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Abstract

Digital PCR (dPCR) is the gold standard analytical platform for rapid high precision
quantification of genomic fragments. However, current dPCR assays are generally
limited to monitoring 1-2 analytes per sample, thereby limiting the platform’s ability to
address some clinical applications that require the simultaneous monitoring of 20 – 50
analytes per sample. Here we present Virtual Partition dPCR (VPdPCR), a novel
analysis methodology enabling the detection of 10 or more target regions per color
channel using conventional dPCR hardware and workflow. Furthermore, VPdPCR
enables dPCR instruments to overcome upper quantitation limits caused by partitioning
error. While traditional dPCR analysis establishes a single threshold to separate
negative and positive partitions, VPdPCR establishes multiple thresholds to identify the
number of unique targets present in each positive droplet based on fluorescent intensity.
Each physical partition is then divided into a series of virtual partitions, and the
resulting increase in partition count substantially decreases partitioning error. We
present both a theoretical analysis of the advantages of VPdPCR and an experimental
demonstration in the form of a 20-plex assay for non-invasive fetal aneuploidy testing.
This demonstration assay – tested on 432 samples contrived from sheared cell-line DNA
at multiple input concentrations and simulated fractions of euploid or trisomy-21 “fetal”
DNA – is analyzed using both traditional dPCR thresholding and VPdPCR. VPdPCR
analysis significantly lowers variance of chromosome ratio across replicates and increases
the accuracy of trisomy identification when compared to traditional dPCR, yielding
>98% single-well sensitivity and specificity. VPdPCR has substantial promise for
increasing the utility of dPCR in applications requiring ultra-high-precision
quantitation.

Introduction 1

In many clinical diagnostic applications, it is essential to not only detect the presence of 2

a nucleic acid target, but to also measure its concentration. This is commonly done 3

with the quantitative polymerase chain reaction (qPCR), which calculates concentration 4

based on the number of PCR cycles needed for a sample to reach a certain signal 5

threshold. This method benefits from widespread instrument deployment and a simple 6
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workflow, but requires running standards for calibration purposes and is only effective 7

at establishing target concentration within a factor of 2 [1–3]. 8

An alternative approach to target quantitation is digital PCR (dPCR). dPCR 9

divides a sample into tens of thousands of individual partitions prior to amplification. 10

After amplification, the partitions that generate an amplification signal are counted to 11

produce measurements of target concentration. When compared to qPCR, dPCR 12

improves both precision and low-copy sensitivity, while providing absolute quantitation 13

without the need for calibrating standards [1–4]. Due to its advantages, dPCR has 14

shown increasing utility in a number of diagnostic applications, including absolute 15

quantification of viral load, analysis of circulating DNA, gene and microRNA expression, 16

and analysis of gene copy number variation [5–9]. 17

The most fundamental limit to the precision of dPCR quantitation is Sampling 18

Variance; if the true mean number of target copies across many sample replicates is N , 19

the standard deviation of the number of copies truly present in each replicate will be 20√
N [10] (Figure 1a). For applications that require high precision at low input copy 21

numbers, this level of variance can be unacceptably high. The number of effective 22

sample copies can be increased by multiplexing, i.e. designing multiple assays specific to 23

different regions of the target. However, as the number of effective sample copies passes 24

the number of physical partitions the partitions become oversaturated, leading to high 25

levels of Partitioning Variance [10]. This tradeoff, illustrated in Figure 1b, has limited 26

the usefulness of multiplexing for decreasing Sampling Variance in single-well dPCR 27

assays [5]. 28

The statistical analysis underlying the red line in Figure 1b assumes traditional 29

dPCR analysis, which uses a single amplitude threshold to classify each partition as 30

either negative for all targets or positive for at least one target. One way around this 31

Partitioning Variance limitation is to apply enhanced assay design to generate multiple 32

distinct signal clusters corresponding to different combinations of target regions in the 33

partitions. Historically this process has proven difficult, limiting such multiplexing 34

applications to 2 or 3 targets per optical color channel [11–15]. However, this difficulty 35

can be overcome by applying High Definition PCR (HDPCRTM ), a recent innovation in 36

qPCR technology, which has been used to expand the multiplexing capacity of qPCR 37

instruments [16]. In this paper we describe Virtual Partition dPCR (VPdPCR), a 38

method which leverages HDPCR and a novel analysis technique to enable significantly 39

higher levels of multiplexing on existing dPCR instruments using standard TaqMan 40

chemistries. We present both a theoretical analysis of the advantages of VPdPCR and 41

an experimental demonstration of its capabilities in the form of a single-well, 20-plex 42

assay for detection of fetal chromosomal aneuploidies. 43

Virtual Partition dPCR 44

VPdPCR combines multiple TaqMan® assays that are designed to detect multiple 45

distinct regions of the desired target, in this case a particular chromosome. The 46

TaqMan probes for all target regions on a given chromosome are labeled with the same 47

fluorophore and quencher pair, and they are all titrated to generate the same 48

fluorescence intensity if the target region is present. These probes generate signals that 49

add linearly in combination; if a single target region generates fluorescence intensity I 50

when it is present in a partition, a partition with n distinct target regions will have 51

fluorescence intensity n ∗ I. The number of target regions presents in each partition can 52

thus be inferred solely from the signal intensity measurement of the partition. 53

In traditional dPCR analysis, a single signal intensity threshold is drawn to separate 54

partitions positive for 1 or more target regions from those partitions negative for all 55

target regions. VPdPCR changes the readout of a digital partition from a 2 state 56

system to a T + 1-state system by drawing T different intensity thresholds, where T is 57
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Fig 1. Digital PCR mathematical noise floor The coeffecient of variation (CV)
of calculated copies per reaction across a range of expected copies in sample, assuming a
digital PCR reaction with 20,000 physical partitions. The dashed grey line represents
7,000 copies per reaction with only one assay per target, while the dotted grey line
represents 70,000 effective copies corresponding to assays for 10 unique target regions on
each of 7,000 target copies. a) Sampling Variation: The standard deviation due to
sampling error is defined as the square-root of the mean expected copies in a sample.
This error is independent of the analysis method. Increasing the number of assays per
target effectively increases the expected number of copies and decreases the Sampling
Variance. b) Partitioning Variation: The standard deviation due to partitioning error is
dependent on the number of partitions a sample is divided into. The VPdPCR assay
(blue) described in this paper increases the effective number of partitions 10-fold,
significantly reducing the mathematical noise floor due to partitioning error when
compared with the tradition threshold method (red).

the number of target regions and 1 is added for the negative state (Figure 2). Each 58

partition is divided into T ”virtual partitions”, enabling higher allowable target 59

concentrations without oversaturation by increasing the number of effective partitions 60

by a factor of T. Creating these virtual partitions significantly reduces the Partitioning 61

Variance which usually occurs as the occupancy of the physical partitions approaches 62

100% (Figure 1b, blue curve). 63

This manuscript presents a demonstration assay capable of detecting 10 unique 64

target regions per channel, with one channel devoted to targets from chromosome 18 65

and the other dedicated to targets from chromosome 21 (Figure 3). By increasing the 66

effective target concentration, VPdPCR drives down Sampling Variance while avoiding 67

high Partitioning Variance caused by oversaturation (Figure 1). This allows for 68

consistent detection of very small differences in abundance ratio between the 69

chromosomes. To demonstrate the utility of the technique, we apply it to the problem 70

of differentiating simulated cell-free DNA (cfDNA) samples with and without small 71

fractions of trisomy 21 DNA. 72

Non-Invasive Fetal Aneuploidy Testing 73

Screening for fetal aneuploidy in expectant mothers is one of the most common forms of 74

prenatal diagnostics in the world [17], and is traditionally performed using methods 75

such as chorionic villus sampling or amniocentesis. While these tests still represent a 76
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Fig 2. Evolving Multiplex Digital PCR a) Traditional singleplex dPCR is a
robust method using a simple threshold but is limited by significant variation at low
input and high input due to sampling and Partitioning Variance respectively. b) By
combining VPdPCR with HDPCR we’re able to divide each partition into many bins to
determine the copies per virtual partition. This substantially reduces Partitioning
Variance by expanding the number of effective partitions.

gold standard for accuracy, their invasive nature limits their application to high-risk 77

populations [18]. The discovery of fetal cell-free DNA (cfDNA) circulating in maternal 78

blood [19] opened the door to non-invasive prenatal testing (NIPT) for fetal aneuploidy 79

by counting chromosomal copies; if a fetus is triploid for a given chromosome, the 80

number of copies of that chromosome in fetal cfDNA should be 50% higher than all 81

other copy numbers. Modern fetal aneuploidy tests are often performed via 82

next-generation sequencing or microarray tests which require expensive equipment and 83

consumables as well as complicated multi-day workflows, largely relegating them to 84

centralized laboratories and driving up costs. 85

dPCR provides lower cost, lower complexity, and higher throughput when compared 86

to NGS or microarray tests, making it a desirable modality for fetal aneuploidy 87

screening. However, no single well dPCR-based assay for NIPT has come to market [20]. 88

The primary reason is limited precision; for a euploid mother and an aneuploid fetus 89

with a trisomy only the fetal portion of the cfDNA will show an excess in chromosomal 90

copies, and the fraction of fetal cfDNA derived from a maternal blood or plasma sample 91

can be as low as 4% [21]. This results in only a 2% excess of the fetal trisomy 92

chromosome amongst the whole cfDNA sample, and standard single target dPCR assays 93

are unable to distinguish maternal from fetal DNA. As a result, attempting to 94

consistently measure the excess of the fetal trisomy chromosome using single-plex dPCR 95

proves especially difficult due to Sampling Variance. 96

Multiple groups have attempted to use multiplexing to bypass this Sampling 97

Variance problem [22–24]. However, in order to avoid oversaturation, these assays must 98

increase the number of effective partitions by either splitting each sample across 8 or 99

more wells [22,24] or using specialized (and now-discontinued) platforms that can 100

generate millions of partitions per sample [23]. Both of these approaches increase cost 101

and decrease throughput. We instead apply VPdPCR to increase the number of 102

effective partitions, thereby substantially improving accuracy of quantitation at higher 103

target concentrations than was previously possible in a single-well assay. While the 104

presented results are only intended as a proof of concept, they establish the power of 105
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Fig 3. Virtual Partition dPCR data a) Two dimensional plot of experimental
VPdPCR data with 7000 haploid genomic copies in 20,000 physical partitions. The
assay was designed with 10 independent target regions per chromosome, with chr18
target regions in channel 1 and chr21 target regions in channel 2. Thanks to HDPCR,
distinct point clusters can be discerned containing droplets with different numbers of
target regions. The color of the individual points represents the intensity of channel 1
and channel 2 as the Green and Red component of RGB values respectively. The purple
box encompasses the partitions that can be analyzed with standard dPCR thresholding,
while the green box encompasses the additional virtual partitions which can be
interrogated in a 10 target per channel VPdPCR assay. b) Probability density function
(PDF) plots for channel 1 and channel 2 of the experimental data from the same
reaction. Each channel’s PDF is analyzed independently to calculate copies of each
chromosome. In both plots the solid grey line represents the traditional threshold
between positive and negative physical partitions, while the dashed grey lines separate
the virtual partitions differentiated by signal intensity.

VPdPCR as a potential foundation for future ultra-high-precision quantitative assays. 106

Glossary 107

• Target: the whole nucleic acid molecule of which the concentration is being 108

interrogated. Examples: a whole genome, an individual chromosome, a particular 109

RNA transcript. 110

• Target Region: a sub-sequence within the complete Target sequence which is 111

detected by a unique assay. Example: the template region of a Target for a PCR 112

detection assay. 113

• Partition: one of many independent physically separate PCR reactions into which 114

a sample is equally divided in dPCR. Examples: A individual droplet or 115

microfluidic well. 116

• Virtual partition: Expanded partitions derived from the signal amplitude when 117

multiple Target Region assays are leveled to produce the same signal intensity. 118

Example: in an assay with 10 Target Regions to interrogate a single Target, every 119

physical partition is divided into 10 virtual partitions using the VPdPCR method. 120
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• Classification: Analyzing a partition and determining how many positive targets it 121

contains based on its signal amplitude. Examples: identifying a partition as 122

positive or negative in traditional dPCR, or placing it into a bin level 0 through T 123

in VPdPCR. 124

• Positive Partition Count: the total number of positive partitions identified after 125

classification. Examples: The sum of positive physical partitions in traditional 126

dPCR or the sum of positive virtual partitions in VPdPCR. 127

• Target Region Copies: the computed total number of target regions present in a 128

sample after obtaining a Positive Partition Count and applying Poisson statistics. 129

Example: Chr18 Copies is the imputed total number of target regions from 130

chromosome 18 present in the original sample. 131

• Sampling Variance: The variation the number of targets which actually end up in 132

a reaction due the sub-sampling of a larger population. This has larger effect on 133

low concentration sample accuracy due to the standard deviation being
√
m where 134

m is the expected number of targets [25]. 135

• Partitioning Variance: The variance attributed to the distribution of targets 136

between the partitions. At high concentrations the number of empty partitions 137

the standard deviation
√
E(1− E)/n where E is the proportion of negative 138

partitions and n is the number of partitions [10]. 139

Results and Discussion 140

We contrived 432 cell line-based DNA samples, each consisting of a mixture of 141

”maternal” euploid DNA from a wild type cell line and simulated ”fetal” DNA from 142

either a trisomy 21 cell line or a different euploid cell line. Half of the samples contained 143

7000 total copies of chr18 and half of the samples contained 3500 copies – both of which 144

are representative of DNA concentrations in a typical cell-free DNA extraction from 145

expectant women [26]. Within each of these sets, 36 samples each had simulated 146

aneuploid trisomy 21 fetal fractions of 0%, 5%, 10%, and 20%, and 36 samples each had 147

simulated euploid fetal fractions of 5% and 100%. Two of the 20% simulated aneuploid 148

fetal fractions wells at 7000 input copies had failures in the droplet reader and results 149

were discarded. Summary results are shown below in Table 1 with all euploid samples 150

condensed into one row, and these euploid samples are broken out by cell line 151

composition in Table 2. An unexpected result is that even in the purely euploid samples 152

the chr21 counts are 4.9% higher than chr18 counts on average. There are multiple 153

possible explanations for this, including off-target amplifications, a duplicated target 154

region on chr21, or chr18 target regions being more susceptible to shearing during 155

sample preparation. Fortunately, this excess is consistent across all euploid sample 156

compositions and the difference in ratios between this baseline and other experimental 157

conditions (∆Ratio in the table) scales as expected with aneuploid fraction, indicating 158

that this is a consistent offset across all samples. Thus, when classifying samples to 159

identify fetal trisomy we treat 1.049 as the baseline euploid chromosome ratio. 160

Receiver operating characteristic (ROC) analysis was performed on the complete 161

data set to identify the optimal threshold to separate trisomy 21 spiked samples from 162

the euploid samples using the ratio of Chr21/Chr18 as the predictor. The calculations 163

were performed using the R software package pROC [27,28]. The optimal threshold was 164

determined to be 1.0672 (Figure 4). 165

In the tables above σRatio, or the standard deviation of calculated chromosome ratio 166

across all replicates, is the most important metric for determining the level of 167
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Table 1. Contrived Trisomy Pregnancy Results

Sim. Aneuploid
Fraction

Sample
Size

VPdPCR Analysis Threshold Analysis

λChr18 λChr21 Ratio* ∆Ratio σRatio Accuracy σRatio Accuracy
7k Haploid Genomic Copies per Well

0%** 108 0.2666 0.2794 1.048 -0.1% 0.86% 98.1% 1.46% 85.1%
5% 36 0.2658 0.2864 1.078 2.9% 0.83% 97.2% 1.72% 77.8%
10% 36 0.2641 0.2912 1.103 5.4% 0.67% 100% 1.58% 100%
20% 34 0.2632 0.3037 1.154 10.5% 0.86% 100% 1.51% 100%

3.5k Haploid Genomic Copies per Well
0%** 108 0.1325 0.1390 1.049 0.0% 1.02% 98.1% 1.28% 87.0%
5% 36 0.1330 0.1435 1.080 3.1% 0.95% 88.9% 1.39% 86.1%
10% 36 0.1337 0.1475 1.103 5.4% 0.80% 100% 1.33% 100%
20% 36 0.1327 0.1532 1.154 10.5% 1.10% 100% 1.48% 100%

*λChr21/λChr18

**Includes the three euploid only Cell line DNA mixtures from the Table 2: Contrived Euploid Pregnancy Results.

Table 2. Contrived Euploid Pregnancy Results

Sim. Fetal
Fraction

Sample
Size

VPdPCR Analysis Threshold Analysis

λChr18 λChr21 Ratio* ∆Ratio σRatio Accuracy σRatio Accuracy
7k Haploid Genomic Copies per Well

0% 36 0.2666 0.2794 1.048 -0.1% 0.82% 100% 1.16% 88.8%
5% 36 0.2633 0.2764 1.050 0.1% 1.00% 94.4% 1.13% 88.8%

100% 36 0.2699 0.2823 1.046 -0.3% 0.70% 100% 1.91% 77.8%
3.5k Haploid Genomic Copies per Well

0% 36 0.1310 0.1376 1.050 0.1% 1.12% 94.4% 1.37% 80.6%
5% 36 0.1317 0.1388 1.054 0.5% 0.72% 100% 1.09% 88.8%

100% 36 0.1347 0.1408 1.045 -0.4% 0.97% 100% 1.36% 91.7%

*λChr21/λChr18

quantitative accuracy the assay has achieved. A lower σRatio indicates that the assay is 168

more able to precisely identify the true ratio of chromosomes present in the sample, 169

thereby increasing its accuracy in high-precision applications like fetal trisomy testing. 170

Tables 1 and 2 compare σRatio when samples were analyzed using VPdPCR 171

(Equation 2) versus the traditional method (Equation 1). The traditional analysis was 172

conducted using sample-specific positive/negative amplitude thresholds for each well by 173

taking the midpoint of the fitted 0-target and 1-target peaks in each channel. Even with 174

this optimized thresholding, the VPdPCR analysis consistently achieved lower σRatio on 175

every set of replicates when compared to traditional analysis. This difference was most 176

pronounced for 7k input samples, where VPdPCR cut σRatio by more than a factor of 2 177

in some cases. For 3.5k input samples we expect VPdPCR to provide less of an 178

advantage, as partitioning error is less pronounced at lower input concentrations due to 179

less oversaturation. This theory is reflected in the results, which show a smaller but still 180

consistent improvement from applying VPdPCR in these samples. The differences in 181

ratio distributions from the two analyses are shown visually in Figure 5. 182

Table 1 show the accuracy of our assay when applying the ROC-optimized threshold 183

to separate euploid from aneuploid samples. 0% simulated fetal fractions samples were 184

called correct if the computed chr21/chr18 ratio fell below the ROC-threshold, and all 185

other samples were called correct of their ratio fell above the threshold. As shown in 186

Figure 5 the ratio distributions for 0% and 5% simulated fetal fractions overlap 187
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Fig 4. Receiver operating characteristic curve. ROC curves generated using a)
the traditional threshold method and b) VPdPCR method. Both ROC curves use the
the complete data set including all fetal fractions and both starting concentrations to
determine the optimal threshold to separate the pure euploid from trisomy 21 spiked
samples.

significantly less when VPdPCR analysis is applied, and this is reflected in the accuracy 188

results; VPdPCR consistently classifies samples with higher accuracy than traditional 189

analysis does. It is worth emphasizing that this data represent a proof of concept for 190

the VPdPCR technique and are not intended to demonstrate clinical viability. This 191

proof of concept demonstrates that VPdPCR has substantial promise for increasing the 192

utility of digital PCR in applications like fetal trisomy screening requiring 193

ultra-high-precision quantitation. 194

Materials and methods 195

Novel dPCR Analysis: Multi-Gaussian Fitting 196

In dPCR analysis the goal is to determine the number of copies per partition of each
target, denoted by λ. For multi-channel assays, if we assume targets are independently
distributed we can treat each channel independently and thereby compute a separate λ
for each channel; this approach is taken for all presented analyses (Figure 3b). The
distribution of each target amongst all partitions is dictated by Poisson statistics, which
specify that the probability of a partition being negative for a target with concentration
λ is simply pneg = e−λ. In traditional single-target dPCR analysis a single amplitude
threshold is drawn to separate positive from negative partitions, and target
concentration (in copies per partition) is calculated as λ = − ln (pneg) (where pneg is the
fraction of partitions below the threshold). If T targets are present at identical
concentrations these equations become

pneg = e−Tλ

λ = − 1

T
ln(pneg) (1)

In real experiments, the precision with which we can determine pneg is limited by the 197

number of negative partitions, with fewer negative partitions leading to higher variance. 198
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Fig 5. Ratio of Chromosome 21 to Chromosome 18. The ratio Chr21 to Chr18
across a range of euploid and trisomy 21 DNA spiked into euploid background DNA
using both the traditional threshold (red) and virtual partition (blue) analysis methods.
a) Samples spiked with a T21 cell-line DNA into a euploid background with 7000
haploid genomic equivalents of chromosome 18 per reaction. b) Samples spiked with a
T21 cell-line DNA into a euploid background with 3500 haploid genomic equivalents of
chromosome 18 per reaction. c) Samples spiked with a euploid cell-line DNA into a
different euploid cell-line background with 7000 haploid genomic equivalents of
chromosome 18 per reaction. d) Samples spiked with a euploid cell-line DNA into a
different euploid cell-line background with 3500 haploid genomic equivalents of
chromosome 18 per reaction.
In the box and whiskers plots the center line corresponds to the median, the lower and
upper boxes represent the first and third quartiles respectively, and the whiskers extend
from the boxes to the smallest and largest values no further from the median than 1.5
times the inter-quartile range. Outlier data beyond the whiskers is represented by
individual points and the notch within the boxes approximates the 95% confidence
interval of the median. The dashed line is the optimal threshold of 1.0672 as determined
by ROC analysis for all samples using the VPdPCR method. Plots were generated with
the R software package ggplot2 [29].
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This is what leads to the oversaturation effect described earlier. For example, if T = 10 199

and λ = 1 we get pneg ≈ 5× 10−5, which corresponds to only a single negative partition 200

on average in a 20,000 partition system. This leads to extremely high errors with 201

traditional analysis, necessitating new analysis techniques in such a regime. 202

To perform more accurate analysis, we need to identify how many of the T targets 203

are present in each partition rather than merely determining whether or not the 204

partition is negative for all targets. This can be done by dividing up the amplitude 205

range of our partitions into bins with indices t = 0, 1, . . . , T . Once bin boundaries are 206

determined, the number of targets present in each partition can be counted by simply 207

determining which boundaries its amplitude falls in between. In principle, on a perfectly 208

consistent system one could run calibration wells and manually draw boundaries 209

between all peaks, then apply those boundaries to sample data. However, on real data, 210

peak locations vary from sample to sample due to a combination of instrument and 211

pipetting variance, leading to poor performance with fixed bin boundaries. 212

We instead use a more robust method of multi-peak fitting which takes advantage of
two observed properties of the system: 1) each peak in the probability density function
(PDF) of partition amplitudes can be well approximated by a Gaussian function(
Gt(x) = At ∗ e−(x−µt)

2/2σ2
t

)
, and 2) peak amplitudes add linearly, with equal spacing

between each subsequent pair of peaks. The fit is based on 5 free parameters: Target
Region Copies per droplet (λ, assumed to be the same for all target regions on a
chromosome); centers of the 0-target and 1-target bins (µ0 and µ1); and widths of the
0-target and 1-target bins (σ0 and σ1) The linearity of the system allows us to
determine the center and width of all subsequent peaks:

µt = µ0 + t ∗ (µ1 − µ0)

σ2
t = σ2

0 + t ∗
(
σ2
1 − σ2

0

)
We can also determine the heights of all peaks based off of 1) Poisson statistics that
dictate the probability P (t) of a partition containing t target regions and 2) the fact
that the area under a Gaussian curve is equal to

√
2πσtAt:

P (t) =

(
T

t

)(
1− e−λ

)t (
e−λ

)T−t

At =
1√

2πσt
P (t)

Once we have calculated µ, σ, and A for every peak we construct a full predicted PDF
by adding all of the Gaussian functions together (Figure 6a). The optimal set of
(λ, µ0, µ1, σ0, σ1) is determined to be the one which minimizes the RMS error between
the full predicted PDF and the observed PDF. This fit is then used to determine n(t),
the total number of partitions in each bin. Rather than assigning each one of the N
total partitions to a single bin, we divide it between bins based on the relative
magnitude of each bin’s Gaussian at the partition’s amplitude (xi), improving
classification accuracy for higher-order bins in which the tails of neighboring Gaussians
start to blend into each other:

n(t) =
N∑
i=1

Gt(xi)∑T
t′=1Gt′(xi)

Creating Virtual Partitions 213

Once n(t) has been determined for all bins we use it to calculate target copies. To do 214

this we divide each of our N total partitions into T ”virtual” partitions, of which t are 215
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Fig 6. Multi-Gaussian Fitting. Rather than analyzing droplet amplitudes using a
traditional positive/negative cutoff threshold (dashed black lines), using VPdPCR we fit
the whole amplitude distribution to an extrapolated series of Gaussian functions (red
lines). a) Our model matches the observed distribution well in a contrived cfDNA
sample with significant peaks up to level 5. b) In a very high-concentration sample
there is no 0-target peak, so traditional threshold analysis would fail completely.
However, our multi-Gaussian fitting method is still able to perform an appropriate fit
and thereby extract target concentration using VPdPCR analysis.

positive and T − t are negative. This effectively transforms our T -target sample with N 216

partitions into a 1-target sample with T ∗N partitions. We then count the negative 217

virtual partitions and apply our formula from above to get target concentration: 218

pneg = 1− ppos

= 1− 1

N ∗ T

T∑
t=0

t ∗ n(t)

λ = − ln

(
1− 1

N ∗ T

T∑
t=0

t ∗ n(t)

)
(2)

This formulation uses information from all bins 0 through T rather than just bin 0, 219

allowing for accurate analysis at higher concentrations where few partitions are negative 220

for all targets. As shown in Figure 6b this method even works when no droplets are 221

present in the 0-target bin, a regime in which traditional threshold-based analysis 222

breaks down completely. 223

Theoretical Error Limits 224

Before experimentally evaluating the VPdPCR assay, we first determined theoretical 225

optimum performance under different levels of multiplexing. For fetal trisomy testing 226

the relevant analysis output is not the absolute number of copies of any one target but 227

rather the ratio between total copies from one chromosome and total copies from 228

another chromosome. The goal is to be able to consistently distinguish between a 229

chromosome ratio of 1 (corresponding to a euploid mother and fetus) and a higher ratio 230

corresponding to a euploid mother and fetus with a trisomy. Detailed statistical analysis 231

by Dube et al [10] allows us to obtain 95% confidence intervals for calculated 232

chromosome ratios given various true input ratios and partition counts. Figure 7a shows 233

these confidence intervals for 20,000 partitions given simulated samples with a euploid 234

fetus and a triploid fetus with a 5% fetal fraction in extracted cfDNA. At 7000 input 235
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genomic copies the intervals significantly overlap, indicating that a traditional assay 236

with 1 target per chromosome cannot consistently identify fetal trisomy at a fetal 237

fraction of 5%. If we increase the number of target regions per chromosome but 238

maintain traditional threshold-based analysis we can effectively increase the input 239

genomic copies without changing the number of partitions. However, as the graph 240

shows, there is no input value for which the intervals are non-overlapping, indicating 241

that no amount of multiplexing can make this task possible with threshold analysis. 242

Fig 7. Theoretical Confidence Intervals. To consistently distinguish a diploid
from a triploid fetus at a 5% fetal fraction in cfDNA, the two confidence intervals shown
should be non-overlapping. a) With a singleplex assay on a machine with 20k physical
partitions there is substantial overlap at 7k input copies. Multiplexing with traditional
analysis is equivalent to a singpleplex assay with more input copies (red line), but no
value of input copies produces non-overlapping intervals. b) Our
10-plex-per-chromosome VPdPCR assay expands the number of effective partitions,
creating an input copy region with non-overlapping intervals and making it theoretically
viable for fetal aneuploidy testing.

The conventional limitations of traditional threshold analysis changes significantly 243

when we apply multi-Gaussian fitting and VPdPCR analysis to encompass all peaks in 244

multiplexed reactions rather than simple positive/negative classification, which increases 245

both the input copy number and the number of virtual partitions by a factor equal to 246

the number of target regions per chromosome. Figure 7b-d shows the effect of this 247

enhanced multiplexing on chromosome ratio confidence intervals. We found that 10 248

targets per chromosome is just enough to get theoretically consistent distinction 249

between diploid and triploid samples at 5% fetal fraction and 7k input copies, so we 250

chose that as the target of our assay design. 251

Digital PCR Assay Design 252

Multiple TaqMan® PCR assays were designed to amplify conserved regions of 253

Chromosomes 18 and 21 using the Primer3 command line tool [30,31] with GNU 254

Parallel [32] to process designs efficiently on multiple computer cores. We also used 255

primer3 to calculate the binding energies of all pairwise dimers ([monovalent cation] = 256

50mM, [divalent cation] = 2.5mM, [dNTP] = 0.8 mM, temperature = 60°C), and assays 257

were removed to eliminate favorable oligo-oligo interactions until we reached 10 assays 258

per chromosome. The selected primers and probes were ordered from Integrated DNA 259

Technologies, Inc. (Coralville, IA). Chromosome 18 and 21 TaqMan probes were labeled 260

to be detected in dye channel 1 and channel 2 respectively, and both target 261
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chromosomes’ TaqMan probes were double quenched with ZENTM quenchers. . A 262

20-plex oligo mix was prepared with all the primers at equal concentration and probes 263

at a significantly lower concentrations. The assay is in development and has not been 264

officially released or approved by the U.S. Food & Drug Administration. 265

Sample Preparation 266

Cell line DNA stocks from the Coriell Institute for Medical Research (NA04965 267

(Trisomy 21), NA12878 (euploid), and NA15453 (euploid)) were sheared with a 268

Covaris® E220 Focused-ultrasonicator (SKU500239) in order to have a mean length of 269

150 base pairs, simulating the short fragments found in cfDNA. Sheared DNA was 270

processed through the standard singleplex ddPCR workflow using a chromosome 18 271

target to calculate concentration. To simulate presence of Trisomy 21 stocks were 272

diluted in 1x, low EDTA TE (Gbiosciences 786-151) to a total of 3500 copies/5 µL and 273

7000 copies/5 µL at 5%, 10% and 20% NA04965 in NA12878. To simulate euploid 274

samples the euploid cell lines were diluted to a total of 3500 copies and 7000 copies/5µl 275

at 0%, 5% and 100% NA15453 in NA12878. 276

Digital PCR Methods 277

PCR reactions were set up using the following volumes: 10 µL 2x ddPCR Supermix for 278

probes (no dUTP) (BioRad Laboratories© 186-3024), 5 µL of 20plex oligo mix, and 5 279

µL of sample. 15 µL of PCR mix was added to each well of 96 well ddPCR plate 280

(BioRad Laboratories 12001925) followed by 5 µL of each sample. Plates were sealed 281

using pierceable foil heat seal (BioRad Laboratories 1814040) and the PX1 plate sealer 282

(BioRad Laboratories 1814000). Plates were vortexed, spun down, and run on the 283

Automated Droplet Generator (BioRad Laboratories 1864101) using Automated Droplet 284

Generation Oil for Probes (BioRad Laboratories 1864110) and the DG32™ Automated 285

Droplet Generator Cartridge (BioRad Laboratories 1864108). After droplet generation 286

was completed, thermocycling was performed on the C1000 Touch with the 96 deepwell 287

module (BioRad Laboratories 1840197). Thermocycling was performed as follows: 1. 288

Enzyme activation (95°C for 10 minutes), 2. 45 Cycles consisting of denaturation (95°C 289

for 20 seconds) followed by combined annealing/extension (58°C for 2 min), 3. Enzyme 290

deactivation (98°C for 10 minutes), and 4. A 4°C infinite hold. Signal detection was 291

performed on the QX200 Droplet Reader (BioRad Laboratories 1864001). Experiment 292

was set to ABS, Target 1 was set to Ch1 Unknown, Target2 was set to Ch2 Unknown 293

and Supermix was set to ddPCR Supermix for probes (no dUTP). Wells were read in 294

columns. Data was exported using the BioRad Laboratories QuantaSoft Version 295

1.7.4.0917 Software and analyzed using the Python Programming Language version 3.7 296

(Python Software Foundation, https://www.python.org/). 297

Conclusion 298

Digital PCR enables best-in-class rapid quantitative percision for monitoring genomic 299

fragments. However, dPCR on its own, is insufficient for some clinical diagnostic 300

applications, including non-invasive prenatal testing. VPdPCR method not only 301

enhances single-well dPCR multiplexing by a factor of 10 in this demonstration, but 302

also enables dPCR platforms to overcome fundamental limitations to precision by 303

decreasing both sampling and partition error. With newer multi-channel digital 304

platforms, VPdPCR could enable a complete aneuploidy panel for chromosomal 305

abnormalities (Chr21, Chr18, Chr13, X, Y) in a single well. We believe the enhanced 306

precision of VPdPCR could also be useful in a variety of other diagnostic settings, such 307
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as detecting copy number variation of crucial genes to perform liquid biopsies or 308

analyzing low abundance mRNA expression. This range of applications has the 309

potential to make VPdPCR a standard of practice for precision molecular diagnostics. 310

Supporting information 311

Table S1. Digital 20plex Processed Data Table Key
File Name: S1 vpdpcr processed data.csv

Column Name Key
run run number

well ind well id numeric 0 indexed
well name well location on 96 well plate

sample name sample name total DNA % spiked DNA
partition ind partition id numeric 0 indexed

ch1 amp partition raw fluorescence amplitude data for channel 1
ch2 amp partition raw fluorescence amplitude data for channel 2
qc pass individual partition quality control

well excluded wells labeled 1 excluded from analysis
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