained by nc82 is shown in grey (right). (B) Experimental set-up for two-photon calcium imaging from VNC neurons while optogenetically stimulating FeCO sensory neurons. Left: Schematic of experimental setup. The blue window indicates the imaging region (ROI) and red dashed circle indicates the region of optogenetic stimulation. Right: example traces of GCaMP6s fluorescence in 10Ba¹ neurons in response to optogenetic activation of club neurons (n=6 flies). The red bars below the traces indicate the 5-second stimulation window and intensity. (C) A heatmap summarizing the average peak calcium signal ($\Delta F/F$) in VNC neurons following optogenetic activation of each FeCO subtype (n>=4 flies). The colors for each lineage and FeCO subtype indicate the putative neurotransmitter that they release. Superscript numbers indicate independent LexA lines that label the same lineage; detailed genotypes are listed in Figure S2. (D) Anatomy (left) and peak calcium responses (right, mean \pm SEM) of each sensory/central neurons pair (n= 6, 7, 4, 5 flies). (E) A summary of the predominant targets downstream of each FeCO subtype. Functional connectivity strength is indicated by the shading of the arrow. Note that the presence of some connections between claw and 8Ba neurons varied across flies (Figure S3), while others were consistent. (F) Single neuron anatomy from each class downstream of club (left) and claw (right) sensory neurons were aligned to a common VNC template. (G) Quantification of calcium response kinetics. The pink window indicates 5 seconds stimulus duration, while green curve is an example calcium trace. (H) Peak calcium response ($\Delta F/F$) (* p<0.05, ** p<0.01, n.s. no significant difference, Mann-Whitney test), (I) time to 50% of the maximum signal (* p<0.05, ** p<0.01, n.s. no significant difference, Mann-Whitney test and Kruskal-Wallis test), and (J) time to 50% decay from the max for neurons downstream of club (solid brown dots) and claw (open brown circles) sensory neurons (n.s. no significant difference, Kruskal-Wallis test). Each point represents data from an individual fly, while bars indicate the average across flies.

95 We imaged calcium signals from each LexA line in the VNC with GCaMP6s (Chen et al., 2013) while
96 optogenetically stimulating the axons of FeCO neurons expressing the ChR2 variant Chrimson (Klapoetke et al.,
97 2014, Figure 1B). To account for differences in response threshold and synaptic strength, we tested a range of
98 stimulation intensities (Figure 1B). Calcium signals evoked by optogenetic stimulation typically plateaued at a
99 stimulus intensity of 0.3 mW/mm² (Figure 1B-D), so we used this stimulus intensity for subsequent group analyses.
100 Overall, we identified 8 classes of VNC neurons from 6 lineages that responded to optogenetic stimulation of one
101 or more subtypes of FeCO neurons: 8A α , 8B α , 9A β , 10B α , 13B α 13B β , 19A α , 19A β (Figure 1C). Of these, 2 neuron
102 classes (9A β , 10B α) responded to stimulation of club neurons, while the remaining 6 classes responded consistently
103 to the stimulation of claw neurons (Figure 1C). In addition to responding to claw neurons, 8A α and 13B β neurons
104 responded to stimulation of hook-flexion and hook-extension neurons, respectively. The amplitude of calcium
105 signals driven by stimulation of a particular FeCO subtype (e.g., club or claw) varied across different downstream
106 neurons (Fig 1H). Neuron classes that responded to stimulation of club and claw axons were non-overlapping:
107 neurons downstream of the club occupy a medial region of the VNC (mVAC), while neurons downstream of the
108 claw arborize more laterally or in the intermediate neuropil (IntNp, Figure 1F). Comparing calcium dynamics of
109 VNC neurons during proprioceptor excitation revealed that VNC neurons downstream of the club had a faster time
110 to peak than those downstream of the claw (Figure 1I). In contrast, the decay of the calcium response of these two
111 groups (club and claw targets) was similar (Figure 1J). These differences may reflect distinct temporal dynamics in
112 pathways that process leg position vs. vibration-related signals.

113 In summary, our results reveal the first steps of proprioceptive processing downstream of the FeCO. Signals from
114 club (vibration) and claw (position) are routed to different downstream targets, while claw (position) and hook
115 (direction/movement) signals are combined. We also observed interesting differences in the response dynamics of
116 neurons downstream of the club and claw, consistent with their roles in encoding high and low frequencies,
117 respectively.

118 **9A β , a VNC cell class downstream of club axons, integrates bidirectional movements and vibration signaling
119 from both prothoracic legs.**

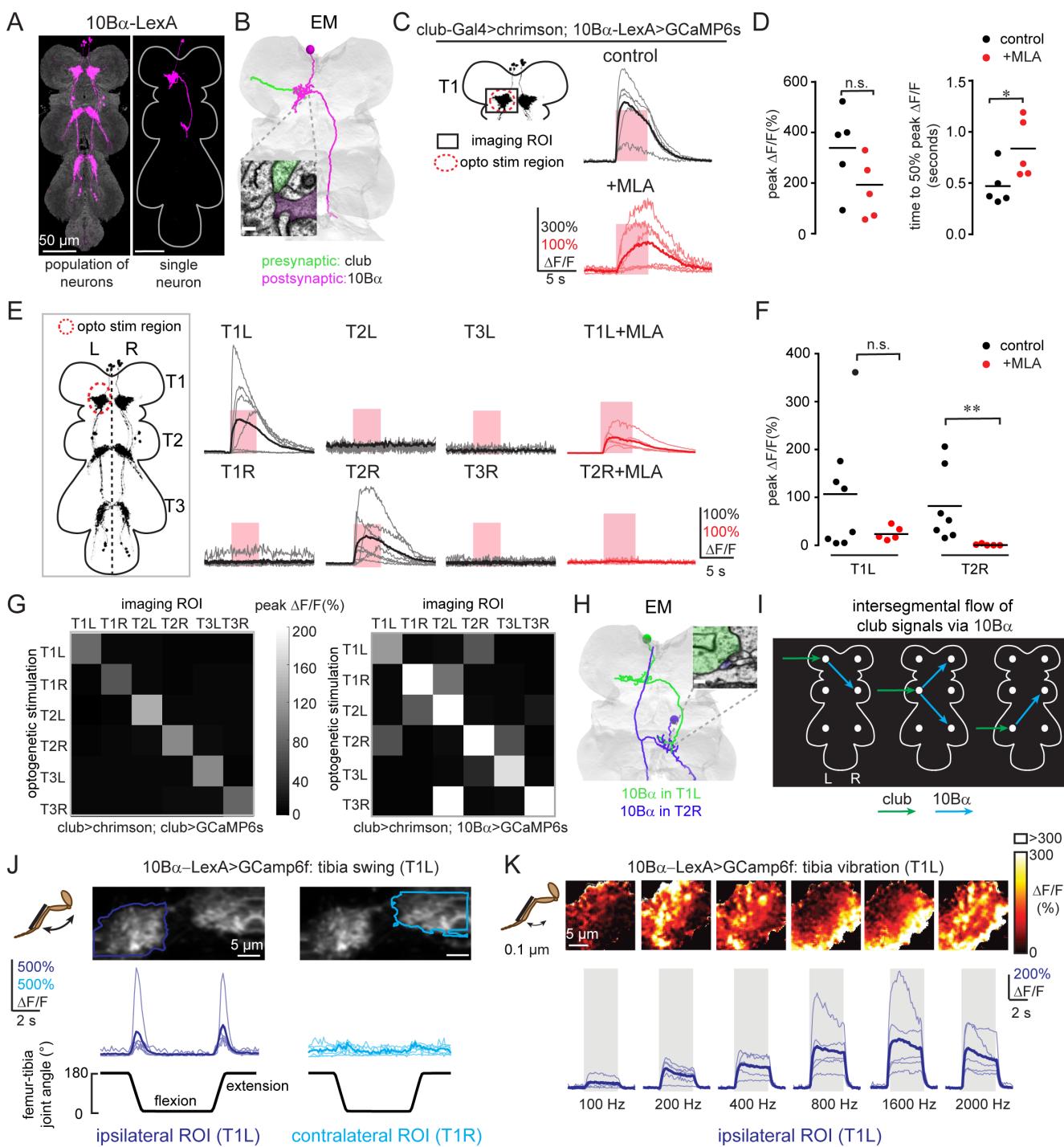
120 The two cell classes we identified as downstream targets of the club both have contralateral projections that cross
121 the VNC midline. We therefore hypothesized that they integrate club signals across multiple legs.

Figure 2. 9A β neurons receive bidirectional movement and vibration signals from club neurons across both front legs.

(A) Anatomy of 9A β neurons. Magenta is GFP driven by 9A β (*R18H03-LexA*), neuropil was stained with nc82 (grey). A single 9A β neuron (magenta) is labeled by multi-color FLPout. Both images were aligned to a common VNC template. (B) Anatomical reconstruction from EM showing an example of a 9A β neuron (magenta) that receives direct synaptic input from an ipsilateral club axon (green). The inset shows an example of a synapse between the two cells. Scale bar = 200nm. (C) Calcium response of 9A β neurons to optogenetic stimulation of club neurons. Top: calcium responses of 9A β neurons in the left prothoracic VNC (T1L) to stimulation of the axons from club neurons in the left foreleg (T1L, n=4). Methyllycaconitine (MLA, 1 μ M, n=4) effectively blocks excitation from club neurons. Bottom: calcium responses of 9A β in left and right neuromeres of the prothoracic VNC (T1L, n=3 and T1R n=3, respectively) to optogenetic stimulation of club axons in T1L (indicated by the red dashed circle). The pink regions indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm 2). (D)

Same as in B but showing direct connection between a contralateral 9A β neuron (magenta) and a club axon (green) traced from the EM volume. Scale bar = 200nm. (E) Proposed wiring diagram for how club axons connect to 9A β neurons. (F) Experimental setup for calcium imaging during passive leg movements (adapted from Mamiya et al., 2018). Two-photon calcium imaging was used to record calcium signals from the central VNC neurons while controlling and tracking the femur-tibia joint. A pin was glued to the tibia of the front leg and manipulated using a magnet mounted on a motor. The joint was tracked with high-speed video. (G) 9A β neurons respond to ipsilateral (n=6) and contralateral (n=6) tibia movement. Thin lines are recordings from individual flies; the thicker line indicates the average across flies. (H) 9A β neurons respond to 0.1 μ m vibration of both the ipsi- (n=6) and contralateral (n=6) tibia. Top: The majority of pixels had a $\Delta F/F$ value between 0 and 300%; outlier pixels with a value above 300% $\Delta F/F$ were set to white for visualization purposes. Bottom: Calcium changes in 9A β neurons during tibia vibration across different frequencies. Thin lines are calcium signals from individual flies, thicker line indicates the average across flies.

123 We first examined connectivity between club axons and 9A β neurons, a class of GABAergic interneurons local to
124 each VNC segment (Figure 2A, left). Single 9A β neurons densely innervate the ipsilateral neuromere, but also
125 extend a process contralaterally, across the midline (Figure 2A, right). Identification and reconstruction of 9A β and
126 club neurons in an electron microscopy (EM) volume of the *Drosophila* VNC (Phelps et al., 2021) revealed the
127 existence of direct synaptic connections between club axons and ipsilateral 9A β neurons (Figure 2B). Signal
128 transmission between FeCO and central neurons may be mediated by chemical synapses, electrical gap junctions,
129 or a mixture of the two. Because all FeCO neurons release acetylcholine (Mamiya et al., 2018), we used an
130 antagonist of nicotinic acetylcholine receptors (MLA, 1 μ M) to test for the presence of electrical signaling mediated
131 by gap junctions. MLA blocked club-driven calcium signals in 9A β (Figure 2C), suggesting that the connection
132 between club and 9A β neurons is mediated by acetylcholine receptors.


133 To ask whether 9A β neurons integrate club signals from multiple legs, we compared calcium responses from 9A β
134 neurons in a single neuromere (ipsilateral or contralateral) while stimulating club axons from the left prothoracic
135 leg using targeted optogenetic excitation. 9A β neurons in both the left and right neuromeres increased their calcium
136 activity in response to excitation of club axons (Figure 2C). These data suggest that 9A β neurons integrate ipsilateral
137 and contralateral signals from club neurons (Figure 2E). EM reconstruction of a 9A β neuron with a cell body in the
138 opposite neuromere confirmed the existence of direct synaptic input from contralateral club axons (Figure 2D).

139 To understand how 9A β neurons encode leg movements *in vivo*, we recorded 9A β calcium signals while
140 manipulating the femur-tibia joint of the fly's left leg with a magnetic control system (Mamiya et al., 2018; Figure
141 2F). We observed phasic calcium signals of 9A β neurons in both ipsilateral and contralateral neuromeres, in
142 response to tibia flexion and extension (Figure 2G). Similar to what we observed in the club Split-Gal4 line (Figure
143 S1D), 9A β also exhibited higher baseline activity when the tibia was held at full extension compared to flexion;
144 inspection of high-speed video suggests that this response is caused by vibrations produced by the fly's resistance
145 to passive tibia extension. Consistent with this hypothesis, 9A β neurons responded strongly to low-amplitude
146 (0.1 μ m) vibration of the tibia (Figure 2H) at frequencies from 200-2000 Hz, similar to the club neuron population
147 (Mamiya et al., 2018). Thus, 9A β neurons encode high frequency, low amplitude movement of the tibia, consistent
148 with a role for sensing external substrate vibrations.

149 In summary, GABAergic 9A β neurons integrate club signals from left and right legs in the same segment to encode
150 tibia movement and high frequency vibration (Figure 2E). 9A β neurons are thus positioned to provide inhibition to
151 other neurons in the vibration processing pathway, or to mediate interactions between movement and vibration
152 pathways.

153 **10Ba, a VNC cell class downstream of the club, integrates bidirectional movements and vibration signaling 154 from different legs across segments.**

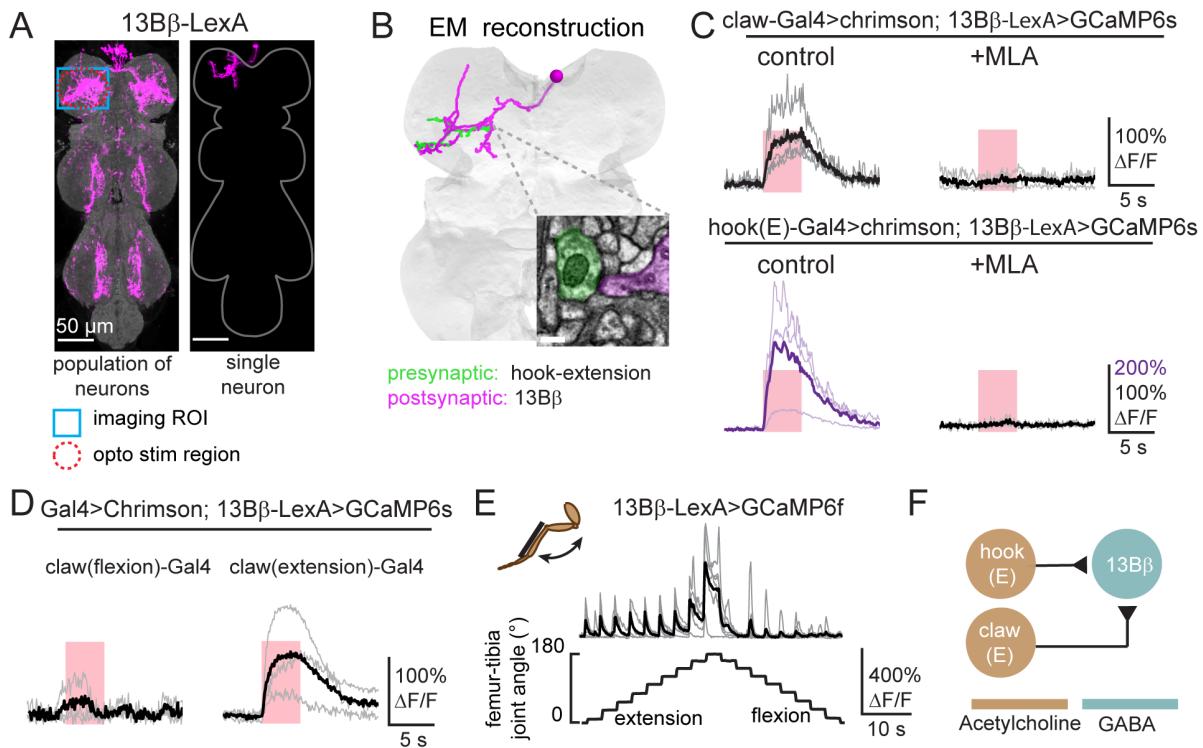
155 We next switched our attention to 10Ba, the second candidate cell class whose anatomy suggests that it integrates
156 club signals from multiple legs. Single 10Ba neurons with a cell body in T1 arborize within one neuromere, then
157 cross the midline and arborize in the contralateral T2 neuromere (Figure 3A).

Figure 3. 10B α neurons integrate vibration signals from club neurons across legs. (A) Anatomy of 10B α neurons. Magenta is GFP driven by 10B α (*R13E04-LexA*), neuropil was stained by nc82. At right is a single neuron labeled by multi-color FLPout. Images were aligned to a common VNC template. (B) Anatomical reconstruction from EM showing an example of a 10B α neuron (magenta) that receives direct synaptic input from a club axon (green). The inset shows an example of a synapse between the two cells. Scale bar = 200nm. (C) Calcium responses of the 10B α neurons to optogenetic stimulation of club neurons. Calcium responses of 10B α neurons in the left prothoracic VNC (T1L) to stimulation of club neurons in the left foreleg. Methyllycaconitine (MLA, 1 μ M) did not eliminate excitation from club neurons. The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm 2). (D) Peak calcium responses (left) and time to 50% of the maximum calcium signals (right) across flies, for the experiments shown in (C). Each dot represents data from a single fly, while bars represent average peak calcium signals (left) or mean time to peak (right) (control: n=5, MLA: n=5. * p<0.05, n.s. no significant difference, Mann-Whitney test). (E) Calcium responses of 10B α in all six neuromeres

(T1L-T3R) to stimulation of club axons in T1L with or without MLA (1 μ M). The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm²). (F) Same as in D but showing the quantification of the peak calcium responses shown in (E). Each dot represents data from a single fly (T1L: n=7, T2R: n=5, n.s.: no significance, * p<0.05, Mann-Whitney test). (G) Heatmaps of average peak calcium responses of club (left, n=5 flies) and 10B α (right, n=6 flies) neurons in each neuropil to stimulation of the axons of club neurons in each leg. (H) Same as in B but showing a 10B α neuron in T1 left (green) synapses on a 10B α neuron in T2 right (blue) via EM reconstruction. Scale bar = 200nm. (I) Proposed diagram of signal flow from club axons to 10B α neurons, based on data summarized in (G). White dots represent neurites of the 10B α neurons in different neuromeres. (J) Calcium response in 10B α neurons during tibia swing movement. 10B α neurons respond phasically to bidirectional tibia movement (n=6). (K) 10B α neurons respond to tibia vibration. Top: The majority of pixels had a Δ F/F value between 0 and 300%; outlier pixels with a value above 300% Δ F/F were set to white for visualization purposes. Bottom: Calcium changes in 10B α neurons during tibia vibration across different frequencies. Thin lines are calcium signals from individual flies, while the thicker line indicates the average across flies (n=5).

159 A subset of 10B α neurons also project to the brain, arborizing in the contralateral antennal mechanosensory and
160 motor center (AMMC, data not shown). Previous work showed that optogenetic activation of 10B α neurons caused
161 walking flies to pause, consistent with a role in detecting substrate vibration (Agrawal et al., 2020).

162 We reconstructed 10B α neurons in the EM volume and found dense synaptic inputs from club axons (Figure 3B),
163 confirming that club neurons are both functionally and anatomically presynaptic to 10B α neurons. However,
164 blocking acetylcholine receptors with MLA reduced but did not eliminate club-driven calcium signals in 10B α
165 neurons (Figure 3C-D). These data suggest that the connection between club and 10B α neurons consists of mixed
166 chemical/electrical signaling, which is consistent with previous work (Agrawal et al., 2020). Interestingly, we
167 observed that the time to peak of the 10B α calcium signals was significantly longer in the presence of MLA (Figure
168 3D), which suggests that chemical and electrical transmission may have distinct temporal dynamics.


169 The intersegmental projections of 10B α neurons raise the possibility that these cells integrate signals from club
170 neurons across different legs. To test this, we measured calcium responses of 10B α neurons in each neuromere
171 (T1L-T3R) while optogenetically stimulating club axons arising from each of the six leg nerves. When club axons
172 from the left front (T1L) leg were optogenetically stimulated, we observed robust calcium signals in 10B α processes
173 of T1L and T2R, but not in other neuromeres (Figure 3E). Applying MLA abolished calcium responses in T2R, but
174 not in T1L (Figure 3E-F), suggesting a role for gap junctions in local but not intersegmental connectivity.

175 To test whether this connectivity pattern generalized to other VNC segments, we consecutively stimulated club
176 axons from each leg while recording calcium signals from 10B α neurons in all six neuromeres, resulting in a 6x6
177 functional connectivity map (Figure 3G). We observed intersegmental responses for all legs, though the pattern of
178 information flow was different for each segment (Figure 3G, right). In contrast, stimulating and recording from the
179 same club axons did not produce intersegmental responses (Figure 3G, left). These data demonstrate that 10B α
180 neurons integrate club signals from pairs of adjacent legs. This conclusion is also supported by our finding from
181 EM reconstruction that 10B α neurons from T1L and T2R are synaptically connected (Figure 3H).

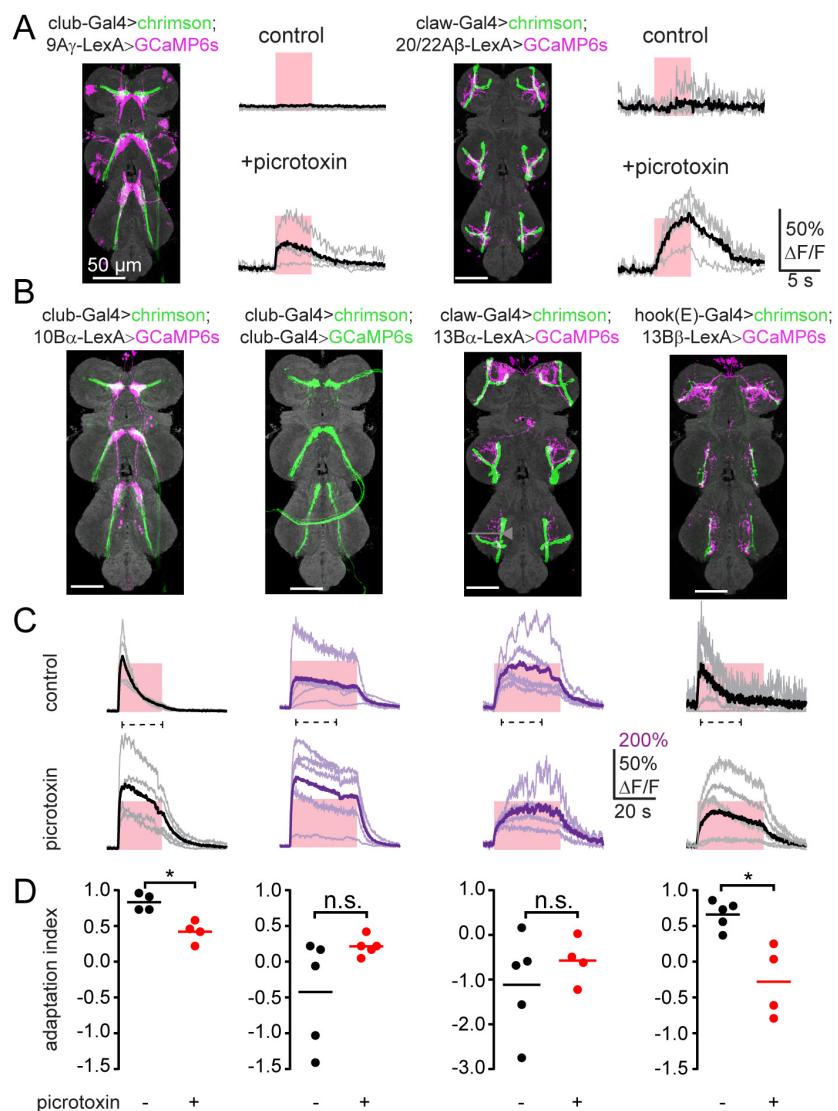
182 To compare these functional connectivity results to encoding of sensory stimuli, we recorded calcium signals in
183 10B α neurons while moving the tibia at 180°/sec. Unlike 9A β , 10B α neurons responded to ipsilateral but not
184 contralateral tibia movement in the prothoracic segment (Figure 3J). Like club axons (Figure S1D), 10B α neurons
185 responded to tibia movement in both directions (Figure 3J), as well as high frequency, low amplitude vibration of
186 the tibia (Figure 3K). The distribution of calcium signals shifted from lateral to medial as vibration frequency
187 increased (Figure 3K), consistent with the topographic map of frequency previously observed in club axons
188 (Mamiya et al., 2018). Curiously, this frequency map was not present in recordings from 9A β neurons (Figure 2H).

189 In summary, both 9A β and 10B α neurons encode bidirectional movements and vibration signals by integrating club
190 axons across multiple legs. The key difference between these cell classes is that 9A β neurons mediate bilateral
191 inhibition within a VNC segment, while 10B α neurons integrate excitatory club inputs across contralateral VNC
192 segments (Figure 3I). This convergence supports our hypothesis that club pathways play a role in detecting substrate

193 vibration: external vibration stimuli are likely to be correlated across legs, in contrast to natural joint kinematics,
194 which are unlikely to be correlated across legs.

Figure 4. 13B β neurons integrate position and directional movement signals from claw and hook-extension neurons.
(A) Anatomy of 13B β neurons. Population (left) and single neuron (right) anatomy of 13B β neurons. GFP (magenta) was driven by 13B β (*VT006903-LexA*). The VNC neuropil was stained against nc82 (grey). Both images were aligned to a common VNC template. (B) Anatomical reconstruction using EM showing an example of a 13B β neuron (magenta) that receives direct synaptic input from a hook-extension axon (green). The inset shows an example of a synapse between the two cells. Scale bar is 200 nm. (C) Calcium responses of 13B β neurons to optogenetic stimulation of claw and hook-extension neurons. Left: calcium responses of 13B β neurons in the left prothoracic VNC to optogenetic stimulation of claw axons from the left foreleg (T1L). Right: MLA (1 μ M) blocked excitation produced by claw neuron activation. The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm 2). Control: n=5, MLA: n=4 respectively. Bottom: calcium responses of 13B β neurons to optogenetic stimulation of hook-extension axons. (D) Calcium responses of 13B β to optogenetic stimulation of claw-flexion (n=3) and claw-extension axons (n=4). (E) 13B β neurons respond to tibia extension. Calcium changes of 13B β neurons during tibia movement (n=6). (F) Proposed diagram of sensory integration by 13B β neurons, which receive input from claw-extension and hook-extension neurons.

195 13B β neurons integrate position and directional movement signals


196 Another interesting result of our functional connectivity screen was that some second-order neurons integrate
197 proprioceptive signals across multiple FeCO subtypes. Specifically, we identified two candidate cell-types (13B β
198 and 8A α) downstream of both claw and hook axons. We selected 13B β neurons for further analysis because clean
199 genetic driver lines exist for this cell class.

200 We reconstructed the anatomy of 13B β cells from the EM volume and found direct synaptic inputs from hook-
201 extension axons (Figure 4B). We did not find any synapses between 13B β and claw neurons, probably because only
202 2 claw axons have been fully reconstructed; however, we cannot rule out the possibility that claw axons are
203 connected to 13B β neurons indirectly. Calcium responses in 13B β neurons were abolished when we blocked
204 acetylcholine receptors with MLA (Figure 4C), suggesting that the synaptic input from both FeCO subtypes relies
205 on chemical synaptic transmission.

206 We next sought to understand the convergence of position and movement signals within 13B β neurons. Our
 207 functional connectivity screen revealed that 13B β neurons respond to activation of claw axons, but the driver line
 208 we used to activate these neurons labeled both flexion and extension-tuned cells. We therefore created Split-Gal4
 209 lines that separately label claw neurons encoding tibia flexion (<90°) and extension (>90°; Figure S4) and repeated
 210 functional connectivity experiments with these sparser lines. 13B β neurons specifically increased calcium activity
 211 in response to optogenetic stimulation of extension-tuned claw neurons but did not respond to flexion-tuned claw
 212 neurons (Figure 4D). Calcium responses during passive tibia movements were consistent with convergent input
 213 from extension-tuned claw and hook neurons: 13B β calcium signals peaked during extension movements when the
 214 tibia was already extended (Figure 4E).

215 In summary, GABAergic 13B β neurons integrate excitatory input from extension-tuned claw and hook neurons to
 216 encode joint movement within a specific angular range (Figure 4F). Integration of direction and position signals
 217 could be beneficial for dynamic tuning of resistance reflexes that maintain body posture and protect joints from
 218 hyperextension.

Figure 5. Multiple roles for inhibition in functional connectivity between first and second-order proprioceptive neurons. (A) Inhibition gates connectivity between leg proprioceptors and VNC neurons. Left: responses of 9A γ neurons to optogenetic stimulation of club neurons were revealed after application of picrotoxin (10 μ M). Right: similar results for claw and 20/22A β neurons. The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm 2). (B) Anatomy of the axons of FeCO subtypes (green) and their downstream targets (magenta). VNC neuropil was stained using nc82 (grey). (C) Calcium responses of second-order neurons in the left prothoracic VNC to optogenetic stimulation of the indicated sensory neurons (top). Picrotoxin (10 μ M) reduced response adaptation in 10B α and 13B β neurons. The pink windows indicate the optogenetic stimulus duration (20 sec for 10B α neurons and 30 sec for others; the laser power was 0.28mW/mm 2). The dashed line under each trace indicates the window used to calculate the adaptation index below. (D) Quantification of calcium signal adaptation from data in (C). Adaptation index was calculated as $F_{\text{offset}}/F_{\text{peak}}$. 1 indicates complete

adaptation, 0 indicates no adaptation, negative values indicate an increase of the calcium signal over time. Each dot represents data from a single fly, while bars represent the averages (* $p < 0.05$, n.s. no significant difference, Mann-Whitney test.).

219

220 Inhibition gates calcium dynamics of central proprioceptive pathways

221 Our screen (Figure 1) identified several cell classes with dendrites in close proximity to FeCO axons, but which did
222 not respond to optogenetic activation of proprioceptors. We wondered if their connectivity was masked by
223 feedforward inhibition, as has been demonstrated in second-order neurons that process tactile signals from the leg
224 (Tuthill and Wilson, 2016a). We repeated functional connectivity experiments with these cell classes while blocking
225 GABA_a receptors with picrotoxin (10μM). From 8 VNC cell classes we tested, two (9A γ and 20/22A β) had
226 measurable calcium signals only in the presence of picrotoxin (Figure 5A). These connections were specific,
227 meaning that 9A γ neurons responded only to activation of club neurons and 20/22A β neurons responded only to
228 activation of claw neurons.

229 In other cell classes, we found that GABAergic inhibition sculpted the dynamics of the calcium response. For
230 example, GCaMP signals recorded from 10B α neurons adapted during prolonged optogenetic stimulation (20
231 seconds) of club neurons (Figure 5C). In contrast, GCaMP signals in 13B α neurons remained elevated during
232 optogenetic stimulation of claw neurons over a period of 30 seconds (Figure 5C). This adaptation was not due to
233 decay of optogenetically-evoked activity in the proprioceptor axons. Rather, it appears that inhibition, likely
234 mediated by GABA_a or GluCl receptors (Liu and Wilson, 2013), contributes to the adaptation of 10B α calcium
235 signals during prolonged stimulation. We observed a similar phenomenon for 13B β neurons during optogenetic
236 stimulation of hook-extension neurons (Figure 5C). Overall, these results show that adaptation mediated by
237 GABAergic or glutamatergic inhibition gates the activity and sculpts the dynamics of second-order proprioceptive
238 neurons.

239

Discussion

240 In this study, we report the anatomical structure and functional organization of second-order circuits for leg
241 proprioception in *Drosophila*. Due to the lack of clear hierarchical structure within the VNC leg neuropil, it has
242 been challenging to infer the flow of proprioceptive sensory signals with existing tools. We therefore generated
243 genetic driver lines to label specific subtypes of leg proprioceptors and classified candidate second-order neurons
244 based on hemilineage identity. We used optogenetics and calcium imaging to map the functional connectivity
245 between leg proprioceptors and second-order neurons, followed by EM reconstruction to validate synaptic
246 connectivity. We then used spatially targeted and subtype-specific optogenetic stimulation to analyze integration of
247 FeCO signals within a subset of second-order neuron classes.

248 Overall, this work reveals the logic of sensory integration in second-order proprioceptive circuits: some populations
249 of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role for detection of
250 external substrate vibration. Signals for leg joint position and directional movement converge in other second-order
251 neurons, revealing pathways for local feedback control of leg posture. We anticipate that this functional wiring
252 diagram (Figure 6) will also help guide the interpretation of anatomical wiring diagrams determined through EM
253 reconstruction of VNC circuits.

254 Connectivity motifs within second-order proprioceptive circuits

255 Proprioceptors in the *Drosophila* FeCO can be classified into three subtypes: club neurons encode bidirectional
256 tibia movement and vibration frequency, claw neurons encode tibia position (flexion or extension), and hook
257 neurons encode the direction of tibia movement (Mamiya et al., 2018). Our results show the existence of two distinct
258 central pathways for processing signals from club and claw/hook neurons (Figure 1). We propose that neurons
259 downstream of the club mediate sensing of low-amplitude mechanical vibrations in the external environment, while
260 neurons downstream of the claw and hook provide proprioceptive feedback to motor circuits for controlling the
261 posture and movement of the legs. This division of central pathways for external and internal sensing may be a
262 common motif across limbed animals. Work in a variety of species, including a recent study in mice (Prsa et al.,
263 2019), has found that many animals can detect low-amplitude, high-frequency substrate-borne vibrations (Hill and

264 Wessel, 2016). Flies may use vibration sensing to monitor acoustic signals in the environment, such as during
265 courtship behavior (Fabre et al., 2012), or to detect approaching threats.

266 The distinct anatomical organization of neurons downstream of the club and claw/hook also supports a segregation
267 of vibration sensing and motor control feedback pathways. 9A β and 10B α neurons arborize in the medial ventral
268 association center (mVAC, Figure 1E), a common target of descending neuron axons (Namiki et al., 2018). In
269 contrast, 13B β arborize in the intermediate neuropil (IntNp, Figure 1E), which contains the dendritic branches of
270 the leg motor neurons and premotor interneurons. Based on these differences, we hypothesize that vibration-sensing
271 neurons interact with ascending and descending signals to/from the brain, while neurons downstream of hook and
272 claw axons contribute to local motor control through direct or indirect connections to motor neurons. Leg motor
273 neurons receive position and movement-tuned proprioceptive input, consistent with feedback from claw and hook
274 neurons (Azevedo et al., 2020). Additional connectomic reconstruction is needed to determine which second-order
275 neurons mediate these feedback connections, but 13B β neurons are promising pre-motor candidates.

276 We found that VNC neurons postsynaptic to claw and hook axons
277 receive only local input, from individual legs, while second-order
278 neurons postsynaptic to club axons integrate signals across
279 multiple legs. For example, GABAergic 9A β neurons pool
280 information from left and right legs in a single VNC segment
281 (Figure 2), while cholinergic 10B α neurons receive convergent
282 input from left and right legs across different segments (Figure 3).
283 Integrating club input across legs may improve detection of
284 external vibration signals, while proprioceptive signals from the
285 claw and hook may be initially processed in parallel to support
286 reflexive motor control of individual legs. Bilateral integration also
287 occurs in second-order auditory circuits downstream of the
288 *Drosophila* Johnston's organ: mechanosensory signals from the
289 two antennae are processed in parallel by second-order neurons in
290 the AMMC, but then converge in third-order neurons in the wedge
291 (Patella and Wilson, 2018).

292 While second-order neurons in the vibration pathway integrate
293 club signals across legs, multiple classes of second-order neurons
294 in the motor pathway (13B β and 8A α) integrate signals across
295 different FeCO subtypes from the same leg. Using new genetic
296 driver lines that subdivide claw neurons into extension and flexion-
297 tuned subtypes, we found that extension-tuned claw and hook
298 neurons converge on 13B β neurons. We hypothesize that these
299 cells mediate resistance reflexes that stabilize tibia position in
300 response to external perturbations. Prior work in the stick insect
301 has shown that tibia resistance reflexes rely on position and
302 directional movement signals from the FeCO (Bässler, 1993). In
303 support of this hypothesis, another class of neurons in the 13B
304 hemilineage, 13B α , also encode tibia extension and drive tibia
305 flexion when optogenetically activated (Agrawal et al., 2020).

306 Inhibition and temporal dynamics

307 Our results identify a prominent role for inhibition in central processing of proprioceptive information from the
308 FeCO. Of the eight second-order cell classes we identified in our screen, six are putative inhibitory neurons (i.e.,
309 release GABA or glutamate). In other sensory circuits, local inhibitory processing contributes to sharpening spatial
310 and temporal dynamics (Dubs et al., 1981) as well as reducing sensory noise through crossover inhibition (Cafaro

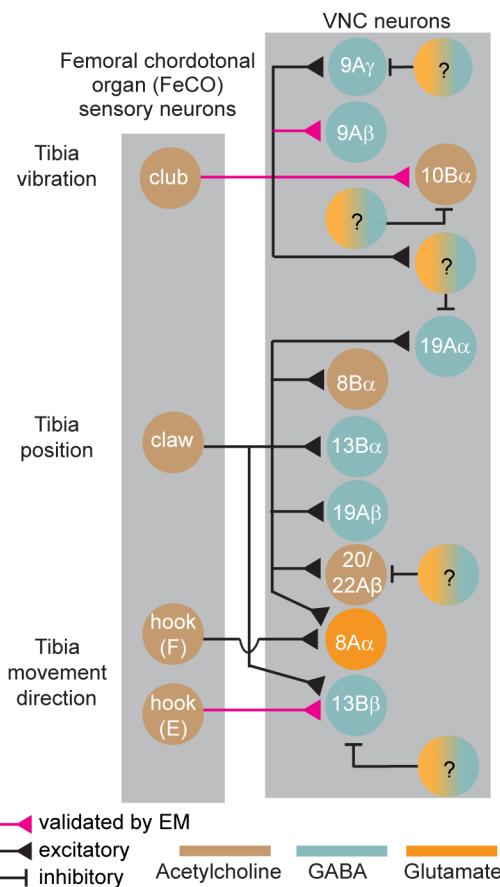


Figure 6. Summary diagram of circuits processing leg proprioceptive signals from the *Drosophila* FeCO, based on experiments in this study. Question marks indicate putative inhibitory neurons of unknown identity.

311 and Rieke, 2013; Liu et al., 2015). By pharmacologically blocking GABA_a and GluCl receptors, we identified a
312 role for inhibition in controlling adaptation within second-order neurons (e.g., 10B α and 13B β neurons, Figure 5C).
313 In other cases (20/22A α or 9A γ , Figure 5A), inhibition was strong enough to completely mask proprioceptive inputs
314 from FeCO axons. We hypothesize that this inhibition may be tuned in certain behavioral contexts, for example
315 during active movements, to gate the flow of proprioceptive feedback signals in a context-dependent manner.

316 Synaptic transmission in *Drosophila* can be mediated by chemical synapses, which can be visualized with EM, or
317 electrical gap junctions, which are not typically identifiable at the resolution of current EM volumes. FeCO neurons
318 release acetylcholine but also express gap junction proteins (*shakB*, data not shown). We therefore used
319 pharmacology to test for the presence of gap junctions between sensory and central neurons. MLA, an effective
320 antagonist of nicotinic acetylcholine receptors in *Drosophila* (Tuthill and Wilson, 2016a), eliminated functional
321 connectivity between club and 9A β neurons, but only reduced functional connectivity between club and 10B α
322 neurons. We observed similar results downstream of the claw: MLA blocked functional connectivity between claw
323 and 13B β neurons, but only reduced functional connectivity between claw and 13B α neurons (data not shown).
324 These results suggest that second-order proprioceptive circuits receive mixed chemical and electrical input from
325 FeCO neurons. More work is needed to confirm these observations and to investigate the functional significance of
326 why pathways might use one means of signal transmission over the other. One hypothesis is that chemical synapses
327 exhibit adaptation (e.g., synaptic depression) while electrical synapses may be more advantageous for sustained
328 synaptic transmission (Grimes et al., 2014). Each may provide different advantages for pathways that control
329 behavior on a variety of timescales, from slow postural reflexes to rapid escape behaviors.

330 **Comparison to central mechanosensory processing in other species**

331 Central processing of sensory signals from the FeCO has been previously studied in other insects, especially the
332 locust (Burrows, 1996) and stick insect (Bässler and Büschges, 1998). In both species, second-order interneurons
333 encode combinations of tibia movement and position (Buschges, 1989), and also integrate multimodal signals from
334 different proprioceptive organs (Burrows, 1985; Siegler and Burrows, 1983). Vibration signals detected by the
335 FeCO appear to be processed by largely segregated populations of VNC interneurons (Büschges, 1989; Stein and
336 Sauer, 1999). However, these conclusions were based on mapping of sensory receptive fields, and it was not
337 previously possible to identify specific sources of sensory input, as we do in this study.

338 Overall, comparison of our functional connectivity results in *Drosophila* with the prior work in other insect species
339 suggests broad evolutionary conservation of VNC circuits for leg proprioception and motor control. Although it is
340 currently difficult to identify homologous cell-types across insect species, future efforts could leverage conserved
341 developmental programs: the organization of neuroblasts that give rise to the VNC is similar across insect species
342 separated by 350 million years of evolution (Lacin and Truman, 2016). This is an important advantage of using
343 developmental lineages to define VNC cell classes – locusts and stick insects also possess 9A, 10B, and 13B
344 neurons, which could someday be identified based on molecular markers of lineage identity.

345 **Complementary strengths of functional and structural connectivity**

346 The functional connectivity approach that we employed in this study has both benefits and drawbacks. On the
347 positive side, it allowed us to screen a large connectivity matrix of genetically-identified sensory and central
348 neurons. Compared to other methods for anatomical mapping (e.g., EM), the use of optogenetics and calcium
349 imaging allowed us to measure connection strength and dynamics across multiple individuals. We found that
350 second-order VNC neurons varied significantly in their functional connectivity strength and temporal dynamics
351 (Figure 1G-H). We also observed 5-fold differences in peak calcium signals in response to optogenetic stimulation
352 with the same light intensity (Figure 1G). This range could be due to differences in GCaMP expression or
353 intracellular calcium buffering but may also reflect differences in synaptic strength between pre-and postsynaptic
354 partners.

355 On the other hand, the functional connectivity method cannot resolve whether inputs are direct, due to the slow
356 kinetics of GCaMP6. We therefore used sparse, targeted EM tracing to validate some of the functional connections

357 we identified between FeCO and VNC neurons. A more detailed comparison of functional and anatomical
358 connectivity will require dense, comprehensive reconstruction of the VNC neuropil. Automated reconstruction and
359 manual proofreading have recently led to draft wiring diagrams of neural circuits in the adult *Drosophila* central
360 brain (Scheffer et al., 2020). Similar approaches to reconstruct the VNC connectome are in progress (Phelps et al.,
361 2021).

362 **Acknowledgements**

363 We thank Haluk Lacin and members of the Tuthill lab for comments on the manuscript. We thank Haluk Lacin,
364 David Shepherd, and Jim Truman with assistance identifying VNC lineages. We thank Allan Wong and Daniel
365 Bushey for help with 2-photon microscopy, the Janelia Fly Facility, and the Project Technical Resources for
366 technical assistance. Stocks obtained from the Bloomington *Drosophila* Stock Center (NIH P40OD018537) were
367 used in this study. This work was supported by the Visiting Scientist Program at HHMI/Janelia, a Seale Scholar
368 Award, a Klingenstein-Simons Fellowship, a Pew Biomedical Scholar Award, a Sloan Research Fellowship, the
369 New York Stem Cell Foundation, and NIH grant R01NS102333 to JCT. JCT is a New York Stem Cell Foundation
370 – Robertson Investigator.

371 372 **References**

373 Agrawal, S., Dickinson, E.S., Sustar, A., Gurung, P., Shepherd, D., Truman, J.W., and Tuthill, J.C. (2020).
374 Central processing of leg proprioception in *Drosophila*. *ELife* 9, e60299.

375 Akay, T., Tourtellotte, W.G., Arber, S., and Jessell, T.M. (2014). Degradation of mouse locomotor pattern in the
376 absence of proprioceptive sensory feedback. *Proc Natl Acad Sci USA* 111, 16877–16882.

377 Allen, A.M., Neville, M.C., Birtles, S., Croset, V., Treiber, C.D., Waddell, S., Goodwin, S.F., and Mann, R.S.
378 (2020). A single-cell transcriptomic atlas of the adult *Drosophila* ventral nerve cord. *ELife* 9, 1–32.

379 Azevedo, A.W., Dickinson, E.S., Gurung, P., Venkatasubramanian, L., Mann, R.S., and Tuthill, J.C. (2020). A
380 size principle for recruitment of *Drosophila* leg motor neurons. *ELife* 9, e56754.

381 Bässler, U. (1993). The femur-tibia control system of stick insects — a model system for the study of the neural
382 basis of joint control. *Brain Research Reviews* 18, 207–226.

383 Bässler, U., and Büschges, A. (1998). Pattern generation for stick insect walking movements—multisensory
384 control of a locomotor program. *Brain Research Reviews* 27, 65–88.

385 Bässler, U., Wolf, H., and Stein, W. (2007). Functional recovery following manipulation of muscles and sense
386 organs in the stick insect leg. *J Comp Physiol A* 193, 1151–1168.

387 Bates, A.S., Janssens, J., Jefferis, G.S., and Aerts, S. (2019). Neuronal cell types in the fly: single-cell anatomy
388 meets single-cell genomics. *Current Opinion in Neurobiology* 56, 125–134.

389 Bidaye, S.S., Bockemühl, T., and Büschges, A. (2018). Six-legged walking in insects: How CPGs, peripheral
390 feedback, and descending signals generate coordinated and adaptive motor rhythms. *Journal of Neurophysiology*
391 119, 459–475.

392 Burns, M.D. (1974). Structure and physiology of the locust femoral chordotonal organ. *Journal of Insect
393 Physiology* 20, 1319–1339.

394 Burrows, M. (1996). *The Neurobiology of an Insect Brain-Motor Neurons*. (Oxford: Oxford University press)

395 Büschges, A. (1989). Processing of Sensory Input from the Femoral Chordotonal Organ by Spiking Interneurones
396 of Stick Insects. *Journal of Experimental Biology* 144, 81–111.

397 Cafaro, J., and Rieke, F. (2013). Regulation of spatial selectivity by crossover inhibition. *J Neurosci* 33, 6310–
398 6320.

399 Chen, T.-W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger,
400 M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. *Nature* 499,
401 295–300.

402 Court, R., Namiki, S., Armstrong, J.D., Börner, J., Card, G., Costa, M., Dickinson, M., Duch, C., Korff, W.,
403 Mann, R., et al. (2020). A Systematic Nomenclature for the Drosophila Ventral Nerve Cord. *Neuron* 107, 1071–
404 1079.e2.

405 Davis, F.P., Nern, A., Picard, S., Reiser, M.B., Rubin, G.M., Eddy, S.R., and Henry, G.L. (2020). A genetic,
406 genomic, and computational resource for exploring neural circuit function (eLife Sciences Publications Limited).

407 Dionne, H., Hibbard, K.L., Cavallaro, A., Kao, J.-C., and Rubin, G.M. (2018). Genetic Reagents for Making
408 Split-GAL4 Lines in Drosophila. *Genetics* 209, 31–35.

409 Dubs, A., Laughlin, S.B., and Srinivasan, M.V. (1981). Single photon signals in fly photoreceptors and first order
410 interneurones at behavioral threshold. *J Physiol* 317, 317–334.

411 Fabre, C.C.G., Hedwig, B., Conduit, G., Lawrence, P.A., Goodwin, S.F., and Casal, J. (2012). Substrate-borne
412 vibratory communication during courtship in *Drosophila melanogaster*. *Curr Biol* 22, 2180–2185.

413 Franconville, R., Beron, C., and Jayaraman, V. (2018). Building a functional connectome of the drosophila central
414 complex. *ELife* 7, 1–24.

415 French, A.S., and Wong, R.K.S. (1976). The responses of trochanteral hair plate sensilla in the cockroach to
416 periodic and random displacements. *Biological Cybernetics* 22, 33–38.

417 Grimes, W.N., Schwartz, G.W., and Rieke, F. (2014). The synaptic and circuit mechanisms underlying a change
418 in spatial encoding in the retina. *Neuron* 82, 460–473.

419 Harris, R.M., Pfeiffer, B.D., Rubin, G.M., and Truman, J.W. (2015). Neuron hemilineages provide the functional
420 ground plan for the Drosophila ventral nervous system. *ELife* 4, 1–34.

421 Hill, P.S.M., and Wessel, A. (2016). Biotremology. *Current Biology* 26, R187–R191.

422 Jenett, A., Rubin, G.M., Ngo, T.-T.B., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.D., Cavallaro, A., Hall,
423 D., Jeter, J., et al. (2012). A GAL4-Driver Line Resource for Drosophila Neurobiology. *Cell Reports* 2, 991–
424 1001.

425 Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong,
426 A.S., Carpenter, E.J., Tian, Z., et al. (2014). Independent optical excitation of distinct neural populations. *Nat
427 Methods* 11, 338–346.

428 Kuan, A.T., Phelps, J.S., Thomas, L.A., Nguyen, T.M., Han, J., Chen, C.-L., Azevedo, A.W., Tuthill, J.C., Funke,
429 J., Cloetens, P., et al. (2020). Dense neuronal reconstruction through X-ray holographic nano-tomography. *Nat
430 Neurosci* 23, 1637–1643.

431 Lacin, H., and Truman, J.W. (2016). Lineage mapping identifies molecular and architectural similarities between
432 the larval and adult Drosophila central nervous system. *ELife* 5, 1–28.

433 Lacin, H., Chen, H.M., Long, X., Singer, R.H., Lee, T., and Truman, J.W. (2019). Neurotransmitter identity is
434 acquired in a lineage-restricted manner in the Drosophila CNS. *ELife* 8, 1–26.

435 Liu, W.W., and Wilson, R.I. (2013). Glutamate is an inhibitory neurotransmitter in the *Drosophila* olfactory
436 system. 10.

437 Liu, W.W., Mazor, O., and Wilson, R.I. (2015). Thermosensory processing in the *Drosophila* brain. *Nature* 519,
438 353–357.

439 Mamiya, A., Gurung, P., and Tuthill, J.C. (2018). Neural Coding of Leg Proprioception in *Drosophila*. *Neuron*
440 100, 636–650.e6.

441 Matheson, T., and Field, L.H. (1995). An elaborate tension receptor system highlights sensory complexity in the
442 hind leg of the locust. *Journal of Experimental Biology* 198, 1673–1689.

443 Mendes, C.S., Bartos, I., Akay, T., Márka, S., and Mann, R.S. (2013). Quantification of gait parameters in freely
444 walking wild type and sensory deprived *Drosophila melanogaster*. *ELife* 2, e00231.

445 Morimoto, M.M., Nern, A., Zhao, A., Rogers, E.M., Wong, A.M., Isaacson, M.D., Bock, D.D., Rubin, G.M., and
446 Reiser, M.B. (2020). Spatial readout of visual looming in the central brain of *Drosophila*. *ELife* 9, e57685.

447 Namiki, S., Dickinson, M.H., Wong, A.M., Korff, W., and Card, G.M. (2018). The functional organization of
448 descending sensory-motor pathways in *Drosophila*. *ELife* 7, 1–50.

449 Nern, A., Pfeiffer, B.D., and Rubin, G.M. (2015). Optimized tools for multicolor stochastic labeling reveal
450 diverse stereotyped cell arrangements in the fly visual system. *Proc Natl Acad Sci U S A* 112, E2967–2976.

451 Otsuna, H., Ito, M., and Kawase, T. (2018). Color depth MIP mask search: a new tool to expedite Split-GAL4
452 creation. *BioRxiv* 318006.

453 Patella, P., and Wilson, R.I. (2018). Functional Maps of Mechanosensory Features in the *Drosophila* Brain.
454 *Current Biology* 28, 1189–1203.e5.

455 Phelps, J.S., Hildebrand, D.G.C., Graham, B.J., Kuan, A.T., Thomas, L.A., Nguyen, T.M., Buhmann, J., Azevedo,
456 A.W., Sustar, A., Agrawal, S., et al. (2021). Reconstruction of motor control circuits in adult *Drosophila* using
457 automated transmission electron microscopy. *Cell*.

458 Prsa, M., Morandell, K., Cuenu, G., and Huber, D. (2019). Feature-selective encoding of substrate vibrations in
459 the forelimb somatosensory cortex. *Nature* 567, 384–388.

460 Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.-Y., Hayworth, K.J., Huang, G.B., Shinomiya, K.,
461 Maitlin-Shepard, J., Berg, S., et al. (2020). A connectome and analysis of the adult *Drosophila* central brain. *ELife*
462 9.

463 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C.,
464 Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. *Nature*
465 *Methods* 9, 676–682.

466 Schneider-Mizell, C.M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart, M.F., Champion, A., Midgley,
467 F.M., Fetter, R.D., Saalfeld, S., et al. (2016). Quantitative neuroanatomy for connectomics in *Drosophila*. *ELife* 5,
468 e12059.

469 Shepherd, D., Sahota, V., Court, R., Williams, D.W., and Truman, J.W. (2019). Developmental organization of
470 central neurons in the adult *Drosophila* ventral nervous system. *J Comp Neurol* 527, 2573–2598.

471 Siegler, M.V.S., and Burrows, M. (1983). Spiking Local Interneurons as Primary Integrators of Mechanosensory
472 Information in the Locust. 15.

473 Stein, W., and Sauer, A.E. (1999). Physiology of vibration-sensitive afferents in the femoral chordotonal organ of
474 the stick insect. *Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology* *184*, 253–
475 263.

476 Takeoka, A., Vollenweider, I., Courtine, G., and Arber, S. (2014). Muscle Spindle Feedback Directs Locomotor
477 Recovery and Circuit Reorganization after Spinal Cord Injury. *Cell* *159*, 1626–1639.

478 Tirian, L., and Dickson, B.J. (2017). The VT GAL4, LexA, and split-GAL4 driver line collections for targeted
479 expression in the *Drosophila* nervous system. *BioRxiv* 198648.

480 Truman, J.W., Moats, W., Altman, J., Marin, E.C., and Williams, D.W. (2010). Role of Notch signaling in
481 establishing the hemilineages of secondary neurons in *Drosophila melanogaster*. *Development* *137*, 53–61.

482 Tuthill, J.C., and Azim, E. (2018). Proprioception. *Current Biology* *28*, R194–R203.

483 Tuthill, J.C., and Wilson, R.I. (2016a). Parallel Transformation of Tactile Signals in Central Circuits of
484 *Drosophila*. *Cell* *164*, 1046–1059.

485 Tuthill, J.C., and Wilson, R.I. (2016b). Mechanosensation and Adaptive Motor Control in Insects. *Current
486 Biology* *26*, R1022–R1038.

487 Venkatasubramanian, L., and Mann, R.S. (2019). The development and assembly of the *Drosophila* adult ventral
488 nerve cord. *Current Opinion in Neurobiology* *56*, 135–143.

489 Windhorst, U. (2007). Muscle proprioceptive feedback and spinal networks. *Brain Research Bulletin* *73*, 155–
490 202.

491 Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., Torrens, O., Price, J., Fisher,
492 C.B., Sharifi, N., et al. (2018). A Complete Electron Microscopy Volume of the Brain of Adult *Drosophila*
493 *melanogaster*. *Cell* *174*, 730-743.e22.

494 Zill, S., Schmitz, J., and Büschges, A. (2004). Load sensing and control of posture and locomotion. *Arthropod
495 Structure & Development* *33*, 273–286.

496

497

498
499
500

Material and Methods

Fly stocks

501 *Drosophila* were raised on cornmeal agar food on a 12h dark/12h light cycle at 25°C. Female flies, 4-8 days post
502 eclosion, were used for all calcium imaging experiments. For functional connectivity experiments, adult flies
503 carrying the Chrimson transgene were placed on cornmeal agar with all-trans-retinal (0.2 mM, dissolved in 95%
504 EtOH, Sigma-Aldrich) for 2-3 days prior to the experiment. Vials were wrapped in aluminum foil to reduce
505 unnecessary optogenetic activation.

506 Creation of Split-GAL4 lines for targeting proprioceptors in fly leg

507 GAL4 images from the Rubin and Dickson collections (Jenett et al., 2012; Tirian and Dickson, 2017) were visually
508 screened for lines labeling axons from proprioceptors that project to the VNC. For each cell type, a color depth MIP
509 mask search (Otsuna et al., 2018) was performed to find other GAL4 lines with expression in similar cells. Split-
510 GAL4 AD and DBD hemi-drivers (Dionne et al., 2018; Tirian and Dickson, 2017) for these lines were crossed in
511 several different combinations to identify intersections that targeted the cell type of interest but with minimal
512 expression elsewhere. Sensory tuning properties of FeCO subclass neurons labeled by these Split-Gal4 lines were
513 further characterized using *in vivo* calcium imaging, described below.

514 Immunohistochemistry and anatomy

515 For confocal imaging of the FeCO neuron axons driven by each Split-Gal4 line in the VNC (Figure S1, S4), we
516 crossed flies carrying the Split-Gal4 driver to flies carrying 20xUAS-IVS-mCD8::GFP or 20xUAS-
517 Chrimson::mVenus (attp18) and dissected the brain and VNC of the resulting progeny in cold Schneider's Insect
518 Medium (S2). The tissues were first fixed in 2% paraformaldehyde (PFA) PBS solution for 55 min followed by
519 rinsing in PBS with 0.5% Triton X-100 (PBT) four times. The brain and VNC were blocked in solution (5% normal
520 goat serum in PBT) for 90 min, then incubated with a solution of primary antibody (rabbit anti-GFP 1:1,000
521 concentration; mouse nc82 for neuropil staining; 1:30 concentration) in blocking solution for 4 hrs, followed by
522 washing tissues in PBT three times. Tissues were incubated with a solution of secondary antibody (anti-rabbit-
523 Alexa 488 1:400 concentration; anti-mouse-Alexa 633 1:800 concentration) dissolved in blocking solution for 4 hrs
524 followed by three times washing with PBT before DPX mounting. The whole procedure was performed at room
525 temperature.

526 For stochastic labeling of individual neurons in the VNC, we crossed flies carrying the multicolor FlpOut cassettes
527 and Flp recombinase drivers to flies carrying different Split-Gal4 and LexA drivers and dissected out the VNCs of
528 resulting progeny. For temperature induced expression of Flp, we placed adult flies at 1-3 days old in a plastic tube
529 and incubated them in a 37°C water bath for 15 min. We dissected the VNC four days after the Flp induction and
530 followed the procedure described in (Nern et al., 2015) to detect HA (using anti-HA-rabbit antibody and anti-
531 Rabbit-Alexa 594 secondary antibody), V5 (using DyLight 549-conjugated anti-V5), and FLAG (using anti-FLAG-
532 rat antibody and anti-Rat-Alexa 647 secondary antibody) labels expressed due to Flp induction in individual
533 neurons.

534 Images were acquired on Zeiss LSM 710 or 800 confocal microscopies with 20x or 63x objectives. We used Fiji
535 (Schindelin et al., 2012) to generate maximum intensity projections of the expression of driver lines as well as
536 anatomy of single neurons.

537 Fly preparation for two-photon calcium imaging

538 For functional connectivity experiments, adult female flies were anesthetized on ice and then glued to a petri dish
539 with ventral side up using UV-cured glue (Kemxert 300). To eliminate spontaneous activity due to fly leg
540 movement, we amputated the legs at the coxa joint. After immersing the fly in extracellular fly saline (103mM
541 NaCl, 3mM KCl, 2mM CaCl₂, 4mM MgCl₂, 26mM NaHCO₃, 1mM NaH₂PO₄, 8mM trehalose, 10mM glucose,

542 5mM TES, pH 7.1, osmolality adjusted to 270-275 mOsm, bubbled with 95% O₂ / 5% CO₂), we removed the cuticle
543 above the prothoracic segment of the VNC and took out the digestive tract to reduce the movement of the VNC.
544 Recordings were performed at room temperature.

545 For calcium imaging during controlled leg movements, we used a fly holder previously described by Mamiya et al.
546 (2018). Flies were anesthetized on ice and then positioned ventral side up, with the head glued to the upper side of
547 the fly holder using UV-cured glue (Kemxert 300). We glued the ventral side of the thorax onto the hole and on the
548 bottom side of the holder and glued down the femur of the right prothoracic leg so that we could control the femur-
549 tibia joint angle by moving the tibia. When gluing the femur, we held it at a position where the movement of the
550 tibia during the rotation of the femur-tibia joint was parallel to the plane of the fly holder. To eliminate mechanical
551 interference, we also glued down the other legs. We pushed the abdomen to the left side and glued it at that position,
552 so that the abdomen did not block tibia flexion. To position the tibia using the magnetic control system described
553 below, we cut a small piece of insect pin (length ~1.0 mm, 0.1 mm diameter; Living Systems Instrumentation) and
554 glued it onto the tibia and the tarsus of the right prothoracic leg. To enhance contrast and improve tracking of the
555 tibia/pin position, we painted the pin with black India ink (Super Black, Speedball Art Products). After immersing
556 the ventral side of the preparation in extracellular fly saline, we removed the cuticle above the prothoracic segment
557 of the VNC and took out the digestive tract to reduce the movements of the VNC. We also removed fat bodies and
558 larger trachea to improve access to the leg neuropil. Fly saline contained: 103mM NaCl, 3mM KCl, 2mM CaCl₂,
559 4mM MgCl₂, 26mM NaHCO₃, 1mM NaH₂PO₄, 8mM trehalose, 10mM glucose, 5mM TES, pH 7.1, osmolality
560 adjusted to 270-275 mOsm. Recordings were performed at room temperature.

561 **Image acquisition using a two-photon excitation microscope**

562 For functional connectivity experiments, images were acquired using a two-photon microscope (custom-made at
563 Janelia by Dan Flickinger and colleagues, with a Nikon Apo LWD 25× NA1.1 water immersion objective). The
564 standard imaging mode was a 512 × 512 image at 2.5 frames/s, and a ~353 μm × ~353 μm field of view (~0.69 μm
565 × ~0.69 μm / pixel). The sample was imaged using a near-infrared laser (920nm, Spectra Physics, Insight DeepSee)
566 that produced minimal activation of Chrimson at our typical imaging power (4-10 mW). Chrimson was activated
567 by 590nm light (Thorlabs M590L3-C1) presented through the objective. Photoactivation light was delivered in a
568 pulse train that consisted of six 5s pulses (within each 5 s pulse: square-wave modulation at 50 Hz, 30s inter-pulse
569 interval). The light intensity increased for each of the six pulses (0.02, 0.04, 0.12, 0.28, 0.37, 0.68 mW/mm²). For
570 targeted stimulation (e.g., Figure 2C, 3E), illumination was spatially modulated using a DMD (Digital Micromirror
571 Device, Texas Instruments, DLP LightCrafter v2.0), and restricted to a specific stimulation region.

572 For calcium imaging during controlled leg movements, we used a modified version of a custom two-photon
573 microscope previously described in detail (Euler et al., 2009). For the excitation source, we used a mode-locked
574 Ti/sapphire laser (Mira 900-F, Coherent) set at 930 nm and adjusted the laser power using a neutral density filter to
575 keep the power at the back aperture of the objective (40x, 0.8 NA, 2.0 mm wd; Nikon Instruments) below ~25 mW
576 during the experiment. We controlled the galvo laser scanning mirrors and the image acquisition using ScanImage
577 software (version 5.2) within MATLAB (MathWorks). To detect fluorescence, we used an ET510/80M (Chroma
578 Technology Corporation) emission filter (GCaMP6f or GCaMP6s) and a 630 AF50/25R (Omega optical) emission
579 filter (tdTomato) and GaAsP photomultiplier tubes (H7422P-40 modified version without cooling; Hamamatsu
580 Photonics). We acquired images (256 × 120 pixels or 128 × 240 pixels) at 8.01 Hz. At the end of the experiment,
581 we acquired a z-stack of the labelled neurons to confirm the recording location.

582 **Image processing and calculating ΔF/F**

583 We performed all calcium image processing and analyses using scripts written in MATLAB (MathWorks). After
584 acquiring the images for a trial, we first applied a Gaussian filter (size 5x5 pixel, $\Sigma = 3$) and intensity threshold to
585 minimize background noise. For calculating the GCaMP6 fluorescence change relative to the baseline ($\Delta F/F$), we
586 used the lowest average fluorescence level in a 10-frame window as the baseline fluorescence during that trial. For
587 cases in which calcium signals were reduced relative to baseline (e.g., 19A α neurons), we used the average

588 fluorescence level in a 10-frame window at the beginning of each trial as the baseline. Because not all flies co-
589 expressed tdTomato, we did perform image registration to correct for sample movement. From those flies that did
590 co-express tdTomato, we observed that movement of the VNC was negligible.

591 We defined three parameters to analyze the temporal dynamics of calcium signals, as shown in Figure 1G: peak
592 $\Delta F/F$ during the stimulation window, the time after stimulation at which the $\Delta F/F$ reaches 50% of the peak value
593 (Figure 1I), and the half-decay time after the peak $\Delta F/F$ is reached (Figure 1J). For quantification of adaptation in
594 Figure 5D, we calculated an adaptation index as $1 - F_{\text{offset}}/F_{\text{peak}}$, where F_{peak} indicates the peak $\Delta F/F$, and F_{offset} is $\Delta F/F$
595 19 seconds after the stimulus onset (where the stimulation offset typically occurs in club/10B α neurons). An
596 adaptation index of 1 would indicate 100% decay to baseline, while an index of 0 would indicate no adaptation.
597 Negative index values indicate an increase in the calcium signal over time.

598 **Moving the tibia using a magnetic control system**

599 We used a previously described magnetic control system (Mamiya et al., 2018) to manipulate the femur/tibia joint
600 angle. To move the tibia/pin to different positions, we attached a rare earth magnet (1 cm height x 5 mm diameter
601 column) to a steel post (M3x20 mm flat head machine screw) and controlled its position using a programmable
602 servo motor (SilverMax QCI-X23C-1; Max speed 533,333°/s, Max acceleration 83,333.33°/s², Position resolution
603 0.045°; QuickSilver Controls). To move the magnet in a circular trajectory centered at the femur-tibia joint, we
604 placed the motor on a micromanipulator (MP-285, Sutter Instruments) and adjusted its position while visually
605 inspecting the movement of the magnet and the tibia using the tibia tracking camera described below. For each trial,
606 we controlled the speed and the position of the servo motor using QuickControl software (QuickSilver Controls).
607 During all trials, we tracked the tibia position (as described below) to confirm the tibia movement during each trial.
608 Because it was difficult to fully flex the femur-tibia joint without the tibia/pin and the magnet colliding with the
609 abdomen, we only flexed the joint up to ~18°. We set the acceleration of the motor to 72,000°/s² for all ramp and
610 hold and swing movements. Movements of the tibia during each trial varied slightly due to differences in the length
611 of the magnetic pin and the positioning of the tibia and motor.

612 **Tracking the femur-tibia joint angle during imaging experiments**

613 To track the position of the tibia, we illuminated the tibia/pin with an 850 nm IR LED (M850F2, ThorLabs) and
614 recorded video using an IR sensitive high-speed video camera (Basler Ace A800-510um, Basler AG) with a 1.0x
615 InfiniStix lens (94 mm wd, Infinity). The camera was equipped with a 900 nm short pass filter (Edmund Optics) to
616 filter out the two-photon laser light. To synchronize the tibia movement with the recorded cell activity, the camera
617 exposure signal and the position of the galvo laser scanning mirrors were acquired at 20 kHz. To track the tibia
618 angle, we identified the position of the painted tibia/pin against the contrasting background by thresholding the
619 image. We then approximated the orientation of the leg as the long axis of an ellipse with the same normalized
620 second central moments as the thresholded image.

621 **Vibrating the tibia using a piezoelectric crystal**

622 To vibrate the tibia at high frequencies, we moved the magnet using a piezoelectric crystal (PA3JEW, Max
623 displacement 1.8 μm ; ThorLabs). To control the movement of the piezo, we generated sine waves of different
624 frequencies in MATLAB (sampling frequency 10 kHz) and sent them to the piezo through a single channel open-
625 loop piezo controller (Thorlabs). Piezo-induced tibia movements during the calcium imaging prep were calibrated
626 as described by Mamiya et al. (2018). For each stimulus, we presented 4 s of vibration 2 times with an inter-stimulus
627 interval of 8 s. We averaged the responses within each fly before averaging across flies.

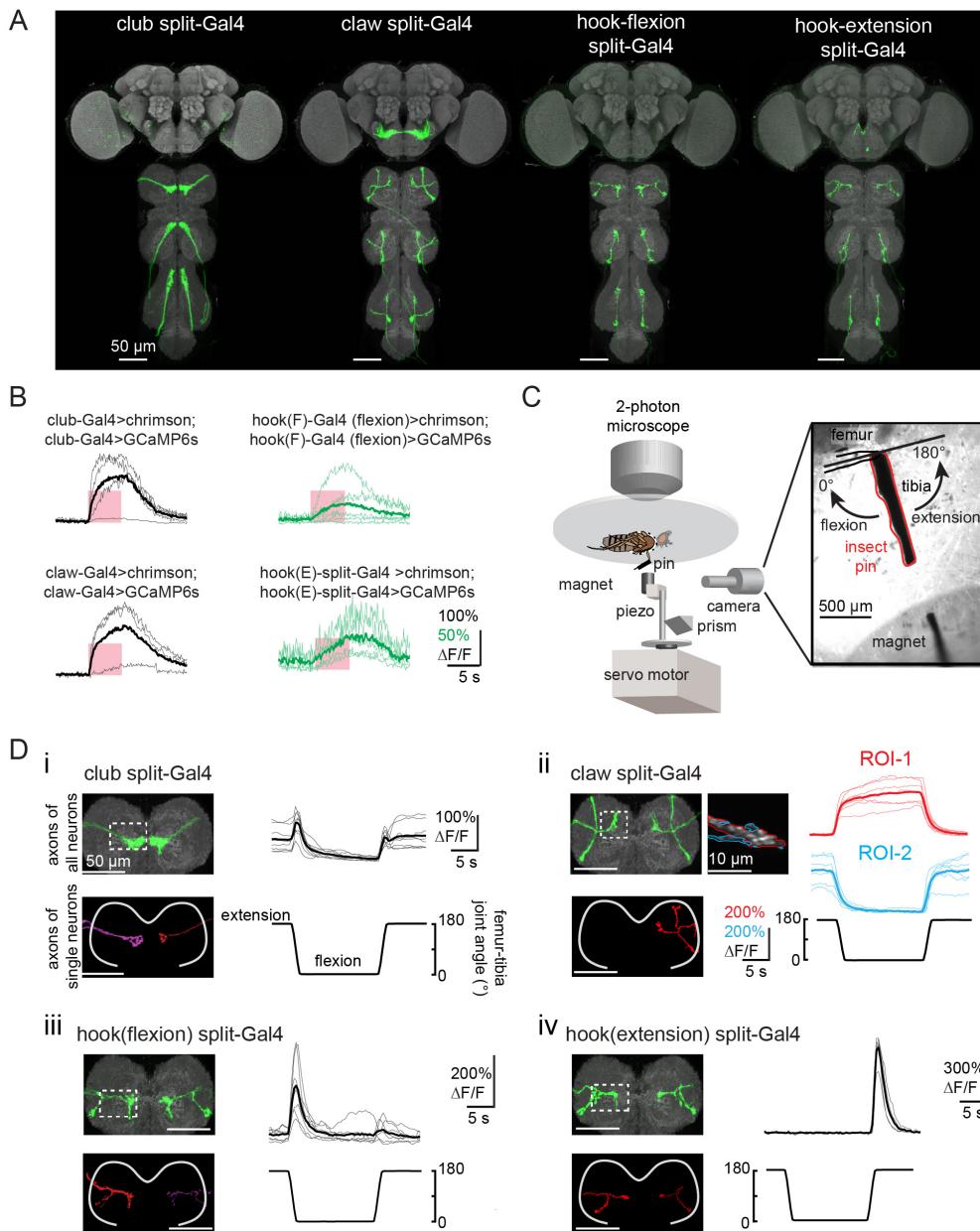
628 **Pharmacology**

629 Drugs were added to the bath with a micropipette. Picrotoxin (Sigma-Aldrich) was prepared as a concentrated
630 stock solution in aqueous NaCl (140 mM), and methyllycaconitine citrate (MLA, Sigma-Aldrich) were prepared as
631 stock solutions in water. Each drug was further diluted in saline for experiments for a final concentration of 1 μM

632 (MLA), or 10 μ M (picrotoxin). The VNC was incubated in the drug for 5 min, with the perfusion system off, before
633 starting the experiment, which typically lasted \sim 30 min.

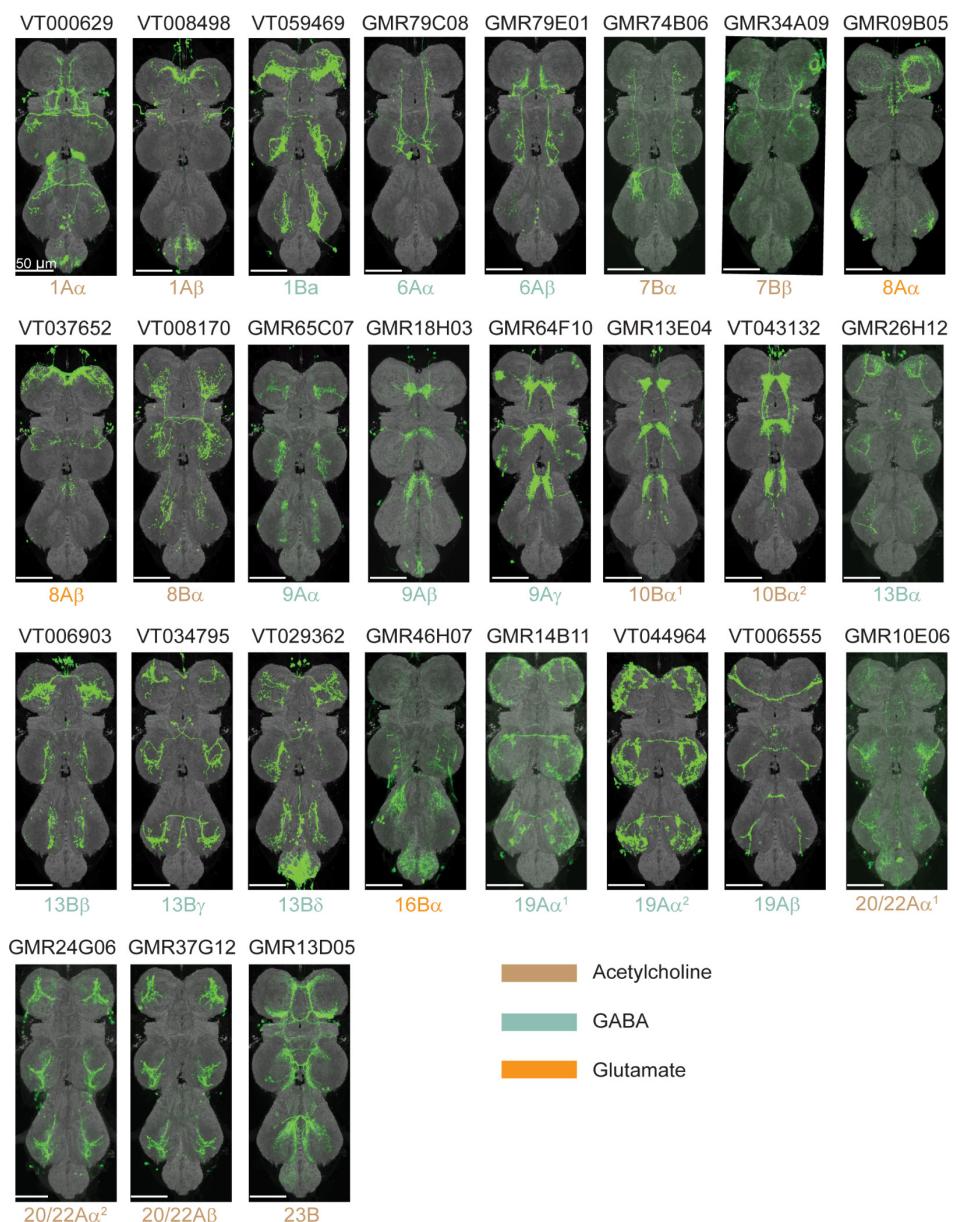
634 **Statistical analysis**

635 For functional connectivity results in Figures 1-6, no statistical tests were performed *a priori* to decide on sample
636 sizes, but sample sizes are consistent with conventions in the field. We used the Mann-Whitney non-parametric test
637 to test for differences between two groups (Figure 1H, 1I 3D, 3F, 5D), and the Kruskal-Wallis non-parametric test
638 to test for differences between more than two groups (Figure 1I, 1J). All statistical analysis was performed with
639 GraphPad (Prism). Results of statistical tests are reported in the figure legends.

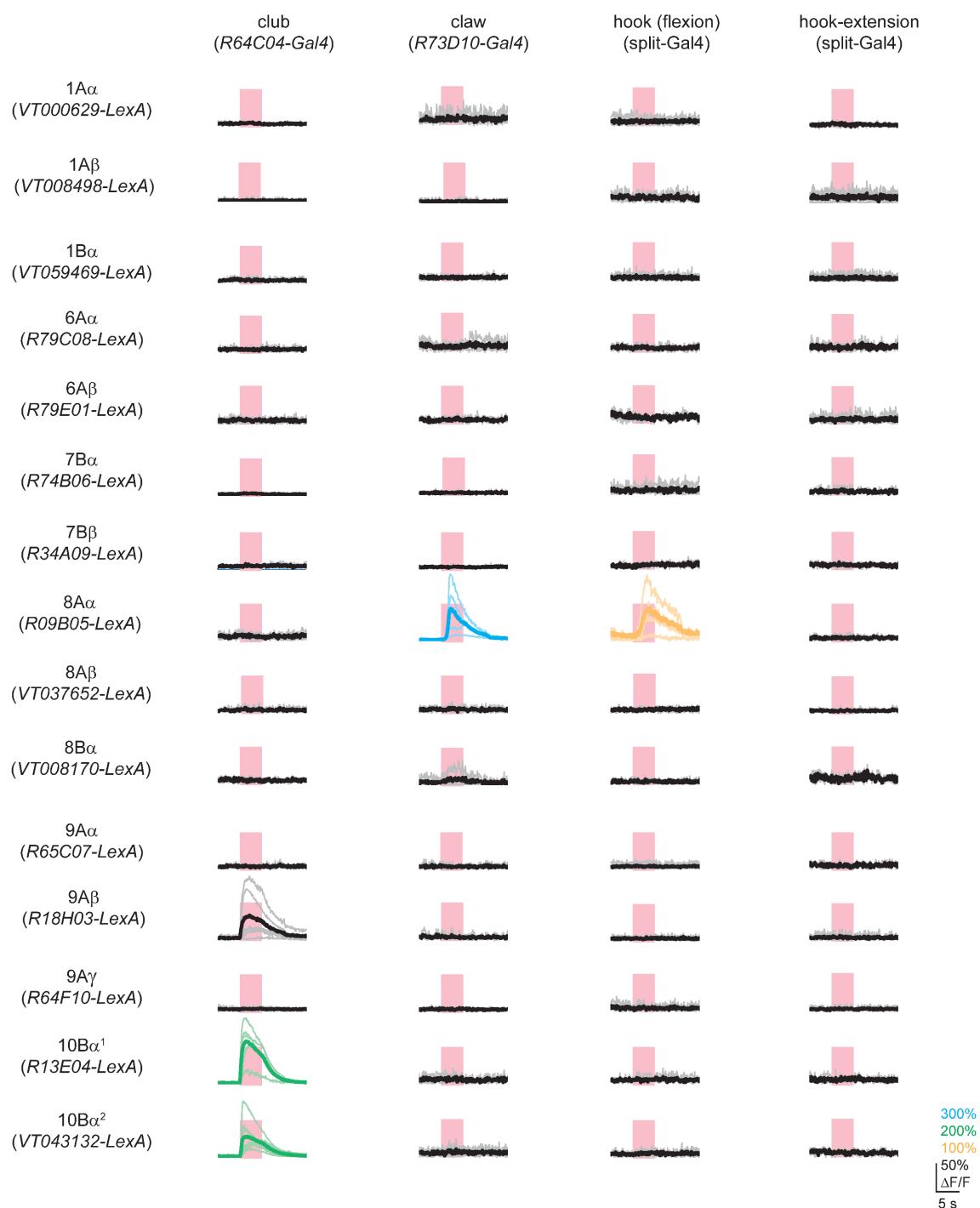

640 **EM reconstruction**

641 A TEM volume of the adult female VNC (Phelps et al., 2021) was used for reconstruction of neurons and their
642 synaptic connectivity. FeCO axons were traced manually using CATMAID, a collaborative manual tracing
643 environment (Schneider-Mizell et al., 2016). Second-order neurons were identified and matched to light-level data
644 based on common hemilineage characteristics: primary neurite fasciculation, dendritic arborizations, and axon
645 projections (Truman et al., 2010). Neurons were segmented in EM (methods in preparation), proofread in
646 Neuroglancer (<https://github.com/google/neuroglancer>), skeletonized, and imported to CATMAID, where further
647 proofreading was conducted. Postsynaptic sites on VNC neurons were identified by the presence of a dark post-
648 synaptic density and a corresponding T-bar on the presynaptic cell, consistent with standards in the field (Zheng et
649 al., 2018). Beginning with a synapse on each VNC neuron, sensory neurons were traced from the synapse back to
650 the incoming axon such that they could be identified. Tracing was conducted until at least 3 synapses were found
651 between each pair of neurons. We focused on identifying a minimal basis for connectivity between first and second-
652 order neurons, due to ongoing efforts to automatically segment the entire VNC volume. In summary, we identified
653 3 synapses between a pair of club and 9A β neurons (both ispi- and contralateral connections), 3 synapses between
654 a pair of club and 10B α neurons, 3 synapses between a pair of 10B α neurons in T1L and T2R, and 5 synapses
655 between a pair of hook-extension and 13B β neurons.

656 **Data and software availability**

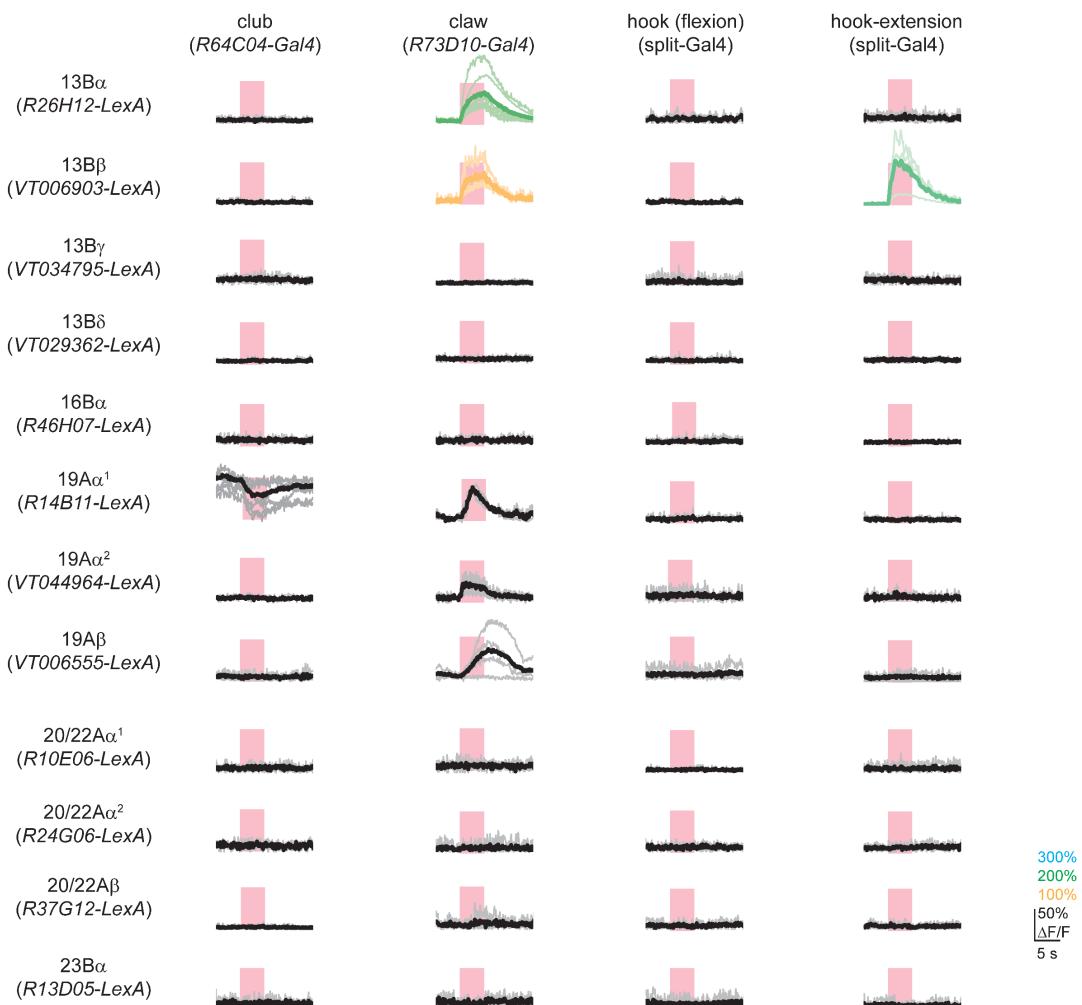

657 Data and analysis code will be made available from the [authors website](#).

Supplemental Figures


Figure S1. Split-Gal4 lines for targeting subtypes of femoral chordotonal organ (FeCO) proprioceptors.

(A) GFP (green) expression in VNC and brain driven by split-Gal4 lines targeting subtypes of FeCO neurons. Grey: neuropil of VNCs and brains were stained with nc82. (B) Optogenetic stimulation of FeCO axons increases their calcium activity. Changes of GCaMP6s fluorescence relative to baseline ($\Delta F/F$) in the axons of each FeCO subtypes to their self-stimulation. The thick lines in each panel represent average values. The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm²). (C) Experimental set-up for recording proprioceptive tuning of FeCO axons (adapted from Mamiya et al., 2018). (D) Anatomy and proprioceptive tuning of FeCO neurons labeled by four split-Gal4 lines. (i) Left: GFP labelled populations (upper panel) and single axon (lower panel) of club axons labeled by a split-Gal4 line. Grey: neuropil stained with nc82. Right: club neurons respond to bidirectional movement phasically. Tonic response at 180° caused by active tibia vibration at tibia fully extension. Changes of GCaMP7f fluorescence relative to baseline ($\Delta F/F$) recorded from the regions outlined in a white rectangle at left when swung the tibia at 360°/s (n=8). (ii) Same as i, but for claw neurons responding tonically to tibia movement (n=7). Two sub branches could be further separated in response to flexion (ROI-1) and extension (ROI2) (iii) Same as (i), but for hook neurons that respond phasically to tibia flexion (n=7). (iv) Same as (i), but for hook extension neurons that phasically respond to tibia extension (n=6).

Figure S2. A collection of LexA driver lines used for functional connectivity experiments in this study.


GFP (green) was expressed in the VNC driven by indicated LexA lines. Anatomy was used to determine the lineage identity described below each VNC image. The colors for each lineage and FeCO subtype indicate the putative neurotransmitter that they release.

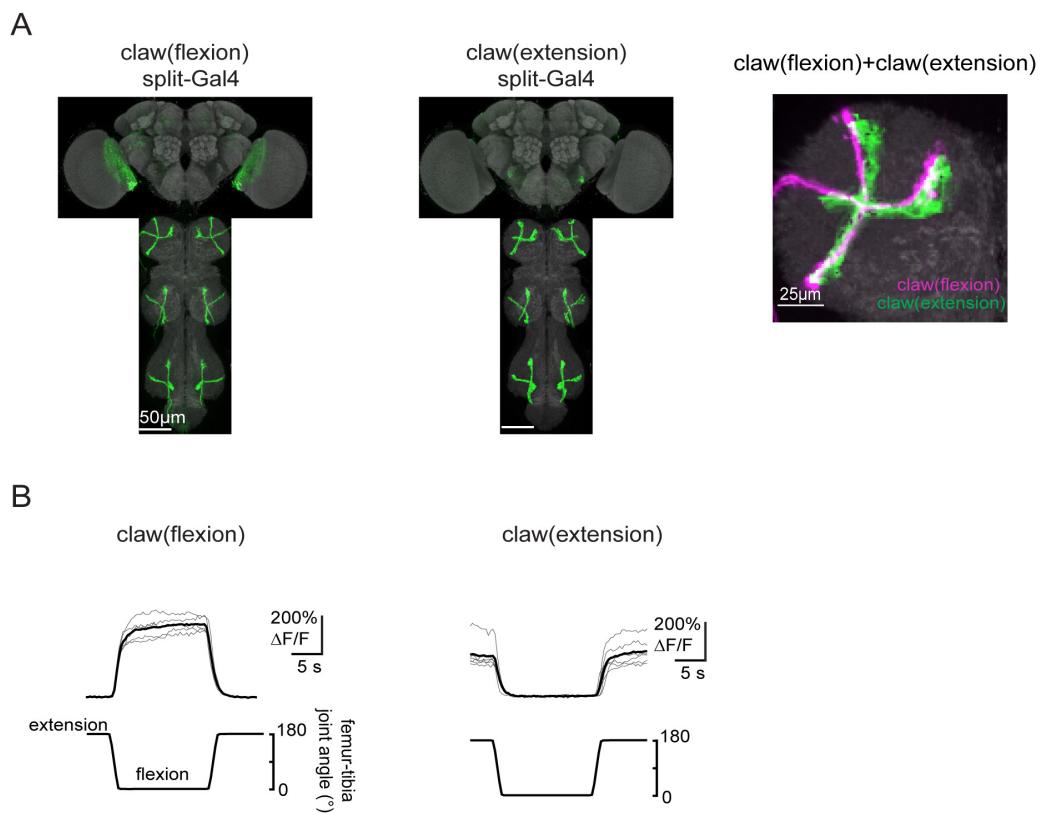


Figure S3. Times series data from functional connectivity experiments.

Changes of GCaMP6s fluorescence relative to baseline ($\Delta F/F$) were recorded in each driver line in response to optogenetic stimulation of four FeCO subtypes. The pink windows indicate stimulus duration (5 seconds, laser power= 0.28 mW/mm²).

continued

Figure S4. Distinct classes of claw neurons respond to tibia flexion and extension.

(A) Genetic driver lines labeling claw neurons that encode tibia flexion and extension. GFP (green) expression in VNC and brain driven by split-Gal4 lines targeting subtypes of the claw neurons. Grey: neuropils and brains were stained with nc82. Right: co-localization of claw-flexion and claw-extension neurons. VNC images were aligned to a common template *in silico*. (B) Calcium responses of claw-flexion and claw-extension neurons during passive movement of the tibia (n=6 flies of each genotype).

Key resource table				
Reagent type or resource	Designation	Source or reference	Identifiers	Additional information
genetic reagent (<i>D. melanogaster</i>)	“w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP} attP40”	other		Barret Pfeiffer, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“P{iav-Gal4.K}3”	Bloomington Drosophila Stock Center	“RRID:BDSC_52273”	
genetic reagent (<i>D. melanogaster</i>)	“10XUASsyn21 Chrimson88-tDT3.1(attP18)”	other		Allan Wong, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118],P{13xLexAop-IVS-Syn21-GCaMP6s}”	other		Allan Wong, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118] P{y[+t7.7] w[+mC]=hs-FlpG5.PEST}attP3/ w[1118]; +/; P{y[+t7.7]w[+mC]=10xLexAop(FRT.stop)myr::smGdP-OLLAS}attP2 PBac{y[+mDint2]} w[+mC]=10xLexAop(FRT.stop)myr::smGdPH4}VK00005 P{10xLexAop(FRT.stop)myr::smGdP-V5-THS-10xLexAop(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1/+”	other		Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“P{GMR73D10-GAL4}attP2”	Bloomington Drosophila Stock Center	“RRID:BDSC_39819”	
genetic reagent (<i>D. melanogaster</i>)	“P{GMR64C04-GAL4}attP2”	Bloomington Drosophila Stock Center	“RRID:BDSC_39296”	
genetic reagent (<i>D. melanogaster</i>)	“P{y[+t7.7] w[+mC]=20xUAS-IVS-jGCaMP7f}VK00005”	Bloomington Drosophila Stock Center	“RRID:BDSC_79031”	
genetic reagent (<i>D. melanogaster</i>)	“w[1118]; P{y[+t7.7] w[+mC]=13xLexAop2-IVS-GCaMP6f-p10}su(Hw)attP5”	Bloomington Drosophila Stock Center	“RRID:BDSC_44277”	
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT000629-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT008498-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT059469-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT000629-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR79C08-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR79E01-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR74B06-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR34A09-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR09B05-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT037652-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT008170-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR65C07-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR18H03-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR64F10-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR13E04-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT043132-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR26H12-LexA} attP40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT006903-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT034765-LexA} attP40”	other		Barry Dickson, Janelia Farm, HHMI

genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT029362-LexA} attp40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR46H07-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR14B11-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT044964-LexA} attp40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT006555-LexA} attp40”	other		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR10E06-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR24G06-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR37G12-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR13D05-LexA} attp40”	other		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR53B02-P65.AD} attp40/+; P{GMR64D09-Gal4.DBD} attp2/+”	this study		Gerald M. Rubin Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT020600-P65.AD} attp40/+; P{GMR75G05-Gal4.DBD} attp2/+”	this study		Gerald M. Rubin, Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT018774-P65.AD} attp40/+; P{GMR21D12-Gal4} attp2/+”	this study		Gerald M. Rubin, Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118]; P{VT018774-P65.AD} attp40/+; P{VT040547-Gal4.DBD} attp2/+”	this study		Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{VT020600-P65.AD} attp40/+; P{GMR75G05-Gal4.DBD} attp2/+”	this study		Gerald M. Rubin, Barry Dickson, Janelia Farm, HHMI
genetic reagent (<i>D. melanogaster</i>)	“w[1118];P{GMR92D04-P65.AD} attp40/+; P{GMR59A06-Gal4.DBD} attp2/+”	this study		Gerald M. Rubin Janelia Farm, HHMI
antibody	nc82 (mouse monoclonal)	Developmental Studies Hybridoma Bank	RRID: AB_2314866	
antibody	Rabbit polyclonal α -GFP	Life Technologies	RRID: AB_221569	
antibody	AF568 Goat α -Mouse	Life Technologies	RRID: AB_143157	
	AF488 Goat α -Rabbit	Life Technologies	RRID: AB_2536097	
antibody	rabbit polyclonal anti-HA	Cell Signaling Technologies	RRID: AB_1549585	
antibody	rat monoclonal anti-FLAG	Novus Bio	RRID: AB_1625982	
antibody	mouse polyclonal anti-V5:DyLight 550	AbD Serotec	RRID: AB_2687576	
antibody	Cy2 Goat α -Mouse	Jackson Immuno Research	RRID: AB_2338746	
antibody	AF594 Donkey α -Rabbit	Jackson Immuno Research	RRID: AB_2340621	
antibody	ATTO 647N Goat α -Rat IgG (H&L) Antibody	Rockland	605-456-013S	””
chemical compound	methyllycaconitine (MLA)	Toxins	TOCRIS_1029	“1 μ M”
chemical compound	picrotoxin (PTX)	Sigma-Aldrich	P1675	“10 μ M”
chemical compound	all trans-retinal powder	Sigma-Aldrich	R2500	“0.2 μ M”
software, algorithm	MATLAB	Mathworks	“RRID:SCR_001622”	
software, algorithm	FIJI	“PMID:22743772”	“RRID:SCR_002285”	
software, algorithm	ScanImage 5.2	Vidrio Technologies	“RRID:SCR_014307”	
software, algorithm	VVDviewer			https://github.com/ta-kashi310/VVD_Viewer

Table of Genotypes	
Figure 1A	w[1118]; P{JFRC7-20XUAS-IVS-mCD8::GFP} attP40/+; iav-Gal4/+
Figure 1B	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR13E04-LexA} attP40/+; P{GMR64C04-Gal4} attP2/+
Figure 1C*	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attP40/+; P{GMR64C04-Gal4} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attP40/+; P{GMR73D10-Gal4} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attP40/P{VT018774-P65.AD} attP40; P{GMR32H08-Gal4.DBD} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attP40/P{VT018774-P65.AD} attP40; P{VT040547-Gal4.DBD} attP2/+
Figure 1D	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR13E04-LexA} attP40/+; P{GMR64C04-Gal4} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR26H12-LexA} attP40/+; P{GMR73D10-Gal4} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR09B05-LexA} attP40/P{VT018774-P65.AD} attP40; P{GMR32H08-Gal4.DBD} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT006903-LexA} attP40/P{VT018774-P65.AD} attP40; P{VT040547-Gal4.DBD} attP2/+
Figure 2A	w[1118]; P{JFRC7-13xLexAop-IVS-mCD8::GFP} attP40/P{GMR18H03-LexA} attP40; +/- PBac{hsFlp2::PEST}attP3/++; P{GMR18H03-LexA} attP40/++; P{JFRC201-10xLexAop-FRT>STOP>FRT-myr::smGFP-HA}VK00005, P{JFRC240-10xLexAop-FRT>STOP>FRT-myr::smGFP-V5}, P{10xLexAop-FRT>STOP>FRT-myr::smGFP-FLAG}su(Hw)attP1/+
Figure 2C	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR18H03-LexA} attP40/P{GMR53B02-P65.AD} attP40; P{GMR64D09-Gal4.DBD} attP2/+
Figure 2G-H	w[1118]; P{13xLexAop2-IVS-GCaMP6s} attP5/P{GMR18H03-LexA} attP40/+; PBac{y[+mDint2] w[+mC]=13XLexAop2-IVS-tdTomato.nls}VK00022/+
Figure 3A	w[1118]; P{JFRC7-13xLexAop-IVS-mCD8::GFP} attP40/P{GMR13E04-LexA} attP40; +/- PBac{hsFlp2::PEST}attP3/++; P{GMR13E04-LexA} attP40/++; P{JFRC201-10xLexAop-FRT>STOP>FRT-myr::smGFP-HA}VK00005, P{JFRC240-10xLexAop-FRT>STOP>FRT-myr::smGFP-V5}, P{10xLexAop-FRT>STOP>FRT-myr::smGFP-FLAG}su(Hw)attP1/+
Figure 3 C-F	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR13E04-LexA} attP40/P{GMR53B02-P65.AD} attP40; P{GMR64D09-Gal4.DBD} attP2/+
Figure 3 G	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR13E04-LexA} attP40/P{GMR53B02-P65.AD} attP40; P{GMR64D09-Gal4.DBD} attP2/+ w[1118], P{20xUAS-IVS-Chrimson::tdTomato}, P{20xUAS-IVS-Syn21-GCaMP6s}; P{GMR53B02-P65.AD} attP40/++; P{GMR64D09-Gal4.DBD} attP2/+
Figure 3 J-K	w[1118]; P{GMR13E04-LexA} attP40/++; P{13XLexAop2-IVS-GCaMP6f-p10} su(Hw) attP5/PBac{y[+mDint2] w[+mC]=13XLexAop2-IVS-tdTomato.nls}VK00022/+
Figure 4A	w[1118]; P{JFRC7-13xLexAop-IVS-mCD8::GFP} attP40/P{VT006903-LexA} attP40/++; +/- PBac{hsFlp2::PEST}attP3/++; P{VT006903-LexA} attP40/++; P{JFRC201-10xLexAop-FRT>STOP>FRT-myr::smGFP-HA}VK00005, P{JFRC240-10xLexAop-FRT>STOP>FRT-myr::smGFP-V5}, P{10xLexAop-FRT>STOP>FRT-myr::smGFP-FLAG}su(Hw)attP1/+
Figure 4C	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT006903-LexA} attP40/P{VT018774-P65.AD} attP40; P{VT040547-Gal4.DBD} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT006903-LexA} attP40/P{VT020600-P65.AD} attP40; P{GMR75G05-Gal4.DBD} attP2/+
Figure 4D	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT006903-LexA} attP40/P{GMR92D04-P65.AD} attP40; P{GMR59A06-Gal4.DBD} attP2/+ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT006903-LexA} attP40/P{VT017745-P65.AD} attP40; P{GMR55C05-Gal4.DBD} attP2/+
Figure 4E	w[1118]; P{VT006903-LexA} attP40/++; P{13XLexAop2-IVS-GCaMP6f-p10} su(Hw) attP5/PBac{y[+mDint2] w[+mC]=13XLexAop2-IVS-tdTomato.nls}VK00022/+

Figure 5A	w [1118], P{13xLexAop-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato; P{GMR64F10-LexA} attp40/P{GMR53B02-P65.AD} attp40; P{GMR64D09-Gal4.DBD} attp2/+ w [1118], P{13xLexAop-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato; P{GMR37G12-LexA} attp40/P{VT020600-P65.AD} attp40; P{GMR75G05-Gal4.DBD} attp2/+
Figure 5B-D	w [1118], P{13xLexAop-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato; P{GMR13E04-LexA} attp40/P{GMR53B02-P65.AD} attp40; P{GMR64D09-Gal4.DBD} attp2/+ w [1118], P{13xLexAop-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato; P{GMR26H12-LexA} attp40/P{VT020600-P65.AD} attp40; P{GMR75G05-Gal4.DBD} attp2/+ w [1118], P{13xLexAop-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato; P{VT006903-LexA} attp40/P{VT018774-P65.AD} attp40; P{VT040547-Gal4.DBD} attp2/+ w [1118], P{20xUAS-IVS-Syn21-GCaMP6s},P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR37G12-LexA} attp40/P{VT020600-P65.AD} attp40; P{GMR75G05-Gal4.DBD} attp2/+
Figure S1A	w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/++; P{GMR53B02-P65.AD} attp40/++; P{GMR64D09-Gal4.DBD} attp2/++ w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/++; P{VT020600-P65.AD} attp40/++; P{GMR75G05-Gal4.DBD} attp2/++ w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/++; P{GMR70H02 -P65.AD} attp40/++; P{GMR32H08-Gal4.DBD} attp2/++ w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/++; P{VT018774-P65.AD} attp40/++; P{VT040547-Gal4.DBD} attp2/++
Figure S1B	w [1118], P{20xUAS-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato; P{GMR53B02-P65.AD} attp40/++; P{GMR64D09-Gal4.DBD} attp2/++ w [1118], P{20xUAS-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT020600-P65.AD} attp40/++; P{GMR75G05-Gal4.DBD} attp2/++ w [1118], P{20xUAS-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{GMR70H02 -P65.AD} attp40/++; P{GMR32H08-Gal4.DBD} attp2/++ w [1118], P{20xUAS-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT018774-P65.AD} attp40/++; P{VT040547-Gal4.DBD} attp2/++
Figure S1D	w [1118]; P{GMR53B02-P65.AD} attp40/ P{UAS-tdTomato}2; P{GMR64D09-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005 w [1118]; P{VT020600-P65.AD} attp40/P{UAS-tdTomato}2; P{GMR75G05-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005 w [1118]; P{GMR70H02 -P65.AD} attp40/P{UAS-tdTomato}2; P{GMR32H08-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005 w [1118]; P{VT018774-P65.AD} attp40/P{UAS-tdTomato}2; P{VT040547-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005
Figure S3	w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, {20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attp40/++; P{GMR64C04-Gal4} attp2/++ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attp40/++; P{GMR73D10-Gal4} attp2/++ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attp40/P{VT018774-P65.AD} attp40; P{GMR32H08-Gal4.DBD} attp2/++ w[1118], P{13xLexAop-IVS-Syn21-GCaMP6s}, P{20xUAS-IVS-Chrimson::tdTomato}; P{VT000629-LexA} attp40/P{VT018774-P65.AD} attp40; P{VT040547-Gal4.DBD} attp2/++
Figure S4A	w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/ P{GMR92D04-P65.AD} attp40; P{GMR59A06-Gal4.DBD} attp2/++ w[1118]; P{JFRC7-20xUAS-IVS-mCD8::GFP} attp40/P{VT020600-P65.AD} attp40; P{GMR75G05-Gal4.DBD} attp2/++
Figure S4B	w [1118]; P{GMR92D04-P65.AD} attp40/ P{UAS-tdTomato}2; P{GMR59A06-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005 w [1118]; P{VT017745-P65.AD} attp40/ P{UAS-tdTomato}2; P{GMR55C05-Gal4.DBD} attp2/PBac{y[+t7.7]} w[+mC]=20XUAS-IVS-jGCaMP7f;VK00005

*: the underlined genotypes are different for LexA lines labelling different VNC neurons. The LexA lines for each lineage studied in this paper are listed in Figure S2.