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ABSTRACT

Single-cell ATAC sequencing (scATAC-seq) is a powerful and increasingly popular technique to
explore the regulatory landscape of heterogeneous cellular populations. However, the high noise levels,
degree of sparsity, and scale of the generated data make its analysis challenging. Here we present
PeakVI, a probabilistic framework that leverages deep neural networks to analyze scATAC-seq data.
PeakVI fits an informative latent space that preserves biological heterogeneity while correcting batch
effects and accounting for technical effects such as library size and region-specific biases. Additionally,
PeakVI provides a technique for identifying differential accessibility at a single region resolution,
which can be used for cell-type annotation as well as identification of key cis-regulatory elements.
We use public datasets to demonstrate that Peak VI is scalable, stable, robust to low-quality data, and
outperforms current analysis methods on a range of critical analysis tasks. PeakVI is publicly available
and implemented in the scvi-tools framework: https://docs.scvi-tools.org/.
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. Introduction

13 Regulatory elements in the genome tend to reside in regions of open chromatin, making the landscape
14 of chromatin accessibility a valuable target of study. Several molecular assays have been developed to
15 support this effort [1, 2, 3], among them ATAC-seq [4], in which accessible regions are fragmented,
16 and the corresponding DNA fragments are sequenced and mapped back to the reference genome,
17 accumulating in areas of open chromatin. Recent advances in sequencing technologies enable
18 performing this assay in single cells [5], thereby allowing the study of chromatin variability at a
19 single cell resolution. Application of Single-cell ATAC-seq (scATAC-seq) has led to promising
20 results in discerning sources of variation, beyond those observed at the transcriptional level [6, 7]
21 and allowed for high resolution characterization of the regulation of in continuous processes, e.g., in
22 immunity [6].

23 Despite the potential of sScATAC-seq, analyzing the resulting data remains challenging. scATAC-seq
24 assays have generally limited sensitivity, detecting 5-15% of accessible regions [7], a common issue
25 for single cell genomics. Additionally, the coverage of this data is limited a-priori since each genomic
26 region has at most two copies in a single cell. Finally, scATAC-seq is extremely high-dimensional,
27 often consisting of hundreds of thousands of genomic regions. These challenges require specialized
28 processing and analysis methods that are designed to account for the specific properties of sScATAC-seq
29 data.

30 One common task for analyzing scATAC-seq is dimensionality reduction: transforming the data
31 to a low-dimensional space that preserves the meaningful information in the original data. This
32 step is crucial to make some downstream analyses, such as clustering and visualization, less noisy,
33 more stable, and computationally tractable. Existing methods use various approaches to achieve this
34 task. Some use methods developed for natural language processing (e.g., latent Dirichlet allocation
35 used by cisTopic [8] and latent semantic analysis (LSA) used by ArchR [9]) that inherently handle
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sparse high-dimensional data, but do not inherently account for confounding factors that do not
have an analog in textual language, such as batch effects. Other methods reduce dimensionality by
first aggregating individual regions in the scATAC-seq data to easily interpretable features, such as
binding motif scores in the case of chromVAR [10] or gene activity scores in the case of Cicero [11],
which makes the data easier to analyze but masks the fine-grain single-region resolution provided
by scATAC-seq. These methods have been demonstrated to be under-powered in capturing the true
heterogeneity in the original data [12]. Finally, recent methods use deep generative models (e.g.,
SCALE [13]), but do not account for technical factors, and suffer from model over-fitting due to the
dimensionality of the data in contrast with the limited number of samples.
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10 Another common task is differential accessibility analysis. The ability to identify chromatin regions that
11 are preferentially accessible in one population compared with another is foundational to characterizing
12 the chromatin remodelling between cellular identities and states. However, specialized methods to
13 perform this task in the context of scATAC-seq data have not yet been developed. Methods that rely
14 on aggregation of individual regions, like chromVAR and Cicero, perform differential analyses in
15 the aggregated space, thereby losing the single-region resolution. Other methods use linear models
16 developed for RNA-seq data [14] or standard statistical tests [9]. These approaches often suffer from
17 numerical instability due to the sparsity of the data, and statistically overpowered due to the large
18 sample size.

19 Some recent processing pipelines, like SnapATAC [14] and ArchR [9], offer comprehensive end-to-end
20 analysis pipelines that resolve many issues with processing scATAC-seq data, such as sensitive
21 peak-calling, promoter-enhancer association, and doublet detection. However, these pipelines rely on
22 sub-optimal algorithms for the fundamental tasks mentioned above, and can therefore be improved
23 with better performing methods for those tasks.

24 Here we present PeakVI, a deep generative model that learns a probabilistic low-dimensional
25 representation of single cells from their chromatin accessibility landscape. PeakVI accounts for
26 technical biases in the data stemming from batch effects, variation in sequence coverage, and bias due
27 to the width of DNA regions, and creates a representation of the data that minimizes these effects. The
28 representation is provided at two levels. One part of the model infers a representation for each cell in
29 alatent low-dimensional space. This latent representation and the space it is embedded in can be used
30 directly for downstream analyses: integration of data sets, identification of cellular sub-populations,
31 and visualization. A second part of the model provides a corrected, probabilistic representation of
s2 the raw data. This high dimensional representation enables statistically robust inference of single
s region-level differential accessibility and cell state annotation. We demonstrate PeakVI’s performance
3« on published data and benchmark it against state-of-the-art published methods on a range of analysis
35 tasks. We show that PeakV1 is a powerful addition to the arsenal of scATAC-seq methods and provides
ss capabilities that can help unlock the full potential of sScATAC-seq data analysis. PeakVI is publicly
a7 available as part of the scvi-tools [15] suite of deep generative models for single cell genomics.

- Results

» 1 PeakVI Model

40 PeakVI leverages variational inference with deep neural networks to model scATAC-seq data. For
41 each cell, PeakVI estimates the probability of each chromatin region being accessible, as well as
42 technical factors that affect the probability of an accessible region being observed. The standard
43 output of most scATAC-seq preprocessing pipelines (including those employed here; see Methods) is
4 atable of N cells and K genomic regions. The regions typically correspond to DNA segments with
45 enriched accessibility that are inferred through peak-calling over cell aggregates [16, 14, 9].

4 The starting point of PeakVI is therefore a N x K matrix X where z;; is the number of reads from
47 cell 7 that map to region j. While these observations are counts, the underlying biology is mostly
4 binary (a region is either accessible or not). Therefore, PeakVI models the observations as samples
a0 from a Bernoulli distribution P (z;; > 0 | y;;,7;,¢;), where y;; is the probability of region j being
so accessible in cell ¢, r; € [0,1] is a region-specific scaling factor, and ¢; € [0, 1] is a cell-specific
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Figure 1: PeakVI Model overview. (A) conceptual model illustration. The input region-by-cell count matrix (left)
is estimated as the product of region-specific effects (center top), cell-specific effects (center), and accessibility
probability estimates (center bottom). The observation probability matrix (right) is used to calculate the likelihood
of the data for optimization. (B) The region-specific factor r; is assigned higher values for wider regions,
indicating a higher probability of those regions being fragmented. (C) The cell-specific factor ¢; increases with
the number of fragments up to a saturation point. Cells with sufficient fragments are not penalized even if other
cells have significantly more fragments. (D) Random corruption of the data at increasing rates leads to a small
but steady increase in the mean squared error (measured from corrupted indices).

1 scaling factor (Figure 1A). Conceptually, these components are related to the three molecular events
that are required for a region to be observed as accessible: (1) the region must be accessible in the
cell, which largely depends on the cell state and identity, captured by y;,;; (2) the accessible region
must be tagmented by the transposase that underlies the ATAC-seq protocol, a process which may be
skewed by region-specific factors such as width (in base pairs) and sequence biases, captured by r;;
(3) finally, the corresponding fragment must be captured and sequenced, which may also depend on
library-specific factors, such as sequencing depth and efficacy of the library preparation, captured by
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PeakVI uses a variational autoencoder [17] (VAE) and an auxiliary neural network to estimate
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these factors. The VAE consists of two major components: (1) the encoder network f, infers the
distributional parameters of the d-dimensional (for d « D) latent representation z; (also known as the
variational posterior) from the observed data: f, (z;) = ¢ (2;|z;); (2) the decoder network g, and the
generative model, which takes a sample from the latent representation z; and the batch annotations s;
and generates an estimate of the probability of each genomic region being accessible in the cell i:
(92 (21, 84)) ; = Yij- The cell-specific scaling factor ¢; is inferred from the observed data using an
additional neural net fy, and the region-specific scaling factor r; € [0, 1] is optimized directly as a
model parameter. Finally, the probability of observing a region in a cell (i.e p (z;; > 0)) are computed
as the product of the three probabilities: p (z;; > 0) = y;; - ¢; - r; (Figure 1A). Formally:

(i, 04) = fz (x4) Infer distributional parameters
zi ~ N (i, 04) Sample latent representation
Yij = (9= (21, 81)); Estimate probability of accessibility
b = fo(x;) Estimate cell-specific factor
x;5 >0~ Ber (yij - ; - rj) Calculate likelihood

Conditioning on batch annotations, or any other known sources of unwanted variation, encourages
the encoder to capture batch-independent biological variation in the latent representation z;, which
can then be used for normalized and batch-corrected visualization, clustering, and other downstream
analyses. The inferred accessibility probabilities y;; are an estimate of the true chromatin landscape
in each cell, while technical effects that stem from either region-specific biases or cell-specific biases
are captured by the r and ¢ scaling factors, respectively. We can then estimate the probability of
observing a region in each cell as the product of these factors y;; - £; - r; and compute the likelihood
of the observations. During training, a lower bound of the marginal log likelihood log p(x;; > 0) is
then maximized using auto-encoding variational Bayes [17]. Full model architecture and training
10 parameters are provided in the Methods section.
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1 1.1 Benchmark Datasets

12 In order to evaluate the performance of PeakVI, we examined both simulated and real datasets.
13 We found, however, that current simulation techniques [12] rely on independent sampling from
14 distributions attained from bulk ATAC-seq data, which creates a highly-sparse covariance structure
15 that does not realistically reflect assayed datasets (Figure S1). Our analysis therefore relies primarily
16 on two publicly available datasets: (1) Hematopoiesis data from Satpathy et al. [6] which consists of
17 bone marrow and blood samples that were flow-sorted for different cell subsets, as well as several
18 batches of unsorted samples that consist of multiple cell types; (2) A dataset released by 10x Genomics
19 of joint RNA-seq and ATAC-seq from single human peripheral blood mono-nuclear cells (PBMCs).
20 The first dataset contains cell type specific labels that provide an established benchmark, as well
21 as multiple batches that allow comparison of batch effect correction. The second dataset provides
22 an orthogonal modality of data that can be used to validate sScATAC-based analyses. Finally, the
23 two datasets are generated using different protocols and are processed differently, allowing us to
24 demonstrate the PeakVI’s performance is protocol- and processing-independent.

»s 1.2 PeakVI Captures Nuanced Effects of Technical Confounders

26 Since the normalization factors included in the PeakVI model, r and ¢, are optimized by the training
27 process, we set out to confirm that they converge on values that correspond to the empirical, technical
28 confounders. We used the 10X PBMC data for these analyses. For the region-specific factor r, we
29 examined how it corresponds to the width of the genomic region, a known technical confounder.
30 we found that PeakVI assigns the vast majority of regions with a value around 0.5, with higher
a1 values indeed being assigned to wider regions, which have a higher probability of being fragmented
32 (Figure 1B). Notably, the overall distribution of this factor only reaches as high as roughly 0.75, well
sz below the max value of 1. This translates to a global penalty imposed on all observations, which
34 implicitly reflects the limited sensitivity of this assay and the resulting abundance of false-negative
35 observations. For the cell-specific factor ¢ we examined how it corresponds to the number of
s reads captured in each cell. We find that the vast majority of cells have ¢ ~ 1, and the dynamic
a7 values of ¢ indeed correspond to the empirical library size (Figure 1C). The saturation of this
ss factor reflects an important consideration when normalizing library sizes for chromatin profiling:
39 different cell types may have different levels of accessibility (e.g unbalanced chromatin remodeling
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during differentiation [18]), therefore this factor should not penalize cells states with less accessible
chromatin, but rather only weigh down cells in cases where the decrease in fragments is due to
technical effects. Overall we see that the normalization factors used by the model have a clear but
nuanced correspondence to empirical confounders.

N

s 1.3 PeakVI is Robust to Increased Sparsity and Stable Across
6 Hyperparameters

7 Limited sensitivity, which results in an abundance of missing observations, is a major problem
s in single-cell assays and particularly scATAC-seq. We therefore examined how PeakVI handles
o increasing levels of sparsity. We corrupted the 10X PBMC data by randomly replacing non-zero
10 observations with zeros at a range of probabilities (10 — 90%) and trained PeakVI on each corrupted
11 dataset. We then used PeakVI’s estimates of the probability of accessibility for these corrupted
12 observations and compared the estimates from the models trained on corrupted data, in which these
13 observations were 0, to the original estimates from the model trained on the full data, where these

. 2 .
12 observations where non-zero. We computed the error: ﬁ D jec (yfj — yij) , where C' is the set of

15 corrupted observations, y° is the probability of accessibility estimated by peakVI when trained on the
16 corrupted data, and y is the probability of accessibility estimated from the original, uncorrupted, data.
17 We found that PeakVI produces highly consistent results, even in highly sparse situations: with a
18 mean squared error of 0.06 when 10% of the observations are removed, to 0.17 when 90% of the
19 data is removed (Figure 1D, S2). We also observed that the corrupted estimates are generally lower
20 than the original estimates, consistent with the corruption being one-directional (introducing false
21 negatives, not false positives). These results demonstrate that PeakVTI is robust to low-quality and
22 highly sparse data.

23 Since training PeakVI involves stochastic optimization of a non-convex function, the model can
24 produce different results in different runs. We examined how stable PeakV1 is to changes in architecture
25 and training hyperparameters by training PeakVI on a variety of configurations and comparing how
26 the different models perform on held-out data. We varied the number of hidden layers in the neural
27 networks, the size of the mini-batch used in training, the dropout rate, and learning rate, and the
2s weight decay. For each set of hyperparamters, we trained the model 3 times, and measured the
29 likelihood the model achieves on the held-out data in each run. We found that PeakVTI is highly stable,
30 and that the default hyperparameters perform well without a need to fine-tune the model for each
31 analysis (Supp. Table 1, Methods).

» 2 PeakVI Learns an Informative Batch-Corrected Latent
% Representation

s« PeakVI learns a low-dimensional representation of each cell that preserves biological heterogeneity
35 while reducing noise, technical artifacts, and batch effects. We compared the latent space learned
ss by PeakVI with representations from published methods. We compared to four methods: 1) latent
37 semantic analysis (LSA), a natural language processing (NLP) technique commonly used in scATAC-
s seq analysis pipelines[14, 9]; 2) cisTopic[8], a method that uses Latent Dirichlet Allocation, commonly
ss used for NLP tasks; 3) SCALE[13], a method that also employs a VAE, and incorporates Gaussian
40 mixture modelling (GMM) to create a clustered latent space; 4) chromVAR[10], an algorithm that
41 aggregates genomic regions by known binding motifs and normalizes these aggregates to motif
42 accessibility scores. The first two methods, LSA and cisTopic, were chosen since a recent benchmark
43 of computational analysis methods for scATAC-seq methods[12] found them to be the best performing
42 methods. SCALE, published after the benchmark, is included in our comparison due to the conceptual
45 similarities with PeakVI. Finally, we included chromVAR since it is commonly used as both a
4s dimensionality reduction method as well as an annotation technique.

47 First we used the 10X PBMC scATAC-seq data to measure how consistent each latent representation is
4 with the gene expression profiles that are also measured from each cell. We ran all methods on the 10X
4s PBMC data and extracted the latent representation computed by each. We then independently analyzed
so the paired scRNA-seq data and clustered the cells based on their gene expression profiles (Methods).
st We then overlaid the scRNA-based cluster labels on the scATAC-based representations (Figure 2A),
sz and measured for each cell the fraction of its chromatin-based K nearest neighbors that are from the
s3  same RNA-based cluster for varying values of K (Figure 2B, Methods). We found that PeakVI and
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Figure 2: UMAP visualizations of latent representations from PeakVI, LSA, cisTopic, SCALE, and chromVAR.
(A) The paired scRNA-scATAC sample PBMC dataset from 10X Genomics. Cells are colored based on
the scRNA-based clustering, umaps are computed from the scATAC representations. All methods except
for chromVAR are comparably consistent with the scRNA data. (B) Quantitative consistency of the latent
representation with the scRNA data; fraction of the K nearest neighbors in the scATAC representation that are
also among the K nearest neighbors in the sScRNA representation, for various values of K. PeakVI marginally
outperforms cisTopic, followed by LSA, SCALE, and chromVAR. (C) Data from Satpathy et al [6]; cells are
colored using the FACS-based cell type-specific labels. Cells from unsorted samples or non-specific sorted
samples are colored in light gray. PeakVI, LSA, and cisTopic all achieve good separation of cell types. (D) Data
from Satpathy et al [6]; cells are colored using the unsorted PBMC replicates. Cells from all other samples are
colored in light gray. Batch effects are reduced with PeakVI, chromVAR, and SCALE. (E) Enrichment of labels
among the K-nearest neighbors for each cell; X-axis is the enrichment of batch labels, where lower enrichment
indicates better batch mixing. Y-axis is the enrichment of cell type labels, where higher enrichment indicates
better separation. PeakVI reaches a better balance of the two tasks.
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cisTopic outperformed all other methods, with PeakVI doing marginally better than cisTopic. We also
measured how robust each method is to library size effects, by computing for each latent space the
correlation of the latent representation with the empirical library size (log (number of fragments)),
using Geary’s C [19] (Figure S3, Methods). We found that LSA and SCALE are especially sensitive
to library size effects, while PeakVI and cisTopic are more robust, and chromVAR having a negative
association with library size.

[ I T N

7 Next we looked into how each method handles a more complex experimental design, as in the
s hematopoiesis dataset, which consists of multiple samples in different sizes, some cell type specific
9 and others general. We analyzed the data with all methods, and for PeakVI used three configurations:
10 (1) “no batch”, without any batch annotation; (2) “full batch”, treating each sample as a separate
11 batch; (3) “replicate batch”, treating each replicate from multi-replicate conditions as a separate batch
12 (Methods). These configurations correspond to having no batch correction, strict batch correction, or
13 an intermediate approach, respectively. We examined how well each method preserves biological
14 heterogeneity by measuring how separated the sorted cell populations are, using the cell type-specific
15 fluorescence-based labels (Figure 2C, S4). We also examined how well each method handles batch
16 effects, which none of the examined methods explicitly corrects, by measuring how well-mixed are the
17 four different batches of unsorted PBMC samples (Figure 2D, S4). For both analyses we computed an
18 enrichment score by computing for every cell the number of neighbors out of its K -nearest neighbors
19 that share its label, and comparing to the random expectation (Methods), for varying values of K
20 (scores in the text are for K = 50) (Figure 2E). Ideally, this enrichment score would be high for
21 biological labels and low for batch labels. We find that LSA, cisTopic, and PeakVI with no-batch
22 configuration all achieve high separation (enrichment scores 9.1, 9.13, and 9.42, respectively) but
23 separate the different batches as well (enrichment scores 2.33, 2.28, 2.39 respectively); conversely,
24 chromVAR and SCALE outperform all methods in batch mixing (1.57 and 1.59, respectively), but
25 do worse on cell type separation (5.78 and 7.03, respectively). In contrast, we find that PeakVI
26 with replicate-batch strikes a desirable balance, preserving biological heterogeneity comparably well
27 (enrichment score 9.04) while more effectively mixing the batches (enrichment score 1.85). Finally,
28 PeakVI with full-batch configuration also achieves a good balance (8.37 for cell type separation, 1.88
29 for batch mixing), but underperforms the replicate-batch configuration on both tasks. Overall these
s results demonstrate that PeakVI is better able to correct batch effects while preserving biological
31 heterogeneity, reaching an overall better latent representation than all examined methods.

» 3 PeakVI performs differential accessibility analysis at a
% single-region resolution

34+ Among the main promises of sScATAC-seq is the ability to better identify individual genomic elements
35 that help regulate certain biological processes. Achieving this requires the ability to identify individual
s regions that are differentially accessible between different groups of cells. In practice this task is
37 challenging due to the binary nature of each observation, batch effects, and the high levels of noise
ss and sparsity. Most differential analyses thus choose to aggregate the differential signal across different
s regions, either by the binding motifs they harbor (i.e the differential analysis chromVAR performs) or
40 by aggregating the surrounding regions to each gene and creating a gene activity score [11]. While
41 these analyses are useful, they do not enable identification of individual regions, thereby not fully
42 unlocking the promise of scATAC-seq data.

43 PeakVI addresses this problem by leveraging the probabilistic nature of the latent space to produce
44 denoised and normalized estimates of accessibility, which enable a robust and accurate estimate of
45 differential accessibility at a single-region resolution. Briefly, given a population of cells C' and a
4 region j, PeakVI samples from the area of the latent space that corresponds to C' and estimates the
47 probability of region j being accessible for each sample, then averages over the samples to get a stable
s estimate of accessibility: Yo, (Methods). Importantly, the representation of the latent space using
49 random variables means that each cell in the original data can be sampled multiple times, allowing
so PeakVI to sample beyond the available number of observed cells. Additionally, this procedure can be
51 conditioned on batch annotation, thereby correcting batch effects. When comparing two populations
s2  of cells, C'4 and Cp, we use the absolute difference between estimates (Yo, — Y, ) as a measure for
s3  the extent of differential accessibility (effect size). Compared to ratio-based statistics (e.g odds-ratio),
s4 this estimate is more interpretable (representing absolute increase or decrease in binding propensity)
55 and more stable to low-level signals. For instance, this means that an increase from 0.01 to 0.21 will
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1 be equivalent to an increase from 0.7 to 0.9 as opposed to the first being a 20-fold increase and the
2 second being a 1.3-fold increase.

s 3.1 Using PeakVI estimates for differential accessibility is more sensitive and
4 robust than using the observed data directly

5 To compare the estimated effect from PeakVI to the empirical effect calculated directly from the
6 observations, we used the hematopoiesis data, and the replicate-batch PeakVI model. We define
7 the empirical accessibility as the proportion of cells in C' in which j is observed as accessible:
s Xo; = Dicc 1(wi; > 0), and the empirical effect is defined equivalently to the estimated effect, as
o Xcp — Yo ,. We clustered the latent representations of the cells and ran a series of comparisons for
10 each cluster. First, we ran two comparisons for each cluster: 1) a “biological” comparison, comparing
11 all cells within the cluster to all other cells; 2) an “artifactual” comparison, comparing within each
12 cluster cells that originated from the two large PBMC batches (replicates 1 and 2; excluding clusters
13 with less than 5 cells in either group), (Figure 3A). The biological comparisons are a common use for
12 differential analyses where some real differences in accessibility are expected, whereas the artifactual
15 comparisons are used as negative controls. We ran two additional comparisons for each cluster,
16 comparing cells within that cluster that originated from a given PBMC batch (either replicate 1 or 2)
17 to all cells in all other clusters, which essentially provided two technical replicates of the biological
18 analysis (denoted ‘biological bl* and ‘biological b2°).

19 We first measured the correlation between the PeakVI estimated effects and the raw data (empirical)
20 effects. We found that the effects are highly correlated in biological comparisons (mean Pearson
21 correlation 0.97), but less so in artifactual comparisons (mean correlation 0.52) (Figure 3B). We then
22 used the results from “biological b1” and “biological b2” results, and found that the estimated effect
23 is highly reproducible (mean correlation 0.95), while we see a marked decrease in reproducibility of
24 the empirical effect (mean correlation 0.66) (Figure 3C). We also noticed that while the results were
25 highly correlated, there was a difference in the width of the distributions between the estimated and the
26 empirical effects (Figure 3C, S5). To investigate this effect more thoroughly, we calculated the standard
27 deviation of the distributions for each comparison, and found that in all biological comparisons
28 (including “biological b1” and “biological b2”) the estimated effect had a wider distribution than
29 the empirical effect, whereas in artifactual comparisons the distributions were either similarly wide
30 or the estimated effect had a narrower distribution (Figure 3D). We additionally found that this is
31 related to the number of cells included in the compared groups, especially in comparisons that rely on
sz small numbers of cells: in these cases we observed the least difference in standard deviations for the
33  biological comparisons, and the most difference for the artifactual comparisons (Figure 3E).

s« Taken together, these results demonstrate that PeakVI is amplifying the empirical effect when the
35 effect corresponds to real biological difference, but silences it when it’s a product of noise. When the
ss empirical effect is more susceptible to noise (e.g., smaller number of cells included in the comparison),
a7 PeakVl is less able to amplify biological signal, but more efficient in silencing the noise. In contrast,
ss  when the empirical effect is calculated with a large number of cells, and is therefore less noisy, PeakVI
s has less silencing effect, but is able to amplify real differences better.

«» 3.2 Statistical significance with PeakVI

41 To estimate the statistical significance of differential effects, PeakVI uses techniques described in
42 previous methods from our group [20, 21]. Briefly, during the sampling procedure described above,
43 PeakVI considers pairs of samples, one from each of the compared groups (y,, y»). PeakVI determines
44 for each pair if the measured effect for each region j is greater than some minimal effect size J:
s hj = 1(|lyc, — yc,| > 0) (for one-sided tests: h; = 1(yc, > yc, + 0)). We repeat this many
s times, and define the probability of differential accessibility, p’, 4, as the proportion of pairs for which
a7 hj =1 (Methods). We then use a conservative multiple hypothesis correction procedure previously
4 described by Lopez et al. [21] to identify differentially accessible regions with some nominal false
49 discovery rate.

so  Established pipelines perform this analysis using standard linear models [14] and standard statistical
st tests like the Wilcoxon rank-sum test or a two-sided T-test [9]. We therefore compared out differential
52 accessibility analysis with a generalized linear model (GLM): a standard logistic regression with an
s3 additional covariate for the number of fragments in each cell to avoid library size effects dominating
s« the analysis (Methods). We performed two comparisons using both methods: (1) an artifactual
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Figure 3: Differential Accessibility Analysis with PeakVI. (A) Illustration of the different comparisons. “real”:
compare cells between two population; “null”: compare cells from different batches within a single population;
“real b1”/*“real b2”: compare cells from a specific batch in a population to all cells in the other population. (B)
Pearson correlations between the estimated and empirical effects. (C) correlation of effect size in 'real b1’ and
corresponding effect in ’real b2’ comparisons. PeakVI estimated effects are far less sensitive to batch effects. (D)
An example (using cluster 14) relationship between the PeakVI estimated effect to the empirical effect in real (top)
and null (bottom) comparisons. (E) the width (measured by the standard deviation) of the effect distributions;
PeakVI amplifies real differential effects, and silences nuisance ones. (F) Level of amplification/silencing
depends on level of noise in the empirical effect. (G-H) Volcano plots for a GLM (G) and PeakVI (H) when
comparing between two batches of NK-cells. (I-J) Volcano plots for a GLM (I) and PeakVI (J) when comparing
between B-cells and NK-cells. (K-L) PeakVI (L) effect is better correlated with a bulk-ATAC based ground truth
comparison, and the significant regions have a higher enrichment scores, compared with the GLM (K).

comparison, using the hematopoiesis data we compared between cells from the two PBMC replicates
that mapped to cluster 1, corresponding to cells the NK-cell label (Figure 3G-H); (2) a biological
comparison, comparing cells from the NK-cell sample to cells from the B-cell sample (using only
cells that were FACS-sorted) (Figure 31-J). We found that both approach show a clear relationship
between effect size and statistical significance in both analyses. The GLM results also revealed
two common issues, in both comparisons: i) some regions have a very large effect size but are
not statistically significant, corresponding to regions that have very low detection rates in both
populations; ii) the p-values were inflated due to the large sample size. The GLM model identified
910 regions as differentially accessible in the artifactual comparison, where no biological signal is
expected, and 33679 (48.9%) of the regions were differentially accessible in the biological comparison.
In contrast, PeakVI results exhibit no numerical issues, and the analyses identified no regions as
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1 differentially accessible in the artifactual comparison, and 11362 (16.5%) regions in the biological
2 comparison.

s We then ran an equivalent comparison between B-cells and NK-cells using bulk ATAC-seq data from
4 Calderon et al. [22] with sorted immune cell populations, as a ground truth (Methods), and compared
s the results with the scATAC-seq based results from both analyses (Figure 31-J). Overall both sets of
e results are consistent with the bulk results, but PeakVI achieves higher correlation between the effect
7 sizes (0.74 compared with 0.48 for the GLM results), and notably, despite identifying fewer regions
s as differentially accessibly, 85.8% of the PeakVI results were also differentially accessible in the bulk
s reference, compared with 65.6% for the GLM. In terms of overlap between the regions found with

10 bulk comparison vs. single cell, both analyses resulted in sets of regions that are over-represented at

11 the bulk results, with PeakVI reaching an odds-ratio of 1.98, and the GLM reaching 1.47. overall,

12 PeakVI provides a well-calibrated statistical significance estimation and enables identification of

13 differentially active regions at a single-region resolution.

« 4 PeakVI unlocks multiple approaches for annotation and
is discovery of cell states

16 A major challenge in analyzing scATAC-seq data is the lack of region-based annotations of cell state,
17 in contrast to the abundant resources for RNA-based annotation. Current methods therefore rely on
18 annotations that were generated from gene expression profiles, which are useful but only provide a
19 partial solution, since chromatin accessibility may carry information that is not discernible from gene
20 expression alone. We therefore set out to demonstrate two different approaches for how PeakVI can
21 be leveraged for annotation and downstream discovery. First, PeakVI’s integration capabilities can be
22 used for transfer learning, projecting annotated reference data and un-annotated query data onto a joint
23 space, and transferring insights from the former to the latter. Importantly, this approach relies solely
24 on the regions, without associating regions to target genes or identifying harbored motifs. Secondly,
25 in the lack of an annotated reference, PeakVI’s differential accessibility analysis can be leveraged for
26 de-novo annotation, associating marker regions with nearby genes and identifying enriched gene sets
27 or known marker genes.

26 PeakVI can be used for transfer learning, by leveraging an annotated reference dataset to annotate
26 a query dataset. First, the reference and query datasets need to be integrated into a joint space,
30 which can be achieved using PeakVI in one of two ways: (i) naively, by analyzing both datasets
a1 together and conditioning on the dataset of origin; (ii) using a two-step procedure first presented in
32 scArches[23], in which the reference data is processed in advance, and then incoming query data can
33 be projected onto the reference-based space. The scArches procedure is particularly useful when
a4 creating a detailed atlas to be used as a reference resource. After the query and reference are in
35 a shared space, transferring annotations from one to the other can be done using proximity based
s classifiers, such as KNN or cluster majority vote (which we utilized here). We demonstrate this ability
a7 using the hematopoiesis data as the reference, and a dataset of human PBMCs provided by 10X
s as a query (note that this dataset is different from the multiomic dataset used in previous sections).
ss  Notably, the reference data covers both bone marrow and blood, and consists of samples that were
40 sorted to specific cell types, as well as samples that consist of the entire PBMC compartment. We
41 therefore expect the query data to align only to the parts covered by the reference PBMC samples, and
42 not next to cell subsets that are more abundant in the bone marrow. Furthermore, we expect technical
43 hurdles to complicate the integration of the datasets as they were generated by different experimental
44 protocols and processed with different computational pipelines.

45 We began by creating a reference model, by analyzing the hematopoiesis data using PeakVI in a
46 scArches-compatible configuration (Methods). We then used PeakVI to project the query PBMC
47 data onto the reference space. PeakVI was able to mix the datasets well, only mapping query cells
4 onto areas of the space occupied by PBMCs, but not those corresponding to progenitor cells, which
4 are absent from the query PBMC data (Figures 4A, S6). We then clustered the cells and assigned
so each cluster with the most abundant cell-specific FACS-based label in that cluster from the reference
st data. Importantly, these annotations are based on similarity of chromatin landscapes between cells
s2 in the query and reference data, without any association to other biological features or aggregation,
s3 resulting in a straight-forward labelling of the query data (Figure S7).

s« However, this procedure requires an annotated atlas from a corresponding system, while many

10
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scenarios require de-novo annotation, which PeakVT facilitates using the differential accessibility
analysis. We demonstrate this using the hematopoiesis data, by de-novo annotating the data and
using the FACS-based labels as a ground-truth. We first clustered the latent space (Figure 4D), and
consistent with our previous findings we found that clusters tend to consist primarily of cells that have
the same label. Next, using our differential accessibility analysis, we compared each cluster to all other
clusters except for the 3 most similar clusters, to avoid highly-similar clusters masking the differences
(Methods). For each cluster we used a one-sided test to only identify regions that are preferentially
open in the target cluster. We then used enrichr [24, 25] to associate the regions to nearby genes and
leveraged the ARCHS4 [26] collection to find over-represented cell-type specific gene signatures.
10 We were able to confidently identify many of the cell type-specific clusters, which matched their
11 FACS-based label (Figure4E, Methods). For instance, marker regions for clusters 13 and 17, in which
12 labelled cells are overwhelmingly B-cells, were indeed enriched for regions associated with B-cell
13 marker genes; Cluster 1 marker regions were enriched for NK-cell marker genes, and indeed the
12 labelled cells in that cluster are NK-cells. Similarly signatures for CD4+ T-cells, Regulatory T-cells,
15 and pDCs, were all highly enriched in the clusters with the corresponding FACS-based labels. Thus,
16 using PeakVI and gene-based signatures, we are able to annotate the data and recapitulate many of the
17 FACS-based labels.

© ® N o O A W N =

18 These results are nonetheless limited by the availability of gene signatures, which may not be available
19 for all cell types, or provide only a a high-level annotation at a limited resolution. Specifically,
20 most progenitor cells in the hematopoiesis data could not be annotated in a similar fashion for lack
21 of corresponding signatures, and despite clustering separately, both CD4+ naive T-cells and CD4+
22 memory T-cells were annotated simply as CD4+ T-cells, since higher-resolution signatures were not
23 available. PeakVI can therefore be used in a two-step approaches whereby cells can be stratified into
24 broad types, using reference-based annotation, and then assigned with more high resolution labels
25 of cell sub-types or states using de-novo analysis. As a case in point, we focused on the set of cells
26 which were annotated as B cells in our reference-based analysis. These cells can be divided into two
27 clusters (clusters 13 and 17). To derive a higher resolution annotation of the B cell compartment, we
28 ran a two-sided comparison between the two clusters and identified 1043 differentially accessible
29 regions in total, 207 preferentially accessible in cluster 13 and 836 preferentially accessible in cluster
s 17 (Figure 4F; Supp Table 2 and Methods). Among the genes associated with regions detected for
a1 cluster 13 we found TCL1A, known to be expressed throughout B-cell differentiation up to naive
32 B-cells but silenced in memory B-cells and plasma cells [27, 28], and YBX3, implicated in B-cell
33 differentiation as an immature B cell marker [29]. We also found SATB1, TENTSA, and ZNF667-AS1,
s« which along with TCL1A and YBX3, were previously found to be differentially expressed in naive
35 B-cells compared with Memory B-cells [30]. Concordantly, genes associated with cluster 17 included
ss known markers for memory B-cells AIM2[31] and CDS80 [32], and 9 other genes previously found
37 to be differentially expressed in memory B-cells compared with naive B-cells [30] (Figure 4G).
ss Taken together, we concluded that cluster 13 consists of naive B-cells and cluster 17 consists of
ss memory B-cells, therefore demonstrating that PeakVI’s differential accessibility analysis can be used
40 in conjunction with a reference-based annotation to increase the resolution of annotations and identify
41 new targets for further study.

. Discussion

43 PeakVlis a deep generative model for analyzing single cell chromatin accessibility data. The model is
44 designed to explicitly account for various technical effects that mask and distort the biological signal.
45 The latent representation learned by the model is probabilistic in nature, embedding the observed cells
4 in a smooth variational space that preserves the biological heterogeneity, minimizes confounding
47 effects, and can be used directly to explore the chromatin landscape of a population of cells.

4z PeakVI improves upon previous attempts to use deep learning to analyze scATAC-seq data in several
4 manners. First, the architecture used in the underlying neural networks scales with the size of the input
so data, increasing the expressiveness of the model to match with increasingly large and complex datasets
st (Methods). Second, PeakVI accounts for technical confounders and enables correction of batch
sz effects, with clear benefits to downstream results. Thirdly, Since it is common for features (regions)

11
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Figure 4: PeakVI unlocks multiple paths for annotation and identification. (A-C) PeakVI supports transfer
learning. (A) Mapping of query data (Sample PBMC data from 10X Genomics) unto a reference data (from
Satpathy et al[6]). PeakVI mixes the query data with the reference despite the data being generated by a
different protocol and processed by a different pipeline. (B) The reference data, colored by FACS-based cell
type-specific labels; (C) The query data, colored by the transferred cell type-specific labels. (D-F) De-novo
annotation using PeakVI’s differential accessibility analysis. (D) Hematopoiesis data colored by clusters. (E)
Regions that are preferentially accessible in each cluster were analyzed for enriched cell-type signatures from
ARCHS[26] signatures, using enrichr[24, 25]. Heatmap shows distribution of cell type-specific labels for each
cluster, normalized by row. (F) Volcano plot for a differential accessibility analysis between the two B-cell
clusters (clusters 13 and 17). (G) Volcano plot for only significant regions, labelled by associated genes that are
implicated in Naive B-cells (red) and Memory B-cells (blue).
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to outnumber the samples (cells), and the observations are mostly binary and therefore contain little
information, PeakVI also takes measures to successfully prevent the model from over-fitting, by
holding out some of the data as a validation set, tracking the model’s performance on the validation
data, and halting the training process when the performance on the validation data stops improving,
thus ensuring that the model is learning generalizable features. Finally, PeakVI provides extensive
methods to take advantage of the learned latent space for analysis tasks beyond dimensionality
reduction, visualization, and clustering. Specifically, PeakVI enables high resolution annotation
of cell state, by allowing both reference-based analysis and de-novo annotation analysis. In that
capacity, PeakVI enables accurate differential accessibility analysis at a single-region resolution that
reduces the effect of confounders and avoids common issues with the current practices for differential
11 accessibility, namely numerical instability and inflation of significance scores.

© o N o o A~ @ N =

o

12 PeakVI is robust to low-quality data, easy to configure, train, and use. It is implemented in the
13 scvi-tools suite[ 15], which provides interfaces with popular processing environments like scanpy[33]
14 and Seurat[34]. As such, PeakVI can be easily incorporated in existing analysis pipelines to
15 enhance current analyses for dimensionality reduction, batch correction, differential accessibility, and
16 annotation.
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. Methods

. 5 The PeakVI Model

s LetX e Név *K be a scATAC-seq region-by-cell matrix with N cells and K regions, where x5 € Nog
4 is the number of fragments from cell ¢ that map to region j. Since PeakVI models the probability of
5 observing a region, regardless of the number of reads supporting that observation, the observations

6 are treated as binary: X* ¢ [0,1]Y ", where zj; = 1(x;; > 0). The observations are therefore

7 generated from a Bernoulli distribution z* ~ Ber (g;;). PeakVI computes g;; as a product of three
s probabilities: ¢;; = y;; - r; - {;, where y;; captures the true biological heterogeneity; r; captures
9 region-specific biases (e.g width, sequence); ¢; captures cell-specific biases (e.g library size). The
10 three probabilities are estimated jointly using deep neural networks.

11 The biological component y;; is estimated using a VAE[17], which is composed of two deep

iz neural networks, the encoder f. and decoder g.. Briefly, the encoder f. : N — (RP,RP),
13 computes the distributional parameters of a D-dimensional multivariate normal random variable:
14 Z ~MVN(f,(z;);,f> (z:),). The sample is then concatenated to the batch annotation for cell

15 1, and passed through the decoder g, : (RD7 {0, I}S) — [0, 1]K, for S being the dimension of the

16 one-hot batch annotation (the number of batches). The cell-specific factor ¢; computed from the
17 input data for cell i via a deep neural network f, : N& — [0, 1]. Finally, the region-specific factor
18 1, since it is optimized across samples, is stored as a K -dimensional tensor, used and optimized
19 directly.

20 5.1 Architecture

21 All PeakVI neural nets are fully connected networks, composed of repeated blocks that share a basic
22 structure. For convenience, we define a fully connected block FC (I,0, D, A) as having a fully
23 connected layer with I input nodes and O output nodes, followed by a drop-out layer with a D
24 probability of dropout, a layer-norm layer, and finally an A activation function.

The encoder f, is constructed as follows:
FC (N, VN, 0.1, leakyReLU) -
FC (x/ﬁ VN, 0.1, leakyReLU> .
FC (\/N VN, 0.1, leakyReLU) N
(FC (\/N VN, 0.1, Identity) FC (\/N VN,0.1, Identity))

25  With +/N being the default dimensionality of the latent representation. This ensures that the
26 model architecture scales with the number of features in the data and the complexity of the
27 representation.

The decoder g, is constructed as follows:
FC (\/ﬁ +5,vVN,0, leakyReLU) -
FC (\/N, VN, O,IeakyReLU> —
FC (\/N VN0, leakyReLU) -

FC (\/N, N, 0, sigmoid)

28 With S as the dimensionality of the batch annotations, concatenated to the latent representation.
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The cell-specific factor network fy is constructed similarly:
FC (N7 VN, 0, leakyReLU) -
FC (\/N, VN, O,IeakyReLU> —
FC (\/N VN, O,leakyReLU) -

FC (\/N, 1,0, sigmoid)

1 5.2 Training Procedure

2 By default, PeakVI is optimized using AdamW[35] with a learning rate of 0.0001, weight decay of
3 0.001, and minibatch size of 128. The model is trained on 90% of the data, with the remaining 10%
4 used as a validation set. Training is performed for at most 500 epochs, with early stopping: if there is
5 no improvement in terms of the reconstruction loss on the validation set for 50 epochs, the training
s stops. For epochs i € 1, 50] the KL divergence term is weighed done by a factor of /50. The best
7 state throughout training, defined as the state that achieves the best reconstruction loss, is saved during
s the training and used as the final state. All training settings are configurable.

s 5.3 Differential Accessibility Analysis

10 For a differential accessibility analysis between two populations A and B, the analysis is performed
11 as follows:

12 1) N cells are sampled from each population, with replacement (default N' = 5000). We denote the
13 resulting cells C% for the i-th sample from population X, fori € [N] and X € {4, B}.

12 2) for each cell C, we apply the inference model on the cell’s chromatin accessibility profile f, (z¢)
15 to get the variation distribution corresponding to that cell, ¢¢, sample from that distribution to get an
16 estimated profile of the probability of accessibility of all regions in that cell: zo. We then use the
17 generative model g to estimate the probability of accessibility of each region j in that cell: (y¢) e
18 Sampling from the variational space allows us to sample the same cell multiple times and get different
19 estimates, thereby enabling statistical power beyond the original sample size.

20 3) to calculate the effect size for each region, we simply take the average estimated probability of
21 accessibility across all samples from each population, and compute the absolute difference between
22 the averages: A; = (ya) ; — (yB) ;-

23 4) to calculate the statistical significance, we randomly pair samples from each population into
24 N pairs of estimates {(y A,y5)" |i € [N]}, then for each region we count for how many pairs
25 the difference between estimates was greater than some minimal ¢ (default 0.05): pp A, =
2 % va 1 ((y A); — (yB); > 5). This procedure has been previously described by [21].

27 5) In addition to pp 4, we also compute the Bayes factor: BF; = log 1~ ’;’ 3A , and perform multiple
28 testing correction using the procedure previously described by Lopez et al[21] to get a qualitative,

26 binary label for each region.

» 6 Benchmarking and Evaluation
s 6.1 Stability Analysis

32 To measure the stability of PeakVI to hyperparameter selection, we ran a full grid search using the
s 10X Genomics sample data. We held out 10% of the data as a test set and trained all models on
s+ the remaining set. We trained each model 3 times (with an independent train-validation split) and
ss measured the likelihood on the held-out data. The full results are available in Supplemental Table 1.
ss The hyperparameters we varied and the values used are as follows: learning rate (le-2, le-3, le-4);
37 number of hidden layers (1,2,3,4); dropout rate (0.1, 0.3); minibatch size (64, 128, 256); weight decay
s (0.1,0.01,0.001).
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6.2 Dataset Processing

The hematopoiesis data was downloaded from GEO (Accession GSE129785); specifically the
processed peak-by-cell matrix and metadata files: scATAC-Hematopoiesis-All.cell-barcodes.txt.gz,
scATAC-Hematopoiesis-All.mtx.gz, scATAC-Hematopoiesis-All.peaks.txt.gz. We then filtered the
genomic region to only those that are detected in at least 0.1% of the cells in the sample, reducing
the data from 571400 regions to 133962 regions. The sample data from 10X genomics was also
downloaded as preprocessed peak-by-cell matrices, without any additional filters.

s 6.3 Running Published Methods

o  Forall methods, we followed the standard recommended procedure for analyzing data. For visualization,
10 we computed the umap[36] coordinates using the python implementation from the latent space
11 computed by the respective method (except for SCALE, see below). cisTopic (v0.3.0): We used the
12 WarpLDA model fitting procedure, and chose the best number of topics based on the second derivative,
13 as recommended by the package documentation. For the hematopoiesis data the model used 100
14 topics, and 40 topics for the paired PBMC sample data from 10X Genomics. chromVAR (v1.12.0):
15 We used the JASPAR2016 motif set, containing 386 motifs, and followed the standard analysis
16 outlined in the package documentation. We used the unnormalized motif deviation scores. For
17 dimensionality reduction, we found no clear difference between using the chromVAR scores directly
18 and applying an additional linear procedure (i.e principle component analysis). Results described in
19 the manuscript use the deviation scores directly. LSA: We used the python implementation from
20 the Scikit-learn[37]. We first binarized the data, then computed the top 50 components used the
21 TruncatedSVD method, on the tfidf-transformed data. SCALE (v1.0.4): we used the external script
22 to run SCALE without a pre-determined number of clusters, using the default arguments. In all
23 visualizations, we used the umap coordinates computed by SCALE.

N o a0 A~ w N

2« 6.4 Enrichment Score Calculation

25 Enrichment scores used to quantify cell type separation and batch mixing were computed in an
26 identical way. Given a latent representation R, an integer k, and cell labels L, we first compute G g 1,
27 the K-nearest neighbor graph from R with k neighbors. We then compute for each cell the proportion
26 of neighbors that share the same label: s; = ;3 jeGrr(iy L (Li = Lj). The overall score is the
29 average score across all cells, 5, normalized by the expécted score for a random sample from the
2 distribution of labels: E [s] =3, (s, p7, for {L} being the set of available labels, and p, being the

31 proportion of each label £ € {L}. The enrichment score is then ﬁ

2 6.5 Differential Expression with Logistic Regression

33 As a simple benchmark for differential accessibility, we constructed a standard logistic regression
3« model to compare B-cells to NK-cells, using the design y ~ number of fragments + cell type, where
35y is the binary detection of a genomic region. We fit the model using the glm function in R. Due to
3 the runtime of this analysis, we limited the results to regions that are detected in at least 1% of the
a7 compared cells.

s 6.6 Analysis of bulk ATAC-seq data

ss  The bulk ATAC-seq data used as a ground truth reference for differential accessibility analysis was
40 downloaded from GEO (accession GSE118189). We used the unstimulated samples of all B-cell
41 and NK-cell subtypes included in the study and used DESeq2[38], which was found to be among the
42 ebst performing methods for differential accessibility from bulk ATAC-seq data[39] for differential
43 accessibility between the two group. We then found regions in the hematopoiesis data that overlap
4+ with the regions in the bulk data, and used the differential signal found in the bulk data for the
45 overlapping regions in the hematopoiesis data.

s 6.7 Projection of query data onto reference

47 Projection of query data onto a latent space learned from reference data is done using scArches[23].
48 First, the 10X sample PBMC data was downloaded and processed (using CellRanger v3.1.0) using the
4 hematopoiesis peaks. We then trained a PeakVI model on the hematopoiesis data using ell covariate
s0 injection, which adds one-hot encoded batch annotation to each layer in the VAE (as opposed to
51 only the decoder layers, which is the default behavior). We then trained the resulting model on
52 the query data, which involves adding batch annotations corresponding to the query data, and only
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1 training the nodes in the network that interact with these additional batches. This preserves the
2 latent representation of the reference data while projecting the query data onto the same space, while
s correcting batch effects between the query and data.

+ 6.8 Cluster Annotation with differential accessibility

s Differential accessibility to identify marker regions for each cluster was performed between each
6 cluster and all other clusters except the three most similar clusters. This was in order to avoid sampling
7 pairs of cells that are highly similar from the two groups, which would reduce the signal. We therefore
s calculated the centroid of each cluster (the average position in the latent space of all cells in the
9 cluster), computed the Euclidean distance matrix between all centroids, and identified for each cluster

10 the 3 most similar clusters. We then used the identified regions (using the Bayesian FDR method

11 described by Lopez et al. [21]), ran them through enrichr[24, 25], and downloaded the enrichment

12 results for the ARCHS4 Tissues set. For associating regions with genes, we used the bioconductor

13 package TxDb.Hsapiens.UCSC.hg19.knownGene[40] and considered only strict overlaps between

12 the region and the annotated gene body or promoter.
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Satpathy et al 10x PBMC Simulated (Chen et al.)
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Figure S1: A Pearson correlation matrix (top) and distribution of correlation coefficients (bottom) of regions
in three datasets: the immune cell dataset from Satpathy et al [6] (left); the sample multi-omics 10K cells
PBMC dataset from 10x Genomics (center); and a simulated Bone Marrow dataset generated by Chen et al [12].
[cite]. For visual purposes, figures were generated using only the first 500 regions in each dataset, and across all
available cells. Simulated data does not adequately represent the covariance structure of real sScATAC-seq data.
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Figure S2: Corruption analysis, in which observations were randomly replaced by zeros. Visualization is limited
only to corrupted indices, showing that while increased corruption destabilizes the model, PeakVI is overall
highly robust to the sparsity of low quality data.
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Figure S3: UMAPs of the sample paired scRNA and scATAC-seq PBMC data from 10X genomics, colored by
the number of fragments mapped for each cell (left) and the spatial autocorrelation measured using Geary’s
C[19] (right). LSA and SCALE are most impacted by library size effects, PeakVI and cisTopic are robust, and
chromVAR is negatively correlated.
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Figure S4: Visualizations of the Satpathy data using three configurations of PeakVI: treating replicates of
multi-replicate samples as separate batches (replcate batch); without batch correction (no batch); treating each
sample as a separate batch (full batch). Colored by FACS-based labels (top) and replicates of the unsorted PBMC
samples (bottom). Unlabelled cells are colored in light gray.
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Figure S5: The effect size distribution for each real (top) and null (bottom) comparison. PeakVI estimated
effects are amplified compared with the empirical effect in real comparisons, but the opposite is true for null
comparisons. Overall PeakVI consistently has a better signal-to-noise ratio.
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Figure S6: The low-dimensional representation of the Hematopoiesis data, trained in a scArches-compatible
manner, with cells from PBMC samples in dark blue, showing how PBMCs are distributed in the space.
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Figure S7: The low-dimensional representation of the Sample 10X PBMC data, with labels transferred from the
hematopoiesis data.
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