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Abstract

Background: Intracranial electrodes are implanted in patients with drug-resistant epilepsy as part
of their pre-surgical evaluation. This allows investigation of normal and pathological brain
functions with excellent spatial and temporal resolution. The spatial resolution relies on methods
that precisely localize the implanted electrodes in the cerebral cortex, which is critical for
drawing valid anatomical inferences about brain function.

Multiple methods have been developed to localize implanted electrodes, mainly relying on
pre-implantation MRI and post-implantation CT images. However, there is no standard approach
to quantify the performance of these methods systematically.

The purpose of our work is to model intracranial electrodes to simulate realistic implantation
scenarios, thereby providing methods to optimize localization algorithm performance.

Results: We implemented novel methods to model the coordinates of implanted grids, strips, and
depth electrodes, as well as the CT artifacts produced by these.

We successfully modeled a large number of realistic implantation “scenarios”, including
different sizes, inter-electrode distances, and brain areas. In total, more than 3300 grids and strips
were fitted over the brain surface, and more than 850 depth electrode arrays penetrating the
cortical tissue were modeled. More than 37000 simulations of electrode array CT artifacts were
performed in these “scenarios”, mimicking the intensity profile and orientation of real
artifactual voxels. Realistic artifacts were simulated by introducing different noise levels, as well
as overlapping electrodes.

Conclusions:

We successfully developed the first platform to model implanted intracranial grids, strips, and
depth electrodes and realistically simulate CT artifacts and noise.

These methods set the basis for developing more complex models, while simulations allow the
performance evaluation of electrode localization techniques systematically.

The methods described in this article, and the results obtained from the simulations, are freely
available via open repositories. A graphical user interface implementation is also accessible via
the open-source iElectrodes toolbox.

Keywords: SEEG, ECoG, iEEG, intracranial electrodes, depth electrodes, subcortical grids,
subdural grids, simulations.
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1. Background

Intracranial subdural grids and depth electrodes are implanted in patients with drug-resistant
epilepsy as part of their pre-surgical evaluation. Electrophysiological and neuroanatomical data
are used to delineate the seizure onset zone and functional areas that will guide resective surgery
(Rosenow & Luders, 2001). Intracranial electroencephalography (iEEG) recordings provide
insights into human brain electrophysiology and functional mapping with an unparalleled spatial
and temporal resolution, offering both clinical and research applications. Knowing the exact
location of electrodes in relation to the individual cortical or subcortical anatomy is a prerequisite
for a complete understanding of the electrophysiological data; leading to a precise resection of
the epileptic foci and the anatomical localization of specific brain functions (Lachaux et al.,
2003; Parvizi & Kastner, 2017; Stolk et al., 2018; Frausher et al., 2018).

One of the most common approaches to define electrode coordinates is to localize the artifacts
they produce in post-implantation computer tomography (CT) images coregistered to
pre-implantation magnetic resonance imaging (MRI) scans, a procedure that can be done
manually or semi-automatically. In both cases, errors associated with the procedure or the
presence of noise in the images are rarely addressed. However, it is well known that other CT
artifacts than the ones of interest (e.g., connection cables or clips), adjacent electrodes,
overlapping grids or strips, and noise or low image resolution make precise localization
problematic (Brang et al., 2016; LaPlante et al., 2016; Narizzano et al. 2017).

Of particular interest are methods to localize high-density (HD) subdural grids and depth
electrodes, which have become more frequently used in the last few years (Gupta et al., 2014;
Chang, 2015). The spatial resolution of these arrays can be up to 2-3 mm and will likely be
higher in the future (Martin et al., 2018). Their localization of individual electrodes from the CT
artifacts is harder with currently available methods given the signal-to-noise ratio of images (see
novel attempts in Branco et al., 2018a; Hamilton et al., 2017; Narizzano et al. 2017, Erhardt et
al., 2020).

Although methods to localize CT artifacts and co-localize them to pre-implantation MRI are
common approaches, there is no reliable gold standard to quantify their precision and robustness
against noise. Here, we propose a new platform to model realistic implantation scenarios and CT
artifacts, enabling the systematic quantification of localization errors in electrode localization
methods.

We first introduce the main characteristics observed in CT electrode artifacts and a simple model
for these. We then present the methods for fitting subdural grid and strip electrode models onto
the smooth hull surface, as well as depth electrode array models targeting subcortical sites. We
describe the simulation of CT noise and overlapping grids and strips. We then describe the
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simulation results in standardized Montreal Neurological Institute (MNI) space and single
subject native anatomy. Finally, we discuss the results in the context of existing electrode
localization methods, limitations of our approach, and future challenges.

The methods and results presented in this article are publicly available (except for individual
patient data). Unless otherwise specified, the methods were implemented in Matlab R2019 (The
MathWorks Inc., USA) and iElectrodes toolbox (Blenkmann et al., 2017) for Matlab.

2. Implementation

2.1. Characterization of CT artifacts from real cases

To characterize the intensity profile of CT artifacts in real conditions, we analyzed MRI and CT
images from 8 adult patients with drug-resistant epilepsy who underwent iEEG recording as part
of the pre-surgical evaluation for resective surgery. One patient was implanted with subdural
grids only (310 contacts, inter-electrode distance (IED) from 4 to 10 mm, Ad-Tech Medical
Instrument Corporation, USA, or PMT Corp, USA). Two patients were implanted with subdural
grids and depth electrodes (153 and 314 contacts per subject, IED from 4 to 10 mm, Ad-Tech
Medical Instrument Corporation, USA, or PMT Corp, USA), and five patients with depth
electrodes only (between 110 and 172 contacts per subject, 763 in total, IED from 3 to 4 mm,
DIXI Medical, France).

We followed a routine procedure to localize intracranial electrodes (Blenkmann et al., 2019;
Stolk et al., 2018). Pre-implantation T1-weighted MRI images were processed using the
FreeSurfer standard pipeline (Dale, Fischl, & Sereno, 1999), where individual brain
segmentation images, pial surfaces, and cortical parcellation images (Destrieux atlas) were
obtained (Destrieux, Fischl, Dale, & Halgren, 2010). Post-implantation CT images were
coregistered to the pre-implantation MRI using SPM 12 software (Studholme, Hill, & Hawkes,
1999). Realigned MRI and CT images were resampled to 0.5 x 0.5 x 0.5 mm resolution. CT
images were thresholded to visualize the clusters of high-intensity voxels (also known as CT
artifacts). Threshold values were visually defined to identify clusters of voxels representing
individual electrodes following the procedure described in Blenkmann et al. (2017). The center
of each cluster of high-intensity voxels was visually identified, and the cluster was extracted and
stored. For each electrode, we computed its principal axis. For grids, we computed the
orthogonal direction at each electrode given its closest neighbors, and for depth electrodes, we
computed the principal axis as the direction connecting the first and last electrodes of the array.
We aligned the principal axes to the z-axis and aligned their corresponding centers at the
coordinate system’s origin.
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The Smooth Cortical Envelope (SCE) surfaces were computed from the pial surfaces following
the steps provided in section 2.3.

Figure 1 shows examples of voxels’ distribution from the aligned electrodes in two grid cases (4
and 10 mm inter-electrode distance, [IED) and one depth electrode array case. Observe that the
voxels have an oblate and a prolate shape for depth electrodes, mimicking the metallic contacts’

disc and cylinder shapes, respectively.

We computed 2-dimensional histograms showing the bivariate distribution of voxels in terms of
intensity and radial distance to the center (Figure 1, lowest row). In all cases, we observed a
tendency for a linear decrease of intensity with radius.

The spatial organization of electrodes in strips precludes the computation of orthogonal vectors.
However, strip electrodes are usually of the same size as grid electrodes. Therefore, the same
modeling parameters were used for both types of electrodes.

4 mm IED grid 10 mm IED grid 3.5 mm IED depth electrode
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Figure 1. Spatial distribution of CT artifacts in three exemplary patient cases.

Left column, electrodes from a subdural grid with an IED of 4 mm. Middle column, electrodes from a grid
with an IED of 10 mm. Right column, depth electrodes with 3.5 mm IED.

The top row shows the CT artifacts distributed in space. All individual electrodes were recentered at the
origin (0,0,0). The principal axes (orthogonally to the cortical surface for grids) or main axes (connecting
outer electrodes for depths) were aligned to the z-axis. The color scale denotes the normalized CT signal
intensity at each voxel. For visualization purposes, only half of the electrode voxels are shown.

The bottom row shows the intensity vs. radius histogram. Note that intensity decreases with radius. The
color scale denotes the count of voxels in the histograms.

IED: Inter-Electrode Distance
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2.2.  Modeling individual electrode CT artifacts

We used 3D ellipsoids (Figure 2A) to model the spatial distribution of individual electrodes’ CT
voxels. Semi-axes length parameters (a, b, and ¢) were varied depending on electrode type and
inter-electrode distance, following manufacturers' specifications and corroborated by the CT
artifacts’ observed size.

To represent the effect of discrete sampling in CT images, voxels were sampled using a 0.5 mm
resolution 3D square lattice grid. To reproduce realistic CT artifacts, we used a random center
location and orientation for the sampling grid. Each voxel was assigned with an intensity value
depending on its location (x, y, z) within the ellipsoid. We defined an intensity function that
declined with the radial distance as:

. Ty (Y
Intensity(r,y,z) =1 — ((5)2 + (5)2 + (5)2) Equation 1

where a, b, and c are the semi-axes of the ellipsoid model (Figure 2A).
Figure 2B, and C shows an example of simulated grid electrodes, where the shape and intensity
distribution of the voxels with the radius are similar to those observed in the real cases.

Ideal electrode model

A Ellipsoid electrodes model B CT artifacts intensity distribution C CT artifacts spatial distribution
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Figure 2. Ideal electrode model characteristics.

A. Ellipsoid showing semi-axes model parameters.

B. Average distribution voxels simulated in electrodes with 10 mm IED (obtained from 64 electrodes in a
grid model). The semi-axis in the z-direction is the smallest of the three, while the x and y semi-axes are
the same length, producing an oblate ellipsoid shape. The intensity of each voxel is color-coded in the [0
1] range.

C. Intensity vs. radius histogram. The intensity profile decreases with the increasing radius, resembling
the real electrode main characteristic (Figure 1). However, note that the variance observed in the ideal
case histogram does not resemble the one observed in real cases.

IED: Inter-Electrode Distance
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2.3.  The Smooth Cortical Envelope surface, seed points, entry points, and target
points

The implantation of real grids and strips onto different cortical areas introduces variations in how
these arrays bend to follow the brain curvature. To reproduce realistic scenarios for grid
implantations, we simulated grids implanted over 3D cortical surfaces. We used high-resolution
pial surfaces extracted from the MNI atlas as a starting point (or individual structural MRI
images for simulations in native space; see section 2.8 for details). In our processing pipeline, we
used Freesurfer software (Dale et al., 1999), and individual cortical parcellation images were
obtained using the Destrieux atlas (Destrieux, Fischl, Dale, & Halgren, 2010), but other atlases
or software could also be used. We then computed a Smooth Cortical Envelope (SCE) surface
for each cerebral hemisphere by enclosing the corresponding pial surface with a 30 mm radius
sphere. A mesh smoothing was applied to remove small local protuberances (low-pass spatial
filter, 100 iterations, alpha weight = 0.5, [so2Mesh toolbox, Fang & Boas, 2009). Sup. Figure 1
shows an example of the pial surface and SCE computed for an individual subject’s brain.

We visually selected seed points over the SCE surface and used them as reference points to
model grids, strips, and depth electrode arrays. We computed the local curvature of a smoothed
version of the SCE (Rusinkiewicz, 2004). Seed points were visually selected on regions where
the local curvature was relatively “Low”, “Medium”, or “High” within the range of curvature
values. Depending on the location and the local curvature of the SCE surface, we modeled
different electrode arrays.

In clinical practice, the implantation of depth electrodes is defined by two points, and therefore a
unique trajectory connecting them. The points are typically defined as an “entry point” on the
cortical surface, and a “target point” at the deepest brain location reached. We will adopt this
nomenclature throughout this paper.

It is common practice to use trajectories orthogonal to the skull surface to avoid sliding of the
drill and minimize bone damage during surgery. Therefore, given entry points on the SCE
surface, we defined trajectory vectors orthogonal to this surface for depth electrodes simulations.
Target points were defined as the deepest electrode point in the trajectory within the brain tissue
(enclosed by the SCE surface). In some cases, the electrode arrays were shorter than the amount
of tissue crossed by the trajectory. In these scenarios, the target was re-defined as a random point
within the trajectory, while keeping all contacts inside the brain.

Modeling intracranial electrodes. Blenkmann et al., 2021. 7
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2.4. Modeling electrode array coordinates

The following steps are performed for:
o Modeling subdural grids

1. A 2D flat model is generated, given the number of rows, the number of columns,
and the inter-electrode distance parameters. We compute the center coordinate of
each electrode contact.

2. The 2D model is placed tangentially to the SCE in a given “seed” point (Figure
3D). The center of the array is aligned to the seed point.

3. The 2D model is fitted over the SCE surface using an energy minimization
algorithm (Figure 3D, Dykstra et al., 2012; Trotta et al., 2018). Briefly, an energy
function:

E=FE +KE, Equation 2

is minimized, where E, is the translation energy, E, is the deformation energy, and
K is a constant value. The energy minimization is constrained to the electrode
coordinates x; being closely located over the SCE surface:

Vi, ||z — sil] < e Equation 3

where s, is the closest point in the SCE surface to electrode 7, and € is a tolerance
distance.

E, (Figure 3B) represents the energy needed to translate the electrode coordinates
from the original position of each electrode x’; to the final position x; on the SCE
surface:

N
b = Z ”371 - 1'?”2
i=1

Equation 4

where N is the number of electrodes.
E, (Figure 3C) represents the energy required to change the inter-electrode
distance between neighbors from the original to the final location.

=

i (dy; — dfy)?
1

=1

N
Eq=)_
i=1j

_|_

Equation 5
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where d; is the distance between electrodes, d”; is the original distance between
contacts, and a; takes values of 1 or 0 if electrodes i and j are neighbors or not,
respectively. To control for normal, bending, and shear deformations, first,
second, and diagonal (grids only) neighbors are considered as shown in Figure 3A
(Trotta et al., 2017). E, is typically interpreted as the deformation of “springs”
connecting the electrodes (Dykstra et al., 2012).

4. A normal vector at each electrode coordinate is computed. We select the
coordinates from each electrode of interest and the nearest neighbors and compute
a principal component analysis (PCA) of these points. The normal vector is one
associated with the smallest component (Figure 3E).

e Modeling subdural strips

1. A 2D flat model is generated, given the number of contacts (columns), and
inter-electrode distance. The number of rows is set to three to avoid unrealistic
geometrical deformations (e.g., “snake” shapes).
This step is the same as step 2 for grids.
This step is the same as step 3 for grids.
This step is the same as step 4 for grids.

o

Only the middle row coordinates are kept from the three rows, while the lateral
ones are discarded. The result is a set of coordinates for the 1 x columns contacts.

Deformations are needed to fit a grid or strip (originally plane objects) over the brain surface (a
curved object). When localizing grids, we typically observe that these deformations are small.
Therefore, we measured the IED after fitting grids and strips to the SCE surfaces and discarded
simulations if one or more neighboring electrodes had IED variations over 5% from the original
values.

e Modeling depth electrode arrays

1. A unidimensional model of the electrodes is computed, uniformly distributing the
contacts over the x-axis.

2. A curvature deformation can be applied (optional) using the symmetric Lanczos
window, and an arc shape electrode array can be obtained in a random orientation
within a 2D plane orthogonal to the x-axis. A maximum deformation parameter n
is defined as a percentage of the electrode length. n determines the maximum
distance of the arc to the original model axis.

3. The array model is aligned with the trajectory vector and translated to the
electrode target point within the brain tissue.

Modeling intracranial electrodes. Blenkmann et al., 2021. 9
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4. If electrode arrays are longer than the crossed brain tissue, then the deepest
electrode is located on the target coordinate, contacts span along the trajectory,
and contacts outside the brain tissue are discarded.

Neighbouring Translation Deformation
connections energy energy
A -
.
Ny
p
p
— Normal
— Shear
— Bend

E,= ||Xf‘><x-°||2 Edij:aij(dj_d?j)?

e |nitial 2D
model

Figure 3. Modeling grid electrode coordinates over the SCE surface.

A. Diagram showing the neighboring connections used to compute the deformation energy E,.

B. The translation energy E,; associated with electrode i is proportional to the distance between the
original (x°) and the final location (x;) over the SCE surface.

C. The deformation energy E,; associated with neighboring electrodes i and j is proportional to the
amount of deformation between the original (d°) and final distance (d;). Equation details are explained in
section 2.4.

D. 2D grid model (4x8, 10 mm IED) before (pink) and after (green) being fitted to the SCE surface on the
left frontal lobe.

E. Zoom-in detail showing the normal vectors at each electrode location. Normal vectors are used
afterward to orient the simulated CT artifacts.

IED: Inter-Electrode Distance, SCE: Smooth Cortical Envelope
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2.5. Modeling CT artifacts at electrode coordinates

We modeled CT artifacts for each contact in the arrays as described in section 2.2. The CT
artifacts were individually computed and then aligned using the normal vector at each electrode
coordinate (Figure 3E). This procedure generates CT artifacts that realistically follow the brain’s
surface curvature. Figure 4A, B, and C show examples of grid and strip electrode CT artifacts
over the SCE surface, whereas Figure 4D shows a depth electrode example.

Figure 4. Modeled CT artifacts

Exemplary cases of modeled CT artifacts for grid and strips over the SCE, and depth electrodes
penetrating the brain tissue.

A. High-density 8x8, 3 mm IED grid over the left lateral temporal cortex.

B. An 8x8, 10 mm IED grid over the fronto-temporo-parietal cortex. Observe that CT voxel artifacts follow
the SCE surface curvature.

C. Six contacts 10 mm IED strip over the left medial frontal lobe and anterior cingulate cortex.

D. Ten contacts, 5 mm IED depth electrodes penetrating the left frontal cortex. For illustration purposes,
the SCE surface is semi-transparent.

IED: Inter-Electrode Distance, SCE: Smooth Cortical Envelope
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2.6. Modeling CT artifacts’ noise

The localization of intracranial electrodes is typically sensitive to the signal-to-noise ratio of the
processed CT images. To model the noise in the CT artifacts, we randomly displaced each
voxel’s original coordinate v,to a new location v,,,,. We computed v,.,, = vy + d,pns Lane Where
d, .. 1s a random direction vector with unitary magnitude, /,,,, is a scalar value obtained from a
random uniform distribution in the [0, I[ED * o] interval, and o is a constant parameter. In this
way, changing the value of ¢ generated different noise levels in the simulated CT artifacts.

2.7. Modeling overlapping grids and strips

Overlapping grids or strips provide an obstacle for methods that aim to detect intracranial
electrodes automatically. The following steps are performed to model overlaps:

1. A percentage of overlap is defined a priori (e.g., 10%), which sets the number of
overlapping electrodes (NOE).

2. To define spatial rotations, a set of reference points are needed. These are the same
electrode coordinate points in the case of grids or the SCE surface points in the vicinity of
the electrodes (15 mm radius) in the case of strips.

3. Reference points are projected to a principal component (PC) space (Figure SA), where
the third component (PC3) has the lowest variance. In the case of strips, the same
transformation is applied to the electrode coordinates.

4. A 2D surface Sy, 1s fitted to the reference points using a local linear regression algorithm
(Matlab fit function using ‘lowess’ option, Figure 5A).

5. Within a 2D space defined by the first two PCs, overlapping grids or strips are defined
over the original array and with a given orientation (Figure 5B).

6. The overlapping electrode array is stepwise translated:

a. The overlapping array is translated (with a step size of [ED/100) in a defined
outward direction (Figure 5C).

b. The number of overlapping electrodes in the original electrodes’ vicinity is
counted in each step (within a distance equal to IED V2).

c. The translation stops when the number of overlapping electrodes reaches the NOE
(Figure 5C); otherwise, repeat all prior steps.

7. Electrodes from the overlapping array that are outside the main array area are discarded.

8. The third dimension (PC3) of the overlapping array is computed using the S, surface.

9. A space between arrays is added to represent their thickness (1 mm in the PC3
dimension).
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10. Electrode coordinates are projected back to the original 3D space (Figure 5D).

11. The normal vector at each electrode is computed as the mean of the closest normal
vectors from the original array, weighted by their distance.

12. CT artifacts are modeled at each electrode coordinate and aligned to the normal vector
(Figure 5E).
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Figure 5. Overlapping grid.

Example of an overlapping grid in an 8x8 10 mm IED case.

A. Original electrode coordinates (green) are transformed into the principal component space, where a
surface Sy is fitted to the coordinates.

B. In a 2D space defined by PC1 and PC2, the overlapping grid (magenta) is defined with a random
orientation.

C. The overlapping grid is translated in the arrow direction until the desired number of overlapping
electrodes is achieved.

D. Coordinates are back-projected to the original 3D space.

E. Voxel artifacts are simulated in the new overlapping grid electrode coordinates (using a low noise level
of o = 0.1), overlaying the SCE surface. Voxel artifacts orientations are interpolated from close-by
electrodes of the original array.

Note: for illustrative purposes, plots B and C show the PC1 axes direction inverted.

IED: Inter-Electrode Distance, SCE: Smooth Cortical Envelope
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2.8. Modeling implanted electrodes in real subject’s space

To demonstrate the usefulness of the algorithm, we applied our methods in real native brain
space. We processed pre-implantation MRI and post-implantation CT images from an adult
patient with drug-resistant epilepsy, a potential candidate for resective surgery, as described in
section 2.1. The SCE surfaces for each hemisphere were computed following the steps described
in section 2.3.

Grids, strips, and depth electrode array coordinates were modeled using the graphical interface
provided by the iElectrodes toolbox (Blenkmann et al., 2017). For grids and strips, the 2D model
arrays are first manually translated and rotated over the SCE surface until the desired location is
reached and fitted to the SCE surface. Depth electrodes are defined by manually setting the target
and entry points.

3. Results

3.1.  Grids and strips

We simulated electrode arrays of multiple dimensions representing models frequently available
in the market by different manufacturers. These cover various combinations of size and IED,
including grids of 2x4, 4x4, 4x8, 8x8, 8x16, and 16x16 contacts, strips of 1x4, 1x6, and 1x8
contacts. We selected 57 seed points in the standardized MNI SCE surface with different local
curvatures (Low, Medium, and High; Sup. Figure 2).

Grids and strips implantation scenarios were simulated several times at each seed point, rotating
the grids in angles multiple of 30 degrees around the center. The location and the local curvature
of the SCE surface surrounding the seed points determined which arrays were simulated. Large
grids were simulated on Low curvature regions, whereas medium and small size grids were
simulated over Medium and High curvature areas. For example, over the lateral
fronto-temporo-parietal cortex, it is realistic to simulate an 8x8, 10 mm IED grid, but unrealistic
to simulate the implantation of such a big grid over the frontal pole.

For the fitting of grid and strips onto the SCE surface, coefficient K was set to 1000, and the
tolerance distance € = 0.1 mm for all arrays, except for the 16x16 grid cases where K = 100 and ¢
= 0.5 mm (Eq. 2).

A total of 3646 scenarios for grids and strips were simulated and in 3321 instances the arrays
were successfully placed over the SCE surface. In 9% of the cases, the IED deformations
between at least one pair of contacts exceeded the 5% threshold and were discarded.
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Finally, we simulated the CT artifacts at each electrode location and manipulated the noise levels
with ¢ =0, 0.1, 0.2, 0.3, and 0.4. Moreover, grids and strips were simulated with a 10% overlap
and no overlap. Overlapping grids were defined with a random orientation and translated in a
random direction. In principle, grids and strips of any size and IED can be overlapped. However,
for the sake of simplicity, we used arrays with the same dimensions.

Altogether, we produced approximately 33000 simulations of CT artifacts. Figure 7 shows how
high- and low-noise levels affect the voxels’ distribution in space for high- and low-density grids
(left and middle columns, respectively). Notice that ¢ = 0.1 (low-noise) generates an intensity
histogram that resembles a real low-noise scenario (Figure 2).

To evaluate the simulated coordinates’ quality, we quantified the deformations introduced by the
grids’ projection onto the SCE. We measured the distance between 1%, 2™, and diagonal
neighboring contacts, normalized in each case by the IED. Additionally, we measured the
distance between the fitted electrodes and the SCE.

Overall, the median deformation for 1%, 2", and diagonal neighbors were 0.174, 0.169, and
0.243 % of the IED. The median distance of electrodes to the SCE was 0.012 mm.

Figure 6A shows that median deformation increases for higher values of IED and SCE curvature.
Figure 6B shows that the electrodes’ median distance to the SCE decreases with the number of
contacts and increases with the SCE curvature.
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Figure 6. Deformation characteristics of the simulated grids and strips.

A: Median deformation between contacts as a function of IED (left) and SCE curvature (right).

An effect of IED and SCE curvature can be observed over the distance between contacts.

B: Median distance between electrodes and SCE as a function of the number of electrodes (left) and SCE
curvature (right).

Error bars denote 95% CI of the median obtained by bootstrapping. SCE: Smooth Cortical Envelope. IED:
Inter-Electrode Distance.
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Figure 7. Noise effect on CT artifacts

Examples of the effect of the noise level in simulated grid and depth electrodes artifacts.

Columns: First, an 8x8 3 mm IED grid; second, an 8x8 10 mm IED grid; third, a 15 contact 3 mm IED
depth electrode array.

Rows: The first two rows show the results for low noise simulations (o = 0.1), whereas the last two rows
show the results for high noise simulations (o = 0.4).

For each case, the CT artifacts are plotted on top, and intensity vs. radius histograms are shown below.
Note that the spatial scale in the CT artifact plots is different for each column. IED: Inter-Electrode
Distance.
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3.2.  Depth electrodes

For depth electrodes, a total of 33 entry points over the MNI SCE were defined from the
previous set of 57 seed points, restricted to locations where the implantation of depth electrodes
is realistic. At each point, we simulated the implantation of depth electrodes as combinations of
4,8,10, 12, 15, and 18 contacts; 3, 5, and 10 mm of IED; and linear or curved deformation
(maximum deformation 1 of 1% of the total length). This resulted in a total of 858 simulation
scenarios for depth electrodes within the MNI brain. Then, we simulated CT artifacts for each
scenario, manipulating the noise levels in the same way we did for grids and strips. We obtained
a total 0of 4290 CT artifact array simulations. Figure 7 (right column) shows how low- and
high-noise levels affect the voxels’ distribution in space.

3.3.  Simulations in real subject’s anatomical space

To assess the usefulness of our platform, we tested our algorithms on a real subject’s anatomical
brain space. We simulated grids, strips, and depth electrodes over multiple center points (seeds)
and orientations. After the array center’s initial definition, dedicated controls in the graphical
interface permit accurate center and orientation changes. This allows the user to precisely locate
the electrodes in the desired position.

Figure 8 shows an example of multiple electrode arrays simulated over the pial surface in a
single subject. A lateral high-density grid (5 mm IED) was simulated over the right
fronto-temporo-parietal region, and its fifth row was particularly aligned with the superior
temporal gyrus. Smaller grids were simulated over the fronto-parietal cortex. Strips were
simulated to cover the anterior lateral frontal and orbitofrontal cortex, and the middle and
inferior temporal gyrus. Note that grid electrodes were not forced to contact the pial- but the SCE
surface.
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Figure 8. Intracranial electrode simulations on a real subject’s brain anatomy.

Example of electrodes simulated on a real (native space) brain anatomy using iElectrodes graphical
interface. Grids and strips were simulated covering the right cerebral hemisphere.

2D slices show the Destrieux atlas on top of the T1-weighted MRI image and simulated coordinates as
green X’. The box (in magenta) delineates the controls used for displacing, rotating 2D grid models, and
fitting them to the SCE surface for simulation purposes.

Note that electrodes were fitted to the SCE surface, but the pial brain surface is shown instead for
illustrative purposes. SCE: Smooth Cortical Envelope.

4. Discussion

With the aim of establishing a testbench for intracranial electrode localization algorithms, we
provide the first modeling platform of intracranial electrodes. Overall, our simulations cover a
wide range of realistic scenarios that can be useful for testing localization algorithms. An
extensive database with cases is freely available for this purpose (see availability in section 6).
We focused on providing control over those situations where localization algorithms might fail or
encounter difficulties, such as high-density arrays (grids and depth electrodes), high noise levels,
overlapping grids, or highly curved implants. Moreover, specific cases can be modeled using the
graphical interface of iElectrodes or the available code files.

To achieve our aim, we developed novel methods to model intracranial EEG electrode
coordinates and the CT artifacts typically produced by these. Simulated coordinates for grids and
strips were obtained by fitting models to the smooth cortical envelope (SCE) surface. We
simulated coordinates in cortical areas with different curvatures using arrays of various
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geometrical dimensions to mimic realistic scenarios. Additionally, depth electrodes were
modeled between anatomical target and entry points, and precise deformations were
parametrically defined for each case.

Finally, we simulated the CT artifacts at the electrodes’ coordinates. The distribution of intensity
over space, the shape of the artifacts, and the orientation of each cluster of high-intensity voxels
were carefully modeled. Moreover, different noise levels and overlapping electrodes were
simulated, mimicking real scenarios.

4.1. Modeling implantation coordinates

To evaluate the accuracy of grid and strip implantation models we measured their deformation
(i.e., changes in the inter-electrode distance). Fitting grids or strips over the SCE surface
introduce deformations since plane- or line-shaped models have to be bent to fit the curved brain
envelope surface. Importantly, deformation values were relatively small, with a median value of
less than 0.3% of the IED, an indication that the resulting models are reliable.

We discarded simulations where the deformations exceeded 5% of the IED, since these cases do
not represent realistic scenarios. Similar results could be achieved by constraining the solutions
of the energy function minimization (Eq. 2), with the additional cost of increased computational
time.

As shown in Figure 6A, grid deformations increased with larger IED. We theorize that bigger
grids had to deform more to cover a larger extent of the curved SCE surface, in contrast to
smaller grids that suffer less deformation in the reduced area they overlay. Similarly, higher
levels of curvature produced larger deformation values (Figure 6A).

Parameter K (Eq. 2) controls the deformation introduced in the fitting procedure. We defined K =
1000 which allowed very small deformations (Trotta et. al; 2018). However, for large
high-density grids (IED of 3 mm) we had to reduce the value to K = /00 since the algorithm did
not reach feasible solutions in most scenarios. We suggest using the highest K value that reaches
a feasible solution, therefore introducing the smallest deformations.

Another way to quantify the accuracy of grids and strips models is to measure the distance
between electrode coordinates and the SCE, since electrodes are expected to be as close as
possible to the SCE. Grid and strip electrodes fitting to the SCE were constrained by €, a
tolerance distance between these two (Eq. 3). This parameter enables direct control of the
simulation quality. Overall, the resultant distances between electrodes and SCE (median of 0.012
mm) were negligible when compared to the IEDs (in the order of several mm) indicating
successful algorithm performance.
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Interestingly, the number of electrodes and the local curvature of the SCE surface affected this
distance (Figure 6B). A higher number of electrodes allowed the distance to be smaller by
following the SCE curvature more closely. The larger local curvature also introduced a larger
distance between the contacts and the SCE surface. Still, the values are relatively small when
compared to the arrays’ dimensions.

Depth electrode arrays, on the other hand, bend during implantation mainly due to brain shift.
Our simulations successfully resulted in deformation values equivalent to the ones reported in
clinical practice (~ 1-3 mm at the tip; Vakharia et al., 2017; Cardinale et al., 2013).

Our approach provides precise control of the deformation by applying an arc-shaped function
that departures from the original straight linear model. In our methods, we used a symmetric
Lanczos window function. However, the use of other functions is straightforward.

4.2.  Simulation of CT artifacts, noise, and overlapping electrodes

Previously, models of individual electrode CT artifacts were done as uniform intensity cylinders
(Brang et al., 2016), without considering the details examined in the current study. We used the
bivariate intensity-radius histograms from real CT artifacts (Figure 1) as a guide to model
realistic CT artifacts. We defined ellipsoid-shaped artifacts, with the intensity changing as a
function of the radius. The noise-free ideal electrode model produced a histogram profile that
resembles the real artifacts’s main characteristic, i.e., an intensity decrease with increasing radius
(Figure 2). However, the histogram profile is “cleaner”, i.e., it lacks the variance or jitter
observed in real cases. For this reason, the introduction of noise plays a significant role in
resembling realistic histograms (Figure 7). We suggest using at least a low noise level (6 =0.1)
to achieve realistic simulations.

Electrode CT artifacts corresponding to grids and strips were placed over the SCE surface,
keeping electrode principal axes orthogonal to the surface. Meanwhile, the ones corresponding to
depth electrode arrays penetrating the brain were aligned to the arrays’ main axes. Finally, we
modeled overlapping CT artifacts for grids and strips, controlling the size, orientation, and the
number of overlapping electrodes. The last two features add a level of realism to the models not
shown before.
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4.3. The relevance of intracranial electrode models for localization algorithms

Over the last decade, several approaches have been proposed to localize intracranial electrodes
based on CT and MRI images. The majority of approaches focused on post-implantation CT and
pre-implantation MRI images. The detection of CT artifacts has typically been a manual process,
but has recently been approached by semiautomatic techniques such as clustering voxels of high
intensity (Blenkmann et al., 2017; Brang et al., 2016; Branco et al., 2018a; Taimouri et al., 2013;
Quin et al., 2017), or the interpolation of coordinates given entry and target points in depth
electrodes (Li et al., 2020; Arnulfo et al., 2015). Noise and overlapping electrodes are two
well-known difficulties for these algorithms, precluding the success of automatic methods. For
example, Brang and colleagues (2016) excluded overlapping electrodes from the analysis given
the resulting difficulties, while others treated such cases manually (Branco et al., 2018a;
LaPlante et al., 2016; Taimouri et al., 2014). In the same vein, Narizzano and colleagues (2017)
observed errors in their depth electrode estimations associated with other electrodes in the
proximity, requiring manual intervention from the user. Moreover, noise signals could be
mistakenly detected as electrodes (La Plante et al., 2016), whereas CT image resolution affects
localization accuracy (Brang et al., 2016). Apart from the studies above, the effect of
signal-to-noise ratio on the precision of electrode localization algorithms was rarely discussed,
most likely due to the lack of standardized measures to quantify the noise level.

The proposed framework provides a controlled simulation of noise levels and overlapping
electrodes, allowing performance evaluation of different localization algorithms.

The spatial resolution of grids and depth electrodes has increased over the last years (Chang,
2015; Erhardt et al., 2020), and high-density arrays are more informative than low-density ones
in both cognitive (Gupta et al., 2014; Jiang et al., 2018) and clinical research (Stead et al., 2010).
High-density electrodes require additional spatial precision and can be an obstacle for many of
the frequently used localization algorithms (but see: Branco et al., 2018b; Hamilton et al., 2017;
Narizzano et al., 2017). Simulations can be a reliable platform to develop novel localization
techniques for high-density electrode arrays (e.g., Blenkmann et al., unpublished).

It is important to mention that our models introduced deformations on the order of 1/1000 of the
inter-electrode distance, and distances between electrodes and the SCE on the order of 1/100
mm, which ensures precise modeling of the grids and strips. These errors and deformations are
negligible compared with those observed with previous localization (~ 0.2-0.6 mm; Blenkmann
et al., 2017; Narizzano et al., 2017) and brain-shift correction algorithms (~ 2-3 mm; Trotta et al.,
2018; Branco et al., 2018a; Branco et al., 2018b; Brang et al., 2016).
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4.4. Assumptions, limitations, and future directions

Although we provide a substantial number of scenarios and a good starting point to model
implanted electrodes, there are some noteworthy limitations of the current models.

First, we took a simple approach to the spatial intensity distribution of CT artifacts. The
simplistic assumption allowed us to build realistic models of large arrays of electrodes.
However, more sophisticated approaches could be implemented, considering the x-ray
interaction with metallic electrodes and the effects produced in the image reconstructions (Boas
& Fleishmann, 2011; Katsura et al., 2018). Developments in this direction could pave the way to
model the artifacts produced by microwires at the tip of depth electrodes (e.g., Behnke-Fried
electrodes, Ad-Tech Medical) and the design of novel localization algorithms for this specific
and unsolved problem.

Second, the implantation of intracranial grids and strips is a procedure that results in the
deformation of the brain tissue. Deformations of 10 mm or more can occur on the brain surface
around the electrodes or in deeper brain structures due to cerebrospinal fluid loss in the ventricles
(Studholme et al., 2001; LaViolette et al., 2011). Implantation of depth electrodes might also
produce brain deformations but to a much lower extent, with a smaller amount of cerebrospinal
fluid loss, if any (Elias et al., 2007). Modeling brain deformations is a complex problem, where
multiple variables have to be considered, such as the size and location of the skull opening, the
amount of cerebrospinal fluid loss, and the swelling of soft tissue, among others (Studholme et
al., 2001). Given the complexity of such a problem, we assumed non-deformed brains in our
simulations, precluding their use to evaluate brain-shift correction algorithms. The use of
non-linear finite element methods can be a successful way to model these more complex brain
deformations (Wittek et al., 2007).

5. Conclusions

Intracranial EEG recordings allow us to study brain function with excellent spatial resolution and
rely on precisely localizing the implanted electrodes. Here, we presented the first platform to
model electrode coordinates and CT artifacts of implanted grids, strips, and depth electrodes.
Implanted electrodes under realistic scenarios were successfully modeled with high accuracy,
resembling real cases. These methods enable the systematic and quantitative evaluation of
electrode localization strategies, contributing to the development of future techniques. The
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platform should be considered a starting point for more sophisticated models, e.g., including
brain tissue deformations or microwires.

The modeling methods and the results from the simulations are freely available to the research
community via open repositories. Moreover, a graphical user interface implementation is also
available via the open-source iElectrodes toolbox.
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Supplementary material

Supplementary Figure 1. Pial surface and Smooth Cortical Envelope

Smooth Cortical Envelope (SCE, in semi-transparent violet) over the pial surface (in pink) computed for
an individual subject’s brain. The SCE is enclosing the pial surface using a 30 cm sphere. Simulated grids
and strips were overlaid on the SCE surface.

The same procedure was also applied to the MNI standard brain.

SCE: Smooth Cortical Envelope
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Supplementary Figure 2. Curvature of SCE and seed points

Left: Local curvature of a smoothed version of the MNI SCE showing the selected seed points in Low
(black), Medium (green), and High (red) curvature regions.

Right: Boxplots showing the curvature values for seed points in Low, Medium, and High curvature areas.
Curvature values were computed for each seed point as the mean within 25 mm.

The center line (red) of each boxplot represents the median and the edges are the 25th (Q1) and 75th
(Q3) percentiles. The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually.

SCE: Smooth Cortical Envelope
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