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Abstract

Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated
with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs
might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study,
we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability
of genes (stQTLs). Specifically, we computationally inferred mRNA stability of genes based on RNA-seq data and
performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data,
we identified a total of 142,801 stQTLs for 3,942 genes and 186,132 eQTLs for 4,751 genes from 15,122,700 genetic
variants for 13,476 genes, respectively. Interesting, our results indicated that stQTLs were enriched in the CDS and
3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs
are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our
analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on

the association between genetic variants and gene expression levels.

Author Summary

In the past decade, many studies have identified genetic variants associated with gene expression level (eQTLs) in
different phenotypes, including tissues and diseases. Gene expression is the result of cooperation between transcriptional
regulation, such as transcriptional activity, and post-transcriptional regulation, such as mRNA stability. Here, we present
a computational framework that take advantage of recently developed methods to estimate mRNA stability from RNA-

Seq, which is widely used to estimate gene expression, and then to identify genetic variants associated with mRNA


https://doi.org/10.1101/2021.04.29.441922
http://creativecommons.org/licenses/by/4.0/

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.441922; this version posted April 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

stability (stQTLs) in lung tissue. Compared to eQTLs, we found that genetic variants that affects mRNA stability are
more significantly located in the CDS and 3'UTR regions, which are known to interact with RNA-binding proteins
(RBPs) or microRNAs to regulate stability. In addition, stQTLs are significantly more likely to overlap the binding sites
of RBPs. We show that the six RBPs that most significantly bind to stQTLs are all known to regulate mRNA stability.
This pipeline of simultaneously identifying eQTLs and stQTLs using only RNA-Seq data can provide higher resolution

than traditional eQTLs study to better understand the molecular mechanisms of genetic variants on the regulation of

gene expression.

Introduction

Quantitative trait loci (QTLs) are genomic loci that explain variation of a quantitative trait [1]. The most well

investigated QTLs are eQTLs, which are associated with the expression level of gene transcripts [2]. Assuming different

regulatory mechanisms, eQTLs proximal to and distant from the transcription start site (TSS) of genes are called cis-

eQTLs (< 1Mb) and trans-eQTLs (> 5Mb), respectively [3]. By combining high-throughput gene expression data and

genetic phenotype information, eQTLs can be identified systematically using a GWAS (genome-wide association study)

approach [4]. It has been shown that genetic variants (single nucleotide polymorphisms) associated with complex traits,

including human diseases, are more likely to be eQTLs [5]. The genetic variants located in cis-regulatory elements

(CRESs), in particular, can influence the expression of targeted genes. In fact, eQTLs are associated with many classes

of CREs that are enriched in promoters, enhancers, insulators, transcription factor (TF) binding sites, and DNase

hypersensitive sites (DHSs) [6—10].
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Gene expression level is regulated at both the transcriptional and post-transcriptional levels. At the transcriptional

level, TFs regulate the transcription rate of genes by interacting with their promoters and enhancers [11,12]. TF binding

and histone modification signals in the TSS proximal regions account for over 50% of variation of gene expression [ 13—

15]. Genetic variants with functional impacts on TF binding motifs or promoter/enhancer accessibility are also expected

to have effects on the transcription rate of related genes [16,17]. On the other hand, at the post-transcriptional level, the

stability of mRNAs is under intensive regulation by microRNAs and RNA-binding proteins (RBPs) [18,19]. Genetic

variants can also affect mRNA stability by interacting with microRNAs or RBPs. For example, the variant T of rs907091

located in the 3°’UTR of IZKF3 confers a miR-326 binding site, which leads to decreased mRNA stability and down-

regulation of the gene; however, this is not seen with the variant C [20]. Additionally, some intronic genetic variants

might also affect gene expression by interacting with splicing factors or other types of RBPs [21]. Therefore, it is often

difficult to precisely interpret the eQTLs identified from high-throughput analysis. Namely, for many eQTLs, it is

difficult to determine whether they influence gene expression through affecting transcriptional rate or mRNA stability.

This problem is further complicated by linkage disequilibrium (LD) between neighboring genetic variants. Although

high-throughput technologies that measure mRNA decay rates have been developed [22—24], there are no QTL studies

that identify genetic variants associated with mRNA stability due to the lack of matched stability and genotype data.

In many eQTL studies, gene expression was determined by RNA sequencing (RNA-Seq) experiments [25-27].

Despite the protocol being designed to generate cDNA fragments from mature mRNAs, there was also a significant

proportion of reads captured from intronic sequences in RNA-seq data [25]. Several studies proposed that the intronic

reads of RNA-Seq were related to nascent transcription and transcriptional activity [27—30]. Based on this concept,

computational methods have been developed to calculate mRNA stability based on RNA-seq data [27,31,32]. Gaidatzis

4
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et al [27] proposed a method called exon-intron split analysis (EISA) to discriminate transcriptional and post-
transcriptional regulation of gene expression. Given the RNA-seq data in two experiment conditions, EISA calculates
changes in reads mapped to exons (Aexon) and introns (Aintron) for each gene. It was shown that Aexon-Aintron was
significantly correlated with experimentally measured mRNA stability changes between ESCs and terminal neurons.

The EISA method was then further improved and then implemented in a software package, REMBRANDTS, to measure

the stability of mRNAs more correctly [32].

Motivated by these methods, we developed a framework to simultaneously identify genetic variants associated

with gene expression (eQTL) or mRNA stability (stQTL). We applied this framework to the lung tissue RNA-Seq data

produced by the Genotype-Tissue Expression (GTEx) project [33]. For this data, we estimated the mRNA stability using

REMBRANDTS and gene expression, and then performed association analysis to 15,122,700 genetic variants for 13,476

genes. We then identified a total of 186,132 eQTLs for 4,751 genes and 142,801 stQTLs for 3,942 genes. From our

analysis, we found that both the stQTLs and eQTLs are enriched in the 3°UTR and CDS regions, while eQTLs are also

enriched in the 5S'UTR and upstream region of TSS. Compared to eQTLs, stQTLs more frequently overlapped with the

binding sites of RBPs and miRNAs. To explore the role of stQTLs in mRNA stability, we took a few examples to

investigate the effect of genetic variants on the binding of RBPs or TFs. Together, this study suggested that the

simultaneous identification of stQTLs and eQTLs can provide a useful method to better understand the molecular

mechanisms underlying genetic variants.

Result
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Overview of this study

Fig 1 shows the rationale underlying this study. During gene expression, a gene is transcribed into a pre-mRNA,

after which the introns are removed while the exons are connected into the mature mRNA. The mature mRNA is under

post-transcriptional regulation by miRNAs and other mechanisms. As shown, genetic variants can not only regulate

mRNA splicing but also regulate gene expression-related traits by affecting transcription rate or mRNA stability

(stability QTL, denoted as stQTL hereafter). From RNA-seq data, we are able to determine the reads mapped to exonic

regions to obtain gene expression levels. The mRNA stability can also be calculated by combining the reads aligned to

exonic and intronic regions using the REMBRANDTS [32] algorithm. Through the eQTL analysis, genetic variants

associated with gene expression are identified to obtain eQTLs. In fact, eQTLs are a mixture of QTLs that affect

transcription and stQTLs, as gene expression is controlled by both transcription rate and mRNA stability. Performing

an association analysis of gene expression or stability on genetic variation can identify eQTLs and stQTLs, respectively.

Simultaneous identification of eQTLs and stQTLs can provide a higher resolution to understand how genetic variants

affect gene expression, as well as the information to infer that a genetic variant regulates gene expression by affecting

transcription activity or RNA stability. As a proof-of-concept, in this study we applied this framework to GTEx data to

simultaneously investigate the eQTLs and stQTLs in lung tissue.
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Fig 1. The workflow for identification of stQTL and eQTL using RNA-Seq. A genetic variant may regulate gene
expression by affecting transcription, splicing, or stability at different stages of the life cycle of an mRNA. Both gene
expression and mRNA stability can be estimated from RNA-Seq. Therefore, both expression quantitative trait loci
(eQTLs) and stability quantitative trait loci (stQTLs) can be identified with genetic variations using the association
analysis. By comparing the stQTL and eQTL, it is possible to distinguish the regulatory mechanisms underlying an

eQTL.

Expression QTLs and Stability QTLs of human lung tissue

To identify and explore stQTLs and eQTLs, we processed the raw RNA-seq data for lung tissues generated by the

GTEx project. After performing quality trimming, alignment, and replicate merging from the same donors, we obtained
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the expression profiles of genes for a total of 289 subjects with matched genetic variation data. With REMBRANDTS,
for each subject, we calculated the relative mRNA stability for 13,476 genes with intronic regions and constitutive
exons. For QTL identification, we performed the association analysis on 15,122,700 genetic variants located within
100KDb upstream of TSS and 100 Kb downstream of TTS for 13,476 genes using gene expression or mRNA stability as
the traits. We identified a total of 142,801 stQTLs and 186,132 eQTLs at the significance level of FDR < 5%. The

numbers of QTLs were summarized in Table 1 according to the location of genetic variants on each QTL’s

corresponding genes.

Ideally, we would expect that all stQTLs are also eQTLs since a genetic variant that regulates RNA stability should

also affect gene expression. However, in practice, identification of different QTL types is complicated by multiple

factors, including differential statistical power and LD between genetic variants. Nevertheless, we still observed that

there is a very high proportion (70,105) of overlap between stQTLs and eQTLs (Fig 2A). We also found that 49% of

stQTLs were also eQTLs (Fig 2B), suggesting that nearly half of stQTLs do also significantly affect gene expression.

On the contrary, only 37% of eQTLs were also stQTLs. This indicated that although a considerable part of eQTLs were

derived from genetic variants that significantly affect stability, more of them were regulated by genetic variants that

affect other factors related to gene expression.

Table 1. The summary of the stQTLs and eQTLs identification in GTEx lung tissue samples. The location indicates

the genomic position of the genetic variant in its corresponding gene in a QTL. The percentage was calculated from the

number of QTLs at each location divided by the total number of QTLs.
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Upstream 50,109 (35.09%) 73,647 (39.57%)
5'UTR 3,877 (2.71%) 5,802 (3.12%)
CDS 3,949 (2.77%) 4,404 (2.37%)
Intron 32,675 (22.88%) 37,232 (20.00%)
3'UTR 2,506 (1.75%) 2,411 (1.30%)
Downstream 49,685 (34.79%) 62,636 (33.65%)
Total 142,801 (100.00%) 186,132 (100.00%)

By investigating stQTL and eQTL together, it is possible to determine the regulatory mechanisms underlying an

eQTL. For example, genetic variant rs3167757 is significantly associated with the HMGNI expression level (eQTL,

FDR = 5e-18) with CC>CT/TT (Fig 2C). As shown, this genetic variant is also associated with HMGNI’s mRNA

stability (stQTL, FDR=3.7¢-30). This result indicated that rs3167757 might regulate the expression level of HMGNI by

affecting its mRNA stability. Indeed, HMGN1-rs3167757 has also been reported as an eQTL in lymphoblastoid cell

lines (LCLs) [34,35]. The rs3167757 is located at the 3'UTR of the HMGNI gene and overlaps with binding sites of 20

different RBPs [36]. According to the analysis using RBPmap [37] (S1 Table), while the variant C of rs3167757 confers

a motif for eight RBPs (CUG-BP, HNRNPF, MBNLI1, SFPQ, TRA2B, HNRNPL, SRSF3, and YBX2), the variant T

disrupts the binding motifs of five of the RBPs (HNRNPF, MBNL1, SFPQ, TRA2B, and YBX?2). Notably, among them,

HNRNPF [38,39], MBNL1 [40,41], and YBX2 [42] are known to contribute to mRNA stabilization. This is consistent

with the observation that genotype CC is associated with higher stability of HMGNI mRNA than CT and TT. As another

example, genetic variant rs34873612 is significantly associated with DDX1 I expression level (eQTL, FDR = 2e-60) but

not with DDX11 mRNA stability (FDR > 0.1) with GG>GA/AA (Fig 2D). This result suggested that rs34873612 might

regulate the expression level of DDX11 by affecting the transcription rate rather than its mRNA stability. According to

the PROMO prediction [43], the rs34873612 is located at the 5'UTR of the DDX11 gene and overlaps with the binding

site of three TFs: GR-alpha, GATA2, and GATA3. While the variant G contributes to the binding motifs of these TFs,
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the variant A disrupts the binding motif of GATA3, which potentially contributes to the decreased DDXI1 expression
seen in the GA and AA genotypes (Fig 2D). mRNA stability only contributes partially to gene expression level;
consistently, many genetic variants are found to be stQTLs but not eQTLs. For example, rs1062976 is significantly
associated with the mRNA stability of SCYL3 (stQTL, FDR = 5¢-07) but not its expression level (not an eQTL, FDR >

0.1) with CC>CT/TT (Fig 2E). Overall, our results indicated that simultaneous identification of stQTLs and eQTLs can

provide us with more detailed biological insights on the regulatory effects of genetic variants on a large scale.

A B Overlap C eQTL (HMGN1) stQTL (HMGN1)
50 . .
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Fig 2. The simultaneous identification of stQTLs and eQTLs using GTEx lung tissue samples shows highly
overlapped QTLs and provides additional information for investigating regulatory effects of genetic variants.
(A) The Venn diagram between eQTLs and stQTLs shows that 70,105 genetic variants are both eQTLs and stQTLs. (B)
The bar plot shows the percentage of the overlapped QTLs in stQTLs and eQTLs, respectively. (C) HMGNI1-rs3167757
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is an eQTL and a stQTL. The expression level and RNA stability of HMGN1 will decrease as rs3167757 changes with
CC>CT/TT. The rs3167757 is located on the binding sites of several RBPs in the 3’UTR region of HMGNI. (D) DDX1 1-
rs34873612 is an eQTL but not a stQTL. The expression level, but not RNA stability, of the DDX11 will decrease as
rs34873612 changes with GG>GA/AA. The rs34873612 overlaps the binding sites of several TFs in 5S’UTR of DDX11.
(E) SCYL3-rs1062976 is an stQTL but not an eQTL. The RNA stability of the SCYL3 will be affected by rs1062976,

which is located in the 3’UTR region of SCYL3. The variant T of rs1062976 disrupts the binding motif of PTBP1

(destabilizer) but confers the binding motif of YBX1 (stabilizer).

Distributions of eQTLs and stQTLs across genic regions

stQTLs are associated with mRNA stability while eQTLs are associated with gene expression by affecting either

mRNA stability or gene transcription. Therefore, we expect that their distributions in genes would be different. To

examine this, we looked at the distribution of eQTLs and stQTLs in the DNA regions surrounding TSS and TTS of

genes. We found that eQTLs are more likely to be located upstream of TSS of their corresponding genes while stQTLs

tend to be located downstream of TSSs (Fig 3A). On the other hand, stQTLs are more likely to be located in the region

from TTS to its 10Kb upstream than eQTLs. Both stQTLs and eQTLs are more likely to be located in the upstream

region of TTS rather than the genes’ downstream regions (Fig 3B).

Subsequently, we divided genomic regions associated with genes into upstream, S'UTR, CDS, Intron, 3'UTR, and

downstream regions and then examined the distributions of eQTLs and stQTLs in these regions. Using the distributions

of all genetic variants as the background, we calculated the enrichment ratio of stQTLs and eQTLs by using a

11


https://doi.org/10.1101/2021.04.29.441922
http://creativecommons.org/licenses/by/4.0/

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

R S SIS L0 00584157 e o Ao 2,0 I o ek 0 ot
made available under aCC-BY 4.0 International license.
hypergeometric test [44]. As shown in Fig 3C, stQTLs are enriched by 2.89-fold in the CDS (P < 2e-308) and by 2.25-
fold in 3'UTR (P = 2e-152). This result is consistent with the fact that genetic variants located in these regions might
have functional impacts on mRNA stability by affecting RNA secondary/tertiary structure or RBP/microRNA binding.
stQTLs are also slightly enriched in intron regions (ER = 1.19 and P = 2e-150). In contrast, eQTLs are enriched in the
CDS (ER =2.22, P =4e-274), upstream (ER = 1.10, P = 3e-65), 5’UTR (ER = 1.37, P = 5e-76), and 3’UTR (ER = 1.30,
P = 6e-20, Fig 3D), respectively. The enriched eQTLs in these regions may be due to the fact that gene expression can
be determined not only by transcriptional activity (genetic variants in upstream, 5S’UTR, or CDS regions) but also by
RNA stability (genetic variants in CDS or 3’UTR regions). We compared the enrichment ratios of stQTLs and eQTLs

and found that stQTLs are more likely to be located in the CDS, intron, and 3'UTR regions, while eQTLs are enriched

in the upstream and 5'UTR regions (Fig 3E).

It should be noted that the resolution of QTL analysis is affected by linkage disequilibrium (LD) between

neighboring genetic variants. Based on the genotype data for lung samples used in this study, we performed LD analysis

and observed that many eQTL/stQTL loci were in high LD (12 > 0.9) with each other (S1 Fig). To best exclude the

influence of LD, we determined all LD blocks (12 > 0.9) and within each block selected the most significant genetic

variant as the representative stQTL/eQTL. Following that, we re-evaluated the distribution of stQTLs and eQTLs. After

LD filtering, we found that the stQTLs are more enriched in CDS (ER =4.93 and P < 2¢-308), 3’UTR (ER = 2.64 and

P = 1e-164), and slightly enriched at 5'UTR (ER = 1.14 and P = 9e-07). Of note, we no longer observed the enrichment

of stQTLs in intron regions (Fig 3F). In contrast, the distribution of eQTLs in each gene region is similar to that before

LD filtering (Fig 3G). When the distributions of stQTLs and eQTLs were directly compared, eQTLs were more likely

12
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than stQTLs to locate in the 5'UTR and upstream of genes (Fig 3H), while stQTLs are more likely to locate in the CDS

and 3'UTR. No obvious difference was observed between stQTLs and eQTLs in the intron and downstream regions.
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Fig 3. There are biased distributions in different genic regions of eQTLs and stQTLs. (A) The distribution from

the enrichment ratio of stQTLs and eQTLs to TSS. Plot with the bin size of 2000 bp and the sliding window of 50 bp.

(B) The distribution from the enrichment ratio of stQTLs and eQTLs to TTS. Plot with the bin size of 2000 bp and the

sliding window of 50 bp. (C) The enrichment ratio in different genomic locations of stQTLs before LD filtering. The

upstream indicates the region of 100 Kb upstream from TSS, and the downstream indicates the region of 100 Kb

downstream from TTS. (The following figs are the same) (D) The enrichment ratio in different genomic locations of
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eQTLs before LD filtering. (E) The relative proportion of enrichment ratio in different genomic locations between
stQTLs and eQTLs before LD filtering. (F) The enrichment ratio in different genomic locations of stQTLs after LD

filtering. (G) The enrichment ratio in different genomic locations of eQTLs after LD filtering. (H) The relative

proportion of enrichment ratio in different genomic locations between stQTLs and eQTLs after LD filtering.

stQTLs are significantly enriched in RBP binding sites

Having shown the enrichment of stQTLs in the 3’UTR and CDS regions, we then examined whether stQTLs tend

to locate in the binding sites of RBPs or miRNAs, many of which are known to be involved in post-transcriptional

regulation of mRNAs. To this end, we investigated the binding sites of RBPs and miRNAs provided by Postar2 [36]

and TargetScan [45], respectively, to annotate the stQTLs identified in our analysis. Our results indicated that stQTLs

(P = 3e-18, Fisher’s exact test) but not eQTLs (P > 0.1, Fisher’s exact test) are enriched in RBP binding sites. In fact,

we found that 26.81% (2,770/10,332) of stQTLs overlap with the binding sites of at least one RBP, which is significantly

higher (P = 7e-17, Fisher’s exact test) than 22.10% (2,788/12,617) for eQTLs (Fig 4A). In addition, we have also

examined the overlap with miRNA binding sites and observed a higher proportion of stQTLs (0.19%, 20/10,332) than

eQTLs (0.15%, 19/12,617) in the miRNA binding sites, although no statistical significance was detected due to very

small genomic regions covered by miRNA binding sites (Fig 4B).

Then we performed Fisher’s exact test to identify RBPs whose binding sites were enriched for stQTLs (S2 Table)

or eQTLs (S3 Table). We identified a total of six significant RBPs (P < 1e-04) including SND1, YTHDCI1, DDX3X,

ATXN2, RPS3, and UPF1 (as shown in Table 2). Interestingly, SND1 [46—48], DDX3X [49,50], ATXN2 [51,52], and
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RPS3 [53] were known to stabilize their bound mRNAs, while UPF1 is the key factor of nonsense-mediated mRNA
decay pathway [54—56]. Moreover, YTHDCI is a well-known m°®A (N°-Methyladenosine) reader [57], which has been
found to regulate mRNA splicing [58,59], alternative polyadenylation [59], and stability [60,61] through recognizing
méA. Similarly, we identified four RBPs whose binding sites were significantly enriched for eQTLs (P < l1e-04, Fig 4D
and Table 3), among which the two most significant RBPs, DDX3X and SND1, were also enriched for stQTLs. NCBP3
can regulate gene expression by forming a cap binding complex that binds to the 5'cap of pre-mRNA to promote splicing,
3’-end processing, and mRNA exporting [62—-64], and AGGF1 was found to repress the expression of pro-inflammatory

molecules [65]. These results indicate that stQTLs or eQTLs located in the binding sites of RBPs in lung tissue are

indeed likely to have significant regulation on gene stability or expression by affecting the binding of the RBPs.

Table 2. The RBPs whose binding sites were enriched for stQTLs, Six RBPs significantly overlap (Log2 Enrichment-

ratio > 0.3 and p-value < 1e-04, Fisher’s exact test) with stQTLs in mature mRNAs in lung. ER: Enrichment ratio.

SND1 64 1,504 2.17 4E-08  5E-06
YTHDC1 100 2,850 1.80 1E-07  7E-06
DDX3X 226 8,348 1.39 3E-06 1E-04
ATXN2 436 17,911 1.25 7E-06  3E-04
RPS3 91 2,923 1.59 3E-05  0.001
UPF1 198 7,533 1.35 S5SE-05  0.002

Table 3. The RBPs whose binding sites were enriched for eQTLs,. Four RBPs significantly overlap (Log2 Enrichment

ratio > 0.3 and p-value < 1e-04, Fisher’s exact test) with eQTLs in mature mRNAs in lung. ER: Enrichment ratio.

DDX3X 250 8,331 1.69 S5E-14  1E-11
SND1 58 1,509 2.15  2E-07 | 2E-05

15


https://doi.org/10.1101/2021.04.29.441922
http://creativecommons.org/licenses/by/4.0/

258

259

260

261

262

263

264

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.441922; this version posted April 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

NCBP2 60
AGGF1 30

1,819
689

>

1.84 1E-05
243  2E-05

Overlap with RBPs

p=3e-18
30 F p=7e-17
1
25 n.s.
1
£20
()]
[@)]
e
c 15
a
e
&
10
5
0
stQTLs eQTLs all SNPs

~Logqo P

RBPs enriched binded at stQTLs

10 \‘E\EELAVM

*—8ND1

+———LHN
: = QNPC\YTHD(H

_________________________________________________________________

-2 -1 0

1 2

Log, Enrichment-ratio

6E-04
6E-04

P

2
o
(o]

-

I

Ro0.15
1]
o
8
c
$0.10
o))
o

0.05

0.00

D

n.s.
1 1

stQTLs

Overlap with miRNAs
n.s.

! n.s. !

eQTLs all SNPs

RBPs enriched binded at eQTLs

.Nl\i\ELAVH

\ansx

107 ;
- TTSHNRNPC
] \ \SND1
5 f *“—NCBP2
o | F:M?, NQK\AGGH .
’ .' i ir...'. .
TR AR
‘u.. * ® I.. .. e . .
0] . : f.J | _
-2 0 2

Log, Enrichment-ratio

Fig 4. Enrichment of stQTLs and eQTLs in the binding sites of RBPs and miRNAs. (A) Proportion of overlap

between stQTLs, eQTLs, and all genetic variants and RBP binding sites in mature mRNA. The statistical significance

was calculated using Fisher’s exact test. The n.s. indicates not significant. (B) Proportion of overlap between stQTLs,

eQTLs, and all genetic variants and miRNA binding sites in mature mRNA. The statistical significance was calculated

using Fisher’s exact test. The n.s. indicates not significant. (C) The volcano plot shows that nine RBPs (red points)
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whose binding sites were significantly (-Log;o p-value > 4, 2-sides Fisher’s exact test) enriched (six RBPs, Log,
Enrichment-ratio > 0.3) or depleted (three RBPs, Log, Enrichment-ratio < -0.3) in stQTLs. (D) The volcano plot shows

that seven RBPs (red points) whose binding sites were significantly (-Log;o p-value > 4, 2-sides Fisher’s exact test)

enriched (four RBPs, Log, Enrichment-ratio > 0.3) or depleted (three RBPs, Log, Enrichment-ratio <-0.3) in eQTLs.

Gender-specific stQTLs

We then examined whether some genetic variants were associated with mRNA stability in a gender-specific

manner and denoted them as gender-specific stQTLs. We divided 289 samples into 187 males and 102 females, and

then performed association analysis with covariates to implement the gender-specific stQTL classification. If a gene is

specifically expressed in males or females, then an stQTL/eQTL association can only be performed in the corresponding

gender. Therefore, we focused our analysis on 13,116 genes that are not differentially expressed (FDR > 0.05, t-test)

between both genders and then investigated a total of 14,987,511 genetic variants located from 100Kb upstream to

100Kb downstream of a gene. Out of these gene/genetic variants, we identified 71,694 stQTLs in males and 22,841

stQTLs in females (FDR < 0.05), as well as 117,065 eQTLs in males and 48,516 eQTLs in females (FDR < 0.05),

respectively. Then we defined male-specific QTLs as those that are significant in males (FDR < 0.05) but not significant

in females (P > 0.1), and similarly for female-specific QTLs. In total, we identified 18,893 male-specific and 2,879

female-specific stQTLs, and 32,716 male-specific and 7,484 female-specific eQTLs. After excluding intersection with

gender-specific eQTLs, we finally identified 14,683 male-specific and 2,279 female-specific stQTLs. As an example,

the association between genetic variant rs397781453 and the RNA stability of SREBP2 is female-specific (Fig 5A). As

shown, we detected a significant association in females with FDR = 4e-04 but not in males (FDR > 0.1). On the other

hand, the association between AQP4 and genetic variant rs12954879 is male-specific (Fig 5B). The RNA stability of
17
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AQP4 is significantly associated (FDR = 2e-05) with genetic variant rs12954879 in males but not in females (FDR >

0.1). Of note, both SREBP2 or AQP4 have similar expression levels between males and females (the right panel of Fig

5A and 5B).
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Fig 5. Gender-specific stQTLs identification. (A) The association between genetic variant rs397781453 and the RNA

stability of SREBP?2 is female-specific (stQTL, FDR = 4e-04), but this pattern does not occur in males (FDR > 0.1). In

the right panel, the expression of SREBP?2 is not significantly different (P > 0.1) between male and female samples. (B)

The association between genetic variant rs12954879 and the RNA stability of AQP4 is male-specific (stQTL, FDR =

18


https://doi.org/10.1101/2021.04.29.441922
http://creativecommons.org/licenses/by/4.0/

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.29.441922; this version posted April 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

2e-05), but this pattern does not occur in females (FDR > 0.1). In the right panel, the expression of 4QP4 is not

significantly different (P > 0.1) between male and female samples.

Discussion

In this study, we systematically identified stQTLs that are associated with mRNA stability in lung tissues and

compared them with eQTLs using GTEx RNA-Seq data. Out of the 151,227,000 genetic variants within 100 Kb

upstream from TSS to 100 Kb downstream from TTS of 13,476 corresponding genes, we identified a total of 186,132

eQTLs and 142,801 stQTLs. We found that stQTLs are mainly enriched in the 3'UTR and CDS regions, while eQTLs

are enriched in the CDS, 5'UTR, 3’UTR, and upstream regions (Fig 3F and 3G). We also found that stQTLs are

significantly located in the binding sites of RBPs (Fig 4A). Moreover, the different stQTL/eQTL variants will indeed

change the motif to affect the bound RBPs, which then regulate RNA stability or gene expression (Fig 2C-2E). Our

results suggest that stQTLs may significantly affect RNA stability, mostly because they are located in the 3’UTR [66,67]

and CDS [68,69] regions that most often interact with other molecules. These results are consistent with previous studies,

which have found that the codon usage and changes on CDS could affect its stability [68,70-72], and the sequence in

3'UTR affected mRNA stability since it includes binding sites of RBPs [73,74]. On the contrary, eQTLs are a group of

complex mechanisms and may regulate expression levels by affecting stability [75,76], transcriptional activity [77-79],

and even the addition of 5'cap or polyA tail [62]. Therefore, while eQTLs largely resemble stQTLs but are less enriched

at the 3’ UTR and CDS regions, eQTLs are also enriched in the 5'UTR and upstream regions where the enhancers and

promoters that regulate transcriptional activity are located [80—82].
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Although we have shown that identifying stQTLs provides additional insights, it is worthwhile to note that

determining regulatory mechanisms is largely limited by the LD between proximal genetic variants. Due to LD, it is

sometimes difficult to identify the exact genetic variants that regulate gene expression. For the same reason, it is also

hard to clearly distinguish genetic variants controlling gene transcription from those controlling mRNA stabilities solely

based on association analysis. This analysis is expected to improve with further consideration of the location and

function impact of genetic variants. In addition, the power of stQTL analysis is also limited by the computational

methods used for mRNA stability inference. Although previous studies have demonstrated that the EISA algorithm [27]

and its improved REMBRANDTS package [32,83,84] used in this study achieve fairly high accuracy for mRNA stability

evaluation, the accuracy of inferred mRNA stability may vary significantly between different genes. First, the

differential expressed long noncoding RNAs (IncRNAs) [85,86] or perturbated factors involved in intron degradation

[27,87] could cause the changes of difference intronic read counts (Aintron) to affect the stability estimate. Adding the

annotation of non-coding RNAs in the alignment of RNA-Seq may improve the accuracy of the mRNA stability

inference. Secondly, it is difficult to accurately calculate stability for the genes with low aligned read counts because

the stability inference is based on the relative change of exonic and intronic reads (Aexon—Aintron) [32]. Of note, the

REMBRANDTS provides a stringency parameter to filter genes with low read counts. In our study, we set the stringency

to 0.01 to include 13,429 genes for comprehensive stQTLs identification since the stability of only 2,593 genes can be

calculated when the stringency is 0.9. Interestingly, we found that 41.88% (634/1,514) of stQTLs with stringency > 0.9

overlap with the RBP binding sites, which is significantly higher (P = 6e-44, Fisher’s exact test) than 23.69%

(1,546/6,527) of stQTLs with stringency < 0.5. This result demonstrates that the stability of genes with low read counts

is less accurate and can lead to potential false positives stQTLs. Finally, it should be of note that the mRNA stability

calculated from RNA-Seq using REMBRANDTS is not an actual absolute value, but a differential mRNA stability
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relative to the average of all samples for a given gene [32,87,88]. Therefore, we suggest that it is necessary to keep these

limitations in mind before evaluating mRNA stability using RNA-Seq data, and to record the stringency of the gene as

a reference for the reliability of stQTLs identification.

The identification of stQTLs provides a higher resolution to better understand the molecular mechanism of genetic

variants regulating gene expression, and accurate estimation of mRNA stability is very important for the identification

of stQTLs. Although some high-throughput technologies, such as BRIC-Seq [24,89], have been developed to determine

the decay rate of mRNA, these methods are often limited to only being used in cell culture conditions [32] and there are

not enough samples available for QTLs research. Therefore, despite the limitations of computational approaches, such

as SnapShot-Seq [29], EISA, and REMBRANDTS, our analysis for mRNA stability inference using RNA-seq by

REMBRANDTS shows that the stQTL genic distribution and overlap with RBP binding sites is indeed consistent with

biological theories. Furthermore, computer algorithms based on RNA-Seq are still under continuous development. For

example, INSPEcT [87] was recently designed to calculate RNA kinetic rates based on time course RNA-seq data, or

to estimate stability by calculating the difference between premature and mature RNA expression [90]. Going forward,

the stQTLs which are identified with more accurate mRNA stability profiles estimation may further our understanding

of how genetic variants regulate gene expression.

In conclusion, we present a large-scale identification for eQTLs and stQTLs using RNA-Seq data in lung tissues.

Our results demonstrate that there are differential genic distributions as well as interactions with RBPs or TFs between

eQTLs and stQTLs. We show in this study that simultaneous identification of eQTLs and stQTLs provides more
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biological insights for better understanding the regulatory mechanisms underlying genetic variants associated with gene

expression.

Methods

Collection of datasets

The genotype data and RNA-Seq data of lung tissues produced by the Genotype-Tissue Expression project [33]

(release 7) were used in this study. RNA-Seq SRA files and genetic variants data were downloaded from NCBI dbGaP

[91] (Study Accession: phs000424.v7.p2). Subject phenotypes were collected from the GTExPortal

(https://www.gtexportal.org/home/datasets). The data contains a total of 318 RNA-Seq runs and 404 genetic variant

samples from 289 different subjects. We calculated the average dosages for the genetic variants data from the same

subjects to represent the genotype data of subjects. For RNA-Seq analysis, the human reference genome and annotation

were collected from Ensembl [92], version GRCh37.87. For RNA stability analysis, the annotation GTF files recording

the coordinates of intronic and constitutive exonic segments of genes was generated using the shell script modified from

the first step of the https://github.com/csglab/CRIES [32].

Processing of RNA-Seq data

The 318 RNA-Seq SRAs were dumped into FASTQ files using SRA Toolkit (http://ncbi.github.io/sra-tools). The

read quality and retained adapters were checked with FastQC [93]; then, the adapters and low-quality reads were

trimmed using Trimmomatic v0.39 [94]. The alignment was performed using HISAT2 v2.1.0 [95] with default

parameters. Alignment files from the same subjects were merged. Read counts of introns or exons were extracted
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separately using the HTSeq-count script of the HTSeq v0.12.4 [96] with the parameter --stranded=no. The RNA stability
profiles for 289 subjects were estimated using the REMBRANDTS [32] with the parameter of linear method and stability

stringency of 0.01. The TPM (transcripts per million) [97] was used as the expression unit to measure the expression

level of 13,476 genes which have stability profiles.

Identifying QTLs by associating genetic variants with traits derived from RNA-seq data

For covariates construction, the plink [98] (version 1.90 beta, https://www.cog-genomics.org/plink/1.9/) was

performed with the parameter: --indep-pairwise 200 100 0.2 to prune a subset of genetic variants. The PCA analysis

was performed after removing strand ambiguous variants (AT/CG) and genetic variants located in the MHC region. The

first three PCs were selected as covariates with gender and age. For cis-QTL identification, genetic variants that were

located within 100Kb upstream from the TSS (transcription start site) to 100Kb downstream from the TTS (transcription

termination site) of Ensembl annotated genes (GRCh37.87) were selected. The expression profile was then converted

with logl0(TPM*100 + 1), and the linear association analysis was performed between the dosage of each genetic variant

and the value of expression or stability of each gene. The Benjamini-Hochberg Procedure [99] was implemented to

calculate the false discovery rate (FDR), and the genetic variant with the association of FDR less than 0.05 was regarded

as a QTL.

Enrichment analysis of QTLs in different genic regions

To determine whether eQTLs and stQTLs were evenly distributed in different genic regions, we performed the

following analyses. Here we use the stQTL as an example. First, we counted the number of all genetic variants in the
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TSS-upstream (from TSS to 100Kb upstream), 5’UTR, CDS, 3°’UTR, intronic and TSS-downstream (from TTS to
100Kb downstream) regions. Let us use N to denote the number of all genetic variants in the kth region (k=1, ..., 6).
We then counted the number of stQTLs in each of these regions and used Q% to denote the number in the kth region.
Third, to determine whether stQTLs are enriched in region k, we consider the following numbers: O, O“0, Nt-OF, and

NEO-QCR | which (-k) indicate all regions other than k. Fisher's exact test was then used to calculate the significance of

enrichment. The enrichment was performed separately for stQTLs and eQTLs.

Estimation of linkage disequilibrium effect

We performed the plink [98] to all genetic variants of 289 subjects with the parameter: (--r2 --Id-window 50 --1d-

window-kb 100000 --1d-window-12 0.9) to estimate the linkage disequilibrium (LD) between each genetic variant. We

then constructed LD blocks, in which r2 of LD between each genetic variant must be greater than 0.9. To reduce the

influence of LD on the gene distribution of QTLs, we selected the QTLs with the lowest FDR of the association analysis

in each LD block and then performed the enrichment analysis in different genic regions as the previous section.

Identification of QTLs located at binding sites of miRNAs or RBPs

stQTLs and eQTLs were mapped to the binding sites of RNA binding proteins (RBPs) and microRNAs (miRNAs).

RBP binding site data were retrieved from Postar2 [36] (http://lulab.life.tsinghua.edu.cn/postar/). miRNA binding site

data were downloaded from targetScanHuman [45] (http://www.targetscan.org/vert _72/). Both databases are based on

the human genome reference version GRCh38. To match with our analysis, we performed LiftOver [100]

(https://genome-store.ucsc.edu/) to convert genome coordinates into GRCh37. To evaluate QTLs that locate on the
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binding sites of RBPs or miRNAs, we selected stQTLs or eQTLs on mature mRNA to align the binding sites data, and

then used the Fisher's exact test [101] to identify RBPs whose binding sites were enriched located.
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