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Summary 52 

To interrogate the factors driving therapy resistance in diffuse glioma, we collected and analyzed 53 

RNA and/or DNA sequencing data from temporally separated tumor pairs of 292 adult patients 54 

with IDH-wild-type or IDH-mutant glioma. Tumors recurred in distinct manners that were 55 

dependent on IDH mutation status and attributable to changes in histological feature composition, 56 

somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A 57 

deletions associated with an increase in proliferating stem-like malignant cells at recurrence in 58 

both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive 59 

at recurrence, and their malignant cells exhibited increased expression of neuronal signaling 60 

programs that reflected a possible role for neuronal interactions in promoting glioma progression. 61 

Mesenchymal transition was associated with the presence of a specific myeloid cell state defined 62 

by unique ligand-receptor interactions with malignant cells. Collectively, our results uncover 63 

recurrence-associated changes that could be targetable to shape disease progression following 64 

initial diagnosis. 65 

 66 

Keywords: Glioma, glioblastoma, genomics, treatment resistance, microenvironment, single-cell 67 

 68 

Introduction 69 

Diffuse gliomas in adults are aggressive primary tumors of the central nervous system that are 70 

characterized by a poor prognosis and the development of resistance to a treatment regimen that 71 

typically includes surgery, alkylating chemotherapy, and radiotherapy (Stupp et al., 2005; Wen et 72 

al., 2020). Genomic profiling of diffuse glioma has identified genomic drivers of disease 73 

progression and led to the definition of clinically relevant subtypes based on the presence of 74 

somatic mutations in the isocitrate dehydrogenase (IDH) genes and co-deletion of chromosome 75 

arms 1p and 19q (Cancer Genome Atlas Research et al., 2015; Ceccarelli et al., 2016; Eckel-76 

Passow et al., 2015; Louis et al., 2016; Weller et al., 2015; Yan et al., 2009). Transcriptional 77 
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profiling of whole tumors and single cells has revealed that the gene expression programs in 78 

malignant glioma cells are influenced by underlying somatic alterations and interactions with the 79 

tumor microenvironment. Additionally, malignant cells exhibit high plasticity that enables them to 80 

respond dynamically to diverse challenges (Johnson et al., 2020; Neftel et al., 2019; Patel et al., 81 

2014; Phillips et al., 2006; Venteicher et al., 2017; Verhaak et al., 2010; Wang et al., 2017). 82 

Studies of changes relating to therapy using bulk genomics approaches have revealed 83 

mesenchymal transitions and both branching and linear evolutionary patterns (Barthel et al., 2019; 84 

Kim et al., 2015a; Kim et al., 2015b; Korber et al., 2019; Wang et al., 2016; Wang et al., 2017). 85 

However, the extent to which individual malignant glioma and immune cells interact and evolve 86 

over time to facilitate therapy resistance remains poorly understood.  87 

 88 

To identify the drivers of treatment resistance in glioma, we established the Glioma Longitudinal 89 

Analysis Consortium (GLASS) (Bakas et al., 2020; Barthel et al., 2019; Consortium, 2018). In our 90 

initial effort, we assembled a set of longitudinal whole-exome and whole-genome sequencing data 91 

from 222 patients to define the clonal dynamics that allow each glioma subtype to escape therapy. 92 

In the current study, we build upon these analyses by integrating this genomic dataset with 93 

overlapping and complementary longitudinal transcriptomic data. We apply single-cell-based 94 

deconvolution approaches to these data to infer a tumor’s physical structure and identify the cell 95 

state interactions across IDH-wild-type and IDH-mutant glioma. Collectively, we find that gliomas 96 

exhibit several common transcriptional and compositional changes at recurrence that represent 97 

promising therapeutic targets for delaying disease progression. 98 

 99 

Results 100 

Overview of the GLASS Cohort 101 

We expanded the GLASS cohort with an emphasis on collecting orthogonal RNA sequencing 102 

profiles to include data from a total of 351 patients treated across 35 hospitals (Table S1). After 103 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

applying genomic and clinical quality control filters, the resulting dataset included genomic data 104 

from a total of 292 patients, with 150 having RNA sequencing data available for at least two time 105 

points, 243 having DNA sequencing data available for at least two time points, and 101 having 106 

overlapping RNA and DNA available at each time point. The cohort of 150 tumors used for RNA 107 

sequencing analyses comprised each of the three major glioma subtypes, with 114 IDH wild-type 108 

(IDH-wild-type), 27 IDH mutant 1p/19q intact (IDH-mutant-noncodel), and 9 IDH mutant 1p/19q 109 

co-deleted (IDH-mutant-codel) glioma pairs (Figure 1A). Given the limited number of IDH-mutant-110 

codel cases, we grouped the IDH-mutant categories, unless specified otherwise. To facilitate 111 

further investigation and discovery of the drivers of treatment resistance in glioma, we have made 112 

this resource available to the research community 113 

(https://www.synapse.org/#!Synapse:syn21589818).  114 

 115 

Transcriptional activity and cellular composition in glioma is variable over time 116 

To obtain a baseline understanding of transcriptional evolution in glioma, we assessed the 117 

representation of the classical, mesenchymal, and proneural transcriptional subtypes in each 118 

sample. IDH-wild-type tumors exhibited primarily classical and mesenchymal characteristics 119 

compared to IDH-mutant tumors, which were largely proneural (Figure 1A). Longitudinally, the 120 

dominant subtype in IDH-wild-type tumors switched in 46% of patients, with classical to 121 

mesenchymal being the most common transition. IDH-mutant tumors were more stable, with 75% 122 

of tumors remaining proneural at both time points (Figure 1B). Classical IDH-wild-type and IDH-123 

mutant tumors switched subtype 50% of the time, resulting in an overall reduction of classical 124 

tumors at recurrence. The occurrence of this transition was significant (P = 0.04, Fisher’s exact 125 

test), suggesting that the tumor cells underlying the classical subtype may have higher plasticity 126 

than other subtypes.  127 

 128 
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To understand the cellular phenotypes underlying the transcriptional dynamics over time, we 129 

deconvoluted the GLASS gene expression dataset using CIBERSORTx (Newman et al., 2019) 130 

integrated with reference cell state signatures derived from our previously established collection 131 

of 55,284 single-cell transcriptomes from 11 adult patients spanning glioma subtypes and time 132 

points (Johnson et al., 2020) (Table S2, Table S3). Unsupervised analyses of the single-cell data 133 

had previously identified 12 cell states that represented the glial, stromal, immune, and malignant 134 

compartments commonly present in glioma. The malignant population expressed a shared set of 135 

markers (e.g., SOX2) and was split across three pan-glioma cell states, differentiated-like, stem-136 

like, and proliferating stem-like, that together capture the gradient between development, lineage 137 

commitment, and proliferative status that has been observed across numerous glioma single-cell 138 

studies (Bhaduri et al., 2020; Castellan et al., 2021; Couturier et al., 2020; Garofano et al., 2021; 139 

Neftel et al., 2019; Richards et al., 2021; Tirosh et al., 2016; Venteicher et al., 2017; Wang et al., 140 

2019; Yuan et al., 2018). Specifically, the differentiated-like state encompassed malignant cells 141 

exhibiting oligodendrocyte-like, astrocyte-like, and mesenchymal-like processes, while the stem-142 

like states could be segregated by cell cycle activity and resembled undifferentiated and 143 

progenitor-like malignant cells (Neftel et al., 2019; Venteicher et al., 2017). To validate this 144 

approach, we applied CIBERSORTx to 1) a series of synthetic mixtures composed of single cells 145 

from our reference dataset that had been left out of the signature creation process; and 2) bulk 146 

RNAseq profiles from our reference dataset that had their true proportions determined from 147 

scRNAseq (Figure S1A and S1B).  148 

 149 

When applying our deconvolution approach to the GLASS dataset, we observed variations in 150 

cellular composition across each subtype consistent with prior literature (Neftel et al., 2019; Wang 151 

et al., 2017). Classical and mesenchymal tumors had high levels of differentiated-like malignant 152 

cells, with the latter also having high levels of stromal and immune cells, and proneural tumors 153 

had high levels of proliferating stem-like and stem-like malignant cells (Figure 1C). Longitudinally, 154 
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we found that IDH-wild-type tumors had significantly higher levels of oligodendrocytes and 155 

significantly lower levels of differentiated-like malignant cells at recurrence (P = 2e-5 and 2e-3, 156 

paired t-test). These changes remained significant even when accounting for differences in the 157 

surgical resection extent at each time point, suggesting a greater admixture of malignant cells 158 

and oligodendrocytes (Figure S1C). We observed similar changes in cellular composition when 159 

using an independently published integrative model of cell state classification that has been 160 

established for IDH-wild-type glioma, including a significant decrease at recurrence in the 161 

astrocyte-like malignant cell state that is dominant in classical IDH-wild-type tumors (P = 2e-3, 162 

paired t-test; Figure S1D) (Neftel et al., 2019). Recurrent IDH-mutant tumors exhibited 163 

significantly higher levels of proliferating stem-like malignant cells and significantly lower levels of 164 

differentiated-like malignant cells (P = 3e-3 and 2e-5, paired t-test; Figure 1C). Stratifying this 165 

group by 1p/19q co-deletion status revealed that the increase in proliferating stem-like cells was 166 

only significant in IDH-mutant-noncodels, while IDH-mutant-codels exhibited a significant 167 

increase in stem-like cells (P = 0.04, paired t-test; Figure S1E). Overall, the differences IDH-wild-168 

type and IDH-mutant tumors exhibited over time suggested that distinct factors influence 169 

recurrence in each subtype. 170 

 171 

Histological features underlie subtype switching and cell state changes at recurrence  172 

Intratumoral heterogeneity is a hallmark of glioma and is abundant in hematoxylin and eosin-173 

stained tissue slides, where features such as microvascular proliferation and necrosis are used 174 

for diagnosis and grading by pathologists (Hambardzumyan and Bergers, 2015; Kristensen et al., 175 

2019). The Ivy Glioblastoma Atlas Project has defined and microdissected five “anatomic” 176 

features on the basis of reference histology: 1) the leading edge of the tumor, 2) the infiltrating 177 

tumor front, 3) the cellular tumor, 4) pseudopalisading cells around necrosis, and 5) microvascular 178 

proliferation  (Puchalski et al., 2018). They have shown that each of these features has a distinct 179 

transcriptional profile, suggesting that changes in a tumor’s cell state composition at recurrence 180 
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reflect changes in a tumor’s underlying physical structure. To obtain a better understanding of the 181 

cell states found in these features, we applied our deconvolution method to the transcriptional 182 

profiles from the microdissected features of 10 patients and found they each exhibited a distinct 183 

cell state composition profile (Figure 2A). Leading-edge samples have been shown to exhibit 184 

expression patterns associated with the proneural subtype as well as neural tissue, suggesting 185 

they are composed of a mixture of tumor and normal cells (Gill et al., 2014; Jin et al., 2017; 186 

Puchalski et al., 2018). Consistent with this finding, we found this region was rich in 187 

oligodendrocytes found at the tumor-normal brain interface and was also predicted to contain high 188 

levels of stem-like malignant cells, despite its reduced tumor content. We have previously shown 189 

that stem-like cells and a subset of differentiated-like cells resemble a malignant oligodendroglial 190 

precursor cell-like state that has been implicated in neuronal signaling and synapse formation, 191 

suggesting transcriptional overlap between neural and tumor tissue in this region (Johnson et al., 192 

2020; Venkatesh et al., 2019). Pseudopalisading cells around necrosis features, which are areas 193 

of hypoxia, exhibited the highest levels of differentiated-like malignant cells. Conversely, 194 

microvascular proliferation features were enriched in proliferating stem-like malignant cells, 195 

supporting the role of oxygen in influencing cell state. Finally, the cellular tumor feature exhibited 196 

more sample-specific variation, with high levels of differentiated-like malignant cells in IDH-wild-197 

type samples and high levels of stem-like cells in IDH-mutant samples. Each cell state’s 198 

distribution was more significantly associated with the histological feature than the patient from 199 

which it was derived (two-way ANOVA; Figure S2A) (Puchalski et al., 2018).  200 

 201 

Given the strong association between histological features and cellular composition, we examined 202 

how the representation of these features varied over time by deconvoluting the GLASS dataset 203 

with the available feature-specific gene signatures developed as part of Ivy GAP. This analysis 204 

captured differences in each bulk transcriptional subtype’s anatomy that reflected their underlying 205 

cell state composition (Figure 2B). It also revealed that IDH-wild-type tumors had significantly 206 
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higher leading-edge content at recurrence, even after adjusting for transcriptional subtype switch, 207 

which was consistent with the increase in oligodendrocytes we had previously observed (P = 1e-208 

4, paired t-test; Figures 2B, 2C). In IDH-wild-type tumors undergoing the common classical-to-209 

mesenchymal transition, we observed a significant increase in pseudopalisading cells around 210 

necrosis and a decrease in cellular tumor content, indicative of increased hypoxia and non-211 

malignant content (P = 2e-5, and 3e-5, respectively, paired t-test). At the cell state level, we found 212 

that changes in the abundance of differentiated-like malignant cells positively associated with 213 

increased cellular tumor features in IDH-wild-type tumors, increased leading edge features in IDH-214 

mutant tumors, and increased pseudopalisading cells around necrosis features in both subtypes. 215 

Changes in stem-like malignant cells positively associated with changes in leading-edge features 216 

in IDH-wild-type tumors and cellular tumor features in IDH-mutant tumors. Finally, in both 217 

subtypes, changes in proliferating stem-like and immune cells positively associated with changes 218 

in microvascular proliferation (Figure 2D).  219 

 220 

Given these correlations, we hypothesized that subtype switches in IDH-wild-type tumors were 221 

attributable to changes in histological feature composition over time. We recalculated our 222 

malignant cell fractions by adjusting for the presence of non-malignant cells, as well as leading-223 

edge content which may vary by surgery. While most subtype switches associated with changes 224 

in at least one malignant cell fraction pre-adjustment, the only difference observed post-225 

adjustment was a decrease in stem-like cells in tumors undergoing a proneural-to-mesenchymal 226 

transition (P = 3e-4, paired t-test; Figures S2B, S2C). These associations remained significant 227 

even after adjusting for the remaining non-cellular tumor features, suggesting tumors undergoing 228 

this switch exhibit a loss of stem-like cells independent of histological feature composition 229 

(Figures 2E, S2B). Collectively, these results indicate that while most subtype switches in IDH-230 

wild-type tumors are related to changes in a tumor’s underlying physical structure and 231 
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microenvironment, the changes observed in the proneural-to-mesenchymal transition may result 232 

from tumor-wide changes that reflect malignant cell-intrinsic processes at recurrence. 233 

 234 

Acquired somatic alterations at recurrence associate with changes in cellular composition 235 

Somatic genetic alterations have been shown to be associated with the cell state distribution of 236 

IDH-wild-type and IDH-mutant glioma (Neftel et al., 2019; Tirosh et al., 2016; Verhaak et al., 237 

2010). We thus hypothesized that changes in cellular composition resulted from genetic changes 238 

at recurrence. This was reinforced by the observation that, in both IDH-wild-type and IDH-mutant 239 

tumors, each cell state’s initial fractions weakly correlated with those at recurrence (median 240 

concordance coefficient (ρC) = 0.17 and 0.26, respectively; Figure 3A). We reasoned that if the 241 

presence of a cell state was influenced by genetic factors, the pairwise change in its proportion 242 

over time would deviate from a zero-centered normal distribution that is suggestive of stochastic 243 

change.  244 

 245 

When we examined the distribution of each malignant cell state’s changes, we found that 246 

proliferating stem-like malignant cells significantly deviated from the stochastic distribution in IDH-247 

mutant and IDH-wild-type glioma, and this remained true after adjusting for the presence of non-248 

malignant cells (P < 0.05, Kolmogorov-Smirnov test; Figure 3B, 3C). Notably, we did not observe 249 

a change in stem-like cells, though we did not adjust for histological feature composition as we 250 

were focused on tumor-wide changes in cell state composition. Within IDH-mutant tumors, we 251 

identified acquired deletions of the cell cycle regulator CDKN2A and acquired amplifications of 252 

the cell cycle regulator CCND2 as genetic events that together associated with the increase in 253 

proliferating stem-like cells (P = 0.01, paired t-test, n = 3; Figure S3A). This association was not 254 

present in IDH-wild-type tumors, which typically harbor CDKN2A deletions at initial presentation. 255 

Approximately 20% of gliomas recur with a hypermutated phenotype following treatment with 256 

alkylating agents, a standard-of-care chemotherapy (Barthel et al., 2019; Touat et al., 2020). This 257 
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phenotype has been associated with disease progression and distant recurrence (Yu et al., 2021). 258 

We found that in both IDH-wild-type and IDH-mutant glioma, hypermutation also associated with 259 

an increase in proliferating stem-like malignant cells (n = 12 and 6, respectively;  Figure 3D). In 260 

IDH-mutant tumors, hypermutation was independent of acquired copy number changes in 261 

CDKN2A and CCND2, suggesting that there are multiple genetic routes to increasing proliferating 262 

stem-like malignant cells at recurrence (Figure 3E). Notably, we found that neither hypermutation 263 

nor acquired cell cycle alterations were associated with changes in microvascular proliferation, 264 

suggesting that the increase in proliferating stem-like malignant cells in these tumors was driven 265 

by changes in their genetics (Figure S3B).  266 

 267 

Beyond malignant cells, we observed that fibroblasts, oligodendrocytes, and granulocytes all 268 

deviated from the stochastic distribution. As with the proliferating stem-like cells, we compared 269 

how each cell state fraction differed in the small number of samples that acquired or lost selected 270 

driver mutations at recurrence. In IDH-wild-type tumors, tumors acquiring NF1 mutations all 271 

underwent a mesenchymal transition and exhibited a significant increase in granulocytes (P = 272 

0.01, paired t-test, n = 6; Figure S3C). Granulocytes have previously been associated with tumor 273 

necrosis, a feature that is prominent in mesenchymal glioblastoma (Yee et al., 2020). There were 274 

additionally several copy number alterations, including loss of EGFR or PDGFRA amplifications, 275 

that were associated with increased non-malignant cell content (P < 0.05, paired t-test, n = 9 and 276 

n = 3, respectively), and a transition to the mesenchymal subtype (P = 0.02, Fisher’s exact test; 277 

Figures S3D and S3E). We did not observe any significant changes in the fractions of non-278 

malignant cells when comparing hypermutated recurrences with their corresponding non-279 

hypermutated initial tumors, although T cells numerically increased in IDH-mutant tumors (P = 280 

0.07, paired t-test; Figure S3F). Collectively, nearly all the cell state changes we found to deviate 281 

from the stochastic distribution were associated with changes in tumor genetics, suggesting that 282 

genetic evolution underlies the most frequent changes in cellular composition over time. 283 
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 284 

IDH-wild-type malignant cells exhibit an increase in neuronal signaling gene expression 285 

programs at recurrence 286 

While a subset of tumors demonstrated increases in proliferating stem cell content at recurrence, 287 

most IDH-wild-type and IDH-mutant tumors did not exhibit any directed changes in their malignant 288 

cell composition over time. We hypothesized that the expression programs of individual cell states 289 

may change following treatment in more subtle ways that do not manifest as a noticeable shift in 290 

cellular composition. To test whether these changes were taking place, we utilized our pan-glioma 291 

single-cell RNAseq dataset as a reference to deconvolute GLASS bulk gene expression profiles 292 

into their component differentiated-like, stem-like, proliferating stem-like, and myeloid gene 293 

expression profiles (Figure S4A). Comparing these profiles to those derived from fluorescence-294 

activated cell sorting (FACS)-purified glioma-specific CD45- and myeloid populations revealed 295 

strong concordance between the corresponding profiles of each cell state (Figures S4B and 296 

S4C).  297 

 298 

To compare how the expression programs in each malignant cell state vary longitudinally, we 299 

compared the cell state-specific gene expression profiles between the initial and recurrent tumor 300 

for each pair receiving temozolomide and/or radiotherapy. We only included tumor pairs that did 301 

not exhibit a bulk transcriptional subtype switch, as variable subtype switching may reflect 302 

changes in histological feature composition over time. In IDH-wild-type tumors, we found that 303 

5.2% of the 7,400 genes that could be inferred in stem-like cells were significantly differentially 304 

expressed at recurrence (false discovery rate (FDR) < 0.1, Wilcoxon signed-rank test). This 305 

number was 1.9% of the 11,376 differentiated-like state genes and 0.5% of the 5,908 proliferating 306 

stem-like state genes (Figure 4A; Table S4). Based on these results, we defined recurrence-307 

specific signatures as the genes that were significantly up-regulated at recurrence in each cell 308 

state. While there was little overlap between each of these signatures, gene ontology (GO) 309 
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enrichment analysis revealed that the stem-like and differentiated-like signatures were 310 

significantly enriched in terms relating to neuronal signaling (Figures 4B and S4D). These results 311 

were consistent with the increase in leading edge features and oligodendrocytes at recurrence 312 

we had previously observed. To confirm that these signatures were measuring malignant-specific 313 

expression changes at recurrence, we compared how their expression differed between 314 

malignant single cells from unmatched initial and recurrent IDH-wild-type tumors, as there is 315 

limited availability of matched initial and recurrent single-cell data. In all cases, the recurrence-316 

specific cells exhibited significantly higher expression of their respective signatures than those 317 

from initial tumors (Figure 4C). We next examined each recurrence-specific signature’s 318 

association with histological feature content and found that the tumor’s leading edge was 319 

positively associated with the malignant cell state-specific expression of each signature (Figure 320 

4D). While this feature has reduced tumor content, malignant cells in the tumor periphery have 321 

previously been shown to exhibit neuronal signaling activity (Darmanis et al., 2017; Puchalski et 322 

al., 2018). Furthermore, stem-like cells, which are the malignant state most frequently found at 323 

the leading edge and enhancing region (Jin et al., 2017), exhibited the strongest associations. 324 

Notably, each of these associations was present regardless of whether the comparisons were 325 

made in initial or recurrent tumors. Together these results suggest that increased normal cell 326 

content at recurrence associates with higher signaling between malignant cells and neighboring 327 

neural cells. Neuron-to-glioma synapses have been implicated in increased tumor growth and 328 

invasion, and collectively our results support a model of greater tumor invasion into the normal 329 

brain at recurrence that is facilitated by an increase in neuronal interactions (Venkataramani et 330 

al., 2019; Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 2017).  331 

 332 

We next compared how the expression profiles of each cell state differed between initial and 333 

recurrent IDH-mutant tumors that received treatment. The resulting signatures were distinct from 334 

those in IDH-wild-type tumors, with the largest number of differentially expressed genes found in 335 
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the differentiated-like state instead of the stem-like state (FDR < 0.1, Wilcoxon signed-rank test; 336 

Figure 4E, Table S4). Additionally, the majority of candidate genes identified in IDH-mutant 337 

tumors were expressed more highly in initial tumors, as opposed to IDH-wild-type tumors where 338 

the reverse was true. As with IDH-wild-type tumors, there was limited overlap between the 339 

differentiated-like and stem-like signatures (Figure S4E). A GO enrichment analysis of the genes 340 

up-regulated at recurrence in the differentiated-like and stem-like cell states revealed an 341 

enrichment of cell cycle-related genes. In contrast, the down-regulated genes were enriched in 342 

terms related to cellular communication and response to stimulus (Figure 4F). These signatures 343 

were consistent with those found in higher grade tumors, suggesting that the cell state-specific 344 

gene expression changes were indicative of grade increases at recurrence. Accordingly, we 345 

observed that these changes were strongest in the tumor pairs that recurred at a higher grade 346 

(Figure S4F). Furthermore, when we compared signature expression in single cells of the same 347 

cell state, we found that the signatures were differentially expressed in the cells derived from 348 

grade III versus grade II tumors (Figure S4G). These results indicate that IDH-wild-type and IDH-349 

mutant tumors recur in distinct manners that may reflect their response to treatment. 350 

 351 

Mesenchymal tumor cell activity associates with a distinct myeloid cell phenotype 352 

The mesenchymal subtype of glioma is associated with increased accumulation of immune cells, 353 

primarily of the myeloid lineage (Bhat et al., 2013; Kim et al., 2021; Wang et al., 2017). We thus 354 

hypothesized that interactions between the tumor-infiltrating myeloid cells and malignant cells can 355 

influence the tumor’s trajectory at recurrence. To understand how the myeloid compartment 356 

differed across each glioma subtype, we deconvoluted the myeloid-specific gene expression 357 

profiles from a collection of diffuse glioma bulk RNAseq profiles (n = 701) from The Cancer 358 

Genome Atlas (TCGA). The myeloid compartment in IDH-wild-type tumors was characterized by 359 

high expression of a previously defined blood-derived macrophage signature (Muller et al., 2017), 360 

while myeloid cells in IDH-mutant-noncodel tumors exhibited high expression of a previously 361 
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defined brain-resident microglia signature (Figure 5A). Stratifying this cohort by transcriptional 362 

subtype revealed that the blood-derived macrophage signature followed a stepwise increase with 363 

mesenchymal subtype representation, while microglial gene expression was highest amongst 364 

tumors of the mixed subtype classification that is seen most frequently in IDH-mutant-noncodel 365 

glioma (Figure S5A). In IDH-wild-type tumors, blood-derived macrophage signature expression 366 

was positively correlated with the abundance of microvascular proliferation and pseudopalisading 367 

cells around necrosis features, while the microglia signature was most positively correlated with 368 

leading-edge content. There were no clear associations for either signature in IDH-mutant tumors 369 

(Figure S5B). Longitudinally, when holding transcriptional subtype constant, we observed very 370 

few differentially expressed genes in the myeloid cell profiles from matched initial and recurrent 371 

tumors in the GLASS cohort (Figure S5C). However, the myeloid profiles in IDH-mutant tumors 372 

that increased grade at recurrence exhibited a significant decrease in microglia signature 373 

expression, suggesting a shift in myeloid cell states away from brain-resident microglia (P = 1e-374 

3, Wilcoxon signed-rank test; Figure 5B). 375 

 376 

Macrophages are highly plastic and capable of changing their transcriptional programs in 377 

response to different stimuli (Xue et al., 2014). We reasoned that interactions between myeloid 378 

cells and malignant cells in the mesenchymal glioma microenvironment might result in a 379 

population of myeloid cells that bear a distinct transcriptional phenotype. We thus performed a 380 

differential expression analysis to compare how the deconvoluted myeloid cell expression profiles 381 

differed between mesenchymal and non-mesenchymal IDH-wild-type tumors in TCGA. This 382 

analysis revealed that 218 of the 4,235 inferred genes (5%) were significantly upregulated in 383 

mesenchymal samples (FDR < 0.1, fold-change > 1.1; Figure 5C, Table S5). When we examined 384 

the average expression of this signature in myeloid cells from our scRNAseq dataset, we found 385 

that the average signature score in each patient was strongly associated with the mesenchymal 386 

glioma subtype score derived from their patients’ respective bulk RNAseq profile (R = 0.87, P = 387 
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5e-4; Figure 5D). We did not observe this association using the blood-derived macrophage 388 

signature, suggesting that our mesenchymal macrophage signature was measuring myeloid 389 

activity specific to the mesenchymal subtype (Figure S5D). Analysis of signature expression 390 

across each of the Ivy GAP dataset’s histological feature samples revealed that the mesenchymal 391 

myeloid signature was expressed most highly in the pseudopalisading cells around necrosis and 392 

microvascular proliferation features that are highest in mesenchymal tumors (Figure 5E). A GO 393 

enrichment analysis of this signature revealed the mesenchymal myeloid signature to be enriched 394 

in chemokine signaling and lymphocyte chemotaxis functions (Figure S5E). 395 

 396 

Longitudinally, IDH-wild-type tumors in the GLASS dataset undergoing a mesenchymal transition 397 

at recurrence exhibited significantly higher mesenchymal myeloid signature expression in their 398 

recurrent tumor myeloid profiles (P = 6e-7, Wilcoxon signed-rank test; Figure 5F). This led us to 399 

examine whether we could identify the ligand-receptor interactions between myeloid and 400 

malignant cells associated with this transition over time. We focused this analysis on 401 

differentiated-like malignant cells, as this cell state frequently exhibits mesenchymal-like 402 

characteristics (Johnson et al., 2020). To probe these interactions, we downloaded a set of 1,894 403 

literature-supported ligand-receptor pairs (Ramilowski et al., 2015) and identified all pairs that had 404 

one component expressed in a tumor’s deconvoluted myeloid profile and the other expressed in 405 

the differentiated-like malignant cell profile. We then compared how the longitudinal change in 406 

expression of each component associated with the change in each tumor pair’s mesenchymal 407 

subtype score. This identified 69 putative ligand-receptor pairs where each component exhibited 408 

a positive association (R > 0, FDR < 0.1; Figure S5F). Of these pairs, 35 also exhibited these 409 

associations in our single-cell dataset, including 19 where the ligand was expressed by the 410 

malignant cell and 16 where the ligand was expressed by the myeloid cell (Table S6). In pairs 411 

where the ligand was expressed by the malignant cell, the pair with the highest mean correlation 412 

was vascular endothelial growth factor A (VEGFA)-neuropilin 1 (NRP1), which is involved in 413 
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angiogenesis and endothelial cell migration (Herzog et al., 2011). In pairs where the myeloid cell 414 

expressed the ligand, the best performing pair was oncostatin M (OSM)-oncostatin M receptor 415 

(OSMR), which has been associated with an epithelial-to-mesenchymal transition in vitro (Junk 416 

et al., 2017). In addition to these pairs, myeloid-specific single-cell expression of the receptor 417 

MARCO was significantly associated with the bulk tumor mesenchymal signature score, in 418 

concordance with its reported role as a marker of mesenchymal-associated macrophages (Figure 419 

S5G) (Sa et al., 2020). These analyses identify candidate receptor-ligand interactions that can 420 

potentially be targeted to shift a tumor towards or away from a mesenchymal state following 421 

treatment. 422 

 423 

Antigen presentation is disrupted at recurrence in IDH-mutant-noncodel glioma 424 

Studies in non-small cell lung cancer and other cancer types have shown that cytotoxic T cells 425 

exert selective pressure on malignant cells through the elimination of neoantigen-presenting 426 

tumor subclones (Grasso et al., 2018; McGranahan et al., 2017; Rooney et al., 2015; Rosenthal 427 

et al., 2019; Zhang et al., 2018). Immune interactions have been associated with selection for 428 

epigenetic changes in glioma (Gangoso et al., 2021), however the extent to which T cells are 429 

involved in shaping genetic evolution of glioma remains unclear. We hypothesized that if T cell 430 

selection was taking place, then tumors with high T cell infiltration would more frequently exhibit 431 

loss-of-heterozygosity (LOH) in the human leukocyte antigen (HLA) genes that are central to the 432 

presentation of neoantigens. We thus called HLA LOH throughout the GLASS cohort (Figure 6A). 433 

We observed that HLA LOH is prevalent in glioma, occurring in at least one timepoint in 19% of 434 

patients. Within IDH-wild-type and IDH-mutant-codel tumors, HLA LOH was found at similar rates 435 

between initial and recurrent tumors, with most affected pairs exhibiting this alteration at both time 436 

points. This was not the case in IDH-mutant-noncodel tumors, where significantly more samples 437 

acquired HLA LOH at recurrence (P = 0.02, Fisher’s exact test). However, unlike in non-small cell 438 

lung cancer, the presence of HLA LOH was not associated with the fraction of infiltrating T cells 439 
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in each tumor (Figure 6B). Furthermore, we did not observe an association between T cell 440 

abundance and the rates of neoantigen depletion, and in HLA LOH samples, the number of 441 

neoantigens binding to the kept allele did not differ from the number that were predicted to bind 442 

to the lost allele (Figures S6A and S6B).  443 

 444 

Given the absence of an association between HLA LOH status and T cell infiltration, we reasoned 445 

that HLA LOH might be a passenger event that occurs in samples with a high genome-wide 446 

somatic copy number alteration (SCNA) burden. We had previously shown that IDH-mutant-447 

noncodel tumors exhibit significantly higher SCNA burdens at recurrence (Barthel et al., 2019). 448 

This difference remained significant regardless of whether the tumors acquired HLA LOH. 449 

However, the tumors acquiring this alteration at recurrence exhibited significantly higher changes 450 

in SCNA burden than those that did not, confirming our hypothesis (P = 0.02, Wilcoxon rank-sum 451 

test; Figure 6C). We did not observe longitudinal associations between HLA LOH status and 452 

SCNA burden in IDH-wild-type tumors, although we found at both the initial and recurrent time 453 

points that samples with HLA LOH had higher SCNA burdens than those with both HLA alleles 454 

(Figure S6C). Taken together, these results suggest that disruption of antigen presentation in 455 

glioma is likely a byproduct of SCNA burden rather than being a result of selection by cytolytic T 456 

cells as has been observed in other cancers. 457 

 458 

Discussion 459 

To understand the factors driving the evolution and treatment resistance of diffuse glioma, we 460 

integrated genomic and transcriptomic data from the initial and recurrent tumor pairs of 292 461 

patients. By integrating this resource with data from single-cell RNAseq experiments, a 462 

histological transcriptional atlas, and a multitude of external transcriptional datasets, we have 463 

comprehensively defined the longitudinal transcriptional and compositional changes that gliomas 464 

sustain at recurrence.  465 
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 466 

In this study, we employed single-cell deconvolution approaches to enable high-resolution 467 

quantification of glioma tumors’ cellular composition. Available cell state classification models 468 

have been developed for diffuse glioma using single cells of a single glioma subtype (Castellan 469 

et al., 2021; Garofano et al., 2021; Neftel et al., 2019; Richards et al., 2021; Venteicher et al., 470 

2017). In contrast, our reference matrix utilized cell states derived from a pan-glioma single-cell 471 

dataset composed of initial and recurrent tumors of all major clinically relevant glioma subtypes, 472 

and thus included malignant and normal cell states commonly found across diffuse glioma. The 473 

resulting cellular proportions reflected true cell state levels in multiple benchmarking analyses, 474 

making this an invaluable approach for comparing and contrasting the longitudinal changes taking 475 

place across IDH-wild-type and IDH-mutant tumors. In the future this approach can continue to 476 

be refined as the number of cells per tumor and patients profiled by scRNAseq increases and 477 

enables even higher resolution estimates of glioma cell state composition and heterogeneity.  478 

 479 

While transcriptional subtype switching has been reported to occur frequently in IDH-wild-type 480 

glioma, the role these switches play in treatment resistance is unclear. Pathology-defined 481 

histological features from Ivy GAP exhibit distinct transcriptional profiles that correspond to 482 

different glioma transcriptional subtypes, suggesting that subtype switching may be more 483 

reflective of changes in the tumor’s histological feature composition at recurrence (Jin et al., 2017; 484 

Puchalski et al., 2018). Ivy GAP comprises features defined from primary tumors, which we found 485 

to be useful proxies to measure the biological changes at recurrence that underlie subtype 486 

switching. Limitations of the Ivy GAP resource may include the absence of commonly observed 487 

features, such as necrotic tissue and perinecrotic zone tumor, which may be more present 488 

following radiation therapy. We showed that the proneural-to-mesenchymal transition is 489 

independent of histological feature composition and reflects transcriptional changes in the cellular 490 

tumor. Mesenchymal transitions have been shown to associate with several factors, including 491 
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increased myeloid cell infiltration, radiation-induced NF-κB activation, altered tumor metabolism, 492 

and hypoxia (Bhat et al., 2013; Garofano et al., 2021; Kim et al., 2021; Mao et al., 2013; Osuka 493 

et al., 2021; Schmitt et al., 2021; Wang et al., 2017). Our results indicate that the proneural-to-494 

mesenchymal transition is likely influenced by tumor-wide changes, supporting the hypothesis 495 

that this transition is involved in therapy resistance. Additional studies where multiple biopsies are 496 

obtained from the same tumor over time may help to further elucidate the relationship between 497 

histological feature composition and gene expression subtype.  498 

 499 

Across IDH-wild-type and IDH-mutant glioma, we identified a sub-population of samples that 500 

exhibited an increase in proliferating stem-like malignant cells at recurrence. Analysis of the 501 

acquired somatic alterations in these tumors revealed that hypermutation was associated with 502 

this change in both subtypes. This finding across both subtypes suggests that hypermutation may 503 

represent a pan-glioma treatment resistance mechanism. Hypermutation did not associate with 504 

patient survival in the GLASS dataset but has been found more frequently in distant recurrences 505 

and linked to reduced survival following high-grade progression in low-grade IDH-mutant tumors 506 

(Barthel et al., 2019; Touat et al., 2020; Yu et al., 2021). Given these findings, our data highlights 507 

methods to predict treatment-induced hypermutation represent a previously unrecognized unmet 508 

clinical need in the field. Integrating such methodologies into clinical care pathways would help to 509 

identify patients that may benefit from therapies that complement chemotherapy and further target 510 

cycling cells. 511 

 512 

We did not identify any somatic alterations associated with changes in malignant cell composition 513 

outside of hypermutation and copy number changes in cell cycle regulators. Despite this, we 514 

found that malignant glioma cells in IDH-wild-type tumors exhibited a significant increase in the 515 

expression of genes involved in neuronal signaling. This change coincided with an increase in 516 

oligodendrocytes at recurrence that was independent of the extent of tumor resection, providing 517 
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a medium for increased interactions between malignant and normal cells in the brain. Additionally, 518 

neuronal signaling was most significantly up-regulated within the malignant stem-like cells, which 519 

are found at the highest levels at the leading edge of the tumor and frequently resemble 520 

oligodendroglial precursor-like malignant cells involved in neuronal signaling (Venkatesh et al., 521 

2019). Increased neuronal signaling has previously been reported in malignant cells that have 522 

infiltrated into the surrounding tissue in response to low oxygen content and our study extends 523 

these observations to glioma progression (Darmanis et al., 2017). Collectively these findings 524 

coupled with our results relating to proneural-to-mesenchymal transition support a model where 525 

recurrent IDH-wild-type tumors, in response to changes in hypoxia or tumor metabolism at 526 

recurrence, invade the surrounding peripheral tissue where they actively interact with neighboring 527 

neuronal cells. Given the growing appreciation of the role neuron-glioma interactions play in 528 

glioma invasion and progression, it will be critical to understand the extent to which these 529 

interactions facilitate tumor regrowth and treatment resistance (Venkataramani et al., 2019; 530 

Venkatesh et al., 2015; Venkatesh et al., 2019; Venkatesh et al., 2017). 531 

 532 

In agreement with other studies, we found that the myeloid cell phenotype varied in relation to 533 

tumor subtype and malignant cell state (Klemm et al., 2020; Muller et al., 2017; Ochocka et al., 534 

2021; Pombo Antunes et al., 2021; Venteicher et al., 2017). Notably, we found that this variation 535 

was most apparent in mesenchymal tumors, where myeloid cells exhibited a distinct 536 

transcriptional program. Ligand-receptor analyses revealed several candidate interactions 537 

involved in driving malignant and myeloid cells toward this mesenchymal phenotype. Resolving 538 

the directionality of these interactions, or determining whether additional factors mediate them, 539 

will be an important step toward understanding the contribution myeloid cells make in 540 

mesenchymal transformation. We did not observe any differences in T cell activity, nor did we 541 

observe evidence of T cell-mediated selection, making glioma distinct from several other cancers 542 

(Grasso et al., 2018; McGranahan et al., 2017; Rooney et al., 2015; Rosenthal et al., 2019; Zhang 543 
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et al., 2018). Despite this, we did observe that antigen presentation in IDH-mutant-noncodel 544 

tumors is frequently disrupted at recurrence and is associated with increases in SCNA burden. 545 

These results should inform the design of T cell-based immunotherapies going forward, as 546 

standard-of-care therapies may inadvertently disrupt malignant cells’ ability to present 547 

neoantigens to T cells. 548 

 549 

Therapy resistance remains a significant obstacle for patients with diffuse glioma and must be 550 

overcome to improve patient survival and quality of life. Overall, our results reveal that gliomas 551 

undergo changes in cell states that associate with changes in genetics and the microenvironment, 552 

providing a baseline towards building predictive models of treatment response. Taking into 553 

consideration the current histopathologic diagnostic criteria for gliomas and their longitudinal 554 

follow-up, future efforts by the GLASS Consortium are now underway. These include expansion 555 

of the cohort, integration of digitized tissue sections, and association with clinical and genomic 556 

datasets with radiographic imaging data (Bakas et al., 2020). Computational imaging studies have 557 

shown mounting evidence and promise in revealing imaging signatures associated with increased 558 

invasion and proliferation for glioma patients harboring particular mutations (Bakas et al., 2017; 559 

Binder et al., 2018; Fathi Kazerooni et al., 2020; Mang et al., 2020; Zwanenburg et al., 2020), and 560 

given their use in clinical monitoring, are highly complementary to the longitudinal datasets 561 

established here. Going forward, the transcriptional and compositional changes we have identified 562 

can be integrated with these imaging-based results to more broadly assess the molecular and 563 

microenvironmental heterogeneity of glioma and identify clinically targetable factors to aid in 564 

shaping a patient’s disease trajectory.  565 

 566 
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 726 

Figure Legends 727 

Figure 1. Diffuse glioma exhibits transcriptional and cellular heterogeneity across 728 

samples, subtypes, and time. (A) Overview of the GLASS dataset. Each column represents a 729 

tumor pair, and their initial (I) and recurrent (R) samples are labelled. All tumor pairs with RNAseq 730 

data at each time point are included. Pairs are arranged based on the representation of the 731 

proneural and mesenchymal subtypes in their initial tumors. The first track indicates whether there 732 

is whole exome or whole genome sequencing data available for that pair. The next three tracks 733 

indicate the representation of each bulk subtype across each sample. The stacked bar plots 734 

indicate the cell state composition of each sample based on the single cell-based deconvolution 735 

method, CIBERSORTx. The bottom tracks indicate molecular and clinical information for each 736 

tumor pair. (B) Sankey plot indicating whether the highest-scoring transcriptional subtype 737 

changed at recurrence. Each color reflects the transcriptional subtype in the initial tumors. 738 

Number in parentheses indicates number of samples of that subtype. (C) Left: The average cell 739 

state composition of each bulk transcriptional subtype for all initial GLASS tumors. Right: The 740 

average cell state composition of initial and recurrent tumors stratified by IDH mutation status. 741 

Colors in (C) are identical to those used in (A).  742 

 743 

Figure 2. Histological features underlie changes in the cellular composition of diffuse 744 

glioma over time. (A) The cell state composition of each of the reference histology-defined Ivy 745 

GAP histological features from 10 patients. Patient and IDH mutation status tracks are included 746 

beneath the stacked bar plots. For the patient track, each colored block represents a unique 747 

patient. (B) Left: The average histological feature composition of each bulk transcriptional subtype 748 

for all initial GLASS tumors. Right: The average histological feature composition of initial and 749 
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recurrent tumors stratified by IDH mutation status. (C) Heatmap depicting the significance of the 750 

changes in each histological feature between initial and recurrent tumors undergoing the indicated 751 

subtype transition. The initial subtype is indicated in the columns and the recurrent subtype is 752 

indicated in the rows. Colors represent the -log10(P-value) from a paired t-test, with increases at 753 

recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (D) 754 

Heatmap depicting the Pearson correlation coefficients measuring the association between the 755 

change in a given histological feature and the change in a given cell state when going from an 756 

initial tumor to recurrence. (E) Left: Ladder plot depicting the change in the adjusted stem-like cell 757 

proportion between paired initial and recurrent tumors undergoing a proneural-to-mesenchymal 758 

transition. Right: The average adjusted proportions for malignant cells for the tumor pairs outlined 759 

on the left. Malignant cell proportions were adjusted for the presence of non-malignant cells as 760 

well as non-cellular tumor content. 761 

 762 

Figure 3. Hypermutation and acquired cell cycle alterations associate with increased 763 

proliferating stem-like malignant cells in IDH-wild-type and IDH-mutant glioma. (A) Heatmap 764 

depicting the concordance coefficients measuring the association between the indicated cell state 765 

fractions between initial and recurrent tumors. (B) Top: Density plots depicting the cell state 766 

proportion change distribution for each of the indicated cell states. Samples are stratified based 767 

on IDH mutation status. The tumor-only distributions indicate the change in malignant cell 768 

fractions after adjusting for non-malignant cells. P-values were derived using the Kolmogorov-769 

Smirnov test that compared each distribution to a normal distribution with a mean of 0. (C) 770 

Scatterplots depicting the association between the adjusted malignant cell proportions in initial 771 

and recurrent tumors. Concordance coefficients are indicated. Diagonal lines correspond to the 772 

line y = x. (D) Top: Ladder plots depicting the change in the proliferating stem-like cell proportion 773 

between paired initial and recurrent tumors that did and did not undergo hypermutation. Point 774 

colors indicate IDH mutation and 1p/19q co-deletion status. * indicates paired t-test P-value < 775 
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0.05. Bottom: The average proportions of each cell state for the tumor pairs outlined above. (E) 776 

Top: The change in proliferating stem-like cell fraction between initial and recurrent tumors from 777 

IDH-mutant pairs. Each bar represents a tumor pair. Bottom: Molecular and clinical information 778 

for each tumor pair. P-values were calculated using a paired t-test measuring the association 779 

between initial and recurrent tumors that acquired the indicated phenotypes.  780 

 781 

Figure 4. Malignant cells exhibit increased neuronal signaling and cell cycle activation 782 

programs in recurrent IDH-wild-type and IDH-mutant tumors. (A) Heatmaps depicting the 783 

average normalized log10 expression level of genes that were differentially expressed between 784 

malignant cell states from initial and recurrent IDH-wild-type tumors not undergoing a subtype 785 

switch. Fractions on each plot’s right indicate the number of differentially expressed genes 786 

(numerator) out of the number of genes inferred for that cell state’s profile using CIBERSORTx 787 

(denominator). (B) Bar plot depicting the -log10(adjusted P-value) from a GO enrichment analysis 788 

for the differentially expressed genes in differentiated-like and stem-like malignant cells depicted 789 

in (A). Only GO terms that were enriched at an adjusted P-value of < 0.05 in both the 790 

differentiated-like and stem-like signatures were included. (C) Boxplot depicting the average 791 

signature expression in single cells of the indicated malignant cell states from unmatched initial 792 

and recurrent IDH-wild-type tumors. **** indicates Wilcoxon rank-sum test P-value < 1e-5. (D) 793 

Scatterplot depicting the association between the leading edge fraction and the average signature 794 

expression in the inferred malignant cell state-specific expression profiles of samples in the 795 

GLASS dataset. Pearson correlation coefficients are indicated. (E) Heatmaps depicting the 796 

average normalized log10 expression level of genes that were differentially expressed between 797 

malignant cell states from initial and recurrent IDH-mutant tumors not undergoing a subtype 798 

switch. Fractions are as outlined in (A). (F) Bar plots depicting the -log10(adjusted P-value) from a 799 

GO enrichment analysis for the differentially expressed genes in differentiated-like and stem-like 800 

malignant cells depicted in (E). Top 8 GO terms that were significant in the up- or down-regulated 801 
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signatures from differentiated-like and stem-like cells are shown. In (B) and (F), dotted line 802 

corresponds to adjusted P-value < 0.05. 803 

 804 

Figure 5. Myeloid cells in diffuse glioma exhibit diverse phenotypes based on IDH mutation 805 

status, transcriptional subtype, and recurrence status. (A) Left: Uniform Manifold 806 

Approximation and Projection (UMAP) dimensionality reduction plot of the CIBERSORTx-inferred 807 

myeloid profiles from TCGA. Colors indicate bulk transcriptional subtype; shapes indicate IDH 808 

and 1p/19q co-deletion status. When all three bulk transcriptional subtypes were significantly 809 

represented in a sample, the ‘mixed’ classification was used. Right: UMAP plot colored based on 810 

the relative mean expression of macrophage and microglia signatures (B) Box and ladder plots 811 

depicting the difference in the mean expression of the indicated signatures between initial and 812 

recurrent IDH-mutant tumors from GLASS that do and do not recur at higher grades. Point colors 813 

indicate 1p/19q co-deletion status. *** indicates Wilcoxon signed-rank test P-value < 1e-3. (C) 814 

Heatmap depicting the normalized expression z-score of genes that were differentially expressed 815 

between myeloid cells from mesenchymal and non-mesenchymal TCGA tumors. Rows indicate 816 

genes and columns indicate samples. Top sidebar indicates the bulk mesenchymal score of each 817 

sample divided by 1,000. Right sidebar indicates the -log10 adjusted Wilcoxon rank-sum test P-818 

value of the association for each gene. Bottom sidebar indicates the transcriptional subtype of 819 

each sample per panel (A). (D) Scatterplot depicting the association between the mean 820 

mesenchymal myeloid signature expression in single myeloid cells and the mesenchymal subtype 821 

score calculated from bulk RNAseq for each patient. (E) Boxplot depicting the mean 822 

mesenchymal myeloid signature expression for CIBERSORTx-inferred myeloid profiles from 823 

different histological features in the Ivy GAP dataset. Features in this dataset include the leading 824 

edge (LE), infiltrating tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis 825 

(PAN), and microvascular proliferation (MVP). (F) Box and ladder plots depicting the difference in 826 

the mean expression of the mesenchymal myeloid signature between initial and recurrent IDH-827 
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wild-type tumors undergoing a mesenchymal transition in GLASS. **** indicates Wilcoxon signed-828 

rank test P < 1e-5. 829 

 830 

Figure 6. Loss of heterozygosity in HLA genes is associated with increased somatic copy 831 

number alterations in IDH-mutant non-1p/19q co-deleted glioma. (A) Left: Sankey plot 832 

indicating whether a tumor pair acquires or loses HLA LOH at recurrence. Colored lines reflect 833 

the IDH and 1p/19q co-deletion status of the tumor pair and indicate HLA LOH in the initial tumor. 834 

Dark gray lines indicate acquired HLA LOH. Right: Stacked bar plot indicating the proportion of 835 

samples of each glioma subtype that acquired HLA LOH at recurrence. * indicates Fisher’s exact 836 

test P-value < 0.05. (B) Violin plot depicting the difference in T cell proportion in samples with and 837 

without HLA LOH. P-values were calculated using the t-test. (C) Left: Ladder plots depicting the 838 

change in SCNA burden between paired initial and recurrent IDH-mutant-noncodel tumors that 839 

did and did not acquire HLA LOH. P-values were calculated using the Wilcoxon signed-rank test. 840 

Right: Boxplot depicting the difference in the change in SCNA burden between IDH-mutant-841 

noncodel tumor pairs that did and did not acquire HLA LOH. P-value was calculated using the 842 

Wilcoxon rank-sum test. 843 

 844 

Figure S1. Validation of deconvolution results and IDH-wild-type-specific cell state 845 

profiles. Related to Figure 1. (A) Scatterplots depicting the association between the true 846 

proportion and the CIBERSORTx-inferred proportion for each cell state in gene expression 847 

profiles from synthetic mixtures composed of different combinations of single cells. (B) 848 

Scatterplots depicting the association between the proportion of each malignant cell state 849 

determined from single-cell RNAseq and the non-malignant cell-adjusted malignant cell state 850 

proportion inferred from CIBERSORTx applied to each sample’s respective bulk tumor RNAseq 851 

profile. In all plots, Pearson correlation coefficients are indicated. (C) Left: Stacked bar plot 852 

indicating the proportion of samples of IDH-wild-type tumors that underwent a gross total 853 
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resection at each timepoint. Right: The average proportions of each cell state for tumors that 854 

underwent a subtotal resection at initial and a gross total resection at recurrence (Subtotal-gross 855 

total) and tumors that underwent a gross total resection at both time points (Gross total-gross 856 

total). (D) Left: The average Neftel et al. cell state composition of each bulk transcriptional subtype 857 

for all initial IDH-wild-type GLASS tumors. Right: The average Neftel et. al cell state composition 858 

of initial and recurrent IDH-wild-type tumors. (E) The average cell state composition of initial and 859 

recurrent IDH-mutant tumors stratified by 1p/19q co-deletion status. Colors in (E) are identical to 860 

those used in (C).  861 

 862 

Figure S2. Relationship between bulk subtype switching and cell state changes after 863 

adjusting for histological feature composition. Related to Figure 2. (A) Bar plot depicting the 864 

-log10 P-value from a two-way ANOVA test measuring whether the fractions of each cell state in 865 

a sample associate with the patient the sample was derived from (red bar) and the feature the 866 

sample represents (blue bar). Dotted line corresponds to P = 0.05 (B) Heatmaps depicting the 867 

significance of the changes in each malignant cell state between initial and recurrent tumors 868 

undergoing the indicated subtype transition. The initial subtype is indicated in the columns and 869 

the recurrent subtype is indicated in the rows. Each row of heatmaps reflects a different 870 

histological feature adjustment. Colors represent the -log10(P-value) from a paired t-test, with 871 

increases at recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored 872 

white. (C) Left: Ladder plot depicting the change in the adjusted stem-like cell proportion between 873 

paired initial and recurrent tumors undergoing a proneural-to-mesenchymal transition. Right: The 874 

average adjusted proportions for malignant cells for the tumor pairs outlined on the left. Malignant 875 

cell proportions were adjusted for the presence of non-malignant cells as well as all non-cellular 876 

tumor features. 877 

 878 
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Figure S3. Cell state composition changes associated with the acquisition and loss of 879 

somatic alterations. Related to Figure 3. (A) Cell state differences in tumors that acquired 880 

CDNK2A deletions or CCND2 amplifications. Panel is split into IDH-mutant and IDH-wild-type 881 

tumors. Ladder plots depict the change in the proliferating stem-like cell proportion between 882 

paired initial and recurrent tumors that acquired these alterations. Stacked bar plots depict the 883 

average proportions of each cell state for the tumor pairs in the ladder plots. (B) Ladder plots 884 

depicting the difference in microvascular proliferation fraction in IDH-mutant and IDH-wild-type 885 

tumors that underwent hypermutation at recurrence. (C) Left: Ladder plots depicting the change 886 

in granulocyte and fibroblast fractions in IDH-wild-type tumors that acquired mutations in NF1 at 887 

recurrence. Right: The average proportions of each cell state for the tumor pairs in the ladder 888 

plots. (D) Non-malignant cell state differences in IDH-wild-type tumors that lost EGFR or PDGFRA 889 

amplifications at recurrence. Panel is split by alteration. Ladder plots depict the change in the 890 

non-malignant cell state proportion between paired initial and recurrent tumors while stacked bar 891 

plots depict the average proportions of each cell state for these tumors. (E) Sankey plot indicating 892 

whether the highest scoring transcriptional subtype changed at recurrence for the tumors depicted 893 

in (D). Each color reflects the transcriptional subtype in the initial tumors. Numbers in parentheses 894 

indicate number of samples. (F) Ladder plots depicting the difference in T cell fraction in IDH-895 

mutant and IDH-wild-type tumors that underwent hypermutation at recurrence. In all figures, P-896 

values were calculated using a paired t-test unless otherwise noted. 897 

 898 

Figure S4. Validation and differential expression analysis of cell state-specific gene 899 

expression profiles. Related to Figure 4. (A) Schema for single-cell RNAseq-based 900 

deconvolution of cell state-specific gene expression profiles. (B) Left: Heatmap depicting the 901 

relationship between the CIBERSORTx-inferred gene expression profiles and gene expression 902 

profiles from analogous cell types from a FACS-purified ground truth dataset (Klemm et al.). In 903 

the CD45neg column in the Klemm et al. heatmap, which represents a composite gene 904 
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expression profile from the non-immune cells purified from a collection of glioma tumors, gene 905 

expression patterns from all three malignant cell states can be observed. Right: Heatmap 906 

depicting the correlation coefficients between each CIBERSORTx-inferred cell state-specific gene 907 

expression profile and the gene expression profiles from the FACS-purified ground truth dataset. 908 

(D) Venn diagram depicting the overlap between the genes the differentiated-like and stem-like 909 

cell states differentially express in initial versus recurrent IDH-wild-type tumors. (E) Venn diagram 910 

depicting the overlap between the genes the differentiated-like and stem-like cell states 911 

differentially express in initial versus recurrent IDH-mutant tumors. (F) Boxplot depicting the 912 

average signature expression in the analogous cell state-specific gene expression profiles for 913 

each IDH-mutant tumor pair in GLASS. Comparisons are stratified based on whether the tumor 914 

pair was grade stable or exhibited a grade increase at recurrence. *** indicates Wilcoxon signed 915 

rank test P-value < 1e-3, * indicates P < 0.05, and ^ indicates P < 0.10. (G) Boxplot depicting the 916 

average signature expression in single cells of the indicated malignant cell states from grade II 917 

and grade III. **** indicates Wilcoxon rank-sum test P-value < 1e-5. 918 

 919 

Figure S5. Characterization of the mesenchymal myeloid signature and identification of 920 

candidate ligand-receptor interactions in mesenchymal glioma. Related to Figure 5. (A) 921 

Boxplots depicting the average macrophage and microglia gene expression signatures in 922 

CIBERSORTx-inferred myeloid-specific gene expression profiles from TCGA. Samples are 923 

stratified by IDH and 1p/19q co-deletion status (left) and bulk transcriptional subtype (right). **** 924 

indicates Wilcoxon rank-sum test P-value < 1e-5. (B) Bar plots depicting the Spearman correlation 925 

coefficients measuring the association between the myeloid-specific expression scores for the 926 

macrophage and microglia signatures versus the presence of the four Ivy GAP histological 927 

features in TCGA. The features measured were leading edge (LE), cellular tumor (CT), 928 

microvascular proliferation (MVP), and pseudopalisading cells around necrosis (PAN). (C) 929 

Heatmaps depicting the average normalized log10 expression level of genes that were 930 
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differentially expressed between myeloid cell states from initial and recurrent IDH-wild-type and 931 

IDH-mutant tumors in GLASS that did not undergo a subtype switch. Fractions on the right of 932 

each plot indicate the number of differentially expressed genes (numerator) out of the number of 933 

genes inferred for that cell state’s profile in GLASS using CIBERSORTx (denominator). (D) 934 

Scatterplot depicting the association between the mean blood-derived macrophage signature 935 

expression in single myeloid cells and the mesenchymal subtype score calculated from bulk 936 

RNAseq for each patient. (E) Bar plot depicting the -log10(adjusted P-value) from a GO enrichment 937 

analysis for the genes in the mesenchymal myeloid signature. (F) Analysis of ligand-receptor 938 

interactions between differentiated-like malignant cells and myeloid cells. Left plots depict the 939 

Pearson correlation coefficients from analyses comparing the change in expression of a ligand or 940 

receptor from the indicated cell state versus the change in bulk mesenchymal score over time in 941 

IDH-wild-type GLASS samples. All ligand-receptor pairs that exhibited an R > 0 and an FDR < 942 

0.1 are highlighted in red and were included in the right plot. Right plots depict single-cell analyses 943 

measuring how the average expression of a ligand or receptor in single cells of the indicated cell 944 

state associates with the tumor’s bulk mesenchymal score in IDH-wild-type tumors. Red points 945 

indicate the ligand-receptor pair with the highest average correlation. (G) Scatterplot depicting the 946 

association between the mean expression of MARCO2 in single myeloid cells and the 947 

mesenchymal subtype score calculated from bulk RNAseq for each patient. 948 

 949 

Figure S6. Analysis of neoantigen-mediated T cell selection in glioma. Related to Figure 6. 950 

(A) Scatterplots depicting the association between the T cell proportion and the neoantigen 951 

depletion rate in initial and recurrent GLASS samples. (B) Box and ladder plots depicting the 952 

difference in the number of neoantigens binding to the kept and lost allele. Points are colored 953 

based on whether the sample was an initial or recurrent tumor. P-values were calculated using 954 

the Wilcoxon signed-rank test. (C) Violin plots depicting the distribution of the somatic copy 955 
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number alteration burden in initial and recurrent IDH-wild-type GLASS samples that did and did 956 

not exhibit HLA LOH. P-values were calculated using the Wilcoxon rank-sum test. 957 

 958 

Methods 959 

GLASS Datasets 960 

Datasets added to GLASS came from both published and unpublished sources (Table S1). 961 

Collectively, the newly added data consisted of exomes from 83 glioma samples (40 patients) and 962 

RNA-sequencing data from 351 samples (184 patients). 963 

 964 

Newly generated whole exome data and RNAseq data was collected for a cohort of frozen 965 

samples from Henry Ford Health System. From each sample, DNA and RNA was simultaneously 966 

extracted using the AllPrep DNA/RNA Mini Kit from Qiagen (#80204). Exon capture was then 967 

performed using the Agilent’s SureSelect XT Low-Input Reagent Kit and the V6 + COSMIC 968 

capture library and the resulting reads were subjected to 150 base pair paired-end sequencing at 969 

the University of Southern California using an Illumina NovaSeq 6000. RNA from these tissues 970 

was processed and sequenced at Psomagen. New RNAseq data was also generated for cohorts 971 

coming from Case Western Reserve University, the Chinese University of Hong Kong, and MD 972 

Anderson Cancer Center. For Case Western Reserve University, RNA from frozen tissues was 973 

processed at Tempus (Chicago, IL) using the Tempus xO assay and then sequencing using an 974 

Illumina HiSeq 4000 platform. For the Chinese University of Hong Kong cohort, RNAseq libraries 975 

were prepared with the KAPA Stranded mRNAseq kit (Roche) per manufacturer’s instructions 976 

and then sequenced at The Jackson Laboratory for Genomic Medicine using an Illumina 977 

HiSeq4000 platform generating paired end reads of 75 base pairs. For the MD Anderson cohort, 978 

purified double-stranded cDNA generated from 150 ng of formalin-fixed paraffin-embedded 979 

(FFPE) sample-derived RNA was prepared using the NuGEN Ovation RNAseq System and 980 

subjected to paired-end sequencing using a HiSeq 2000 or HiSeq 2500 Sequencing System.  981 
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 982 

The remaining datasets were generated as described in their respective publications. For most of 983 

these cohorts, whole exome and/or whole genome sequencing data were downloaded and 984 

processed as described during creation of the initial GLASS dataset (Barthel et al., 2019). 985 

RNAseq fastq files from the Samsung Medical Center (SM) cohort were delivered via hard disk 986 

and are available to download from the European Genome-Phenome Archive (EGA) under 987 

accession numbers EGAS00001001041 and EGAS00001001880 (Kim et al., 2015b; Wang et al., 988 

2016). RNAseq bam files for the original Henry Ford Health System (HF) and the University of 989 

California San Francisco (SF) cohorts were downloaded from EGA under accession numbers 990 

EGAS00001001033 and EGAS00001001255, respectively, and converted to fastq files for 991 

subsequent processing using bedtools (Kim et al., 2015a; Mazor et al., 2015). RNAseq fastq files 992 

for the University of Leeds (LU) cohort were downloaded from EGA under accession number 993 

EGAS00001003790 (Droop et al., 2018). For the first Columbia cohort (CU-R), which consisted 994 

of samples originally collected from the Istituto Neurologico C. Besta, RNAfastq files were 995 

delivered via hard disk and are available to download at the Sequencing Read Archive (SRA) 996 

under BioProject number PRJNA320312 (Wang et al., 2016). For the second Columbia cohort 997 

(CU-P), which featured samples that had been treated with immune checkpoint inhibitors, raw 998 

fastq reads for whole exome and RNAseq were obtained from SRA under BioProject number 999 

PRJNA482620 (Zhao et al., 2019). RNAseq fastq files from the Low Grade Glioma (LGG) and 1000 

Glioblastoma Multiforme (GBM) projects in TCGA were obtained from the Genomic Data 1001 

Commons legacy archive (https://portal.gdc.cancer.gov/legacy-archive/) (Brennan et al., 2013; 1002 

Cancer Genome Atlas Research et al., 2015). 1003 

 1004 

Public Datasets 1005 

Processed RNAseq data from the TCGA glioma (GBMLGG) cohort was obtained from GDAC 1006 

FireHose (RNAseqV2, RSEM). Normalized gene-level fragments per kilobase million (FPKM) for 1007 
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the Ivy Glioblastoma Atlas Project (Ivy GAP) dataset were obtained from the Ivy GAP website 1008 

(https://glioblastoma.alleninstitute.org/static/download.html) (Puchalski et al., 2018). Processed 1009 

single-cell data and associated metadata for a set of 28 IDH-wild-type glioblastomas processed 1010 

using SmartSeq2 was obtained from the Broad Single Cell Portal (Study: Single cell RNA-seq of 1011 

adult and pediatric glioblastoma; 1012 

https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-1013 

pediatric-glioblastoma) (Neftel et al., 2019). Raw count data and clinical annotation data from a 1014 

set of glioma-derived cell populations purified using fluorescence activated cell sorting (FACS) 1015 

was obtained from the Brain Tumor Immune Micro Environment (BrainTIME) portal and converted 1016 

to counts per million (CPM) for downstream analysis (https://joycelab.shinyapps.io/braintime/) 1017 

(Klemm et al., 2020). 1018 

 1019 

Whole exome and whole genome analysis 1020 

Whole exome and genome alignment, fingerprinting, variant detection, variant post-processing, 1021 

mutation burden calculation, copy number segmentation, copy number calling, copy number-1022 

based purity, ploidy, HLA typing, and neoantigen calling were all performed using previously 1023 

described pipelines that were developed during the initial GLASS data release (Barthel et al., 1024 

2019). Briefly, whole exome and whole genome reads were aligned to the b37 genome 1025 

(human_g1k_v37_decoy) using BWA MEM 0.7.17 and pre-processed according to GATK Best 1026 

Practices with GATK 4.0.10.1. Fingerprinting on the resulting files was performed using 1027 

‘CrosscheckFingerprints’ to confirm all readgroups from a given sample and all samples from a 1028 

given patient match, with all mismatches being labelled and dropped from downstream analysis. 1029 

Somatic mutations were called using GATK4.1 MuTect2. Hypermutation was defined for all 1030 

recurrent tumors that had more than 10 mutations per megabase sequenced, as described 1031 

previously (Barthel et al., 2019). Copy number segmentation and calling was performed according 1032 

to GATK Best Practices as previously described. Copy number-based tumor purity and ploidy 1033 
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were determined using TITAN (Ha et al., 2014). Four-digit HLA class I types were determined 1034 

from the normal bams for each sample using OptiType v1.3.2 (Szolek et al., 2014). Neoantigens 1035 

were called from each patient’s somatic mutations and HLA types using pVACseq v4.0.10 1036 

(Hundal et al., 2016). Neoantigen depletion was calculated as described previously (Barthel et 1037 

al., 2019). Loss of heterozygosity (LOH) for each sample’s HLA type was called from their 1038 

respective matched tumor and normal bam files using LOHHLA run with default parameters and 1039 

a coverage filter of 10 (https://bitbucket.org/mcgranahanlab/lohhla/) (McGranahan et al., 2017). 1040 

HLA LOH was called if the estimated copy number for an allele using binning and B-allele 1041 

frequency was < 0.5 and the P-value for allelic imbalance was < 0.05 (paired t-test). 1042 

 1043 

RNA preprocessing 1044 

To ensure each RNAseq file matched to the DNA and RNAseq files from their respective sample 1045 

and patient, RNAseq fastq files were aligned to the b37 genome using STARv2.7.5 and the 1046 

resulting bams were then preprocessed using the same pipelines described for DNA sequencing 1047 

(Barthel et al., 2019). Fingerprinting was then performed on each bam at the readgroup and 1048 

patient levels using ‘CrosscheckFingerprints.’ For each patient-level comparison, each RNA bam 1049 

was compared to all other RNA and DNA bams coming from the same patient. All mismatches 1050 

were labelled and dropped from downstream analysis.  1051 

 1052 

RNAseq fastq files were pre-processed with fastp v0.20.0. Transcripts per million (TPM) values 1053 

were then calculated from each sample’s set pre-processed files using kallisto v0.46.0 inputted 1054 

with an index file built from the Ensemblv75 reference transcriptome. Strand-specific library 1055 

preparation information was obtained for each sample from the source provider or using 1056 

STARv2.7.5 quantMode set with the ‘GeneCounts’ parameter. The resulting TPM values for each 1057 

sample were combined into a transcript expression matrix for downstream analysis. To create a 1058 
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gene expression matrix, transcript TPM values were collapsed and summed by their respective 1059 

gene symbols.  1060 

 1061 

Quality control 1062 

For DNA samples to be included in longitudinal downstream analyses, two samples from a given 1063 

patient had to pass a previously described quality control process based on fingerprinting, 1064 

coverage, copy number variation, and clinical annotation criteria (Barthel et al., 2019). The 1065 

resulting set of 243 whole exome or whole genome tumor pairs, known as the “gold set”, was 1066 

used in all downstream DNA-only analyses. For RNA samples to be included in longitudinal 1067 

downstream analyses, two samples from a given patient had to pass a patient-level fingerprinting 1068 

filter that ensured that the RNA samples matched each other and the patient’s respective DNA 1069 

samples if available, as well as a clinical annotation filter. The resulting set of 150 RNAseq pairs, 1070 

known as the “RNA silver set”, was used in all downstream RNA-only analyses. Across the gold 1071 

set and the RNA silver set, there were 101 tumor pairs that had DNA and RNA from the same 1072 

sample at both timepoints. This overlapping set of pairs, known as the “platinum set”, was used 1073 

in all downstream analyses that integrated DNA and RNA data.  1074 

 1075 

Bulk transcriptional subtype classification 1076 

Bulk transcriptional subtyping was performed on each GLASS or TCGA sample’s processed 1077 

RNAseq profile using the “ssgsea.GBM.classification” R package (Wang et al., 2017). This 1078 

method outputs an enrichment score quantifying the representation each of the three bulk glioma 1079 

subtypes in a sample as well as a P-value indicating the significance of this representation. For 1080 

each sample, the subtype with the lowest P-value was designated as that sample’s bulk 1081 

transcriptional subtype. In cases where there were ties between subtypes, the subtype with the 1082 

highest enrichment score was chosen. 1083 

 1084 
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Joint single-cell and bulk RNAseq dataset 1085 

Single-cell and bulk RNA sequencing data were generated and processed as previously 1086 

described (Johnson et al., 2020). Briefly, tumor surgical specimens were freshly collected, 1087 

minced, and partitioned into single-cell and bulk fractions from the same tumor aliquot. The 1088 

tissues aliquoted for single cell analyses were then mechanically and enzymatically dissociated 1089 

using the Brain Tumor Dissociation Kit (P) according to the manufacturer’s protocol (Miltenyi Cat. 1090 

No. 130-095-942). FACS was performed to select for viable single cells (Propidium Iodide-, 1091 

Calcein+ singlets) and enrich for tumor cells by limiting the proportion of non-tumor cells (e.g., 1092 

immune (CD45+) and endothelial (CD31+) cells). Sorted cells were then loaded on a 10X 1093 

Chromium chip using the single-cell 3’ mRNA kit according to the manufacturer’s protocol (10X 1094 

Genomics). A limitation of single-cell dissociation techniques is the exclusion of specific cell types, 1095 

including neurons, that are found in glioma and surrounding tissue. Prior publications have 1096 

estimated the neuronal content of central nervous system tumors to be less than 5% and therefore 1097 

likely represent a minor non-malignant cell population in our dataset (Grabovska et al., 2020). The 1098 

Cell Ranger pipeline (v3.0.2) was used to convert Illumina base call files to fastq files and align 1099 

fastqs to hg19 10X reference genome (version 1.2.0) to be compatible with our bulk sequencing 1100 

data. Data preprocessing and analysis was performed using the Scanpy package (1.3.7) (Wolf et 1101 

al., 2018) with batch correction performed using BBKNN (Polanski et al., 2020). RNA was 1102 

extracted for tissues with sufficient tissue and bulk RNAseq libraries were prepared with KAPA 1103 

mRNA HyperPrep kit (Roche). Bulk RNA sequencing data was processed with the same pipeline 1104 

as the GLASS samples. 1105 

 1106 

Deconvolution analyses 1107 

Cellular proportions and cell state-specific gene expression matrices were inferred from bulk 1108 

RNAseq gene expression matrices using CIBERSORTx (Newman et al., 2019). Reference 1109 

scRNAseq signature matrices were created from our internal 10x-derived scRNAseq dataset 1110 
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(Johnson et al., 2020) and a publicly available SmartSeq2-derived scRNAseq dataset (Neftel et 1111 

al., 2019) using the ‘Create Signature Matrix’ module on the CIBERSORTx webserver 1112 

(https://cibersortx.stanford.edu/) using default parameters and quantile normalization disabled. 1113 

The Ivy GAP signature matrix was downloaded from a prior publication (Puchalski et al., 2018). 1114 

The CIBERSORTx webserver currently recommends users input no more than 5,000 different 1115 

single-cell profiles when creating their signature matrix (Steen et al., 2020). To meet this 1116 

recommendation, our internal scRNAseq dataset, which is made up of 55,284 single cells, was 1117 

randomly downsampled to 5,000 cells using the ‘sample’ command in R with the seed set to 11. 1118 

The cells not included in signature matrix formation were then set aside for validation analyses. 1119 

 1120 

Single-cell-derived cellular proportions and cell state-specific gene expression profiles were 1121 

inferred from bulk RNAseq datasets using the CIBERSORTx High-Resolution docker container 1122 

(https://hub.docker.com/r/cibersortx/hires) following CIBERSORTx instructions. For all runs, the 1123 

bulk RNAseq dataset was input as the ‘mixture’ file and the respective signature matrix was input 1124 

as the ‘sigmatrix’ file. For runs using our 10x-derived internal scRNAseq signatures, batch 1125 

correction was done in ‘S-mode’ by setting the ‘rmbatchSmode’ parameter to TRUE, while for 1126 

runs using SmartSeq2-derived scRNAseq signatures batch correction was done in ‘B-mode’ by 1127 

setting the ‘rmbatchBmode’ parameter to TRUE. For each run, the inputted signature matrix’s 1128 

respective CIBERSORTx-created “source gene expression profile” was input for batch correction. 1129 

For all runs, the ‘subsetgenes’ parameter was set to a file containing the intersection of the gene 1130 

symbols between the run’s respective source gene expression profile and the bulk RNAseq matrix 1131 

that was being deconvoluted. For the run applying our internal scRNAseq dataset to the bulk 1132 

GLASS RNAseq matrix, the ‘groundtruth’ parameter was set to a ground truth FACS-purified 1133 

dataset that was generated as described below. Cellular proportions representing pre-created 1134 

IvyGAP signatures were inferred using the ‘Impute Cell Fractions’ module on the CIBERSORTx 1135 
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webserver set to relative mode with quantile normalization and batch correction disabled and 100 1136 

permutations for significance analysis. 1137 

 1138 

Validation of cell state proportions and gene expression profiles 1139 

Cell state proportions derived from our internal scRNAseq dataset were validated using two 1140 

approaches. In the first approach, synthetic mixtures were made using the single-cell gene 1141 

expression profiles that had been left out of signature creation. Each synthetic mixture 1142 

represented the average expression profile of 5,000 single cells where the number of cells of one 1143 

cell state were manually set and the remaining cells were randomly sampled. Each cell state had 1144 

its level manually set in 11 mixtures, where it represented 0% of the cells in the first mixture and 1145 

then increased in 10% increments until reaching 100% in the final mixture. In cases where there 1146 

were fewer than 5,000 single cells of a given cell state, making 100% representation not possible, 1147 

the preset proportion instead represented the percent of available cells of that cell state rather 1148 

than the percent of cells in the mixture. Each synthetic mixture had its true proportions recorded 1149 

and the resulting mixtures were input into CIBERSORTx for deconvolution. Comparisons of the 1150 

true and inferred proportions were then performed through correlation analysis. In the second 1151 

approach, the cell state proportions inferred from bulk RNAseq data were compared to the cell 1152 

state proportions quantified by scRNAseq for each sample in our internal scRNAseq dataset. 1153 

Samples in this dataset were enriched for CD45- cells via FACS and therefore precluded true cell 1154 

state abundance when considering both malignant and non-malignant cells. To address this, 1155 

comparisons were restricted to the relative proportions of each malignant cell state. Non-1156 

malignant cell proportions were removed, and malignant cells proportions were then renormalized 1157 

so that the sum of each malignant cell state proportion in each sample added up to 1. 1158 

 1159 

Concordance between CIBERSORTx-inferred cell state-specific gene expression profiles and a 1160 

ground truth set of FACS-purified gene expression profiles was assessed using the ‘groundtruth’ 1161 
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parameter in CIBERSORTx. The ground truth dataset used in this step was generated from a 1162 

previously released glioma dataset (Klemm et al., 2020) by collapsing all glioma-derived CD45- 1163 

profiles into an average CD45- profile and all glioma-derived macrophage/microglia profiles into 1164 

an average myeloid cell profile. This dataset was input into CIBERSORTx using the ‘groundtruth’ 1165 

parameter during the run applying our internal scRNAseq signature matrix to the GLASS bulk 1166 

RNAseq dataset. The resulting quality control files output during this run, primarily 1167 

“SM_GEPs_HeatMap.txt”, were then used to perform correlation analyses assessing the 1168 

similarity between the inferred malignant cell and myeloid profiles and the ground truth profiles.  1169 

 1170 

Analysis of cell state-specific gene expression profiles 1171 

To facilitate downstream analyses on each CIBERSORTx-inferred cell state-specific gene 1172 

expression profile, each of the resulting expression matrices were log10-transformed and all 1173 

genes that could not be imputed or had a variance of 0 across the dataset were removed. For 1174 

each cell state-specific gene expression matrix, Wilcoxon signed-rank tests were used to 1175 

determine the differentially expressed genes between initial and recurrent tumors and the 1176 

resulting P-values were corrected for multiple testing using the Benjamini-Hochberg procedure. 1177 

Signature scores in cell state-specific gene expression profiles and single-cell RNAseq profiles 1178 

were defined as the average expression of the genes in the signature. In cases where the 1179 

expression of some of the genes in the signature could not be determined, the intersection of the 1180 

signature and the available genes was taken when calculating the signature score. For GO 1181 

enrichment analyses on signatures derived from cell state-specific gene expression profiles, the 1182 

background gene set only included the genes CIBERSORTx was able to impute for the cell state 1183 

from which the signature was derived.  1184 

 1185 

Histological feature adjustment 1186 
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For analyses examining how histological features influenced subtype switching, a tumor sample’s 1187 

cell state composition profile was adjusted to remove cell states that could be attributed to a 1188 

specific histological feature. To do this, the tumor sample’s proportion of a given histological 1189 

feature was multiplied by the average proportion of each cell state from all samples of that feature 1190 

in Ivy GAP. These numbers were then subtracted from their respective cell state’s proportion in 1191 

the tumor sample and the resulting profile was then renormalized so that all proportions summed 1192 

to 1. In cases where the new cell state proportion was less than 0, the value was set to 0 before 1193 

renormalization.  1194 

 1195 

Statistical analysis 1196 

All data analyses were conducted in R 3.6.1 and PostgreSQL 10.6. GO enrichment analyses were 1197 

performed using the “classic” algorithm in the R package “topGO” v2.38.1. When comparing 1198 

variables between groups, t-tests were used for cell state proportions while non-parametric tests 1199 

were used for all other variables (i.e., gene expression, signature score, neoantigen number). 1200 

Clinical variables used throughout the study were defined as previously described in the 1201 

Supplementary Information of the original GLASS study (Barthel et al., 2019).  1202 

 1203 

Code and data availability 1204 

All custom scripts, pipelines, and code used in figure creation will be made available at the time 1205 

of publication on the project’s Github page. Processed data for the GLASS consortium is available 1206 

on Synapse (https://www.synapse.org/#!Synapse:syn21589818) and will be publicly available on 1207 

November 9, 2021.  1208 
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Figure 1. Diffuse glioma exhibits transcriptional and cellular heterogeneity across samples, subtypes, 
and time. (A) Overview of the GLASS dataset. Each column represents a tumor pair, and their initial (I) and 
recurrent (R) samples are labelled. All tumor pairs with RNAseq data at each time point are included. Pairs are 
arranged based on the representation of the proneural and mesenchymal subtypes in their initial tumors. The 
first track indicates whether there is whole exome or whole genome sequencing data available for that pair. The 
next three tracks indicate the representation of each bulk subtype across each sample. The stacked bar plots 
indicate the cell state composition of each sample based on the single cell-based deconvolution method, CIBER-
SORTx. The bottom tracks indicate molecular and clinical information for each tumor pair. (B) Sankey plot 
indicating whether the highest-scoring transcriptional subtype changed at recurrence. Each color reflects the 
transcriptional subtype in the initial tumors. Number in parentheses indicates number of samples of that subtype. 
(C) Left: The average cell state composition of each bulk transcriptional subtype for all initial GLASS tumors. 
Right: The average cell state composition of initial and recurrent tumors stratified by IDH mutation status. Colors 
in (C) are identical to those used in (A). 

Figure 1. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/


Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Classical

Mesenchymal

Proneural

B cell
Granulocyte
T cell

Dendritic cell
Myeloid
Oligodendrocyte

Endothelial
Pericyte
Fibroblast

Diff.-like
Stem-like
Prolif. stem-like

Leading edge
Cellular tumor
Pseudopalisading 
cells around necrosis

Microvascular 
proliferation

A

0

25

50

75

100

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Pr
op

or
tio

n 
(%

)

IDHwt IDHmut

Ini
tia

l

Rec
urr

en
t

Ini
tia

l

Rec
urr

en
t

B

1.3 (dec.)

Insignif.

1.3 (inc.)

Feature fraction
(Recurrent relative

to initial)

-log10(P-value)
Pseudopalis. 
cells around 

necrosis
Microvascular
proliferation

Cellular
tumor

Initial

R
ec

ur
re

nt

C

IDHwt

IDHmut

Microvascular proliferation

Pseudopalis. cells around necrosis

Cellular tumor

Leading edge

−1.0

0.0

1.0
R

D

Cell stateAnatomic feature

Microvascular proliferation

Pseudopalis. cells around necrosis

Cellular tumor

Leading edge ●
●

●

●

●

●

●

●

●

●●●●

●

●●●

●

0

25

50

75

100

Init. Rec.

Ad
ju

st
ed

 p
ro

po
rti

on
 (%

)

0

25

50

75

100

Init. Rec.

Stem-like
P = 1e-3

E

●

●

Mesenchymal
Proneural

Pseudopalisading cells 
around necrosis (n = 24)

IDHwt IDHmut

Leading edge

Microvascular proliferation
(n = 25)

Cellular tumor 
(n = 30)

Infiltrating tumor 
(n = 24)

Leading edge 
(n = 19)

Prol
if. 

ste
m−li

ke

Stem
−li

ke

Diff.
−li

ke

Fibr
ob

las
t

Peri
cyt

e

End
oth

elia
l
Oligo

.

Mye
loid

Den
dri

tic 
ce

ll
T ce

ll

Gran
ulo

cyt
e
B ce

ll

0

25

50

75

100

Pr
op

or
tio

n 
(%

)

IDH status
Patient

Figure 2. Histological features underlie changes in the cellular composition of diffuse glioma over 
time. (A) The cell state composition of each of the reference histology-defined Ivy GAP histological 
features from 10 patients. Patient and IDH mutation status tracks are included beneath the stacked bar 
plots. For the patient track, each colored block represents a unique patient. (B) Left: The average histologi-
cal feature composition of each bulk transcriptional subtype for all initial GLASS tumors. Right: The aver-
age histological feature composition of initial and recurrent tumors stratified by IDH mutation status. (C) 
Heatmap depicting the significance of the changes in each histological feature between initial and recurrent 
tumors undergoing the indicated subtype transition. The initial subtype is indicated in the columns and the 
recurrent subtype is indicated in the rows. Colors represent the -log10(P-value) from a paired t-test, with 
increases at recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (D) 
Heatmap depicting the Pearson correlation coefficients measuring the association between the change in a 
given histological feature and the change in a given cell state when going from an initial tumor to recur-
rence. (E) Left: Ladder plot depicting the change in the adjusted stem-like cell proportion between paired 
initial and recurrent tumors undergoing a proneural-to-mesenchymal transition. Right: The average adjust-
ed proportions for malignant cells for the tumor pairs outlined on the left. Malignant cell proportions were 
adjusted for the presence of non-malignant cells as well as non-cellular tumor content.
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Figure 3. Hypermutation and acquired cell cycle alterations associate with increased proliferating 
stem-like malignant cells in IDH-wild-type and IDH-mutant glioma. (A) Heatmap depicting the concordance 
coefficients measuring the association between the indicated cell state fractions between initial and recurrent 
tumors. (B) Top: Density plots depicting the cell state proportion change distribution for each of the indicated cell 
states. Samples are stratified based on IDH mutation status. The tumor-only distributions indicate the change in 
malignant cell fractions after adjusting for non-malignant cells. P-values were derived using the Kolmogor-
ov-Smirnov test that compared each distribution to a normal distribution with a mean of 0. (C) Scatterplots depict-
ing the association between the adjusted malignant cell proportions in initial and recurrent tumors. Concordance 
coefficients are indicated. Diagonal lines correspond to the line y = x. (D) Top: Ladder plots depicting the change 
in the proliferating stem-like cell proportion between paired initial and recurrent tumors that did and did not under-
go hypermutation. Point colors indicate IDH mutation and 1p/19q co-deletion status. * indicates paired t-test 
P-value < 0.05. Bottom: The average proportions of each cell state for the tumor pairs outlined above. (E) Top: 
The change in proliferating stem-like cell fraction between initial and recurrent tumors from IDH-mutant pairs. 
Each bar represents a tumor pair. Bottom: Molecular and clinical information for each tumor pair. P-values were 
calculated using a paired t-test measuring the association between initial and recurrent tumors that acquired the 
indicated phenotypes. 
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Figure 4. Malignant cells exhibit increased neuronal signaling and cell cycle activation programs in 
recurrent IDH-wild-type and IDH-mutant tumors. (A) Heatmaps depicting the average normalized log10 
expression level of genes that were differentially expressed between malignant cell states from initial and 
recurrent IDH-wild-type tumors not undergoing a subtype switch. Fractions on each plot’s right indicate the 
number of differentially expressed genes (numerator) out of the number of genes inferred for that cell state’s 
profile using CIBERSORTx (denominator). (B) Bar plot depicting the -log10(adjusted P-value) from a GO 
enrichment analysis for the differentially expressed genes in differentiated-like and stem-like malignant cells 
depicted in (A). Only GO terms that were enriched at an adjusted P-value of < 0.05 in both the differentiat-
ed-like and stem-like signatures were included. (C) Boxplot depicting the average signature expression in 
single cells of the indicated malignant cell states from unmatched initial and recurrent IDH-wild-type tumors. 
**** indicates Wilcoxon rank-sum test P-value < 1e-5. (D) Scatterplot depicting the association between the 
leading-edge fraction and the average signature expression in the inferred malignant cell state-specific 
expression profiles of samples in the GLASS dataset. Pearson correlation coefficients are indicated. (E) 
Heatmaps depicting the average normalized log10 expression level of genes that were differentially 
expressed between malignant cell states from initial and recurrent IDH-mutant tumors not undergoing a 
subtype switch. Fractions are as outlined in (A). (F) Bar plots depicting the -log10(adjusted P-value) from a 
GO enrichment analysis for the differentially expressed genes in differentiated-like and stem-like malignant 
cells depicted in (E). Top 8 GO terms that were significant in the up- or down-regulated signatures from 
differentiated-like and stem-like cells are shown. In (B) and (F), dotted line corresponds to adjusted P-value < 
0.05.
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Figure 5. Myeloid cells in diffuse glioma exhibit diverse phenotypes based on IDH mutation status, 
transcriptional subtype, and recurrence status. (A) Left: Uniform Manifold Approximation and Projection 
(UMAP) dimensionality reduction plot of the CIBERSORTx-inferred myeloid profiles from TCGA. Colors 
indicate bulk transcriptional subtype; shapes indicate IDH and 1p/19q co-deletion status. When all three bulk 
transcriptional subtypes were significantly represented in a sample, the ‘mixed’ classification was used. Right: 
UMAP plot colored based on the relative mean expression of macrophage and microglia signatures (B) Box 
and ladder plots depicting the difference in the mean expression of the indicated signatures between initial 
and recurrent IDH-mutant tumors from GLASS that do and do not recur at higher grades. Point colors 
indicate 1p/19q co-deletion status. *** indicates Wilcoxon signed-rank test P-value < 1e-3. (C) Heatmap 
depicting the normalized expression z-score of genes that were differentially expressed between myeloid 
cells from mesenchymal and non-mesenchymal TCGA tumors. Rows indicate genes and columns indicate 
samples. Top sidebar indicates the bulk mesenchymal score of each sample divided by 1,000. Right sidebar 
indicates the -log10 adjusted Wilcoxon rank-sum test P-value of the association for each gene. Bottom 
sidebar indicates the transcriptional subtype of each sample per panel (A). (D) Scatterplot depicting the 
association between the mean mesenchymal myeloid signature expression in single myeloid cells and the 
mesenchymal subtype score calculated from bulk RNAseq for each patient. (E) Boxplot depicting the mean 
mesenchymal myeloid signature expression for CIBERSORTx-inferred myeloid profiles from different histo-
logical features in the Ivy GAP dataset. Features in this dataset include the leading edge (LE), infiltrating 
tumor (IT), cellular tumor (CT), pseudopalisading cells around necrosis (PAN), and microvascular proliferation 
(MVP). (F) Box and ladder plots depicting the difference in the mean expression of the mesenchymal myeloid 
signature between initial and recurrent IDH-wild-type tumors undergoing a mesenchymal transition in GLASS. 
**** indicates Wilcoxon signed-rank test P < 1e-5.
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Figure 6. Loss of heterozygosity in HLA genes is associated with increased 
somatic copy number alterations in IDH-mutant non-1p/19q co-deleted glioma. (A) 
Left: Sankey plot indicating whether a tumor pair acquires or loses HLA LOH at recur-
rence. Colored lines reflect the IDH and 1p/19q co-deletion status of the tumor pair and 
indicate HLA LOH in the initial tumor. Dark gray lines indicate acquired HLA LOH. Right: 
Stacked bar plot indicating the proportion of samples of each glioma subtype that 
acquired HLA LOH at recurrence. * indicates Fisher’s exact test P-value < 0.05. (B) 
Violin plot depicting the difference in T cell proportion in samples with and without HLA 
LOH. P-values were calculated using the t-test. (C) Left: Ladder plots depicting the 
change in SCNA burden between paired initial and recurrent IDH-mutant-noncodel 
tumors that did and did not acquire HLA LOH. P-values were calculated using the 
Wilcoxon signed-rank test. Right: Boxplot depicting the difference in the change in 
SCNA burden between IDH-mutant-noncodel tumor pairs that did and did not acquire 
HLA LOH. P-value was calculated using the Wilcoxon rank-sum test.

Figure 6. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/


●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● R  =  1.00

●
●
●●

●
●●●●●●

●●●
●

●●●●●●●
●●
●
●

●●
●

●
●

●●
●

●●

●
●

●●
●●●●●●
●●
●

●●●●●●

●
●●●
●
●
●

●●●●
●●●
●
●●●●●●●●●●
●
●●●
●

●●
●
●

●●
●●●●
●
●●●●
●

●●
●●●
●

●●
●

●●

●
●

●
●
●

●●
●
●

●●
●●●●

●●
●

●● R  =  0.97

●●●●●●●●●●●

●●
●●●●●●●●●
●
●

●
●
●●●●

●
●●
●●●●●●●●●●●●
●
●
●●●

●
●●●●
●
●
●●●●●●
●●●●●●
●●●●●
●●●
●
●●
●●●●
●●●●●

●
● ●

●

●●

●
●●

●

●
●●
●
●●
●
●
●
●
●

●
●●●●
●●

●
●●●●●●
●●●●
●●●●

R  =  0.96

●●
●

●
●

●
●

●
●

●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●R  =  0.99

●●●●●
●●●●●●
●●●●
●
●●●●●●

●
●●

●●●●●●●●
●
●
●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●
●●●●●
●●●
●
●●●●●●●●
●

●
●

●●

● ●
●

●
●

●●●●●●●●
●●●●●●
●

●●●●
●●●●●●●●

●●
●
●●●●●

●
●●

●
●●●
●● R  =  0.98

●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●●

●●●●
●●
●

●
●●●●●
●●●●●●●●
●●
●●
●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●● R  =  0.99

●●●●●●●●●●●●●
●

●
●

●
●

●
●

●●

●●
●●

●●●●
●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

R  =  0.99

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● R  =  1.00

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● R  =  0.99

●
●●●●●●

●●●●

●●●
●

●
●
●●

●●●
●●●
●
●●●
●

●●●
●
●
●

●●●●●●●●
●
●

●●
●

●

●●●
●●●●●●●●
●●●●●

●
●●●●●●●●
●
●●

●●●●●●
●

●●
●

●●●
●
●●●●●●●● ●

●
●

●
●

● ●
●

●
●

●
●●●●●
●●
●●
●●●

●
●

●
●
●

●
●●● R  =  0.95

●●●●●●●●●●●

●●●●●●●●●●●●●
●

●
●

●
●

●
●

●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

R  =  1.00

●

●

●
●

●
●●

●●
●●

●
●

●

●
●

●
●●●●
●

●

● ●

●

●
●
●

●
●●● ●

●

● ●

●
●●●

●●
●

●
●●

●

●

●

●
●
●

●

●

●
●●●●●

●

●

●●
●

● ●●

●

●

●

●

●

●

●
●
●

●
●●
●

●●

●

●●
●●

●
●●●

●

●

●

●
●
●

●●●

●●
●●

●

●
●

●

●

●●

●

●●
●●
●●
●

●
●

●
●

● ●
● ●

●

●
●

R  =  0.32

Dendritic cell T cell Granulocyte B cell

Pericyte Endothelial Oligodendrocyte Myeloid

Stem−like Diff.−like Fibroblast

0 2 4 6 0 2 4 6 0 5 10 0.00 0.50

0.0 0.5 1.0 1.5 0.0 1.0 2.0 0 20 40 60 0 25 50 75100

0 20 40 60 0 25 50 75100 0 25 50 75100 0.0 0.5 1.0
0.0
0.5
1.0
1.5
2.0

0.0
30.0
60.0
90.0

0.0
0.2
0.4
0.6

0.0
30.0
60.0
90.0

0.0
20.0
40.0
60.0
80.0

0.0
5.0

10.0
15.0

0.0
30.0
60.0
90.0

0.0
1.0
2.0
3.0
4.0

0.0
2.0
4.0
6.0

0.0
20.0
40.0
60.0
80.0

0.0
0.5
1.0
1.5

0.0
2.0
4.0
6.0

True proportion (%)

C
IB

ER
SO

RT
x 

(%
)

Prolif. stem−like

●

●●
●
●

●

●

● ●●

●
●

●

●

●

●

●●

●
●

●

●
●

●

Stem−like Diff.−like

0 10 20 0 25 50 75 0 25 50 75 100
0

25
50
75

100

0
25
50
75

0
5

10
15

scRNAseq (%)

C
IB

ER
SO

RT
x 

(%
) Prolif. stem−like

0

25

50

75

100

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Pr
op

or
tio

n 
(%

)

A

B

R = 0.96 R = 0.90 R = 0.85

IDHwtD
T cell
Macrophage
Oligodendrocyte
MES-like
AC-like
OPC-like
NPC-like

Neftel et al. state:

C

0

25

50

75

100

Ini
tia

l

Rec
urr

en
t

Pr
op

or
tio

n 
gr

os
s 

to
ta

l r
es

ec
tio

n 
(%

)

Ini
tia

l

Rec
urr

en
t

Ini
tia

l

Rec
urr

en
t

0

25

50

75

100

Pr
op

or
tio

n 
(%

)

Subtotal-
gross total

Gross total-
gross total

B cell
Granulocyte
T cell
Dendritic cell
Myeloid
Oligodendrocyte

Endothelial
Pericyte
Fibroblast
Differentiated-like
Stem-like
Prolif. stem-like

56%
48%

Ini
tia

l

Rec
urr

en
t

0

25

50

75

100

Pr
op

or
tio

n 
(%

)

Ini
tia

l

Rec
urr

en
t

IDHmut-
noncodel

Ini
tia

l

Rec
urr

en
t

IDHmut-
codelE

Figure S1. Validation of deconvolution results and IDH-wild-type-specific cell state profiles. Related to 
Figure 1. (A) Scatterplots depicting the association between the true proportion and the CIBERSORTx-in-
ferred proportion for each cell state in gene expression profiles from synthetic mixtures composed of different 
combinations of single cells. (B) Scatterplots depicting the association between the proportion of each malig-
nant cell state determined from single-cell RNAseq and the non-malignant cell-adjusted malignant cell state 
proportion inferred from CIBERSORTx applied to each sample’s respective bulk tumor RNAseq profile. In all 
plots, Pearson correlation coefficients are indicated. (C) Left: Stacked bar plot indicating the proportion of 
samples of IDH-wild-type tumors that underwent a gross total resection at each timepoint. Right: The average 
proportions of each cell state for tumors that underwent a subtotal resection at initial and a gross total resec-
tion at recurrence (Subtotal-gross total) and tumors that underwent a gross total resection at both time points 
(Gross total-gross total). (D) Left: The average Neftel et al. cell state composition of each bulk transcriptional 
subtype for all initial IDH-wild-type GLASS tumors. Right: The average Neftel et. al cell state composition of 
initial and recurrent IDH-wild-type tumors. (E) The average cell state composition of initial and recurrent 
IDH-mutant tumors stratified by 1p/19q co-deletion status. Colors in (E) are identical to those used in (C). 

Figure S1. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/


C

BA

R
ec

ur
re

nt
Initial

●

●

Mesenchymal
Proneural

Differentiated-like
Stem-like
Prolif. stem-like

●
●

●

●

●
●

●

●●

●

●

●●●

●
●

●

●

●●●

●

0

25

50

75

100

Init. Rec.

Ad
ju

st
ed

 p
ro

po
rti

on
 (%

)

0.00

0.25

0.50

0.75

1.00

Init.Rec. 1.3
Inc.Dec.

1.3
Cell proportion

(Recurrent relative 
to initial)

-log10(P-value)

Adjusting for non-cellular tumor and non-malignant

Adjusting for leading edge and non-malignant

No adjustment

Diff.−like Stem−like

Stem-like
P = 3e-4 

Classical

Mesenchymal

Proneural

Prolif. stem−like

Classical

Mesenchymal

Proneural

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Clas
sic

al

Mes
en

ch
ym

al

Pron
eu

ral

Classical

Mesenchymal

Proneural

0

10

20

30

40

50

Prol
if. 

ste
m−li

ke

Stem
−li

ke

Diff.
−li

ke

Fibr
ob

las
t

Peri
cyt

e

End
oth

elia
l

Oligo
de

nd
roc

yte

Mye
loid

Den
dri

tic 
ce

ll
T ce

ll

Gran
ulo

cyt
e

B ce
ll

−l
og

10
(p

−v
al

ue
)

Patient
Feature

Figure S2. Relationship between bulk subtype switching and cell state changes after adjusting for 
histological feature composition. Related to Figure 2. (A) Bar plot depicting the -log10 P-value from a 
two-way ANOVA test measuring whether the fractions of each cell state in a sample associate with the patient 
the sample was derived from (red bar) and the feature the sample represents (blue bar). Dotted line corre-
sponds to P = 0.05 (B) Heatmaps depicting the significance of the changes in each malignant cell state 
between initial and recurrent tumors undergoing the indicated subtype transition. The initial subtype is indicat-
ed in the columns and the recurrent subtype is indicated in the rows. Each row of heatmaps reflects a different 
histological feature adjustment. Colors represent the -log10(P-value) from a paired t-test, with increases at 
recurrence colored in red, decreases colored in blue, and P-values > 0.05 colored white. (C) Left: Ladder plot 
depicting the change in the adjusted stem-like cell proportion between paired initial and recurrent tumors 
undergoing a proneural-to-mesenchymal transition. Right: The average adjusted proportions for malignant 
cells for the tumor pairs outlined on the left. Malignant cell proportions were adjusted for the presence of 
non-malignant cells as well as all non-cellular tumor features.
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Figure S3. Cell state composition changes associated with the acquisition and loss of somatic alter-
ations. Related to Figure 3. (A) Cell state differences in tumors that acquired CDNK2A deletions or CCND2 
amplifications. Panel is split into IDH-mutant and IDH-wild-type tumors. Ladder plots depict the change in the 
proliferating stem-like cell proportion between paired initial and recurrent tumors that acquired these alter-
ations. Stacked bar plots depict the average proportions of each cell state for the tumor pairs in the ladder 
plots. (B) Ladder plots depicting the difference in microvascular proliferation fraction in IDH-mutant and 
IDH-wild-type tumors that underwent hypermutation at recurrence. (C) Left: Ladder plots depicting the change 
in granulocyte and fibroblast fractions in IDH-wild-type tumors that acquired mutations in NF1 at recurrence. 
Right: The average proportions of each cell state for the tumor pairs in the ladder plots. (D) Non-malignant cell 
state differences in IDH-wild-type tumors that lost EGFR or PDGFRA amplifications at recurrence. Panel is 
split by alteration. Ladder plots depict the change in the non-malignant cell state proportion between paired 
initial and recurrent tumors while stacked bar plots depict the average proportions of each cell state for these 
tumors. (E) Sankey plot indicating whether the highest scoring transcriptional subtype changed at recurrence 
for the tumors depicted in (D). Each color reflects the transcriptional subtype in the initial tumors. Numbers in 
parentheses indicate number of samples. (F) Ladder plots depicting the difference in T cell fraction in IDH-mu-
tant and IDH-wild-type tumors that underwent hypermutation at recurrence. In all figures, P-values were 
calculated using a paired t-test unless otherwise noted.
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Figure S4. Validation and differential expression analysis of cell state-specific gene expression 
profiles. Related to Figure 4. (A) Schema for single-cell RNAseq-based deconvolution of cell state-specific 
gene expression profiles. (B) Left: Heatmap depicting the relationship between the CIBERSORTx-inferred 
gene expression profiles and gene expression profiles from analogous cell types from a FACS-purified ground 
truth dataset (Klemm et al.). In the CD45neg column in the Klemm et al. heatmap, which represents a com-
posite gene expression profile from the non-immune cells purified from a collection of glioma tumors, gene 
expression patterns from all three malignant cell states can be observed. Right: Heatmap depicting the 
correlation coefficients between each CIBERSORTx-inferred cell state-specific gene expression profile and 
the gene expression profiles from the FACS-purified ground truth dataset. (D) Venn diagram depicting the 
overlap between the genes the differentiated-like and stem-like cell states differentially express in initial 
versus recurrent IDH-wild-type tumors. (E) Venn diagram depicting the overlap between the genes the differ-
entiated-like and stem-like cell states differentially express in initial versus recurrent IDH-mutant tumors. (F) 
Boxplot depicting the average signature expression in the analogous cell state-specific gene expression 
profiles for each IDH-mutant tumor pair in GLASS. Comparisons are stratified based on whether the tumor 
pair was grade stable or exhibited a grade increase at recurrence. *** indicates Wilcoxon signed rank test 
P-value < 1e-3, * indicates P < 0.05, and ^ indicates P < 0.10. (G) Boxplot depicting the average signature 
expression in single cells of the indicated malignant cell states from grade II and grade III. **** indicates 
Wilcoxon rank-sum test P-value < 1e-5.
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Figure S5. Characterization of the mesenchymal myeloid signature and identification of candidate 
ligand-receptor interactions in mesenchymal glioma. Related to Figure 5. (A) Boxplots depicting the 
average macrophage and microglia gene expression signatures in CIBERSORTx-inferred myeloid-specific 
gene expression profiles from TCGA. Samples are stratified by IDH and 1p/19q co-deletion status (left) and 
bulk transcriptional subtype (right). **** indicates Wilcoxon rank-sum test P-value < 1e-5. (B) Bar plots depict-
ing the Spearman correlation coefficients measuring the association between the myeloid-specific expression 
scores for the macrophage and microglia signatures versus the presence of the four Ivy GAP histological 
features in TCGA. The features measured were leading edge (LE), cellular tumor (CT), microvascular prolifer-
ation (MVP), and pseudopalisading cells around necrosis (PAN). (C) Heatmaps depicting the average normal-
ized log10 expression level of genes that were differentially expressed between myeloid cell states from initial 
and recurrent IDH-wild-type and IDH-mutant tumors in GLASS that did not undergo a subtype switch. Frac-
tions on the right of each plot indicate the number of differentially expressed genes (numerator) out of the 
number of genes inferred for that cell state’s profile in GLASS using CIBERSORTx (denominator). (D) Scatter-
plot depicting the association between the mean blood-derived macrophage signature expression in single 
myeloid cells and the mesenchymal subtype score calculated from bulk RNAseq for each patient. (E) Bar plot 
depicting the -log10(adjusted P-value) from a GO enrichment analysis for the genes in the mesenchymal 
myeloid signature. (F) Analysis of ligand-receptor interactions between differentiated-like malignant cells and 
myeloid cells. Left plots depict the Pearson correlation coefficients from analyses comparing the change in 
expression of a ligand or receptor from the indicated cell state versus the change in bulk mesenchymal score 
over time in IDH-wild-type GLASS samples. All ligand-receptor pairs that exhibited an R > 0 and an FDR < 0.1 
are highlighted in red and were included in the right plot. Right plots depict single cell analyses measuring 
how the average expression of a ligand or receptor in single cells of the indicated cell state associates with 
the tumor’s bulk mesenchymal score in IDH-wild-type tumors. Red points indicate the ligand-receptor pair with 
the highest average correlation. (G) Scatterplot depicting the association between the mean expression of 
MARCO2 in single myeloid cells and the mesenchymal subtype score calculated from bulk RNAseq for each 
patient.
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Figure S6. Analysis of neoantigen-mediated T cell selection in glioma. Related to Figure 6. (A) Scatter-
plots depicting the association between the T cell proportion and the neoantigen depletion rate in initial and 
recurrent GLASS samples. (B) Box and ladder plots depicting the difference in the number of neoantigens 
binding to the kept and lost allele. Points are colored based on whether the sample was an initial or recurrent 
tumor. P-values were calculated using the Wilcoxon signed-rank test. (C) Violin plots depicting the distribution 
of the somatic copy number alteration burden in initial and recurrent IDH-wild-type GLASS samples that did 
and did not exhibit HLA LOH. P-values were calculated using the Wilcoxon rank-sum test.

Figure S6. 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442486doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442486
http://creativecommons.org/licenses/by-nd/4.0/

	Fig1_v5_legend
	Fig2_v6_legend
	Fig3_v2_legend
	Fig4_v3_legend
	Fig5_v2_legend
	Fig6_v3_legend
	SuppFig1_overview_v4_legend
	SuppFig2_IvyGAP_v2_legend
	SuppFig3_genetics_v2_legends
	SuppFig4_geps_v2_legends
	SuppFig5_myeloid_legend
	SuppFig6_legend

