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Longitudinal analysis of diffuse glioma reveals cell state dynamics at recurrence
associated with changes in genetics and the microenvironment
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Summary

To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed
RNA and/or DNA sequencing data from temporally separated tumor pairs of 292 adult patients
with IDH-wild-type or IDH-mutant glioma. Tumors recurred in distinct manners that were
dependent on IDH mutation status and attributable to changes in histological feature composition,
somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A
deletions associated with an increase in proliferating stem-like malignant cells at recurrence in
both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive
at recurrence, and their malignant cells exhibited increased expression of neuronal signaling
programs that reflected a possible role for neuronal interactions in promoting glioma progression.
Mesenchymal transition was associated with the presence of a specific myeloid cell state defined
by unigue ligand-receptor interactions with malignant cells. Collectively, our results uncover
recurrence-associated changes that could be targetable to shape disease progression following

initial diagnosis.

Keywords: Glioma, glioblastoma, genomics, treatment resistance, microenvironment, single-cell

Introduction

Diffuse gliomas in adults are aggressive primary tumors of the central nervous system that are
characterized by a poor prognosis and the development of resistance to a treatment regimen that
typically includes surgery, alkylating chemotherapy, and radiotherapy (Stupp et al., 2005; Wen et
al., 2020). Genomic profiling of diffuse glioma has identified genomic drivers of disease
progression and led to the definition of clinically relevant subtypes based on the presence of
somatic mutations in the isocitrate dehydrogenase (IDH) genes and co-deletion of chromosome
arms 1p and 19q (Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 2016; Eckel-

Passow et al., 2015; Louis et al., 2016; Weller et al., 2015; Yan et al., 2009). Transcriptional
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78  profiling of whole tumors and single cells has revealed that the gene expression programs in
79  malignant glioma cells are influenced by underlying somatic alterations and interactions with the
80 tumor microenvironment. Additionally, malignant cells exhibit high plasticity that enables them to
81 respond dynamically to diverse challenges (Johnson et al., 2020; Neftel et al., 2019; Patel et al.,
82  2014; Phillips et al., 2006; Venteicher et al., 2017; Verhaak et al., 2010; Wang et al., 2017).
83  Studies of changes relating to therapy using bulk genomics approaches have revealed
84  mesenchymal transitions and both branching and linear evolutionary patterns (Barthel et al., 2019;
85 Kim et al., 2015a; Kim et al., 2015b; Korber et al., 2019; Wang et al., 2016; Wang et al., 2017).
86  However, the extent to which individual malignant glioma and immune cells interact and evolve
87  over time to facilitate therapy resistance remains poorly understood.
88
89  To identify the drivers of treatment resistance in glioma, we established the Glioma Longitudinal
90 Analysis Consortium (GLASS) (Bakas et al., 2020; Barthel et al., 2019; Consortium, 2018). In our
91 initial effort, we assembled a set of longitudinal whole-exome and whole-genome sequencing data
92  from 222 patients to define the clonal dynamics that allow each glioma subtype to escape therapy.
93 In the current study, we build upon these analyses by integrating this genomic dataset with
94  overlapping and complementary longitudinal transcriptomic data. We apply single-cell-based
95 deconvolution approaches to these data to infer a tumor’s physical structure and identify the cell
96  state interactions across IDH-wild-type and IDH-mutant glioma. Collectively, we find that gliomas
97 exhibit several common transcriptional and compositional changes at recurrence that represent
98 promising therapeutic targets for delaying disease progression.
99

100 Results

101  Overview of the GLASS Cohort

102  We expanded the GLASS cohort with an emphasis on collecting orthogonal RNA sequencing

103  profiles to include data from a total of 351 patients treated across 35 hospitals (Table S1). After
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104  applying genomic and clinical quality control filters, the resulting dataset included genomic data
105 from a total of 292 patients, with 150 having RNA sequencing data available for at least two time
106  points, 243 having DNA sequencing data available for at least two time points, and 101 having
107 overlapping RNA and DNA available at each time point. The cohort of 150 tumors used for RNA
108  sequencing analyses comprised each of the three major glioma subtypes, with 114 IDH wild-type
109  (IDH-wild-type), 27 IDH mutant 1p/19q intact (IDH-mutant-noncodel), and 9 IDH mutant 1p/19q
110  co-deleted (IDH-mutant-codel) glioma pairs (Figure 1A). Given the limited number of IDH-mutant-
111  codel cases, we grouped the IDH-mutant categories, unless specified otherwise. To facilitate
112  further investigation and discovery of the drivers of treatment resistance in glioma, we have made
113  this resource available to the research community

114 (https://www.synapse.org/#!Synapse:syn21589818).

115

116  Transcriptional activity and cellular composition in glioma is variable over time

117 To obtain a baseline understanding of transcriptional evolution in glioma, we assessed the
118 representation of the classical, mesenchymal, and proneural transcriptional subtypes in each
119 sample. IDH-wild-type tumors exhibited primarily classical and mesenchymal characteristics
120 compared to IDH-mutant tumors, which were largely proneural (Figure 1A). Longitudinally, the
121 dominant subtype in IDH-wild-type tumors switched in 46% of patients, with classical to
122 mesenchymal being the most common transition. IDH-mutant tumors were more stable, with 75%
123 of tumors remaining proneural at both time points (Figure 1B). Classical IDH-wild-type and IDH-
124  mutant tumors switched subtype 50% of the time, resulting in an overall reduction of classical
125 tumors at recurrence. The occurrence of this transition was significant (P = 0.04, Fisher's exact
126  test), suggesting that the tumor cells underlying the classical subtype may have higher plasticity
127  than other subtypes.

128
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129 To understand the cellular phenotypes underlying the transcriptional dynamics over time, we
130 deconvoluted the GLASS gene expression dataset using CIBERSORTx (Newman et al., 2019)
131 integrated with reference cell state signatures derived from our previously established collection
132  of 55,284 single-cell transcriptomes from 11 adult patients spanning glioma subtypes and time
133 points (Johnson et al., 2020) (Table S2, Table S3). Unsupervised analyses of the single-cell data
134  had previously identified 12 cell states that represented the glial, stromal, immune, and malignant
135 compartments commonly present in glioma. The malignant population expressed a shared set of
136 markers (e.g., SOX2) and was split across three pan-glioma cell states, differentiated-like, stem-
137  like, and proliferating stem-like, that together capture the gradient between development, lineage
138 commitment, and proliferative status that has been observed across numerous glioma single-cell
139  studies (Bhaduri et al., 2020; Castellan et al., 2021; Couturier et al., 2020; Garofano et al., 2021,
140 Neftel et al., 2019; Richards et al., 2021, Tirosh et al., 2016; Venteicher et al., 2017; Wang et al.,
141  2019; Yuan et al., 2018). Specifically, the differentiated-like state encompassed malignant cells
142  exhibiting oligodendrocyte-like, astrocyte-like, and mesenchymal-like processes, while the stem-
143  like states could be segregated by cell cycle activity and resembled undifferentiated and
144  progenitor-like malignant cells (Neftel et al., 2019; Venteicher et al., 2017). To validate this
145  approach, we applied CIBERSORTX to 1) a series of synthetic mixtures composed of single cells
146  from our reference dataset that had been left out of the signature creation process; and 2) bulk
147 RNAseq profiles from our reference dataset that had their true proportions determined from
148 scRNAseq (Figure S1A and S1B).

149

150 When applying our deconvolution approach to the GLASS dataset, we observed variations in
151  cellular composition across each subtype consistent with prior literature (Neftel et al., 2019; Wang
152  etal., 2017). Classical and mesenchymal tumors had high levels of differentiated-like malignant
153 cells, with the latter also having high levels of stromal and immune cells, and proneural tumors

154  had high levels of proliferating stem-like and stem-like malignant cells (Figure 1C). Longitudinally,
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155 we found that IDH-wild-type tumors had significantly higher levels of oligodendrocytes and
156  significantly lower levels of differentiated-like malignant cells at recurrence (P = 2e-5 and 2e-3,
157  paired t-test). These changes remained significant even when accounting for differences in the
158  surgical resection extent at each time point, suggesting a greater admixture of malignant cells
159 and oligodendrocytes (Figure S1C). We observed similar changes in cellular composition when
160 using an independently published integrative model of cell state classification that has been
161 established for IDH-wild-type glioma, including a significant decrease at recurrence in the
162  astrocyte-like malignant cell state that is dominant in classical IDH-wild-type tumors (P = 2e-3,
163  paired t-test; Figure S1D) (Neftel et al.,, 2019). Recurrent IDH-mutant tumors exhibited
164  significantly higher levels of proliferating stem-like malignant cells and significantly lower levels of
165 differentiated-like malignant cells (P = 3e-3 and 2e-5, paired t-test; Figure 1C). Stratifying this
166  group by 1p/19q co-deletion status revealed that the increase in proliferating stem-like cells was
167 only significant in IDH-mutant-noncodels, while IDH-mutant-codels exhibited a significant
168 increase in stem-like cells (P = 0.04, paired t-test; Figure S1E). Overall, the differences IDH-wild-
169 type and IDH-mutant tumors exhibited over time suggested that distinct factors influence
170  recurrence in each subtype.

171

172  Histological features underlie subtype switching and cell state changes at recurrence

173  Intratumoral heterogeneity is a hallmark of glioma and is abundant in hematoxylin and eosin-
174  stained tissue slides, where features such as microvascular proliferation and necrosis are used
175  for diagnosis and grading by pathologists (Hambardzumyan and Bergers, 2015; Kristensen et al.,
176  2019). The lvy Glioblastoma Atlas Project has defined and microdissected five “anatomic”
177  features on the basis of reference histology: 1) the leading edge of the tumor, 2) the infiltrating
178  tumor front, 3) the cellular tumor, 4) pseudopalisading cells around necrosis, and 5) microvascular
179  proliferation (Puchalski et al., 2018). They have shown that each of these features has a distinct

180 transcriptional profile, suggesting that changes in a tumor’s cell state composition at recurrence
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181 reflect changes in a tumor’s underlying physical structure. To obtain a better understanding of the
182  cell states found in these features, we applied our deconvolution method to the transcriptional
183  profiles from the microdissected features of 10 patients and found they each exhibited a distinct
184  cell state composition profile (Figure 2A). Leading-edge samples have been shown to exhibit
185  expression patterns associated with the proneural subtype as well as neural tissue, suggesting
186 they are composed of a mixture of tumor and normal cells (Gill et al., 2014; Jin et al., 2017,
187  Puchalski et al.,, 2018). Consistent with this finding, we found this region was rich in
188  oligodendrocytes found at the tumor-normal brain interface and was also predicted to contain high
189 levels of stem-like malignant cells, despite its reduced tumor content. We have previously shown
190 that stem-like cells and a subset of differentiated-like cells resemble a malignant oligodendroglial
191 precursor cell-like state that has been implicated in neuronal signaling and synapse formation,
192  suggesting transcriptional overlap between neural and tumor tissue in this region (Johnson et al.,
193  2020; Venkatesh et al., 2019). Pseudopalisading cells around necrosis features, which are areas
194  of hypoxia, exhibited the highest levels of differentiated-like malignant cells. Conversely,
195  microvascular proliferation features were enriched in proliferating stem-like malignant cells,
196  supporting the role of oxygen in influencing cell state. Finally, the cellular tumor feature exhibited
197 more sample-specific variation, with high levels of differentiated-like malignant cells in IDH-wild-
198 type samples and high levels of stem-like cells in IDH-mutant samples. Each cell state’s
199  distribution was more significantly associated with the histological feature than the patient from
200  which it was derived (two-way ANOVA; Figure S2A) (Puchalski et al., 2018).

201

202  Given the strong association between histological features and cellular composition, we examined
203 how the representation of these features varied over time by deconvoluting the GLASS dataset
204  with the available feature-specific gene signatures developed as part of lvy GAP. This analysis
205 captured differences in each bulk transcriptional subtype’s anatomy that reflected their underlying

206 cell state composition (Figure 2B). It also revealed that IDH-wild-type tumors had significantly
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207 higher leading-edge content at recurrence, even after adjusting for transcriptional subtype switch,
208  which was consistent with the increase in oligodendrocytes we had previously observed (P = le-
209 4, paired t-test; Figures 2B, 2C). In IDH-wild-type tumors undergoing the common classical-to-
210 mesenchymal transition, we observed a significant increase in pseudopalisading cells around
211 necrosis and a decrease in cellular tumor content, indicative of increased hypoxia and non-
212  malignant content (P = 2e-5, and 3e-5, respectively, paired t-test). At the cell state level, we found
213  that changes in the abundance of differentiated-like malignant cells positively associated with
214  increased cellular tumor features in IDH-wild-type tumors, increased leading edge features in IDH-
215 mutant tumors, and increased pseudopalisading cells around necrosis features in both subtypes.
216  Changes in stem-like malignant cells positively associated with changes in leading-edge features
217  in IDH-wild-type tumors and cellular tumor features in IDH-mutant tumors. Finally, in both
218  subtypes, changes in proliferating stem-like and immune cells positively associated with changes
219 in microvascular proliferation (Figure 2D).

220

221  Given these correlations, we hypothesized that subtype switches in IDH-wild-type tumors were
222  attributable to changes in histological feature composition over time. We recalculated our
223  malignant cell fractions by adjusting for the presence of non-malignant cells, as well as leading-
224 edge content which may vary by surgery. While most subtype switches associated with changes
225 in at least one malignant cell fraction pre-adjustment, the only difference observed post-
226  adjustment was a decrease in stem-like cells in tumors undergoing a proneural-to-mesenchymal
227  transition (P = 3e-4, paired t-test; Figures S2B, S2C). These associations remained significant
228  even after adjusting for the remaining non-cellular tumor features, suggesting tumors undergoing
229 this switch exhibit a loss of stem-like cells independent of histological feature composition
230 (Figures 2E, S2B). Collectively, these results indicate that while most subtype switches in IDH-

231  wild-type tumors are related to changes in a tumor’s underlying physical structure and
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232  microenvironment, the changes observed in the proneural-to-mesenchymal transition may result
233  from tumor-wide changes that reflect malignant cell-intrinsic processes at recurrence.

234

235 Acquired somatic alterations at recurrence associate with changes in cellular composition
236  Somatic genetic alterations have been shown to be associated with the cell state distribution of
237 IDH-wild-type and IDH-mutant glioma (Neftel et al., 2019; Tirosh et al., 2016; Verhaak et al.,
238  2010). We thus hypothesized that changes in cellular compaosition resulted from genetic changes
239  atrecurrence. This was reinforced by the observation that, in both IDH-wild-type and IDH-mutant
240 tumors, each cell state’s initial fractions weakly correlated with those at recurrence (median
241  concordance coefficient (pc) = 0.17 and 0.26, respectively; Figure 3A). We reasoned that if the
242  presence of a cell state was influenced by genetic factors, the pairwise change in its proportion
243  over time would deviate from a zero-centered normal distribution that is suggestive of stochastic
244  change.

245

246 When we examined the distribution of each malignant cell state’s changes, we found that
247  proliferating stem-like malignant cells significantly deviated from the stochastic distribution in IDH-
248  mutant and IDH-wild-type glioma, and this remained true after adjusting for the presence of non-
249  malignant cells (P < 0.05, Kolmogorov-Smirnov test; Figure 3B, 3C). Notably, we did not observe
250 a change in stem-like cells, though we did not adjust for histological feature composition as we
251  were focused on tumor-wide changes in cell state composition. Within IDH-mutant tumors, we
252  identified acquired deletions of the cell cycle regulator CDKN2A and acquired amplifications of
253  the cell cycle regulator CCND2 as genetic events that together associated with the increase in
254  proliferating stem-like cells (P = 0.01, paired t-test, n = 3; Figure S3A). This association was not
255  present in IDH-wild-type tumors, which typically harbor CDKN2A deletions at initial presentation.
256  Approximately 20% of gliomas recur with a hypermutated phenotype following treatment with

257  alkylating agents, a standard-of-care chemotherapy (Barthel et al., 2019; Touat et al., 2020). This
9
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258 phenotype has been associated with disease progression and distant recurrence (Yu et al., 2021).
259  We found that in both IDH-wild-type and IDH-mutant glioma, hypermutation also associated with
260 an increase in proliferating stem-like malignant cells (n = 12 and 6, respectively; Figure 3D). In
261 IDH-mutant tumors, hypermutation was independent of acquired copy number changes in
262 CDKN2A and CCND2, suggesting that there are multiple genetic routes to increasing proliferating
263  stem-like malignant cells at recurrence (Figure 3E). Notably, we found that neither hypermutation
264  nor acquired cell cycle alterations were associated with changes in microvascular proliferation,
265  suggesting that the increase in proliferating stem-like malignant cells in these tumors was driven
266 by changes in their genetics (Figure S3B).

267

268 Beyond malignant cells, we observed that fibroblasts, oligodendrocytes, and granulocytes all
269  deviated from the stochastic distribution. As with the proliferating stem-like cells, we compared
270  how each cell state fraction differed in the small number of samples that acquired or lost selected
271  driver mutations at recurrence. In IDH-wild-type tumors, tumors acquiring NF1 mutations all
272  underwent a mesenchymal transition and exhibited a significant increase in granulocytes (P =
273  0.01, paired t-test, n = 6; Figure S3C). Granulocytes have previously been associated with tumor
274  necrosis, a feature that is prominent in mesenchymal glioblastoma (Yee et al., 2020). There were
275  additionally several copy number alterations, including loss of EGFR or PDGFRA amplifications,
276  that were associated with increased non-malignant cell content (P < 0.05, paired t-test, n = 9 and
277 n = 3, respectively), and a transition to the mesenchymal subtype (P = 0.02, Fisher’s exact test;
278 Figures S3D and S3E). We did not observe any significant changes in the fractions of non-
279 malignant cells when comparing hypermutated recurrences with their corresponding non-
280 hypermutated initial tumors, although T cells numerically increased in IDH-mutant tumors (P =
281 0.07, paired t-test; Figure S3F). Collectively, nearly all the cell state changes we found to deviate
282  from the stochastic distribution were associated with changes in tumor genetics, suggesting that

283  genetic evolution underlies the most frequent changes in cellular composition over time.
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284

285 IDH-wild-type malignant cells exhibit an increase in neuronal signaling gene expression
286  programs at recurrence

287  While a subset of tumors demonstrated increases in proliferating stem cell content at recurrence,
288  most IDH-wild-type and IDH-mutant tumors did not exhibit any directed changes in their malignant
289  cell composition over time. We hypothesized that the expression programs of individual cell states
290 may change following treatment in more subtle ways that do not manifest as a noticeable shift in
291 cellular composition. To test whether these changes were taking place, we utilized our pan-glioma
292  single-cell RNAseq dataset as a reference to deconvolute GLASS bulk gene expression profiles
293 into their component differentiated-like, stem-like, proliferating stem-like, and myeloid gene
294  expression profiles (Figure S4A). Comparing these profiles to those derived from fluorescence-
295 activated cell sorting (FACS)-purified glioma-specific CD45 and myeloid populations revealed
296 strong concordance between the corresponding profiles of each cell state (Figures S4B and
297  S4C).

298

299 To compare how the expression programs in each malignant cell state vary longitudinally, we
300 compared the cell state-specific gene expression profiles between the initial and recurrent tumor
301 for each pair receiving temozolomide and/or radiotherapy. We only included tumor pairs that did
302 not exhibit a bulk transcriptional subtype switch, as variable subtype switching may reflect
303 changes in histological feature composition over time. In IDH-wild-type tumors, we found that
304 5.2% of the 7,400 genes that could be inferred in stem-like cells were significantly differentially
305 expressed at recurrence (false discovery rate (FDR) < 0.1, Wilcoxon signed-rank test). This
306 number was 1.9% of the 11,376 differentiated-like state genes and 0.5% of the 5,908 proliferating
307 stem-like state genes (Figure 4A; Table S4). Based on these results, we defined recurrence-
308  specific signatures as the genes that were significantly up-regulated at recurrence in each cell

309 state. While there was little overlap between each of these signatures, gene ontology (GO)
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310 enrichment analysis revealed that the stem-like and differentiated-like signatures were
311  significantly enriched in terms relating to neuronal signaling (Figures 4B and S4D). These results
312  were consistent with the increase in leading edge features and oligodendrocytes at recurrence
313  we had previously observed. To confirm that these signatures were measuring malignant-specific
314  expression changes at recurrence, we compared how their expression differed between
315 malignant single cells from unmatched initial and recurrent IDH-wild-type tumors, as there is
316 limited availability of matched initial and recurrent single-cell data. In all cases, the recurrence-
317  specific cells exhibited significantly higher expression of their respective signatures than those
318 from initial tumors (Figure 4C). We next examined each recurrence-specific signature’s
319 association with histological feature content and found that the tumor’s leading edge was
320 positively associated with the malignant cell state-specific expression of each signature (Figure
321  4D). While this feature has reduced tumor content, malignant cells in the tumor periphery have
322  previously been shown to exhibit neuronal signaling activity (Darmanis et al., 2017; Puchalski et
323  al., 2018). Furthermore, stem-like cells, which are the malignant state most frequently found at
324  the leading edge and enhancing region (Jin et al., 2017), exhibited the strongest associations.
325 Notably, each of these associations was present regardless of whether the comparisons were
326 made in initial or recurrent tumors. Together these results suggest that increased normal cell
327 content at recurrence associates with higher signaling between malignant cells and neighboring
328 neural cells. Neuron-to-glioma synapses have been implicated in increased tumor growth and
329 invasion, and collectively our results support a model of greater tumor invasion into the normal
330 brain at recurrence that is facilitated by an increase in neuronal interactions (Venkataramani et
331 al, 2019; Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 2017).

332

333  We next compared how the expression profiles of each cell state differed between initial and
334  recurrent IDH-mutant tumors that received treatment. The resulting signatures were distinct from

335 those in IDH-wild-type tumors, with the largest number of differentially expressed genes found in
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336 the differentiated-like state instead of the stem-like state (FDR < 0.1, Wilcoxon signed-rank test;
337 Figure 4E, Table S4). Additionally, the majority of candidate genes identified in IDH-mutant
338 tumors were expressed more highly in initial tumors, as opposed to IDH-wild-type tumors where
339 the reverse was true. As with IDH-wild-type tumors, there was limited overlap between the
340 differentiated-like and stem-like signatures (Figure S4E). A GO enrichment analysis of the genes
341 up-regulated at recurrence in the differentiated-like and stem-like cell states revealed an
342  enrichment of cell cycle-related genes. In contrast, the down-regulated genes were enriched in
343  terms related to cellular communication and response to stimulus (Figure 4F). These signatures
344  were consistent with those found in higher grade tumors, suggesting that the cell state-specific
345 gene expression changes were indicative of grade increases at recurrence. Accordingly, we
346 observed that these changes were strongest in the tumor pairs that recurred at a higher grade
347  (Figure S4F). Furthermore, when we compared signature expression in single cells of the same
348 cell state, we found that the signatures were differentially expressed in the cells derived from
349  grade lll versus grade Il tumors (Figure S4G). These results indicate that IDH-wild-type and IDH-
350 mutant tumors recur in distinct manners that may reflect their response to treatment.

351

352 Mesenchymal tumor cell activity associates with a distinct myeloid cell phenotype

353 The mesenchymal subtype of glioma is associated with increased accumulation of immune cells,
354  primarily of the myeloid lineage (Bhat et al., 2013; Kim et al., 2021; Wang et al., 2017). We thus
355 hypothesized that interactions between the tumor-infiltrating myeloid cells and malignant cells can
356 influence the tumor’s trajectory at recurrence. To understand how the myeloid compartment
357 differed across each glioma subtype, we deconvoluted the myeloid-specific gene expression
358 profiles from a collection of diffuse glioma bulk RNAseq profiles (n = 701) from The Cancer
359 Genome Atlas (TCGA). The myeloid compartment in IDH-wild-type tumors was characterized by
360 high expression of a previously defined blood-derived macrophage signature (Muller et al., 2017),

361 while myeloid cells in IDH-mutant-noncodel tumors exhibited high expression of a previously
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362 defined brain-resident microglia signature (Figure 5A). Stratifying this cohort by transcriptional
363  subtype revealed that the blood-derived macrophage signature followed a stepwise increase with
364 mesenchymal subtype representation, while microglial gene expression was highest amongst
365 tumors of the mixed subtype classification that is seen most frequently in IDH-mutant-noncodel
366 glioma (Figure S5A). In IDH-wild-type tumors, blood-derived macrophage signature expression
367 was positively correlated with the abundance of microvascular proliferation and pseudopalisading
368 cells around necrosis features, while the microglia signature was most positively correlated with
369 leading-edge content. There were no clear associations for either signature in IDH-mutant tumors
370 (Figure S5B). Longitudinally, when holding transcriptional subtype constant, we observed very
371 few differentially expressed genes in the myeloid cell profiles from matched initial and recurrent
372  tumors in the GLASS cohort (Figure S5C). However, the myeloid profiles in IDH-mutant tumors
373 that increased grade at recurrence exhibited a significant decrease in microglia signature
374  expression, suggesting a shift in myeloid cell states away from brain-resident microglia (P = le-
375 3, Wilcoxon signed-rank test; Figure 5B).

376

377 Macrophages are highly plastic and capable of changing their transcriptional programs in
378 response to different stimuli (Xue et al., 2014). We reasoned that interactions between myeloid
379 cells and malignant cells in the mesenchymal glioma microenvironment might result in a
380 population of myeloid cells that bear a distinct transcriptional phenotype. We thus performed a
381 differential expression analysis to compare how the deconvoluted myeloid cell expression profiles
382 differed between mesenchymal and non-mesenchymal IDH-wild-type tumors in TCGA. This
383 analysis revealed that 218 of the 4,235 inferred genes (5%) were significantly upregulated in
384 mesenchymal samples (FDR < 0.1, fold-change > 1.1; Figure 5C, Table S5). When we examined
385 the average expression of this signature in myeloid cells from our scRNAseq dataset, we found
386 that the average signature score in each patient was strongly associated with the mesenchymal

387 glioma subtype score derived from their patients’ respective bulk RNAseq profile (R = 0.87, P =
14


https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442486; this version posted May 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

388 5e-4; Figure 5D). We did not observe this association using the blood-derived macrophage
389 signature, suggesting that our mesenchymal macrophage signature was measuring myeloid
390 activity specific to the mesenchymal subtype (Figure S5D). Analysis of signature expression
391 across each of the lvy GAP dataset’s histological feature samples revealed that the mesenchymal
392 myeloid signature was expressed most highly in the pseudopalisading cells around necrosis and
393  microvascular proliferation features that are highest in mesenchymal tumors (Figure 5E). A GO
394  enrichment analysis of this signature revealed the mesenchymal myeloid signature to be enriched
395 in chemokine signaling and lymphocyte chemotaxis functions (Figure S5E).

396

397  Longitudinally, IDH-wild-type tumors in the GLASS dataset undergoing a mesenchymal transition
398 at recurrence exhibited significantly higher mesenchymal myeloid signature expression in their
399 recurrent tumor myeloid profiles (P = 6e-7, Wilcoxon signed-rank test; Figure 5F). This led us to
400 examine whether we could identify the ligand-receptor interactions between myeloid and
401 malignant cells associated with this transition over time. We focused this analysis on
402  differentiated-like malignant cells, as this cell state frequently exhibits mesenchymal-like
403 characteristics (Johnson et al., 2020). To probe these interactions, we downloaded a set of 1,894
404 literature-supported ligand-receptor pairs (Ramilowski et al., 2015) and identified all pairs that had
405 one component expressed in a tumor’s deconvoluted myeloid profile and the other expressed in
406 the differentiated-like malignant cell profile. We then compared how the longitudinal change in
407  expression of each component associated with the change in each tumor pair's mesenchymal
408  subtype score. This identified 69 putative ligand-receptor pairs where each component exhibited
409 a positive association (R > 0, FDR < 0.1; Figure S5F). Of these pairs, 35 also exhibited these
410 associations in our single-cell dataset, including 19 where the ligand was expressed by the
411  malignant cell and 16 where the ligand was expressed by the myeloid cell (Table S6). In pairs
412  where the ligand was expressed by the malignant cell, the pair with the highest mean correlation

413  was vascular endothelial growth factor A (VEGFA)-neuropilin 1 (NRP1), which is involved in
15
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414  angiogenesis and endothelial cell migration (Herzog et al., 2011). In pairs where the myeloid cell
415  expressed the ligand, the best performing pair was oncostatin M (OSM)-oncostatin M receptor
416  (OSMR), which has been associated with an epithelial-to-mesenchymal transition in vitro (Junk
417 et al.,, 2017). In addition to these pairs, myeloid-specific single-cell expression of the receptor
418 MARCO was significantly associated with the bulk tumor mesenchymal signature score, in
419  concordance with its reported role as a marker of mesenchymal-associated macrophages (Figure
420 S5G) (Sa et al., 2020). These analyses identify candidate receptor-ligand interactions that can
421  potentially be targeted to shift a tumor towards or away from a mesenchymal state following
422  treatment.

423

424  Antigen presentation is disrupted at recurrence in IDH-mutant-noncodel glioma

425  Studies in non-small cell lung cancer and other cancer types have shown that cytotoxic T cells
426  exert selective pressure on malignant cells through the elimination of neoantigen-presenting
427  tumor subclones (Grasso et al., 2018; McGranahan et al., 2017; Rooney et al., 2015; Rosenthal
428 et al., 2019; Zhang et al., 2018). Immune interactions have been associated with selection for
429  epigenetic changes in glioma (Gangoso et al., 2021), however the extent to which T cells are
430 involved in shaping genetic evolution of glioma remains unclear. We hypothesized that if T cell
431  selection was taking place, then tumors with high T cell infiltration would more frequently exhibit
432  loss-of-heterozygosity (LOH) in the human leukocyte antigen (HLA) genes that are central to the
433  presentation of neoantigens. We thus called HLA LOH throughout the GLASS cohort (Figure 6A).
434  We observed that HLA LOH is prevalent in glioma, occurring in at least one timepoint in 19% of
435  patients. Within IDH-wild-type and IDH-mutant-codel tumors, HLA LOH was found at similar rates
436  between initial and recurrent tumors, with most affected pairs exhibiting this alteration at both time
437  points. This was not the case in IDH-mutant-noncodel tumors, where significantly more samples
438  acquired HLA LOH at recurrence (P = 0.02, Fisher’s exact test). However, unlike in non-small cell

439 lung cancer, the presence of HLA LOH was not associated with the fraction of infiltrating T cells
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440 in each tumor (Figure 6B). Furthermore, we did not observe an association between T cell
441  abundance and the rates of neoantigen depletion, and in HLA LOH samples, the number of
442  neoantigens binding to the kept allele did not differ from the number that were predicted to bind
443  to the lost allele (Figures S6A and S6B).

444

445  Given the absence of an association between HLA LOH status and T cell infiltration, we reasoned
446  that HLA LOH might be a passenger event that occurs in samples with a high genome-wide
447  somatic copy number alteration (SCNA) burden. We had previously shown that IDH-mutant-
448 noncodel tumors exhibit significantly higher SCNA burdens at recurrence (Barthel et al., 2019).
449 This difference remained significant regardless of whether the tumors acquired HLA LOH.
450 However, the tumors acquiring this alteration at recurrence exhibited significantly higher changes
451  in SCNA burden than those that did not, confirming our hypothesis (P = 0.02, Wilcoxon rank-sum
452  test; Figure 6C). We did not observe longitudinal associations between HLA LOH status and
453  SCNA burden in IDH-wild-type tumors, although we found at both the initial and recurrent time
454  points that samples with HLA LOH had higher SCNA burdens than those with both HLA alleles
455  (Figure S6C). Taken together, these results suggest that disruption of antigen presentation in
456  gliomais likely a byproduct of SCNA burden rather than being a result of selection by cytolytic T
457  cells as has been observed in other cancers.

458

459  Discussion

460 To understand the factors driving the evolution and treatment resistance of diffuse glioma, we
461 integrated genomic and transcriptomic data from the initial and recurrent tumor pairs of 292
462  patients. By integrating this resource with data from single-cell RNAseq experiments, a
463  histological transcriptional atlas, and a multitude of external transcriptional datasets, we have
464  comprehensively defined the longitudinal transcriptional and compositional changes that gliomas

465 sustain at recurrence.

17


https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.03.442486; this version posted May 4, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

466

467 In this study, we employed single-cell deconvolution approaches to enable high-resolution
468 quantification of glioma tumors’ cellular composition. Available cell state classification models
469 have been developed for diffuse glioma using single cells of a single glioma subtype (Castellan
470 et al., 2021; Garofano et al., 2021; Neftel et al., 2019; Richards et al., 2021; Venteicher et al.,
471  2017). In contrast, our reference matrix utilized cell states derived from a pan-glioma single-cell
472  dataset composed of initial and recurrent tumors of all major clinically relevant glioma subtypes,
473  and thus included malignant and normal cell states commonly found across diffuse glioma. The
474  resulting cellular proportions reflected true cell state levels in multiple benchmarking analyses,
475  making this an invaluable approach for comparing and contrasting the longitudinal changes taking
476  place across IDH-wild-type and IDH-mutant tumors. In the future this approach can continue to
477  be refined as the number of cells per tumor and patients profiled by scRNAseq increases and
478  enables even higher resolution estimates of glioma cell state composition and heterogeneity.
479

480  While transcriptional subtype switching has been reported to occur frequently in IDH-wild-type
481 glioma, the role these switches play in treatment resistance is unclear. Pathology-defined
482  histological features from Ivy GAP exhibit distinct transcriptional profiles that correspond to
483  different glioma transcriptional subtypes, suggesting that subtype switching may be more
484  reflective of changes in the tumor’s histological feature composition at recurrence (Jin et al., 2017,
485  Puchalski et al., 2018). Ivy GAP comprises features defined from primary tumors, which we found
486 to be useful proxies to measure the biological changes at recurrence that underlie subtype
487  switching. Limitations of the Ivy GAP resource may include the absence of commonly observed
488  features, such as necrotic tissue and perinecrotic zone tumor, which may be more present
489 following radiation therapy. We showed that the proneural-to-mesenchymal transition is
490 independent of histological feature composition and reflects transcriptional changes in the cellular

491 tumor. Mesenchymal transitions have been shown to associate with several factors, including
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492 increased myeloid cell infiltration, radiation-induced NF-kB activation, altered tumor metabolism,
493  and hypoxia (Bhat et al., 2013; Garofano et al., 2021; Kim et al., 2021; Mao et al., 2013; Osuka
494 et al.,, 2021; Schmitt et al., 2021; Wang et al., 2017). Our results indicate that the proneural-to-
495 mesenchymal transition is likely influenced by tumor-wide changes, supporting the hypothesis
496 that this transition is involved in therapy resistance. Additional studies where multiple biopsies are
497  obtained from the same tumor over time may help to further elucidate the relationship between
498 histological feature composition and gene expression subtype.

499

500 Across IDH-wild-type and IDH-mutant glioma, we identified a sub-population of samples that
501 exhibited an increase in proliferating stem-like malignant cells at recurrence. Analysis of the
502 acquired somatic alterations in these tumors revealed that hypermutation was associated with
503 this change in both subtypes. This finding across both subtypes suggests that hypermutation may
504 represent a pan-glioma treatment resistance mechanism. Hypermutation did not associate with
505 patient survival in the GLASS dataset but has been found more frequently in distant recurrences
506 and linked to reduced survival following high-grade progression in low-grade IDH-mutant tumors
507 (Barthel et al., 2019; Touat et al., 2020; Yu et al., 2021). Given these findings, our data highlights
508 methods to predict treatment-induced hypermutation represent a previously unrecognized unmet
509 clinical need in the field. Integrating such methodologies into clinical care pathways would help to
510 identify patients that may benefit from therapies that complement chemotherapy and further target
511 cycling cells.

512

513  We did not identify any somatic alterations associated with changes in malignant cell composition
514  outside of hypermutation and copy number changes in cell cycle regulators. Despite this, we
515 found that malignant glioma cells in IDH-wild-type tumors exhibited a significant increase in the
516 expression of genes involved in neuronal signaling. This change coincided with an increase in

517 oligodendrocytes at recurrence that was independent of the extent of tumor resection, providing
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518 amedium for increased interactions between malignant and normal cells in the brain. Additionally,
519 neuronal signaling was most significantly up-regulated within the malignant stem-like cells, which
520 are found at the highest levels at the leading edge of the tumor and frequently resemble
521 oligodendroglial precursor-like malignant cells involved in neuronal signaling (Venkatesh et al.,
522  2019). Increased neuronal signaling has previously been reported in malignant cells that have
523 infiltrated into the surrounding tissue in response to low oxygen content and our study extends
524  these observations to glioma progression (Darmanis et al., 2017). Collectively these findings
525  coupled with our results relating to proneural-to-mesenchymal transition support a model where
526  recurrent IDH-wild-type tumors, in response to changes in hypoxia or tumor metabolism at
527  recurrence, invade the surrounding peripheral tissue where they actively interact with neighboring
528 neuronal cells. Given the growing appreciation of the role neuron-glioma interactions play in
529 glioma invasion and progression, it will be critical to understand the extent to which these
530 interactions facilitate tumor regrowth and treatment resistance (Venkataramani et al., 2019;
531 Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 2017).

532

533 In agreement with other studies, we found that the myeloid cell phenotype varied in relation to
534  tumor subtype and malignant cell state (Klemm et al., 2020; Muller et al., 2017; Ochocka et al.,
535 2021; Pombo Antunes et al., 2021; Venteicher et al., 2017). Notably, we found that this variation
536 was most apparent in mesenchymal tumors, where myeloid cells exhibited a distinct
537 transcriptional program. Ligand-receptor analyses revealed several candidate interactions
538 involved in driving malignant and myeloid cells toward this mesenchymal phenotype. Resolving
539 the directionality of these interactions, or determining whether additional factors mediate them,
540 will be an important step toward understanding the contribution myeloid cells make in
541  mesenchymal transformation. We did not observe any differences in T cell activity, nor did we
542  observe evidence of T cell-mediated selection, making glioma distinct from several other cancers

543 (Grasso et al., 2018; McGranahan et al., 2017; Rooney et al., 2015; Rosenthal et al., 2019; Zhang
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544 et al.,, 2018). Despite this, we did observe that antigen presentation in IDH-mutant-noncodel
545  tumors is frequently disrupted at recurrence and is associated with increases in SCNA burden.
546  These results should inform the design of T cell-based immunotherapies going forward, as
547  standard-of-care therapies may inadvertently disrupt malignant cells’ ability to present
548 neoantigensto T cells.

549

550 Therapy resistance remains a significant obstacle for patients with diffuse glioma and must be
551 overcome to improve patient survival and quality of life. Overall, our results reveal that gliomas
552  undergo changes in cell states that associate with changes in genetics and the microenvironment,
553  providing a baseline towards building predictive models of treatment response. Taking into
554  consideration the current histopathologic diagnostic criteria for gliomas and their longitudinal
555  follow-up, future efforts by the GLASS Consortium are now underway. These include expansion
556  of the cohort, integration of digitized tissue sections, and association with clinical and genomic
557 datasets with radiographic imaging data (Bakas et al., 2020). Computational imaging studies have
558  shown mounting evidence and promise in revealing imaging signatures associated with increased
559 invasion and proliferation for glioma patients harboring particular mutations (Bakas et al., 2017;
560 Binder et al., 2018; Fathi Kazerooni et al., 2020; Mang et al., 2020; Zwanenburg et al., 2020), and
561 given their use in clinical monitoring, are highly complementary to the longitudinal datasets
562  established here. Going forward, the transcriptional and compositional changes we have identified
563 can be integrated with these imaging-based results to more broadly assess the molecular and
564  microenvironmental heterogeneity of glioma and identify clinically targetable factors to aid in
565 shaping a patient’s disease trajectory.

566
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727  Figure Legends

728 Figure 1. Diffuse glioma exhibits transcriptional and cellular heterogeneity across
729 samples, subtypes, and time. (A) Overview of the GLASS dataset. Each column represents a
730  tumor pair, and their initial (I) and recurrent (R) samples are labelled. All tumor pairs with RNAseq
731 data at each time point are included. Pairs are arranged based on the representation of the
732 proneural and mesenchymal subtypes in their initial tumors. The first track indicates whether there
733  is whole exome or whole genome sequencing data available for that pair. The next three tracks
734  indicate the representation of each bulk subtype across each sample. The stacked bar plots
735 indicate the cell state composition of each sample based on the single cell-based deconvolution
736  method, CIBERSORTX. The bottom tracks indicate molecular and clinical information for each
737 tumor pair. (B) Sankey plot indicating whether the highest-scoring transcriptional subtype
738 changed at recurrence. Each color reflects the transcriptional subtype in the initial tumors.
739  Number in parentheses indicates number of samples of that subtype. (C) Left: The average cell
740  state composition of each bulk transcriptional subtype for all initial GLASS tumors. Right: The
741  average cell state composition of initial and recurrent tumors stratified by IDH mutation status.
742  Colors in (C) are identical to those used in (A).

743

744  Figure 2. Histological features underlie changes in the cellular composition of diffuse
745 glioma over time. (A) The cell state composition of each of the reference histology-defined Ivy
746  GAP histological features from 10 patients. Patient and IDH mutation status tracks are included
747  beneath the stacked bar plots. For the patient track, each colored block represents a unique
748  patient. (B) Left: The average histological feature composition of each bulk transcriptional subtype

749  for all initial GLASS tumors. Right: The average histological feature composition of initial and
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750 recurrent tumors stratified by IDH mutation status. (C) Heatmap depicting the significance of the
751  changes in each histological feature between initial and recurrent tumors undergoing the indicated
752  subtype transition. The initial subtype is indicated in the columns and the recurrent subtype is
753 indicated in the rows. Colors represent the -logio(P-value) from a paired t-test, with increases at
754  recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (D)
755 Heatmap depicting the Pearson correlation coefficients measuring the association between the
756  change in a given histological feature and the change in a given cell state when going from an
757 initial tumor to recurrence. (E) Left: Ladder plot depicting the change in the adjusted stem-like cell
758  proportion between paired initial and recurrent tumors undergoing a proneural-to-mesenchymal
759 transition. Right: The average adjusted proportions for malignant cells for the tumor pairs outlined
760 on the left. Malignant cell proportions were adjusted for the presence of non-malignant cells as
761  well as non-cellular tumor content.

762

763  Figure 3. Hypermutation and acquired cell cycle alterations associate with increased
764  proliferating stem-like malignant cells in IDH-wild-type and IDH-mutant glioma. (A) Heatmap
765  depicting the concordance coefficients measuring the association between the indicated cell state
766  fractions between initial and recurrent tumors. (B) Top: Density plots depicting the cell state
767  proportion change distribution for each of the indicated cell states. Samples are stratified based
768 on IDH mutation status. The tumor-only distributions indicate the change in malignant cell
769 fractions after adjusting for non-malignant cells. P-values were derived using the Kolmogorov-
770  Smirnov test that compared each distribution to a normal distribution with a mean of 0. (C)
771  Scatterplots depicting the association between the adjusted malignant cell proportions in initial
772  and recurrent tumors. Concordance coefficients are indicated. Diagonal lines correspond to the
773 liney=x. (D) Top: Ladder plots depicting the change in the proliferating stem-like cell proportion
774  between paired initial and recurrent tumors that did and did not undergo hypermutation. Point

775  colors indicate IDH mutation and 1p/19q co-deletion status. * indicates paired t-test P-value <
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776  0.05. Bottom: The average proportions of each cell state for the tumor pairs outlined above. (E)
777  Top: The change in proliferating stem-like cell fraction between initial and recurrent tumors from
778 IDH-mutant pairs. Each bar represents a tumor pair. Bottom: Molecular and clinical information
779  for each tumor pair. P-values were calculated using a paired t-test measuring the association
780  between initial and recurrent tumors that acquired the indicated phenotypes.

781

782  Figure 4. Malignant cells exhibit increased neuronal signaling and cell cycle activation
783  programs in recurrent IDH-wild-type and IDH-mutant tumors. (A) Heatmaps depicting the
784  average normalized logio expression level of genes that were differentially expressed between
785 malignant cell states from initial and recurrent IDH-wild-type tumors not undergoing a subtype
786  switch. Fractions on each plot’s right indicate the number of differentially expressed genes
787  (numerator) out of the number of genes inferred for that cell state’s profile using CIBERSORTX
788 (denominator). (B) Bar plot depicting the -logio(adjusted P-value) from a GO enrichment analysis
789  for the differentially expressed genes in differentiated-like and stem-like malignant cells depicted
790 in (A). Only GO terms that were enriched at an adjusted P-value of < 0.05 in both the
791 differentiated-like and stem-like signatures were included. (C) Boxplot depicting the average
792  signature expression in single cells of the indicated malignant cell states from unmatched initial
793 and recurrent IDH-wild-type tumors. **** indicates Wilcoxon rank-sum test P-value < 1e-5. (D)
794  Scatterplot depicting the association between the leading edge fraction and the average signature
795  expression in the inferred malignant cell state-specific expression profiles of samples in the
796 GLASS dataset. Pearson correlation coefficients are indicated. (E) Heatmaps depicting the
797 average normalized logio expression level of genes that were differentially expressed between
798 malignant cell states from initial and recurrent IDH-mutant tumors not undergoing a subtype
799  switch. Fractions are as outlined in (A). (F) Bar plots depicting the -logio(adjusted P-value) from a
800 GO enrichment analysis for the differentially expressed genes in differentiated-like and stem-like

801 malignant cells depicted in (E). Top 8 GO terms that were significant in the up- or down-regulated
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802 signatures from differentiated-like and stem-like cells are shown. In (B) and (F), dotted line
803  corresponds to adjusted P-value < 0.05.

804

805 Figure 5. Myeloid cells in diffuse glioma exhibit diverse phenotypes based on IDH mutation
806  status, transcriptional subtype, and recurrence status. (A) Left: Uniform Manifold
807  Approximation and Projection (UMAP) dimensionality reduction plot of the CIBERSORTx-inferred
808 myeloid profiles from TCGA. Colors indicate bulk transcriptional subtype; shapes indicate IDH
809 and 1p/19q co-deletion status. When all three bulk transcriptional subtypes were significantly
810 represented in a sample, the ‘mixed’ classification was used. Right: UMAP plot colored based on
811 the relative mean expression of macrophage and microglia signatures (B) Box and ladder plots
812  depicting the difference in the mean expression of the indicated signatures between initial and
813  recurrent IDH-mutant tumors from GLASS that do and do not recur at higher grades. Point colors
814 indicate 1p/19qg co-deletion status. *** indicates Wilcoxon signed-rank test P-value < 1e-3. (C)
815 Heatmap depicting the normalized expression z-score of genes that were differentially expressed
816  between myeloid cells from mesenchymal and non-mesenchymal TCGA tumors. Rows indicate
817 genes and columns indicate samples. Top sidebar indicates the bulk mesenchymal score of each
818 sample divided by 1,000. Right sidebar indicates the -log.o adjusted Wilcoxon rank-sum test P-
819 value of the association for each gene. Bottom sidebar indicates the transcriptional subtype of
820 each sample per panel (A). (D) Scatterplot depicting the association between the mean
821  mesenchymal myeloid signature expression in single myeloid cells and the mesenchymal subtype
822  score calculated from bulk RNAseq for each patient. (E) Boxplot depicting the mean
823  mesenchymal myeloid signature expression for CIBERSORTx-inferred myeloid profiles from
824  different histological features in the Ivy GAP dataset. Features in this dataset include the leading
825 edge (LE), infiltrating tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis
826  (PAN), and microvascular proliferation (MVP). (F) Box and ladder plots depicting the difference in

827 the mean expression of the mesenchymal myeloid signature between initial and recurrent IDH-
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828  wild-type tumors undergoing a mesenchymal transition in GLASS. **** indicates Wilcoxon signed-
829 ranktest P < le-5.

830

831 Figure 6. Loss of heterozygosity in HLA genes is associated with increased somatic copy
832 number alterations in IDH-mutant non-1p/19q co-deleted glioma. (A) Left: Sankey plot
833 indicating whether a tumor pair acquires or loses HLA LOH at recurrence. Colored lines reflect
834  the IDH and 1p/19q co-deletion status of the tumor pair and indicate HLA LOH in the initial tumor.
835 Dark gray lines indicate acquired HLA LOH. Right: Stacked bar plot indicating the proportion of
836  samples of each glioma subtype that acquired HLA LOH at recurrence. * indicates Fisher’'s exact
837 test P-value < 0.05. (B) Violin plot depicting the difference in T cell proportion in samples with and
838  without HLA LOH. P-values were calculated using the t-test. (C) Left: Ladder plots depicting the
839 change in SCNA burden between paired initial and recurrent IDH-mutant-noncodel tumors that
840 did and did not acquire HLA LOH. P-values were calculated using the Wilcoxon signed-rank test.
841 Right: Boxplot depicting the difference in the change in SCNA burden between IDH-mutant-
842  noncodel tumor pairs that did and did not acquire HLA LOH. P-value was calculated using the
843  Wilcoxon rank-sum test.

844

845 Figure S1. Validation of deconvolution results and IDH-wild-type-specific cell state
846  profiles. Related to Figure 1. (A) Scatterplots depicting the association between the true
847  proportion and the CIBERSORTx-inferred proportion for each cell state in gene expression
848  profiles from synthetic mixtures composed of different combinations of single cells. (B)
849  Scatterplots depicting the association between the proportion of each malignant cell state
850 determined from single-cell RNAseq and the non-malignant cell-adjusted malignant cell state
851  proportion inferred from CIBERSORTX applied to each sample’s respective bulk tumor RNAseq
852  profile. In all plots, Pearson correlation coefficients are indicated. (C) Left: Stacked bar plot

853 indicating the proportion of samples of IDH-wild-type tumors that underwent a gross total
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854  resection at each timepoint. Right: The average proportions of each cell state for tumors that
855 underwent a subtotal resection at initial and a gross total resection at recurrence (Subtotal-gross
856 total) and tumors that underwent a gross total resection at both time points (Gross total-gross
857 total). (D) Left: The average Neftel et al. cell state composition of each bulk transcriptional subtype
858  for all initial IDH-wild-type GLASS tumors. Right: The average Neftel et. al cell state composition
859  of initial and recurrent IDH-wild-type tumors. (E) The average cell state composition of initial and
860  recurrent IDH-mutant tumors stratified by 1p/19q co-deletion status. Colors in (E) are identical to
861 those used in (C).

862

863  Figure S2. Relationship between bulk subtype switching and cell state changes after
864  adjusting for histological feature composition. Related to Figure 2. (A) Bar plot depicting the
865  -logie P-value from a two-way ANOVA test measuring whether the fractions of each cell state in
866 a sample associate with the patient the sample was derived from (red bar) and the feature the
867 sample represents (blue bar). Dotted line corresponds to P = 0.05 (B) Heatmaps depicting the
868  significance of the changes in each malignant cell state between initial and recurrent tumors
869  undergoing the indicated subtype transition. The initial subtype is indicated in the columns and
870 the recurrent subtype is indicated in the rows. Each row of heatmaps reflects a different
871 histological feature adjustment. Colors represent the -logio(P-value) from a paired t-test, with
872  increases at recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored
873  white. (C) Left: Ladder plot depicting the change in the adjusted stem-like cell proportion between
874  paired initial and recurrent tumors undergoing a proneural-to-mesenchymal transition. Right: The
875 average adjusted proportions for malignant cells for the tumor pairs outlined on the left. Malignant
876  cell proportions were adjusted for the presence of non-malignant cells as well as all non-cellular
877  tumor features.

878
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879 Figure S3. Cell state composition changes associated with the acquisition and loss of
880 somatic alterations. Related to Figure 3. (A) Cell state differences in tumors that acquired
881 CDNK2A deletions or CCND2 amplifications. Panel is split into IDH-mutant and IDH-wild-type
882  tumors. Ladder plots depict the change in the proliferating stem-like cell proportion between
883  paired initial and recurrent tumors that acquired these alterations. Stacked bar plots depict the
884  average proportions of each cell state for the tumor pairs in the ladder plots. (B) Ladder plots
885  depicting the difference in microvascular proliferation fraction in IDH-mutant and IDH-wild-type
886  tumors that underwent hypermutation at recurrence. (C) Left: Ladder plots depicting the change
887 in granulocyte and fibroblast fractions in IDH-wild-type tumors that acquired mutations in NF1 at
888 recurrence. Right: The average proportions of each cell state for the tumor pairs in the ladder
889  plots. (D) Non-malignant cell state differences in IDH-wild-type tumors that lost EGFR or PDGFRA
890 amplifications at recurrence. Panel is split by alteration. Ladder plots depict the change in the
891 non-malignant cell state proportion between paired initial and recurrent tumors while stacked bar
892  plots depict the average proportions of each cell state for these tumors. (E) Sankey plot indicating
893  whether the highest scoring transcriptional subtype changed at recurrence for the tumors depicted
894  in (D). Each color reflects the transcriptional subtype in the initial tumors. Numbers in parentheses
895 indicate number of samples. (F) Ladder plots depicting the difference in T cell fraction in IDH-
896 mutant and IDH-wild-type tumors that underwent hypermutation at recurrence. In all figures, P-
897  values were calculated using a paired t-test unless otherwise noted.

898

899 Figure S4. Validation and differential expression analysis of cell state-specific gene
900 expression profiles. Related to Figure 4. (A) Schema for single-cell RNAseq-based
901 deconvolution of cell state-specific gene expression profiles. (B) Left: Heatmap depicting the
902 relationship between the CIBERSORTXx-inferred gene expression profiles and gene expression
903  profiles from analogous cell types from a FACS-purified ground truth dataset (Klemm et al.). In

904 the CD45neg column in the Klemm et al. heatmap, which represents a composite gene
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905 expression profile from the non-immune cells purified from a collection of glioma tumors, gene
906 expression patterns from all three malignant cell states can be observed. Right: Heatmap
907 depicting the correlation coefficients between each CIBERSORTXx-inferred cell state-specific gene
908 expression profile and the gene expression profiles from the FACS-purified ground truth dataset.
909 (D) Venn diagram depicting the overlap between the genes the differentiated-like and stem-like
910 cell states differentially express in initial versus recurrent IDH-wild-type tumors. (E) Venn diagram
911 depicting the overlap between the genes the differentiated-like and stem-like cell states
912  differentially express in initial versus recurrent IDH-mutant tumors. (F) Boxplot depicting the
913  average signature expression in the analogous cell state-specific gene expression profiles for
914  each IDH-mutant tumor pair in GLASS. Comparisons are stratified based on whether the tumor
915  pair was grade stable or exhibited a grade increase at recurrence. *** indicates Wilcoxon signed
916  rank test P-value < 1e-3, * indicates P < 0.05, and ~ indicates P < 0.10. (G) Boxplot depicting the
917 average signature expression in single cells of the indicated malignant cell states from grade Il
918 and grade Ill. *** indicates Wilcoxon rank-sum test P-value < le-5.

919

920 Figure S5. Characterization of the mesenchymal myeloid signature and identification of
921 candidate ligand-receptor interactions in mesenchymal glioma. Related to Figure 5. (A)
922 Boxplots depicting the average macrophage and microglia gene expression signatures in
923 CIBERSORTx-inferred myeloid-specific gene expression profiles from TCGA. Samples are
924  stratified by IDH and 1p/19q co-deletion status (left) and bulk transcriptional subtype (right). ****
925 indicates Wilcoxon rank-sum test P-value < 1e-5. (B) Bar plots depicting the Spearman correlation
926  coefficients measuring the association between the myeloid-specific expression scores for the
927 macrophage and microglia signatures versus the presence of the four lvy GAP histological
928 features in TCGA. The features measured were leading edge (LE), cellular tumor (CT),
929  microvascular proliferation (MVP), and pseudopalisading cells around necrosis (PAN). (C)

930 Heatmaps depicting the average normalized logic expression level of genes that were
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931  differentially expressed between myeloid cell states from initial and recurrent IDH-wild-type and
932  IDH-mutant tumors in GLASS that did not undergo a subtype switch. Fractions on the right of
933  each plot indicate the number of differentially expressed genes (numerator) out of the number of
934 genes inferred for that cell state’s profile in GLASS using CIBERSORTx (denominator). (D)
935  Scatterplot depicting the association between the mean blood-derived macrophage signature
936  expression in single myeloid cells and the mesenchymal subtype score calculated from bulk
937 RNAseq for each patient. (E) Bar plot depicting the -log.o(adjusted P-value) from a GO enrichment
938 analysis for the genes in the mesenchymal myeloid signature. (F) Analysis of ligand-receptor
939 interactions between differentiated-like malignant cells and myeloid cells. Left plots depict the
940 Pearson correlation coefficients from analyses comparing the change in expression of a ligand or
941 receptor from the indicated cell state versus the change in bulk mesenchymal score over time in
942  IDH-wild-type GLASS samples. All ligand-receptor pairs that exhibited an R > 0 and an FDR <
943 0.1 are highlighted in red and were included in the right plot. Right plots depict single-cell analyses
944  measuring how the average expression of a ligand or receptor in single cells of the indicated cell
945  state associates with the tumor’s bulk mesenchymal score in IDH-wild-type tumors. Red points
946 indicate the ligand-receptor pair with the highest average correlation. (G) Scatterplot depicting the
947  association between the mean expression of MARCOZ2 in single myeloid cells and the
948 mesenchymal subtype score calculated from bulk RNAseq for each patient.

949

950 Figure S6. Analysis of neoantigen-mediated T cell selection in glioma. Related to Figure 6.
951  (A) Scatterplots depicting the association between the T cell proportion and the neoantigen
952  depletion rate in initial and recurrent GLASS samples. (B) Box and ladder plots depicting the
953  difference in the number of neoantigens binding to the kept and lost allele. Points are colored
954  based on whether the sample was an initial or recurrent tumor. P-values were calculated using

955 the Wilcoxon signed-rank test. (C) Violin plots depicting the distribution of the somatic copy
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956  number alteration burden in initial and recurrent IDH-wild-type GLASS samples that did and did
957  not exhibit HLA LOH. P-values were calculated using the Wilcoxon rank-sum test.

958

959 Methods

960 GLASS Datasets

961 Datasets added to GLASS came from both published and unpublished sources (Table S1).
962  Collectively, the newly added data consisted of exomes from 83 glioma samples (40 patients) and
963 RNA-sequencing data from 351 samples (184 patients).

964

965 Newly generated whole exome data and RNAseq data was collected for a cohort of frozen
966 samples from Henry Ford Health System. From each sample, DNA and RNA was simultaneously
967  extracted using the AllPrep DNA/RNA Mini Kit from Qiagen (#80204). Exon capture was then
968 performed using the Agilent’'s SureSelect XT Low-Input Reagent Kit and the V6 + COSMIC
969  capture library and the resulting reads were subjected to 150 base pair paired-end sequencing at
970 the University of Southern California using an Illlumina NovaSeq 6000. RNA from these tissues
971  was processed and sequenced at Psomagen. New RNAseq data was also generated for cohorts
972  coming from Case Western Reserve University, the Chinese University of Hong Kong, and MD
973  Anderson Cancer Center. For Case Western Reserve University, RNA from frozen tissues was
974  processed at Tempus (Chicago, IL) using the Tempus xO assay and then sequencing using an
975 lllumina HiSeq 4000 platform. For the Chinese University of Hong Kong cohort, RNAseq libraries
976  were prepared with the KAPA Stranded mRNAseq kit (Roche) per manufacturer’s instructions
977 and then sequenced at The Jackson Laboratory for Genomic Medicine using an Illumina
978  HiSeq4000 platform generating paired end reads of 75 base pairs. For the MD Anderson cohort,
979  purified double-stranded cDNA generated from 150 ng of formalin-fixed paraffin-embedded
980 (FFPE) sample-derived RNA was prepared using the NUGEN Ovation RNAseq System and

981  subjected to paired-end sequencing using a HiSeq 2000 or HiSeq 2500 Sequencing System.
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982
983  The remaining datasets were generated as described in their respective publications. For most of
984 these cohorts, whole exome and/or whole genome sequencing data were downloaded and
985 processed as described during creation of the initial GLASS dataset (Barthel et al.,, 2019).
986 RNAseq fastq files from the Samsung Medical Center (SM) cohort were delivered via hard disk
987 and are available to download from the European Genome-Phenome Archive (EGA) under
988  accession numbers EGAS00001001041 and EGAS00001001880 (Kim et al., 2015b; Wang et al.,
989 2016). RNAseq bam files for the original Henry Ford Health System (HF) and the University of
990 California San Francisco (SF) cohorts were downloaded from EGA under accession numbers
991 EGAS00001001033 and EGAS00001001255, respectively, and converted to fastq files for
992  subsequent processing using bedtools (Kim et al., 2015a; Mazor et al., 2015). RNAseq fastq files
993  for the University of Leeds (LU) cohort were downloaded from EGA under accession number
994 EGAS00001003790 (Droop et al., 2018). For the first Columbia cohort (CU-R), which consisted
995 of samples originally collected from the Istituto Neurologico C. Besta, RNAfastq files were
996 delivered via hard disk and are available to download at the Sequencing Read Archive (SRA)
997  under BioProject number PRINA320312 (Wang et al., 2016). For the second Columbia cohort
998 (CU-P), which featured samples that had been treated with immune checkpoint inhibitors, raw
999 fastq reads for whole exome and RNAseq were obtained from SRA under BioProject number
1000 PRJNA482620 (Zhao et al., 2019). RNAseq fastq files from the Low Grade Glioma (LGG) and
1001 Glioblastoma Multiforme (GBM) projects in TCGA were obtained from the Genomic Data

1002 Commons legacy archive (https://portal.gdc.cancer.gov/legacy-archive/) (Brennan et al., 2013;

1003  Cancer Genome Atlas Research et al., 2015).

1004

1005 Public Datasets

1006  Processed RNAseq data from the TCGA glioma (GBMLGG) cohort was obtained from GDAC

1007 FireHose (RNAseqV2, RSEM). Normalized gene-level fragments per kilobase million (FPKM) for
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1008 the lvy Glioblastoma Atlas Project (lvy GAP) dataset were obtained from the vy GAP website

1009  (https://glioblastoma.alleninstitute.org/static/download.html) (Puchalski et al., 2018). Processed

1010 single-cell data and associated metadata for a set of 28 IDH-wild-type glioblastomas processed
1011 using SmartSeg2 was obtained from the Broad Single Cell Portal (Study: Single cell RNA-seq of
1012  adult and pediatric glioblastoma,;

1013 https://singlecell.broadinstitute.org/single cell/study/SCP393/single-cell-rna-seqg-of-adult-and-

1014  pediatric-glioblastoma) (Neftel et al., 2019). Raw count data and clinical annotation data from a

1015 set of glioma-derived cell populations purified using fluorescence activated cell sorting (FACS)
1016  was obtained from the Brain Tumor Immune Micro Environment (BrainTIME) portal and converted

1017 to counts per million (CPM) for downstream analysis (https:/joycelab.shinyapps.io/braintime/)

1018 (Klemm et al., 2020).

1019

1020 Whole exome and whole genome analysis

1021 Whole exome and genome alignment, fingerprinting, variant detection, variant post-processing,
1022  mutation burden calculation, copy number segmentation, copy number calling, copy number-
1023  based purity, ploidy, HLA typing, and neoantigen calling were all performed using previously
1024  described pipelines that were developed during the initial GLASS data release (Barthel et al.,
1025 2019). Briefly, whole exome and whole genome reads were aligned to the b37 genome
1026  (human_glk v37_decoy) using BWA MEM 0.7.17 and pre-processed according to GATK Best
1027  Practices with GATK 4.0.10.1. Fingerprinting on the resulting files was performed using
1028 ‘CrosscheckFingerprints’ to confirm all readgroups from a given sample and all samples from a
1029 given patient match, with all mismatches being labelled and dropped from downstream analysis.
1030 Somatic mutations were called using GATK4.1 MuTect2. Hypermutation was defined for all
1031 recurrent tumors that had more than 10 mutations per megabase sequenced, as described
1032  previously (Barthel et al., 2019). Copy number segmentation and calling was performed according

1033 to GATK Best Practices as previously described. Copy number-based tumor purity and ploidy
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1034  were determined using TITAN (Ha et al., 2014). Four-digit HLA class | types were determined
1035 from the normal bams for each sample using OptiType v1.3.2 (Szolek et al., 2014). Neoantigens
1036 were called from each patient's somatic mutations and HLA types using pVACseq v4.0.10
1037 (Hundal et al., 2016). Neoantigen depletion was calculated as described previously (Barthel et
1038 al., 2019). Loss of heterozygosity (LOH) for each sample’s HLA type was called from their
1039 respective matched tumor and normal bam files using LOHHLA run with default parameters and

1040 a coverage filter of 10 (https://bitbucket.org/mcgranahanlab/lohhla/) (McGranahan et al., 2017).

1041 HLA LOH was called if the estimated copy number for an allele using binning and B-allele
1042  frequency was < 0.5 and the P-value for allelic imbalance was < 0.05 (paired t-test).

1043

1044  RNA preprocessing

1045 To ensure each RNAseq file matched to the DNA and RNAseq files from their respective sample
1046 and patient, RNAseq fastq files were aligned to the b37 genome using STARv2.7.5 and the
1047  resulting bams were then preprocessed using the same pipelines described for DNA sequencing
1048 (Barthel et al., 2019). Fingerprinting was then performed on each bam at the readgroup and
1049  patient levels using ‘CrosscheckFingerprints.” For each patient-level comparison, each RNA bam
1050 was compared to all other RNA and DNA bams coming from the same patient. All mismatches
1051  were labelled and dropped from downstream analysis.

1052

1053 RNAseq fastq files were pre-processed with fastp v0.20.0. Transcripts per million (TPM) values
1054  were then calculated from each sample’s set pre-processed files using kallisto v0.46.0 inputted
1055 with an index file built from the Ensemblv75 reference transcriptome. Strand-specific library
1056  preparation information was obtained for each sample from the source provider or using
1057 STARvV2.7.5 quantMode set with the ‘GeneCounts’ parameter. The resulting TPM values for each

1058 sample were combined into a transcript expression matrix for downstream analysis. To create a
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1059 gene expression matrix, transcript TPM values were collapsed and summed by their respective
1060 gene symbols.

1061

1062  Quality control

1063  For DNA samples to be included in longitudinal downstream analyses, two samples from a given
1064 patient had to pass a previously described quality control process based on fingerprinting,
1065 coverage, copy number variation, and clinical annotation criteria (Barthel et al., 2019). The
1066 resulting set of 243 whole exome or whole genome tumor pairs, known as the “gold set”’, was
1067 used in all downstream DNA-only analyses. For RNA samples to be included in longitudinal
1068 downstream analyses, two samples from a given patient had to pass a patient-level fingerprinting
1069 filter that ensured that the RNA samples matched each other and the patient’s respective DNA
1070 samples if available, as well as a clinical annotation filter. The resulting set of 150 RNAseq pairs,
1071  known as the “RNA silver set”, was used in all downstream RNA-only analyses. Across the gold
1072  set and the RNA silver set, there were 101 tumor pairs that had DNA and RNA from the same
1073  sample at both timepoints. This overlapping set of pairs, known as the “platinum set”, was used
1074  in all downstream analyses that integrated DNA and RNA data.

1075

1076  Bulk transcriptional subtype classification

1077  Bulk transcriptional subtyping was performed on each GLASS or TCGA sample’s processed
1078 RNAseq profile using the “ssgsea.GBM.classification” R package (Wang et al., 2017). This
1079 method outputs an enrichment score quantifying the representation each of the three bulk glioma
1080 subtypes in a sample as well as a P-value indicating the significance of this representation. For
1081 each sample, the subtype with the lowest P-value was designated as that sample’s bulk
1082  transcriptional subtype. In cases where there were ties between subtypes, the subtype with the
1083  highest enrichment score was chosen.

1084
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1085 Joint single-cell and bulk RNAseq dataset

1086  Single-cell and bulk RNA sequencing data were generated and processed as previously
1087 described (Johnson et al.,, 2020). Briefly, tumor surgical specimens were freshly collected,
1088 minced, and partitioned into single-cell and bulk fractions from the same tumor aliquot. The
1089 tissues aliquoted for single cell analyses were then mechanically and enzymatically dissociated
1090 using the Brain Tumor Dissociation Kit (P) according to the manufacturer’s protocol (Miltenyi Cat.
1091 No. 130-095-942). FACS was performed to select for viable single cells (Propidium lodide-,
1092  Calcein+ singlets) and enrich for tumor cells by limiting the proportion of non-tumor cells (e.g.,
1093 immune (CD45+) and endothelial (CD31+) cells). Sorted cells were then loaded on a 10X
1094  Chromium chip using the single-cell 3" mRNA kit according to the manufacturer’s protocol (10X
1095 Genomics). A limitation of single-cell dissociation techniques is the exclusion of specific cell types,
1096 including neurons, that are found in glioma and surrounding tissue. Prior publications have
1097 estimated the neuronal content of central nervous system tumors to be less than 5% and therefore
1098 likely represent a minor non-malignant cell population in our dataset (Grabovska et al., 2020). The
1099 Cell Ranger pipeline (v3.0.2) was used to convert lllumina base call files to fastq files and align
1100 fastgs to hgl9 10X reference genome (version 1.2.0) to be compatible with our bulk sequencing
1101 data. Data preprocessing and analysis was performed using the Scanpy package (1.3.7) (Wolf et
1102 al., 2018) with batch correction performed using BBKNN (Polanski et al., 2020). RNA was
1103  extracted for tissues with sufficient tissue and bulk RNAseq libraries were prepared with KAPA
1104  mRNA HyperPrep kit (Roche). Bulk RNA sequencing data was processed with the same pipeline
1105  asthe GLASS samples.

1106

1107 Deconvolution analyses

1108 Cellular proportions and cell state-specific gene expression matrices were inferred from bulk
1109 RNAseq gene expression matrices using CIBERSORTx (Newman et al., 2019). Reference

1110 scRNAseq signature matrices were created from our internal 10x-derived scRNAseq dataset
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1111  (Johnson et al., 2020) and a publicly available SmartSeq2-derived scRNAseq dataset (Neftel et
1112 al.,, 2019) using the ‘Create Signature Matrix’ module on the CIBERSORTXx webserver

1113  (https://cibersortx.stanford.edu/) using default parameters and quantile normalization disabled.

1114  The vy GAP signature matrix was downloaded from a prior publication (Puchalski et al., 2018).
1115 The CIBERSORTXx webserver currently recommends users input no more than 5,000 different
1116  single-cell profiles when creating their signature matrix (Steen et al., 2020). To meet this
1117 recommendation, our internal scRNAseq dataset, which is made up of 55,284 single cells, was
1118 randomly downsampled to 5,000 cells using the ‘sample’ command in R with the seed set to 11.
1119  The cells not included in signature matrix formation were then set aside for validation analyses.
1120

1121  Single-cell-derived cellular proportions and cell state-specific gene expression profiles were
1122  inferred from bulk RNAseq datasets using the CIBERSORTx High-Resolution docker container

1123 (https://hub.docker.com/r/cibersortx/hires) following CIBERSORTX instructions. For all runs, the

1124  bulk RNAseq dataset was input as the ‘mixture’ file and the respective signature matrix was input
1125 as the ‘sigmatrix’ file. For runs using our 10x-derived internal scRNAseq signatures, batch
1126  correction was done in ‘S-mode’ by setting the ‘rmbatchSmode’ parameter to TRUE, while for
1127  runs using SmartSeqg2-derived scRNAseq signatures batch correction was done in ‘B-mode’ by
1128  setting the ‘rmbatchBmode’ parameter to TRUE. For each run, the inputted signature matrix’s
1129 respective CIBERSORTX-created “source gene expression profile” was input for batch correction.
1130  For all runs, the ‘subsetgenes’ parameter was set to a file containing the intersection of the gene
1131  symbols between the run’s respective source gene expression profile and the bulk RNAseq matrix
1132  that was being deconvoluted. For the run applying our internal sScRNAseq dataset to the bulk
1133  GLASS RNAseq matrix, the ‘groundtruth’ parameter was set to a ground truth FACS-purified
1134  dataset that was generated as described below. Cellular proportions representing pre-created

1135  IvyGAP signatures were inferred using the ‘Impute Cell Fractions’ module on the CIBERSORTXx
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1136  webserver set to relative mode with quantile normalization and batch correction disabled and 100
1137  permutations for significance analysis.

1138

1139 Validation of cell state proportions and gene expression profiles

1140 Cell state proportions derived from our internal scCRNAseq dataset were validated using two
1141  approaches. In the first approach, synthetic mixtures were made using the single-cell gene
1142  expression profiles that had been left out of signature creation. Each synthetic mixture
1143  represented the average expression profile of 5,000 single cells where the number of cells of one
1144  cell state were manually set and the remaining cells were randomly sampled. Each cell state had
1145 its level manually set in 11 mixtures, where it represented 0% of the cells in the first mixture and
1146 thenincreased in 10% increments until reaching 100% in the final mixture. In cases where there
1147  were fewer than 5,000 single cells of a given cell state, making 100% representation not possible,
1148 the preset proportion instead represented the percent of available cells of that cell state rather
1149 than the percent of cells in the mixture. Each synthetic mixture had its true proportions recorded
1150 and the resulting mixtures were input into CIBERSORTX for deconvolution. Comparisons of the
1151 true and inferred proportions were then performed through correlation analysis. In the second
1152  approach, the cell state proportions inferred from bulk RNAseq data were compared to the cell
1153  state proportions quantified by scRNAseq for each sample in our internal scRNAseq dataset.
1154  Samples in this dataset were enriched for CD45 cells via FACS and therefore precluded true cell
1155 state abundance when considering both malignant and non-malignant cells. To address this,
1156 comparisons were restricted to the relative proportions of each malignant cell state. Non-
1157  malignant cell proportions were removed, and malignant cells proportions were then renormalized
1158  so that the sum of each malignant cell state proportion in each sample added up to 1.

1159

1160 Concordance between CIBERSORTXx-inferred cell state-specific gene expression profiles and a

1161  ground truth set of FACS-purified gene expression profiles was assessed using the ‘groundtruth’
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1162  parameter in CIBERSORTX. The ground truth dataset used in this step was generated from a
1163  previously released glioma dataset (Klemm et al., 2020) by collapsing all glioma-derived CD45
1164  profiles into an average CD45 profile and all glioma-derived macrophage/microglia profiles into
1165 an average myeloid cell profile. This dataset was input into CIBERSORTX using the ‘groundtruth’
1166  parameter during the run applying our internal ScCRNAseq signature matrix to the GLASS bulk
1167 RNAseq dataset. The resulting quality control files output during this run, primarily
1168 “SM_GEPs_HeatMap.txt”, were then used to perform correlation analyses assessing the
1169 similarity between the inferred malignant cell and myeloid profiles and the ground truth profiles.
1170

1171  Analysis of cell state-specific gene expression profiles

1172  To facilitate downstream analyses on each CIBERSORTXx-inferred cell state-specific gene
1173  expression profile, each of the resulting expression matrices were logl0-transformed and all
1174  genes that could not be imputed or had a variance of 0 across the dataset were removed. For
1175 each cell state-specific gene expression matrix, Wilcoxon signed-rank tests were used to
1176 determine the differentially expressed genes between initial and recurrent tumors and the
1177  resulting P-values were corrected for multiple testing using the Benjamini-Hochberg procedure.
1178  Signature scores in cell state-specific gene expression profiles and single-cell RNAseq profiles
1179 were defined as the average expression of the genes in the signature. In cases where the
1180 expression of some of the genes in the signature could not be determined, the intersection of the
1181 signature and the available genes was taken when calculating the signature score. For GO
1182  enrichment analyses on signatures derived from cell state-specific gene expression profiles, the
1183  background gene set only included the genes CIBERSORTXx was able to impute for the cell state
1184  from which the signature was derived.

1185

1186  Histological feature adjustment
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1187  For analyses examining how histological features influenced subtype switching, a tumor sample’s
1188  cell state composition profile was adjusted to remove cell states that could be attributed to a
1189  specific histological feature. To do this, the tumor sample’s proportion of a given histological
1190 feature was multiplied by the average proportion of each cell state from all samples of that feature
1191  in lvy GAP. These numbers were then subtracted from their respective cell state’s proportion in
1192  the tumor sample and the resulting profile was then renormalized so that all proportions summed
1193 to 1. In cases where the new cell state proportion was less than 0, the value was set to 0 before
1194  renormalization.

1195

1196  Statistical analysis

1197 All data analyses were conducted in R 3.6.1 and PostgreSQL 10.6. GO enrichment analyses were
1198 performed using the “classic” algorithm in the R package “topGO” v2.38.1. When comparing
1199 variables between groups, t-tests were used for cell state proportions while non-parametric tests
1200 were used for all other variables (i.e., gene expression, signature score, neoantigen number).
1201 Clinical variables used throughout the study were defined as previously described in the
1202  Supplementary Information of the original GLASS study (Barthel et al., 2019).

1203

1204 Code and data availability

1205  All custom scripts, pipelines, and code used in figure creation will be made available at the time
1206  of publication on the project’s Github page. Processed data for the GLASS consortium is available

1207 on Synapse (https://www.synapse.org/#!Synapse:syn21589818) and will be publicly available on

1208 November 9, 2021.
1209
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Figure 1. Diffuse glioma exhibits transcriptional and cellular heterogeneity across samples, subtypes,
and time. (A) Overview of the GLASS dataset. Each column represents a tumor pair, and their initial (I) and
recurrent (R) samples are labelled. All tumor pairs with RNAseq data at each time point are included. Pairs are
arranged based on the representation of the proneural and mesenchymal subtypes in their initial tumors. The
first track indicates whether there is whole exome or whole genome sequencing data available for that pair. The
next three tracks indicate the representation of each bulk subtype across each sample. The stacked bar plots
indicate the cell state composition of each sample based on the single cell-based deconvolution method, CIBER-
SORTx. The bottom tracks indicate molecular and clinical information for each tumor pair. (B) Sankey plot
indicating whether the highest-scoring transcriptional subtype changed at recurrence. Each color reflects the
transcriptional subtype in the initial tumors. Number in parentheses indicates number of samples of that subtype.
(C) Left: The average cell state composition of each bulk transcriptional subtype for all initial GLASS tumors.
Right: The average cell state composition of initial and recurrent tumors stratified by IDH mutation status. Colors
in (C) are identical to those used in (A).
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Figure 2. Histological features underlie changes in the cellular composition of diffuse glioma over
time. (A) The cell state composition of each of the reference histology-defined lvy GAP histological
features from 10 patients. Patient and IDH mutation status tracks are included beneath the stacked bar
plots. For the patient track, each colored block represents a unique patient. (B) Left: The average histologi-
cal feature composition of each bulk transcriptional subtype for all initial GLASS tumors. Right: The aver-
age histological feature composition of initial and recurrent tumors stratified by IDH mutation status. (C)
Heatmap depicting the significance of the changes in each histological feature between initial and recurrent
tumors undergoing the indicated subtype transition. The initial subtype is indicated in the columns and the
recurrent subtype is indicated in the rows. Colors represent the -log10(P-value) from a paired t-test, with
increases at recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (D)
Heatmap depicting the Pearson correlation coefficients measuring the association between the change in a
given histological feature and the change in a given cell state when going from an initial tumor to recur-
rence. (E) Left: Ladder plot depicting the change in the adjusted stem-like cell proportion between paired
initial and recurrent tumors undergoing a proneural-to-mesenchymal transition. Right: The average adjust-
ed proportions for malignant cells for the tumor pairs outlined on the left. Malignant cell proportions were
adjusted for the presence of non-malignant cells as well as non-cellular tumor content.
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Figure 3. Hypermutation and acquired cell cycle alterations associate with increased proliferating
stem-like malignant cells in IDH-wild-type and IDH-mutant glioma. (A) Heatmap depicting the concordance
coefficients measuring the association between the indicated cell state fractions between initial and recurrent
tumors. (B) Top: Density plots depicting the cell state proportion change distribution for each of the indicated cell
states. Samples are stratified based on IDH mutation status. The tumor-only distributions indicate the change in
malignant cell fractions after adjusting for non-malignant cells. P-values were derived using the Kolmogor-
ov-Smirnov test that compared each distribution to a normal distribution with a mean of 0. (C) Scatterplots depict-
ing the association between the adjusted malignant cell proportions in initial and recurrent tumors. Concordance
coefficients are indicated. Diagonal lines correspond to the line y = x. (D) Top: Ladder plots depicting the change
in the proliferating stem-like cell proportion between paired initial and recurrent tumors that did and did not under-
go hypermutation. Point colors indicate IDH mutation and 1p/19q co-deletion status. * indicates paired t-test
P-value < 0.05. Bottom: The average proportions of each cell state for the tumor pairs outlined above. (E) Top:
The change in proliferating stem-like cell fraction between initial and recurrent tumors from IDH-mutant pairs.
Each bar represents a tumor pair. Bottom: Molecular and clinical information for each tumor pair. P-values were
calculated using a paired t-test measuring the association between initial and recurrent tumors that acquired the
indicated phenotypes.
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Figure 4. Malignant cells exhibit increased neuronal signaling and cell cycle activation programs in
recurrent IDH-wild-type and IDH-mutant tumors. (A) Heatmaps depicting the average normalized log10
expression level of genes that were differentially expressed between malignant cell states from initial and
recurrent IDH-wild-type tumors not undergoing a subtype switch. Fractions on each plot’s right indicate the
number of differentially expressed genes (numerator) out of the number of genes inferred for that cell state’s
profile using CIBERSORTXx (denominator). (B) Bar plot depicting the -log10(adjusted P-value) from a GO
enrichment analysis for the differentially expressed genes in differentiated-like and stem-like malignant cells
depicted in (A). Only GO terms that were enriched at an adjusted P-value of < 0.05 in both the differentiat-
ed-like and stem-like signatures were included. (C) Boxplot depicting the average signature expression in
single cells of the indicated malignant cell states from unmatched initial and recurrent IDH-wild-type tumors.
**** indicates Wilcoxon rank-sum test P-value < 1e-5. (D) Scatterplot depicting the association between the
leading-edge fraction and the average sighature expression in the inferred malignant cell state-specific
expression profiles of samples in the GLASS dataset. Pearson correlation coefficients are indicated. (E)
Heatmaps depicting the average normalized log10 expression level of genes that were differentially
expressed between malignant cell states from initial and recurrent IDH-mutant tumors not undergoing a
subtype switch. Fractions are as outlined in (A). (F) Bar plots depicting the -log10(adjusted P-value) from a
GO enrichment analysis for the differentially expressed genes in differentiated-like and stem-like malignant
cells depicted in (E). Top 8 GO terms that were significant in the up- or down-regulated signatures from
differentiated-like and stem-like cells are shown. In (B) and (F), dotted line corresponds to adjusted P-value <
0.05.
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Figure 5. Myeloid cells in diffuse glioma exhibit diverse phenotypes based on IDH mutation status,
transcriptional subtype, and recurrence status. (A) Left: Uniform Manifold Approximation and Projection
(UMAP) dimensionality reduction plot of the CIBERSORTXx-inferred myeloid profiles from TCGA. Colors
indicate bulk transcriptional subtype; shapes indicate IDH and 1p/19q co-deletion status. When all three bulk
transcriptional subtypes were significantly represented in a sample, the ‘mixed’ classification was used. Right:
UMAP plot colored based on the relative mean expression of macrophage and microglia signatures (B) Box
and ladder plots depicting the difference in the mean expression of the indicated signatures between initial
and recurrent IDH-mutant tumors from GLASS that do and do not recur at higher grades. Point colors
indicate 1p/19q co-deletion status. *** indicates Wilcoxon signed-rank test P-value < 1e-3. (C) Heatmap
depicting the normalized expression z-score of genes that were differentially expressed between myeloid
cells from mesenchymal and non-mesenchymal TCGA tumors. Rows indicate genes and columns indicate
samples. Top sidebar indicates the bulk mesenchymal score of each sample divided by 1,000. Right sidebar
indicates the -log10 adjusted Wilcoxon rank-sum test P-value of the association for each gene. Bottom
sidebar indicates the transcriptional subtype of each sample per panel (A). (D) Scatterplot depicting the
association between the mean mesenchymal myeloid signature expression in single myeloid cells and the
mesenchymal subtype score calculated from bulk RNAseq for each patient. (E) Boxplot depicting the mean
mesenchymal myeloid signature expression for CIBERSORTx-inferred myeloid profiles from different histo-
logical features in the lvy GAP dataset. Features in this dataset include the leading edge (LE), infiltrating
tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis (PAN), and microvascular proliferation
(MVP). (F) Box and ladder plots depicting the difference in the mean expression of the mesenchymal myeloid
signature between initial and recurrent IDH-wild-type tumors undergoing a mesenchymal transition in GLASS.
**** indicates Wilcoxon signed-rank test P < 1e-5.
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Figure 6. Loss of heterozygosity in HLA genes is associated with increased
somatic copy number alterations in IDH-mutant non-1p/19q co-deleted glioma. (A)
Left: Sankey plot indicating whether a tumor pair acquires or loses HLA LOH at recur-
rence. Colored lines reflect the IDH and 1p/19q co-deletion status of the tumor pair and
indicate HLA LOH in the initial tumor. Dark gray lines indicate acquired HLA LOH. Right:
Stacked bar plot indicating the proportion of samples of each glioma subtype that
acquired HLA LOH at recurrence. * indicates Fisher’s exact test P-value < 0.05. (B)
Violin plot depicting the difference in T cell proportion in samples with and without HLA
LOH. P-values were calculated using the t-test. (C) Left: Ladder plots depicting the
change in SCNA burden between paired initial and recurrent IDH-mutant-noncodel
tumors that did and did not acquire HLA LOH. P-values were calculated using the
Wilcoxon signed-rank test. Right: Boxplot depicting the difference in the change in
SCNA burden between IDH-mutant-noncodel tumor pairs that did and did not acquire
HLA LOH. P-value was calculated using the Wilcoxon rank-sum test.
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Figure S1. Validation of deconvolution results and IDH-wild-type-specific cell state profiles. Related to
Figure 1. (A) Scatterplots depicting the association between the true proportion and the CIBERSORTx-in-
ferred proportion for each cell state in gene expression profiles from synthetic mixtures composed of different
combinations of single cells. (B) Scatterplots depicting the association between the proportion of each malig-
nant cell state determined from single-cell RNAseq and the non-malignant cell-adjusted malignant cell state
proportion inferred from CIBERSORTX applied to each sample’s respective bulk tumor RNAseq profile. In all
plots, Pearson correlation coefficients are indicated. (C) Left: Stacked bar plot indicating the proportion of
samples of IDH-wild-type tumors that underwent a gross total resection at each timepoint. Right: The average
proportions of each cell state for tumors that underwent a subtotal resection at initial and a gross total resec-
tion at recurrence (Subtotal-gross total) and tumors that underwent a gross total resection at both time points
(Gross total-gross total). (D) Left: The average Neftel et al. cell state composition of each bulk transcriptional
subtype for all initial IDH-wild-type GLASS tumors. Right: The average Neftel et. al cell state composition of
initial and recurrent IDH-wild-type tumors. (E) The average cell state composition of initial and recurrent
IDH-mutant tumors stratified by 1p/19q co-deletion status. Colors in (E) are identical to those used in (C).
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Figure S2. Relationship between bulk subtype switching and cell state changes after adjusting for
histological feature composition. Related to Figure 2. (A) Bar plot depicting the -log10 P-value from a
two-way ANOVA test measuring whether the fractions of each cell state in a sample associate with the patient
the sample was derived from (red bar) and the feature the sample represents (blue bar). Dotted line corre-
sponds to P = 0.05 (B) Heatmaps depicting the significance of the changes in each malignant cell state
between initial and recurrent tumors undergoing the indicated subtype transition. The initial subtype is indicat-
ed in the columns and the recurrent subtype is indicated in the rows. Each row of heatmaps reflects a different
histological feature adjustment. Colors represent the -log10(P-value) from a paired t-test, with increases at
recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (C) Left: Ladder plot
depicting the change in the adjusted stem-like cell proportion between paired initial and recurrent tumors
undergoing a proneural-to-mesenchymal transition. Right: The average adjusted proportions for malignant
cells for the tumor pairs outlined on the left. Malignant cell proportions were adjusted for the presence of
non-malignant cells as well as all non-cellular tumor features.
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Figure S3. Cell state composition changes associated with the acquisition and loss of somatic alter-
ations. Related to Figure 3. (A) Cell state differences in tumors that acquired CDNK2A deletions or CCND2
amplifications. Panel is split into IDH-mutant and IDH-wild-type tumors. Ladder plots depict the change in the
proliferating stem-like cell proportion between paired initial and recurrent tumors that acquired these alter-
ations. Stacked bar plots depict the average proportions of each cell state for the tumor pairs in the ladder
plots. (B) Ladder plots depicting the difference in microvascular proliferation fraction in IDH-mutant and
IDH-wild-type tumors that underwent hypermutation at recurrence. (C) Left: Ladder plots depicting the change
in granulocyte and fibroblast fractions in IDH-wild-type tumors that acquired mutations in NF1 at recurrence.
Right: The average proportions of each cell state for the tumor pairs in the ladder plots. (D) Non-malignant cell
state differences in IDH-wild-type tumors that lost EGFR or PDGFRA amplifications at recurrence. Panel is
split by alteration. Ladder plots depict the change in the non-malignant cell state proportion between paired
initial and recurrent tumors while stacked bar plots depict the average proportions of each cell state for these
tumors. (E) Sankey plot indicating whether the highest scoring transcriptional subtype changed at recurrence
for the tumors depicted in (D). Each color reflects the transcriptional subtype in the initial tumors. Numbers in
parentheses indicate number of samples. (F) Ladder plots depicting the difference in T cell fraction in IDH-mu-
tant and IDH-wild-type tumors that underwent hypermutation at recurrence. In all figures, P-values were
calculated using a paired t-test unless otherwise noted.
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Figure S4.
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Figure S4. Validation and differential expression analysis of cell state-specific gene expression
profiles. Related to Figure 4. (A) Schema for single-cell RNAseqg-based deconvolution of cell state-specific
gene expression profiles. (B) Left: Heatmap depicting the relationship between the CIBERSORTx-inferred
gene expression profiles and gene expression profiles from analogous cell types from a FACS-purified ground
truth dataset (Klemm et al.). In the CD45neg column in the Klemm et al. heatmap, which represents a com-
posite gene expression profile from the non-immune cells purified from a collection of glioma tumors, gene
expression patterns from all three malignant cell states can be observed. Right: Heatmap depicting the
correlation coefficients between each CIBERSORTXx-inferred cell state-specific gene expression profile and
the gene expression profiles from the FACS-purified ground truth dataset. (D) Venn diagram depicting the
overlap between the genes the differentiated-like and stem-like cell states differentially express in initial
versus recurrent IDH-wild-type tumors. (E) Venn diagram depicting the overlap between the genes the differ-
entiated-like and stem-like cell states differentially express in initial versus recurrent IDH-mutant tumors. (F)
Boxplot depicting the average signature expression in the analogous cell state-specific gene expression
profiles for each IDH-mutant tumor pair in GLASS. Comparisons are stratified based on whether the tumor
pair was grade stable or exhibited a grade increase at recurrence. *** indicates Wilcoxon signed rank test
P-value < 1e-3, * indicates P < 0.05, and * indicates P < 0.10. (G) Boxplot depicting the average signature
expression in single cells of the indicated malignant cell states from grade Il and grade lll. **** indicates
Wilcoxon rank-sum test P-value < 1e-5.
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Figure S5. Characterization of the mesenchymal myeloid signature and identification of candidate
ligand-receptor interactions in mesenchymal glioma. Related to Figure 5. (A) Boxplots depicting the
average macrophage and microglia gene expression signatures in CIBERSORTx-inferred myeloid-specific
gene expression profiles from TCGA. Samples are stratified by IDH and 1p/19q co-deletion status (left) and
bulk transcriptional subtype (right). **** indicates Wilcoxon rank-sum test P-value < 1e-5. (B) Bar plots depict-
ing the Spearman correlation coefficients measuring the association between the myeloid-specific expression
scores for the macrophage and microglia signatures versus the presence of the four vy GAP histological
features in TCGA. The features measured were leading edge (LE), cellular tumor (CT), microvascular prolifer-
ation (MVP), and pseudopalisading cells around necrosis (PAN). (C) Heatmaps depicting the average normal-
ized log10 expression level of genes that were differentially expressed between myeloid cell states from initial
and recurrent IDH-wild-type and IDH-mutant tumors in GLASS that did not undergo a subtype switch. Frac-
tions on the right of each plot indicate the number of differentially expressed genes (numerator) out of the
number of genes inferred for that cell state’s profile in GLASS using CIBERSORTXx (denominator). (D) Scatter-
plot depicting the association between the mean blood-derived macrophage signature expression in single
myeloid cells and the mesenchymal subtype score calculated from bulk RNAseq for each patient. (E) Bar plot
depicting the -log10(adjusted P-value) from a GO enrichment analysis for the genes in the mesenchymal
myeloid signature. (F) Analysis of ligand-receptor interactions between differentiated-like malignant cells and
myeloid cells. Left plots depict the Pearson correlation coefficients from analyses comparing the change in
expression of a ligand or receptor from the indicated cell state versus the change in bulk mesenchymal score
over time in IDH-wild-type GLASS samples. All ligand-receptor pairs that exhibited an R > 0 and an FDR < 0.1
are highlighted in red and were included in the right plot. Right plots depict single cell analyses measuring
how the average expression of a ligand or receptor in single cells of the indicated cell state associates with
the tumor’s bulk mesenchymal score in IDH-wild-type tumors. Red points indicate the ligand-receptor pair with
the highest average correlation. (G) Scatterplot depicting the association between the mean expression of
MARCO?2 in single myeloid cells and the mesenchymal subtype score calculated from bulk RNAseq for each

patient.
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Figure S6. Analysis of neoantigen-mediated T cell selection in glioma. Related to Figure 6. (A) Scatter-
plots depicting the association between the T cell proportion and the neoantigen depletion rate in initial and
recurrent GLASS samples. (B) Box and ladder plots depicting the difference in the number of neoantigens
binding to the kept and lost allele. Points are colored based on whether the sample was an initial or recurrent
tumor. P-values were calculated using the Wilcoxon signed-rank test. (C) Violin plots depicting the distribution
of the somatic copy number alteration burden in initial and recurrent IDH-wild-type GLASS samples that did
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and did not exhibit HLA LOH. P-values were calculated using the Wilcoxon rank-sum test.
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