

Phylogenetic signatures in the emergence of community-associated MRSA

Eike Steinig^{1,2}, Izzard Aglua³, Sebastián Duchêne¹, Michael T. Meehan², Mition Yoannes⁴, Cadhla Firth², Jan Jaworski³, Jimmy Drekore⁵, Bohu Urakoko³, Harry Poka³, Clive Wurr⁶, Eri Ebos⁶, David Nangen⁶, Elke Müller^{7,8}, Peter Mulvey², Charlene Jackson⁹, Anita Blomfeldt¹⁰, Hege Vangstein Aamot¹⁰, Moses Laman⁴, Laurens Manning^{11,12}, Megan Earls¹³, David C. Coleman¹³, Andrew Greenhill^{4,14}, Rebecca Ford⁴, Marc Stegger¹⁵, Muhammed Ali Syed¹⁶, Bushra Jamil¹⁷, Stefan Monecke^{7,18}, Ralf Ehricht^{7,19}, Simon Smith²⁰, William Pomat⁴, Paul Horwood^{4,21}, Steven Y.C. Tong^{1,22,*}, and Emma McBryde^{2,*}

¹ Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; ² Australian Institute of Tropical Health and Medicine, James Cook University, Townsville and Cairns, Australia; ³ Sir Joseph Nombri Memorial-Kundiawa General Hospital, Kundiawa, Simbu Province, Papua New Guinea; ⁴ Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea; ⁵ Simbu Children's Foundation, Kundiawa, Simbu Province, Papua New Guinea; ⁶ Goroka General Hospital, Surgical Department, Goroka, Eastern Highlands Province; ⁷ Leibniz Institute of Photonic Technology (IPHT), Jena, Germany; ⁸ InfectoGnostics Research Campus, Jena, Germany; ⁹ U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, United States; ¹⁰ Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; ¹¹ Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia; ¹² Medical School, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch, Western Australia; ¹³ Microbiology Research Unit, Division of Oral Biosciences, University of Dublin, Trinity College, Dublin, Ireland; ¹⁴ Department of Microbiology, Federation University Australia, Ballarat, Australia; ¹⁵ Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; ¹⁶ Department of Microbiology, University of Haripur, Haripur, Pakistan; ¹⁷ BJ Micro Lab (SMC Private) Limited, Islamabad, Pakistan; ¹⁸ Technical University of Dresden, Dresden, Germany; ¹⁹ Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany; ²⁰ Cairns Hospital and Hinterland Health Service, Queensland Health, Cairns, Australia; ²¹ College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia; ²² Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia

This preprint was compiled on May 1, 2021

Community-associated, methicillin-resistant *Staphylococcus aureus* (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 years. Here, we apply consistent phylogenetic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole genome sequencing data for the Australian sequence type (ST) 93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (R_e) and sustained transmission ($R_e > 1$) coincided with spread of progenitor methicillin-susceptible *S. aureus* (MSSA) in remote northern Australia, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Analysis of a ST772-MRSA-V cluster in Pakistan suggests that sustained transmission in the community following importation of resistant genotypes may be more common than previously thought. Applying the same phylogenetic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated *S. aureus* lineages from America, Asia, Australasia and Europe. Surges in R_e were observed at the divergence of antibiotic resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed amongst drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA and MSSA lineages in the late 20th century was driven by a combination of antibiotic resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.

Staphylococcus aureus | Community-associated MRSA | Papua New Guinea | Pakistan | Far North Queensland | ST93-MRSA-IV | ST772-MRSA-V | Reproduction number | Birth-death skyline | Phylogenetics

S*taphylococcus aureus* is an opportunistic pathogen that causes a variety of clinical manifestations, from superficial skin and soft tissue infections to life-threatening systemic diseases, including bloodstream infections and necrotizing pneumonia (1). Unfortunately, treatment has been complicated by the rapid emergence of antibiotic resistance worldwide. In the last few decades, a series of distinct *S. aureus* lineages, defined by multilocus sequence types (ST), have emerged in healthcare, community and agricultural settings around the world (2–4). Strains of methicillin-resistant *S. aureus* (MRSA) within some of these lineages have traditionally disseminated in hospitals, where acquisition of mutations and mobile genetic elements - such as the staphylococcal cassette chromosome *mec* (SCC*mec*) - promote persistence under high antibiotic selection pressure (5, 6). Since the 1990s, however, antibiotic-resistant community-associated clones without epidemiological links to hospitals have emerged around the world, subsequently replacing other regionally prevailing lineages (2). Community-associated MRSA strains tend to be virulent, infect otherwise healthy people, and are frequently exported from the regions in which they emerged (6). While considered less resistant to antibiotics than healthcare-associated strains, evidence from multiple global and regional whole-genome datasets suggests that their emergence is associated with the acquisition of specific resistance mutations and mobile elements (7–15).

Epidemiological and genomic evidence for historical and ongoing circulation of MSSA progenitor populations exists for nearly all community-associated lineages of interest (7–

ES, PH, SYCT, EMB conceived of the study; ES, MM, SD conducted the Bayesian phylogenetics analyses; ES, SS, CF obtained samples and maintained the Far North Queensland isolates; IA, AG, RF, MY, JJ, JD, BU, HP, CW, EE, DN, ML, LM, PH, WP conducted all work in Papua New Guinea including sampling and maintenance of strains from Kundiawa and Goroka; BJ, MAS, RE, CJ, EM, SM sampled strains in Pakistan and maintained the isolate collection; MS, AB, HVA, TW contributed unpublished data, provided strains from Norway, and conducted laboratory work for strain maintenance and sequencing; EMB, SYCT, WP, SS supervised the study sites and provided funding; ES wrote the manuscript draft; ES, SYCT, EMB, CF, PH, MS, MM, SD wrote the manuscript; all authors contributed to and reviewed the final manuscript.

There are no conflicts of interest by the authors; * authors contributed equally to the study.

Correspondence: eike.steinig@unimelb.com.au, steven.tong@mh.org.au

29 15). Strong contemporary evidence comes from the Australian
30 ST93 lineage, whose ancestral MSSA strains continue to circulate
31 amongst remote communities in the Northern Territory
32 (10, 16). In addition, a symplesiomorphic clade of ST8-MSSA
33 progenitor strains has been found circulating in Africa (7),
34 having diverged prior to the emergence of the ancestral ST8-
35 MSSA in Europe during the 19th century, which then spread to
36 the Americas where it diverged into the ST8-USA300 (MRSA)
37 sublineages in the 20th century (13, 14). Local circulation
38 of progenitor MSSA strains in Romania is documented for
39 the European ST1-MRSA sublineage (11, 17, 18). Emergence
40 of ST80-MRSA in Europe has epidemiological connections
41 to North West Africa through importation of MSSA cases in
42 French legionaires (8, 19). While few ancestral strains have
43 been sampled, ST772-MRSA-V is thought to have emerged
44 from local MSSA populations in the Bengal Bay area, with
45 the first isolates from 2004 collected in Bangladesh and India,
46 coinciding with the rise of a multidrug-resistant MRSA clade
47 on the Indian subcontinent (15, 20). Even less is known about
48 the origins of the ST59 clone, which produced an MRSA epidemic
49 in Taiwan, but had previously diverged into a (largely)
50 MSSA sister clade in the United States (9).

51 Subsequent global dissemination of emergent MRSA clades
52 has frequently been linked to travel and family history in
53 their source region (7–15). For example, nearly 60% of isolates
54 included from a global study on the dissemination of the
55 ST772-MRSA-V clone had family contacts or travel history
56 on the Indian subcontinent (15). However, to date, community
57 strains tend to cause small-scale outbreaks, consisting of local
58 transmission chains and household clusters failing to
59 become endemic in the community (7, 10, 15, 21–23). Some
60 notable exceptions include several USA300 clades (ST8-MRSA-
61 IV genotype) in Colombia, Gabon and France, as well as the
62 Australian (ST93-MRSA-IV genotype) featuring a transmission
63 event into the Māori and Pacific Islander in metropolitan
64 Auckland, New Zealand (NZ) (7, 10, 13). Additional evidence
65 for successful recruitment arises from molecular surveillance
66 of ST80 and ST1, as well as from genomic surveillance of
67 ST152-MSSA in the Middle East (8, 12, 18, 24).

68 The distinct regional distribution of community-associated
69 lineages is observed in stark contrast to healthcare-associated
70 strains, that tend to spread rapidly in local healthcare systems,
71 often following international dissemination (5, 25, 26). The
72 evolutionary and epidemiological trajectory of community-
73 associated lineages is currently not known, although indica-
74 tions are that the prevalence of some lineages and sublineages
75 have declined over the decade, including the North American
76 USA300 clade (27). However, in disadvantaged and remote
77 communities, such as in northern Australia (28), community-
78 associated MRSA rates are some of the highest in the country
79 and have been increasing by around 4% per year, contrary to
80 all other healthcare jurisdictions in Australia over the same
81 period of time (29, 30). In addition, extremely remote popu-
82 lations in the Pacific Islands, such as in Papua New Guinea,
83 which borders Australia in the Torres Strait, have reported
84 outbreaks of community-associated osteomyelitis infections
85 caused by *S. aureus*, but little is known about the extent of
86 these outbreaks (31, 32).

87 While these data have contributed to a deeper understand-
88 ing of community-associated lineage emergence, questions re-
89 main about the drivers behind these seemingly convergent

90 events in the late 20th century. Increases in the effective
91 population size (N_e) have been observed in some lineages,
92 coinciding with the acquisition of antibiotic resistance but
93 these analyses have not been conducted in for all relevant
94 sequence types (8, 9, 11, 12). While historical and contem-
95 porary data on MSSA progenitor populations is limited in
96 most lineages, we note that these populations tend to be geo-
97 graphically distinct, and that emergence of resistant genotypes
98 occurs rapidly in industrialized host populations, such as on
99 the Indian subcontinent (ST772), the Australian East Coast
100 (ST93), in central Europe (ST1, ST80) and North America
101 (ST8). In addition, it is not clear whether sustained transmis-
102 sion — characterized by an effective reproduction number (R_e)
103 exceeding a threshold value of one, and remaining above that
104 threshold for a period of time — has occurred following the
105 emergence and transmission of community-associated strains,
106 and whether drug-resistant strains are capable of becoming
107 endemic following their exportation. Bayesian phylodynamic
108 methods have been extensively used in viral epidemics to infer
109 key epidemiological parameters and changes in transmission
110 dynamics (ΔR_e) from phylogenetic trees (33–36), allowing
111 for simultaneous assessment of genomic and epidemiological
112 changes in emerging pathogens. However, phylodynamic ap-
113 plications have been limited for bacterial datasets due to their
114 relatively more complex genome evolution, lack of meta-data
115 and sufficient longitudinal isolate collections (37, 38). Virtu-
116 ally nothing is known about the transmission dynamics of *S.*
117 *aureus*. Synthesizing the available evidence, we hypothesize
118 that interactions between genomic and epidemiological factors
119 create the conditions necessary for sustained transmission in
120 the local environment, and have contributed to the emergence
121 of community-associated MRSA.

122 Here, we investigate the genome evolution and transmission
123 dynamics of emergent community-associated MRSA lineages
124 using comparative phylodynamic methods to describe and
125 contrast patterns of emergence and spread. We first exam-
126 ine the genomic epidemiology and transmission dynamics of
127 community-associated *S. aureus* from the remote highlands
128 of Papua New Guinea (PNG) and communities in northern
129 Australia (Far North Queensland, FNQ). Using additional
130 samples of the Bengal Bay clone (ST772) from Pakistan (39)
131 and global lineage-resolved sequence data (7–15), we discover
132 signatures in the effective reproduction number that suggest
133 a combination of resistance acquisition and epidemic growth
134 in populations centers as key drivers in the emergence of
135 community-associated MRSA.

Results

136 We sequenced 187 putative *S. aureus* isolates from remote
137 PNG (2012 - 2018) and FNQ (Torres and Cape / Cairns and
138 Hinterland jurisdictions, 2019) using Illumina short-reads (Fig.
139 1, Supplementary Tables). Genotyping identified the Aus-
140 tralian MRSA clone (ST93-MRSA-IV) as the main cause of
141 paediatric osteomyelitis (31) in the highland towns of Kundi-
142 awa and Goroka ($n_{Kundiawa} = 33/42$, $n_{Goroka} = 30/35$). The
143 remaining isolates from osteomyelitis cases in Kundiawa and
144 Goroka belonged to an assortment of sequence types (ST5,
145 ST25, ST88), single locus variants of ST1247 ($n = 1$) and
146 ST93 ($n = 2$), coagulase-negative staphylococci including *S.*
147 *lugdunensis* ($n = 1$), *S. delphini* ($n = 1$) and *Mammaliicoccus*
148 *sciuri* ($n = 1$), as well as a neonatal hospital cluster of invasive
149

150 ST243 (clonal complex 30, n = 9) (Fig. 1A). FNQ isolates sam-
151 pled in 2019 were largely identified as ST93-MRSA-IV (n_{FNQ}
152 = 68/91) on a background of various other lineages, includ-
153 ing one infection with *S. argenteus* (Fig. 1A, Supplementary
154 Tables).

155 ST93-MRSA-IV strains from PNG and FNQ were contextu-
156 alised within the global sequence diversity of the lineage (ST93,
157 n = 444) to determine strain provenance using a maximum-
158 likelihood (ML) phylogeny constructed from non-recombinant
159 core-genome SNPs (Fig. 1B, n = 575, 6648 SNPs). The re-
160 sulting tree topology recapitulated our previous analysis of
161 the lineage, confirming its origin from extant MSSA strains
162 circulating in remote Indigenous communities of north-western
163 Australia (10). The main divergence event of ST93-MRSA on
164 the Australian East Coast (AEC) coincided with acquisition
165 of SCC_{mec}-IV (Fig. 1B). Isolates from PNG formed a major
166 (n = 55) and minor (n = 8) clade in the ML tree, consisting
167 of mixed strains from Goroka and Kundiawa (Fig. 1A, 1B,
168 green). The major clade contained sporadic isolates sampled
169 in Queensland, FNQ, and New South Wales (n = 3) indicating
170 regional transmission from PNG (Fig. 1B). The FNQ cluster
171 derived from a Northern Territory (NT) clade that itself
172 appears to have been a re-introduction of ST93-MRSA-IV
173 from Australia's East Coast into the Northern Territory (Fig.
174 1B). Sporadic isolates sampled in FNQ were imported from
175 other locations, including the North Eastern ST93-MRSA-IV
176 circulation, the NT, as well as NZ and PNG (red branches
177 outside of FNQ cluster in Fig. 1B). Sporadic transmission
178 into FNQ most likely occurred through Cairns, which is the
179 regional hub of the area, has an international airport and is
180 frequented by visitors from the region.

181 **Regional transmission dynamics of the Australian commu- 182 nity clone (ST93-MRSA-IV)**

183 We next used fast maximum-likelihood methods (40, 41) (Fig.
184 S1, Fig. S2) as well as Bayesian coalescent skyline (42) and
185 birth-death skyline (33) models for serially (PNG) and contem-
186 poraneously sampled isolates (FNQ) in BEAST2 (34) to infer
187 time-scaled phylogenies and estimate epidemiological param-
188 eters for the ST93-MRSA-IV clone, including changes in R_e
189 and effective population size (N_e) over time (Fig. 2A, Table
190 1). Previous genomic studies have noted increases in N_e in the
191 emergence of several community lineages (8, 9, 11, 12) but data
192 was not available for all lineages (7, 10, 20), and no studies
193 had previously used birth-death skyline models to investigate
194 changes in R_e. Lineage-wide transmission dynamics of the
195 Australian clone ST93 indicate successive surges in R_e at the
196 divergence of extant MSSA strains in the Northern Territory
197 (NT), at acquisition of SCC_{mec}-IVa and spread on the AEC,
198 and upon recruitment into PNG, NZ and FNQ communities
199 (Fig. 2A). The clone became epidemic (R_e > 1) soon after the
200 emergence of an extant MSSA clade in the NT (MRCA = 1990,
201 95% credible interval, CI: 1988 - 1992), coinciding with the
202 first sample (1991) from the NT in our retrospective collection
203 (Fig. 2A). When the clone was first described in southern
204 Queensland in 2000 (20) a resistant clade ST93-MRSA-IV had
205 just established transmission in East Coast population centers
206 (QLD, NSW, VIC) following the acquisition of SCC_{mec}-IV
207 around 1994 (95% CI: 1993 - 1995) (Fig. 1B, Fig. 2C). We
208 estimate that the introduction of ST93-MRSA-IV into PNG
209 occurred in the early 2000s (MRCA = 2000, 95% CI: 1998 -
210 2003, Fig. 2A) soon after establishment on the East Coast of

211 Australia. In contrast, introduction of ST93-MRSA-IV into
212 FNQ occurred more recently (MRCA = 2007, 95% CI: 2005 -
213 2009).

214 Birth-death skyline models with fixed lineage-wide substi-
215 tution rates were additionally applied to regional sublineages
216 and -clades of ST93 (Methods), including the introductions
217 into PNG, FNQ, New Zealand (NZ), and the re-introduction
218 into the Northern Territory (Fig. 2B, Table 1: sublineages).
219 We observed sustained transmission in PNG (R_e = 1.61, 95%
220 CI: 1.13 - 2.40) and FNQ (R_e = 1.55, 95% CI: 1.08 - 2.44).
221 Sustained transmission may have occurred in the Northern
222 Territory re-introduction of the MRSA-IV genotype (R_e =
223 0.97, 95% CI: 0.72 - 1.25) and the Auckland community cluster
224 (R_e = 1.09, 95% CI: 0.79 - 1.48). Infectious periods ($\frac{1}{\delta}$, the
225 time from acquisition to death / sampling of the strain) were
226 estimated on the order of several years for strains from NZ
227 (3.72 years, 95% CI: 1.12 - 6.10), NT (2.29 years, 95% CI: 0.97
228 - 3.41), PNG (2.21 years, 95% CI: 0.49 - 5.08) and FNQ (1.06
229 years, 95% CI: 0.19 - 2.58) (Table S1, Fig. S1). We note that
230 birth-death skyline models assume well-mixed populations and
231 that the comparatively low, lineage-wide median estimate of
232 the infectious period in ST93 (0.427 years, 95% CI: 0.244 -
233 0.63, Table S1, Fig. S3) was likely a result of applying the
234 model over the early diverging MSSA clade and the MRSA
235 clades on the AEC, where the resulting population structure
236 biased the parameter estimate for the infection period. As
237 we had sufficient sample sizes for these subclades (n_{NT} = 96,
238 n_{AEC} = 278), we applied the birth-death skyline to each clade
239 individually, allowing us to model clade-specific changes in R_e
240 over time (Fig. 2C, insets) as well as using the clade-specific
241 method with fixed lineage-wide clock-rates (Table 1). This
242 produced estimates for the duration of the infectious period
243 consistent with the credible intervals of the outbreak subclades
244 (NT MSSA 1.79 years, 95% CI: 0.77 - 3.76; AEC 1.38 years,
245 95% CI: 0.47 - 4.86) (Table S1). Stable circulation (R_e ≈ 1)
246 on the Australian East Coast was observed following a notable
247 spike in R_e shortly after acquisition of SCC_{mec}-IV in the
248 MRCA of the clade (Fig. 2C). In contrast, R_e of ST93-MSSA
249 in the NT has been increasing since around 2003, with credible
250 intervals of R_e > 1 suggesting sustained transmission until
251 at least 2011. More recent genomic data on the spread of
252 ST93-MSSA was not available.

253 **Sustained community transmission of the Bengal Bay clone 254 (ST772-MRSA-V) in Pakistan**

255 We next investigated whether clade-specific signatures of epi-
256 demic growth (R_e > 1) could be found in other community-
257 associated MRSA lineages. We had previously reconstructed
258 the detailed (n = 355) evolutionary history of the ST772-
259 MRSA-V clone (15), which acquired multiple resistance ele-
260 ments, and emerged in the last two decades on the Indian
261 subcontinent, where it has become a dominant community-
262 associated lineage (2). No other genomic samples were avail-
263 able from these countries with the exception of unreleased
264 ST772-A samples from India (43) and a macaque-associated
265 environmental MRSA isolate from Nepal (44). We sequenced
266 an additional 59 strains of ST772 from community and hospital
267 sources in the population centers of Rawalpindi and Haripur
268 in Pakistan (39), as well as some strains imported into a Uni-
269 versity hospital in Norway (21) (Fig. 3). We found that ST772
270 was exported into Pakistan on multiple occasions from the
271 background population on the Indian subcontinent (Fig. 3);

Table 1. Birth-death skyline median posterior estimates for global community-associated *S. aureus* lineages and sublineages

Lineage	n	n _{MSSA}	MRCA	95% CI	R _e	95% CI	Clock rate*	Notes	References
Sequence types									
ST93	575	109	1983	1982 - 1983	Δ	Figs. 2, 4	3.18x10 ⁻⁰⁴	Australia	this study, (10, 16)
ST772	359	36	1970	1965 - 1975	Δ	Figs. 3, 4	4.11x10 ⁻⁰⁴	South Asia	this study, (15)
ST80	215	23	1977	1974 - 1979	Δ	Fig. 4	5.93x10 ⁻⁰⁴	Europe	(8, 19)
ST8	207	64	1860	1849 - 1871	Δ	Fig. 4	1.95x10 ⁻⁰⁴	Americas	(7, 13)
ST1	190	10	1987	1985 - 1989	Δ	Fig. 4	4.26x10 ⁻⁰⁴	Europe	(11, 17)
ST59	154	32	1958	1952 - 1964	Δ	Fig. 4	3.69x10 ⁻⁰⁴	US-Taiwan	(9)
ST152	117	61	1958	1947 - 1962	Δ	Fig. 4	4.79x10 ⁻⁰⁴	Europe	(12)
MRSA sublineages									
ST93-MRSA-EastCoast	278	2	1994	1993 - 1995	1.57	1.11 - 2.29	3.18x10 ⁻⁰⁴		(10)
ST93-MRSA-FNQ	61	0	2007	2005 - 2009	1.55	1.08 - 2.27	3.18x10 ⁻⁰⁴		this study, (29)
ST93-MRSA-PNG	65	3	2000	1998 - 2003	1.61	1.13 - 2.40	3.18x10 ⁻⁰⁴		this study, (31)
ST93-MRSA-NT	62	1	1999	1998 - 2001	0.97	0.72 - 1.25	3.18x10 ⁻⁰⁴		(10, 16)
ST93-MRSA-NZ	51	1	2002	2001 - 2004	1.09	0.79 - 1.48	3.18x10 ⁻⁰⁴		(10, 16)
ST772-MRSA-Pakistan	25	0	2002	2000 - 2003	1.36	1.08 - 1.79	4.11x10 ⁻⁰⁴		this study, (39)
ST152-MRSA-Europe	53	0	1989	1986 - 1991	1.47	1.07 - 2.12	4.79x10 ⁻⁰⁴		(12)
ST8-USA300-NorthAmerica	73	3	1983	1979 - 1986	1.60	1.13 - 2.36	1.95x10 ⁻⁰⁴	ACME**	(7, 13)
ST8-USA300-SouthAmerica	32	0	1978	1973 - 1982	1.56	1.10 - 2.31	1.95x10 ⁻⁰⁴	COMER**	(7, 13)
ST8-USA300-Gabon	17	0	1993	1991 - 1995	1.58	1.11 - 2.34	1.95x10 ⁻⁰⁴		(7)
ST59-MRSA-Taiwan	87	2	1979	1976 - 1981	1.46	1.07 - 2.11	3.69x10 ⁻⁰⁴		(9)
MSSA sublineages									
ST93-MSSA-Australia	96	84	1990	1988 - 1992	1.54	1.09 - 2.25	3.18x10 ⁻⁰⁴	blaZ, ermC	(10)
ST8-MSSA-WestAfrica	23	21	1979	1975 - 1982	1.54	1.09 - 2.26	1.95x10 ⁻⁰⁴	blaZ, dfrG, tetK, fosD	(7)
ST152-MSSA-WestAfrica	42	40	1975	1972 - 1978	1.55	1.10 - 2.25	4.79x10 ⁻⁰⁴	blaZ	(12)

* sublineage clock rates fixed at lineage-wide estimated median, Δ changes in R_e over time (Figs. 2, 3, 4), ** COMER - copper and mercury resistance element; ACME - arginine catabolic mobile element

our sample contained several smaller transmission clusters (n < 8) in line with observations of community spread following international transmission (15, 21) (Fig. 3A). In addition, a larger transmission cluster (n = 25) was established shortly after fixation of SCCmec-V (5C2) (2002, 95% CI: 2000 - 2003) in the emergent clade ST772-A2 (Fig. 3A). Application of the birth-death skyline model on the lineage revealed changes in effective reproduction numbers similar to those observed in ST93-MRSA-IV (Fig. 3B). Instead of several pronounced spikes of the reproduction number, its epidemic phase was characterized by a monotonic rise in R_e coinciding with the acquisition of a multidrug resistance-encoding integrated plasmid (*blaZ-aphA3-msrA-mphC-bcrAB*) around 1995 (95% CI: 1992 - 1996). Following a switch in fluoroquinolone resistance mutations in *gyrA* and fixation of the SCCmec-V (5C2) variant shortly after its emergence on the Indian subcontinent (1998, 95% CI: 1996 - 1999), a smaller increase in the reproduction number occurred with a delay of several years (Fig. 3B). Estimates for R_e in the Pakistan cluster suggest that importation resulted in sustained transmission (R_e = 1.36, 95% CI: 1.08 - 1.79). Mirroring the emergence of drug-resistant ST93-MRSA on the Australian East Coast, the Bengal Bay clone emerged in population centers on the Indian subcontinent from a currently unknown MSSA progenitor population and was able to establish sustained transmission after importation into Pakistan (Fig. 3C).

Global emergence and trajectory of community-associated *Staphylococcus aureus*

We next applied the birth-death skyline model to other community-associated MRSA clones, accounting for major lineages that have become dominant community lineages re-

gionally and for which lineage-resolved genomic data were available (n > 100, Fig. 4) (7-15). Short-read sequence data with dates and locations from previous genomic lineage analyses were collected from studies published on the emergence of ST1 (n = 190), ST152 (n = 139) and ST80 (n = 217) in Europe, the US-Taiwan clone ST59 (n = 154) and the European-American ST8 (n = 210, excluding isolates available as assemblies only). Multiple sequence types (ST152, ST8, ST80) included extant MSSA populations circulating in Africa (Supplementary Tables, Table 1). Our analysis confirmed signatures of epidemic growth across these lineages, including notable increases in R_e following genomic changes and recruitment into regional host populations (Central Europe, North America, Australian East Coast, India, Taiwan), as well as increases in N_e (effective population sizes of *S. aureus* lineages) noted in previous investigations, coinciding with increases of R_e (Fig. 4, Fig. S1). MRCAs of antibiotic resistant clades in all MSSA and MRSA sublineages were estimated with 95% CI lower bounds between 1972 - 2005, and upper bounds between 1978 - 2009, confirming the seemingly convergent global emergence of resistant community strains in the late 20th century (Table 1). Low estimated sampling proportions suggest that ST8 and ST93 are widespread, consistent with global and regional epidemiological data of these clones; there was less certainty in the predictions for the recently emerged ST1, ST772 and for ST152 (Table S1). High posterior estimates of sampling proportion (ρ) in ST80 further suggest that the lineage is in decline in the sampled European population, although anecdotal reports indicate potential ongoing circulation in North Africa. Overall, median infectious periods varied between lineages with the shortest estimates of several months for ST93 and the longest estimates exceeding ten years in

335 several lineages (Table S1).

336 Considerable changes in R_e occurred in the ancestral ST8-
337 MSSA genotype at the emergence in European populations in
338 the 19th century, which has been associated with the capsule
339 mutation *cap5D* (7) (1860, 95% CI: 1849 - 1871) (Fig. 4). The
340 proto community-associated clone then spread to the
341 Americas and acquired *SCCmec*-IV variants as well as the
342 canonical COMER and ACME elements at the divergence of
343 two regionally distinct epidemics across North America (14)
344 and parts of South America (13, 45) which are notable as a
345 combined increase in R_e in the second half of the 20th century
346 (Fig. 4). While data was sparse for ST59-MSSA strains
347 (9), elevated reproduction numbers indicate that it became
348 epidemic in the United States in the 1970s and 1980s, followed
349 by the emergence of a resistance-enriched MRSA clade in
350 Taiwan in the late 1970s and its expansion in the 1990s with a
351 delay between the MRCA of resistant strains and the epidemic
352 in Taiwan several years later (Fig. 4, Table 1). Similar delays
353 occurred in European clones ST80-MRSA and ST1-MRSA,
354 which also shared high estimates for their infectious periods
355 (> 10 years). We suspect that ancestral strains circulated for
356 several years in local subpopulations before their emergence
357 across Europe in the 1990s (ST80) (8) and 2000s (ST1) (11)
358 but a weak temporal signal may contribute to a high degree
359 of uncertainty in ST1 (Fig. S4, 95% CI intervals). Similar
360 to the minor increase in R_e of ST772 after acquisition of the
361 *SCCmec*-V (5C2) variant, a second increase in R_e without
362 notable genomic changes was observed in ST80, suggesting a
363 second shift in transmission dynamics as the MRSA genotype
364 spread across Europe in the early 2000s (Fig. 4). We observed
365 the steepest spikes of reproduction numbers in clones recruiting
366 into European countries (ST1, ST152) where R_e temporarily
367 spiked to > 5.0 - 8.0 after initial recruitment into the host
368 population, albeit with large confidence intervals (Fig. 4).
369 R_e estimates of West African subclades indicated epidemic
370 spread in symplesiomorphic MSSA (ST8-MSSA R_e = 1.54,
371 95% CI: 1.09 - 2.26; ST152-MSSA R_e = 1.55, 95% CI: 1.10 -
372 2.25) and an introduction of USA300 (MRSA) in Gabon (ST8-
373 MRSA-Gabon, R_e = 1.58, 95% CI: 1.11 - 2.34). However,
374 these MSSA clades had acquired mild beta-lactam and other
375 antibiotic resistance before their regional spread, including
376 notable enrichment of *blaZ*, *dfrG*, *tetK* and *fosD* in ST8-MSSA,
377 *blaZ* in ST152-MSSA, *blaZ* and *ermC* in ST93-MSSA, as well
378 as occasional acquisition or loss of *SCCmec* in most MSSA
379 clades and sublineages (Fig. S8).

380 Discussion

381 In this study, we found a pattern in the emergence of com-
382 munity clones ($n_{total} = 1843$) associated with the acquisition
383 of antibiotic resistance determinants, which coincide with
384 changes in host-pathogen transmission dynamics (increases in
385 R_e) and lineage population size expansions (N_e) upon recruit-
386 ment into regional population centers in the 1990s. Increases
387 in R_e exceeding the epidemic threshold ($R_e > 1$) were closely
388 associated with the acquisition of resistance in community-
389 associated MSSA circulating in specific host subpopulations.
390 AMR acquisition was followed with the emergence and sus-
391 tained transmission of resistant clades in regional population
392 centers, such as the Australian East Coast (ST93), Taiwan
393 (ST59), the Indian subcontinent (ST772) and central Europe
394 (ST1, ST80, ST152). We hypothesize that resistance acqui-

395 sition enables niche transitions into host populations with
396 distinct socioeconomic structure and population densities, par-
397 ticularly those in urban or industrialized settings. These 'AMR
398 spillover' events show patterns in R_e reminiscent of pathogens
399 recruiting into susceptible host populations, where spikes in
400 the effective reproduction numbers are followed by establish-
401 ment of sustained transmission ($R_e > 1$) or elimination (R_e
402 < 1). Sharp increases in R_e of emergent lineages were found
403 concomitant with the MRCA of clades that had obtained AMR
404 elements or mutations (Fig. S8). Fixation of resistance deter-
405 minants and leveling of R_e following these spikes suggests that
406 epidemiological factors such as widespread antibiotic use in the
407 community, improved access to healthcare services and treat-
408 ment, public health responses, or environmental antimicrobial
409 contamination, may constitute a new adaptive landscape for
410 the emerging drug-resistant clade, contributing to its successful
411 dissemination or elimination. This is observed in the persis-
412 tence of the epidemics ($R_e > 1$) over decades following the
413 initial spikes in emergence, which often coincided with the
414 first available samples of these lineages (Fig. 4, vertical lines
415 in subplots)

416 Estimates of R_e are susceptible to a number of demographic
417 factors which we could not explicitly model, including access
418 to treatment, host population contact density, and changes in
419 age-specific mixing patterns and others. Signatures in R_e over
420 time inferred from these genomic data therefore combine demo-
421 graphic and epidemiological factors linked to genomic changes
422 and geographical strain attribution in the jointly inferred phy-
423 logenies. Our data suggest that the acquisition of multiple
424 locality-specific resistance mutations and mobile genetic el-
425 ements has driven rapid genotype expansions with notable
426 increases in R_e observed across lineage-wide and clade-specific
427 analyses. *SCCmec*-elements of type IV and V eventually inte-
428 grated into resistant clades, but cassette genotypes are variable
429 and usually preceded or supplemented by other resistance de-
430 terminants. For example, the stepwise acquisition of resistance
431 in ST772-MSSA occurred first through the chromosomal inte-
432 gration of a multidrug-resistance plasmid, followed by a shift
433 in the *gyrA* mutation conferring fluoroquinolone resistance and
434 eventual fixation of the short 5C2 variant of *SCCmec*-V (15),
435 whereas other lineages such as ST93-MRSA-IV emerged after
436 a singular acquisition event of *SCCmec*-IV (10). It is notable
437 that even the successful and sampled MSSA clades in Africa
438 and northern Australia were enriched in resistance deter-
439 minants, with *blaZ* (ST93-MSSA, ST8-MSSA, ST152-MSSA)
440 and *tetK* (ST8-MSSA) amongst others (Fig. S8).

441 In support of the "AMR spillover" hypothesis, Gustave and
442 colleagues (46) demonstrated in competition experiments with
443 ST8 (USA300) and ST80 genotypes, that antibiotic-resistant
444 strains expressed a fitness advantage over wild-type strains on
445 subinhibitory antibiotic media. Presence of low-level antibiotic
446 pressure may therefore be a crucial epidemiological driver in
447 the emergence of resistant clades in host populations that have
448 widespread access to treatment or may not practice effective
449 antibiotic stewardship. However, antibiotic resistance is likely
450 not the only driver for local clade emergence and dissemination.
451 Gustave and colleagues (45) recently showed that the mercury-
452 resistance operon located on the COMER element may have
453 driven the dissemination of the USA300 variant in South
454 America on a background of pollution from mining activities.
455 Further data to investigate local competitive fitness dynamics

456 under population antibiotic pressure backgrounds *in vivo* or
457 *in vitro* is required and has been laid out in experimental
458 work (45). Complex genotype competition dynamics may
459 arise from environmental coupling at different time-points in
460 the evolution of a lineage, and differential competitive fitness
461 in evolutionary and epidemiological landscapes may play a role
462 in why some community strains successfully recruit into host
463 populations following exportation and fail to become endemic
464 elsewhere.

465 Local epidemiological patterns in the ST93 lineage phy-
466 logeny revealed co-circulating MSSA and MRSA genotypes
467 in the Northern Territory, where a potentially sustained (R_e
468 = 0.97, 95% CI: 0.72 - 1.25) re-introduction of the MRSA
469 genotype eventually spread into communities across Far North
470 Queensland. We further observed that sustained transmis-
471 sion is occurring in symplesiomorphic MSSA populations of
472 ST8 and ST152 in Africa (7, 12), as well as extant ST93-
473 MSSA in northern Australia, particularly amongst Indige-
474 nous communities (10, 28, 47). MSSA clades thus have estab-
475 lished sustained transmission in host populations, preceding
476 MRSA clade recruitment into geographically distinct popula-
477 tions (ST8-USA300, ST93-MRSA-IV, ST152-MRSA). It is no-
478 table that epidemic signatures were found for resistant MSSA
479 (Northern Territory, Africa) and MRSA (FNQ, PNG, NZ)
480 clades in socioeconomic settings similar to those experienced
481 by many remote Indigenous communities in Australia. These
482 include high burdens of skin-disease, domestic overcrowding,
483 and poor access to healthcare or other public services (10, 47-
484 50).

485 Non-synonymous mutations in factors associated with im-
486 mune response and skin colonization at the divergence of
487 epidemic MRSA and MSSA have been detected previously in
488 ST772 (15), and ACME and COMER elements in the USA300
489 clades are implicated in transmission and persistence phe-
490 notypes (13, 51, 52), but it is unclear to what degree these
491 changes have contributed to the emergence, transmission, per-
492 sistence, or fitness of resistant strains in the presence of other
493 strains or genotypes. Given that acquisition of antibiotic resis-
494 tance determinants and recruitment into population centers
495 coincides with rapid increases in R_e across all lineages exam-
496 ined in this study, these factors are not likely to explain the
497 rapid change in transmission dynamics we estimated at the
498 divergence of resistant clades (Fig. S8). However, mutations
499 may contribute to ongoing persistence in host populations
500 before and after emergence, or constitute pre-adaptations
501 that support successful transmission in new host populations.
502 Canonical mutations have previously been detected at the
503 divergence of ST772-A and have been associated with colo-
504 nization ability, which may play a role in compensating for the
505 fitness cost induced by resistance acquisition (15). Preliminary
506 phenotypic data from the Bengal Bay clone suggests that there
507 was no significant difference in biofilm formation or growth
508 rate between MSSA and multidrug-resistant MRSA strains
509 (15). Further rigorous experiments will need to be conducted
510 to better understand the significance of these mutations in
511 strains preceding the emergence of resistant clades and their
512 interaction with resistance phenotypes.

513 Our sampling design and models used for the inference of
514 phylodynamic parameters have important limitations. First,
515 we note that uncertainty deriving from incomplete lineage sam-
516 pling is large, but mitigated by using published collections of

517 metadata-complete and lineage-representative genomes. How-
518 ever, there was a lack of data on ancestral MSSA strains, a
519 problem pointed out explicitly for ST80 (8) and ST59 (9), but
520 also relevant to ST772 (15). These effects appeared less severe
521 for ST8, for which there was a wide sampling range going back
522 to 1953 (7), and for ST93 (10, 16), which had well-represented
523 MSSA collections from the Northern Territory, and for which
524 the MRCA and origin of the lineage were estimated to have
525 occurred within a year (Fig. S3). For our phylodynamic
526 comparison we addressed sampling bias towards the present
527 by allowing piecewise changes in the sampling proportion
528 consistent with sampling effort for each lineage.

529 Our study provides phylogenetic and population genomic
530 evidence that community-associated genotypes have emerged
531 in regional host populations following the acquisition of antibi-
532 otic resistance. Pre-adaptations for transmission in the ances-
533 tral host populations may have contributed to the eventual,
534 epidemic spread of resistant strains in populations with ac-
535 cess to antibiotic treatment and healthcare services. However,
536 well-sampled ancestral MSSA genomes are lacking for impor-
537 tant community-associated lineages including ST772, ST59
538 and ST80; deeper sampling and ongoing genome-informed
539 surveillance of these populations will be required to further
540 understand the processes that allow lineages to emerge and
541 become epidemic. It is notable that the seemingly convergent
542 emergence events in the second half of the 20th century —
543 whose signatures we detect from phylodynamic models across
544 all sequence types — were caused by epidemics of both, drug-
545 resistant MSSA and MRSA. While antibiotic resistance has
546 facilitated emergence in regional population centers, local evo-
547 lutionary and host population dynamics have also played a role
548 in the emergence of important community-associated clades,
549 including the potential role of environmental pollution and
550 the COMER element in the dissemination of USA300 in South
551 America (45).

552 Despite the limitations of this study, the phylodynamic
553 estimates observed across sequence types are remarkably con-
554 sistent with decades of molecular and epidemiological work
555 that has characterised the global emergence and spread of
556 community-associated *S. aureus* lineages, including their no-
557 table emergence in the 1990s and subsequent establishment
558 across their respective geographical distributions. We provide
559 genomic evidence for sustained transmission of MRSA strains
560 in Pakistan and PNG, as well as for drug-resistant MSSA
561 strains in African countries and northern Australia, where - in
562 addition to the notable enrichment of resistance without stable
563 acquisition of SCCmec - sociodemographic host-factors may
564 play an under-appreciated role in the transmission dynamics
565 and epidemic potential of these lineages. Ongoing epidemic
566 transmission of ST93-MSSA is of concern for Indigenous com-
567 munities in the Northern Territory and there is now evidence
568 for the dissemination of its emergent MRSA genotype beyond
569 the Australian continent. Wider circulation of ST93-MRSA-IV
570 in Papua New Guinea is likely. Our work underlines the im-
571 portance of considering remote and disadvantaged populations
572 in a domestic and international context. Social and public
573 health inequalities (28, 53) appear to facilitate the emergence
574 and circulation of community-associated pathogens including
575 drug-resistant *S. aureus*.

576 Materials and Methods

577

578 Outbreak sampling and sequencing

579 We collected isolates from outbreaks in two remote populations
580 in northern Australia and Papua New Guinea (Fig. 1). Isolates
581 associated with paediatric osteomyelitis cases (mean age of 8 years)
582 were collected from 2012 to 2017 ($n = 42$) from Kundiawa, Simbu
583 Province (27), and from 2012 to 2018 ($n = 35$) from patients in
584 the neighbouring Eastern Highlands province town of Goroka. We
585 supplemented the data with MSSA isolates associated with se-
586 vere hospital-associated infections and blood cultures in Madang
587 (Madang Province) ($n = 8$) and Goroka ($n = 12$). Isolates from com-
588 munities in Far North Queensland, including metropolitan Cairns,
589 the Cape York Peninsula and the Torres Strait Islands ($n = 91$),
590 were a contemporary sample from 2019. Isolates were recovered
591 on LB agar from clinical specimens using routine microbiological
592 techniques at Queensland Health and the Papua New Guinea In-
593 stitute of Medical Research (PNGIMR). Isolates were transported
594 on swabs from monocultures to the Australian Institute of Tropical
595 Health and Medicine (AITHM Townsville) where they were cul-
596 tured in 10 ml LB broth at 37°C overnight and stored at -80°C in
597 glycosol and LB. Samples were regrown prior to sequencing, and a
598 single colony was placed into in-house lysis buffer and sequenced at
599 the Doherty Applied Microbial Genomics laboratory using 100 bp
600 paired-end libraries on Illumina HiSeq. Illumina short-read reads
601 from the global lineages included in this study were collected from
602 the European Nucleotide Archive (Supplementary Tables).

603 Genome assembly and variant calling

604 Illumina data was adapter- and quality- trimmed with
605 **Fastp** (54) before *de novo* assembly with **Shovill**
606 (<https://github.com/tseemann/shovill>) using downsampling
607 to 100x genome coverage and the **Skesa** assembler (55). Assemblies
608 were genotyped with **SCCion** (<https://github.com/esteinig/sccion>),
609 a wrapper for common tools used in *S. aureus* genotyping from
610 reads or assemblies. These include multilocus sequence (MLST),
611 resistance and virulence factor typing with **mlst** and **abricate**
612 (<https://github.com/tseemann>) using the **ResFinder** and **VFDB**
613 databases (56, 57). **SCCmec** types were called using the best
614 **Mash** (58) match of the assembled genome against a sketch of the
615 **SCCmecFinder** database (59) and confirmed with **mecA** gene typing
616 from the **ResFinder** database. Antibiotic resistance to twelve
617 common antibiotics were typed with **Mykrobe** (53); this strategy was
618 used for all lineage genomes to confirm or supplement (7) antibiotic
619 resistance determinants as presented in original publications.
620 Strains belonging to ST93 (FNQ, PNG) and ST772 (Pakistan) were
621 extracted and combined with available sequence data from previous
622 studies on the ST772 ($n_{total} = 359$) and the ST93 ($n_{total} = 575$)
623 lineages. **Snippy v.4.6.0** (<https://github.com/tseemann/snippy>)
624 was used to call core-genome SNPs against the ST93 (6,648 SNPs)
625 or ST772 (7,246 SNPs) reference genomes JKD6159 (60) and
626 DAR4145 (20). Alignments were purged of recombination with
627 **Gubbins** (61) using a maximum of five iterations and the **GTR + G**
628 model in (40). Quality control, assembly, genotyping, variant
629 calling and maximum likelihood (ML) tree construction, statistical
630 phylodynamic reconstruction and exploratory Bayesian analyses
631 were implemented in **Nextflow** (62) for reproducibility of the
632 workflows (<https://github.com/np-core/phybeast>). Phylogenetic
633 trees and metadata were visualized with Interactive Tree of Life
634 (63). All program versions are fixed in the container images used
635 for analysis in this manuscript (Data Availability).

636 Maximum-likelihood phylogenetics and -dynamics

637 We used a ML approach with **TreeTime v0.7.1** (41) to obtain a
638 time-scaled phylogenetic tree by fitting a strict molecular clock to
639 the data (using sampling dates in years throughout). Accuracy for
640 an equivalent statistical approach using least-squares dating (64)
641 (LSD) is similar to that obtained using more sophisticated Bayesian
642 approaches with the advantage of being computationally less de-
643 manding (65). As input, we used the phylogenetic tree inferred
644 using ML in **RAxML-NG** after removing recombination with **Gubbins**.
645 The molecular clock was calibrated using the year of sample col-
646 lection (i.e. heterochronous data) with least-squares optimization

647 to find the root, while accounting for shared ancestry (covariation)
648 and obtaining uncertainty around node ages and evolutionary rates.
649 We also estimated the ML piecewise (skyline) coalescent on the
650 tree using default settings, which provides a baseline estimate of
651 the change in effective population size (N_e) over time. Temporal
652 structure of the data was assessed by conducting a regression of the
653 root-to-tip distances of the ML tree as a function of sampling time
654 and a date-randomisation test on the **TreeTime** estimates with 100
655 replicates (65, 66) (Fig. S1). All trees were visualized in Interactive
656 Tree of Life (iTOL) and node-specific divergence dates extracted in
657 **Icytree**.

658 Bayesian phylodynamics and prior configurations

659 We used the Bayesian coalescent skyline model to esti-
660 mate changes in effective population size (N_e), and im-
661 plemented the birth-death skyline from the **bdsky** package
662 (<https://github.com/laduplessis/bdskytools>) for **BEAST v2.6** to esti-
663 mate changes in the effective reproduction number (R_e) (33, 34, 42).
664 Birth-death models consider dynamics of a population forward in
665 time using the (transmission) rate λ , the death (become uninfect-
666 ous) rate δ , the sampling probability ρ , and the time of the start of
667 the population (outbreak; also called origin time) T . The effective
668 reproduction number (R_e), can be directly extracted from these
669 parameters by dividing the birth rate by the death rate ($\frac{\lambda}{\delta}$).

670 For lineage-wide analysis we used all available samples from each
671 sequence type, including MSSA and MRSA clades, but compared
672 model estimates from the entire lineage to distinct clade subsets
673 to mitigate the effect of population structure from well-sampled
674 clones like ST93 (Table 1, Fig. 2B: R_e estimates for ST93-MSSA
675 and -MRSA). Median parameter estimates with 95% CI intervals
676 and Markov chain traces were inspected in **Tracer** to assess conver-
677 gence (67). We implemented Python utility functions to generate
678 XML files and configure priors more conveniently in a standardized
679 form (**nanopath beastling**) implemented in the **NanoPath** package
680 (<https://github.com/esteinig/nanopath>). Plots were constructed
681 with scripts (<https://github.com/esteinig/publications>) that use
682 the **bdkytools** package including computation of the 95% highest
683 posterior density (HPD) median intervals (credible intervals, CI)
684 using the Chen and Shao algorithm implemented in the **boa** package
685 for R (68). We chose to present median posterior intervals, since
686 some posterior distributions had long tails in the prior distributions
687 of some parameters (e.g. origin or become uninfectious rates, Fig.
688 S3). **Icytree** (69) was used to inspect Bayesian maximum clade
689 credibility trees derived from the posterior sample of trees. In
690 the coalescent skyline model for each lineage, we ran exploratory
691 chains of 200 million iterations varying the number of equidistant
692 intervals over the tree height (dimensions, d) specified for the priors
693 describing the population and estimated interval (dimension) size
694 ($d = \{2, 4, 8, 16\}$, Fig. S2). As posterior distributions were largely
695 congruent (top rows, Fig. S2), we selected a sufficient number of
696 intervals to model changes in effective population size (N_e) of each
697 lineage over time ($d = 4$ and $d = 8$).

698 In the birth-death skyline models, priors across lineages were
699 configured as follows: we used a *Gamma*(2.0, 40.0) prior for the
700 time of origin parameter (T), covering the last hundred years and
701 longer. We chose a *Gamma*(2.0, 2.0) prior for the reproductive
702 number, covering a range of possible values observed for *S. aureus*
703 sequence types in different settings (70–73) which may have occurred
704 over the course of lineage evolution. We configured the reproduc-
705 tion number prior (R_e) to a number of equally sized intervals over
706 the tree; a suitable interval number was selected by running ex-
707 ploratory models for each lineage with 100 million iterations from
708 $d = 5 - 10$ followed by a comparison of parameters estimates under
709 these configurations (occurrence of stable posterior distributions, ab-
710 sence of bi or multi-modal posteriors) (not shown, available in data
711 repository). Because sequence type-specific becoming-non-infectious
712 rates in community-associated *S. aureus* are not well known, ei-
713 ther from long-term carriage studies or phylogenetic reconstructions
714 (22, 74–76), we explored a range of prior configurations for the
715 becoming uninfectious rate parameter (δ) including a flat uniform
716 prior *Uniform*(1.0, 1.0) and a *Lognormal*(μ , 1.0) prior with $\mu = 0.1$
717 (10 years infectious period), $\mu = 0.2$ (5 years) and $\mu = 1.0$ (1 year).
718 We chose a *Lognormal*(1.0, 1.0) prior, as the resulting parameters
719 estimates were coherent (Fig. S5). Lineage-wide sensitivity analysis

720 showed that estimates across lineages were not driven by the prior
721 (Fig. S6). Sampling proportion (ρ) was fixed to zero in the interval
722 ranging from the origin to the first sample (pre-sample period); the
723 remaining time until present (sampling period) was estimated under
724 a flat $Beta(1.0, 1.0)$ prior, accounting for sampling bias towards the
725 present as well as largely unknown estimates of global sampling
726 proportions across lineages. Final lineage models were run with 500
727 million iterations on GPUs with the BEAGLE library (77) under a
728 $GTR + Gamma$ substitution model with four rate categories. We
729 used a strict molecular clock with a $Lognormal(0.0003, 0.3)$ rate
730 prior in real space as all lineages 'evolved measurably' (Fig. S1).
731 Models were run until chains were mixed and ESS values reached
732 at least 200, as confirmed in Tracer.

733 Lastly, we ran birth-death skyline models on specific clades
734 within the lineage phylogenies, including the ancestral and sym-
735 plesiomorphic MSSA populations, the USA300 sublineages, and
736 importations of ST93, ST772 and ST8 (Fig. 4, Fig. S8). For each
737 subset of strains, we extracted the core-genome variant alignment
738 subset, configured the reproduction number prior to a single es-
739 timate over the clade (since in outbreak datasets the number of
740 sequences per clade was smaller than 100 and the sampling interval
741 smaller than 10 years) (Fig. S8). Because temporal signal is lost in
742 the clade subsets, we fixed the substitution rate to the lineage-wide
743 estimate in all runs for 100 million iterations for the MCMC with
744 trees sampled every 1000 steps. Runs were quality controlled by
745 assuring that chains mixed and ESS values for all posterior esti-
746 mates reached at least 200. Since sufficient samples and a wide
747 sampling interval were available to track R_e changes in ST93-MSSA
748 ($n = 116$ in the Northern Territory) and -MRSA clades ($n = 278$,
749 Australian East Coast) over time (Fig. 2, inset plots), we explored
750 a stable configuration of the reproductive number prior across
751 equally-spaces intervals ($d = 5 - 10$) with 200 million iterations of
752 the MCMC (not shown, available in data repository). We explored
753 $Gamma(2.0, \theta)$ distributions where $\theta \in \{0.5, 1.0, 1.5, 2.0\}$ in the R_e
754 prior of sublineages and outbreaks. This was to guard against bias
755 towards inferring sustained transmission ($R_e > 1$) in outbreak mod-
756 els with limited data and temporal signal from subset alignments
757 (representative examples: Fig. S7). Results from the model runs
758 under the conservative $Gamma(2.0, 0.5)$ prior assert only minor
759 differences compared to higher configurations (consistently $R_e >$
760 1) and the conservative estimates are presented here (Table 1).
761 We also conducted a sensitivity analysis for all sublineage models
762 where we ran the models under the prior only (Fig. S8, note that
763 under-the-prior posteriors are still influenced by dates, albeit not
764 the genetic data). With the exception of ST93-NT and ST93-NZ
765 we asserted that estimates of R_e were not driven by the prior and
766 dates alone in all sublineages and outbreaks. Full explorative data
767 can be found in the data repository for this study.

768 Data Availability

769 Sequencing data can be found at BioProject PRJNA657380.
770 XML model files, log files of BEAST2 runs, and links
771 to command line interfaces for replicating the analyses
772 and plots in this manuscript can be found at:
773 <https://github.com/esteinig/ca-mrsa>

774 **ACKNOWLEDGMENTS.** ES is supported by a PRISM2 & HOT
775 North pilot grant (78) (NHMRC ID: 1131932). CF is supported
776 by a HOT North fellowship (NHMRC ID: 1131932). SYCT is
777 supported by an Australian NHMRC fellowship (ID 1145033). GPU
778 models were run on the LIEF HPC-GPGPU Facility hosted at the
779 University of Melbourne (LIEF Grant ID: LE170100200) (79).

780 References

1. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler, Jr VG (2015) *Staphylococcus aureus* infections: epidemiology, pathophysiology, clinical manifestations, and management. *Clin. Microbiol. Rev.* 28(3):603–661.
2. Turner NA, et al. (2019) Methicillin-resistant *Staphylococcus aureus*: an overview of basic and clinical research. *Nat. Rev. Microbiol.* 17(4):203–218.
3. Fitzgerald JR, Holden MTG (2016) Genomics of Natural Populations of *Staphylococcus aureus*. *Annu. Rev. Microbiol.* 70(1):459–478.
4. David MZ, Daum RS (2010) Community-associated methicillin-resistant *Staphylococcus aureus*: epidemiology and clinical consequences of an emerging epidemic. *Clin. Microbiol. Rev.* 23(3):616–687.
5. Harris SR, et al. (2010) Evolution of MRSA during hospital transmission and intercontinental spread. *Science* 327(5964):469–474.
6. Giulieri SG, Tong SYC, Williamson DA (2020) Using genomics to understand methicillin- and vancomycin-resistant *Staphylococcus aureus* infections. *Microb. Genom.* 6(1):e000324.
7. Strauß L, et al. (2017) Origin, evolution, and global transmission of community-acquired *Staphylococcus aureus* ST8. *Proceedings of the National Academy of Sciences* 114(49):E10596–E10604.
8. Stegger M, et al. (2014) Origin and Evolution of European Community-Acquired Methicillin-Resistant *Staphylococcus aureus*. *MBio* 5(5).
9. Ward MJ, et al. (2016) Identification of source and sink populations for the emergence and global spread of the East-Asia clone of community-associated MRSA. *Genome Biol.* 17(1):160.
10. van Hal SJ, et al. (2018) Global Scale Dissemination of ST93: A Divergent *Staphylococcus aureus* Epidemic Lineage that Has Recently Emerged From Remote Northern Australia. *Front. Microbiol.* 9:1453.
11. Earls M, et al. (2021) Exploring the evolution and epidemiology of European CC1-MRSA-IV: tracking a multidrug-resistant community-associated methicillin-resistant *Staphylococcus aureus* clone. *Microbial Genomics* (in review).
12. Baig S, et al. (2020) Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant *Staphylococcus aureus*. *mSphere* 5(4):e00226–20.
13. Planet PJ, et al. (2015) Parallel Epidemics of Community-Associated Methicillin-Resistant *Staphylococcus aureus* USA300 Infection in North and South America. *J. Infect. Dis.* 212(12):1874–1882.
14. Challagundla L, et al. (2018) Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant *Staphylococcus aureus*. *MBio* 9(1).
15. Steining EJ, et al. (2019) Evolution and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-Resistant *Staphylococcus aureus* Lineage from the Indian Subcontinent. *MBio* 10(6).
16. Coombs GW, et al. (2012) The molecular epidemiology of the highly virulent ST93 Australian community *Staphylococcus aureus* strain. *PLoS One* 7(8):e43037.
17. Earls MR, et al. (2017) The recent emergence in hospitals of multidrug-resistant community-associated sequence type 1 and spa type t127 methicillin-resistant *Staphylococcus aureus* investigated by whole-genome sequencing: implications for screening. *PLoS One* 12(4):e0175542.
18. Earls MR, et al. (2019) A novel multidrug-resistant PVL-negative CC1-MRSA-IV clone emerging in ireland and germany likely originated in South-Eastern europe. *Infect. Genet. Evol.* 69:117–126.
19. Edslev SM, et al. (2018) Identification of a PVL-negative SCCmec-IVa sublineage of the methicillin-resistant *Staphylococcus aureus* CC80 lineage: understanding the clonal origin of CA-MRSA. *Clin. Microbiol. Infect.* 24(3):273–278.
20. Steining EJ, et al. (2015) Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant *Staphylococcus aureus*. *BMC Genomics* 16:388.
21. Blomfeldt A, et al. (2017) Emerging multidrug-resistant bengal bay clone ST772-MRSA-V in norway: molecular epidemiology 2004-2014. *Eur. J. Clin. Microbiol. Infect. Dis.* 36(10):1911–1921.
22. Alam MT, et al. (2015) Transmission and microevolution of USA300 MRSA in U.S. households: evidence from whole-genome sequencing. *MBio* 6(2):e00054.
23. Uhlemann AC, et al. (2014) Molecular tracing of the emergence, diversification, and transmission of *S. aureus* sequence type 8 in a New York community. *Proc. Natl. Acad. Sci. U. S. A.* 111(18):6738–6743.
24. Harastani HH, Tokajian ST (2014) Community-associated methicillin-resistant *Staphylococcus aureus* clonal complex 80 type IV (CC80-MRSA-IV) isolated from the Middle East: a heterogeneous expanding clonal lineage. *PLoS One* 9(7):e103715.
25. Tong SYC, et al. (2015) Genome sequencing defines phylogeny and spread of methicillin-resistant *Staphylococcus aureus* in a high transmission setting. *Genome Res.* 25(1):111–118.
26. Holden MTG, et al. (2013) A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant *Staphylococcus aureus* pandemic. *Genome Res.* 23(4):653–664.
27. Planet PJ (2017) Life After USA300: The Rise and Fall of a Superbug. *J. Infect. Dis.* 215:S71–S77.
28. Bowen AC, Daveson K, Anderson L, Tong SY (2019) An urgent need for antimicrobial stewardship in indigenous rural and remote primary health care. *Med. J. Aust.* 211(1):9–11.e1.
29. Guthridge I, Smith S, Horne P, Hanson J (2019) Increasing prevalence of methicillin-resistant *Staphylococcus aureus* in remote Australian communities: implications for patients and clinicians. *Pathogen* 5(1):428–431.
30. Wozniak TM, et al. (2020) Geospatial epidemiology of *Staphylococcus aureus* in a tropical setting: an enabling digital surveillance platform. *Sci. Rep.* 10(1):13169.
31. Aglau I, et al. (2018) Methicillin-resistant *Staphylococcus aureus* in Melanesian children with haematogenous osteomyelitis from the Central Highlands of Papua New Guinea. *Int. J. Pediatr.* 6(10):8361–8370.
32. Laman M, et al. (2017) Methicillin-resistant *Staphylococcus aureus* in Papua New Guinea: a community nasal colonization prevalence study. *Trans. R. Soc. Trop. Med. Hyg.* 111(8):360–362.
33. Stadler T, Kühnert D, Bonhoeffer S, Drummond AJ (2013) Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). *Proc. Natl. Acad. Sci. U. S. A.* 110(1):228–233.
34. Bouckaert R, et al. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. *PLoS Comput. Biol.* 15(4):e1006650.
35. Vaughan TG, Sciré J, Nadeau SA, Stadler T (2020) Estimates of outbreak-specific SARS-CoV-2 epidemiological parameters from genomic data. *bioRxiv* 10.1101/2020.09.12.20193284.

872 36. Volz E, et al. (2021) Transmission of SARS-CoV-2 lineage b.1.1.7 in england: Insights from
873 linking epidemiological and genetic data. *bioRxiv* 10.1101/2020.12.30.20249034.

874 37. Duchêne S, et al. (2016) Genome-scale rates of evolutionary change in bacteria. *Microb
875 Genom* 2(11):e000094.

876 38. Ingle DJ, Howden BP, Duchene S (2021) Development of phylodynamic methods for bacterial
877 pathogens. *Trends Microbiol.* 10.1016/j.tim.2021.02.008.

878 39. Syed MA, et al. (2018) Detection and Molecular Characterization of Methicillin-Resistant
879 *Staphylococcus aureus* from Table Eggs in Haripur, Pakistan. *Foodborne Pathog. Dis.*
880 15(2):86–93.

881 40. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and
882 user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35(21):4453–
883 4455.

884 41. Sagulenko P, Puller V, Neher RA (2018) TreeTime: Maximum-likelihood phylodynamic analy-
885 sis. *Virus Evol* 4(1):vex042.

886 42. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of
887 past population dynamics from molecular sequences. *Mol. Biol. Evol.* 22(5):1185–1192.

888 43. Bakthavatchalam Y, et al. (2021) Genomic Portrait of Community-Associated Methicillin-
889 Resistant *Staphylococcus aureus* ST772-SCCmec-V Lineage From India. *bioRxiv*
890 10.21203/rs.3.rs-1416781.

891 44. Roberts MC, et al. (2019) MRSA strains in nepalese rhesus macaques (macaca mulatta) and
892 their environment. *Front. Microbiol.* 10:2505.

893 45. Gustave CA, et al. (2020) Potential role of Mercury pollutants in the success
894 of Methicillin-Resistant *Staphylococcus aureus* USA300 in Latin America. *bioRxiv*
895 10.1101/2020.07.01.150961.

896 46. Gustave CA, et al. (2018) Demographic fluctuation of community-acquired antibiotic-resistant
897 *Staphylococcus aureus* lineages: potential role of flimsy antibiotic exposure. *ISME J.*
898 12(8):1879–1894.

899 47. Harch SAJ, et al. (2017) High burden of complicated skin and soft tissue infections in the
900 indigenous population of central australia due to dominant panton valentine leucocidin clones
901 ST93-MRSA and CC121-MSSA. *BMC Infect. Dis.* 17(1):405.

902 48. Williamson DA, Coombs GW, Nimmo GR (2014) *Staphylococcus aureus* 'Down Under': con-
903 temporary epidemiology of *S. aureus* in Australia, New Zealand, and the South West Pacific.
904 *Clin. Microbiol. Infect.* 20(7):597–604.

905 49. Bowen AC, et al. (2015) The global epidemiology of impetigo: A systematic review of the
906 population prevalence of impetigo and pyoderma. *PLoS One* 10(8):e0136789.

907 50. Thomas L, et al. (2019) Burden of skin disease in two remote primary healthcare centres in
908 northern and central australia. *Intern. Med.* 49(3):396–399.

909 51. Diep BA, et al. (2008) The Arginine Catabolic Mobile Element and Staphylococcal Chromosomal
910 Cassette *mec* Linkage: Convergence of Virulence and Resistance in the USA300 Clone
911 of Methicillin-Resistant *Staphylococcus aureus*. *J. Infect. Dis.* 197(11):1523–1530.

912 52. Planet PJ, et al. (2013) Emergence of the epidemic methicillin-resistant *Staphylococcus aureus* strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and *spaG*-mediated adaptations for survival on skin. *MBio* 4(6):e00889–13.

913 53. Bond CJ, Singh D (2020) More than a refresh required for closing the gap of Indigenous
914 health inequality. *Med. J. Aust.* 212(5):198–199.e1.

915 54. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor.
916 *Bioinformatics* 34(17):i884–i890.

917 55. Souvorov A, Agarwala R, Lipman DJ (2018) SKESA: strategic k-mer extension for scrupulous
918 assemblies. *Genome Biol.* 19(1):153.

919 56. Zankari E, et al. (2012) Identification of acquired antimicrobial resistance genes. *J. Antimicrob.
920 Chemother.* 67(11):2640–2644.

921 57. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset
922 for big data analysis—10 years on. *Nucleic Acids Res.* 44(D1):D694–7.

923 58. Ondov BD, et al. (2016) Mash: fast genome and metagenome distance estimation using
924 MinHash. *Genome Biol.* 17(1):132.

925 59. Kaya H, et al. (2018) SCCmecFinder, a Web-Based Tool for Typing of Staphylococcal Cas-
926 sette Chromosome *mec* in *Staphylococcus aureus* Using Whole-Genome Sequence Data.
927 *mSphere* 3(1):e00612–17.

928 60. Chua K, et al. (2010) Complete genome sequence of *Staphylococcus aureus* strain JKD6159,
929 a unique Australian clone of ST93-IV community methicillin-resistant *Staphylococcus aureus*.
930 *J. Bacteriol.* 192(20):5556–5557.

931 61. Croucher NJ, et al. (2015) Rapid phylogenetic analysis of large samples of recombinant bac-
932 terial whole genome sequences using Gubbins. *Nucleic Acids Res.* 43(3):e15.

933 62. Di Tommaso P, et al. (2017) Nextflow enables reproducible computational workflows. *Nat.
934 Biotechnol.* 35(4):316–319.

935 63. Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new develop-
936 ments. *Nucleic Acids Res.* 47(W1):W256–W259.

937 64. To TH, Jung M, Lycett S, Gascuel O (2016) Fast dating using Least-Squares criteria and
938 algorithms. *Syst. Biol.* 65(1):82–97.

939 65. Duchêne S, Geoghegan JL, Holmes EC, Ho SYW (2016) Estimating evolutionary rates us-
940 ing time-structured data: a general comparison of phylogenetic methods. *Bioinformatics*
941 32(22):3375–3379.

942 66. Duchêne S, Duchêne D, Holmes EC, Ho SYW (2015) The performance of the Date-
943 Randomization test in phylogenetic analyses of Time-Structured virus data. *Mol. Biol. Evol.*
944 32(7):1895–1906.

945 67. Ramsden C, Holmes EC, Charleston MA (2009) Hantavirus evolution in relation to its rodent
946 and insectivore hosts: no evidence for codivergence. *Mol. Biol. Evol.* 26(1):143–153.

947 68. Smith BJ (2007) boai: an R package for MCMC output convergence assessment and posterior
948 inference. *J. Stat. Softw.* 21(11):1–37.

949 69. Vaughan TG (2017) IcyTree: rapid browser-based visualization for phylogenetic trees and
950 networks. *Bioinformatics* 33(15):2392–2394.

951 70. Di Ruscio F, et al. (2019) Quantifying the transmission dynamics of MRSA in the commu-
952 nity and healthcare settings in a low-prevalence country. *Proc. Natl. Acad. Sci. U. S. A.*
953 116(29):14599–14605.

954 71. D'Agata EMC, Webb GF, Horn MA, Moellering, Jr RC, Ruan S (2009) Modelling the invasion
955 of community-acquired methicillin-resistant *Staphylococcus aureus* into hospitals. *Clin. Infect.
956 Dis.* 48(3):274–284.

957 72. Cooper BS, et al. (2012) Quantifying type-specific reproduction numbers for nosocomial
958 pathogens: evidence for heightened transmission of an Asian sequence type 239 MRSA
959 clone. *PLoS Comput. Biol.* 8(4):e1002454.

960 73. Prosperi M, et al. (2013) Molecular epidemiology of community-associated methicillin-
961 resistant *Staphylococcus aureus* in the genomic era: a cross-sectional study. *Sci. Rep.*
962 3:1902.

963 74. Gordon NC, et al. (2017) Whole-Genome Sequencing Reveals the Contribution of Long-Term
964 Carriers in *Staphylococcus aureus* Outbreak Investigation. *J. Clin. Microbiol.* 55(7):2188–
965 2197.

966 75. Muthukrishnan G, et al. (2013) Longitudinal genetic analyses of *Staphylococcus aureus* nasal
967 carriage dynamics in a diverse population. *BMC Infect. Dis.* 13:221.

968 76. Scanvic A, et al. (2001) Duration of colonization by methicillin-resistant *Staphylococcus aureus*
969 after hospital discharge and risk factors for prolonged carriage. *Clin. Infect. Dis.*
970 32(10):1393–1398.

971 77. Ayres DL, et al. (2019) BEAGLE 3: Improved Performance, Scaling, and Usability for a High-
972 Performance Computing Library for Statistical Phylogenetics. *Syst. Biol.* 68(6):1052–1061.

973 78. Williams K, Rung S, D'Antoine H, Currie BJ (2021) A cross-jurisdictional research collabora-
974 tion aiming to improve health outcomes in the tropical north of australia. *The Lancet Regional
975 Health – Western Pacific* 9.

976 79. Lafayette L, Sauter G, Vu L, Meade B (2016) Spartan performance and flexibility: an HPC-
977 cloud chimera. *OpenStack Summit, Barcelona* 27.

978 80. Mork RL, et al. (2020) Longitudinal, strain-specific *Staphylococcus aureus* introduction and
979 transmission events in households of children with community-associated methicillin-resistant
980 *S. aureus* skin and soft tissue infection: a prospective cohort study. *Lancet Infect. Dis.*
981 20(2):188–198.

982 81. Kühnert D, Stadler T, Vaughan TG, Drummond AJ (2016) Phylodynamics with migration: A
983 computational framework to quantify population structure from genomic data. *Mol. Biol. Evol.*
984 33(8):2102–2116.

985 82. Scire J, Barido-Sottani J, Kühnert D, Vaughan TG, Stadler T (2020) Improved multi-type birth-
986 death phylodynamic inference in BEAST 2. *bioRxiv* 10.1101/2020.01.06.895532.

987 83. Müller NF, Bouckaert RR (2020) Adaptive metropolis-coupled MCMC for BEAST 2. *PeerJ*
988 8:e9473.

989 84. 990

Supplementary Discussion

Distribution of ST93 in Papua New Guinea

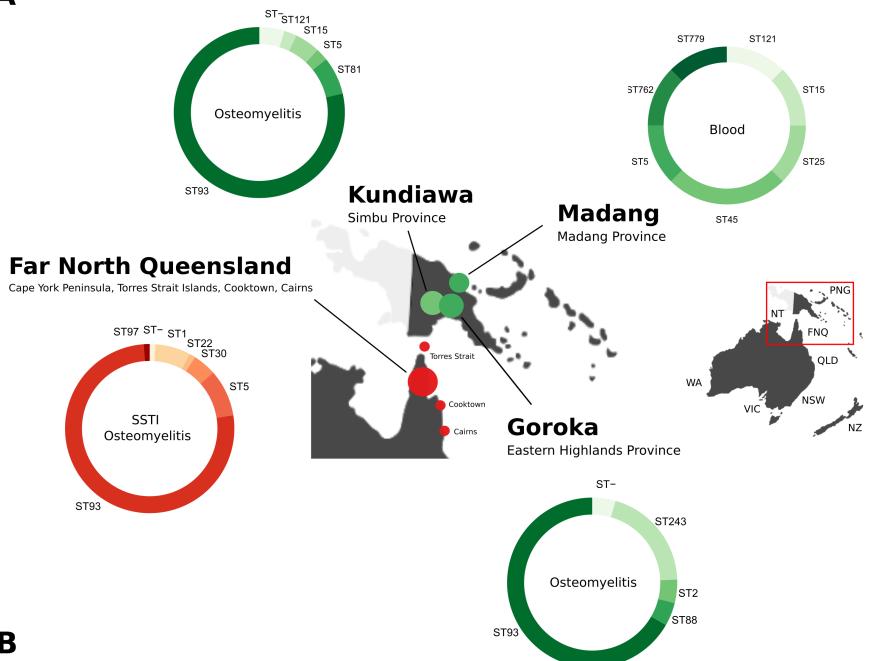
We used whole-genome sequencing data to reconstruct the evolutionary history of the first *S. aureus* genomes from Papua New Guinea, and discovered that a paediatric osteomyelitis outbreak in the remote Highlands Provinces (31) was caused by the Australian clone ST93-MRSA-IV. Multiple lines of evidence support a wider distribution of ST93 in PNG, including two discernible introductions, sustained and long-term transmission of the outbreak since the early 2000s, occurrence of two MLST allele variants, and a heterogeneous pattern of dissemination in the remote highland towns (Figs. 1, 2). It remains unclear to what extent ST93-MRSA-IV has disseminated in PNG. Our data further show that ST93-MRSA-IV is widespread in Far North Queensland and is likely the cause for the increasing rates of MRSA observed in FNQ communities over the last decade (29, 30). It is unclear what is driving the local persistence and evolution of the ST93-MRSA-IV genotype in PNG, and reservoirs in the community remain to be investigated. Data on antibiotic consumption in Simbu Province or Eastern Highland Province was not available. While antibiotic stewardship may play a role in the dissemination of ST93 in FNQ (29), and ST772 in the Islamabad-Rawalpindi metropolitan area (39), sustained circulation of virulent and transmissible clones in remote settings like PNG may also have been a result of historical transmission opportunities from the Australian East Coast after the emergence of ST93-MRSA-IV, as well as existing strain diversity and competitive interactions in the highlands, even in the absence of widespread antimicrobial consumption.

Model parameters and local transmission dynamics

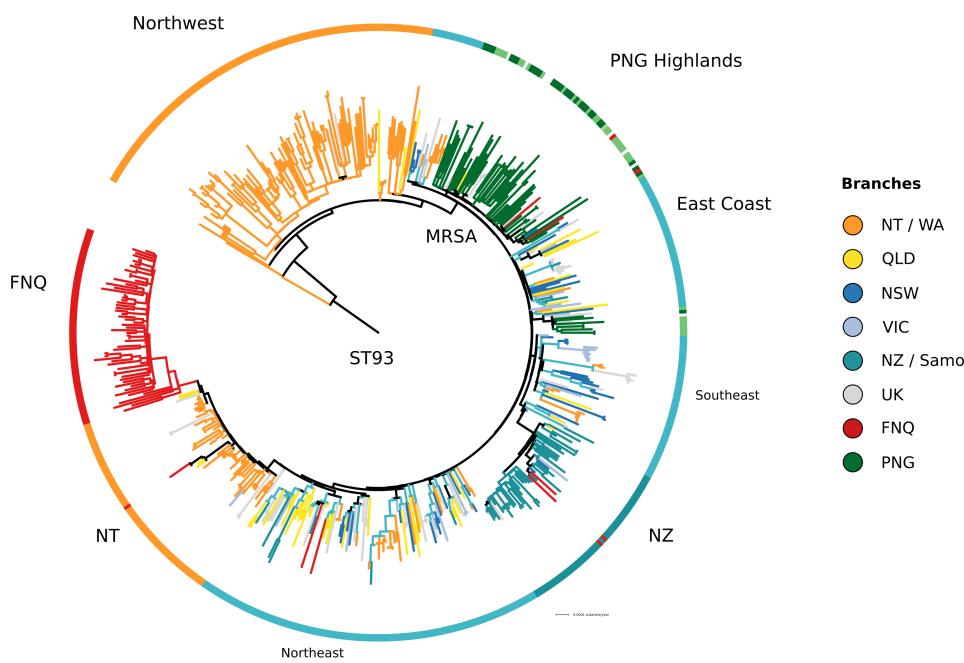
Our lineage-wide phylodynamic census provides genomic evidence of successful recruitment of ST93-MRSA-IV into domestic and international host populations. Estimates from Bayesian phylodynamic models indicate that sustained transmission ($R_e > 1$) following importation has not only occurred in PNG and FNQ (ST93) but also in Pakistan (ST77-MRSA-V), several African countries (ST152-MSSA, ST8-USA300), South America (ST8-USA300 COMER variant) and Europe (ST8-USA300). It therefore appears that community-associated MRSA lineages are able to establish sustained transmission after dissemination of resistant genotypes.

Table S1. Birth-death skyline median posterior estimates (cont'd from Table 1)

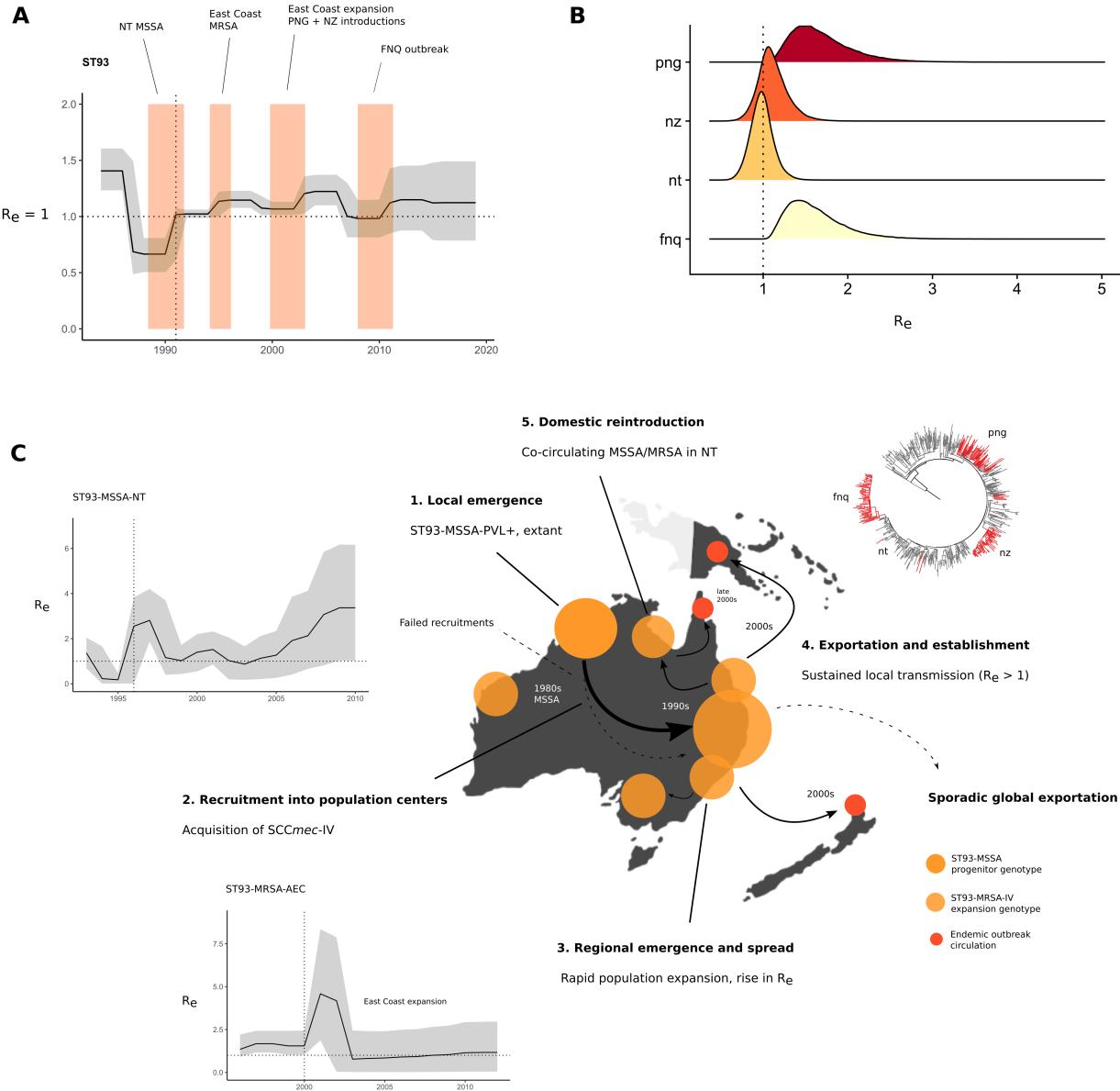
Lineage	T	95% CI	$\frac{1}{\delta}$	95% CI	ρ	95% CI
Sequence types						
ST93	1982	1982 - 1983	0.47	0.24 - 0.63	0.003	0.0008 - 0.006
ST772	1967	1962 - 1972	7.81	1.89 - 15.02	0.22	0.013 - 0.56
ST80	1976	1974 - 1978	12.07	8.57 - 15.51	0.849	0.56 - 0.99
ST8	1855	1844 - 1865	10.61	4.05 - 21.33	0.308	0.004 - 0.86
ST1	1986	1984 - 1988	12.93	7.21 - 19.14	0.49	0.16 - 0.94
ST59	1955	1949 - 1958	2.93	0.95 - 5.72	0.005	0.0002 - 0.018
ST152	1951	1944 - 1957	12.69	5.37 - 22.71	0.14	0.01 - 0.52
MRSA sublineages						
ST93-MRSA-EastCoast	1991	1981 - 1995	2.72	0.504 - 6.27	0.11	0.002 - 0.407
ST93-MRSA-FNQ	2005	2000 - 2008	1.06	0.19 - 2.58	0.03	0.004 - 0.096
ST93-MRSA-PNG	1998	1990 - 2002	2.21	0.49 - 5.08	0.01	0.0001 - 0.045
ST93-MRSA-NT	1998	1994 - 2001	2.29	0.97 - 3.40	0.61	0.15 - 0.99
ST93-MRSA-NZ	2000	1994 - 2000	3.72	1.13 - 6.11	0.51	0.09 - 0.99
ST772-MRSA-Pakistan	1999	1989 - 2003	1.25	0.41 - 2.58	0.03	0.002 - 0.15
ST152-MRSA-Europe	1985	1974 - 1991	4.07	0.65 - 10.34	0.05	0.0003 - 0.296
ST8-MRSA-NorthAmerica	1980	1972 - 1986	2.26	0.48 - 5.11	0.003	0.000002 - 0.03
ST8-MRSA-SouthAmerica	1975	1964 - 1982	2.75	0.49 - 6.75	0.001	0.000001 - 0.01
ST8-MRSA-France						
ST8-MRSA-Gabon	1990	1981 - 1995	2.52	0.41 - 6.16	0.009	0.00001 - 0.07
ST59-MRSA-Taiwan	1974	1961 - 1980	4.25	0.64 - 10.45	0.03	0.0004 - 0.16
MSSA sublineages						
ST93-MSSA-Australia	1986	1974 - 1991	3.01	0.57 - 7.17	0.09	0.0009 - 0.385
ST8-MSSA-WestAfrica	1975	1964 - 1982	3.09	0.52 - 7.49	0.0047	0.000002 - 0.03
ST152-MSSA-WestAfrica	1972	1960 - 1977	3.12	0.53 - 7.22	0.001	0.000001 - 0.009

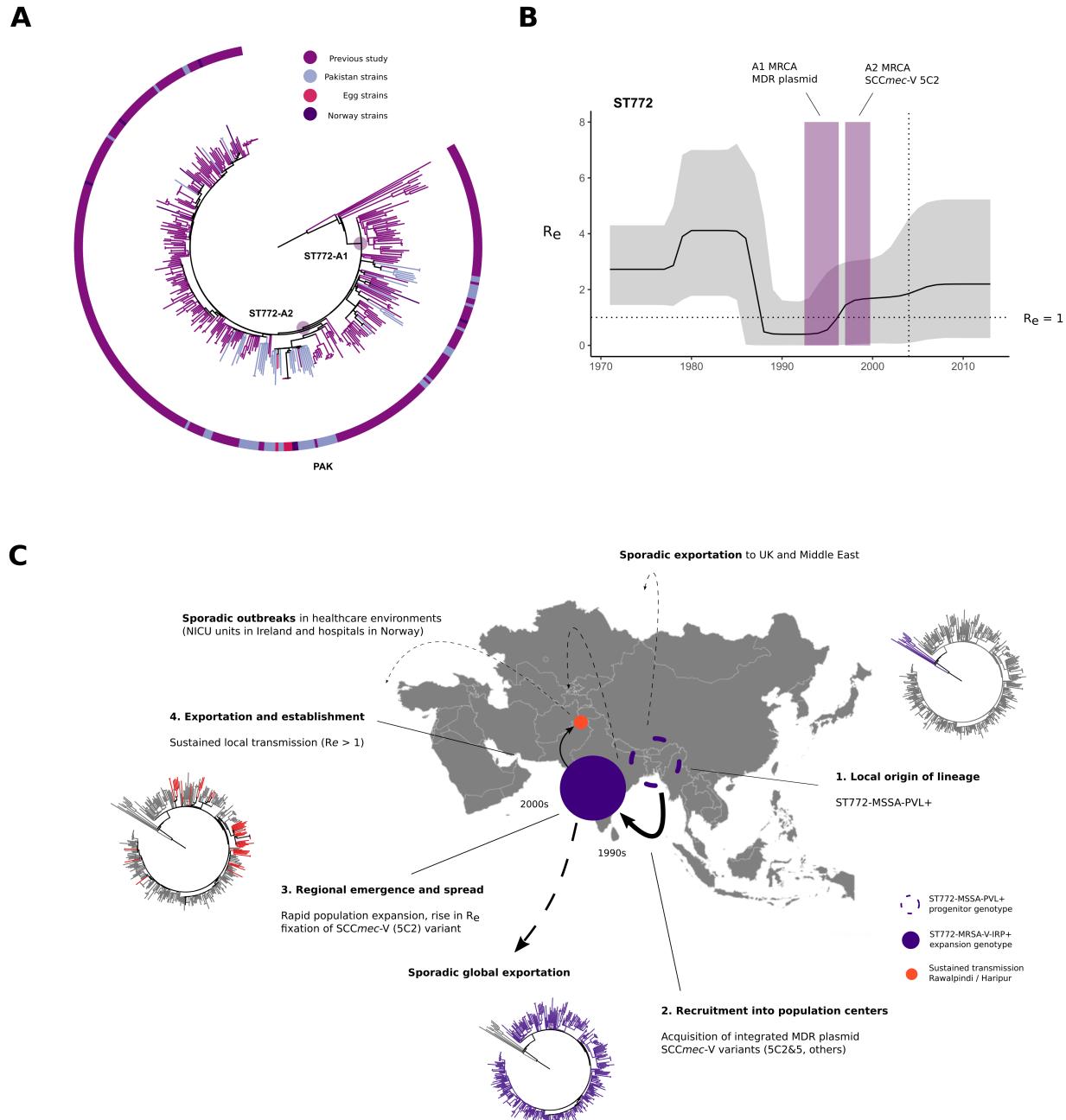

1030 Phylodynamic models predicted lineage- and clade-specific infectious periods ($\frac{1}{\delta}$) that suggest prolonged durations of infection
 1031 over several years in concordance with long-term cohort studies
 1032 with lineage-resolved data (Table S1). Variation in our model estimates
 1033 could reflect differential local modes of persistence in the host or community (70, 80), and is susceptible to factors that we
 1034 were not able to explicitly model, including access to healthcare
 1035 services and treatment amongst others. It should be noted that the
 1036 lineage-wide averages of infectious periods may not reflect the
 1037 considerable heterogeneity in carriage duration that likely arises
 1038 from the distribution of permanent and transient carriers across
 1039 the population (75, 76). Our data further suggest that changes in
 1040 transmission dynamics (R_e) can occur without additional genomic
 1041 changes either after incursion into a new population (e.g. ST80
 1042 European expansion; introductions of ST93 clades into PNG, FNQ
 1043 and NZ) or following a delay of several years after introduction
 1044 (e.g. ST772 after SCCmec-V (5C2) fixation, ST59 expansion in
 1045 Taiwan). It is feasible that delayed changes in R_e may be indicative
 1046 of local competitive interactions with prevailing lineages or changes
 1047 in human population dynamics (e.g. in healthcare or social policies,
 1048 travel and immigration policies, opening of markets and borders)
 1049 that drive further dissemination once established in the host popu-
 1050 lation. In one case, a sharp increase in R_e occurred nearly a decade
 1051 after the MRCA of the resistant European ST1-MRSA clade, with
 1052 the implication that the emerging genotype circulated undetected
 1053 in South-East Europe (likely in Romania where the first samples
 1054 originate (11, 17, 18)) before its emergence across Europe (Fig. 4).
 1055

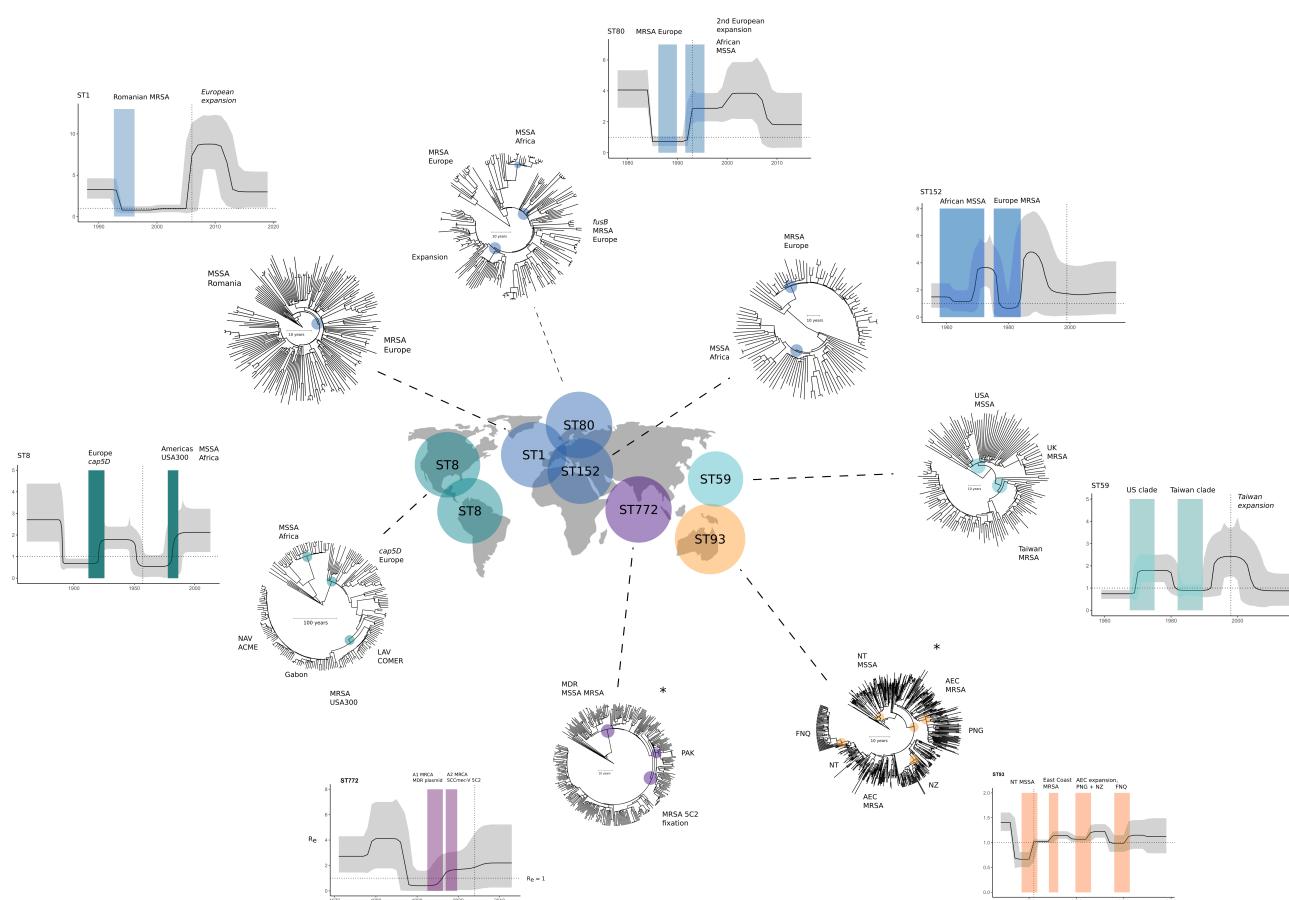
1057 Additional model limitations and runtime improvements

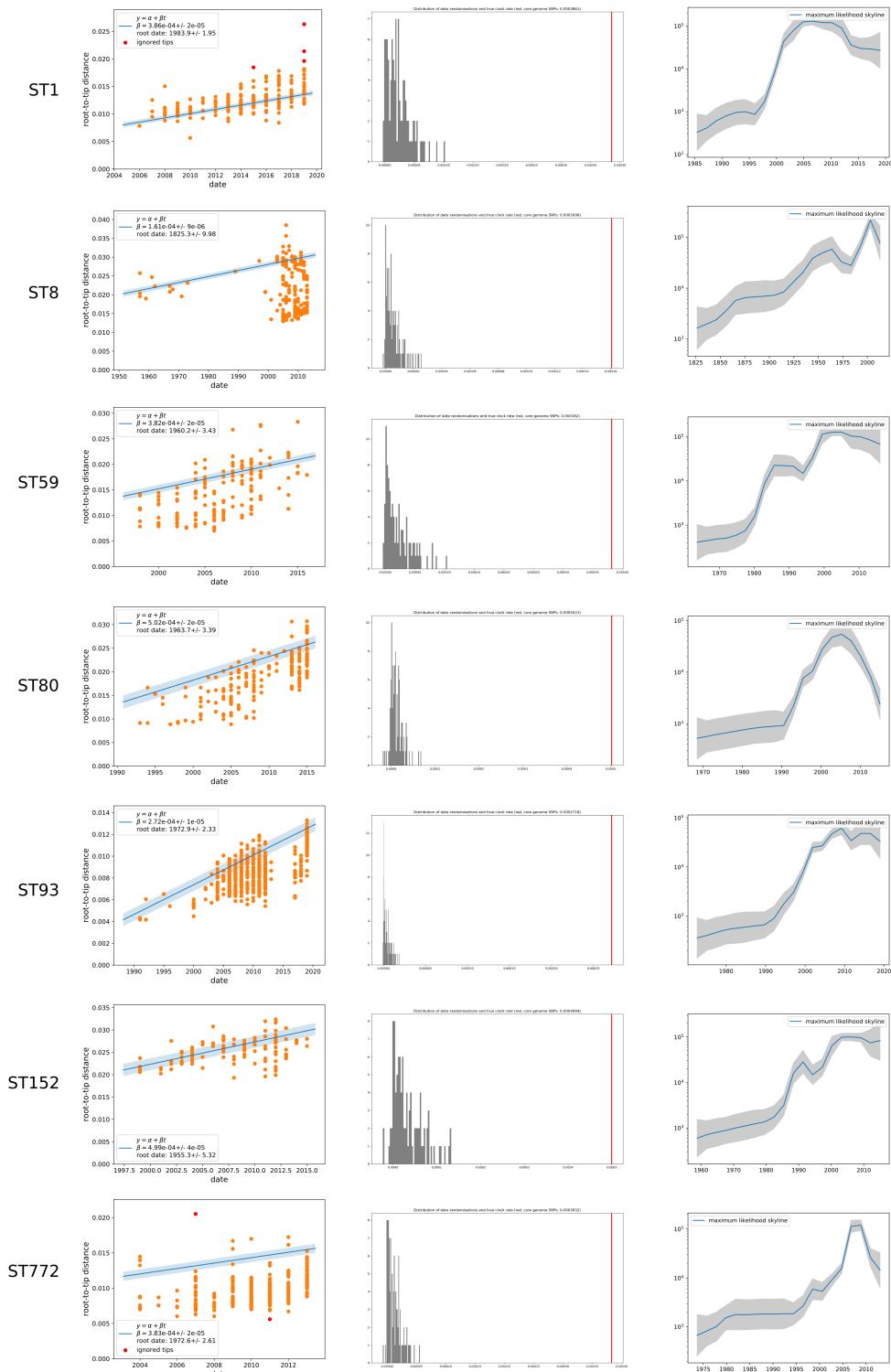

1058 Birth-death skyline models assume that populations are well-mixed,
 1059 but clear population structure is evident between the MSSA and
 1060 MRSA strains as well as in other monophyletic clades, such as
 1061 the introductions of ST93 into PNG, FNQ and NZ. While we
 1062 attempted to employ the more parameter-rich multitype birth-death
 1063 models that are inherently capable of accounting for structured
 1064 populations (81), the MCMC chains ultimately did not converge.
 1065 This was likely due to a combination of large bacterial genome data
 1066 sets and the parameter-rich model. We therefore employed the
 1067 birth-death skyline model on monophyletic subsets of the lineage-
 1068 wide variant alignment, provided sufficient isolates were available

(Figs. 2B, 3B, Supplementary Fig. 2), thus reducing the potential
 1069 impact on lineage-wide estimates arising from excessive population
 1070 structure in the tree. We further explored a range of realistic
 1071 configurations on the becoming uninfectious rate prior (1 - 10 years
 1072 infectious period), for which few data are available from long-term
 1073 surveillance studies, as well as weighting the reproductive number
 1074 prior distribution at different levels of transmission (Methods).
 1075 Prior sensitivity analysis for each lineage and clade confirms that
 1076 estimates were largely driven by the available data, rather than
 1077 by the prior configurations (Figs. S7, S8). Further improvements
 1078 to enable MCMC convergence for phylodynamic models used in
 1079 large bacterial populations, including multitype birth-death models
 1080 supporting larger sample sizes with numeric stability (82) and
 1081 Metropolis-coupled MCMC chains (83) will be required for further
 1082 investigations into the origins of community-associated *S. aureus*.
 1083


A


B


Fig. 1. Genomic epidemiology of *Staphylococcus aureus* outbreak isolates from Papua New Guinea (n = 95) and Far North Queensland (n = 89). (A) Map of sampling locations, multilocus sequence types and predominant symptoms of patients (ring annotation) (B) Global evolutionary history of the Australian lineage (ST93) showing the rooted maximum-likelihood phylogeny constructed from a non-recombinant core-genome SNP alignment (n = 575) and major regional geographical structure in the evolutionary history of the clone (branch colors). ST93 emerged in remote communities of North West Australia and acquired SCCmec-IV, spreading to the Australian East Coast (blues, yellow), remote northern Australian communities (orange, red), the remote highlands of Papua New Guinea (green) and into Auckland communities in New Zealand (seagreen).


Fig. 2. Phylogenetic signatures and parameter estimates for the Queensland clone (ST93) **(A)** Changes in the effective reproduction number (R_e) over time, showing the 95% credible interval (CI) intervals of the MRCA of clade divergence events of ST93-MSSA and -MRSA (colors) using the birth-death skyline model **(B)** R_e posterior density distributions for introductions in Papua New Guinea (PNG), Far North Queensland (FNQ), New Zealand (NZ) and re-introduction of the MRSA genotype to the Northern Territory (NT) **(C)** Events in the emergence and regional dissemination of the Queensland clone, with maximum-likelihood phylogenies and branch colors indicating major sub-clades and divergence events in the emergence of ST93. Vertical lines in skyline plots indicate the year of first sample from the lineage or clade, horizontal lines indicate the epidemic threshold of $R_e = 1$. **(1)** Local emergence of ST93-MSS in remote Indigenous communities of North Western Australia. Some sporadic transmission to QLD occurred in this clade. ST93-MSSA continue to circulate in the Northern Territory and $R_e > 1$ estimates indicate that strains continue to spread (inset plot). **(2)** When the lineage acquired SCCmec-IV it spread to East Australian coastal states (Queensland, Victoria, New South Wales) coinciding with a population growth and increase in transmission with a spike at initial recruitment (inset plot) **(3)** ST93-MRSA-IV continues to spread in the eastern coastal states (QLD, NSW, VIC) **(4)** From the globally connected East Coast population centers, ST93-MRA-IV spread overseas (particularly to the U.K.) but also establishes sustained transmission in remote Far North Queensland and regionally in the highlands of Papua New Guinea. **(5)** The Far North Queensland outbreak is derived from a ST93-MRA-IV clade in the Northern Territory co-circulating with the ongoing ST772-MSSA epidemic.

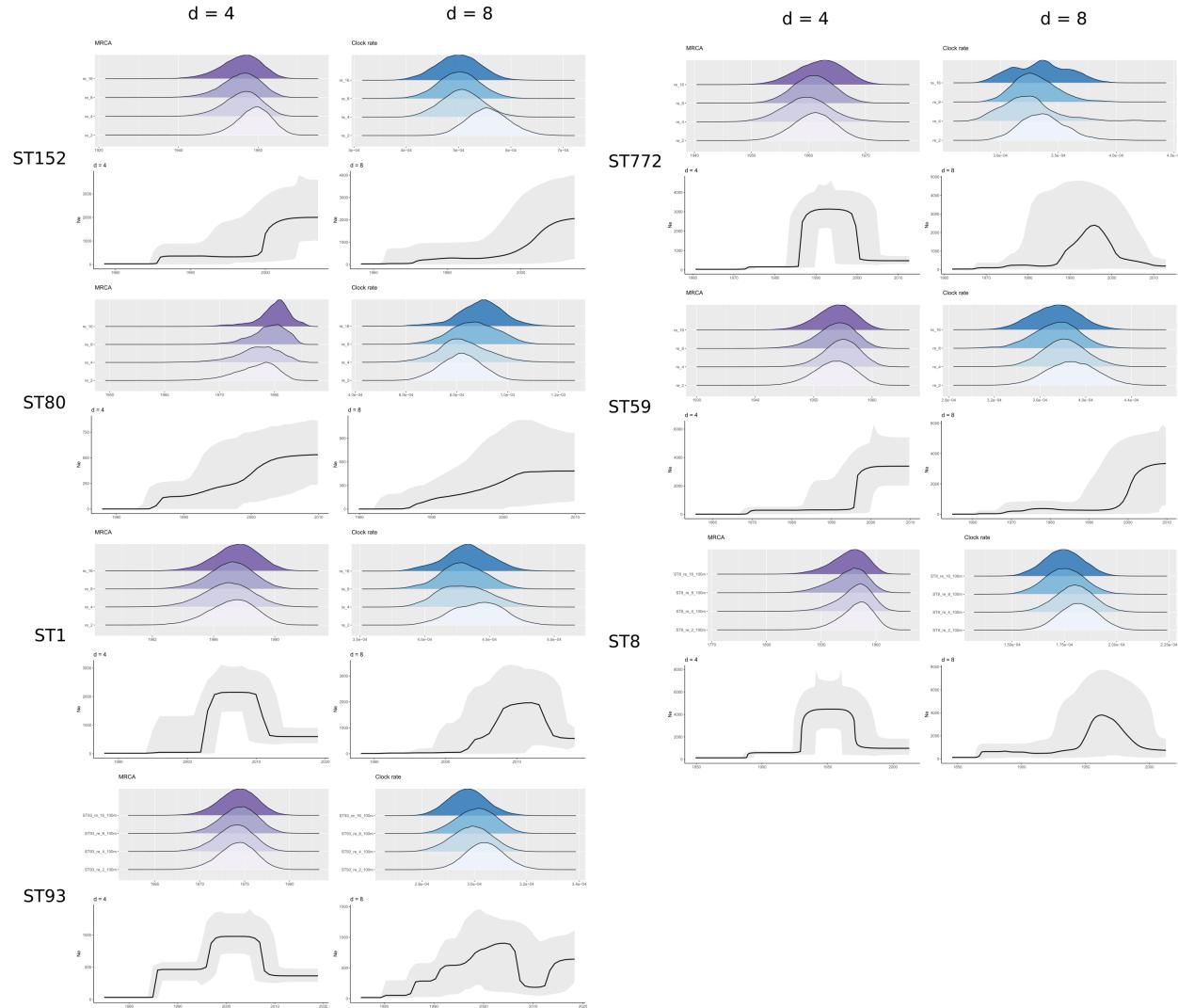
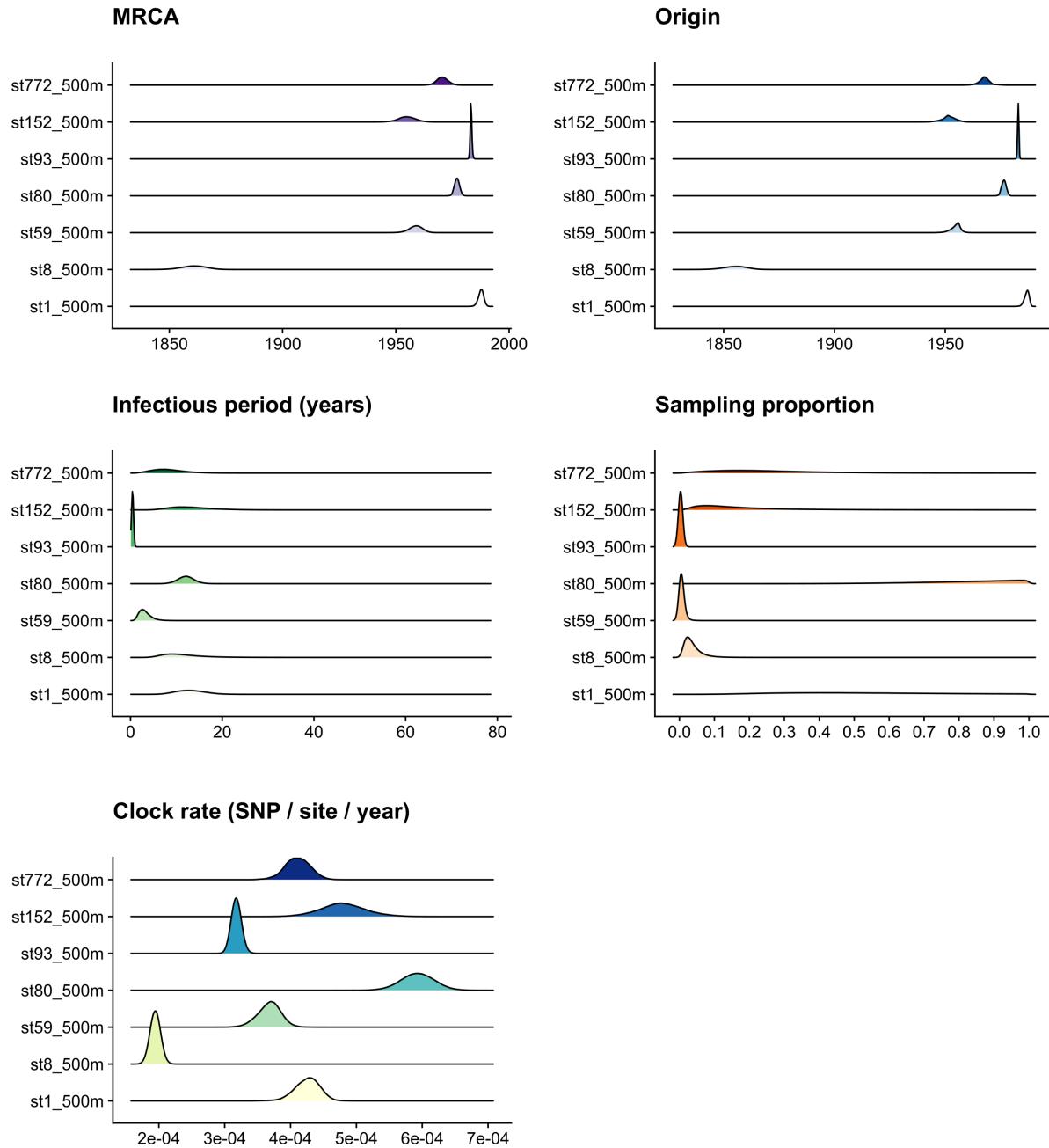
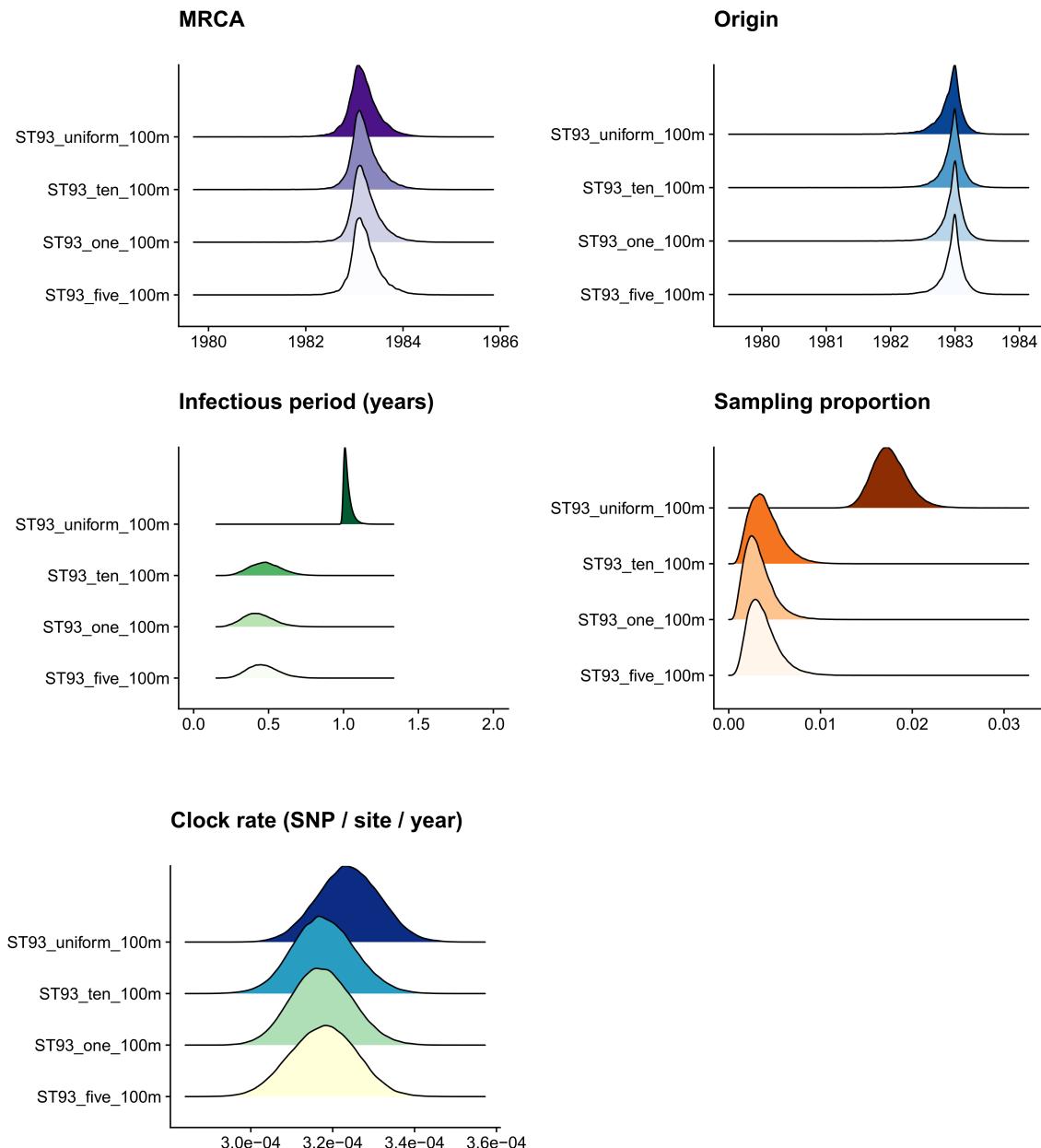
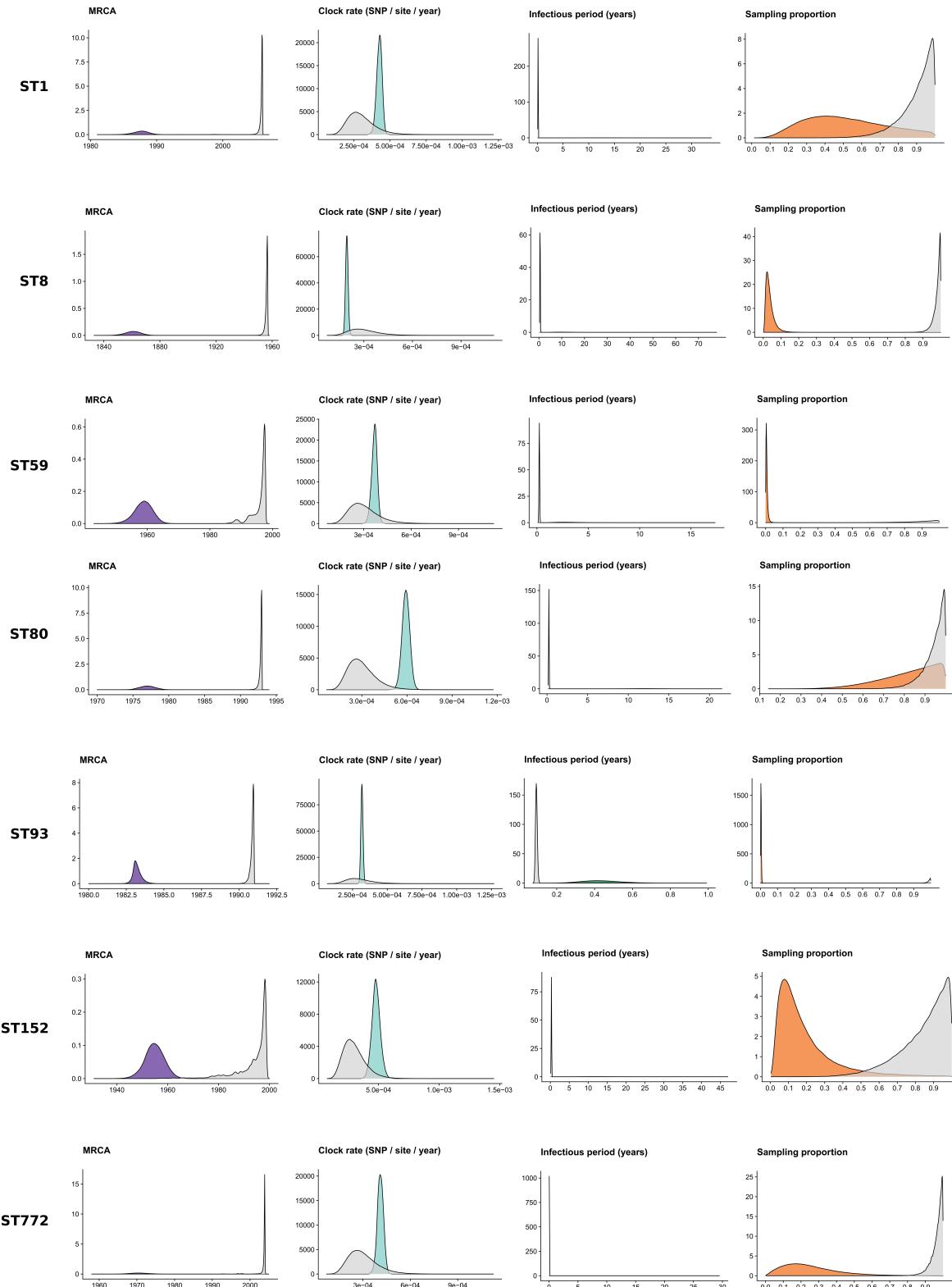
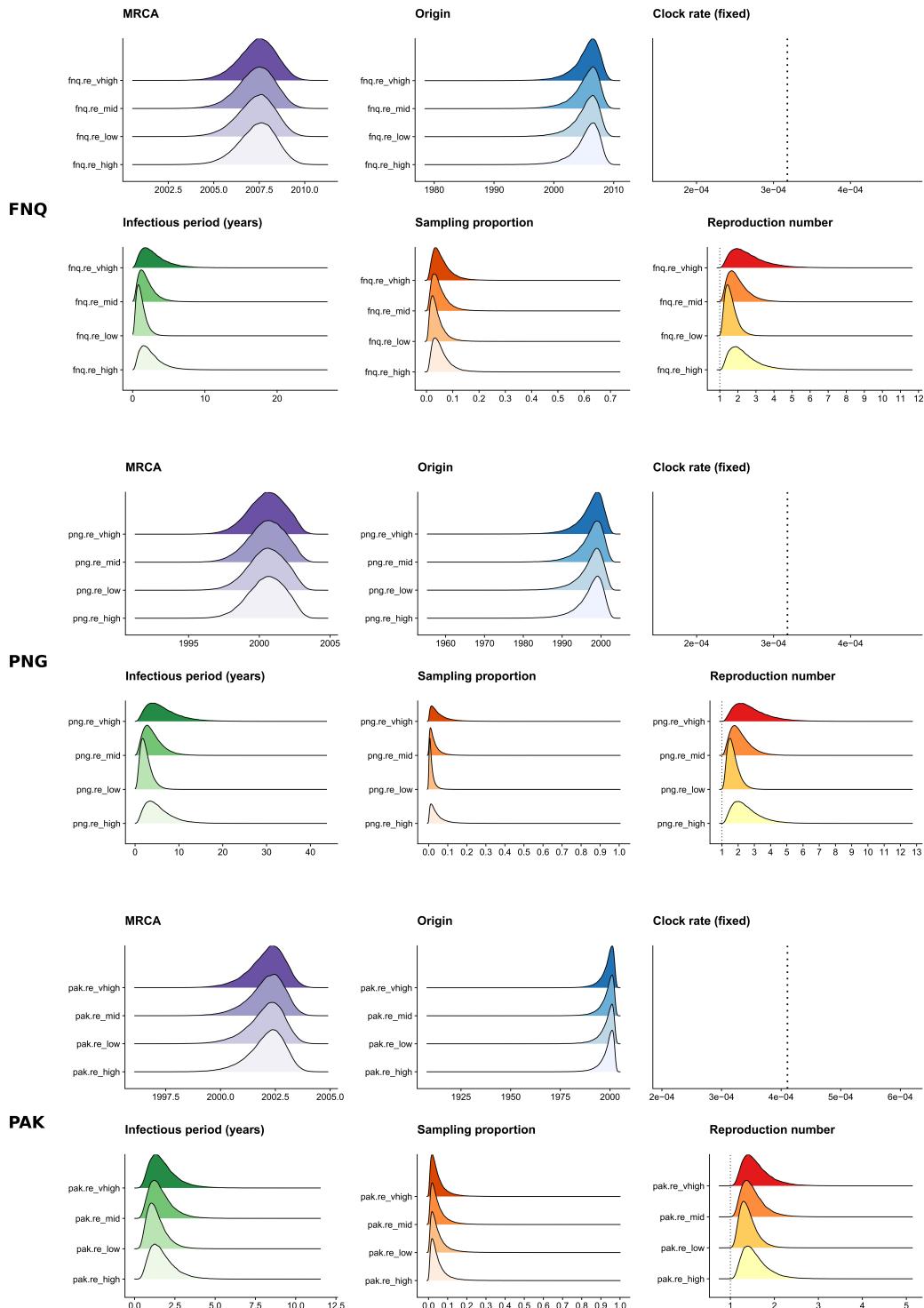

Fig. 3. Genomic epidemiology of the Bengal Bay clone ST772 on the Indian subcontinent. (A) Rooted maximum-likelihood phylogeny of ST772 showing new strains ($n = 59$) from community transmission in Haripur and Rawalpindi (Islamabad metropolitan area). Sporadic importation into Pakistan is evident from singular and small transmission clusters, including a larger community transmission cluster in Rawalpindi ($n = 25$, PAK), where table-eggs were associated with the community outbreak and indicated additional spread overseas (B) Effective reproduction number (R_e) over time; acquisition of the MDR integrated plasmid (MRCA 95% CI colored) is associated lineage-wide epidemic spread ($R_e > 1$). Subsequent rapid fixation of the SCCmec-V (5C2) within a couple of years indicates a delayed effect on R_e increasing slightly after the variant cassette fixation. (C) Events in the emergence of drug resistant ST772-MRSA on the Indian subcontinent; branch color in maximum likelihood phylogenies show major subclades and ongoing transmission in Pakistan. (1) Local emergence of ST772-MSSA-PVL+ in the Bengal Bay area (first samples Bangladesh and India, 2004) (2) Acquisition and chromosomal integration of a multidrug-resistant plasmid encoding *blaZ-aphA3-msrA-mpnC-bcrAB* producing a ST772-MSSA-MDR clade which experiences multiple introgressions of SCCmec-V variants (5C2 and 5C2&2). This genotype successfully spreads in the wider population of the Indian subcontinent. Eventually the shorter variant SCCmec-V-5C2 becomes fixed in the population (3); meanwhile the pathogen population grows on the Indian subcontinent, transmission is increasing and sustained ($R_e > 1$); massive sporadic exportation from the subcontinent is occurring including into Pakistan (4), where a community outbreak establishes sustained transmission (Table 1)

Fig. 4. Bayesian phylogenetic trees and changes in the effective reproduction number (R_e) of global community-associated *Staphylococcus aureus* lineages. The map shows lineages with sufficient ($n > 100$) genotype-resolved data included in this study, their main geographical regions in which they emerged, and their respective Bayesian maximum clade credibility trees, with colored dots indicating important clade and outbreak divergences (internal nodes). Associated changes in R_e estimated over equally sliced intervals over the sampling period in the birth-death skyline model are shown next to the trees. Trajectories of R_e show the median posterior estimates over time (dark line) and their 95% CI intervals (grey). Colored rectangles in the skyline plots correspond to 95% CI intervals of the clade MRCA indicated by dots in the lineage trees.


Fig. S1. Lineage specific maximum-likelihood phylodynamics using Treetime (41): on the left is the root-to-tip regression on sampling dates showing that all lineages could be considered 'measurably evolving'; in the middle the results of a date-randomisation test with 100 replicates (65, 66) indicating that all estimated clock rates (red line) are distinct from a distribution of rates estimated after randomising dates across the phylogenetic tree (gray distribution); on the right is the coalescent skyline estimate of changes in the effective population size (N_e) over time.


Fig. S2. Coalescent Bayesian skyline plots of changes in the effective population size (N_e) of *Staphylococcus aureus* lineages at different dimensional configurations ($d = 4$ and $d = 8$, skyline plots) with posterior distributions of dimensional configurations $d \in \{2, 4, 8, 16\}$ of MRCA (purple) and clock rate (blue) above for reference.


Fig. S3. Birth-death skyline posteriors of outbreaks and sublineages in community-associated *Staphylococcus aureus*. Clock rates are fixed to the lineage-wide median higher posterior density interval (Table 1).


Fig. S4. Birth-death skyline posteriors of community-associated *Staphylococcus aureus* lineages; clock rates are estimated, the sampling proportion (δ) prior is sliced into pre-sampling and sampling intervals, and the reproduction number (R_e) prior varies across equally distant slices over the phylogeny (Fig. 44, Table 1, models were run for 500 million iterations of the MCMC)

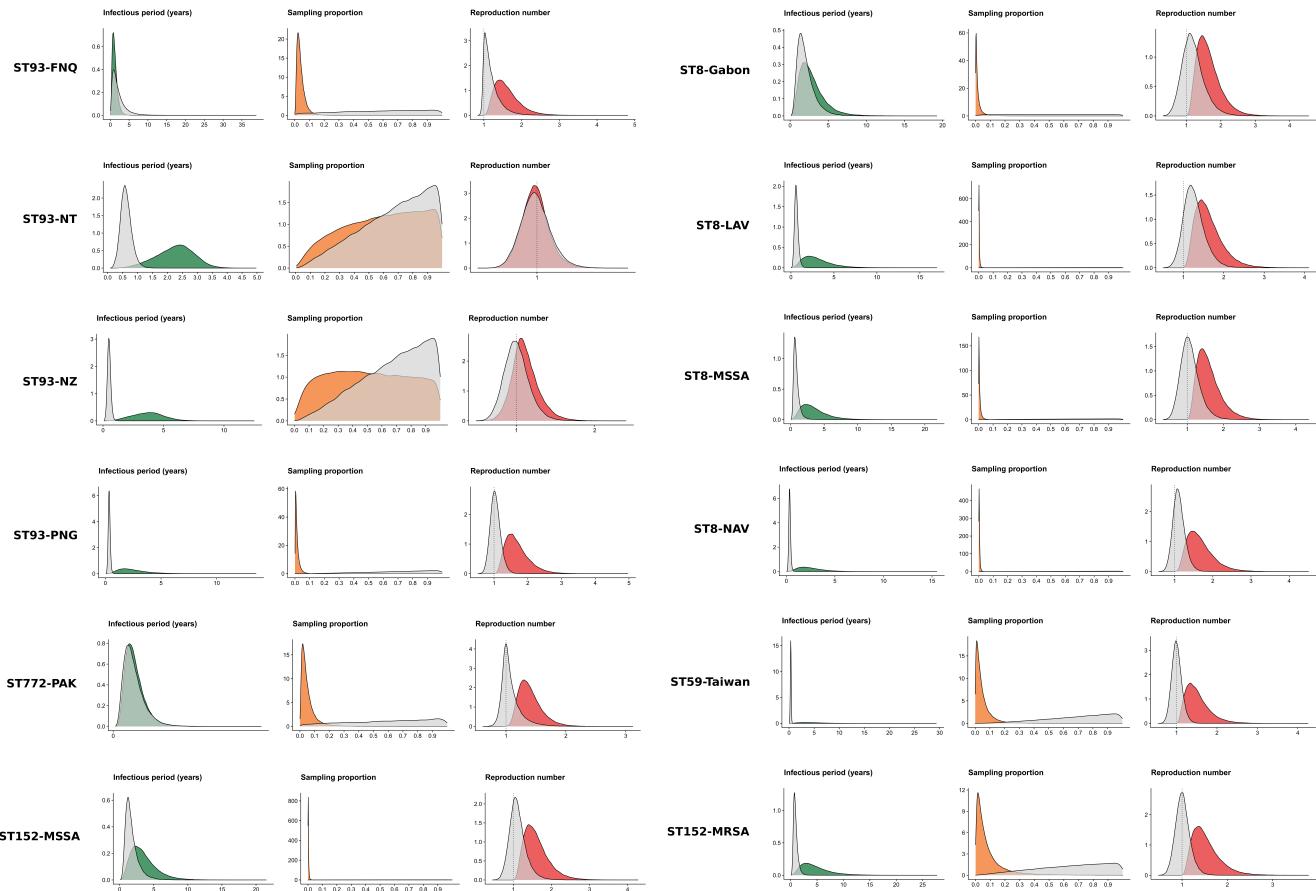

Fig. S5. Posterior estimates of prior exploration in ST93 showing on the ridges the become uninfecitous rate posteriors, where the prior was configured as a flat *Beta* distribution, or with *Lognormal*(μ , 1.0) with μ = 0.1 (10 years infectious period), μ = 0.2 (5 years) and μ = 1.0 (1 year). Full data on other lineages available in data repository.

Fig. S6. Prior sensitivity analysis of the birth-death skyline model for main sequence types of *Staphylococcus aureus* (Table 1), showing the posterior distributions of the MRCA, clock rate, infectious period ($\frac{1}{\delta}$) and sampling proportion (ρ) (colors), and the posterior distributions 'under-the-prior' (gray, without including the sequence alignment; necessarily including dates that can still inform the posterior estimates). Full data available in data repository.

Fig. S7. Birth-death skyline posteriors of three outbreaks sequenced in this study (ST93-MRSA-FNQ, ST93-MRSA-PNG, ST772-MRSA-PAK) across four configurations of the R_0 prior with $\text{Gamma}(2.0, \theta)$ where labels in the plots correspond to $\theta = 0.5$ (re_low), $\theta = 1.0$ (re_mid), $\theta = 1.5$ (re_high), $\theta = 2.0$ (re_vhigh).

Fig. S8. Prior sensitivity analysis of the birth-death skyline model for sublineages of *Staphylococcus aureus* (Table 1), showing the posterior distributions of the infectious period ($\frac{1}{\delta}$), sampling proportion (ρ) and reproduction number (R_e) (colors) and the posterior distributions 'under-the-prior' (gray, without including the sequence alignment; necessarily including dates that can still inform the posterior estimates). Full data available in data repository.