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Abstract

Single particle tracking (SPT) directly measures the dynamics of proteins in liv-
ing cells and is a powerful tool to dissect molecular mechanisms of cellular reg-
ulation. Interpretation of SPT with fast-diffusing proteins in mammalian cells,
however, is complicated by technical limitations imposed by fast image acqui-
sition. These limitations include short trajectory length due to photobleaching
and shallow depth of field, high localization error due to the low photon budget
imposed by short integration times, and cell-to-cell variability. To address these
issues, we developed methods to infer distributions of diffusion coefficients from
SPT data with short trajectories, variable localization accuracy, and absence of
prior knowledge about the number of underlying states. We discuss advantages
and disadvantages of these approaches relative to other frameworks for SPT
analysis.

Significance statement

Single particle tracking (SPT) uses fluorescent probes to track the motions of
individual molecules inside living cells, providing biologists with a close view of
the cell’s inner machinery at work. Commonly used SPT imaging approaches,
however, result in fragmentation of trajectories into small pieces as the probes
move through the microscope’s plane of focus. This makes it challenging to
extract usable biological information. This paper describes a method to recon-
struct an SPT target’s dynamic profile from these trajectory fragments. The
method builds on previous approaches to provide information about challenging
SPT targets without discrete dynamic states while accounting for some known
biases, enabling observation of previously hidden features in mammalian SPT
experiments.

Introduction

Biological processes are driven by interactions between molecules. To under-
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stand the role of a molecular species in a process, a central challenge is to
measure the subpopulations of the molecule engaged in distinct interactions
without perturbing the living system’s steady state. Some interactions – such
as complex formation or scaffold binding – are associated with changes in a
molecule’s mobility. As a result, live cell single particle tracking (SPT), by
separately observing the motion of individual molecules, is a promising tool to
meet this challenge [1].

Advances in the past two decades have led to the application of live cell SPT
beyond its original implementation on cellular membranes [2] [3] [4] [5]. These
include the use of stochastic labeling to isolate a single emitter’s path [6], a
principle that can be extended into intracellular settings with genetically en-
coded photoconvertible proteins [7] [8] or cell-permeable dyes [9] [10]. Another
advance is stroboscopic illumination, which reduces blur associated with fast-
diffusing emitters [11]. Together with modifications of TIRF microscopes [12],
these innovations have enabled the application of SPT to intracellular settings
with fast-moving subpopulations [13] [14] [15] [16]. We refer to this variant of
SPT as stroboscopic photoactivated single particle tracking (spaSPT; Fig. 1A;
Supplementary Movie 1).

Despite these advances, several problems remain when applying spaSPT to fast-
moving emitters in 3D settings [17]. First, apparent motion in spaSPT origi-
nates both from the true motion of the emitter as well as localization error, the
imprecision associated with our estimate for its position [18]. As in fixed cell
super-resolution modalities [19] [20], localization error in spaSPT depends on
the number of photons collected from an individual emitter per frame [21]. But
spaSPT has an additional component of error due to motion blur, the convolu-
tion of the microscope’s 3D point spread function with the path of the emitter.
Consequently, localization error in spaSPT depends on both the emitter’s mo-
bility and its distance from the focus and is not trivial to measure [4] [22] [23].
Stroboscopic illumination reduces motion blur [11], but because camera inte-
gration times are never instantaneous, it cannot be removed entirely (Fig. 1C,
S1B).

Second, the high numerical aperture objectives required to resolve single emit-
ters induce short depths of field, typically less than a micron. Whereas bacteria
such as E. coli are often small enough to fit into the resulting focal volume,
mammalian cells – with depths 5-10 µm or greater – cannot. As a result, in-
tracellular SPT experiments only capture short transits of emitters through the
focal volume with the duration of each transit related to the emitter’s mobil-
ity, a behavior termed defocalization (Fig. 1B, S1A, Supplementary Movies 2
and 3) [24] [25] [17]. This creates a sampling problem: slow particles with long
residences inside the focal volume contribute a few long trajectories, while fast
particles with short residences contribute many short trajectories. Mean trajec-
tory length is often as little as 3-4 frames, severely limiting the ability to infer
dynamic parameters (such as diffusion coefficient) from any single trajectory.
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While methods for fast 3D imaging to mitigate this problem have been de-
scribed [26] [27], they require higher photon budgets and are not yet applicable
to fast-diffusing targets with high motion blur.

Third, the true number of dynamic subpopulations or “states” for a protein of
interest is usually unknown a priori. Proteins often participate in many com-
plexes with distinct dynamics. Model-dependent analyses that assume a fixed
number of states [25] [16] [17], while powerful when combined with comple-
mentary measurements [14] [28], are limited to measuring coefficients of known
models. To compound model complexity, a protein in one state may behave dif-
ferently in distinct subcellular environments. Indeed, although spaSPT directly
observes the spatial context for each trajectory [29], model-based analyses such
as jump distribution modeling often discard this information.

The central problem for spaSPT analysis is to recover the underlying set of
dynamic states for a protein target of interest, given a set of observed trajectories
in the presence of these three obstacles.

To date, the most common approach to recover subpopulations from spaSPT
data has been to construct histograms of the mean squared displacement (MSD),
the maximum likelihood estimator for the diffusion coefficient in the absence
of localization error. The MSD is highly variable for short trajectories and
becomes especially error-prone when localization error is unknown [23]. More
problematically, MSD histograms rely on the assumption that sampling from
slow and fast states with equal fractional occupation produces the same number
of trajectories, which leads to severe state biases in the presence of defocalization
[25] [17]. Common preprocessing steps to select for long trajectories compound
the problem by introducing biases for slow states that remain in focus.

A different approach to model selection is represented by vbSPT, a variational
Bayesian framework for reaction-diffusion models that relies on the evidence
lower bound to identify the number of states [30]. vbSPT excels at recovering
occupations and transition rates for a small number of diffusing states, but
it is not appropriate to apply in situations where the distribution of diffusion
coefficients is not discrete and does not consider defocalization. As such, there is
a need for methods that combine the flexibility of the MSD histogram approach
with advantages of Bayesian methods like vbSPT, while accounting for biases
induced by spaSPT imaging geometry.

Here, we examine two alternatives to MSD histograms useful for short trajec-
tories. The first is based on a Dirichlet process mixture model (DPMM) and
the second on a finite-state approximation to the DPMM that we refer to as
a state array (SA). Exploring these techniques on simulated and real datasets,
we find both DPMMs and SAs recover complex mixtures of states and can also
be applied to non-discrete distributions of diffusion coefficients. While DPMMs
outperform SAs when the localization error is known, SAs are more useful for
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experiments with limited prior knowledge about the error associated with each
mobile state. Finally, we discuss limitations of these methods compared to other
approaches.

Results

Two approaches to infer distributions of diffusion coefficients from
spaSPT trajectories

As the target for inference, we considered a mixture of regular Brownian mo-
tions with localization error (RBMEs; SI Appendix A) enclosed in a spherical
membrane with a thin focal volume bisecting the sphere, with dimensions resem-
bling a mammalian cell nucleus (Fig. 2C). Each RBME is characterized by two
parameters: a diffusion coefficient and a localization error magnitude. Emitters
are subject to photoactivation and photobleaching throughout the sphere and
are only observed when their positions coincide with the focal volume. Because
no gaps are allowed during tracking, the result is a highly fragmented set of
trajectories with mean length 3-5 frames. Simulation settings were chosen to
approximate real spaSPT experiments, with bleaching rates ≥ 10 Hz, diffusion
coefficients in the range 0-100 µm2 s−1, and normally distributed localization
error with standard deviation ≥ 30 nm. We sought to estimate the underlying
distribution of diffusion coefficients from this data.

An attractive approach to recover an arbitrary distribution of diffusion coeffi-
cients is the Dirichlet process mixture model (DPMM) [31]. DPMMs can be
considered a modification of classic Bayesian finite-state mixture models (FS-
MMs) [32] (Supplementary Info). The two are compared as graphical models
in Fig. 2A. Rather than inferring the occupations and parameters for each of
K discrete states, DPMMs let K → ∞ [33] and rely on the ability of Bayesian
methods to identify sparse subsets of states sufficient to explain the observed
trajectories. The priors and posteriors are continuous distributions over state
parameters such as diffusion coefficient.

A challenge is that DPMM inference algorithms require evaluation of the model’s
likelihood function for a large number of trajectory-state assignments at each
iteration. When dealing with large datasets, costly likelihood functions, and
non-conjugate priors – for instance, uniform priors over the diffusion coefficient
and localization error – this becomes computationally expensive [34].

The approaches in this manuscript represent two responses to this problem.
First, we considered a DPMM with an approximative likelihood function that is
much faster to compute, obtained by treating the RBME as a Markov process
(Fig. 2B, left) [35]. This assumption is strictly true only when localization error
is zero and is the same assumption that accompanies the use of the MSD as the
maximum likelihood estimator for the diffusion coefficient [23]. To estimate the
posterior distribution, we use a Markov chain Monte Carlo approach related to
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Neal’s Algorithm 8 [36].

The second approach is to replace the DPMM with a conceptually similar
method we call a state array (SA). An SA is a grid of state parameters that
span some target part of parameter space – for instance, a range of diffusion
coefficients. Each point in this grid is treated as a separate state. Because the
parameters for each state are fixed, likelihoods for each trajectory-state assign-
ment only need to be evaluated once; the sole inferential goal is then to calculate
the posterior occupations of each point in the grid. As a result, SAs can han-
dle more complex likelihood functions that incorporate localization error. By
marginalizing the posterior distribution on localization error, the method natu-
rally incorporates uncertainty about the localization error of different states.

The primary drawbacks of SAs are the discretization artefacts expected to result
when the spacing of the parameter grid is chosen too coarsely with respect to
local changes in the likelihood. (DPMMs are obtained by letting the grid spacing
go to zero.) SAs have conceptual similarities to an approach recently proposed to
measure the distribution of chromatin binding residence times for transcription
factor SPT [37], with a variational Bayesian inference routine [38] substituting
for the inverse Laplace transform. Both DPMMs and SAs are described in detail
in the Supplementary Information.

Evaluating DPMMs and SAs on simulated spaSPT data

First, we compared the efficacy of DPMMs, SAs, and the MSD histogram ap-
proach on simulated mixtures of diffusing states (Fig. 3, S2). We divided these
simulations into three classes with increasing difficulty. In the first class, local-
ization error for all states was provided as a known constant to the algorithms
(Fig. S2A). In the second class, localization error was held constant for all states
but was unknown to the algorithms (Fig. S2B). In the third class, localization
error was allowed to vary between diffusive states and was also unknown to the
algorithms (Fig. S2C).

DPMMs and SAs both recovered the distribution of diffusion coefficients for
simulations in class 1 with a resolution that exceeded the MSD histogram ap-
proach (Fig. 3, S2A). With large samples of trajectories, DPMMs and SAs
inferred even non-discrete distributions of states. Notably, in the presence of
multiple diffusing states with similar diffusion coefficients, both DPMMs and
SAs tended to identify a single state with occupation equal to the sum of the
occupations for each true state (Fig. 3D, S5B).

The DPMM approach was more precise than the SA approach on simulations
in class 1. In contrast, when knowledge of the localization error was removed,
the SA approach outperformed both the MSD and DPMM approaches. Indeed,
assuming a constant localization error had strong effects on the DPMM’s ability
to infer diffusion coefficients for slow-diffusing states with variable localization
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error, while SAs were essentially unperturbed by variations in the localization
error (Fig. S3). Because localization error is frequently difficult to measure in
spaSPT, this quality of SAs is useful.

We also compared the accuracy of state occupation estimates obtained from
the three approaches (Fig. 3B, S4). As the number of trajectories used in
inference increased, the occupations estimated by DPMMs and SAs converged
to values within 1% of the true underlying occupations. In contrast, the MSD
approach was associated with large systematic errors due to the fact that the
approach counts by trajectories rather than jumps and does not account for
defocalization, an effect previously reported [25] [17]. Importantly, when states
with diffusion coefficients outside the support were used, DPMMs and SAs still
accurately recovered state occupations by using the closest diffusion coefficient
available in the support (Fig. S5A).

A central limitation of DPMMs and SAs is that they do not account for tran-
sitions between diffusive states. To determine the effect of state transitions on
the output of these algorithms, we simulated mixtures of two diffusive states
with increasing transition rates (Fig. 3C, S6). While slow transition rates have
a negligible effect on the estimated state profile, transition rates approaching
the frame interval result in the inference of a single apparent state with in-
termediate diffusion coefficient (Fig. S6C), consonant with a well-known result
from reaction-diffusion systems [39]. The shift from the two-state to single-state
regime occurs in a narrow window of mean state dwell times between 0.05 and 0.5
frame intervals. Consequently, performing multiple spaSPT experiments with
different frame intervals may be a useful way to identify fast state transitions
for proteins with complex dynamic profiles.

Performance of DPMMs and SAs on experimental spaSPT

To examine the performance of SAs on real data, we acquired a spaSPT dataset
in U2OS osteosarcoma nuclei with endogenously tagged retinoic acid receptor-
�-HaloTag (RARA-HT) (Fig. S7) [40] [41]. RARA-HT is a type II nuclear
receptor that heterodimerizes via its ligand-binding domain (LBD) with the
retinoid X receptor (RXR) to form a complex competent to bind chromatin
and regulate target genes [42] [43] [44] [45] [46] [47] [48] (reviewed in [49]). In
addition, association of coregulator complexes with the RAR/RXR heterodimer
has been shown to influence the dimer’s dynamics in FCS studies [50] [51]. As
such, RARA-HT is expected to inhabit a variety of dynamic states in spaSPT.

For comparison, we also performed identical spaSPT experiments with histone
H2B-HaloTag (H2B-HT), a protein with a high-occupation immobile state [16]
[52], as well as HaloTag and HaloTag-NLS (HT and HT-NLS), which are fast-
diffusing proteins with low immobile fractions.

The four proteins presented distinct dynamic profiles (Fig. 4A). For both HT
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and HT-NLS, the SA identified a single highly mobile state. In agreement with
previous reports [29], we observed that addition of the NLS reduces HaloTag’s
diffusion coefficient by two- to three-fold. In contrast, both RARA-HT and H2B-
HT had substantial immobile fractions, accounting for roughly 40% and 70%
of their total populations respectively (Fig. 4C). The mobile subpopulations
for RARA-HT and H2B-HT differed markedly. Whereas H2B-HT presented
a fast population at 8-10 µm2 s−1, RARA-HT inhabited a broad spectrum of
diffusing states ranging from 0.3 to 10.0 µm2 s−1. Biological replicates gave
similar results (Fig. S8A).

To determine the origins of the dynamic states observed for RARA-HT, we
performed domain deletions (Fig. 4B). Removal of either the DNA-binding do-
main (DBD) or LBD resulted in loss of the immobile population. Because both
the DBD and LBD are required for chromatin binding by the RAR/RXR het-
erodimer, this suggests that the immobile fraction represents chromatin-bound
molecules. To confirm this, we introduced a point mutation (C88G) in the zinc
fingers for the RARA-HT DBD that abolishes DNA-binding in vitro [53]. This
led to loss of the immobile fraction (Fig. 4B). Deletion of the unstructured
N-terminal domain (NTD) or C-terminal domain (CTD) had a milder effect,
suggesting that these domains are not the primary determinants of the dynamic
behavior of RARA-HT.

To understand the origins of heterogeneity in the diffusive profile, we performed
three variants of bootstrap aggregation (Fig. S8B). The primary origins of
variability for both DPMMs and SAs were cell-to-cell rather than clone-to-clone
variability or intrinsic variability due to finite sample sizes.

Spatiotemporal context of cellular protein dynamics

The full posterior model for DPMMs and SAs involves probability distributions
over the diffusion coefficient and/or localization error for every trajectory in
a spaSPT dataset. Because spaSPT trajectories are short, a single trajectory
cannot provide high-confidence information about state parameters. But ag-
gregating information across trajectories in the posterior distribution offers a
potential route to understand how the diffusion coefficient varies spatially and
temporally within a dataset.

We explored this aspect of the SA method on a U2OS nucleophosmin-HaloTag
(NPM1-HT) spaSPT dataset. NPM1-HT exhibits partial nucleolar localization
(Fig. S9B) and distinct dynamic behavior inside and outside nucleoli [54]. The
SA method identified a broad range of diffusion coefficients for NPM1-HT, with
three modes including an effectively immobile population (Fig. 5A). Selecting
four regions of this spectrum for analysis, we visualized the posterior likelihood
as a function of space (Fig. 5B). Evaluating the local posterior mean also
provided a way to measure local occupations for each of these states (Fig. 5B,
S9C). This analysis revealed that some populations (including a slow-moving
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mobile state at 0.23 µm2 s-1) are enriched in nucleoli, while others (for instance,
a fast-moving state at 4 µm2 s-1) are depleted and still others show no preference
(Fig. 5C). Notably, these preferences are apparent even in the raw likelihood
function for trajectories in each compartment (Fig. S9D).

The NPM1-HT tracking experiments were performed with an acquisition se-
quence comprising several phases with distinct levels of photoactivation. As a
result, the localization density varied temporally in each movie. To understand
the effect of localization density on the diffusion coefficient likelihoods, we ag-
gregated trajectory likelihoods in 100 frame temporal blocks (Fig. 5D). These
experiments demonstrated that high localization densities led to a deflation in
the occupation of slower-moving states, probably due to tracking errors. As a
result, only phases with low localization density were used for posterior estima-
tion. This demonstrates how the temporal indexing of the posterior likelihood
function for trajectories can be used to guide subsequent analysis.

Discussion

spaSPT with fast-diffusing proteins in 3D presents unique challenges for data
analysis. In particular, the issues of state bias arising from imaging geometry,
limited information available from any single trajectory, and variable localization
error must be addressed prior to biological interpretation of spaSPT data.

Methods based on least-squares fitting of the jump length CDF have interpreted
spaSPT data with two- and three-state models [25] [17] but extend poorly to
more complex models due to overfitting and do not provide a way to distinguish
between competing models. In contrast, nonparametric methods like the MSD
histogram could in theory be used to identify any dynamic profile for any number
of states, but in practice have poor resolution due to short trajectory length
and also introduce state biases by assuming that slow and fast states with equal
occupation present the same number of trajectories [17].

The two methods discussed here, DPMMs and SAs, occupy a middle ground and
accurately identify state occupations in spaSPT data while avoiding assumptions
about the number of states. These methods borrow from the capability of
Bayesian methods to identify sparse explanatory models from more complex
alternatives.

As an alternative to SAs, a DPMM for the full RBME likelihood (evaluating
a posterior over the continuous state space of both diffusion coefficient and
localization error) could be used to identify mixtures of RBMEs. While this
approach is feasible, it is slow due to the requirement for evaluation of the RBME
likelihood for a large number of trajectory-state assignments at each iteration
of the algorithm. The gamma likelihood based DPMM and SAs considered
here are approximations to the full DPMM that are accurate and fast enough
for practical use without resorting to specialized implementations. SAs, by
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naturally incorporating uncertainty about localization error, are particularly
useful for spaSPT datasets in which the localization error can vary between
individual movies.

DPMMs and SAs have several limitations. DPMMs require prior measurement
of the localization error, while SAs require selection of a parameter grid with
spacing fine enough to avoid discretization artefacts. In addition, some limita-
tions are shared by both DPMMs and SAs. These include the fact that neither
method considers state transitions, and both share the inability to distinguish
localization error from non-Brownian diffusion (e.g. subdiffusion) because both
of these manifest primarily in the off-diagonal components of the RBME covari-
ance matrix.

Neither DPMMs nor SAs have any kind of built-in mechanism to distinguish true
jumps from tracking errors; they both rely on trajectories produced by another
algorithm. It may be possible to combine both tracking and state occupation
estimation into a single Bayesian inference routine in which the posterior over
diffusion coefficients, localization error, and occupations for each state is jointly
evaluated with a posterior over possible connections between particles.
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Materials and methods

Plasmids. Unless otherwise noted, all PCRs were performed with New Eng-
land Biosciences Phusion High-Fidelity DNA polymerase (M0530S) and Gibson
assemblies [55] were performed with New England Biosciences Gibson Assem-
bly Master Mix (E2611S) following manufacturer’s instructions. Cloning and
expression of plasmids was performed in E. coli DH5α using the Inoue protocol
[56]. Plasmids used for nucleofections were purified by Zymo midiprep kit (Zymo
D4200) and concentrations were quantified by absorption at 260 nm. Cloning
primers were synthesized by Integrated DNA Technologies as 25 nmol DNA oli-
gos with standard desalting, and sequences were verified by Sanger sequencing
at the UC Berkeley DNA Sequencing Facility.

We produced the vector PB PGKp-PuroR L30p MCS-GDGAGLIN-HaloTag-
3xFLAG by amplifying the human L30 promoter with prAH675 and prAH676
and assembling into AsiSI- (NEB R0630) and XbaI- (NEB R0145) digested PB
PGKp-PuroR EF1a MCS-GDGAGLIN-HaloTag-3xFLAG. For the expression
plasmid PB PGKp-PuroR EF1a 3x-FLAG-HaloTag-GDGAGLIN, we cloned
three tandem copies of the SV40 nuclear localization sequence into XbaI- and
BamHI-HF (NEB R3136)-digested PB PGKp-PuroR EF1a 3xFLAG-HaloTag-
MCS using Gibson assembly.

For constructs expressing RARA-HaloTag domain deletions and point muta-
tions, we first cloned the RARA coding sequence out of U2OS cDNA by ex-
tracting RNA from cycling U2OS cells with a Qiagen RNeasy kit (Qiagen
74104), preparing cDNA with the iScript Reverse Transcription Supermix (Bio-
Rad 1708840), amplifying the CDS with prAH495 and prAH496, then assem-
bling into an XbaI- and NotI-HF- (NEB R3189) digested PB PGKp-PuroR
EF1a MCS-GDGAGLIN-HaloTag-3xFLAG using Gibson assembly. Next, to
produce the mutants, we amplified parts of the RARA coding sequence in
PCR fragments while introducing point mutations or domain deletions at the
intersections of the fragments. PCR fragments were assembled into XbaI-
and BamHI-HF-digested PB PGKp-PuroR L30p-MCS-GDGAGLIN-HaloTag-
3xFLAG using Gibson assembly. The primers used for each construct were
as follows: for PB PGKp-PuroR EF1a RARA[�NTD]-HaloTag-GDGAGLIN-
3xFLAG, PCR fragment 1 was produced with prAH1111 and prAH1112; for PB
PGKp-PuroR EF1a RARA[�CTD]-HaloTag-GDGAGLIN-3xFLAG, PCR frag-
ment 1 was produced with prAH1113 and prAH1114; for PB PGKp-PuroR EF1a
RARA[�NTD,�CTD]-HaloTag-GDGAGLIN-3xFLAG, PCR fragment 1 was pro-
duced with prAH1111 and prAH1114; for PB PGKp-PuroR EF1a RARA[C88G]-
HaloTag-GDGAGLIN-3xFLAG, PCR fragment 1 was produced with prAH1113
and prAH1069 and PCR fragment 2 was produced with prAH1112 and prAH1070;
for PB PGKp-PuroR EF1a RARA[�DBD]-HaloTag-GDGAGLIN-3xFLAG, PCR
fragment 1 was produced with prAH596 and prAH704 and PCR fragment 2 was
produced with prAH597 and prAH705; for PB PGKp-PuroR EF1a RARA[�LBD]-
HaloTag-GDGAGLIN-3xFLAG, PCR fragment 1 was produced with prAH596
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and prAH706 and PCR fragment 2 was produced with prAH597 and prAH707.

To generate the plasmid-based homology repair donor for gene editing at the
human RARA exon 9 locus, we assembled the following fragments by Gib-
son assembly. For fragment 1, we digested the pUC57 vector with EcoRI and
HindIII. For fragment 2, we amplified the left homology arm out of U2OS
genomic DNA with prAH599 and prAH600. For fragment 3, we amplified
the GDGAGLIN-HaloTag-3xFLAG insert out of the plasmid PB PGKp-PuroR
L30p MCS-GDGAGLIN-HaloTag-3xFLAG with prAH601 and prAH602. For
fragment 4, we amplified the right homology arm out of U2OS genomic DNA
with prAH603 and prAH604.

To generate guide RNA/Cas9 expression plasmids for gene editing at the human
RARA exon 9 locus, we cloned the two guide RNA sequences under a U6 pro-
moter in a vector that coexpresses the sgRNA, mVenus, and S. pyogenes Cas9,
which has been previously described [16].

For luciferase assays, we used the retinoic acid-responsive firefly luciferase ex-
pression vector pGL3-RARE-luciferase (Addgene plasmid #13458; http://n2t.net/ad-
dgene:13458 ; RRID:Addgene_13458), a gift from T. Michael Underhill [57].
Renilla luciferase was expressed from pRL CMV Renilla (Promega E2261).

Tissue culture. Human U2OS cells (female, 15 year old, osteosarcoma) ob-
tained from the UC Berkeley Cell Culture Facility were cultured under 5% CO2

at 37 degrees C in DMEM containing 4.5 g/L glucose supplemented with 10% fe-
tal bovine serum and 10 U/mL penicillin-streptomycin. Cells were subpassaged
at a ratio of 1:6 every 3-4 days. The stable cell line expressing H2B-HaloTag-
SNAPf was described previously [16] [52]. Expression of HaloTag, HaloTag-NLS,
and point mutants and domain deletions of RARA-HaloTag were induced by nu-
cleofection of PiggyBac vectors containing the proteins under EF1a promoters.
Expression of wildtype RARA-HaloTag and NPM1-HaloTag were induced by
endogenous gene editing, as described in the “CRISPR/Cas9-mediated gene
editing” section.

For spaSPT experiments, cells were grown on 25 mm circular No. 1.5H cover-
glasses (Marienfeld, Germany, High-Precision 0117650) that were first sonicated
in ethanol for 10 min, plasma-cleaned, then stored in isopropanol until use.
U2OS cells were grown directly on the coverglasses in regular culture medium.
The medium was changed after dye labeling and immediately before imaging
into phenol red-free medium to reduce background, while all other components
of the medium remained unchanged.

Nucleofection. Because lipofection-based transfection methods often produce
substantial background labeling in experiments with fluorescent dyes, for all
imaging experiments involving exogenous expression we used the Lonza Amaxa
II Nucleofector System with Cell Line Nucleofector Kit V reagent (Lonza VCA-
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1003). Briefly, U2OS cells were grown in 10 cm plates (ThermoFisher) for two
days prior to nucleofection, trypsinized, spun down at 1200 rpm for 5 min, com-
bined with vector and Kit V reagent according to manufacturer’s instructions,
and nucleofected with program X-001 on an Lonza Amaxa II Nucleofector. Af-
ter nucleofection, cells were immediately resuspended in regular culture medium
at 37˚ C and plated onto coverslips. In all imaging experiments involving nu-
cleofection, imaging was performed within 24 hours of plating.

CRISPR/Cas9-mediated gene editing. Endogenous tagging of RARA in
U2OS cells was performed with a protocol roughly following [16] with some mod-
ifications. This protocol relies on FACS sorting for cells that have been correctly
modified to express HaloTag fused to the target protein. For U2OS cells, we
nucleofected cells with plasmid expressing 3xFLAG-SV40NLS-pSpCas9 from a
CBh promoter [58], mVenus from a PGK promoter, and guide RNA from a
U6 promoter (pU6_sgRNA_CBh_Cas9_PGK_Venus_anti-RARA-C_termi-
nus_1 and pU6_sgRNA_CBh_Cas9_PGK_Venus_anti-RARA-C_terminus_2),
along with a second plasmid encoding the homology repair donor (pUC57_hom-
Rep_RARA-HaloTag). The homology repair donor was built in a pUC57 back-
bone modified to contain HaloTag-3xFLAG with ∼500 base pairs of homolo-
gous genomic sequence on either side. Synonymous mutations were introduced
at the cut site to prevent retargeting by Cas9. Each of the two guide RNA
plasmids were nucleofected into separate populations of cells to be pooled for
subsequent analysis. 24 hours after the initial nucleofection, we screened for
mVenus-expressing cells using FACS and pooled these mVenus-positive cells in
10 cm plates. 5 days after plating, we labeled cells with HTL-TMR (Promega
G8251) and screened for TMR-positive, mVenus-negative cells. Cells were di-
luted to single clones and plated in 96-well plates for a 2-3 week outgrowth step,
during which the medium was replaced every 3 days. The 96-well plates were
then screened for wells containing single colonies of U2OS cells, which were split
by manual passage into two replicate wells in separate 96-well plates. One of
these replicates was used to subpassage, while the other was used to harvest ge-
nomic DNA for PCR and sequencing-based screening for the correct homology
repair product. In PCR screens, we used three primer sets: (A) primers external
to the homology repair arms, expected to amplify both the wildtype allele and
the edited allele (“PCR1”), (B) a primer internal to HaloTag and another ex-
ternal to it on the 5’ side, expected to amplify only the edited allele (“PCR2”),
and (C) a primer internal to HaloTag and another external to it on the 3’
side, expected to amplify only the edited allele (“PCR3”). The primer sets for
each target were the following. For RARA-GDGAGLIN-HaloTag-3xFLAG, we
used prAH586 and prAH761 for PCR1, prAH761 and prAH762 for PCR2, and
prAH763 and prAH764 for PCR3. For NPM1-GDGAGLIN-HaloTag-3xFLAG,
we used prAH1092 and prAH1093 for PCR1, prAH1093 and prAH377 for PCR2,
and prAH1092 and prAH373 for PCR3. U2OS cDNA from selected clones was
isolated with DirectPCR Lysis Reagent (Viagen 101-T), treated with 0.5 mg/ml
proteinase K for 15 min, incubated at 95˚ C for 1 hour, then subjected to PCRs
1 through 3 using Phusion polymerase in the presence of 5% DMSO. Amplicons
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from candidate clones were gel-purified (Qiagen 28704) and Sanger sequenced;
only clones with the correct target sequence were kept for continued screen-
ing. A subset of these clones were chosen for characterization by Western blot,
imaging, and luciferase assays.

For NPM1-GDGAGLIN-HaloTag-3xFLAG knock-in cell lines, we used a differ-
ent strategy relying on nucleofected S. pyogenes Cas9 sgRNPs and linear dsDNA
homology repair donors. The target insert (GDGAGLIN-HaloTag-3xFLAG
from the vector PB PGKp-PuroR L30p MCS-GDGAGLIN-HaloTag-3xFLAG)
was first amplified with ultramers encoding 120 bp homology arms (prAH867
and prAH868) using KAPA2G Robust HotStart polymerase (Kapa Biosystems
KR0379) for 12 cycles. A small volume of this reaction was then used to seed a
PCR reaction using primers prAH869 and prAH870 in Q5 High-Fidelity 2X Mas-
ter Mix (Qiagen M0492). Products were purified by RNAClean XP magnetic
beads (Beckman-Coulter A63987) and further cleaned by ethanol precipitation,
followed by resuspension in a small volume of RNase-free water. For guides,
we performed a three-primer PCR using prAH2000 and prAH2001 along with
a unique oligo encoding the spacer (either prAH979 or prAH980) to produce a
linear dsDNA product encoding the sgRNA preceded by a T7 promoter. We
then used T7 RNA polymerase (NEB E2040S) to transcribe sgRNA from this
template and purified the sgRNA with RNAClean XP magnetic beads accord-
ing to manufacturer’s instructions. To assemble the sgRNP, we incubated 80
pmol sgRNA with 40 pmol purified SpyCas9-NLS (UC Berkeley Macrolab) for
15 min at 37˚ C in 20 mM HEPES pH 7.5, 150 mM KCl, 10 mM MgCl2, and
5% glycerol. sgRNPs were subsequent kept on ice and combined with donor im-
mediately before nucleofection. For each nucleofection, we used 40 pmol sgRNP
and 5 pmol dsDNA donor template suspended in <10 µL with Lonza Amaxa
Nucleofector II protocol X-001 in Lonza Kit V reagent. Roughly 1 million cells
were used for nucleofection. Sorting for labeled cells, subcloning, and genotyping
proceeded as previously described for RARA-GDGAGLIN-HaloTag-3xFLAG.

Western blots. Antibodies were as follows. The ratio indicate the dilution
factors used for Western blot. human TBP, Abcam Ab51841, 1:2500 (mouse);
FLAG, Sigma-Aldrich F3165, 1:2000 (mouse).

For Western blots, cells were collected by scraping from plates in ice-cold PBS,
then pelleted. Cell pellets were resuspended in lysis buffer (0.15 M NaCl, 1%
NP-40, 50 mM Tris-HCl (pH 8.0), and a cocktail of protease inhibitors (Sigma-
Aldrich 11697498001 dissolved in PBS with supplemented PMSF, aprotinin,
and benzamidine), agitated for 30 min at 4˚ C, then centrifuged for 20 min at
12000 rpm, 4˚ C. The supernatant was then mixed with 2x Laemmli (to final
1x), boiled for 5 min, then run on 12.5% SDS-PAGE. After transfer to nitro-
cellulose, the membrane was blocked with 10% condensed milk in TBST (500
mM NaCl, 10 mM Tris-HCl (pH 7.4), 0.1% Tween-20) for one hour at room
temperature. Antibodies were suspended in 5% condensed milk in TBST at
the dilutions indicated above and incubated, rocking at 4˚ C overnight. After
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primary hybridization, the membrane was washed three times for 10 min with
TBST at room temperature, hybridized with an anti-mouse HRP secondary an-
tibody in 5% condensed milk in TBST for 60 min at room temperature, washed
three more times with TBST for 10 min, then visualized with Western Light-
ning Plus-ECL reagent (PerkinElmer NEL103001) according to manufacturer
instructions and imaged on a Bio-Rad ChemiDoc imaging system. Different
exposure times were used for each antibody.

Luciferase assays. All luciferase assays used pGL3-RARE-luciferase, a re-
porter containing firefly luciferase driven by an SV40 promoter with three retinoic
acid response elements (RAREs). pGL3-RARE-luciferase was a gift from T.
Michael Underhill (Addgene plasmid 13458; http://n2t.net/addgene:13458; RRID:Ad-
dgene_13458) [57]. Luciferase assays were performed on cells cultivated in 6-
well plates. Cells were transfected with 100 ng pGL3-RARE-luciferase and
10 ng pRL Renilla (Promega E2261) using Mirus TransIT-2020 Transfection
Reagent (Mirus MIR 5404) for U2OS cells or Lipofectamine 3000 (ThermoFisher
L3000015) for mES cells. Transfection was performed one day before assaying
luciferase expression with the Dual-Luciferase Reporter Assay System (Promega
E1910) according to manufacturer’s instructions. Readout was performed on a
GloMax luminometer (Promega).

Cell labeling. For spaSPT experiments, cells were labeled with one of two
methods, depending on the type of dye. For non-photoactivatable fluorescent
dyes including TMR-HTL (tetramethylrhodamine-HaloTag ligand; Promega G8251),
we stained cells with 100 nM dye in regular culture medium for 10 min, then
performed three 10 min incubations in dye-free culture medium separated by
PBS washes. All PBS and culture medium was incubated at 37˚ C between
medium changes and washes.

For experiments with photoactivatable dyes, which have lower cell permeability
and slower wash in/wash out kinetics, we labeled cells with 100 nM dye in
regular culture medium for 30 min, followed by four 30 min incubations in
dye-free culture medium at 37˚ C. Between each incubation, we washed twice
with PBS at 37˚ C. After the final incubation, cells were changed into phenol
red-free medium for imaging.

spaSPT. spaSPT experiments were performed with a custom-built Nikon TI
microscope equipped with a 100X/NA 1.49 oil-immersion TIRF objective (Nikon
apochromat CFI Apo TIRF 100X Oil), an EMCCD camera (Andor iXon Ultra
897), a perfect focus system to account for axial drift, an incubation cham-
ber maintaining a humidified 37˚ C atmosphere with 5% CO2, and a laser
launch with 405 nm (140 mW, OBIS, Coherent), 488 nm, 561 nm, and 633 nm
(all 1 W, Genesis Coherent) laser lines. Laser intensities were controlled by
an acousto-optic Tunable Filter (AA Opto-Electronic, AOTFnC-VIS-TN) and
triggered with the camera TTL exposure output signal. Lasers were directed to
the microscope by an optical fiber, reflected using a multi-band dichroic (405
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nm/488 nm/561 nm/633 nm quad-band, Semrock) and focused in the back fo-
cal plane of the objective. The angle of incident laser was adjusted for highly
inclined laminated optical sheet (HiLo) conditions [12]. Emission light was fil-
tered using single band-pass filters (Semrock 593/40 nm for PAJFX549 and
Semrock 676/37 nm for PAJF646). Hardware was controlled with the Nikon
NIS-Elements software.

For stroboscopic illumination, the excitation laser (561 nm or 633 nm) was
pulsed for 1-2 ms (most commonly 1 ms) at maximum (1 W) power at the
beginning of the frame interval, while the photoactivation laser (405 nm) was
pulsed during the ∼447 µs camera transition time, so that the background
contribution from the photoactivation laser is not integrated. For all spaSPT,
we used an EMCCD vertical shift speed of 0.9 µs and conversion gain setting
2. On our setup, the pixel size after magnification is 160 nm and the photon-
to-grayscale gain is 109. 15000-30000 frames with this sequence were collected
per nucleus, during which the 405 nm intensity was manually tuned to maintain
low density of fluorescent particles per frame.

Localization and tracking. To produce trajectories from raw spaSPT movies,
we used a custom tracking tool publicly available on GitHub (quot, available
at https://github.com/alecheckert/quot) that provides a graphical user in-
terface for comparing detection, subpixel localization, and tracking algorithms
adapted from other sources. All localization and tracking for this manuscript
was performed with the following settings:

• Detection: generalized log likelihood ratio test with a 2D Gaussian kernel
of fixed radius 190 nm (detection method llr with k = 1.2, a 15 pixel
window size (w = 15), and a log ratio threshold of 16.0 (t = 16.0; inspired
by [59]).

• Subpixel localization: Levenberg-Marquardt fitting of a 2D integrated
Gaussian point spread function model (quot localization method ls_int_gaussian;
inspired by [61]) with fixed radius 190 nm, window size 9 pixels, maximum
20 iterations per PSF, with a damping term of 0.3 for parameter updates.
The 2D integrated Gaussian PSF model is described, for instance, in [62].
We used the radial symmetry method [60] to make the initial guess used
to start the Levenberg-Marquardt algorithm.

• Tracking: quot tracking algorithm conservative with a 1.2 µm search
radius. This simple algorithm searches for particle-particle reconnections
that are “unambiguous” in the sense that no other reconnections are pos-
sible within the specified search radius. These reconnections are then used
to synthesize trajectories. At high densities, many jumps are discarded
because other reconnection possibilities given the search radius exist.

After localization and tracking, all trajectories in the first 1000 frames of each
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movie were discarded. Localization density tends to be high in these frames,
so they can contribute tracking errors that compromise accuracy. The mean
localization density for most movies in the remaining set of frames was less
than one emitter per frame.

For experiments involving HaloTag or HaloTag-NLS, which move quickly, we
used a broader search radius at 2.5 µm. All other settings were kept the same.

Spinning disk confocal imaging. Experiments using spinning disk confocal
imaging were performed at the UC Berkeley High-Throughput Screening Facility
on a Perkin Elmer Opera Phenix equipped with a controller for 37˚ C and 5%
CO2, using a built-in 40X water immersion objective.

Simulation. All simulations were performed with a simple publicly avail-
able spaSPT simulation tool (strobesim; https://github.com/alecheckert/
strobesim). This tool generates trajectories for a variety of different motion
types - for instance, Brownian motion, fractional Brownian motion, or Levy
flights - or accepts a user-defined type of motion, and simulates the act of
observing this motion in a thin focal plane in a particular cellular geometry.
The tool provides ways to set the photobleaching and geometry settings for the
spaSPT simulation.

Unless otherwise noted, in this manuscript we used a spherical cell geometry
with radius 5 µm and a focal plane with 700 nm depth bisecting the sphere. Sim-
ulated emitters were subject to photoactivation and photobleaching throughout
the sphere and were only observed when their positions coincided with the focal
volume. We simulated sparse tracking without gaps, so that if an emitter passed
twice through the focal volume, it counted as two separate trajectories. At the
sparsity used for these simulations, tracking is unambiguous and so tracking
errors do not contribute to the outcome.

For discrete-state simulations, the number of particles in each state was modeled
as a multinomial random variable drawn from the underlying state occupancies.
As a result, there is an inherent variability associated with the “true” frac-
tional occupancies for each simulation replicate, exactly as would be expected
in spaSPT experiments.

For simulations with state transitions, we modeled the particles as two-state
Markov chains with identical transition rates between the states. Each state
was associated with a constant diffusion coefficient. These Markov chains were
simulated on subframes grained at 100 iterations per frame interval. For in-
stance, for simulations with 7.48 ms frame intervals, the underlying Markov
chain was simulated on subframes of 74.8 µs. During each subframe, the state
of the MC was assumed to be constant and we simulated diffusion according to
the Euler-Maruyama scheme with the current diffusion coefficient. The positions
of the particle at the frame interval were recorded.
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DPMM and SA implementation. The gamma approximation DPMM as
described in the Supplementary Information has a publicly available implemen-
tation (dpsp; https://github.com/alecheckert/dpsp). This implementation
is a Python interface to an underlying C++ algorithm for Gibbs sampling from
the DPMM posterior distribution. Some examples are provided in the reposi-
tory.

The state array (SA) as described in the Supplementary Information has a
publicly available pure Python implementation (spagl; https://github.com/
alecheckert/spagl). This repository also provides a variety of simple inter-
faces to produce the plots shown in the manuscript, including the prior/poste-
rior diffusion coefficient likelihoods as a function of space (Figure 5B) and as a
function of time (Figure 5D).
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Supplementary Movie 1: Example of spaSPT data. NPM1-HaloTag in
U2OS osteosarcoma nuclei was labeled with 100 nM PA-JFX549-HTL for 5 min
followed by washes as described in Materials and Methods, then imaged with a
HiLo setup at 7.48 ms frame intervals with 1.5 ms excitation pulses. The pixel
size after accounting for magnification is 160 nm. Dots and lines indicate the
output of the detection and tracking algorithm; each trajectory has been given
a distinct color.

Supplementary Movie 2: Illustration of defocalization for a single
regular Brownian state. Trajectories were simulated in a 5x5x10 µm ellip-
soid µm using the Euler-Maruyama scheme for regular Brownian motions with
specular reflections at the ellipsoid boundaries. The diffusion coefficient for all
trajectories was held constant at 2.0 µm2 s−1, while trajectories were randomly
photoactivated at any point in the sphere and were subject to Poisson bleaching
at 14 Hz. The left panel shows the three-dimensional context of the trajectories,
with dotted lines indicating the boundaries of the focal volume. The depth of
the focal volume was 700 nm, which is roughly equivalent to the measured depth
of field for our oil immersion objectives. The right panel shows the projection of
the trajectories that coincide with the focal volume onto a hypothetical camera.
Notice that particles may make multiple transits through the focal volume that
manifest as distinct trajectories.

Supplementary Movie 3: Illustration of defocalization for multistate
regular Brownian motion. Trajectories were drawn from two states - a fast
state with diffusion coefficient 5.0 µm2 and a slow state with diffusion coefficient
0.05 µm2 s−1 - and simulated with a spherical nucleus with 5 µm radius. Similar
to Supplementary Movie 2, the left panel shows the trajectories in their native
three dimensions while the right panel shows trajectories as projected through
the focal volume onto the surface of a camera.
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Figure 1: Fast stroboscopic single particle tracking (spaSPT). (A)
Experimental setup; not to scale. An inclined illumination source is used in
combination with a high-NA objective to resolve molecules in a thin slice in a cell.
Laser photoactivation and excitation are pulsed to limit motion blur. After
localization and tracking, the output is a set of short trajectories (mean track length
3-4 frames). Sample trajectories shown are from a 7.48 ms tracking movie with
retinoic acid receptor α-HaloTag (RARA-HaloTag) labeled with photoactivatable
JF549 in U2OS nuclei. The asterisks in the movie frames indicate particles that are
either focalizing or defocalizing. (B) Influence of mobility on trajectory length.
RARA-HaloTag trajectories from U2OS nuclei were classified into five categories
based on their mean squared displacement (MSD). Individual data points represent
the mean trajectory length of independent biological replicates using separate
knock-in clones for RARA-HaloTag, and bar heights are the means across replicates.
(C) Influence of mobility on localization error. Trajectories were categorized
according to their MSD and for each category the localization error was estimated as
the root negative covariance between subsequent jumps (see Supplementary
Information). Individual data points represent biological replicates. (D) Schematic of
the generative model for the inference frameworks in this manuscript. Each
trajectory is assumed to represent a random draw from a distribution of state
parameters, and the inference goal is to recover this distribution from the observed
trajectories. Note that transitions between states are neglected in this framework.
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Figure 2: Schematic of Dirichlet process mixture models (DPMMs) and
state arrays (SAs). (A) Graphical models for finite-state mixture models
(FSMMs), DPMMs, and SAs. Open circles indicate random variables and solid
circles indicate constants. (B) Schematic overview of the DPMM and SA methods
applied to regular Brownian motion with localization error (RBME). (C) spaSPT
simulations used to evaluate the performance of DPMMs and SAs. The dotted lines
represent the simulated states, while the mean of the posterior distribution for
DPMMs and SAs were used to estimate state occupations. (D) Comparison of the
raw likelihood function against the posterior mean for mixtures of RBMEs.
Crosshairs indicate the ground truth parameters for the four simulated states. (E)
Convergence properties of the marginal posterior mean for SAs on the two kinds of
simulations in (C). In these experiments, the posterior mean at 51200 trajectories was
used as the distribution from which the KL divergence was calculated. The dotted
line indicates the number of pseudocounts in the uniform prior on this SA grid.
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Figure 3: Comparison of DPMMs, SAs, and MSD histograms on
simulated spaSPT. (A) Different combinations of diffusing states were simulated
in a thin (700 nm) focal volume with 7.48 ms frame intervals. Simulations were
divided into three classes: (i) constant (30 nm) localization error which was provided
to the inference algorithms, (ii) constant (30 nm) localization error which was
unknown to the algorithms, and (iii) localization error that varied with the diffusion
coefficient and was unknown to the algorithms. For DPMM and SA, the mean of the
posterior distribution is shown. (B) Fractional occupation was estimated by
integrating the normalized histogram (for the MSD method) or by integrating the
mean of the posterior distribution (for DPMM and SA methods). The limits of
integration for each state were determined based on visual inspection of the posterior
distribution, and were set to 0 - 1 µm2 s−1 for the first state and 1 - 40 µm2 s−1 for
the second state. (C) Effect of state transitions on the MSD, DPMM, and SA
approaches. Two diffusing states with first-order transitions were simulated, and the
transition rate constant was varied. (D) Inferring mixtures of diffusing states with
similar diffusion coefficients. Occupations as percentages were obtained by
integrating the indicated parts of the distribution.
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Figure 4: Using state arrays to recover subpopulations from experimental
spaSPT. All spaSPT experiments were performed with the photactivatable dye
PA-JFX549 using a TIRF microscope with HiLo illumination, 7.48 ms frame
intervals, and 1 ms excitation pulses. (A) Posterior mean occupations for four
different tracking targets, compared to the raw likelihood function. The upper two
panels are the RBME likelihood function aggregated across all trajectories, weighted
by the number of jumps in each trajectory and marginalized on the localization error
component. The bottom panel is the posterior for a run of the SA algorithm.
Asterisks for RARA-HaloTag and H2B-HaloTag indicate that the immobile fraction
for these constructs has been truncated to visualize the faster-moving states. (B)
Aggregate likelihood functions for RARA-HaloTag constructs bearing domain
deletions or point mutations. (C) Quantification of the immobile fractions and mean
free diffusion coefficients for the four constructs in (A). The “immobile fraction” was
defined as the total occupation below 0.05 µm2 s−1, while the mean free diffusion
coefficient was the occupation-weighted mean of the diffusion coefficients above this
threshold.
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Figure 5: Applications of spatially and temporally indexed posterior state
occupations. (A) Posterior mean occupations for a state array evaluated on
NPM1-HaloTag trajectories in U2OS nuclei. The dotted lines indicate discrete
diffusion coefficients that were isolated for analysis in subsequent panels. (B) Sample
spatially-resolved likelihoods under the posterior model in (A) for NPM1-HaloTag
trajectories in a U2OS nucleus. The posterior model over the diffusion coefficient was
evaluated for each of the origin trajectories, and these points were then used to
perform a kernel density estimate with a 100 nm Gaussian kernel. For the local
normalized occupation, these KDEs were normalized to estimate the relative
fractions of molecules in each state. (C) Quantification of the results in (B) for 15
nuclei. “Nucleoplasmic” trajectories were defined as trajectories outside nucleoli but
inside the nucleus. (D) Example usage of the likelihood function to assess the effect
of localization density on apparent state occupations. The RBME likelihood was
aggregated across trajectories in 100 frame windows, then marginalized on
localization error. Note the slight decrease in the apparent diffusion coefficient of
population (iii) and the increase in the immobile population upon the decrease in
localization density, probably reflecting tracking errors.
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Figure S1: Challenges with using the trajectory-averaged mean-squared
displacement (MSD) for multiple diffusing states in a thin focal volume.
(A) Schematic of the state bias issue arising from thin focal volumes. For the
simulation, 340727 trajectories were drawn with equal probability from a slow state
(0.001 µm2 s−1) and a fast state (5 µm2 s−1) and were simulated in a 5 µm radius
nucleus with a 700 nm focal depth and 14 Hz bleaching rate. For each trajectory
length, the fraction of trajectories in the fast state was quantified. (B) Illustration of
the relationship between mobility and localization error. Fast-moving molecules
present blurrier spots, leading to higher localization error. (C) Illustration of the role
of localization error in the jump variance and covariance between subsequent jumps.
As a result, even Markov processes such as regular Brownian motion have nonzero
covariance between subsequent jumps when measured with localization error.
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Figure S2: Comparison of the MSD, DPMM, and SA approaches on
simulated mixtures of regular Brownian motions with error. In all panels,
the y-axis represents the probability (or inferred probability) of a particular diffusion
coefficient. For the DPMM and SA approaches, this is inferred as the mean or
marginal mean of the posterior distribution, respectively. In the case of the MSD
approach, we instead report the proportion of trajectories that fall into the
corresponding bin. For the SA method, we used a parameter grid with diffusion
coefficients spanning 0.01 - 100.0 µm2 s−1 and localization errors spanning 0 - 60 nm.
Five independent replicates are overlaid on each subplot. (A) Simulations with
known and constant localization error (standard deviation 30 nm). (B) Simulations
with constant but unknown localization error (standard deviation 30 nm). In the
cases of DPMM and MSD, the localization error was first inferred using jump
covariance and then held constant when estimating the distribution over the diffusion
coefficient. In the case of SA, the localization error is jointly inferred with the
diffusion coefficient. (C) Simulations with variable and unknown localization error.
Inference proceeded as in (B), but in the case of the MSD approach, the localization
error and diffusion coefficient were jointly inferred for each trajectory. The
localization errors for each simulation are recorded in the Supplementary Methods.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2021. ; https://doi.org/10.1101/2021.05.03.442482doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.03.442482
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3: Illustration of the connection between diffusion coefficient and
localization error. (A) The variance of the jumps taken by an RBME is the sum
of contributions from diffusion and localization error. These contributions are
distinguishable when considering multiple frame intervals because the diffusive
component scales with time, whereas the error component does not. However,
estimating either the error or diffusive component is more difficult when the
component is small compared to the other. (B) Aggregated RBME likelihoods for
two experimental spaSPT datasets. Dotted white lines indicate contours with
constant jump variance. (C) Illustration of the difficulty inherent in distinguishing
the effects of diffusion and error for slow or fast diffusion coefficients for a simulated
spaSPT dataset with four states. (D) Illustration of the danger of misestimating the
localization error for the DPMM method with simulated mixtures of three RBME
states. In this case, the assumed localization error in the DPMM algorithm was held
constant at 30 nm. Because SAs naturally incorporate uncertainty about localization
error, inference is more stable with respect to changes in the experimental
localization error.
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Figure S4: Comparison of state occupation accuracy for MSD, DPMM,
and SA approaches. (A) Retrieving state occupations for a three-state model.
Fractional occupation was estimated by integrating the normalized histogram (for the
MSD method) or by integrating the mean of the posterior distribution (for DPMM
and SA methods). The limits of integration for each state were determnined based on
visual inspection of the posterior distribution. The limits of integration for each state
were 0 - 0.08 µm2 s−1 for the first state, 0.08 - 1.5 µm2 s−1 for the second state, and
1.5 - 40 µm2 s−1 for the third state. (B) Retrieving state occupations for a four-state
model. Fractional occupation was estimated as in (A). The limits of integration for
each state were 0 - 0.08 µm2 s−1 for the first state, 0.08 - 0.5 µm2 s−1 for the second
state, 0.5 - 3 µm2 s−1 for the third state, and 3 - 40 µm2 s−1 for the fourth state.
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Figure S5: Comparison of the DPMM and SA algorithms on two difficult
situations. (A) Running DPMM and SA on trajectories with diffusion coefficients
slower than the minimum diffusion coefficient included in the support. Fractional
occupation for each state was estimated by integrating the posterior mean over the
peaks. For the MSD histogram, DPMM posterior mean, and SA posterior mean
subplots, five independent replicates are overlaid onto the same plot. (B) Running
DPMM and SA on diffusing states with similar diffusion coefficients. For the MSD
histogram, DPMM posterior mean, and SA posterior mean subplots, five
independent replicates are overlaid onto the same plot.
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Figure S6: Effect of state transitions on the outcome of the DPMM and
SA inference methods. (A) State diagram for two-state regular Brownian motion
with state transitions. The transition rate constant k was identical for both
transitions. (B) Settings for the state transition simulations. Under these conditions,
the mean trajectory length was 7 frames. 6400 trajectories were used for each
inference run. (C) Outcome of the transition simulations. The y-axis corresponds to
state occupation. For both DPMMs and SAs, we used a maximum trajectory length
of 12 frames. For the MSD, DPMM, and SA methods, the result of inference with
five independent replicates are overlaid on each subplot.
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Figure S7: Validation of endogenously tagged U2OS RARA-HaloTag cell
lines. (A) Western blots for endogenous RARA-HaloTag knock-ins in U2OS nuclei.
The expected molecular weight of RARA-HaloTag-3xFLAG is 97 kDa. (B)
Luciferase assays with a retinoic acid-responsive promoter with wildtype or
endogenously tagged U2OS cell lines. (C) Luciferase assays with transfected RARA
constructs to assess the effect of tagging on transactivation of a retinoic acid response
element-driven luciferase gene. RARA(WT) indicates a transgene bearing the
wildtype version of RARA, and C88G is a DNA-binding mutant. (D) Spinning disk
confocal microscopy images of TMR-labeled endogenously tagged RARA-HaloTag
cell lines. The intensities for all three images have been identically scaled.
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Figure S8: Assessing the variability of the SA posterior mean for
experimental spaSPT datasets. (A) Biological replicates of each of the tracking
experiments shown in Fig. 4A. Tracking was performed on an inverted TIRF setup
with 7.48 ms frame intervals and 1 ms stroboscopic excitation with the dye
PAJFX549-HaloTag ligand. RARA-HT cells were knock-ins as described in Fig. S7,
H2B-HaloTag cells were previously described [52], and HT and HT-NLS were
expressed from a nucleofected PiggyBac vector under an EF1α promoter. (B)
Bootstrap aggregation to evaluate the sources of variability in DPMM/SA runs on
RARA-HaloTag trajectories. RARA-HaloTag trajectories from one tracking dataset
were sampled according to one of three schemes, then analyzed with the DPMM and
SA methods. 20 replicates were performed for each condition, and the
Kullback-Leibler divergence of the posterior mean of each replicate from the
cross-replicate posterior mean were used to quantify variability.
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Figure S9: Supplementary data related to Figure 5. (A) Western blots on
heterozygously tagged NPM1-HaloTag-3xFLAG in U2OS nuclei. (B) U2OS
NPM1-HaloTag cells stained with 100 nM tetramethylrhodamine and imaged on a
spinning disk confocal microscope. (C) Additional examples of cells quantified as in
Fig. 5B. (D) Aggregate RBME likelihood functions for trajectories in different
subcellular compartments. Trajectories were classified as either inside nucleoli,
“nucleoplasmic” (outside nucleoli but inside the nucleus), or extranuclear. The
RBME likelihood function was evaluated on each set of trajectories, aggregated
across trajectories, and plotted as a function of the diffusion coefficient. Each row in
the plot is separate nucleus, and likelihoods have been scaled for each compartment
by the total number of trajectories.
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Figure S10: Approach to calculate the defocalized fraction for Markov
processes tracked without gaps. (A) Schematic for the approach used to
calculate the fraction of defocalized trajectories in 2D microscopy setups. Two
possible initial probability densities for the particle in z are shown. The Green’s
function for the diffusion model, estimated from motion in the XY plane, is used to
propagate the probability density. At each frame interval, the density that lies
outside the focal volume (corresponding to particles that are not observed) is set to
zero. (B) Comparison of the algorithm in (A) with the defocalized fraction from
simulated data. Trajectories were computationally photoactivated in a slab with
thickness ∆z and infinite XY extent, then tracked without gaps. The fraction of
trajectories remaining was quantified at each frame interval. Each black dot
corresponds to a simulation with 100000 trajectories, while the lines correspond to
the output of the algorithm in (A).
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Figure S11: Approach to calculate the defocalized fraction for Markov
processes tracked with gaps. (A) Schematic for the approach used to calculate
the fraction of defocalized trajectories in 2D microscopy setups, tracked with gap
frames allowed. Because tracking with n gaps allows particles to spend up to n
frames outside the focal volume before returning, this approach alternates between
propagating the probability density with the Green’s function for the Markov process
and recursively partitioning the probability density into components inside and
outside the focal volume, aggregating the density that lies outside the focal volume to
calculate the defocalization function. An iterative version of the algorithm is outlined
in the Supplementary Information. (B) Comparison of the algorithm in (A) with the
defocalized fraction from simulated data with one gap allowed during tracking, as in
Fig. ??B. (C) Identical to (B), except two gaps were allowed during tracking.
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