

1 RelA-SpoT Homologue toxins pyrophosphorylate the CCA end of tRNA to 2 inhibit protein synthesis

4 Tatsuaki Kurata^{1*}, Tetiana Brodiazhenko², Sofia Raquel Alves Oliveira², Mohammad
5 Roghanian^{1,3,4}, Kathryn Jane Turnbull^{3,4}, Ondřej Bulvas⁵, Hiraku Takada⁶, Hedvig Taman⁷,
6 Andres Añeloa⁷, Radek Pohl⁵, Dominik Rejman⁵, Tanel Tenson², Abel Garcia-Pino^{7,8}, Gemma
7 C. Atkinson^{1*}, Vasili Hauryliuk^{1,2,3,9*}

9 ¹Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden

10 ²University of Tartu, Institute of Technology, 50411 Tartu, Estonia

11 ³Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87
12 Umeå, Sweden

13 ⁴Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark

14 ⁵Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic,
15 v.v.i., Flemingovonam. 2, CZ-166 10 Prague 6, Czech Republic

16 ⁶Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto
17 603-8555, Japan

18 ⁷Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de
19 Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe,
20 1050, Brussels, Belgium

21 ⁸WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium

22 ⁹Lead Contact

24 *Correspondence to: tatsuaki.kurata@med.lu.se, gemma.atkinson@med.lu.se,
25 vasili.hauryliuk@med.lu.se

27 **Summary:** RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through
28 synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered
29 multiple families of Small Alarmone Synthetase (SAS) RSH acting as toxins of toxin-antitoxin
30 (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing
31 an analogue of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest employed
32 by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2 and CapRel.
33 Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a
34 pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA
35 aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated
36 RSH RelA. Conversely, we show that some Small Alarmone Hydrolase (SAH) RSH enzymes
37 can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS.
38 Collectively, we establish RSHs as a novel class of RNA-modifying enzymes.

39 **Keywords:** RelA-SpoT Homolog, toxin antitoxin, tRNA modification, translation, (p)ppGpp

40 **Introduction**

41 Toxin–antitoxin (TA) systems are a class of highly diverse and widespread small operons found
42 in bacterial, archaeal and bacteriophage genomes (Fraikin et al., 2020; Harms et al., 2018). TAs
43 have a broad range of functions, including bacterial defence against bacteriophages, phage
44 competition for infection of bacteria, stabilization of transposons, plasmids and bacterial
45 genomes – all of which rely on the highly potent toxicity of the protein toxin controlled by the
46 protein- or RNA-based antitoxin (Blower et al., 2009; Fiedoruk et al., 2015; Jaffe et al., 1985;
47 Lima-Mendez et al., 2020; Song and Wood, 2020). Many TA toxins are closely evolutionary
48 related to housekeeping enzymes, suggesting a ‘breakaway’ evolutionary path on which a
49 generally harmless enzyme evolves a toxic function that requires tight control by the antitoxin
50 (Burckhardt and Escalante-Semerena, 2020; Garcia-Pino et al., 2014; Jimmy et al., 2020;
51 Koonin and Makarova, 2019; Senissar et al., 2017).

52 The RelA-SpoT Homolog (RSH) protein family of housekeeping stress-response
53 enzymes was only recently recognised to also contain TA toxins (Jimmy et al., 2020). The
54 function of housekeeping RSHs is to control the cellular levels of alarmone nucleotides ppGpp
55 (guanosine-3',5'-bisdiphosphate) and pppGpp (guanosine-5'-triphosphate-3'-diphosphate) –
56 collectively referred to as (p)ppGpp – with the alarmones, in turn, regulating metabolism,
57 virulence and growth rate, as well as playing an important role in antibiotic and stress tolerance
58 (Gaca et al., 2015; Hauryliuk et al., 2015; Irving et al., 2020; Liu et al., 2015; Zhu et al., 2019).
59 RSH family members can both synthesise (p)ppGpp by transferring the pyrophosphate group
60 of ATP to the 3' position of either GDP or GTP, and convert it back to GDP/GTP through
61 removal of the 3' pyrophosphate (Atkinson et al., 2011; Cashel and Gallant, 1969). RSHs can
62 be classified into long multi-domain RSHs – with the archetypical representatives being
63 *Escherichia coli* enzymes RelA (Haseltine and Block, 1973) and SpoT (Xiao et al., 1991) – and
64 short single-domain RSHs (Atkinson et al., 2011). The latter are highly diverse, and can be
65 subdivided into Small Alarmone Synthetases (SAS; 30 distinct subfamilies, with numerous
66 experimentally representatives extensively characterised, including *Staphylococcus aureus*
67 RelP (Geiger et al., 2014; Manav et al., 2018) and *Bacillus subtilis* RelQ (Nanamiya et al.,
68 2008; Steinchen et al., 2015)) and Small Alarmone Hydrolases (SAH; 11 subfamilies) (Jimmy
69 et al., 2020).

70 Several recent discoveries have sparked interest in how non-(p)ppGpp RSH-mediated
71 chemical catalysis can be weaponised by bacteria for potent growth inhibition. Highly toxic
72 SAS RSH enzymes that are injected by secretion systems (Ahmad et al., 2019) or constitute the

73 toxic components (toxSAS), of toxin-antitoxin (TA) modules (Jimmy et al., 2020) were found
74 to produce a structural analogue of (p)ppGpp – pApp, ppApp and pppApp – collectively
75 constituting (pp)pApp (**Figure S1**). By abrogating *de novo* purine synthesis through orthosteric
76 inhibition of PurF (Ahmad et al., 2019), (pp)pApp inhibits translation, transcription and
77 replication (Jimmy et al., 2020). SAHs have also been shown to catalyse unexpected new
78 reactions. While no (p)ppGpp synthetases are encoded in mammalian genomes, human MESH1
79 was identified in 2010 as an efficient (p)ppGpp hydrolase (Sun et al., 2010). A decade later,
80 compelling evidence was presented that human MESH1 is a NADPH phosphatase (Ding et al.,
81 2020). Combined with the dramatic evolutionary diversity of this largely experimentally
82 unexplored protein family (Atkinson et al., 2011; Jimmy et al., 2020), these discoveries
83 demonstrate that RSH-mediated catalysis is versatile and that the biological functions of RSH
84 enzymes are clearly not limited to (p)ppGpp metabolism.

85 We have recently experimentally validated representatives of five toxSAS subfamilies
86 as *bona fide* TA effectors: *Cellulomonas marina* FaRel, *Bacillus subtilis* la1a PhRel2,
87 *Coprobacillus* sp. D7 FaRel2, *Mycobacterium* phage Phrann PhRel (Gp29) and
88 *Mycobacterium tuberculosis* AB308 CapRel (Jimmy et al., 2020). Out of these, only the
89 (pp)pApp-producing *C. marina* FaRel was previously functionally characterised. In this study
90 we uncover surprising non-alarmone chemistry catalysed by previously unexplored FaRel2,
91 PhRel2, PhRel and CapRel enzymes as well as shed light on how the toxicity of non-alarmone
92 toxSASs can be counteracted through the hydrolytic activity of SAHs.

93

94 **Results**

95 **Representatives of FaRel2, PhRel, PhRel2 and CapRel toxSAS subfamilies specifically**
96 **inhibit protein synthesis**

97 While the mechanism of toxicity employed by PhRel, PhRel2, FaRel2 and CapRel toxSAS
98 subfamilies is as yet uncharacterised, we initially assumed that these toxSAs – just as
99 *C. marina* FaRel TA toxin (Jimmy et al., 2020) and the Tas1 toxic RSH effector of
100 *Pseudomonas aeruginosa* Type VI secretion system (Ahmad et al., 2019) – inhibit bacterial
101 growth by producing (pp)pApp. Surprisingly, when we analysed the nucleotide pools of
102 growth-arrested *E. coli* expressing *B. subtilis* la1a PhRel2, we detected no accumulation of
103 (pp)pApp (**Figure 1A** and **Figure S1D**). At the same time, we robustly detected (pp)pApp upon
104 expression of FaRel (**Figure S1E**; the synthesis of (pp)pApp standards is described on **Figure**
105 **S2**). Similarly, we did not detect (pp)pApp upon expression of *Coprobacillus* sp. D7 FaRel2
106 either (**Figure S1H**). These results suggested that toxSAs might not universally act via
107 production of (pp)pApp, and therefore, multiple toxSAs subfamilies could have a mechanism
108 of toxicity distinct from that of FaRel and Tas1.

109 We used metabolic labelling to uncover the effects of as yet uncharacterised toxSAs
110 on translation (by following incorporation of ^{35}S -methionine in proteins), transcription
111 (incorporation of ^3H -uridine in RNA) and replication (incorporation of ^3H -thymidine in DNA).
112 In stark contrast to FaRel (Jimmy et al., 2020) and Tas1 (Ahmad et al., 2019) which both inhibit
113 all the three processes (**Figure S3A**), representatives of all four unexplored toxSAs subfamilies
114 specifically inhibited translation. The strongest inhibition was observed for *B. subtilis* la1a
115 PhRel2 and *Coprobacillus* sp. D7 FaRel2 (**Figure 1C,B**), while *M. tuberculosis* AB308 CapRel
116 and *Mycobacterium* phage Phrann superinfection immunity protein PhRel (Gp29) (Dedrick et
117 al., 2017) had a weaker, but still specific effect on protein synthesis (**Figure S3B,C**).
118 Interestingly, upon induction of FaRel2, ^3H -uridine incorporation increased. This is likely due
119 to abrogation of ATP consumption upon cessation of translation, resulting in increased
120 transcription; we earlier observed a similar effect upon specific inhibition of translation by the
121 antibiotic kanamycin (Jimmy et al., 2020). Collectively, our results suggested that specific
122 inhibition of translation is a common mode of toxSAs toxicity, with the FaRel toxSAs
123 subfamily deviating from this common *modus operandi*.

124 We next tested whether inhibition of translation by toxSAs is mediated by a direct
125 mechanism using production of dihydrofolate reductase, DHFR, in a reconstituted cell-free
126 protein synthesis system from *E. coli* components (PURE) (Shimizu et al., 2001) as a readout

127 of toxSAS activity. Although purification of toxSAS enzymes is exceedingly challenging
128 (Jimmy et al., 2020), we succeeded in purifying enzymatically-competent C-terminally FLAG₃-
129 tagged *Coprobacillus* sp. D7 FaRel2 toxin through α -FLAG₃-immunoprecipitation (**Figure**
130 **S4**). As we have shown earlier, the FLAG₃-tag does not interfere with toxicity of FaRel2 or the
131 ability of the antitoxin to counteract the protein (Jimmy et al., 2020). As a specificity control,
132 we used catalytically compromised FaRel2 variants Y128A (predicted to disrupt the stacking
133 interaction with the pyrophosphate acceptor substrate (Steinchen et al., 2018)) and D90G
134 (predicted to compromise the coordination of the Mg²⁺ ion (Steinchen et al., 2015)). Both of
135 the substituted residues are highly conserved amongst SAS RSH enzymes (**Figure S5A**) and
136 mutant variants are non-toxic when expressed in *E. coli* (**Figure 1D**). The addition of wild-type
137 – but not D90G or Y128A – FaRel2 to the PURE system abrogated DHFR production (**Figure**
138 **1E, Figure S6A**). The addition of the ATfaRel2 antitoxin which acts through sequestering
139 FaRel2 into inactive complex (Jimmy et al., 2020) counteracted the inhibitory effect of FaRel2
140 (**Figure 1F**). We concluded that this toxSAS, indeed, directly targets the protein synthesis
141 machinery.

142

143 ***Coprobacillus* sp. D7 FaRel2 specifically modifies the tRNA 3' CCA end to abrogate**
144 **aminoacetylation**

145 Inhibition of protein production is a common means of toxicity in TA systems, with the toxic
146 components often acting via modification of tRNA, such as cleavage (employed by VapC
147 toxins (Cruz et al., 2015; Winther and Gerdes, 2011)), acetylation of the attached amino acid
148 (as seen with GNAT toxins (Cheverton et al., 2016; Jurenas et al., 2017)) or inactivation of the
149 3' CCA end through the addition of pyrimidines (employed by MenT₃ (Cai et al., 2020)). RSH
150 enzymes have never previously been shown to catalyse synthesis of any other products than
151 hyperphosphorylated nucleotides (pp)pGpp and (pp)pApp. However, one could imagine that
152 the pyrophosphate group of the ATP donor could be transferred onto the ribose position of the
153 3' terminal adenine of tRNA instead of the corresponding 3' ribose position of the ATP/ADP
154 substrate used by Tas1/FaRel to produce (pp)pApp. Since the availability of this 3' hydroxyl
155 group is essential for tRNA aminoacetylation, the modification would efficiently inhibit protein
156 synthesis.

157 We tested this hypothesis using deacylated *E. coli* tRNA as a substrate and γ -³²P ATP
158 as a donor of radioactively labelled pyrophosphate moiety. In the presence of γ -³²P ATP FaRel2

159 efficiently radiolabels both initiator tRNA_i^{fMet} (**Figure 2A,B**) and elongator tRNA^{Phe} (**Figure**
160 **2B**). The tRNA-labelling activity is lost in D90G and Y128A FaRel variants (**Figure 2C**), and
161 is specifically counteracted by both the AtFaRel2 Type II antitoxin and tRNA aminoacylation
162 (**Figure 2D,E**). The latter result strongly suggests that the ³²P label is transferred by FaRel2
163 onto the 3' hydroxyl group of the tRNA terminal adenine residue that acts as an amino acid
164 acceptor. To probe this experimentally, we tested the effect of tRNA modification by FaRel2
165 on aminoacylation of tRNA^{Phe}. The aminoacylation reaction was readily abrogated by FaRel2
166 (**Figure 2F**) in a strictly ATP-dependent manner (**Figure 2G**), thus explaining the molecular
167 mechanism of translational arrest by this toxSAS. In principle, the FaRel2-modified phospho-
168 tRNA might not just be incompetent in aminoacylation, but also actively toxic to translation
169 due to, for instance, stable binding to the ribosomal A-site or elongation factor EF-Tu. To test
170 this hypothesis, we first titrated total tRNA in the PURE system and identified the near-
171 saturating tRNA concentration (50 μ M) at which, we reasoned, the system would be most
172 sensitive to inhibition (**Figure S6B**). However, added in concentrations up to 14 μ M, phospho-
173 tRNA^{Phe} had no effect on DHFR synthesis (**Figure S6C**), suggesting that while phospho-tRNA
174 is translation-incompetent, it is not inhibitory to the protein synthesis machinery. Rather, the
175 toxicity likely results from a depletion of chargeable tRNA in the cell.

176 To test the generality of toxSAS-mediated translation inhibition via tRNA CCA
177 pyrophosphorylation, we purified and tested *B. subtilis* la1a PhRel2. Similarly to *Coprobacillus*
178 FaRel2, PhRel2 efficiently abrogates protein synthesis in the PURE system (**Figure S6D**) and
179 γ -³²P-labels both tRNA_i^{fMet} and tRNA^{Phe} (**Figure S6E**).

180 Finally, we assessed the specificity of tRNA modification by FaRel2. Both deacylated
181 initiator tRNA_i^{fMet} and elongator tRNA^{Phe} were labelled with ³²P by FaRel2 (**Figure 2B**), which
182 suggests that the 3' CCA could be sufficient for recognition of deacylated tRNA. To test this
183 hypothesis and probe the specificity of the toxSAS for tRNA's 3' adenine residue we performed
184 radiolabelling experiments with a set of synthetic 5'-CACCN-3' RNA pentanucleotides
185 containing both the 3' A as well as 3' C, G and U (**Figure 2H**). Only one of the four RNA
186 substrates, CACCA, was labelled with ³²P, suggesting specificity for 3' adenine. At the same
187 time, the CACCA DNA oligonucleotide did not serve as a FaRel2 substrate, suggesting a
188 functional importance of the 2' hydroxyl group of the 3' adenine (**Figure 2H**). This result is in
189 good agreement with a recent report demonstrating that (p)ppGpp-synthesising RSH enzymes
190 cannot catalyse the transfer of the pyrophosphate group of the ATP donor to dGTP instead of
191 the GTP substrate (Patil et al., 2020).

192

193 **tRNA 3' CCA end modification by FaRel2 abrogates ribosome-dependent activation of**
194 **(p)ppGpp synthesis by amino acid starvation sensor RelA**

195 In Gammaproteobacteria such as *E. coli*, amino acid limitation is sensed by a housekeeping
196 multidomain RSH enzyme RelA (Atkinson et al., 2011). This ribosome-associated factor
197 inspects the aminoacylation status of the 3' CCA of the A-site tRNA (Arenz et al., 2016; Brown
198 et al., 2016; Loveland et al., 2016), and, upon detecting deacylated tRNA, synthesises the
199 (p)ppGpp alarmone (Haseltine and Block, 1973). While the free 3' OH moiety of the terminal
200 adenosine residue is essential for full activation of RelA's synthesis activity by tRNA on the
201 ribosome (Sprinzl and Richter, 1976), RelA is still activated by the 70S ribosome, although to
202 a lesser extent if activation by tRNA is compromised by the antibiotics thiostrepton (Kudrin et
203 al., 2017) and tetracycline (Kudrin et al., 2018).

204 Using a reconstituted *E. coli* biochemical system (Kudrin et al., 2018) we tested the
205 effect of FaRel2 on RelA activation by deacylated tRNA of starved ribosomal complexes
206 (**Figure 2J**). FaRel2 efficiently abrogated activation of RelA by tRNA, reducing RelA activity
207 to the levels observed in the presence of 70S initiation complexes lacking the A-site deacylated
208 tRNA. Thus, not only does FaRel2 *not* produce an alarmone, it also could prevent the
209 housekeeping RSH cellular machinery from being activated by starved ribosomes to produce
210 the (p)ppGpp alarmone.

211

212 **Small Alarmone Synthetase (SAH) RSH enzymes can restore tRNA aminoacylation**
213 **competence of FaRel2-modified tRNA**

214 When co-expressed with *Coprobacillus* FaRel2, human MESH1 and *C. marina* ATfaRel
215 hydrolysis-only Small Alarmone Synthetase (SAH) enzymes can efficiently counteract the
216 growth inhibition by the toxSAS (**Figure 3A**) (Jimmy et al., 2020). This detoxification activity
217 suggests that MESH1 and ATfaRel can recycle pyrophosphorylated tRNA back to translation-
218 competent deacylated tRNA.

219 To probe this conjecture experimentally, we pyrophosphorylated tRNA^{Phe}
220 *Coprobacillus* FaRel2, isolated the modified tRNA, and tested whether the human MESH1,
221 *C. marina* ATfaRel or cognate Type II *Coprobacillus* AtFaRel2 Type II antitoxin (not an SAH)
222 could restore the aminoacylation activity of pyrophosphorylated tRNA^{Phe} (**Figure 3B**). In
223 excellent agreement with our microbiological results (Jimmy et al., 2020) and consistent with

224 CCA pyrophosphorylation being the cause of growth arrest by FaRel2, both tested SAH
225 enzymes restore the tRNA^{Phe} aminoacylation. At the same time, we detected no effect upon the
226 addition of the ATfaRel2 antitoxin which neutralises FaRel2 by sequestering the toxSAS into
227 an inactive complex (Jimmy et al., 2020), and, therefore, is not expected to restore the
228 aminoacylation competence of FaRel2-modified tRNA.

229

230 **Mapping the tRNA 3' CCA interaction by FaRel2 through molecular docking and**
231 **mutagenesis**

232 To gain structural insight into the mechanism of tRNA substrate recognition by FaRel2, we
233 used the Rosetta suite (Song et al., 2013) to model the structure of *Coprobacillus* FaRel2 based
234 on the structures of *S. aureus* housekeeping SAS RelP (Manav et al., 2018) and *B. subtilis* SAS
235 RelQ (Steinchen et al., 2015), PDBIDs 6FGK and 6EWZ, respectively. The model predicted
236 by Rosetta was then used to dock deacylated tRNA^{Phe} into the active site as implemented in the
237 HADDOCK suite (van Zundert et al., 2016). As the only distance restraint in the docking
238 experiment we used the necessary proximity of FaRel2 Y128 to the CCA-adenine.

239 The resulting model of the FaRel2-tRNA complex reveals that a cluster of basic residues
240 accommodate the acceptor stem guiding the CCA end into the active site of the enzyme (**Figure**
241 **4A**). In such arrangement, the orientation of the 3'-adenosine is reminiscent of the way GDP is
242 coordinated in the active site of housekeeping SAS *S. aureus* RelP (Manav et al., 2018), next
243 to the binding site of ATP, the pyrophosphate donor. Conversely, the analysis of the
244 electrostatic surface profile of RelP and RelQ shows a charge reversal in the same region
245 (**Figure S5BC**). The presence of a more acidic region in these SASs correlates with a lack of
246 tRNA-pyrophosphorylation activity of these enzymes which would likely be incompatible with
247 tRNA binding.

248 We probed our molecular model through point mutations in this recognizable basic
249 patch, using FaRel2 toxicity as a readout of intact efficient tRNA recognition (**Figure 4B**). As
250 predicted from our model, Ala-substitutions in the basic cluster located towards the N-terminus
251 of the toxin that includes K28 and K29 abolished the toxicity of FaRel2. Ala-substitutions in
252 the outside rim of the active site (including R114 and Y134) which were predicted to contact
253 the tRNA in our interaction model also compromise the toxicity of FaRel2. These residues are
254 all outside the active site and would not be involved directly in catalysis, thus their effect on
255 toxicity is likely related with tRNA binding. Finally, as a control we confirmed that Ala-

256 substitution of basic residues throughout the surface of FaRel2 had no effect on toxicity (**Figure**
257 **4B**).

258

259 **Discussion**

260 TA toxins belonging to the same protein family can display relaxed specificity towards their
261 targets (Goeders et al., 2013; Harms et al., 2018; Page and Peti, 2016; Schureck et al., 2015;
262 Yamaguchi and Inouye, 2009) or even enzymatically modify clearly distinct classes of
263 substrates (Burckhardt and Escalante-Semerena, 2020; Castro-Roa et al., 2013; Harms et al.,
264 2015; Jurenaitė et al., 2013; Jurenas et al., 2017). A classic example is the GCN5-related N-
265 acetyltransferase (GNAT) TA toxins – a versatile family of enzymes unrelated to RSHs. While
266 GNAT TA toxins inhibit protein synthesis by acetylating aminoacyl-tRNAs (Cheverton et al.,
267 2016; Jurenas et al., 2017), the majority of non-toxic GNATs modify small molecules such as
268 polyamines, antibiotics, phospholipids and amino acids (Burckhardt and Escalante-Semerena,
269 2020). This substrate specificity spectrum – toxicity mediated via tRNA modification combined
270 with non-toxic modification of small molecule substrates – is strikingly similar to what we
271 present here for RSH enzymes.

272 Our results uncover a novel enzymatic activity of some toxSAS RSHs to efficiently
273 abrogate translation. We propose the following model of substrate specificity change within the
274 diversity synthetase-competent RSH enzymes (**Figure 5**). The vast majority of RSH
275 synthetases specifically recognise the guanosine residue of the nucleotide (GTP or GDP)
276 substrate to catalyse the synthesis of the housekeeping alarmone (p)ppGpp (**Figure 5A**). In
277 toxic SAS enzymes such *C. marina* FaRel and *P. aeruginosa* Tas1, the substrate specificity is
278 either relaxed, allowing synthesis of both (p)ppGpp and (pp)pApp (toxSAS FaRel (Jimmy et
279 al., 2020)) or switched to specific synthesis of (pp)pApp (Tas1 (Ahmad et al., 2019)) (**Figure**
280 **5A**).

281 Translation-inhibiting toxSASs belong to SAS subfamilies that are found in various
282 major phyla of Gram-positive and -negative bacteria, including Firmicutes, Actinobacteria,
283 Proteobacteria, Bacteroidetes, Acidobacteria, Planctomycetes and Cyanobacteria, as well as
284 multiple bacteriophages and even some archaea (Jimmy et al., 2020). Sequence alignment of
285 the SYNTH domain of toxSASs and other SASs shows that while there are strongly
286 differentially conserved motifs in (pp)pApp-synthesising toxSASs relative to other RSHs, there
287 is – surprisingly – not a clear sequence signature of toxSASs that use tRNA as a substrate
288 (**Figure S5**). Indeed, there is no particular support for monophyly of all toxSASs targeting

289 translation in phylogenetic analysis of RSHs (although there is support for two monophyletic
290 clades comprising FpRel2+PhRel2+FaRel2 and CapRel+PhRel) (Jimmy et al., 2020). The
291 position of the tRNA accepting toxSAS clades at roughly the midpoint of the RSH tree tempts
292 us to speculate that the ancestral function of the SYNTH domain at a time predating the last
293 universal common ancestor (LUCA) could have been pyrophosphorylation of RNA, rather than
294 (pp)pNpp synthesis.

295

296 **Perspective and limitations**

297 With 30 distinct SAS subfamilies identified to date (Jimmy et al., 2020), it is likely we are yet
298 to discover the full spectrum of chemical reactions catalysed by the evolutionary versatile RSH
299 synthetase domain. As we show here, pyrophosphorylated tRNA 3' CCA end can serve as a
300 substrate for SAH enzymes human MESH1 and *C. marina* ATfaRel (**Figure 3B**). This expands
301 the spectrum of known hydrolysis reactions catalysed by RSH beyond hydrolysis of
302 (pyro)phosphorylated nucleotides, indicating a possible new role of RSH hydrolases as RNA-
303 modifying enzymes with a 3'-phosphatase activity similar to that of T4 polynucleotide kinase,
304 Pnk.

305 This study lays the foundations for the future studies of the non-alarmone chemistry
306 catalysed by bacterial and viral RSH enzymes. Dedicated structural studies are essential for
307 further rationalising our results on the molecular level. All of the experiments presented in the
308 current study are rely on heterologous expression in *E. coli* or utilise reconstituted biochemical
309 system from *E. coli* components. In order to understand the biological roles of toxSAS TAs it
310 will be essential to study these effectors and the antitoxins neutralising them in native bacterial
311 and viral hosts.

312

313 **ACKNOWLEDGMENTS**

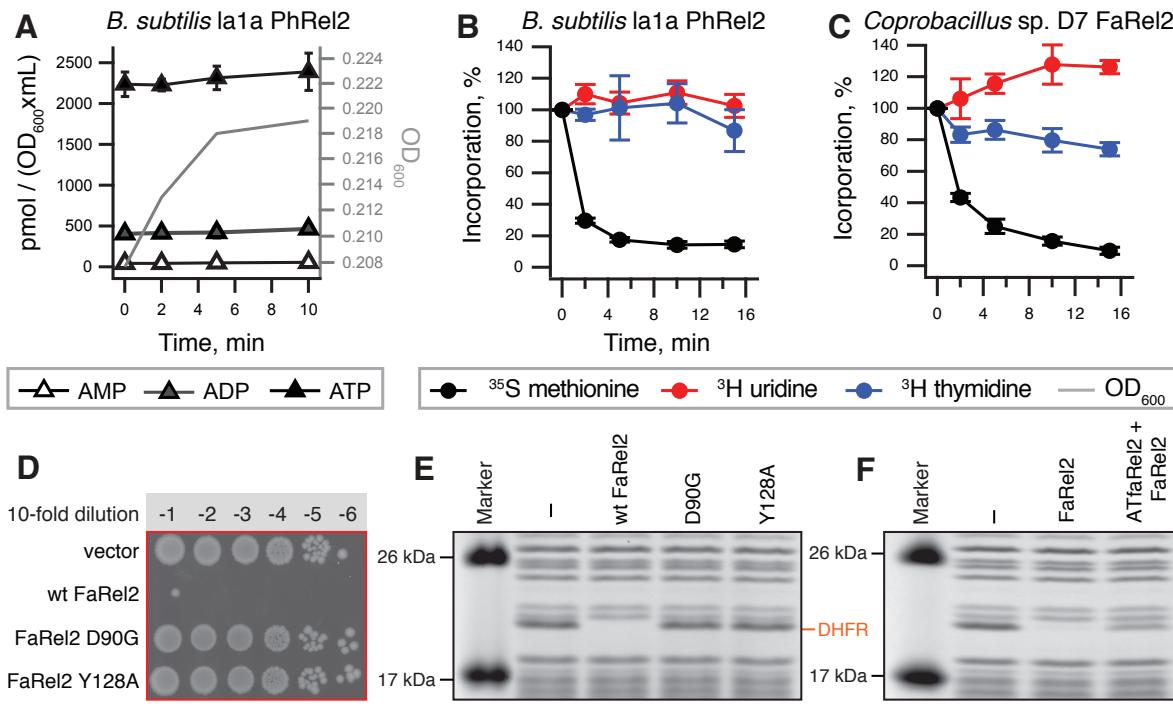
314 We are grateful to Protein Expertise Platform (PEP) at Umeå University and Mikael Lindberg
315 for constructing plasmids, Andrey Chabes, Nasim Sabouri and Ikenna Obi for providing $\gamma^{32}\text{P}$
316 ATP, to Steffi Jimmy and Constantine Stavropoulos their contributions at the initial stages of
317 this project. This work was supported by the funds from European Regional Development Fund
318 through the Centre of Excellence for Molecular Cell Technology (VH and TT, 2014-
319 2020.4.01.15-0013); the Molecular Infection Medicine Sweden (MIMS) (VH); The Estonian
320 Research Council (PRG335 to TT and VH); The Swedish Research Council (Vetenskapsrådet;
321 2017-03783 to VH and 2019-01085 to GCA); The Ragnar Söderberg foundation (VH); MIMS

322 Excellence by Choice Postdoctoral Fellowship Programme (postdoctoral grant 2018 to MR);
323 The Kempe Foundation (SMK-1858.3 to GCA); Carl Tryggers Stiftelse för Vetenskaplig
324 Forskning (19-24 to GCA). The Czech ministry of Education and Sport (grant number 8F19006
325 to DR) and the Swedish Research Council (2018-00956 to VH) within the RIBOTARGET
326 consortium under the framework of JPIAMR; Umeå Centre for Microbial Research (UCMR)
327 (postdoctoral grant 2017 to HT); the Fonds National de Recherche Scientifique [FRFS-
328 WELBIO CR-2017S-03, FNRS CDR J.0068.19, FNRS-PDR T.0066.18]; Joint Programming
329 Initiative on Antimicrobial Resistance [JPI-EC-AMR -R.8004.18]; Program ‘Actions de
330 Recherche Concerté 2016–2021 and Fonds d’Encouragement à la Recherche (FER) of ULB;
331 Fonds Jean Brachet, the Fondation Van Buuren and the ERC CoG DiStRes (Grant Agreement
332 n° 864311) to A.G.P.; the European postdoctoral programme (Marie Skłodowska Curie
333 COFUND action) to A.A..

334

335 **AUTHOR CONTRIBUTIONS**

336 VH coordinated the study and drafted the manuscript with contributions from all authors. TK,
337 AGP and VH designed experiments and analysed the data. TK, TB, SRAO, MR, KJT, OB, HT,
338 AA, HTaman performed experiments. DR, RP, TT and AGP provided reagents. GCA
339 performed bioinformatic analyses.


340

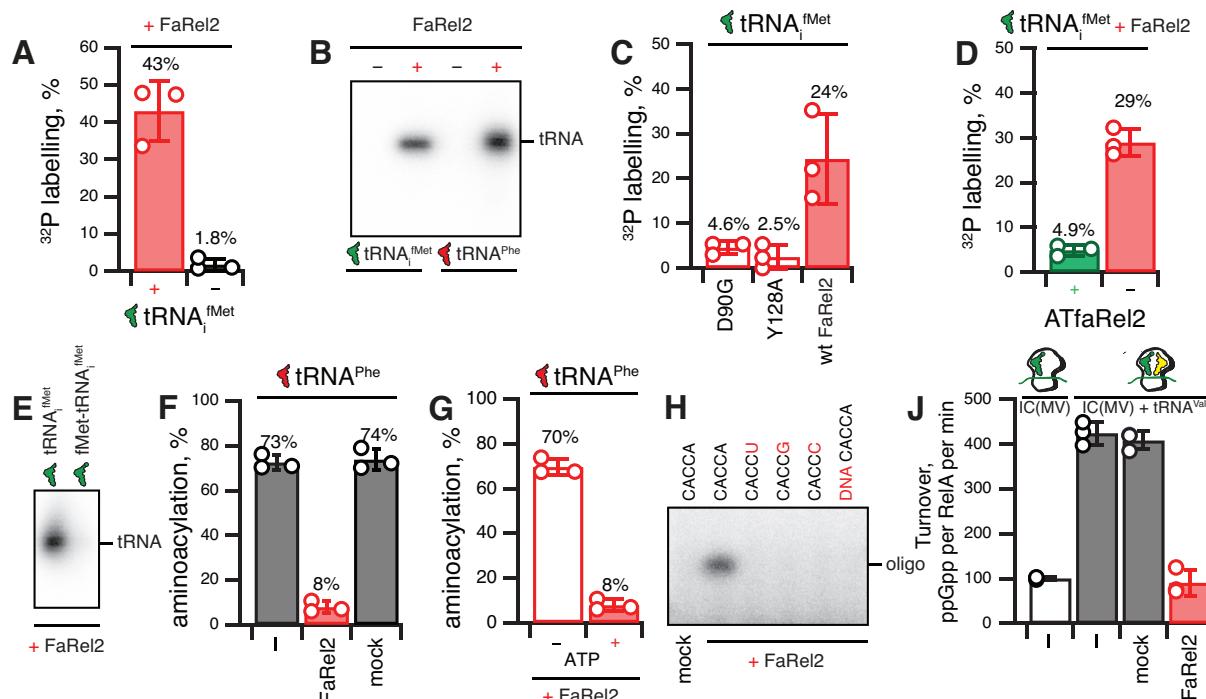
341 **DECLARATION OF INTERESTS**

342 The authors declare no competing interests.

343

344 **FIGURES**

345
346


347 **Figure 1. Inhibition of protein synthesis is an evolutionary widespread mechanism of**
348 **toxSAS-mediated growth arrest.**

349 (A) The expression of *B. subtilis* la1a PhRel2 does not perturb the adenosine nucleotide pools
350 and (pp)pApp is not detectable upon expression of the toxin. Analogous experiments with
351 *C. marina* FaRel and *Coprobacillus* sp. D7 FaRel2 are presented in **Figure S1**.

352 (B, C) Pulse-labelling assays following incorporation of ³⁵S-methionine (black traces), ³H-uridine (red traces) and ³H-thymidine (blue traces). The expression of *B. subtilis* la1a PhRel2
353 (B) and *Coprobacillus* sp. D7 FaRel2 (C) from the pBAD33-based constructs was induced with
354 0.2% L-arabinose. Analogous experiments with *P. aeruginosa* Tas1, *Mycobacterium* phage
355 Phraann PhRel (Gp29) and *M. tuberculosis* AB308 CapRel toxSAS are presented in **Figure S3**.
356 (D) D90G and Y128A substitutions render FaRel2 non-toxic.

357 (E, F) Cell-free expression assays. Wild-type but not D90G or Y128A substituted FaRel2
358 abrogates production of DHFR (E). The addition of the ATFaRel2 antitoxin counteracts the
359 inhibitory effect of FaRel2 (F).

360
361

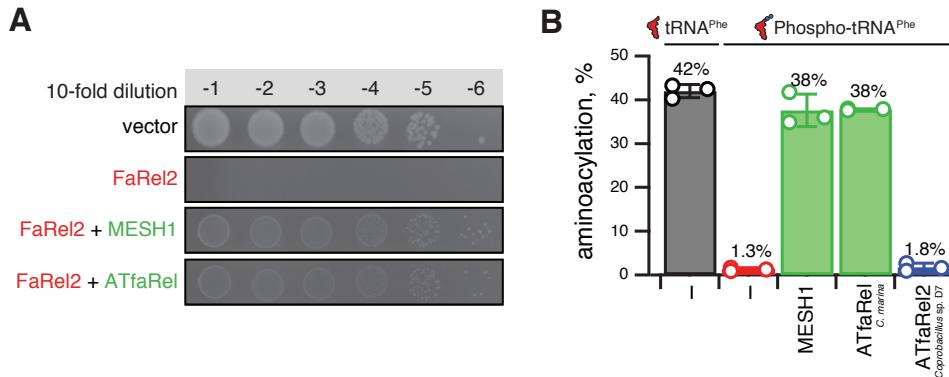
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

Figure 2. The FaRel2 toxSAS toxin modifies the 3' CCA end of tRNA to inhibit aminoacylation and the sensing of amino acid starvation by RelA.

(A, B) A reconstituted ^{32}P transfer reaction using FaRel2 and either tRNA_i^{fMet} or tRNA^{Phe} as a substrate.

(C) Non-toxic D90G and Y128A FaRel2 mutants are compromised in their ability to modify tRNA.

(D) The ATfaRel2 antitoxin counteracts tRNA modification by FaRel2.

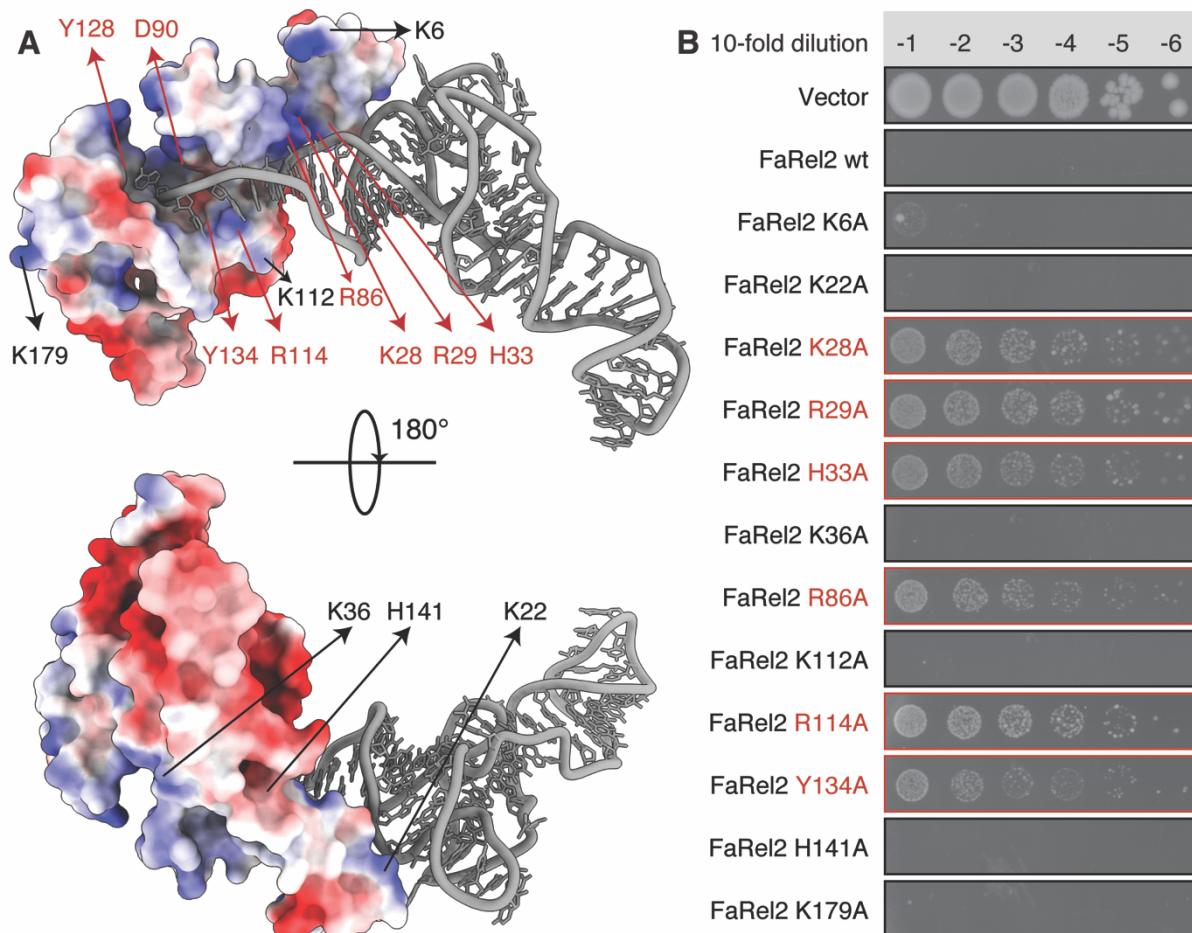

(E) Acylated fMet-tRNA_i^{fMet} is refractory to modification by FaRel2.

(F) tRNA^{Phe} modification by FaRel2 inhibits aminoacylation. As specificity controls, the reactions were supplemented either with mock protein preparation from *E. coli* strain transformed with an empty plasmid vector (mock) or HEPES:Polymix buffer (–).

(G) Inhibition of tRNA^{Phe} aminoacylation by FaRel2 is strictly ATP-dependent.

(H) 3' adenosine defines the specificity of modification by FaRel2, as tested using a set of model 5'-CACCN-3' RNA oligonucleotides. 5'-CACCA-3' DNA does not serve as a substrate for FaRel2.

(J) FaRel2 abrogates the stimulatory effect of deacylated tRNA^{Val} on ppGpp synthesis by *E. coli* RelA in the presence of 70S ribosomal initiation complexes. Error bars represent standard deviations of the mean. The mock sample was produced by immunoprecipitation using *E. coli* cells transformed with a plasmid vector not expressing FLAG₃-tagged FaRel2.

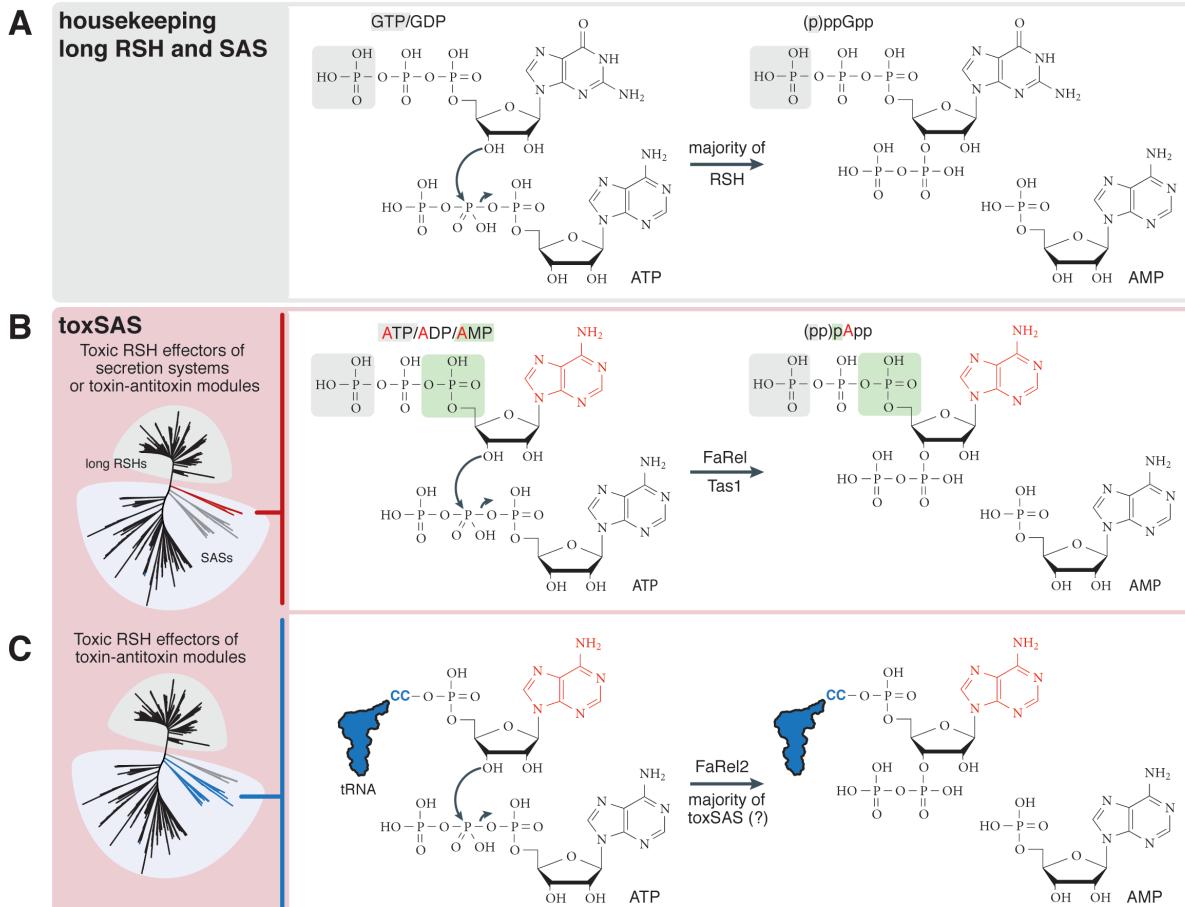

384
385

386 **Figure 3. *C. marina* ATfaRel and MESH1 SAH enzymes detoxify FaRel2 through
387 restoration of tRNA aminoacylation.**

388 (A) Co-expression of human MESH1 and *C. marina* ATfaRel SAH enzymes counteracts the
389 toxicity of *Coprobacillus* sp. D7 FaRel2 toxSAS. The SAH enzymes and FaRel2 toxSAS were
390 induced and expressed from different plasmids, pMG25 and pMR33 derivatives respectively.

391 (B) SAH enzymes MESH1 and ATfaRel but not cognate ATfaRel2 Type II antitoxin restore
392 aminoacylation of tRNA^{Phe} abrogated by FaRel2 by CCA pyrophosphorylation. As specificity
393 controls the reactions were supplemented with HEPES:Polymix buffer (-).

394



395
396

Figure 4. Mutational mapping of the predicted FaRel2: 3' CCA tRNA interface.

397 (A) Surface representation of the model of the FaRel2:tRNA^{Phe} complex. The surface is colored
398 on the basis of electrostatic potential. The phosphodiester backbone of the bound tRNA^{Phe}
399 complements a cluster of positive charges at the active site exit of the enzyme. The predicted
400 FaRel2:tRNA^{Phe} interface involves residues K28, R29, H33, R86, R114 and Y134. While these
401 which guide the CCA end into the active site, functionally essential residue Y128 coordinates
402 the 3' adenosine of the CCA.
403

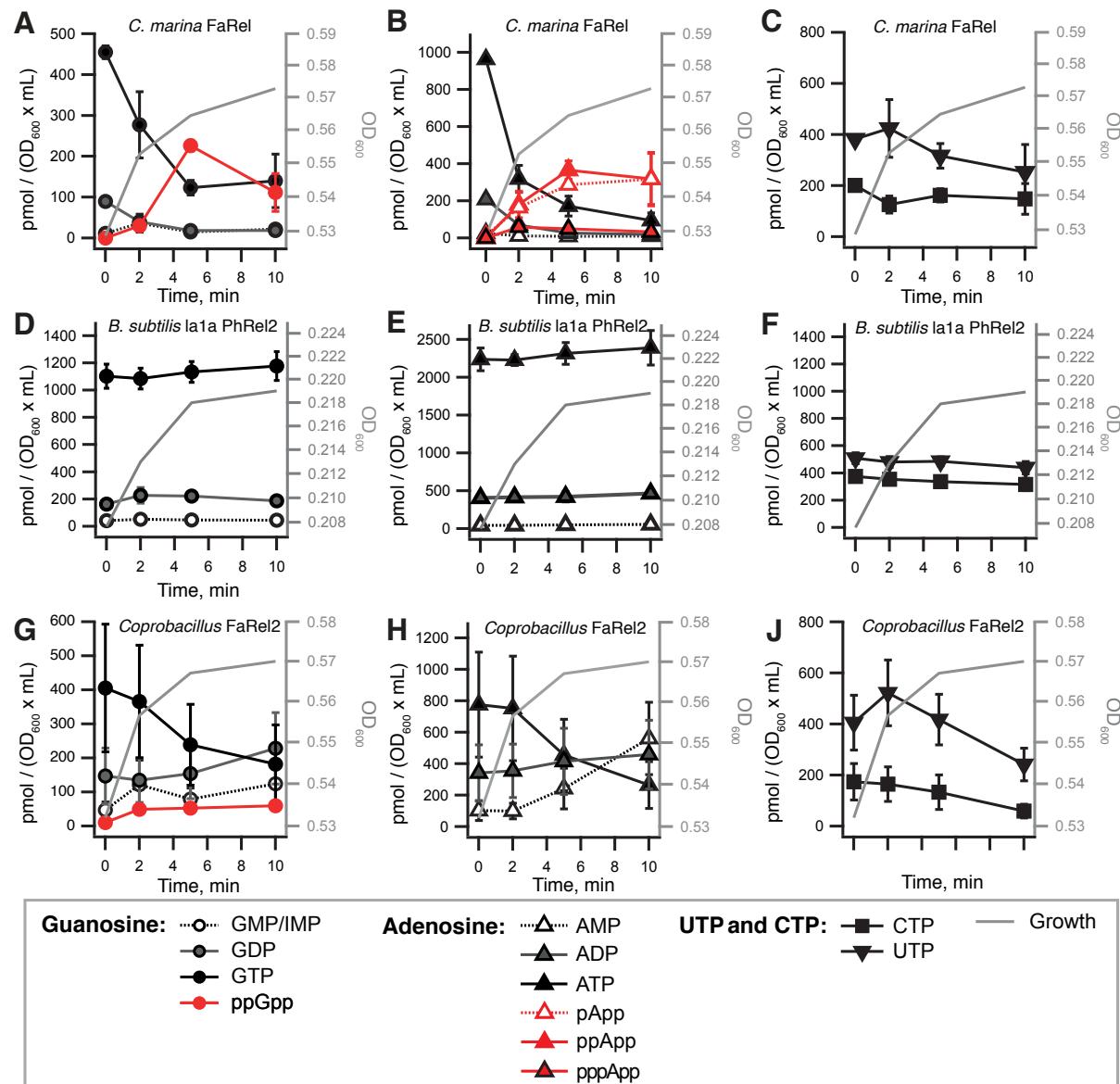
404 (B) Ten-fold dilutions of overnight cultures of *E. coli* strains transformed with the pBAD33
405 vector plasmid or derivatives expressing either wild-type *faRel2* or FaRel2 variants with Ala
406 substitutions at the predicted tRNA-binding interface (K28, R29, H33, R86, R114 and Y134),
407 neighbouring residues (K6, K22, K112 and H141), and positively charged residues outside the
408 binding region (H36 and K179). The latter were served as negative controls. Substitutions at
409 predicted tRNA-binding interface specifically abrogate toxicity of FaRel2.
410

411

412

413 **Figure 5. RSH differences in substrate specificity, from nucleotide-mediated signalling via**
 414 **production of (p)ppGpp and (pp)pApp alarmones to toxic modification of the tRNA**
 415 **3' CCA end.**

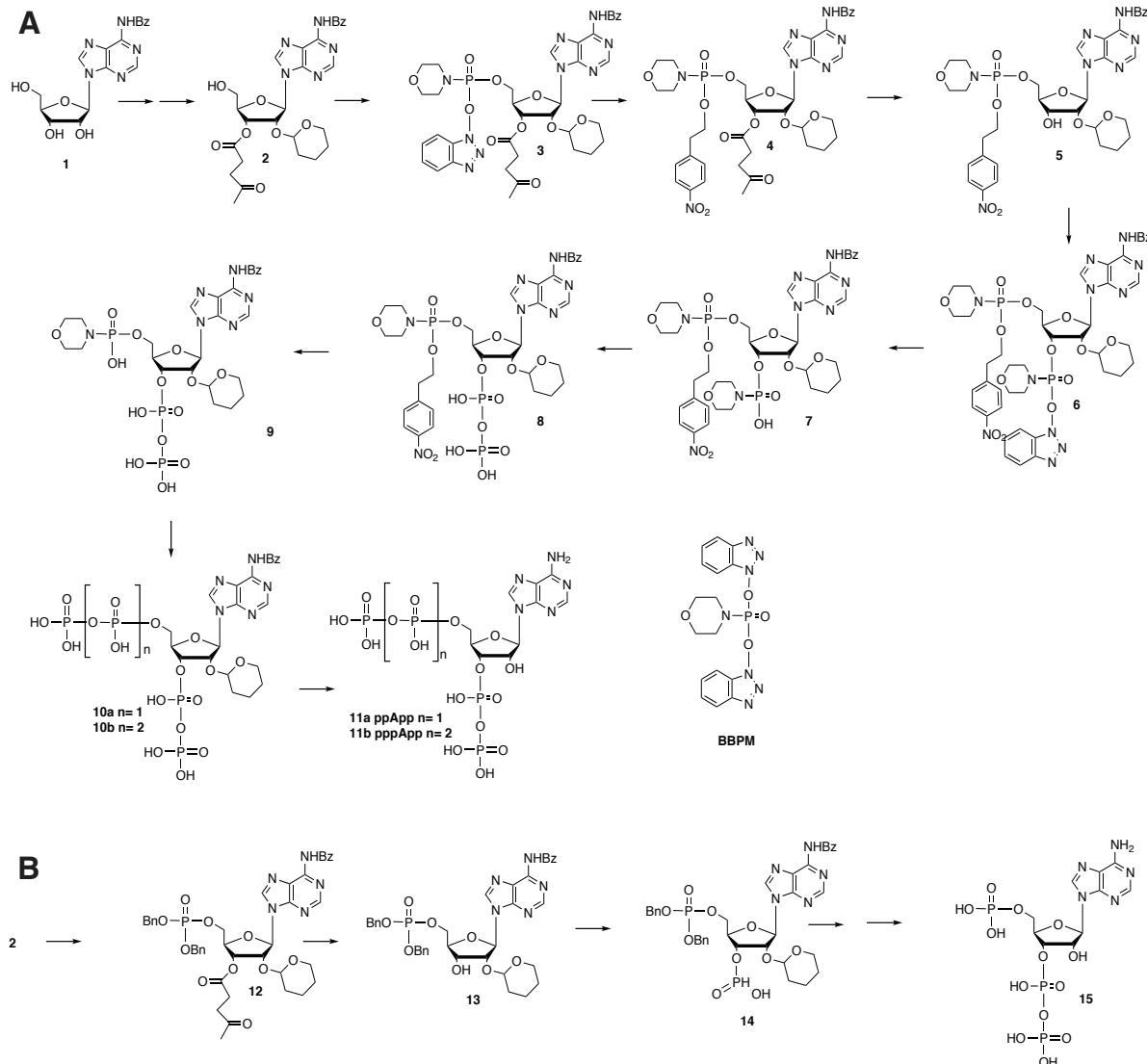
416 (A) Housekeeping RSHs synthesise (p)ppGpp by transferring the pyrophosphate group of ATP
 417 onto the 3' ribose position of either GDP or GTP, and degrade the alarmone by hydrolysing the
 418 nucleotide back to GDP or GTP.


419 (B) The substrate specificity of the Tas1 toxic SAS secretion system effectors and FaRel toxic
 420 components of toxin-antitoxin systems deviate from strict recognition of the guanine moiety of
 421 GDP/GTP employed by 'housekeeping' RSHs in favour of the adenine moiety of
 422 ATP/ADT/AMP to produce toxic (pp)pApp alarmones.

423 (C) The majority of identified toxSAS subfamilies specifically inhibit protein synthesis. FaRel2
 424 toxic components of toxin-antitoxin systems recognise the adenine moiety of tRNA 3' CCA
 425 instead of ATP/ADT/AMP nucleotides, and transfer the pyrophosphate group of ATP onto the
 426 3' ribose position tRNA 3' terminal adenosine. This modification abrogates both tRNA
 427 aminoacylation and recognition by the amino acid sensor RSH RelA.

428

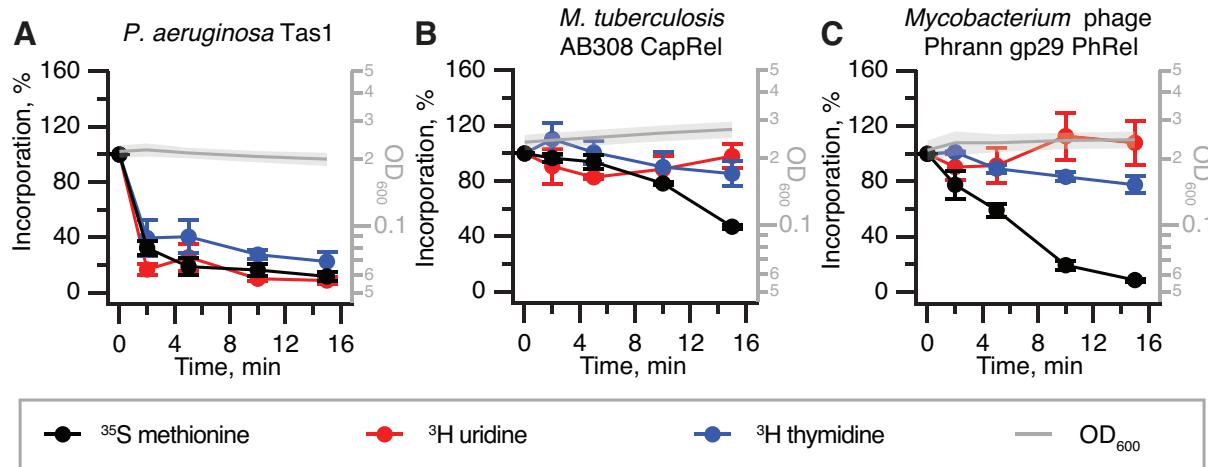
429
430


SUPPLEMENTAL FIGURES AND TABLES

431
432
433
434
435
436
437
438
439

Figure S1. Nucleotide pools in *E. coli* BW25113 expressing *C. marina* FaRel, *B. subtilis* la1a PhRel2 and *Coprobacillus* sp. D7 FaRel2, related to Figure 1.

Cell cultures were grown in defined minimal MOPS medium supplemented with 0.5% glycerol at 37 °C with vigorous aeration. The expression of toxic SAS RSHs was induced with 0.2% L-arabinose at the OD₆₀₀ 0.5 (FaRel and FaRel2) or 0.2 (PhRel2). Intracellular nucleotides are expressed in pmol per OD₆₀₀ • mL as per the insert. Error bars indicate the standard error of the arithmetic mean of biological replicates.

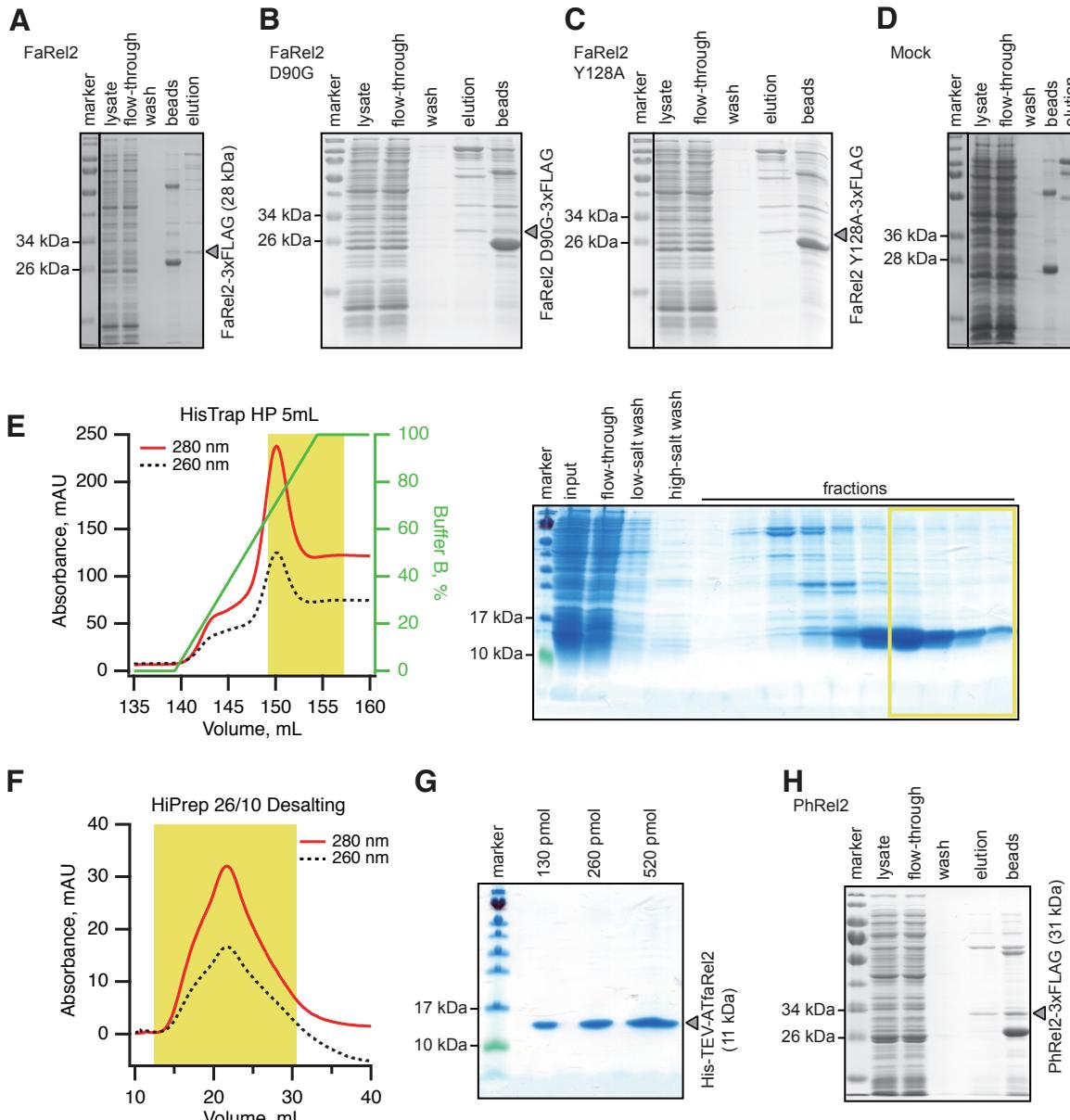

440

441 **Figure S2. Synthesis of ppApp, ppApp and pApp, related to Figure 1.**

442 (A) Synthesis of ppApp and pppApp. N^6 -benzoyl adenosine (1) was used as a key starting
 443 material. Protected adenosine 2 reacted with reagent BBPM
 444 (bis(benzotriazolyl)phosphomorpholidate, see inset) affording intermediate 3. Benzotriazolyl
 445 group of 3 was exchanged for 4-nitrophenylethyl group yielding 4. Next, the 3'-levulinyl
 446 protecting group was removed (hydrazine, AcOH, pyridine). The resultant intermediate 5 was
 447 reacted again with BBPM affording 6. Hydrolysis of benzotriazolyl group (Et_3N , H_2O , MeCN)
 448 provided morpholidate 7 that reacted with tributylammonium salt of phosphoric acid yielding 3'-
 449 diphosphate 8. Removal of 4-nitrophenylethyl group (DBU, MeCN) afforded 5'-morpholidate
 450 9 that upon reaction with tributylammonium salt of phosphoric or pyrophosphoric acid formed
 451 protected tetra- 10a or pentaphosphate 10b. The final products, ppApp (11a) and ppApp (11b),
 452 were obtained by removal of remaining protecting groups. Importantly, benzoyl group should
 453 be removed from nucleobase by treatment with aqueous ammonia first followed by removal of
 454 the THP group with 0.1N HCl (to avoid a nucleophilic attack of 2'-hydroxyl oxygen atom on
 455 phosphorus atom of 3'-phosphate moiety).

456 (B) Synthesis of pApp. Dibenzyl phosphate was installed to 5'-position of protected adenosine
 457 2 by reaction with dibenzyl diisopropylphosphoramidite under tetrazole catalysis followed by
 458 oxidation with 4-chloroperbenzoic acid affording 12. Removal of levulinyl protecting group

459 with hydrazine afforded intermediate **13** that was finally converted to pApp **14** using the same
460 methodology as for the synthesis of ppApp.
461



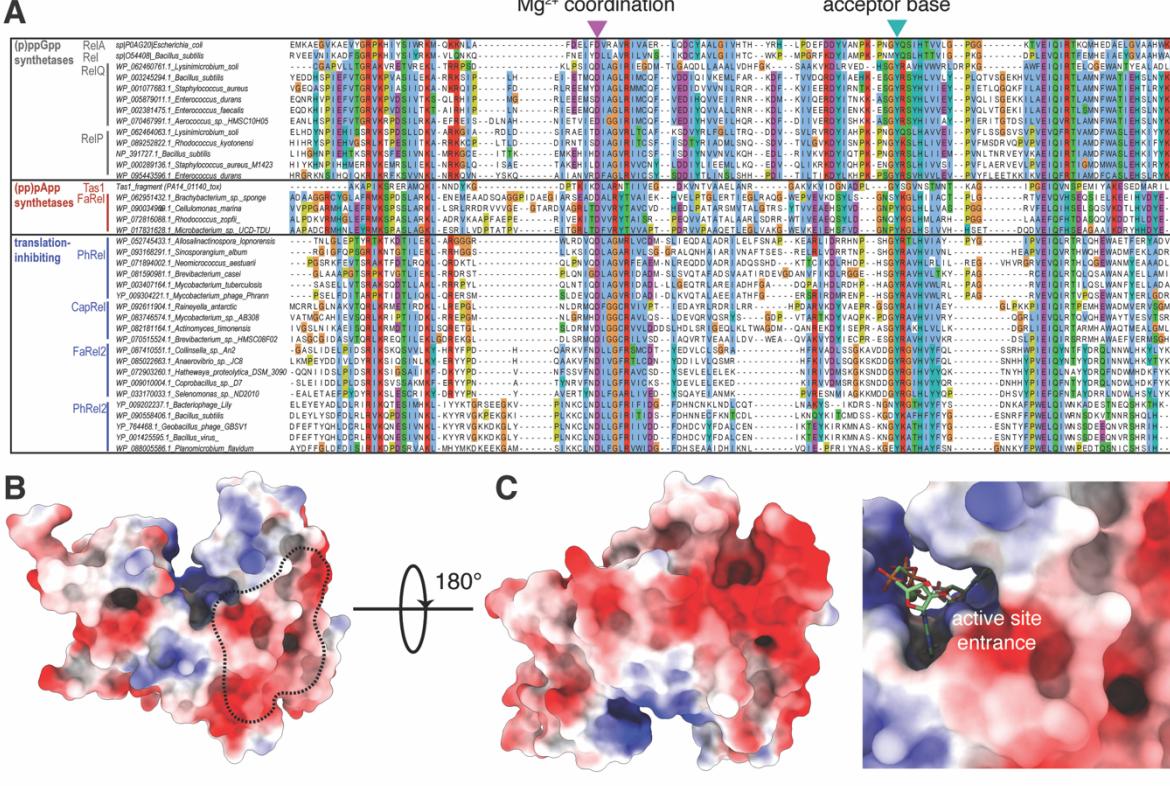
462

463 **Figure S3. While expression of the (pp)pApp-synthesising *P. aeruginosa* Tas1 secretion**
464 **system effector results in inhibition of transcription, translation and replication, the**
465 **expression of *M. tuberculosis* AB308 CapRel or *Mycobacterium* phage Phrann PhRel**
466 **toxSAS leads to specific inhibition of translation, related to Figure 1.**

467 Pulse-labelling assays following incorporation of ³⁵S-methionine (black traces), ³H-uridine (red
468 traces), and ³H-thymidine (blue traces). Expression of *P. aeruginosa* Tas1 (B), *M. tuberculosis*
469 AB308 CapRel (A) or *Mycobacterium* phage Phrann PhRel (Gp29) (C) from the pBAD33-based
470 constructs was induced by the addition of L-arabinose (final concentration 0.2%) to bacterial
471 cultures in early exponential phase.

472

473


474 **Figure S4. Protein purification of the FaRel2 toxSAS variants (A-D), ATfaRel2 antitoxin**
 475 **(E-G) and PhRel2 toxSAS, related to Figures 1, 2, 3 and S6.**

476 FLAG₃-tagged FaRel2 (A), FaRel2 D90A (B) and FaRel2 Y128A (C) proteins were
 477 immunoprecipitated with the anti-FLAG antibody and eluted with FLAG₃ peptide.
 478 (D) Mock sample preparation from *E. coli* transformed with an empty vector (pBAD33)
 479 followed the same procedure as for toxin purification. Samples in each step were resolved by
 480 SDS-PAGE and visualised by Blue silver staining.

481 (E) Cells expressing N-terminally His₆-TEV-tagged ATfaRel2 were lysed and subjected to
 482 immobilised metal affinity chromatography (IMAC) using a HisTrap 5 mL HP column. The
 483 fraction corresponding to ATfaRel2 with the lowest contamination of other proteins
 484 (highlighted in yellow) was carried forward. Following the buffer exchange on HiPrep 10/26
 485 desalting column (F), the fractions highlighted in yellow were pooled, concentrated, aliquoted,
 486 flash-frozen in liquid nitrogen and stored at -80 °C.

487 (G) SDS-PAGE analysis of the purified ATfaRel2.

488 (H) FLAG₃-tagged PhRel protein was immunoprecipitated with the anti-FLAG antibody and
 489 eluted with FLAG₃ peptide.

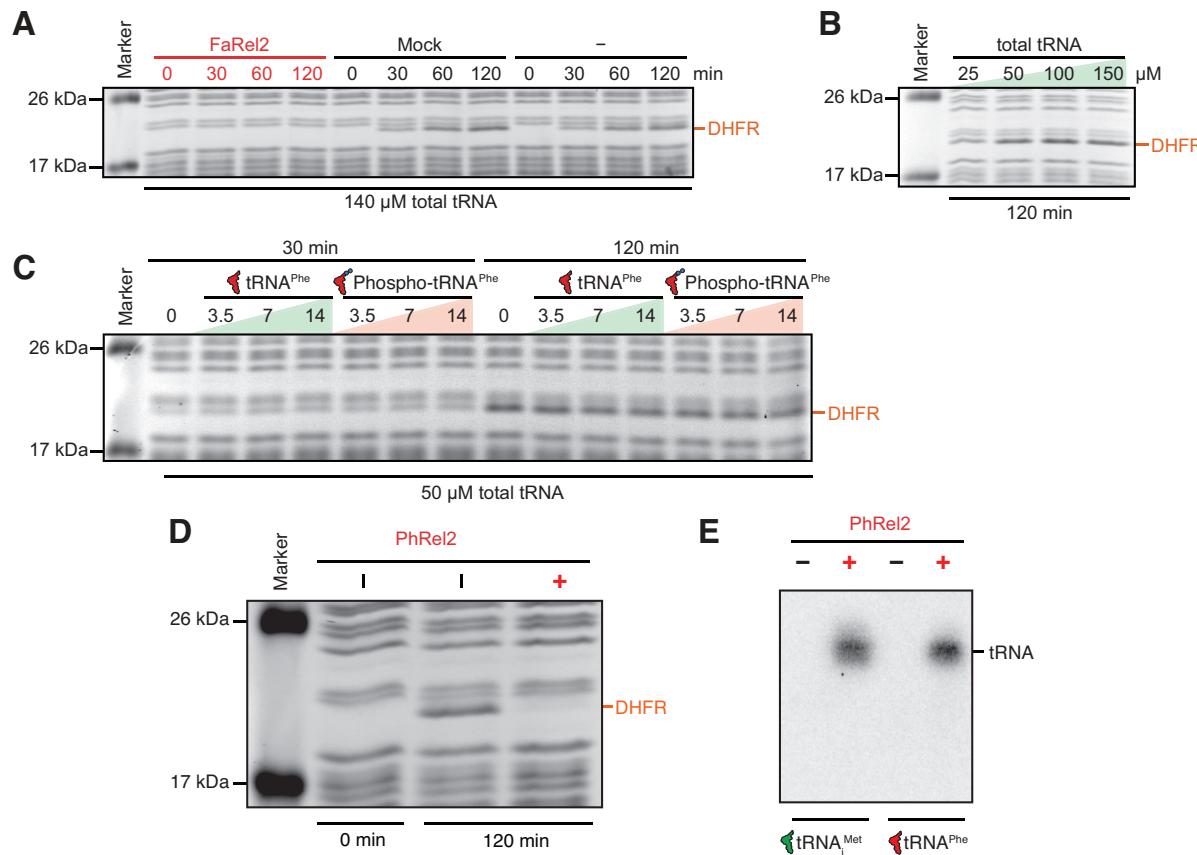


Figure S5. Sequence and structure of RSH SYNT H active sites, related to Figure 4.

(A) Sequence alignment of the SYNTH domain of selected RSHs. Sequences are divided into groups based on their functional capabilities (left panel). Invariant functionally important positions that are substituted in *Coprobacillus* sp. D7 FaRel2 are indicated with triangles (D90A and Y128A shown in purple and turquoise respectively).

(B) Surface charge distribution of *Staphylococcus aureus* RelQ (PDBID 6EWZ), the region equivalent to the tRNA-binding interface discovered in FaRel2 (highlighted in black) is highly negatively charged and likely precludes tRNA binding.

(C) ATP and GDP binding sites are positively charged to stabilize the poly-phosphate groups of ATP and GDP/GTP.

520 **Table S1. Strains, plasmids and oligonucleotide primers used in this study.**

521

Strain	Name	Description	Reference/source
<i>E. coli</i> BL21 DE3	B F ⁻ <i>ompT gal dcm lon hsdS_B(r_B⁻ m_B⁻) λ(DE3) [lacI lacUV5-T7p07 indI sam7 nin5] [malB⁺]K-12(λ^S)</i>	<i>E. coli</i> strain used for pull-down assays	Laboratory stock
<i>E. coli</i> BW25113	F-, Δ(<i>araD-araB</i>)567, Δ <i>lacZ</i> 4787(:rrnB-3), λ-, <i>rph-1</i> , Δ(<i>rhaD-rhaB</i>)568, <i>hsdR514</i>	wild-type <i>E. coli</i> BW25113	(Grenier et al., 2014)
<i>E. coli</i> VHB15	<i>Nals strS rifs thi- lac- ara- gal⁺ mtl F- recA⁺ uvr⁺ ion+ [pREP4 KanR]</i>	<i>E. coli</i> M15 (pREP4) used for PheRS purification	Qiagen
<i>E. coli</i> MC1061	<i>K-12 F- λ- Δ(ara-leu)7697 [araD139]B/r Δ(codB-lacI)3 galK16 galE15 e14- mcrA0 relA1 rpsL150(StrR) spotI1 mcrB1 hsdR2(r-m+)</i>	<i>E. coli</i> strain used for cloning and toxicity assay	Laboratory stock
Plasmid	Name	Description	Reference/source
pBAD33	pBAD33	p15A, Cml ^R , PBAD promoter	(Guzman et al., 1995)
pMR33	pMR33	p15A, Kan ^R , PBAD promoter	This work
pKK223-3	pKK223-3	ColE1, Amp ^R , P _{Tac} promoter	(Brosius and Holy, 1984)
pET24d	pET24d	ColE1, Kan ^R , T7 promoter, N-terminal T7-tag, C-terminal His ₆ -tag	Novagen
pMG25	pMG25	pUC <i>lacIq</i> P _{A1/04/03} promoter, Amp ^R	PMID: 25491382
VHp30	pPheRS	C-terminally His ₆ -tagged <i>E. coli</i> phenylalanyl-tRNA synthetase expressed under the control of T5 promoter and <i>lac</i> operator.	Gift from Måns Ehrenberg
VHp220	pBAD33- <i>phRel</i> (Phrann)	PhRel toxin from <i>Mycobacterium</i> Phage Phrann expressed under the control of PBAD promoter	(Jimmy et al., 2020)
VHp277	pBAD33- <i>faRel2</i>	FaRel2 toxin expressed under the control of PBAD promoter	(Jimmy et al., 2020)

VHp303	pBAD33- <i>phRel2</i>	PhRel2 toxin expressed under the control of P _{BAD} promoter	(Jimmy et al., 2020)
VHp313	pET24d-his6-aTfaRel	N-terminally His ₆ -tagged aTfaRel antitoxin expressed under the control of T7 promoter	This work
VHp364	pET24d-6xhis-TEV-aTfaRel2	N-terminally His ₆ -TEV-tagged aTfaRel2 antitoxin expressed under the control of T7 promoter	(Jimmy et al., 2020)
VHp366	pBAD33- <i>faRel2 Y128A</i>	Y128A FaRel2 toxin expressed under the control of P _{BAD} promoter; strong Shine-Dalgarno sequence	(Jimmy et al., 2020)
VHp380	pBAD33- <i>capRel</i> SD _{strong}	CapRel toxin expressed under the control of P _{BAD} promoter	(Jimmy et al., 2020)
VHp484	pBAD33- <i>his10-SUMO-faRel Y175A</i> SD _{strong}	N-terminally His ₁₀ -SUMO-tagged Y175A FaRel toxin expressed under the control of P _{BAD} promoter; strong Shine-Dalgarno sequence	(Jimmy et al., 2020)
VHp487	pET21b- <i>his6-TEV-MESH1</i>	N-terminally His ₆ -TEV-tagged MESH1 antitoxin expressed under the control of T7 promoter	This work
VHp678	pBAD33- <i>faRel2-3xFLAG</i> SD _{strong}	C-terminally FLAG ₃ -tagged FaRel2 toxin expressed under the control of P _{BAD} promoter; strong Shine-Dalgarno sequence	(Jimmy et al., 2020)
VHp679	pBAD33- <i>faRel2-3xFLAG Y128A</i> SD _{strong}	C-terminally FLAG ₃ -tagged Y128A FaRel2 toxin expressed under the control of P _{BAD} promoter; strong Shine-Dalgarno sequence	This work
VHp701	pET24d- <i>aTfaRel</i>	aTfaRel antitoxin expressed under the control of T7 promoter	This work
VHp770	pBAD33- <i>faRel2 D90G</i>	D90G FaRel2 toxin expressed under the control of P _{BAD} promoter	This work
VHp771	pBAD33- <i>faRel2-3xFLAG D90G</i> SD _{strong}	C-terminally FLAG ₃ -tagged D90G FaRel2 toxin expressed under the control of under	This work

		control of P_{BAD} promoter; strong Shine-Dalgarno sequence	
	pMG25-MESH1	ATfaRel SAH from human expressed under the control of $P_{A1/04/03}$ promoter	This work
	pMG25- <i>ATfaRel</i>	ATfaRel SAH from <i>Cellulomonas marina</i> expressed under the control of $P_{A1/04/03}$ promoter	This work
VHp816	pMR33- <i>faRel2</i>	FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp818	pMR33- <i>faRel</i>	FaRel toxin expressed under the control of P_{BAD} promoter	This work
VHp847	pMG25- <i>paSpo</i>	PaSpo SAH from <i>Salmonella</i> phage SSU5 expressed under the control of $P_{A1/04/03}$ promoter	This work
VHp930	pBAD33- <i>faRel2 K6A</i>	K6A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp931	pBAD33- <i>faRel2 K22A</i>	K22A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp932	pBAD33- <i>faRel2 K28A</i>	K28A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp933	pBAD33- <i>faRel2 R29A</i>	R29A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp934	pBAD33- <i>faRel2 H33A</i>	H33A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp935	pBAD33- <i>faRel2 K36A</i>	K36A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp936	pBAD33- <i>faRel2 R86A</i>	R86A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work
VHp937	pBAD33- <i>faRel2 K112A</i>	K112A FaRel2 toxin expressed under the control of P_{BAD} promoter	This work

VHp938	pBAD33- <i>faRel2 R114A</i>	R114A FaRel2 toxin expressed under the control of P _{BAD} promoter	This work
VHp939	pBAD33- <i>faRel2 Y134A</i>	Y134A FaRel2 toxin expressed under the control of P _{BAD} promoter	This work
VHp940	pBAD33- <i>faRel2 H141A</i>	H141A FaRel2 toxin expressed under the control of P _{BAD} promoter	This work
VHp941	pBAD33- <i>faRel2 K179A</i>	K179A FaRel2 toxin expressed under the control of P _{BAD} promoter	This work
Oligo	Sequence, 5' to 3'		Reference/source
VTK19	GAGCTCGAATTGCTAGC		Metabion
VTK24	CGTTCTGATTAAATCTGTATCAGG		Metabion
VTK43	GGCGGCGACTACAAAGACC		Metabion
VTK45	TGGTCTTGTAGTCGCCGCCAATTTCTTGAGTGATAC AGCACATC		Metabion
VTK51	GGGCTAGCGAATTGAGCTCAGGAGGAATTAAATGTAC ATCCTGGATAAGATTGGCCTTAAC		Metabion
VTK63	CACCAACACTGAGATCCGGC		Metabion
VTK69	GGGCTAGCGAATTGAGCTC		Metabion
VTK80	GGGCTAGCGAATTGAGCTC		Metabion
VTK81	GGTATATCTCCTCTTAAAGTTAACAAAATTATTC		Metabion
VTK83	GCCGGATCTCAGTGGTGGTCTCTCATCCGCCAAA CAG		Metabion
VTK132	GTGTCTTAACGGCATTCTGGGTTTC		Metabion
VTK133	GAAAACCCAGAATGCCGTTAAAGACAC		Metabion
faRel2 K6A For	<u>GCGATTGGCCTTAACATTGAGATTCTG</u>		Sigma
faRel2 K6 Rev	ATCCAGGATGTACATGAGCTC		Sigma
faRel2 K22A For	<u>GCGCTGGGAATGTCGTTAACAGC</u>		Sigma
faRel2 K22 Rev	CGATTCTGAGCTCAAGCTC		Sigma
faRel2 K28A For	<u>GCGCGCACTCTGAGTCACTTC</u>		Sigma
faRel2 K28-29 Rev	AAACGACATTCCCAGTTCTG		Sigma
faRel2 R29A For	<u>AAAGCGACTCTGAGTCACTTCAACAAAGAG</u>		Sigma
faRel2 H33A For	<u>GCGTTCAACAAAGAGGAAGTGTGAAAG</u>		Sigma

faRel2 Rev	H33	ACTCAGAGTCGTTAACGAC	Sigma
faRel2 For	K36A	<u>GCGGAGGAAGTGTGAAAGAAATCGAAC</u>	Sigma
faRel2 Rev	K36	GTTGAAGTGACTCAGAGTGC	Sigma
faRel2 For	R86A	<u>GCGGTCTTAACGACATTCTGGGTTTC</u>	Sigma
faRel2 Rev	R86	ATTGTACGTGCATTGGG	Sigma
faRel2 For	K112A	<u>GCGATTCGCGTAGTAGACATGTCAC</u>	Sigma
faRel2 Rev	K112-4	GTCCTCTTCTCTAACTCCAACAC	Sigma
faRel2 For	R114A	AAAATT <u>GCGGTAGTAGACATGTCACGTGGC</u>	Sigma
faRel2 For	Y134A	<u>GCGTATCAGCGTGATAACCACCATTATC</u>	Sigma
faRel2 Rev	Y134	GACATGAATACCACGATAGCC	Sigma
faRel2 For	H141A	<u>GCGTATCCGATTGAAATCCAGTTAACAC</u>	Sigma
faRel2 Rev	H141	GTGGTTATCACGCTGATAGTAGAC	Sigma
faRel2 For	K179A	<u>GCGTACTACGAAAATGGCAAGATCAAATC</u>	Sigma
faRel2 Rev	K179	GCGTAAGAGCTGACCAC	Sigma

523 **METHODS**

524

525 **Bacterial strains**

526 Bacterial strains and plasmids as well as oligonucleotide primers used in the study are listed in

527 **Table S1.**

528

529 **Multiple sequence alignment**

530 Sequences were sequences extracted from the RSH database (Jimmy et al., 2020), aligned with

531 MAFFT v7.164b with the L-ins-i strategy (Katoh and Standley, 2013), and alignments were

532 visualised with Jalview (Waterhouse et al., 2009).

533

534 **Construction of plasmids**

535 Oligonucleotides were synthesised by Metabion and Sigma. To construct the plasmids, DNA

536 fragments were amplified by PCR and assembled by NEBuilder HiFi DNA Assembly

537 Cloning Kit (NEB, E5520S).

538 To construct VH_p770, DNA fragments were amplified by PCR using VH_p277 as a
539 template as well as sets of primers VTK69 and VTK133 or VTK19 and VTK132. To
540 construct VH_p701, VH_p308(Jimmy et al., 2020) and pET24d were used as PCR templates
541 with primer sets of VTK80 and VTK83 or VTK63 and VTK81 respectively. To generate
542 VH_p771, the DNA fragments were amplified by PCR using VH_p678 as the template and sets
543 of primers VTK69 and VTK133 or VTK19 and VTK132. To construct VH_p679, VH_p366
544 and VH_p678 were used as PCR templates with primers VTK51 and VTK45 or VTK19 and
545 VTK43, respectively. The identity of the constructed plasmids was confirmed through re-
546 sequencing (LGC genomics).

547 VH_p818 and VH_p816 were constructed by sub-cloning *faRel* and *faRel2* from
548 VH_p307 (Jimmy et al., 2020) and VH_p227(Jimmy et al., 2020), respectively, into pMR33
549 using the restriction enzymes SacI and HindIII. The constructed plasmids were validated
550 through sequencing (LGC genomics). The point mutations to *faRel2* was done in the plasmid
551 VH_p277 background and introduced by amplifying the entire plasmid with divergent primers
552 listed in **Table S1**. The forward primer introduced the desired amino-acid substitution in its
553 unbound 5' region. After PCR with Q5 polymerase (NEB), the product was treated with DpnI
554 (NEB) to remove the template plasmid, purified trough a PCR purification column (Omega),
555 phosphorylated with PNK (NEB) and ligated (NEB). The mixture was transformed into
556 *E. coli* MC1061 and the resulting plasmids were verified by sequencing (Eurofins).

557

558 **Synthesis and characterisation of (pp)pApp**

559 The synthesis of (p)ppApp (**Figure S2A**) followed the same procedure as for the preparation
560 of pppGpp (Schattenkerk et al., 1985) but instead protected guanosine, N⁶-benzoyl adenosine
561 (**1**) was used as the starting material. The final products ((p)ppApp, **11a** and **11b**) were purified
562 by preparative reversed phase HPLC using linear gradient of methanol in 0.1M aqueous TEAB.
563 Triethylammonium salt was converted to potassium salt by passing through small column with
564 Dowex 50 in K⁺ phase, lyophilised from water and characterised by NMR and HR-MS. The
565 synthesis of ppApp (**Figure S2B**) has been described in (Jimmy et al., 2020).

566 The synthesis of pApp followed a slightly different path. Dibenzyl phosphate was
567 installed to the 5'-position of the protected adenosine **2** by reaction with dibenzyl
568 diisopropylphosphoramidite under tetrazol catalysis, followed by oxidation with 4-
569 chloroperbenzoic acid. Removal of the levulinyl protecting group was followed by installation
570 of 3'-pyrophosphate using the same methodology as for the synthesis of ppApp.

571

572 **ppApp 11a (I76DR_242P1)**

573 ¹H NMR (500.2 MHz, D₂O, ref(tBuOH) = 1.24 ppm): 4.21 – 4.27 (m, 2H, H-5); 4.59 (p, 1H,
574 $J_{4',3'} = J_{4',5'} = J_{H,P} = 2.9$, H-4'); 4.88 (ddd, 1H, $J_{2',1'} = 6.5$, $J_{2',3'} = 5.0$, $J_{H,P} = 1.3$, H-2'); 4.98 (ddd,
575 1H, $J_{H,P} = 8.3$, $J_{3',2'} = 5.0$, $J_{3',4'} = 2.9$, H-3'); 6.22 (d, 1H, $J_{1',2'} = 6.5$, H-1'); 8.28 (s, 1H, H-2);
576 8.57 (s, 1H, H-8).

577 ¹³C NMR (125.8 MHz, D₂O, ref(tBuOH) = 32.43 ppm): 67.93 (d, $J_{C,P} = 5.3$, CH₂-5'); 76.54 (d,
578 $J_{C,P} = 4.5$, CH-2'); 77.75 (d, $J_{C,P} = 5.2$, CH-3'); 86.41 (dd, $J_{C,P} = 9.1, 3.8$, CH-4'); 89.37 (CH-1');
579 121.50 (C-5); 142.82 (CH-8); 152.17 (C-4); 155.73 (CH-2); 158.50 (C-6).

580 ³¹P{¹H} NMR (202.5 MHz, D₂O): -10.43 (d, $J = 21.8$, P_α-3'); -10.33 (d, $J = 20.7$, P_α-5'); -8.20
581 (bd, $J = 20.7$, P_β-5'); -6.45 (bd, $J = 21.8$, P_β-3').

582 IR ν_{max} (KBr) 3436 (vs, br), 3250 (m, br, sh), 3155 (m, br, sh), 1636 (m, br), 1578 (w, sh), 1475
583 (w, br, sh), 1337 (vw), 1301 (vw), 1220 (w, br), 1103 (w, br), 1074 (w, br), 972 (w, br), 921
584 (w, br), 797 (vw).

585 HR-MS(ESI⁻) For C₁₀H₁₆O₁₆N₅P₄ (M-H)⁻ calcd 585.95480, found 585.95518.

586

587 **pppApp 11b (I76DR_265P1)**

588 ¹H NMR (500.2 MHz, D₂O, ref(tBuOH) = 1.24 ppm): 4.25 (ddd, 1H, $J_{\text{gem}} = 11.7$, $J_{H,P} = 4.9$,
589 $J_{5'b,4'} = 2.8$, H-5'a); 4.28 (ddd, 1H, $J_{\text{gem}} = 11.7$, $J_{H,P} = 5.7$, $J_{5'a,4'} = 2.8$, H-5'a); 4.65 (p, 1H, $J_{4',3'}$

590 = $J_{4',5'} = J_{\text{H,P}} = 2.8$, H-4'); 4.87 (ddd, 1H, $J_{2',1'} = 7.0$, $J_{2',3'} = 5.2$, $J_{\text{H,P}} = 1.3$, H-2'); 4.96 (bm, 1H, 591 H-3'); 6.19 (d, 1H, $J_{1',2'} = 7.0$, H-1'); 8.27 (s, 1H, H-2); 8.56 (s, 1H, H-8).

592 ^{13}C NMR (125.8 MHz, D₂O, ref(*t*BuOH) = 32.43 ppm): 68.38 (d, $J_{\text{C,P}} = 5.2$, CH₂-5'); 76.66 (d, 593 $J_{\text{C,P}} = 4.9$, CH-2'); 78.21 (d, $J_{\text{C,P}} = 6.0$, CH-3'); 86.45 (dd, $J_{\text{C,P}} = 8.7$, 2.9, CH-4'); 89.08 (CH- 594 1'); 121.48 (C-5); 142.81 (CH-8); 152.25 (C-4); 155.66 (CH-2); 158.45 (C-6).

595 $^{31}\text{P}\{\text{H}\}$ NMR (202.5 MHz, D₂O): -22.14 (t, $J = 19.1$, P_β-5'); -10.83 (d, $J = 20.6$, P_α-3'); -10.63 596 (d, $J = 19.1$, P_α-5'); -9.65 (bd, $J = 19.1$, P_γ-5'); -8.63 (bd, $J = 20.6$, P_β-3').

597 HR-MS(ESI⁻) For C₁₀H₁₇O₁₉N₅P₅ (M-H)⁻ calcd 665.92113, found 665.91960.

598

599 **pApp (I76DR_215P1)**

600 ^1H NMR (500.2 MHz, D₂O, ref(*t*BuOH) = 1.24 ppm): 4.12 (ddd, 1H, $J_{\text{gem}} = 11.8$, $J_{\text{H,P}} = 4.6$, 601 $J_{5'\text{b},4'} = 2.8$, H-5'a); 4.16 (ddd, 1H, $J_{\text{gem}} = 11.8$, $J_{\text{H,P}} = 4.8$, $J_{5'\text{a},4'} = 2.8$, H-5'a); 4.59 (dt, 1H, $J_{4',3'} = 3.2$, $J_{4',5'} = 2.8$, H-4'); 4.85 (ddd, 1H, $J_{2',1'} = 6.2$, $J_{2',3'} = 5.1$, $J_{\text{H,P}} = 1.3$, H-2'); 4.96 (ddd, 1H, 603 $J_{\text{H,P}} = 8.5$, $J_{3',2'} = 5.1$, $J_{3',4'} = 3.2$, H-3'); 6.19 (d, 1H, $J_{1',2'} = 6.2$, H-1'); 8.26 (s, 1H, H-2); 8.53 604 (s, 1H, H-8).

605 ^{13}C NMR (125.8 MHz, D₂O, ref(*t*BuOH) = 32.43 ppm): 67.01 (d, $J_{\text{C,P}} = 4.7$, CH₂-5'); 76.58 (d, 606 $J_{\text{C,P}} = 4.6$, CH-2'); 77.57 (d, $J_{\text{C,P}} = 5.4$, CH-3'); 86.34 (dd, $J_{\text{C,P}} = 8.9$, 4.0, CH-4'); 89.55 (CH-1'); 607 121.53 (C-5); 142.82 (CH-8); 152.09 (C-4); 155.71 (CH-2); 158.49 (C-6).

608 $^{31}\text{P}\{\text{H}\}$ NMR (202.5 MHz, D₂O): -10.69 (d, $J = 21.1$, P_α-3'); -7.94 (d, $J = 21.2$, P_β-3'); 1.51 (s, 609 P-5').

610 HR-MS(ESI⁻) For C₁₀H₁₅O₁₃N₅P₃ (M-H)⁻ calcd 505.98847, found 505.98861.

611

612 **HPLC-based nucleotide quantification**

613 *E. coli* strain BW25113 (Grenier et al., 2014) was transformed with RSH-expressing plasmids 614 (pMR33-faRel, pMR33-faRel2 or pBAD33-phRel2) as well as empty pKK223-3 vector. The 615 starter cultures were pre-grown overnight at 37 °C with vigorous shaking (200 rpm) in 616 Neidhardt MOPS minimal media (Neidhardt et al., 1974) supplemented with 1 µg/mL thiamine, 617 1% glucose, 100 µg/mL carbenicillin as well as either 20 µg/mL chloramphenicol (pBAD33-- 618 phRel2) or 25 µg/mL kanamycin (pMR33-faRel and pMR33-faRel2). The overnight cultures 619 were diluted to OD₆₀₀ 0.05 in 115 mL of pre-warmed medium MOPS supplemented with 0.5% 620 glycerol as carbon source and grown until OD₆₀₀ ≈ 0.5 (pMR33-faRel and pMR33-faRel2) or 621 OD₆₀₀ ≈ 0.2 (pBAD33-phRel2) at 37 °C, 200 rpm. At this point 0.2% arabinose was added to 622 induce the expression of the toxin. 26 mL samples were collected for HPLC analyses at 0, 2, 5 623 and 10 minutes after the addition of arabinose and IPTG. Nucleotide extraction and HPLC

624 analyses were performed as described previously (Varik et al., 2017). The OD₆₀₀ measurements
625 were performed in parallel with collection of the samples for HPLC analyses.

626

627 **Metabolic labelling with ³⁵S-methionine, ³H-uridine or ³H-thymidine**

628 Overnight cultures in defined Neidhardt MOPS minimal media (Neidhardt et al., 1974)
629 supplemented with 1% glucose, 0.1% casamino acids and as well as appropriate antibiotics
630 were inoculated with single colonies of *E. coli* BW25113 cells freshly transformed with
631 pBAD33-based plasmid for L-arabinose-inducible RSH expression as well as the empty
632 pKK223-3 vector. After overnight incubation at 37 °C with shaking at 180 rpm, the cultures
633 were diluted to an OD₆₀₀ of 0.05 in 15 mL MOPS minimal media supplemented with 19 amino
634 acids (25 µg/mL, final concentration) but lacking methionine, 0.5% glycerol, as well as
635 appropriate antibiotics. The cultures were grown at 37 °C until an OD₆₀₀ of 0.2-0.3 in a water
636 bath with shaking (200 rpm), and expression of toxins was induced with 0.2% L-arabinose. For
637 a zero-point 1 mL of culture was taken and mixed with either 4.35 µCi ³⁵S-methionine (Perkin
638 Elmer), 0.65 µCi ³H-uridine (Perkin Elmer) or 2 µCi ³H-thymidine (Perkin Elmer) immediately
639 before induction. Simultaneously, another 1 mL of culture was taken for OD₆₀₀ measurements.
640 Samples were collected at 2, 5, 10 and 15 minutes post-induction and processed as described
641 above. The incorporation of radioisotopes was quenched 8 minutes after addition of the isotope,
642 by the addition of 200 µL ice-cold 50% trichloroacetic acid (TCA). Samples were filtered
643 through GF/C filters (Whatman) prewashed with 5% TCA, followed by washing twice with 5
644 mL of ice-cold TCA and, finally, twice with 5 mL of 95% EtOH. The filters were dried at least
645 for two hours at room temperature and the radioactivity was quantified by scintillation using
646 EcoLite Liquid Scintillation Cocktail scintillation cocktail (5 mL per vial, MP Biomedicals, 15
647 minutes shaking with filters prior to counting) using a TRI-CARB 4910TR 100 V scintillation
648 counter (PerkinElmer).

649

650 **Toxicity validation assays**

651 The experiments were performed as described earlier (Jimmy et al., 2020). The assays were
652 performed on LB medium (Lennox) plates (VWR). We used *E. coli* BW25113 strain co-
653 transformed with two different plasmid systems for controllable expression of toxins and
654 antitoxin.

655 First, we used a combination of pKK223-3 (medium copy number, ColE1 origin of
656 replication, Amp^R, antitoxins expressed under the control of P_{Tac} promoter (Brosius and Holy,
657 1984)) and pBAD33 harbouring toxin genes (medium copy number, p15A origin of replication,

658 Cml^R, toxins expressed under the control of P_{BAD} promoter (Guzman et al., 1995)) (**Figure 1D**
659 and **Figure 4B**). The cells were grown in liquid LB medium (BD) supplemented with
660 100 µg/mL carbenicillin (AppliChem) and 20 µg/mL chloramphenicol (AppliChem), 30 mM
661 K₂HPO₄/KH₂PO₄ (pH 7.4) as well as 1% glucose (repression conditions). Serial ten-fold
662 dilutions were spotted (5 µl per spot) on solid LB plates containing carbenicillin and
663 chloramphenicol in addition to either 1% glucose (repressive conditions), or 0.2% arabinose
664 combined with 1 mM IPTG (induction conditions). Plates were scored after an overnight
665 incubation at 37 °C. Sequences were codon-optimised for expression in *E. coli*.

666 Second, we used pMG25 (high copy number, ColE1 origin of replication (pUC), Amp^R,
667 antitoxin expressed under the control of IPTG inducible P_{A1/04/03} promoter (Jaskolska and
668 Gerdes, 2015)) and pBAD-based pMR33 (this work) harbouring toxin genes (medium copy
669 number, p15A origin of replication, Kan^R, toxins expressed under the control of P_{BAD} promoter)
670 (**Figure 3A**). The cells were grown in liquid LB medium (BD) supplemented with 0.2% glucose
671 (repression conditions), 100 µg/mL carbenicillin (AppliChem) and 50 µg/mL kanamycin
672 (AppliChem). Serial dilutions and spotting were performed as described above using solid LB
673 plates supplemented with 0.2% arabinose as well as 100 µg/mL carbenicillin (AppliChem) and
674 50 µg/mL kanamycin (AppliChem).

675

676 Protein expression and purification

677 The *Coprobacillus* sp. D7 C-terminally FLAG₃-tagged FaRel2 (FaRel2-FLAG₃) was
678 overexpressed in freshly transformed *E. coli* BL21 DE3 co-transformed with the VH_p701
679 plasmid encoding the non-tagged SAH aTfaRel antitoxin under the pET promoter. Fresh
680 transformants were inoculated to a final OD₆₀₀ of 0.04 in the LB medium (800 mL)
681 supplemented with 100 µg/mL kanamycin and 20 µg/mL chloramphenicol. The cultures were
682 grown at 37 °C until an OD₆₀₀ of 0.3, the antitoxin was pre-induced with 0.1 mM IPTG (final
683 concentration) for one hour and the toxin was induced with 0.2% arabinose (final concentration)
684 for an additional one hour at 37 °C. The cells were collected by centrifugation (8,000 rpm, 10
685 minutes at 4 °C, JLA-10.500 Beckman Coulter rotor), dissolved in 4 mL of cell suspension
686 buffer (20 mM HEPES:KOH pH 7.5, 95 mM KCl, 5 mM NH₄Cl, 0.5 mM CaCl₂, 8 mM
687 putrescine, 1 mM spermidine, 5 mM Mg(OAc)₂, 1 mM DTT and cOmplete protease inhibitor
688 (Mini, EDTA-free from Roche)). The cell suspension was divided to 1 mL aliquots, and 200 µl
689 of pre-chilled zirconium beads (0.1 mm) were added in the aliquots. Cellular lysates were
690 prepared by a FastPrep homogeniser (MP Biomedicals) (four 20 seconds pulses at speed 4.5
691 mp per second with chilling on ice for 2 minutes between the cycles) and clarified by

692 centrifugation at 21,000 g for 20 minutes at 4 °C. The supernatant was carefully collected,
693 avoiding the lipid layer and cellular pellet.

694 30 mg of total protein (as determined by Bradford assay) of each sample was mixed
695 with 100 µL of ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich) and mixed by rotation for 2
696 hours at 4 °C. The mixture was loaded on a Micro Bio-Spin Chromatography Column (Bio-
697 Rad) and flow-through was collected. The gel in the column was washed five times with 1 mL
698 of cell suspension buffer supplemented with 10% glycerol, and the fraction at final wash was
699 collected. The gel was mixed with 300 µL of cell suspension buffer supplemented with 10%
700 glycerol as well as 0.1 mg/mL Poly FLAG Peptide lyophilised powder (Biotool) in the column
701 by rotation for 40 min at 4 °C. The elution fraction was passed through the column by spinning
702 down, and was collected in Eppendorf tube. After this elution step, the gel was suspended with
703 1x sample buffer (50 mM Tris:HCl pH 6.8, 2% SDS, 0.01% bromophenol blue, 10% glycerol,
704 10 mM DTT and 2% beta-mercaptoethanol) and collected. 0.5 µL of cell lysate, 0.5 µL of
705 flowthrough, 8 µL of wash, 8 µL of elution fractions and 10 µL of gel suspension were resolved
706 on 15% SDS-PAGE gel.

707 The SDS-PAGE gel was fixed with fixing solution (50% ethanol and 2% phosphoric
708 acid) for 5 min at room temperature, washed with water for 20 minutes at room temperature
709 twice, and stained with “blue silver” solution(Candiano et al., 2004) (0.12% Brilliant Blue G250
710 (Sigma-Aldrich, 27815), 10% ammonium sulfate, 10% phosphoric acid, and 20% methanol)
711 overnight at room temperature. After washing with water for 3 hours at room temperature, the
712 gel was analysed on an ImageQuant LAS 4000 (GE Healthcare) imaging system (**Figure**
713 **S4A,D**). The concentration of FaRel2-FLAG₃ was quantified on SDS-PAGE gels by
714 ImageJ(Schneider et al., 2012) using pure ATfaRel2 as a standard.

715 For Western blotting, the proteins resolved by similar electrophoresis were transferred
716 to 0.2 µm nitrocellulose membrane (BioTraceTM NT, Pall) using Trans-Blot[®] TurboTM
717 Transfer System (Bio-Rad). To detect FLAG₃-tagged protein, the membrane was blocked in
718 PBS-T (1xPBS supplemented with 0.05% Tween-20) with 5% w/v nonfat dry milk at room
719 temperature for one hour, and first antibody incubation was performed for overnight at 4 °C in
720 PBS-T anti-Flag M2 (Sigma-Aldrich F1804, batch number #SLCD3524; 1:5000 dilution).
721 After three 5-minute washes in fresh PBS-T, second antibody incubations were performed for
722 one hour at room temperature in PBS-T with Goat anti-Mouse IgG-HRP (Agrisera AS11 1772,
723 batch number #810-103-040; 1:4,000 dilution). Tagged-proteins were detected on an

724 ImageQuant LAS 4000 (GE Healthcare) imaging system using WesternBright Quantum HRP
725 substrate (Advansta).

726
727 The C-terminally FLAG₃-tagged *B. subtilis* la1a PhRel2 (PhRel2-FLAG₃) was overexpressed
728 in freshly transformed *E. coli* BW25113 co-transformed with the VH_p847 plasmid encoding
729 the PaSpo SAH antitoxin under the IPTG-inducible promoter (P_{A1/04/03} promoter). Fresh
730 transformants were inoculated to a final OD₆₀₀ of 0.05 in the LB medium (800 mL)
731 supplemented with 100 µg/mL carbenicillin, 20 µg/mL chloramphenicol and 50 µM IPTG. The
732 cultures were grown at 37 °C until an OD₆₀₀ of 0.5, the toxin was induced with 0.2% arabinose
733 (final concentration) for an additional 3 hours at 37 °C. The cells were collected by
734 centrifugation (8,000 rpm, 10 minutes at 4 °C, JLA-10.500 Beckman Coulter rotor), dissolved
735 in 4 mL of cell suspension buffer (20 mM HEPES:KOH pH 7.5, 95 mM KCl, 5 mM NH₄Cl,
736 0.5 mM CaCl₂, 8 mM putrescine, 1 mM spermidine, 5 mM Mg(OAc)₂, 1 mM DTT, and
737 cOmplete, Mini, EDTA-free (Roche)). The cell suspension was divided to 1 mL aliquots, and
738 200 µL of pre-chilled zirconium beads (0.1 mm) were added in the aliquots. Cellular lysates
739 were prepared by a FastPrep homogeniser (MP Biomedicals) (four 20 seconds pulses at speed
740 4.5 mp per second with chilling on ice for 2 minutes between the cycles) and clarified by
741 centrifugation at 21,000 g for 20 minutes at 4 °C. The supernatant was carefully collected,
742 avoiding the lipid layer and cellular pellet.

743 30 mg of total protein (as determined by Bradford assay) of each sample was mixed
744 with 100 µL of ANTI-FLAG M2 Affinity Gel (Sigma-Aldrich) and mixed by rotation for 2
745 hours at 4 °C. The mixture was loaded on a Micro Bio-Spin Chromatography Column (Bio-
746 Rad) and flow-through was collected. The gel in the column was washed with 1 mL of cell
747 suspension buffer including 1 M KCl five times and 1 mL of cell suspension buffer
748 supplemented with 10% glycerol five times, and the fraction at final wash was collected. The
749 gel was mixed with 300 µL of cell suspension buffer supplemented with 10% glycerol and 0.1
750 mg/mL Poly FLAG Peptide lyophilised powder (Biotool) in the column by rotation for 40 min
751 at 4 °C. The elution fraction was passed through the column by spinning down, and was
752 collected in Eppendorf tube. After this elution step, the gel was suspended with 1x sample
753 buffer (50 mM Tris:HCl pH 6.8, 2% SDS, 0.01% bromophenol blue, 10% glycerol, 10 mM
754 DTT and 2% beta-mercaptoethanol) and collected. 0.5 µL of cell lysate, 0.5 µL of flowthrough,
755 8 µL of wash, 8 µL of elution fractions and 10 µL of gel suspension were resolved on 10%
756 SDS-PAGE gel.

757

758 *Coprobacillus* sp. D7 N-terminally His₆-TEV-tagged ATfaRel2 was overexpressed in freshly
759 transformed *E. coli* BL21(DE3) with VHp364. Fresh transformants were inoculated to a final
760 OD₆₀₀ of 0.05 in the LB medium (800 mL) supplemented with 100 µg/mL kanamycin. The
761 cultures were grown at 37 °C until an OD₆₀₀ of 0.5, induced with 0.4 mM IPTG (final
762 concentration) and grown for an additional one hour at 30 °C. The cells were harvested by
763 centrifugation and resuspended in buffer A (300 mM NaCl, 10 mM imidazole, 10% glycerol, 4
764 mM β-mercaptoethanol, 25 mM HEPES:KOH pH 8.0) supplemented with 0.1 mM PMSF and
765 1 U/mL of DNase I, and lysed by one passage through a high-pressure cell disrupter (Stansted
766 Fluid Power, 150 MPa). Cell debris was removed by centrifugation (25,000 rpm for 1 hour)
767 and clarified lysate was taken for protein purification. Clarified cell lysate was filtered through
768 a 0.22 µm syringe filter and loaded onto a HisTrap 5 mL HP column pre-equilibrated in buffer
769 A. The column was washed with 5 column volumes (CV) of buffer A and following buffer B
770 (1 M NaCl, 10 mM imidazole, 10% glycerol, 4 mM β-mercaptoethanol, 25 mM HEPES:KOH
771 pH 8.0), and the protein was eluted using a linear gradient (3 CV with 0-100%) of buffer C (300
772 mM NaCl, 300 mM imidazole, 10% glycerol, 4 mM β-mercaptoethanol, 25 mM HEPES:KOH
773 pH 8.0). Fractions enriched in ATfaRel2 (≈60% buffer C) were pooled totaling approximately
774 8 mL (**Figure S4E**). The sample was applied on a HiPrep 10/26 desalting column (GE
775 Healthcare) pre-equilibrated with storage buffer (buffer D; 300 mM KCl, 10% glycerol, 4 mM
776 β-mercaptoethanol, 25 mM HEPES:KOH pH 8.0). The fractions containing ATfaRel2 were
777 collected (about 8 mL in total, (**Figure S4F**) and concentrated on an Amicon Ultra (Millipore)
778 centrifugal filter device with a 3 kDa cut-off. The purity of protein preparations was assessed
779 by SDS-PAGE (**Figure S4G**). Protein preparations were aliquoted, frozen in liquid nitrogen
780 and stored at –80 °C. Individual single-use aliquots were discarded after the experiment.

781
782 For purification of RelA *E. coli* BL21 DE3 harbouring pET24d:his10-SUMO-relA expression
783 constructs were grown, induced, harvested and lysed as described earlier (Kudrin et al., 2018).
784 Protein purification was performed as previously described (Turnbull et al., 2019).

785
786 C-terminally His₆-tagged *E. coli* phenylalanyl-tRNA synthetase (PheRS) was overexpressed in
787 *E. coli* BL21 (DE3). Fresh transformants were used to inoculate 3 L cultures of LB medium
788 supplemented with 100 µg/mL ampicillin. The cultures were grown at 37 °C until an OD₆₀₀ of
789 0.5, protein expression was induced with 1 mM IPTG (final concentration) and then the cultures
790 were grown overnight at 37 °C. The cells were harvested by centrifugation, resuspended in
791 buffer E (150 mM NaCl, 5 mM MgCl₂, 20 mM imidazole, 1 mM β-mercaptoethanol, 20 mM

792 Tris:HCl pH 7.5) supplemented with 1 mM PMSF, and lysed by one passage through a high-
793 pressure cell disrupter. Cell debris was removed by centrifugation and clarified lysate was taken
794 for protein purification. Clarified cell lysate was filtered through a 0.22 μ m syringe filter and
795 loaded onto a HisTrap 5 mL HP column pre-equilibrated in buffer E. The column was washed
796 with 20 column volumes (CV) of buffer F (1 M NaCl, 5 mM MgCl₂, 20 mM imidazole, 1 mM
797 β -mercaptoethanol, 20 mM Tris:HCl pH 7.5) and following buffer E (5 CV), and the protein
798 was eluted using a linear gradient (30 CV with 0-100%) of buffer G (150 mM NaCl, 5 mM
799 MgCl₂, 500 mM imidazole, 1 mM β -mercaptoethanol, 20 mM Tris:HCl pH 7.5). Fractions
800 enriched in PheRS (\approx 45% buffer G) were pooled. The sample was applied on a HiPrep 10/26
801 desalting column (GE Healthcare) pre-equilibrated with storage buffer (buffer H; 100 mM KCl,
802 2 mM MgCl₂, 10% glycerol, 6 mM β -mercaptoethanol, 20 mM Tris:HCl pH 7.5). The fractions
803 containing PheRS were collected. The protein was aliquoted, aliquots plunge-frozen in liquid
804 nitrogen and stored at -80 °C. Individual single-use aliquots were discarded after the
805 experiment.

806

807 Human MESH1 (VHp487, pET21b-His6-TEV-MESH1) was overexpressed in freshly
808 transformed *E. coli* BL21 DE3 Rosetta (Novagen). Transformants were inoculated to a final
809 OD₆₀₀ of 0.05 in LB medium (400 mL \times 2) supplemented with 100 μ g/mL Carbenicillin. The
810 cultures were grown at 37 °C until an OD₆₀₀ of 0.5, induced with 1 mM IPTG (final
811 concentration) and grown for an additional 2 hours at 30 °C. The cells were harvested by
812 centrifugation and resuspended in 20 ml of resuspension buffer (buffer I; 1 M KCl, 5 mM
813 MgCl₂, 1 mM β -mercaptoethanol, 50 mM Tris:HCl pH 8.0) supplemented with 0.1 mM PMSF,
814 1 mg/ml lysozyme and 1 U/mL of DNase I and incubated on ice for 30 min. After adding 10
815 mL of lysis buffer (buffer J; 500 mM KCl, 500 mM NaCl, 1% glycerol, 1 mM β -
816 mercaptoethanol, 50 mM Tris:HCl pH 8.0), cells were lysed by one passage through a high-
817 pressure cell disrupter (Stansted Fluid Power, 150 MPa), cell debris was removed by
818 centrifugation (25,000 rpm for 40 min, JA-25.50 Beckman Coulter rotor) and clarified lysate
819 was taken for protein purification.

820 Clarified cell lysate was filtered through a 0.2 μ m syringe filter and loaded onto the
821 HisTrap 1 mL HP column pre-equilibrated in buffer K (500 mM KCl, 500 mM NaCl, 10 mM
822 MgCl₂, 1 mM β -mercaptoethanol, 0.002% mellitic acid, 15 mM imidazole, 50 mM Tris:HCl
823 pH 8.0). The column was washed with 5 CV of buffer K, and the protein was eluted with a
824 linear gradient (20 CV, 0-100% buffer L) of buffer L (500 mM KCl, 500 mM NaCl, 10 mM
825 MgCl₂, 1 mM β -mercaptoethanol, 0.002% mellitic acid, 500 mM imidazole, 50 mM Tris:HCl

826 pH 8.0). Fractions most enriched in His₆-TEV-MESH1 (\approx 50-60% buffer B) were pooled,
827 totalling approximately 3 mL. The sample was loaded on a HiLoad 16/600 Superdex 200 pg
828 column pre-equilibrated with buffer M (500 mM KCl, 500 mM NaCl, 10 mM MgCl₂, 1 mM β -
829 mercaptoethanol, 0.002% mellitic acid, 50 mM Tris:HCl pH 8.0). The fractions containing
830 His₆-TEV-MESH1 were pooled and subjected to buffer exchange by repeated filtration with an
831 Amicon Ultra (Millipore) centrifugal filter device (cut-off 15 kDa) pre-equilibrated in buffer N
832 (100 mM NaCl, 5 mM MgCl₂, 10% glycerol, 25 mM HEPES:KOH pH 7.5). The His-tag was
833 cleaved off by adding TEV protease in a 1:100 molar ratio and the reaction mixture was
834 incubated at 10 °C for overnight. After the His6 tag was cleaved off, the protein was passed
835 though 1 mL HisTrap HP pre-equilibrated with buffer N. Fractions containing MESH1 in the
836 flow-through were collected and concentrated on Amicon Ultra (Millipore) centrifugal filter
837 device with 15 kDa cut-off (final concentration is 4.75 μ M). The purity of protein preparations
838 was assessed by SDS-PAGE and spectrophotometrically (OD₂₆₀/OD₂₈₀ ratio below 0.5). Protein
839 preparations were aliquoted, frozen in liquid nitrogen and stored at -80 °C.

840
841 *C. marina* ATfaRel (VHp313, pET24d-His6-aTfaRel) was overexpressed in freshly
842 transformed *E. coli* BL21 DE3. Fresh transformants were inoculated to final OD₆₀₀ of 0.05 in
843 the LB medium (800 mL) supplemented with 100 μ g/mL kanamycin. The cultures were grown
844 at 37 °C until an OD₆₀₀ of 0.5, induced with 0.4 mM IPTG (final concentration) and grown for
845 an additional one hour at 30 °C. The cells were harvested by centrifugation and resuspended in
846 30 ml of binding buffer (buffer O; 2 M NaCl, 5 mM MgCl₂, 70 μ M MnCl₂, 50 mM arginine,
847 50 mM glutamic acid, 1 mM Mellitic acid, 20 mM imidazole, 10% glycerol, 4 mM β -
848 mercaptoethanol, 25 mM HEPES:KOH pH 7.6) supplemented with 0.1 mM PMSF and 1 U/mL
849 of DNase I, and cells were lysed by one passage through a high-pressure cell disrupter (Stansted
850 Fluid Power, 150 MPa), cell debris was removed by centrifugation (35,000 rpm for 45 min,
851 Type 45 Ti Beckman Coulter rotor) and clarified lysate was taken for protein purification.

852 Clarified cell lysate was filtered through a 0.2 μ m syringe filter and loaded onto the
853 HisTrap 1 mL HP column pre-equilibrated in buffer O (2 M NaCl, 5 mM MgCl₂, 70 μ M MnCl₂,
854 50 mM arginine, 50 mM glutamic acid, 1 mM Mellitic acid, 20 mM imidazole, 10% glycerol,
855 4 mM β -mercaptoethanol, 25 mM HEPES:KOH pH 7.6). The column was washed with 5 CV
856 of buffer O, and the protein was eluted with a linear gradient (10 CV, 0-100% buffer P) of
857 buffer P (2 M NaCl, 5 mM MgCl₂, 70 μ M MnCl₂, 50 mM arginine, 50 mM glutamic acid, 1
858 mM Mellitic acid, 500 mM imidazole, 4 mM β -mercaptoethanol, 25 mM HEPES:KOH pH 7.6).
859 The fractions containing His₆-ATfaRel were pooled and subjected to buffer exchange by

860 repeated filtration with an Amicon Ultra (Millipore) centrifugal filter device (cut-off 3 kDa)
861 pre-equilibrated in buffer Q (500 mM KCl, 5 mM MgCl₂, 50 mM arginine, 50 mM glutamic
862 acid, 10% glycerol, 4 mM β-mercaptoethanol, 25 mM HEPES:KOH pH 8.0). The purity of
863 protein preparations was assessed by SDS-PAGE. Protein preparations were aliquoted, frozen
864 in liquid nitrogen and stored at –80 °C.

865

866 **Preparation of *E. coli* fMet-tRNA_i^{fMet} and tRNA^{Phe} modified by *Coprobacillus* sp. D7
867 FaRel2**

868 fMet-tRNA_i^{fMet} was prepared as described in before (Murina et al., 2018) using non-radioactive
869 methionine.

870 To modify tRNA^{Phe}, the reaction mixture containing 5 μM tRNA^{Phe}, 500 μM ATP and
871 50 nM FaRel2-FLAG₃ in HEPES:Polymix buffer, pH 7.5 (Takada et al., 2020) (5 mM Mg²⁺
872 final concentration) supplemented with 1 mM DTT was incubated at 37 °C for 15 min. After
873 that the reaction was supplemented with 0.1 volume of 3 M NaOAc (pH 4.6), the proteins were
874 extracted with an equal volume of phenol/chloroform/isoamylalcohol (25:24:1), followed by a
875 similar treatment with an equal volume of chloroform. As a negative control the same
876 experiment was performed in the absence of FaRel2-FLAG₃. The extracted tRNA was mixed
877 with 2.5 volume of 95 % ethanol, precipitated at –20 °C overnight and pelleted by
878 centrifugation. The pellet was washed with 100 μL of ice-cold 70% ethanol, dried at room
879 temperature for 5 minutes, and dissolved in 5 mM KOAc (pH 5.1). The concentration of the
880 purified tRNA was calculated by measuring the absorbance at 260 nm, and phosphorylation
881 was validated by aminoacylation reaction (see below).

882

883 **Biochemical assays**

884 *Cell-free translation*: experiments with PURExpress In Vitro Protein Synthesis Kit (NEB,
885 E6800) were performed as per the manufacturer's instructions with the addition of 0.8 U/μL
886 RNase Inhibitor Murine (NEB, M0314S). FaRel2-FLAG₃ was used at a final concentration of
887 50 nM, PhRel2-FLAG₃ at 100 nM and His₆-TEV-ATfaRel2 at 500 nM. As a control we used
888 either HEPES:Polymix buffer, pH 7.5 (Takada et al., 2020) or eluate prepared from *E. coli*
889 transformed with pBAD33 vector (mock). The total reaction volume was 6 μL per reaction for
890 most of the experiments. To titrate the concentration of total tRNA in the reaction we used a
891 combination of PURExpress Δ(aa, tRNA) Kit (NEB, E6840S) and total deacylated tRNA from
892 *E. coli* MRE600 (Sigma-Aldrich, 10109541001). After incubation at 37 °C for the indicated
893 time, the reaction mixture was mixed with 9-fold volume of 2x sample buffer (100 mM

894 Tris:HCl pH 6.8, 4% SDS, 0.02% bromophenol blue, 20% glycerol, 20 mM DTT and 4% β -
895 mercaptoethanol), and 5 μ L of the mixture was resolved on 18% SDS-PAGE gel. The SDS-
896 PAGE gel was fixed by incubating for 5 min at room temperature in 50% ethanol solution
897 supplemented with 2% phosphoric acid, then stained and detected as mentioned in protein
898 expression and purification.

899
900 *tRNA and oligonucleotide pyrophosphorylation by FaRel2:* the reaction conditions are
901 described above, see ‘*Preparation of E. coli fMet-tRNA^{fMet} and tRNA^{Phe} modified by*
902 *Coprobacillus sp. D7 FaRel2*’. PhRel2-FLAG₃ was used at a final concentration of 50 nM.
903 Experiments with 5'-CACCN-3' oligonucleotides used 50 μ M oligonucleotides; tRNA
904 (Chemical Block Ltd.) was used at a final concentration of 5 μ M. The total reaction volume
905 was either 8 or 20 μ L per reaction. The reactions were started by the addition of 500 μ M γ^{32} P-
906 ATP and incubated at 37 °C for either 10 or 30 minutes. To calculate the ratio of
907 phosphorylation, the reaction mixture was mixed in 10% trichloroacetic acid supplemented
908 with 70 ng/ μ L *E. coli* total tRNA as co-precipitant, kept on ice for 30 minutes, and centrifuged
909 at 21,000 g for 30 minutes at 4 °C. After washing the pellet with 200 μ L 10% TCA, tRNA was
910 dissolved in 1 M Tris:HCl (pH 8.0) with shaking at 1,500 rpm for 20 min at 4 °C. The
911 radioactivity was quantified by scintillation counting in 5 mL of EcoLite Liquid Scintillation
912 Cocktail (MP Biomedicals).

913 To visualise phosphorylated tRNA the reaction sample was mixed in 2 volumes of RNA
914 dye (98% formamide, 10 mM EDTA, 0.3% bromophenol blue and 0.3% xylene cyanol), tRNA
915 was denatured at 37 °C for 10 min and resolved on urea-PAGE in 1 x TBE (8 M urea, 8%
916 PAGE). The gel was stained with SYBR Gold (Life technologies, S11494) and exposed to an
917 imaging plate overnight. The imaging plate was imaged by a Typhoon FLA 9500 (GE
918 Healthcare). To visualise phosphorylated oligonucleotides the sample was resolved on urea-
919 PAGE in 1 x TBE (5.6 M urea, 24% PAGE).

920
921 *Effects of pyrophosphorylation by FaRel2 on tRNA aminoacylation:* to probe the effect of
922 FaRel2 on aminoacylation, 5 μ M *E. coli* tRNA^{Phe} (Chemical Block Ltd.) was pre-incubated at
923 37 °C with or without 50 nM FaRel2 as well as 500 μ M ATP for 10 minutes in HEPES:Polymix
924 buffer, pH 7.5 (Takada et al., 2020) (5 mM Mg²⁺ final concentration) supplemented with 1 mM
925 DTT and 160 μ M ³H-phenylalanine. The total reaction volume was 20 μ L. The tRNA was then
926 aminoacylated by adding the same volume of aminoacylation mixture (4 mM ATP and 2 μ M
927 PheRS in HEPES:Polymix buffer (5 mM Mg²⁺ final concentration), 1 mM DTT) followed by

928 additional incubation at 37 °C for 10 minutes. The reaction was quenched by adding
929 trichloroacetic acid (TCA) to a final concentration of 10% as well as adding 70 ng/µL *E. coli*
930 total tRNA as co-precipitant. After 30-minute incubation on ice, the tRNA was pelleted by
931 centrifugation (21,000 g for 30 minutes at 4 °C). The supernatant was discarded, the pellet
932 washed with 10% TCA and the tRNA was dissolved in 1 M Tris:HCl (pH 8.0) with shaking at
933 1,500 rpm for 20 min at 4 °C. Finally, ³H-radioactivity was quantified by scintillation counting
934 in 5 mL of EcoLite Liquid Scintillation Cocktail (MP Biomedicals).

935 In the case of experiments using SAH enzymes, 5 µM tRNA^{Phe} with or without
936 modification by FaRel2-FLAG₃ was pre-incubated for 10 minutes with or without 1 µM
937 MESH1, His₆-ATfaRel or His₆-TEV-ATfaRel2 at 37 °C in HEPES:Polymix buffer pH 7.5 (5
938 mM Mg²⁺ final concentration) (Takada et al., 2020) additionally supplemented with 1 mM
939 MnCl₂, 160 µM ³H-phenylalanine and 1 mM DTT. After 10 minute PheRS was added to final
940 concentration of 1 µM and after additional 10 minutes at 37 °C the reaction was quenched by
941 TCA and incorporation of the ³H-radioactivity was quantified by scintillation counting (see
942 above).

943

944 ³H-ppGpp synthesis by *E. coli* RelA: *E. coli* RelA synthase activity assay was performed in
945 HEPES:Polymix buffer (5 mM Mg²⁺ final concentration) as described earlier (Takada et al.,
946 2020) with minor modifications. Specifically, the assay was performed in the presence of 300
947 µM ³H-GDP, 1 mM ATP, 100 µM pppGpp, 50 nM native RelA and 100 nM 70S IC(MVF), in
948 the presence or absence of 100 nM *E. coli* deacylated tRNA^{Val} (Chemical Block Ltd.); 5 µL
949 total reaction volume per timepoint. *E. coli* deacylated tRNA^{Val} and ATP were initially
950 incubated with either HEPES:Polymix buffer, empty vector lysate, or lysate containing FaRel2,
951 at 37 °C for 30 minutes. GDP, pppGpp, and 70S IC were then added and the reactions were
952 started by the addition of RelA. Subsequently, aliquots were withdrawn from the reaction mix,
953 resolved on PEI-TLC, radioactivity quantified by scintillation counting and the turnovers were
954 determined as previously described (Turnbull et al., 2019).

955

956 Structural modelling and docking

957 The structure of FaRel2 was modelled using Rosetta (Song et al., 2013) based on the
958 coordinates of *S. aureus* RelP (Manav et al., 2018) and *B. subtilis* RelQ (Steinchen et al., 2015).
959 The models with the best scores were used for molecular docking as implemented in the web
960 server version of HADDOCK (High ambiguity driven biomolecular docking) (van Zundert et
961 al., 2016) together with the coordinates of yeast tRNA^{Phe} (Nissen et al., 1995).

962 For the docking procedure we defined residues in the active site; Y128 and the catalytic
963 glutamine were selected as active residues (i.e. directly involved in the interaction). We then
964 allowed HADDOCK to automatically select passive residues around the active residues. The
965 program was run with default settings. The best cluster resulting from the docking experiment
966 was selected to further probe the catalytic mechanism of FaRel2.

967

968 **Figure preparation**

969 Figures were prepared using UCSF ChimeraX (Goddard et al., 2018), Igor Pro (WaveMetrics,
970 Inc.), Adobe Illustrator (Adobe Inc.) and Adobe Photoshop (Adobe Inc.).

971

972 **QUANTIFICATION AND STATISTICAL ANALYSIS**

973 Statistical analysis of tRNA aminoacylation, tRNA pyrophosphorylation and ^3H -ppGpp
974 synthesis data was performed using Igor Pro (WaveMetrics, Inc.). The data was plotted as
975 individual data points as well as mean values \pm standard deviations.

976

977 **DATA AND SOFTWARE AVAILABILITY**

978 The study does not make use of unpublished data or software.

979

980 **RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-Flag M2 primary antibodies (1:5,000)	Sigma-Aldrich	Cat#F1804 RRID: AB_262044
Anti-mouse-HRP secondary antibodies (1:10,000)	Rockland	Cat#610-103-040 RRID: AB_2614833
Bacterial strains		
<i>Escherichia coli</i> BW25113	(Grenier et al., 2014)	N/A
<i>E. coli</i> DH5 α	Laboratory stock	N/A
For other <i>E. coli</i> strains see Table S1	N/A	N/A
Chemicals, Peptides, and Recombinant Proteins		
Anti-FLAG M2 Affinity Gel	Sigma-Aldrich	Cat#A2220-25ML RRID:AB_10063035
Poly FLAG Peptide lyophilized powder	Bimake	Cat#B23112
Phusion High-Fidelity PCR Master Mix with HF Buffer	Thermo Scientific	Cat#F531L
Q5® High-Fidelity DNA Polymerase	New England Biolabs	Cat#M0491L
DpnI	New England Biolabs	Cat#R0176S
T4 DNA Ligase	New England Biolabs	Cat#M0202S

NEBuilder® HiFi DNA Assembly Master Mix	New England Biolabs	Cat#E2621L
L-[³⁵ S]-Methionine	PerkinElmer	Cat#NEG009C005MC
[5,6- ³ H]-Uridine	PerkinElmer	Cat#NET367250UC
[Methyl- ³ H]-Thymidine	PerkinElmer	Cat#NET027W001MC
ATP, [γ - ³² P]- 3000Ci/mmol 10mCi/ml EasyTide Lead	PerkinElmer	Cat#NEG502A500UC
L-[2,3,4,5,6- ³ H]-Phenylalanine	PerkinElmer	Cat#NET1122001MC
EcoLite™ Liquid Scintillation Cocktail	MP Biomedicals	Cat#01882475-CF
TEV protease	Protein Expertise Platform at Umeå University	N/A
PURExpress In Vitro Protein Synthesis Kit	New England Biolabs	Cat#E6800
PURExpress Δ (aa, tRNA) Kit	New England Biolabs	Cat#E6840S
RNase Inhibitor Murine	New England Biolabs	Cat#M0314S
pppGpp	(Takada et al., 2020)	N/A
pApp	This work	N/A
ppApp	(Jimmy et al., 2020)	N/A
pppApp	This work	N/A
³ H-ppGpp	(Takada et al., 2020)	N/A
70S initiation complex (IC) (MVF)	(Takada et al., 2020)	N/A
WesternBright Quantum	Advansta	Cat#K-12042-D10
cComplete EDTA-free Protease Inhibitor Cocktail	Roche	Cat#4693132001
<i>E. coli</i> tRNA ^{Phe}	Chemical Block	N/A
<i>E. coli</i> tRNA ^{Val}	Chemical Block	N/A
<i>E. coli</i> tRNA _i ^{Met}	Chemical Block	N/A
Oligonucleotides		
For primers used for cloning of <i>E. coli</i> plasmids see Table S1	N/A	N/A
5' rCrArCrCrA 3'	Integrated DNA Technologies	N/A
5' rCrArCrCrU 3'	Integrated DNA Technologies	N/A
5' rCrArCrCrG 3'	Integrated DNA Technologies	N/A
5' rCrArCrCrC 3'	Integrated DNA Technologies	N/A
5' dCdAdCdCdA 3'	Integrated DNA Technologies	N/A
Recombinant DNA		
For <i>E. coli</i> vectors see Table S1	This work	N/A
Software and Algorithms		
Rosetta	(Song et al., 2013)	RRID:SCR_015701
HADDOCK	(van Zundert et al., 2016)	RRID:SCR_019091
MAFFT	(Katoh and Standley, 2013)	RRID:SCR_011811
Jalview	(Waterhouse et al., 2009)	RRID:SCR_006459

UCSF ChimeraX	(Goddard et al., 2018)	RRID:SCR_015872
Other		
FastPrep-24 classic	MP Biomedicals	https://www.mpbio.com
Biocomp Gradient Station	BioComp Instruments	http://www.biocompinstruments.com
Trans-Blot Turbo 0.2 µm Midi Nitrocellulose Transfer Pack	Bio-Rad	Cat#1704159
ImageQuant LAS 4000	GE Healthcare	https://www.cytivalifescience.com
Mix2Seq sequencing service	Eurofins Genomics	https://www.eurofinsgenomics.eu
Micro Bio-Spin Columns	Bio-Rad	Cat#7326204
Typhoon FLA 9500	GE Healthcare	https://www.cytivalifescience.com
0.1 mm Zirconium beads	BioSpec	Cat#11079101z
Multi-Purpose Tube Rotators	Fisherbrand™	https://www.fishersci.com
Micro Bio-Spin Columns	Bio-Rad	Cat#7326204
HisTrap 1 mL HP column	GE Healthcare	Cat#17-5247-01
HisTrap 5 mL HP column	GE Healthcare	Cat#17-5248-01
HiPrep 10/26 desalting column	GE Healthcare	Cat#17-5087-01
HiLoad 16/600 Superdex 200 pg column	GE Healthcare	Cat#28-9893-35
POLYGRAM CEL 300 PEI	Machery Nagel	Cat#801053, Lot#01.17
ÄKTA avant 25	GE Healthcare	https://www.cytivalifescience.com

981

982 **DATA AND SOFTWARE AVAILABILITY**

983 Sequences shown in the multiple sequence alignment of **Figure S5A** can be downloaded from
984 the Uniprot database (<https://www.uniprot.org/>) in case of Rel and RelA, and the NCBI protein
985 database for all other sequences, using the accession numbers shown in the figure.

986

987 REFERENCES

988 Ahmad, S., Wang, B., Walker, M.D., Tran, H.R., Stogios, P.J., Savchenko, A., Grant, R.A.,
989 McArthur, A.G., Laub, M.T., and Whitney, J.C. (2019). An interbacterial toxin inhibits target
990 cell growth by synthesizing (p)ppApp. *Nature* *575*, 674-678.

991 Arenz, S., Abdelshahid, M., Sohmen, D., Payoe, R., Starosta, A.L., Berninghausen, O.,
992 Hauryliuk, V., Beckmann, R., and Wilson, D.N. (2016). The stringent factor RelA adopts an
993 open conformation on the ribosome to stimulate ppGpp synthesis. *Nucleic Acids Res* *44*, 6471-
994 6481.

995 Atkinson, G.C., Tenson, T., and Hauryliuk, V. (2011). The RelA/SpoT homolog (RSH)
996 superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across
997 the tree of life. *PLoS One* *6*, e23479.

998 Blower, T.R., Fineran, P.C., Johnson, M.J., Toth, I.K., Humphreys, D.P., and Salmond, G.P.
999 (2009). Mutagenesis and functional characterization of the RNA and protein components of the
1000 toxIN abortive infection and toxin-antitoxin locus of *Erwinia*. *J Bacteriol* *191*, 6029-6039.

1001 Brosius, J., and Holy, A. (1984). Regulation of ribosomal RNA promoters with a synthetic lac
1002 operator. *Proc Natl Acad Sci U S A* *81*, 6929-6933.

1003 Brown, A., Fernandez, I.S., Gordiyenko, Y., and Ramakrishnan, V. (2016). Ribosome-
1004 dependent activation of stringent control. *Nature* *534*, 277-280.

1005 Burckhardt, R.M., and Escalante-Semerena, J.C. (2020). Small-Molecule Acetylation by
1006 GCN5-Related N-Acetyltransferases in Bacteria. *Microbiol Mol Biol Rev* *84*.

1007 Cai, Y., Usher, B., Gutierrez, C., Tolcan, A., Mansour, M., Fineran, P.C., Condon, C.,
1008 Neyrolles, O., Genevaux, P., and Blower, T.R. (2020). A nucleotidyltransferase toxin inhibits
1009 growth of *Mycobacterium tuberculosis* through inactivation of tRNA acceptor stems. *Sci Adv*
1010 *6*, eabb6651.

1011 Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B.,
1012 Orecchia, P., Zardi, L., and Righetti, P.G. (2004). Blue silver: a very sensitive colloidal
1013 Coomassie G-250 staining for proteome analysis. *Electrophoresis* *25*, 1327-1333.

1014 Cashel, M., and Gallant, J. (1969). Two compounds implicated in the function of the RC gene
1015 of *Escherichia coli*. *Nature* *221*, 838-841.

1016 Castro-Roa, D., Garcia-Pino, A., De Gieter, S., van Nuland, N.A., Loris, R., and Zenkin, N.
1017 (2013). The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu.
1018 *Nat Chem Biol* *9*, 811-817.

1019 Cheverton, A.M., Gollan, B., Przydacz, M., Wong, C.T., Mylona, A., Hare, S.A., and Helaine,
1020 S. (2016). A *Salmonella* Toxin Promotes Persister Formation through Acetylation of tRNA.
1021 *Mol Cell* *63*, 86-96.

1022 Cruz, J.W., Sharp, J.D., Hoffer, E.D., Maehigashi, T., Vvedenskaya, I.O., Konkimalla, A.,
1023 Husson, R.N., Nickels, B.E., Dunham, C.M., and Woychik, N.A. (2015). Growth-regulating
1024 *Mycobacterium tuberculosis* VapC-*mt4* toxin is an isoacceptor-specific tRNase. *Nat Commun*
1025 *6*, 7480.

1026 Dedrick, R.M., Jacobs-Sera, D., Bustamante, C.A., Garlena, R.A., Mavrich, T.N., Pope, W.H.,
1027 Reyes, J.C., Russell, D.A., Adair, T., Alvey, R., *et al.* (2017). Prophage-mediated defence
1028 against viral attack and viral counter-defence. *Nat Microbiol* *2*, 16251.

1029 Ding, C.C., Rose, J., Sun, T., Wu, J., Chen, P.H., Lin, C.C., Yang, W.H., Chen, K.Y., Lee, H.,
1030 Xu, E., *et al.* (2020). MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. *Nat*
1031 *Metab* *2*, 270-277.

1032 Fiedoruk, K., Daniluk, T., Swiecicka, I., Sciepuk, M., and Leszczynska, K. (2015). Type II
1033 toxin-antitoxin systems are unevenly distributed among *Escherichia coli* phylogroups.
1034 *Microbiology (Reading)* *161*, 158-167.

1035 Fraikin, N., Goormaghtigh, F., and Van Melderen, L. (2020). Type II Toxin-Antitoxin Systems:
1036 Evolution and Revolutions. *J Bacteriol* *202*.

1037 Gaca, A.O., Colomer-Winter, C., and Lemos, J.A. (2015). Many means to a common end: the
1038 intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. *J Bacteriol* *197*,
1039 1146-1156.

1040 Garcia-Pino, A., Zenkin, N., and Loris, R. (2014). The many faces of Fic: structural and
1041 functional aspects of Fic enzymes. *Trends Biochem Sci* *39*, 121-129.

1042 Geiger, T., Kastle, B., Gratani, F.L., Goerke, C., and Wolz, C. (2014). Two small (p)ppGpp
1043 synthases in *Staphylococcus aureus* mediate tolerance against cell envelope stress conditions. *J*
1044 *Bacteriol* *196*, 894-902.

1045 Goddard, T.D., Huang, C.C., Meng, E.C., Pettersen, E.F., Couch, G.S., Morris, J.H., and Ferrin,
1046 T.E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
1047 *Protein Sci* *27*, 14-25.

1048 Goeders, N., Dreze, P.L., and Van Melderen, L. (2013). Relaxed cleavage specificity within the
1049 *RelE* toxin family. *J Bacteriol* *195*, 2541-2549.

1050 Grenier, F., Matteau, D., Baby, V., and Rodrigue, S. (2014). Complete Genome Sequence of
1051 *Escherichia coli* BW25113. *Genome Announc* *2*.

1052 Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995). Tight regulation, modulation,
1053 and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* *177*,
1054 4121-4130.

1055 Harms, A., Brodersen, D.E., Mitarai, N., and Gerdes, K. (2018). Toxins, Targets, and Triggers:
1056 An Overview of Toxin-Antitoxin Biology. *Mol Cell* *70*, 768-784.

1057 Harms, A., Stanger, F.V., Scheu, P.D., de Jong, I.G., Goepfert, A., Glatter, T., Gerdes, K.,
1058 Schirmer, T., and Dehio, C. (2015). Adenylylation of Gyrase and Topo IV by FicT Toxins
1059 Disrupts Bacterial DNA Topology. *Cell Rep* *12*, 1497-1507.

1060 Haseltine, W.A., and Block, R. (1973). Synthesis of guanosine tetra- and pentaphosphate
1061 requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor
1062 site of ribosomes. *Proc Natl Acad Sci U S A* *70*, 1564-1568.

1063 Hauryliuk, V., Atkinson, G.C., Murakami, K.S., Tenson, T., and Gerdes, K. (2015). Recent
1064 functional insights into the role of (p)ppGpp in bacterial physiology. *Nat Rev Microbiol* *13*,
1065 298-309.

1066 Irving, S.E., Choudhury, N.R., and Corrigan, R.M. (2020). The stringent response and
1067 physiological roles of (pp)pGpp in bacteria. *Nat Rev Microbiol*.

1068 Jaffe, A., Ogura, T., and Hiraga, S. (1985). Effects of the ccd function of the F plasmid on
1069 bacterial growth. *J Bacteriol* *163*, 841-849.

1070 Jaskolska, M., and Gerdes, K. (2015). CRP-dependent positive autoregulation and proteolytic
1071 degradation regulate competence activator Sxy of *Escherichia coli*. *Mol Microbiol* *95*, 833-845.

1072 Jimmy, S., Saha, C.K., Kurata, T., Stavropoulos, C., Oliveira, S.R.A., Koh, A., Cepauskas, A.,
1073 Takada, H., Rejman, D., Tenson, T., *et al.* (2020). A widespread toxin-antitoxin system
1074 exploiting growth control via alarmone signaling. *Proc Natl Acad Sci U S A* *117*, 10500-10510.

1075 Jurenaite, M., Markuckas, A., and Suziedeliene, E. (2013). Identification and characterization
1076 of type II toxin-antitoxin systems in the opportunistic pathogen *Acinetobacter baumannii*. *J*
1077 *Bacteriol* *195*, 3165-3172.

1078 Jurenas, D., Chatterjee, S., Konijnenberg, A., Sobott, F., Droogmans, L., Garcia-Pino, A., and
1079 Van Melderen, L. (2017). AtaT blocks translation initiation by N-acetylation of the initiator
1080 tRNA(fMet). *Nat Chem Biol* *13*, 640-646.

1081 Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version
1082 7: improvements in performance and usability. *Mol Biol Evol* *30*, 772-780.

1083 Koonin, E.V., and Makarova, K.S. (2019). Origins and evolution of CRISPR-Cas systems.
1084 *Philos Trans R Soc Lond B Biol Sci* *374*, 20180087.

1085 Kudrin, P., Dzhyggyr, I., Ishiguro, K., Beljantseva, J., Maksimova, E., Oliveira, S.R.A., Varik,
1086 V., Payoe, R., Konevega, A.L., Tenson, T., *et al.* (2018). The ribosomal A-site finger is crucial
1087 for binding and activation of the stringent factor RelA. *Nucleic Acids Res* **46**, 1973-1983.

1088 Kudrin, P., Varik, V., Oliveira, S.R., Beljantseva, J., Del Peso Santos, T., Dzhyggyr, I., Rejman,
1089 D., Cava, F., Tenson, T., and Hauryliuk, V. (2017). Subinhibitory Concentrations of
1090 Bacteriostatic Antibiotics Induce relA-Dependent and relA-Independent Tolerance to beta-
1091 Lactams. *Antimicrob Agents Chemother* **61**.

1092 Lima-Mendez, G., Oliveira Alvarenga, D., Ross, K., Hallet, B., Van Melderen, L., Varani,
1093 A.M., and Chandler, M. (2020). Toxin-Antitoxin Gene Pairs Found in Tn3 Family Transposons
1094 Appear To Be an Integral Part of the Transposition Module. *mBio* **11**.

1095 Liu, K., Bittner, A.N., and Wang, J.D. (2015). Diversity in (p)ppGpp metabolism and effectors.
1096 *Curr Opin Microbiol* **24**, 72-79.

1097 Loveland, A.B., Bah, E., Madireddy, R., Zhang, Y., Brilot, A.F., Grigorieff, N., and Korostelev,
1098 A.A. (2016). Ribosome*RelA structures reveal the mechanism of stringent response activation.
1099 *Elife* **5**.

1100 Manav, M.C., Beljantseva, J., Bojer, M.S., Tenson, T., Ingmer, H., Hauryliuk, V., and
1101 Brodersen, D.E. (2018). Structural basis for (p)ppGpp synthesis by the *Staphylococcus aureus*
1102 small alarmone synthetase RelP. *J Biol Chem* **293**, 3254-3264.

1103 Murina, V., Kasari, M., Hauryliuk, V., and Atkinson, G.C. (2018). Antibiotic resistance ABCF
1104 proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest.
1105 *Nucleic Acids Res* **46**, 3753-3763.

1106 Nanamiya, H., Kasai, K., Nozawa, A., Yun, C.S., Narisawa, T., Murakami, K., Natori, Y.,
1107 Kawamura, F., and Tozawa, Y. (2008). Identification and functional analysis of novel (p)ppGpp
1108 synthetase genes in *Bacillus subtilis*. *Mol Microbiol* **67**, 291-304.

1109 Neidhardt, F.C., Bloch, P.L., and Smith, D.F. (1974). Culture medium for enterobacteria. *J
1110 Bacteriol* **119**, 736-747.

1111 Nissen, P., Kjeldgaard, M., Thirup, S., Polekhina, G., Reshetnikova, L., Clark, B.F., and
1112 Nyborg, J. (1995). Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP
1113 analog. *Science* **270**, 1464-1472.

1114 Page, R., and Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and
1115 persistence. *Nat Chem Biol* **12**, 208-214.

1116 Patil, P.R., Vithani, N., Singh, V., Kumar, A., and Prakash, B. (2020). A revised mechanism
1117 for (p)ppGpp synthesis by Rel proteins: The critical role of the 2'-OH of GTP. *J Biol Chem*
1118 **295**, 12851-12867.

1119 Schattenkerk, C., Wreesmann, C.T., van der Marel, G.A., and van Boom, J.H. (1985). Synthesis
1120 of riboguanosine pentaphosphate ppprGpp (Magic Spot II) via a phosphotriester approach.
1121 *Nucleic Acids Res* **13**, 3635-3649.

1122 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of
1123 image analysis. *Nat Methods* **9**, 671-675.

1124 Schureck, M.A., Dunkle, J.A., Maehigashi, T., Miles, S.J., and Dunham, C.M. (2015). Defining
1125 the mRNA recognition signature of a bacterial toxin protein. *Proc Natl Acad Sci U S A* **112**,
1126 13862-13867.

1127 Senissar, M., Manav, M.C., and Brodersen, D.E. (2017). Structural conservation of the PIN
1128 domain active site across all domains of life. *Protein Sci* **26**, 1474-1492.

1129 Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T.
1130 (2001). Cell-free translation reconstituted with purified components. *Nat Biotechnol* **19**, 751-
1131 755.

1132 Song, S., and Wood, T.K. (2020). A Primary Physiological Role of Toxin/Antitoxin Systems
1133 Is Phage Inhibition. *Front Microbiol* **11**, 1895.

1134 Song, Y., DiMaio, F., Wang, R.Y., Kim, D., Miles, C., Brunette, T., Thompson, J., and Baker,
1135 D. (2013). High-resolution comparative modeling with RosettaCM. *Structure* 21, 1735-1742.
1136 Sprinzl, M., and Richter, D. (1976). Free 3'-OH group of the terminal adenosine of the tRNA
1137 molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate
1138 in a ribosomal system from *Escherichia coli*. *Eur J Biochem* 71, 171-176.
1139 Steinchen, W., Schuhmacher, J.S., Altegoer, F., Fage, C.D., Srinivasan, V., Linne, U., Marahiel,
1140 M.A., and Bange, G. (2015). Catalytic mechanism and allosteric regulation of an oligomeric
1141 (p)ppGpp synthetase by an alarmone. *Proc Natl Acad Sci U S A* 112, 13348-13353.
1142 Steinchen, W., Vogt, M.S., Altegoer, F., Giammarinaro, P.I., Horvatek, P., Wolz, C., and
1143 Bange, G. (2018). Structural and mechanistic divergence of the small (p)ppGpp synthetases
1144 RelP and RelQ. *Sci Rep* 8, 2195.
1145 Sun, D., Lee, G., Lee, J.H., Kim, H.Y., Rhee, H.W., Park, S.Y., Kim, K.J., Kim, Y., Kim, B.Y.,
1146 Hong, J.I., *et al.* (2010). A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in
1147 starvation responses. *Nat Struct Mol Biol* 17, 1188-1194.
1148 Takada, H., Roghanian, M., Murina, V., Dzhygyr, I., Murayama, R., Akanuma, G., Atkinson,
1149 G.C., Garcia-Pino, A., and Hauryliuk, V. (2020). The C-terminal RRM/ACT domain is crucial
1150 for fine-tuning the activation of 'long' RelA-SpoT Homolog enzymes by ribosomal complexes.
1151 *Frontiers in microbiology* 11, 277.
1152 Turnbull, K.J., Dzhygyr, I., Lindemose, S., Hauryliuk, V., and Roghanian, M. (2019).
1153 Intramolecular Interactions Dominate the Autoregulation of *Escherichia coli* Stringent Factor
1154 RelA. *Front Microbiol* 10, 1966.
1155 van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E.,
1156 Melquiond, A.S.J., van Dijk, M., de Vries, S.J., and Bonvin, A. (2016). The HADDOCK2.2
1157 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. *J Mol Biol* 428,
1158 720-725.
1159 Varik, V., Oliveira, S.R.A., Hauryliuk, V., and Tenson, T. (2017). HPLC-based quantification
1160 of bacterial housekeeping nucleotides and alarmone messengers ppGpp and pppGpp. *Sci Rep*
1161 7, 11022.
1162 Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview
1163 Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25,
1164 1189-1191.
1165 Winther, K.S., and Gerdes, K. (2011). Enteric virulence associated protein VapC inhibits
1166 translation by cleavage of initiator tRNA. *Proc Natl Acad Sci U S A* 108, 7403-7407.
1167 Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G., and Cashel, M. (1991). Residual
1168 guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by
1169 spoT null mutations. *J Biol Chem* 266, 5980-5990.
1170 Yamaguchi, Y., and Inouye, M. (2009). mRNA interferases, sequence-specific
1171 endoribonucleases from the toxin-antitoxin systems. *Prog Mol Biol Transl Sci* 85, 467-500.
1172 Zhu, M., Pan, Y., and Dai, X. (2019). (p)ppGpp: the magic governor of bacterial growth
1173 economy. *Curr Genet* 65, 1121-1125.
1174