
1

1

2 Genetic variants associated mRNA stability in lung

3

4 Jian-Rong Li1, Mabel Tang2, Yafang Li1, Christopher I Amos1,3,4, Chao Cheng1,3,4*

5

6 1 Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America

7 2 Department of BioSciences, Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of 

8 America

9 3 Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, United States of 

10 America

11 4 Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of 

12 America

13

14 * Corresponding author

15 E-mail: Chao.Cheng@bcm.edu (CC)

16

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.29.441922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.29.441922
http://creativecommons.org/licenses/by/4.0/


2

17 Abstract

18 Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated 

19 with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs 

20 might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, 

21 we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability 

22 of genes (stQTLs). Specifically, we computationally inferred mRNA stability of genes based on RNA-seq data and 

23 performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, 

24 we identified a total of 142,801 stQTLs for 3,942 genes and 186,132 eQTLs for 4,751 genes from 15,122,700 genetic 

25 variants for 13,476 genes, respectively. Interesting, our results indicated that stQTLs were enriched in the CDS and 

26 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs 

27 are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our 

28 analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on 

29 the association between genetic variants and gene expression levels.

30

31 Author Summary

32 In the past decade, many studies have identified genetic variants associated with gene expression level (eQTLs) in 

33 different phenotypes, including tissues and diseases. Gene expression is the result of cooperation between transcriptional 

34 regulation, such as transcriptional activity, and post-transcriptional regulation, such as mRNA stability. Here, we present 

35 a computational framework that take advantage of recently developed methods to estimate mRNA stability from RNA-

36 Seq, which is widely used to estimate gene expression, and then to identify genetic variants associated with mRNA 
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37 stability (stQTLs) in lung tissue. Compared to eQTLs, we found that genetic variants that affects mRNA stability are 

38 more significantly located in the CDS and 3'UTR regions, which are known to interact with RNA-binding proteins 

39 (RBPs) or microRNAs to regulate stability. In addition, stQTLs are significantly more likely to overlap the binding sites 

40 of RBPs. We show that the six RBPs that most significantly bind to stQTLs are all known to regulate mRNA stability. 

41 This pipeline of simultaneously identifying eQTLs and stQTLs using only RNA-Seq data can provide higher resolution 

42 than traditional eQTLs study to better understand the molecular mechanisms of genetic variants on the regulation of 

43 gene expression.

44

45 Introduction

46 Quantitative trait loci (QTLs) are genomic loci that explain variation of a quantitative trait [1]. The most well 

47 investigated QTLs are eQTLs, which are associated with the expression level of gene transcripts [2]. Assuming different 

48 regulatory mechanisms, eQTLs proximal to and distant from the transcription start site (TSS) of genes are called cis-

49 eQTLs (< 1Mb) and trans-eQTLs (> 5Mb), respectively [3]. By combining high-throughput gene expression data and 

50 genetic phenotype information, eQTLs can be identified systematically using a GWAS (genome-wide association study) 

51 approach [4]. It has been shown that genetic variants (single nucleotide polymorphisms) associated with complex traits, 

52 including human diseases, are more likely to be eQTLs [5]. The genetic variants located in cis-regulatory elements 

53 (CREs), in particular, can influence the expression of targeted genes. In fact, eQTLs are associated with many classes 

54 of CREs that are enriched in promoters, enhancers, insulators, transcription factor (TF) binding sites, and DNase 

55 hypersensitive sites (DHSs) [6–10].

56
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57 Gene expression level is regulated at both the transcriptional and post-transcriptional levels. At the transcriptional 

58 level, TFs regulate the transcription rate of genes by interacting with their promoters and enhancers [11,12]. TF binding 

59 and histone modification signals in the TSS proximal regions account for over 50% of variation of gene expression [13–

60 15]. Genetic variants with functional impacts on TF binding motifs or promoter/enhancer accessibility are also expected 

61 to have effects on the transcription rate of related genes [16,17]. On the other hand, at the post-transcriptional level, the 

62 stability of mRNAs is under intensive regulation by microRNAs and RNA-binding proteins (RBPs) [18,19]. Genetic 

63 variants can also affect mRNA stability by interacting with microRNAs or RBPs. For example, the variant T of rs907091 

64 located in the 3’UTR of IZKF3 confers a miR-326 binding site, which leads to decreased mRNA stability and down-

65 regulation of the gene; however, this is not seen with the variant C [20]. Additionally, some intronic genetic variants 

66 might also affect gene expression by interacting with splicing factors or other types of RBPs [21]. Therefore, it is often 

67 difficult to precisely interpret the eQTLs identified from high-throughput analysis. Namely, for many eQTLs, it is 

68 difficult to determine whether they influence gene expression through affecting transcriptional rate or mRNA stability. 

69 This problem is further complicated by linkage disequilibrium (LD) between neighboring genetic variants. Although 

70 high-throughput technologies that measure mRNA decay rates have been developed [22–24], there are no QTL studies 

71 that identify genetic variants associated with mRNA stability due to the lack of matched stability and genotype data.

72

73 In many eQTL studies, gene expression was determined by RNA sequencing (RNA-Seq) experiments [25–27]. 

74 Despite the protocol being designed to generate cDNA fragments from mature mRNAs, there was also a significant 

75 proportion of reads captured from intronic sequences in RNA-seq data [25]. Several studies proposed that the intronic 

76 reads of RNA-Seq were related to nascent transcription and transcriptional activity [27–30]. Based on this concept, 

77 computational methods have been developed to calculate mRNA stability based on RNA-seq data [27,31,32]. Gaidatzis 
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78 et al [27] proposed a method called exon-intron split analysis (EISA) to discriminate transcriptional and post-

79 transcriptional regulation of gene expression. Given the RNA-seq data in two experiment conditions, EISA calculates 

80 changes in reads mapped to exons (Δexon) and introns (Δintron) for each gene. It was shown that Δexon-Δintron was 

81 significantly correlated with experimentally measured mRNA stability changes between ESCs and terminal neurons. 

82 The EISA method was then further improved and then implemented in a software package, REMBRANDTS, to measure 

83 the stability of mRNAs more correctly [32].

84

85 Motivated by these methods, we developed a framework to simultaneously identify genetic variants associated 

86 with gene expression (eQTL) or mRNA stability (stQTL). We applied this framework to the lung tissue RNA-Seq data 

87 produced by the Genotype-Tissue Expression (GTEx) project [33]. For this data, we estimated the mRNA stability using 

88 REMBRANDTS and gene expression, and then performed association analysis to 15,122,700 genetic variants for 13,476 

89 genes. We then identified a total of 186,132 eQTLs for 4,751 genes and 142,801 stQTLs for 3,942 genes. From our 

90 analysis, we found that both the stQTLs and eQTLs are enriched in the 3’UTR and CDS regions, while eQTLs are also 

91 enriched in the 5'UTR and upstream region of TSS. Compared to eQTLs, stQTLs more frequently overlapped with the 

92 binding sites of RBPs and miRNAs. To explore the role of stQTLs in mRNA stability, we took a few examples to 

93 investigate the effect of genetic variants on the binding of RBPs or TFs. Together, this study suggested that the 

94 simultaneous identification of stQTLs and eQTLs can provide a useful method to better understand the molecular 

95 mechanisms underlying genetic variants.

96

97 Result
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98 Overview of this study

99 Fig 1 shows the rationale underlying this study. During gene expression, a gene is transcribed into a pre-mRNA, 

100 after which the introns are removed while the exons are connected into the mature mRNA. The mature mRNA is under 

101 post-transcriptional regulation by miRNAs and other mechanisms. As shown, genetic variants can not only regulate 

102 mRNA splicing but also regulate gene expression-related traits by affecting transcription rate or mRNA stability 

103 (stability QTL, denoted as stQTL hereafter). From RNA-seq data, we are able to determine the reads mapped to exonic 

104 regions to obtain gene expression levels. The mRNA stability can also be calculated by combining the reads aligned to 

105 exonic and intronic regions using the REMBRANDTS [32] algorithm. Through the eQTL analysis, genetic variants 

106 associated with gene expression are identified to obtain eQTLs. In fact, eQTLs are a mixture of QTLs that affect 

107 transcription and stQTLs, as gene expression is controlled by both transcription rate and mRNA stability. Performing 

108 an association analysis of gene expression or stability on genetic variation can identify eQTLs and stQTLs, respectively. 

109 Simultaneous identification of eQTLs and stQTLs can provide a higher resolution to understand how genetic variants 

110 affect gene expression, as well as the information to infer that a genetic variant regulates gene expression by affecting 

111 transcription activity or RNA stability. As a proof-of-concept, in this study we applied this framework to GTEx data to 

112 simultaneously investigate the eQTLs and stQTLs in lung tissue.

113
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114

115 Fig 1. The workflow for identification of stQTL and eQTL using RNA-Seq. A genetic variant may regulate gene 

116 expression by affecting transcription, splicing, or stability at different stages of the life cycle of an mRNA. Both gene 

117 expression and mRNA stability can be estimated from RNA-Seq. Therefore, both expression quantitative trait loci 

118 (eQTLs) and stability quantitative trait loci (stQTLs) can be identified with genetic variations using the association 

119 analysis. By comparing the stQTL and eQTL, it is possible to distinguish the regulatory mechanisms underlying an 

120 eQTL.

121

122 Expression QTLs and Stability QTLs of human lung tissue

123 To identify and explore stQTLs and eQTLs, we processed the raw RNA-seq data for lung tissues generated by the 

124 GTEx project. After performing quality trimming, alignment, and replicate merging from the same donors, we obtained 
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125 the expression profiles of genes for a total of 289 subjects with matched genetic variation data. With REMBRANDTS, 

126 for each subject, we calculated the relative mRNA stability for 13,476 genes with intronic regions and constitutive 

127 exons. For QTL identification, we performed the association analysis on 15,122,700 genetic variants located within 

128 100Kb upstream of TSS and 100 Kb downstream of TTS for 13,476 genes using gene expression or mRNA stability as 

129 the traits. We identified a total of 142,801 stQTLs and 186,132 eQTLs at the significance level of FDR < 5%. The 

130 numbers of QTLs were summarized in Table 1 according to the location of genetic variants on each QTL’s 

131 corresponding genes. 

132

133 Ideally, we would expect that all stQTLs are also eQTLs since a genetic variant that regulates RNA stability should 

134 also affect gene expression. However, in practice, identification of different QTL types is complicated by multiple 

135 factors, including differential statistical power and LD between genetic variants. Nevertheless, we still observed that 

136 there is a very high proportion (70,105) of overlap between stQTLs and eQTLs (Fig 2A). We also found that 49% of 

137 stQTLs were also eQTLs (Fig 2B), suggesting that nearly half of stQTLs do also significantly affect gene expression. 

138 On the contrary, only 37% of eQTLs were also stQTLs. This indicated that although a considerable part of eQTLs were 

139 derived from genetic variants that significantly affect stability, more of them were regulated by genetic variants that 

140 affect other factors related to gene expression.

141

142 Table 1. The summary of the stQTLs and eQTLs identification in GTEx lung tissue samples. The location indicates 

143 the genomic position of the genetic variant in its corresponding gene in a QTL. The percentage was calculated from the 

144 number of QTLs at each location divided by the total number of QTLs.
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Location Number of stQTL (%) Number of eQTL (%)

Upstream 50,109 (35.09%) 73,647 (39.57%)

5'UTR 3,877 (2.71%) 5,802 (3.12%)

CDS 3,949 (2.77%) 4,404 (2.37%)

Intron 32,675 (22.88%) 37,232 (20.00%)

3'UTR 2,506 (1.75%) 2,411 (1.30%)

Downstream 49,685 (34.79%) 62,636 (33.65%)

Total 142,801 (100.00%) 186,132 (100.00%)

145

146 By investigating stQTL and eQTL together, it is possible to determine the regulatory mechanisms underlying an 

147 eQTL. For example, genetic variant rs3167757 is significantly associated with the HMGN1 expression level (eQTL, 

148 FDR = 5e-18) with CC>CT/TT (Fig 2C). As shown, this genetic variant is also associated with HMGN1’s mRNA 

149 stability (stQTL, FDR=3.7e-30). This result indicated that rs3167757 might regulate the expression level of HMGN1 by 

150 affecting its mRNA stability. Indeed, HMGN1-rs3167757 has also been reported as an eQTL in lymphoblastoid cell 

151 lines (LCLs) [34,35]. The rs3167757 is located at the 3'UTR of the HMGN1 gene and overlaps with binding sites of 20 

152 different RBPs [36]. According to the analysis using RBPmap [37] (S1 Table), while the variant C of rs3167757 confers 

153 a motif for eight RBPs (CUG-BP, HNRNPF, MBNL1, SFPQ, TRA2B, HNRNPL, SRSF3, and YBX2), the variant T 

154 disrupts the binding motifs of five of the RBPs (HNRNPF, MBNL1, SFPQ, TRA2B, and YBX2). Notably, among them, 

155 HNRNPF [38,39], MBNL1 [40,41], and YBX2 [42] are known to contribute to mRNA stabilization. This is consistent 

156 with the observation that genotype CC is associated with higher stability of HMGN1 mRNA than CT and TT. As another 

157 example, genetic variant rs34873612 is significantly associated with DDX11 expression level (eQTL, FDR = 2e-60) but 

158 not with DDX11 mRNA stability (FDR > 0.1) with GG>GA/AA (Fig 2D). This result suggested that rs34873612 might 

159 regulate the expression level of DDX11 by affecting the transcription rate rather than its mRNA stability. According to 

160 the PROMO prediction [43], the rs34873612 is located at the 5'UTR of the DDX11 gene and overlaps with the binding 

161 site of three TFs: GR-alpha, GATA2, and GATA3. While the variant G contributes to the binding motifs of these TFs, 
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162 the variant A disrupts the binding motif of GATA3, which potentially contributes to the decreased DDX11 expression 

163 seen in the GA and AA genotypes (Fig 2D). mRNA stability only contributes partially to gene expression level; 

164 consistently, many genetic variants are found to be stQTLs but not eQTLs. For example, rs1062976 is significantly 

165 associated with the mRNA stability of SCYL3 (stQTL, FDR = 5e-07) but not its expression level (not an eQTL, FDR > 

166 0.1) with CC>CT/TT (Fig 2E). Overall, our results indicated that simultaneous identification of stQTLs and eQTLs can 

167 provide us with more detailed biological insights on the regulatory effects of genetic variants on a large scale.

168

169

170 Fig 2. The simultaneous identification of stQTLs and eQTLs using GTEx lung tissue samples shows highly 

171 overlapped QTLs and provides additional information for investigating regulatory effects of genetic variants. 

172 (A) The Venn diagram between eQTLs and stQTLs shows that 70,105 genetic variants are both eQTLs and stQTLs. (B) 

173 The bar plot shows the percentage of the overlapped QTLs in stQTLs and eQTLs, respectively. (C) HMGN1-rs3167757 
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174 is an eQTL and a stQTL. The expression level and RNA stability of HMGN1 will decrease as rs3167757 changes with 

175 CC>CT/TT. The rs3167757 is located on the binding sites of several RBPs in the 3’UTR region of HMGN1. (D) DDX11-

176 rs34873612 is an eQTL but not a stQTL. The expression level, but not RNA stability, of the DDX11 will decrease as 

177 rs34873612 changes with GG>GA/AA. The rs34873612 overlaps the binding sites of several TFs in 5’UTR of DDX11. 

178 (E) SCYL3-rs1062976 is an stQTL but not an eQTL. The RNA stability of the SCYL3 will be affected by rs1062976, 

179 which is located in the 3’UTR region of SCYL3. The variant T of rs1062976 disrupts the binding motif of PTBP1 

180 (destabilizer) but confers the binding motif of YBX1 (stabilizer).

181

182 Distributions of eQTLs and stQTLs across genic regions

183 stQTLs are associated with mRNA stability while eQTLs are associated with gene expression by affecting either 

184 mRNA stability or gene transcription. Therefore, we expect that their distributions in genes would be different. To 

185 examine this, we looked at the distribution of eQTLs and stQTLs in the DNA regions surrounding TSS and TTS of 

186 genes. We found that eQTLs are more likely to be located upstream of TSS of their corresponding genes while stQTLs 

187 tend to be located downstream of TSSs (Fig 3A). On the other hand, stQTLs are more likely to be located in the region 

188 from TTS to its 10Kb upstream than eQTLs. Both stQTLs and eQTLs are more likely to be located in the upstream 

189 region of TTS rather than the genes’ downstream regions (Fig 3B).

190

191 Subsequently, we divided genomic regions associated with genes into upstream, 5'UTR, CDS, Intron, 3'UTR, and 

192 downstream regions and then examined the distributions of eQTLs and stQTLs in these regions. Using the distributions 

193 of all genetic variants as the background, we calculated the enrichment ratio of stQTLs and eQTLs by using a 
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194 hypergeometric test [44]. As shown in Fig 3C, stQTLs are enriched by 2.89-fold in the CDS (P < 2e-308) and by 2.25-

195 fold in 3'UTR (P = 2e-152). This result is consistent with the fact that genetic variants located in these regions might 

196 have functional impacts on mRNA stability by affecting RNA secondary/tertiary structure or RBP/microRNA binding. 

197 stQTLs are also slightly enriched in intron regions (ER = 1.19 and P = 2e-150). In contrast, eQTLs are enriched in the 

198 CDS (ER = 2.22, P = 4e-274), upstream (ER = 1.10, P = 3e-65), 5’UTR (ER = 1.37, P = 5e-76), and 3’UTR (ER = 1.30, 

199 P = 6e-20, Fig 3D), respectively. The enriched eQTLs in these regions may be due to the fact that gene expression can 

200 be determined not only by transcriptional activity (genetic variants in upstream, 5’UTR, or CDS regions) but also by 

201 RNA stability (genetic variants in CDS or 3’UTR regions). We compared the enrichment ratios of stQTLs and eQTLs 

202 and found that stQTLs are more likely to be located in the CDS, intron, and 3'UTR regions, while eQTLs are enriched 

203 in the upstream and 5'UTR regions (Fig 3E).

204

205 It should be noted that the resolution of QTL analysis is affected by linkage disequilibrium (LD) between 

206 neighboring genetic variants. Based on the genotype data for lung samples used in this study, we performed LD analysis 

207 and observed that many eQTL/stQTL loci were in high LD (r2 > 0.9) with each other (S1 Fig). To best exclude the 

208 influence of LD, we determined all LD blocks (r2 > 0.9) and within each block selected the most significant genetic 

209 variant as the representative stQTL/eQTL. Following that, we re-evaluated the distribution of stQTLs and eQTLs. After 

210 LD filtering, we found that the stQTLs are more enriched in CDS (ER = 4.93 and P < 2e-308), 3’UTR (ER = 2.64 and 

211 P = 1e-164), and slightly enriched at 5'UTR (ER = 1.14 and P = 9e-07). Of note, we no longer observed the enrichment 

212 of stQTLs in intron regions (Fig 3F). In contrast, the distribution of eQTLs in each gene region is similar to that before 

213 LD filtering (Fig 3G). When the distributions of stQTLs and eQTLs were directly compared, eQTLs were more likely 
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214 than stQTLs to locate in the 5'UTR and upstream of genes (Fig 3H), while stQTLs are more likely to locate in the CDS 

215 and 3'UTR. No obvious difference was observed between stQTLs and eQTLs in the intron and downstream regions.

216

217 Fig 3. There are biased distributions in different genic regions of eQTLs and stQTLs. (A) The distribution from 

218 the enrichment ratio of stQTLs and eQTLs to TSS. Plot with the bin size of 2000 bp and the sliding window of 50 bp. 

219 (B) The distribution from the enrichment ratio of stQTLs and eQTLs to TTS. Plot with the bin size of 2000 bp and the 

220 sliding window of 50 bp. (C) The enrichment ratio in different genomic locations of stQTLs before LD filtering. The 

221 upstream indicates the region of 100 Kb upstream from TSS, and the downstream indicates the region of 100 Kb 

222 downstream from TTS. (The following figs are the same) (D) The enrichment ratio in different genomic locations of 
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223 eQTLs before LD filtering. (E) The relative proportion of enrichment ratio in different genomic locations between 

224 stQTLs and eQTLs before LD filtering. (F) The enrichment ratio in different genomic locations of stQTLs after LD 

225 filtering. (G) The enrichment ratio in different genomic locations of eQTLs after LD filtering. (H) The relative 

226 proportion of enrichment ratio in different genomic locations between stQTLs and eQTLs after LD filtering.

227

228 stQTLs are significantly enriched in RBP binding sites

229 Having shown the enrichment of stQTLs in the 3’UTR and CDS regions, we then examined whether stQTLs tend 

230 to locate in the binding sites of RBPs or miRNAs, many of which are known to be involved in post-transcriptional 

231 regulation of mRNAs. To this end, we investigated the binding sites of RBPs and miRNAs provided by Postar2 [36] 

232 and TargetScan [45], respectively, to annotate the stQTLs identified in our analysis. Our results indicated that stQTLs 

233 (P = 3e-18, Fisher’s exact test) but not eQTLs (P > 0.1, Fisher’s exact test) are enriched in RBP binding sites. In fact, 

234 we found that 26.81% (2,770/10,332) of stQTLs overlap with the binding sites of at least one RBP, which is significantly 

235 higher (P = 7e-17, Fisher’s exact test) than 22.10% (2,788/12,617) for eQTLs (Fig 4A). In addition, we have also 

236 examined the overlap with miRNA binding sites and observed a higher proportion of stQTLs (0.19%, 20/10,332) than 

237 eQTLs (0.15%, 19/12,617) in the miRNA binding sites, although no statistical significance was detected due to very 

238 small genomic regions covered by miRNA binding sites (Fig 4B).

239

240 Then we performed Fisher’s exact test to identify RBPs whose binding sites were enriched for stQTLs (S2 Table) 

241 or eQTLs (S3 Table). We identified a total of six significant RBPs (P < 1e-04) including SND1, YTHDC1, DDX3X, 

242 ATXN2, RPS3, and UPF1 (as shown in Table 2). Interestingly, SND1 [46–48], DDX3X [49,50], ATXN2 [51,52], and 
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243 RPS3 [53] were known to stabilize their bound mRNAs, while UPF1 is the key factor of nonsense-mediated mRNA 

244 decay pathway [54–56]. Moreover, YTHDC1 is a well-known m6A (N6-Methyladenosine) reader [57], which has been 

245 found to regulate mRNA splicing [58,59], alternative polyadenylation [59], and stability [60,61] through recognizing 

246 m6A. Similarly, we identified four RBPs whose binding sites were significantly enriched for eQTLs (P < 1e-04, Fig 4D 

247 and Table 3), among which the two most significant RBPs, DDX3X and SND1, were also enriched for stQTLs. NCBP3 

248 can regulate gene expression by forming a cap binding complex that binds to the 5'cap of pre-mRNA to promote splicing, 

249 3’-end processing, and mRNA exporting [62–64], and AGGF1 was found to repress the expression of pro-inflammatory 

250 molecules [65]. These results indicate that stQTLs or eQTLs located in the binding sites of RBPs in lung tissue are 

251 indeed likely to have significant regulation on gene stability or expression by affecting the binding of the RBPs.

252

253 Table 2. The RBPs whose binding sites were enriched for stQTLs. Six RBPs significantly overlap (Log2 Enrichment-

254 ratio > 0.3 and p-value < 1e-04, Fisher’s exact test) with stQTLs in mature mRNAs in lung. ER: Enrichment ratio.

RBPs stQTL non-stQTL ER p-value FDR

SND1 64 1,504 2.17 4E-08 5E-06

YTHDC1 100 2,850 1.80 1E-07 7E-06

DDX3X 226 8,348 1.39 3E-06 1E-04

ATXN2 436 17,911 1.25 7E-06 3E-04

RPS3 91 2,923 1.59 3E-05 0.001

UPF1 198 7,533 1.35 5E-05 0.002

255

256 Table 3. The RBPs whose binding sites were enriched for eQTLs. Four RBPs significantly overlap (Log2 Enrichment 

257 ratio > 0.3 and p-value < 1e-04, Fisher’s exact test) with eQTLs in mature mRNAs in lung. ER: Enrichment ratio.

RBPs eQTL non-eQTL ER p-value FDR

DDX3X 250 8,331 1.69 5E-14 1E-11

SND1 58 1,509 2.15 2E-07 2E-05
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NCBP2 60 1,819 1.84 1E-05 6E-04

AGGF1 30 689 2.43 2E-05 6E-04

258

259

260 Fig 4. Enrichment of stQTLs and eQTLs in the binding sites of RBPs and miRNAs. (A) Proportion of overlap 

261 between stQTLs, eQTLs, and all genetic variants and RBP binding sites in mature mRNA. The statistical significance 

262 was calculated using Fisher’s exact test. The n.s. indicates not significant. (B) Proportion of overlap between stQTLs, 

263 eQTLs, and all genetic variants and miRNA binding sites in mature mRNA. The statistical significance was calculated 

264 using Fisher’s exact test. The n.s. indicates not significant. (C) The volcano plot shows that nine RBPs (red points) 
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265 whose binding sites were significantly (-Log10 p-value > 4, 2-sides Fisher’s exact test) enriched (six RBPs, Log2 

266 Enrichment-ratio > 0.3) or depleted (three RBPs, Log2 Enrichment-ratio < -0.3) in stQTLs. (D) The volcano plot shows 

267 that seven RBPs (red points) whose binding sites were significantly (-Log10 p-value > 4, 2-sides Fisher’s exact test) 

268 enriched (four RBPs, Log2 Enrichment-ratio > 0.3) or depleted (three RBPs, Log2 Enrichment-ratio < -0.3) in eQTLs.

269

270 Gender-specific stQTLs

271 We then examined whether some genetic variants were associated with mRNA stability in a gender-specific 

272 manner and denoted them as gender-specific stQTLs. We divided 289 samples into 187 males and 102 females, and 

273 then performed association analysis with covariates to implement the gender-specific stQTL classification. If a gene is 

274 specifically expressed in males or females, then an stQTL/eQTL association can only be performed in the corresponding 

275 gender. Therefore, we focused our analysis on 13,116 genes that are not differentially expressed (FDR > 0.05, t-test) 

276 between both genders and then investigated a total of 14,987,511 genetic variants located from 100Kb upstream to 

277 100Kb downstream of a gene. Out of these gene/genetic variants, we identified 71,694 stQTLs in males and 22,841 

278 stQTLs in females (FDR < 0.05), as well as 117,065 eQTLs in males and 48,516 eQTLs in females (FDR < 0.05), 

279 respectively. Then we defined male-specific QTLs as those that are significant in males (FDR < 0.05) but not significant 

280 in females (P > 0.1), and similarly for female-specific QTLs. In total, we identified 18,893 male-specific and 2,879 

281 female-specific stQTLs, and 32,716 male-specific and 7,484 female-specific eQTLs. After excluding intersection with 

282 gender-specific eQTLs, we finally identified 14,683 male-specific and 2,279 female-specific stQTLs. As an example, 

283 the association between genetic variant rs397781453 and the RNA stability of SREBP2 is female-specific (Fig 5A). As 

284 shown, we detected a significant association in females with FDR = 4e-04 but not in males (FDR ≥ 0.1). On the other 

285 hand, the association between AQP4 and genetic variant rs12954879 is male-specific (Fig 5B). The RNA stability of 
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286 AQP4 is significantly associated (FDR = 2e-05) with genetic variant rs12954879 in males but not in females (FDR > 

287 0.1). Of note, both SREBP2 or AQP4 have similar expression levels between males and females (the right panel of Fig 

288 5A and 5B).

289

290

291 Fig 5. Gender-specific stQTLs identification. (A) The association between genetic variant rs397781453 and the RNA 

292 stability of SREBP2 is female-specific (stQTL, FDR = 4e-04), but this pattern does not occur in males (FDR ≥ 0.1). In 

293 the right panel, the expression of SREBP2 is not significantly different (P ≥ 0.1) between male and female samples. (B) 

294 The association between genetic variant rs12954879 and the RNA stability of AQP4 is male-specific (stQTL, FDR = 
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295 2e-05), but this pattern does not occur in females (FDR ≥ 0.1). In the right panel, the expression of AQP4 is not 

296 significantly different (P ≥ 0.1) between male and female samples.

297

298 Discussion

299 In this study, we systematically identified stQTLs that are associated with mRNA stability in lung tissues and 

300 compared them with eQTLs using GTEx RNA-Seq data. Out of the 151,227,000 genetic variants within 100 Kb 

301 upstream from TSS to 100 Kb downstream from TTS of 13,476 corresponding genes, we identified a total of 186,132 

302 eQTLs and 142,801 stQTLs. We found that stQTLs are mainly enriched in the 3'UTR and CDS regions, while eQTLs 

303 are enriched in the CDS, 5'UTR, 3’UTR, and upstream regions (Fig 3F and 3G). We also found that stQTLs are 

304 significantly located in the binding sites of RBPs (Fig 4A). Moreover, the different stQTL/eQTL variants will indeed 

305 change the motif to affect the bound RBPs, which then regulate RNA stability or gene expression (Fig 2C-2E). Our 

306 results suggest that stQTLs may significantly affect RNA stability, mostly because they are located in the 3’UTR [66,67] 

307 and CDS [68,69] regions that most often interact with other molecules. These results are consistent with previous studies, 

308 which have found that the codon usage and changes on CDS could affect its stability [68,70–72], and the sequence in 

309 3'UTR affected mRNA stability since it includes binding sites of RBPs [73,74]. On the contrary, eQTLs are a group of 

310 complex mechanisms and may regulate expression levels by affecting stability [75,76], transcriptional activity [77–79], 

311 and even the addition of 5'cap or polyA tail [62]. Therefore, while eQTLs largely resemble stQTLs but are less enriched 

312 at the 3’ UTR and CDS regions, eQTLs are also enriched in the 5'UTR and upstream regions where the enhancers and 

313 promoters that regulate transcriptional activity are located [80–82].

314
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315 Although we have shown that identifying stQTLs provides additional insights, it is worthwhile to note that 

316 determining regulatory mechanisms is largely limited by the LD between proximal genetic variants. Due to LD, it is 

317 sometimes difficult to identify the exact genetic variants that regulate gene expression. For the same reason, it is also 

318 hard to clearly distinguish genetic variants controlling gene transcription from those controlling mRNA stabilities solely 

319 based on association analysis. This analysis is expected to improve with further consideration of the location and 

320 function impact of genetic variants. In addition, the power of stQTL analysis is also limited by the computational 

321 methods used for mRNA stability inference. Although previous studies have demonstrated that the EISA algorithm [27] 

322 and its improved REMBRANDTS package [32,83,84] used in this study achieve fairly high accuracy for mRNA stability 

323 evaluation, the accuracy of inferred mRNA stability may vary significantly between different genes. First, the 

324 differential expressed long noncoding RNAs (lncRNAs) [85,86] or perturbated factors involved in intron degradation 

325 [27,87] could cause the changes of difference intronic read counts (Δintron) to affect the stability estimate. Adding the 

326 annotation of non-coding RNAs in the alignment of RNA-Seq may improve the accuracy of the mRNA stability 

327 inference. Secondly, it is difficult to accurately calculate stability for the genes with low aligned read counts because 

328 the stability inference is based on the relative change of exonic and intronic reads (Δexon–Δintron) [32]. Of note, the 

329 REMBRANDTS provides a stringency parameter to filter genes with low read counts. In our study, we set the stringency 

330 to 0.01 to include 13,429 genes for comprehensive stQTLs identification since the stability of only 2,593 genes can be 

331 calculated when the stringency is 0.9. Interestingly, we found that 41.88% (634/1,514) of stQTLs with stringency ≥ 0.9 

332 overlap with the RBP binding sites, which is significantly higher (P = 6e-44, Fisher’s exact test) than 23.69% 

333 (1,546/6,527) of stQTLs with stringency ≤ 0.5. This result demonstrates that the stability of genes with low read counts 

334 is less accurate and can lead to potential false positives stQTLs. Finally, it should be of note that the mRNA stability 

335 calculated from RNA-Seq using REMBRANDTS is not an actual absolute value, but a differential mRNA stability 
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336 relative to the average of all samples for a given gene [32,87,88]. Therefore, we suggest that it is necessary to keep these 

337 limitations in mind before evaluating mRNA stability using RNA-Seq data, and to record the stringency of the gene as 

338 a reference for the reliability of stQTLs identification.

339

340 The identification of stQTLs provides a higher resolution to better understand the molecular mechanism of genetic 

341 variants regulating gene expression, and accurate estimation of mRNA stability is very important for the identification 

342 of stQTLs. Although some high-throughput technologies, such as BRIC-Seq [24,89], have been developed to determine 

343 the decay rate of mRNA, these methods are often limited to only being used in cell culture conditions [32] and there are 

344 not enough samples available for QTLs research. Therefore, despite the limitations of computational approaches, such 

345 as SnapShot-Seq [29], EISA, and REMBRANDTS, our analysis for mRNA stability inference using RNA-seq by 

346 REMBRANDTS shows that the stQTL genic distribution and overlap with RBP binding sites is indeed consistent with 

347 biological theories. Furthermore, computer algorithms based on RNA-Seq are still under continuous development. For 

348 example, INSPEcT [87] was recently designed to calculate RNA kinetic rates based on time course RNA-seq data, or 

349 to estimate stability by calculating the difference between premature and mature RNA expression [90]. Going forward, 

350 the stQTLs which are identified with more accurate mRNA stability profiles estimation may further our understanding 

351 of how genetic variants regulate gene expression.

352

353 In conclusion, we present a large-scale identification for eQTLs and stQTLs using RNA-Seq data in lung tissues. 

354 Our results demonstrate that there are differential genic distributions as well as interactions with RBPs or TFs between 

355 eQTLs and stQTLs. We show in this study that simultaneous identification of eQTLs and stQTLs provides more 
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356 biological insights for better understanding the regulatory mechanisms underlying genetic variants associated with gene 

357 expression. 

358

359 Methods

360 Collection of datasets

361 The genotype data and RNA-Seq data of lung tissues produced by the Genotype-Tissue Expression project [33] 

362 (release 7) were used in this study. RNA-Seq SRA files and genetic variants data were downloaded from NCBI dbGaP 

363 [91] (Study Accession: phs000424.v7.p2). Subject phenotypes were collected from the GTExPortal 

364 (https://www.gtexportal.org/home/datasets). The data contains a total of 318 RNA-Seq runs and 404 genetic variant 

365 samples from 289 different subjects. We calculated the average dosages for the genetic variants data from the same 

366 subjects to represent the genotype data of subjects. For RNA-Seq analysis, the human reference genome and annotation 

367 were collected from Ensembl [92], version GRCh37.87. For RNA stability analysis, the annotation GTF files recording 

368 the coordinates of intronic and constitutive exonic segments of genes was generated using the shell script modified from 

369 the first step of the https://github.com/csglab/CRIES [32]. 

370

371 Processing of RNA-Seq data

372 The 318 RNA-Seq SRAs were dumped into FASTQ files using SRA Toolkit (http://ncbi.github.io/sra-tools). The 

373 read quality and retained adapters were checked with FastQC [93]; then, the adapters and low-quality reads were 

374 trimmed using Trimmomatic v0.39 [94]. The alignment was performed using HISAT2 v2.1.0 [95] with default 

375 parameters. Alignment files from the same subjects were merged. Read counts of introns or exons were extracted 
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376 separately using the HTSeq-count script of the HTSeq v0.12.4 [96] with the parameter --stranded=no. The RNA stability 

377 profiles for 289 subjects were estimated using the REMBRANDTS [32] with the parameter of linear method and stability 

378 stringency of 0.01. The TPM (transcripts per million) [97] was used as the expression unit to measure the expression 

379 level of 13,476 genes which have stability profiles.

380

381 Identifying QTLs by associating genetic variants with traits derived from RNA-seq data

382 For covariates construction, the plink [98] (version 1.90 beta, https://www.cog-genomics.org/plink/1.9/) was 

383 performed with the parameter: --indep-pairwise 200 100 0.2 to prune a subset of genetic variants. The PCA analysis 

384 was performed after removing strand ambiguous variants (AT/CG) and genetic variants located in the MHC region. The 

385 first three PCs were selected as covariates with gender and age. For cis-QTL identification, genetic variants that were 

386 located within 100Kb upstream from the TSS (transcription start site) to 100Kb downstream from the TTS (transcription 

387 termination site) of Ensembl annotated genes (GRCh37.87) were selected. The expression profile was then converted 

388 with log10(TPM*100 + 1), and the linear association analysis was performed between the dosage of each genetic variant 

389 and the value of expression or stability of each gene. The Benjamini-Hochberg Procedure [99] was implemented to 

390 calculate the false discovery rate (FDR), and the genetic variant with the association of FDR less than 0.05 was regarded 

391 as a QTL.

392

393 Enrichment analysis of QTLs in different genic regions

394 To determine whether eQTLs and stQTLs were evenly distributed in different genic regions, we performed the 

395 following analyses. Here we use the stQTL as an example. First, we counted the number of all genetic variants in the 
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396 TSS-upstream (from TSS to 100Kb upstream), 5’UTR, CDS, 3’UTR, intronic and TSS-downstream (from TTS to 

397 100Kb downstream) regions. Let us use Nk to denote the number of all genetic variants in the kth region (k=1, …, 6). 

398 We then counted the number of stQTLs in each of these regions and used Qk to denote the number in the kth region. 

399 Third, to determine whether stQTLs are enriched in region k, we consider the following numbers: Qk, Q(-k), Nk-Qk, and 

400 N(-k)-Q(-k), which (-k) indicate all regions other than k. Fisher's exact test was then used to calculate the significance of 

401 enrichment. The enrichment was performed separately for stQTLs and eQTLs.

402

403 Estimation of linkage disequilibrium effect

404 We performed the plink [98] to all genetic variants of 289 subjects with the parameter: (--r2 --ld-window 50 --ld-

405 window-kb 100000 --ld-window-r2 0.9) to estimate the linkage disequilibrium (LD) between each genetic variant. We 

406 then constructed LD blocks, in which r2 of LD between each genetic variant must be greater than 0.9. To reduce the 

407 influence of LD on the gene distribution of QTLs, we selected the QTLs with the lowest FDR of the association analysis 

408 in each LD block and then performed the enrichment analysis in different genic regions as the previous section.

409

410 Identification of QTLs located at binding sites of miRNAs or RBPs

411 stQTLs and eQTLs were mapped to the binding sites of RNA binding proteins (RBPs) and microRNAs (miRNAs). 

412 RBP binding site data were retrieved from Postar2 [36] (http://lulab.life.tsinghua.edu.cn/postar/). miRNA binding site 

413 data were downloaded from targetScanHuman [45] (http://www.targetscan.org/vert_72/). Both databases are based on 

414 the human genome reference version GRCh38. To match with our analysis, we performed LiftOver [100] 

415 (https://genome-store.ucsc.edu/) to convert genome coordinates into GRCh37. To evaluate QTLs that locate on the 
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416 binding sites of RBPs or miRNAs, we selected stQTLs or eQTLs on mature mRNA to align the binding sites data, and 

417 then used the Fisher's exact test [101] to identify RBPs whose binding sites were enriched located.

418
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