

Immune microenvironment subtypes and association with tumor cell mutations and antigen expression in follicular lymphoma.

3

4 Guangchun Han^{1*}, Qing Deng^{2*}, Enyu Dai¹, Minghao Dang¹, John Ma², Haopeng Yang², Olga
5 Kudryashova³, Mark Meerson³, Sergey Isaev³, Nikita Kotlov³, Krystle Nomie³, Alexander Bagaev³,
6 Simrit Parmar², Fredrick Hagemeister², Sairah Ahmed², Swami Iyer², Filepe Samaniego²,
7 Raphael Steiner², Luis Fayad², Hun Lee², Nathan Fowler^{2,3}, Francisco Vega⁴, Christopher R.
8 Flowers², Paolo Strati², Jason R. Westin², Sattva S. Neelapu², Loretta J. Nastoupil², Linghua
9 Wang^{1,5¥}, Michael R. Green^{1,2,5,6¥}

10 ¹Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030; ²Department
11 of Lymphoma & Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030; ³BostonGene
12 Corporation, Waltham, MA 02453; ⁴Department of Hematopathology, University of Texas MD Anderson Cancer Center,
13 Houston, TX 77030; ⁵MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX,
14 77030. ⁶Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030.

15

16 *Corresponding authors:
17 Michael R. Green, Ph.D.
18 Department of Lymphoma & Myeloma,
19 University of Texas MD Anderson Cancer Center,
20 1515 Holcombe Blvd., Unit 903,
21 Houston, TX 77030
22 Email: mgreen5@mdanderson.org
23 Phone: +1-713-745-4244

24
25 Linghua Wang, M.D., PhD
26 Department of Genomic Medicine,
27 University of Texas MD Anderson Cancer Center,
28 1881 East Road, Unit 1954
29 Houston, TX 77054
30 Email: lwang22@mdanderson.org
31 Phone: +1-713-563-2293

2

24

35 Abstract:

36 Follicular lymphoma (FL) is a B-cell lymphoma with a complex tumor microenvironment that is
37 rich in non-malignant immune cells. We applied single-cell RNA-sequencing to characterize the
38 diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL
39 T-cells including a novel cytotoxic CD4 T-cell population. Their relative proportions of T-cells
40 defined four major FL subtypes, characterized by differential representation or relative depletion
41 of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations
42 are associated with, but not definitive for, reduced antigen presentation on FL cells. In turn,
43 expression of MHC class II genes by FL cells was associated with significant differences in the
44 proportions and targetable immunophenotypic characteristics. This provides a classification
45 framework of the FL microenvironment, their association with FL genotypes and antigen
46 presentation, and informs different potential immunotherapeutic strategies based upon tumor cell
47 MHC class II expression.

48

49

50 Statement of significance: We have characterized the FL-infiltrating T-cells, identified cytotoxic
51 CD4 T-cells as an important component, showed that the abundance of these T-cell populations
52 is associated with tumor-cell-intrinsic characteristics, and identified sets of targetable immune
53 checkpoints on T-cells that differed between FLs with normal versus low antigen presentation.

54

55

56

57

58

59

60

61 **Introduction**

62 Follicular lymphoma (FL) is an indolent lymphoma of germinal center B-cells that maintain follicle-
63 like architecture and interact closely with T-cells and other immune cells. These immune
64 interactions are critical to FL etiology¹ and can be perturbed by somatic mutations that are
65 frequent in FLs²⁻⁴. Understanding the immune tumor microenvironment (iTME) of FL and the
66 interplay between perturbed immune interactions and distinct tumor-infiltrating T-cell (TINT)
67 populations will be important for building precision immunotherapeutic approaches, but these
68 concepts have yet to be comprehensively addressed using high-throughput approaches. Single
69 cell RNA-sequencing (scRNA-seq) is a powerful and high-throughput approach that has revealed
70 the deregulation of normal B-cell developmental programs and allowed for the characterization of
71 targetable immune checkpoints on TINT cells^{5,6}. However, these studies have been limited to a
72 few patients and has not yet been used to investigate broader iTME profiles, or the relationship
73 between somatic mutations, tumor B-cell expression profiles and changes in the iTME. Using
74 scRNA-seq of FL lymph node biopsies, we characterized phenotypically distinct subsets of TINT
75 cells, including a novel cytotoxic CD4 T-cell population, and validated in a large series that the
76 composition of these T-cell subsets defines four distinct subtypes of iTME in FLs. By integrating
77 exome sequencing and scRNA-sequencing data, we showed that somatic mutations in chromatin
78 modifying genes can affect the expression of immune interaction genes encoding proteins such
79 as major histocompatibility complex (MHC) class I and class II on tumor cells, which is in turn
80 associated with changes in the frequencies and targetable immune profiles of T-cell subsets in
81 FL tumors.

82

83

84

85

86

87 **Results**

88 Single cell RNA sequencing (scRNA-seq) of FL

89 We performed scRNA-seq of 20 FL and three reactive lymph nodes (RLN) using the 10X
90 Chromium platform to profile the transcriptome in addition to T-cell receptor (TCR) and
91 immunoglobulin (Ig) repertoires (Table S1). Additional marker genes were subjected to targeted
92 sequencing by CapID, as previously described⁷. Each biopsy was analyzed fresh to retain cell
93 types that are sensitive to cryopreservation, and included 11 previously untreated and nine
94 relapsed FLs (median 1 line of prior therapy, range 1-6) that were grade 1-2 (n=14) or 3a (n=6).
95 RLN (n=3) samples were included as controls. We sequenced a median of 6,138 (range; 635-
96 11,070) cells per sample to a median of 57,933 (range; 49,833-324,873) reads per cells and
97 detected a median of 1,115 (range; 447-2,979) genes per cell. After rigorous quality filtering,
98 137,147 cells were retained for subsequent analyses (Figure 1A). Unsupervised clustering
99 analysis following batch effects correction identified six major cell lineages: B-cell, T-cell,
100 monocyte/macrophage, follicular dendritic cell (fDC), plasmacytoid dendritic cell (pDC), and
101 erythroid cell clusters, as determined by cluster marker genes (**Figure 1B-C**; Table S2).

102

103 B-cells were re-clustered (**Fig. 1D-E**) and cells defined as either tumor or non-malignant by the
104 presence/absence of a clonal immunoglobulin sequence (**Fig. 1F**) or DNA copy number
105 alterations (Fig. S1). Clusters of non-malignant B-cells (C2), plasma cells (C15) and proliferating
106 B-cells (C6) included non-malignant cells from both FL and RLN samples (**Fig. 1D-E**). A central
107 cluster (C0) was also found to contain cells from multiple samples, but consisted exclusively of
108 clonal malignant B-cells from FLs, suggesting that tumor cells from a subset of cases have shared
109 transcriptional characteristics. These FLs consisted of both low and high-grade tumors, but 74%
110 of cells originated from treatment-naïve tumors (Table S1) suggesting that tumor B-cells from
111 relapsed FLs have a greater inter-sample divergence in transcriptional profiles compared to
112 treatment-naïve FLs.

113

114 Tumor infiltrating T-cell composition defines iTME subtypes of FL

115 T-cells comprised of a median of 87.6% (range 73.8% to 98.9%) of the non-malignant cells within
116 the iTME (**Fig. 2A**). We further characterized phenotypically distinct subsets of CD4 and CD8 T-
117 cells by subclustering analysis (Fig. S2; Table S3). Clusters of CD8 T-cells included naïve (CCR7,
118 *SELL*, and *IL7R*), effector (granzymes *GZMA/B/K* and *PRF1*) and exhausted (CD8_{Exh}, high
119 expression of inhibitory immune checkpoint genes such as *TIGIT* and *LAG3*, and a high
120 exhaustion score) subsets (**Fig. 2B-C**). Trajectory analysis showed that these represent a
121 functional continuum from naïve through to exhausted states (Fig. S3). Subclustering analysis of
122 CD4 T-cells identified four transcriptome states (**Fig. 2D**), including naïve (high expression of
123 *CCR7*, *SELL* and *IL7R*), T-regulatory (T_{REG}; high expression of *FOXP3*, *CTLA4*, *IL2RA*), T
124 follicular helper (T_{FH}; high expression of *PDCD1*, *TOX*, *TOX2*, *CXCR5* and *CD40LG*), and
125 cytotoxic CD4 T-cells (CD4_{CTL}; high expression of *GZMA/K*, *NKG7*, and *EOMES*), all of which
126 were detected in both FL and RLN samples. While naïve, T_{REG} and T_{FH} cells are well-described
127 components of FL¹, there are no prior reports of CD4_{CTL} cells in FL or any other germinal center
128 derived lymphoma. CD4_{CTL} cells express *CD4* but not *CD8A/B*, have a high cytotoxicity score with
129 *GZMK* expression detectable in 89.6% of cells, and high expression of the *EOMES* transcription
130 factor that is implicated in CD4_{CTL} development⁸. In addition, CD4_{CTL} cells bear some similarities
131 to T_{FH} cells, including high expression of *CXCL13* and *PDCD1*, and are most closely related to
132 T_{FH} cells by trajectory analysis (Fig. S3). A high fraction of CD4_{CTL} expressed co-inhibitory
133 receptors (*LAG3*, *CTLA4*, *HAVCR2*; Table S3) that are potentially targetable. Thus, our scRNA-
134 seq analysis revealed a novel cytotoxic CD4 T-cells component of the lymphoid and FL iTME that
135 requires further functional exploration.

136

137 The abundance of functionally distinct tumor infiltrating T-cell (TINT) populations that we
138 characterized by scRNA-seq were highly variable across patients (**Fig. 2A**). We therefore

139 assessed their representation across an external validation set of bulk gene expression profiling
140 (GEP) from 1,269 FLs compiled from 15 datasets. Signatures derived from our scRNA-seq data
141 were validated in publicly available scRNA-seq data (Fig. S4), then used to infer the abundance
142 of each cell type by single cell gene set enrichment analysis (ssGSEA) followed by clustering the
143 inferred frequencies to define sets of tumors with similar TINT profiles (**Fig. 2E**), as previously
144 described⁹. This revealed four distinct subtypes of iTME in primary human FL based on the
145 relative abundance of TINT cells: (TINT1) high in CD8 effector, CD8 naïve and CD4 naïve;
146 (TINT2) high in CD8_{Exh}, T_{REG}, T_{FH} and CD4_{CTL}; (TINT3) high in malignant B-cells and depleted of
147 T-cell subsets; (TINT4) high in malignant B-cells and depletion of CD8 effector, CD8 naïve and
148 CD4 naïve. The landscape of TINT as defined by scRNA-seq cell composition and measured in
149 bulk GEP data therefore defines four distinct subsets of iTME in primary human FL.

150

151 Multiple mechanisms of MHC class II loss on FL tumor B cells

152 Mutations in chromatin modifying genes (CMGs) are a hallmark of FL¹⁰, and affect the expression
153 of genes in tumor B-cells through epigenetic dysregulation. The most frequently mutated CMGs
154 (*KMT2D*, *CREBBP* and *EZH2*) have each been implicated in deregulating interactions between
155 tumor cells and T-cells^{3,4,11}, leading us to hypothesize that these mutations may underlie tumor-
156 cell-intrinsic gene expression changes that drive differential TINT profiles. Using whole exome
157 sequencing of tumors with available DNA (n=19; Table S5; **Fig. 3A**), we applied single cell
158 differential gene expression profiling to identify genes that were significantly altered in association
159 with these mutations (**Fig. 3B**; Tables S6). Collectively, the union of genes with significantly
160 reduced expression (FDR q-value<0.05, fold change>1.2; n=355; Table S6) in association with
161 one or more of these mutations was significantly enriched for genes involved in immune cell
162 interactions ($p = 1.4 \times 10^{-7}$) including those with a role in antigen processing and presentation ($p =$
163 2.2×10^{-29}), confirming that these mutations alter genes involved in immune cell interactions (**Fig.**
164 **3C**). In line with prior reports, *CREBBP* and *EZH2* mutations were both associated with reduced

165 expression of multiple genes involved in antigen presentation through the MHC molecule^{3,11},
166 which present antigens that are recognized by T-cell receptors and therefore affect T-cell
167 activation. Mutations of *CREBBP* co-occurred with *EZH2* mutations in three out of four cases and
168 were predominantly associated with lower MHC class II (MHCII) expression (**Fig. 3D**), while *EZH2*
169 mutations were selectively associated with lower MHC class I (MHCI) expression. *KMT2D*
170 mutations were also associated with reduced expression of a subset of MHCI genes, and co-
171 occurred with *EZH2* mutations in three out of four tumors. Using non-malignant B-cells from RLNs
172 as reference to define normal *MHCI* and *MHCII* expression levels, we observed that loss of MHCI
173 and/or MHCII was not restricted to *EZH2* and/or *CREBBP* mutant tumors (**Fig. 3E**). Specifically,
174 MHCII loss was most prevalent and observed in 58% (11/19) of tumors, but 27% (3/11) of MHCII-
175 low tumors lacked *CREBBP* or *EZH2* mutations. Further, one *CREBBP* mutant tumor did not
176 show MHCII loss at mRNA level. CMG mutations in FL are therefore associated with perturbed
177 expression of immune interaction genes on tumor B-cells, but additional mechanisms exist for
178 MHCI and MHCII loss that are likely to have an equal impact on tumor infiltrating immune cells
179 via deregulation of immune synapse formation.

180

181 Frequencies and targetable features of TINT are associated with tumor B-cell MHCII expression
182 Having observed different patterns of TINT in FL, and mutation-associated changes in MHCI and
183 MHCII expression on tumor B-cells, we next evaluated whether these features were associated.
184 Tumor MHCII loss was more significantly associated with TINT frequencies than somatic
185 mutations of *CREBBP*, *EZH2* or *KMT2D* (Table S7), and was more frequent than MHCI loss, so
186 we focused on this feature. MHCII-low tumors had significantly reduced levels of CD8_{Exh} and
187 CD4_{CTL} (**Fig. 4A**) – features of the TINT2 microenvironment subtype (**Fig. 2E**). Despite a relatively
188 modest sample size, we observed both a quantitative and qualitative relationship between MHCII
189 expression/status and the frequencies of these TINT subsets (**Fig. 4B-D**). In mantle cell
190 lymphoma, tumor cell immunopeptidome profiling revealed presentation of tumor idiotype

191 peptides in MHCII that were recognized by CD4_{CTL} in the peripheral blood¹². We therefore
192 reasoned that loss of MHCII may be selectively acquired in cells that have accumulated
193 immunogenic mutations in their idioype sequences, and thus may be restricted to immunogenic
194 clades of the immunoglobulin hierarchy. By evaluating paired single cell BCR sequencing data,
195 we found anecdotal evidence of this in three FL tumors (Fig. S5), but this trend was not
196 widespread in this cohort.

197

198 In addition to changes in the frequencies of CD4 T-cells, we explored differences in gene
199 expression of tumor infiltrating CD4 and CD8 T-cells using single cell differential gene expression
200 analysis (Table S8-S9; **Fig. 4E-J**). Cells were clustered within the space of the differentially
201 expressed genes (DEGs), which revealed three clusters for both CD4 and CD8 T-cells that had
202 significantly different representation of cells from MHCII-high vs MHCII-low tumors (**Fig. 4E**, CD4,
203 p=3.8x10⁻⁶⁷; **Fig. 4H**, CD8, p=2.1x10⁻⁶¹). The DEGs includes markers of activation, transcription
204 factors and multiple targetable cell surface immune checkpoint molecules. C1 clusters which have
205 the lowest frequency of cells from MHCII-low tumors expressed the highest level of these genes,
206 and C3 clusters which have the greatest frequency of cells from MHCII-low tumors express low
207 levels of these genes. This is suggestive of higher levels of T-cell activation and exhaustion in
208 tumors that have retained MHCII expression, as supported by GSVA analysis of a previously
209 described exhaustion score (**Fig. 4G & J**), and in line with prior associations between MHCII
210 expression and superior response to immune checkpoint blockade¹³. We therefore aimed to
211 assess the most dynamic pairs of immune checkpoints that may serve as therapeutic targets in
212 FL tumors with high MHCII (**Fig. 4K**). Within the CD8 T-cell compartment, the most significant
213 change was increased frequencies of *LAG3* and *TIGIT* dual-expressing cells (fold-change = 4.3;
214 FDR q-value = 1.6x10⁻³; **Fig. 4K & L**), which have yet to be explored as combination therapeutic
215 targets in lymphoma. The most significant change in the CD4 T-cell compartment was the
216 increased prevalence of *TNFRSF4* (aka. *OX40*) and *CTLA4* dual-expressing CD4 T-cells (fold-

217 change = 3.9; FDR q-value = 0.01; **Fig. 4K & M**), combined targeting of which has been shown
218 to be highly efficacious in preclinical models of lymphoma¹⁴. Thus, tumor cell MHCII expression
219 correlates with the frequency and targetable immune profile of TINT cells in FL, highlighting
220 subsets of FL that are likely to have differential responses to specific immune checkpoint
221 blockade.

222

223 Discussion

224 Follicular lymphoma is an indolent disease, with some patients having equivalent overall survival
225 to age-matched controls^{15,16}. Decreasing the use of cytotoxic chemotherapy in the treatment of
226 FL is therefore a priority. The iTME of FL is a complex ecosystem that includes large numbers of
227 T-cells that provide survival signals that are integral to disease etiology, offering an attractive
228 opportunity for immunotherapeutics that target critical nexuses. However, single agent checkpoint
229 blockers such as anti-PD1/PD-L1 are largely ineffective in FL¹⁷. Understanding the characteristics
230 of the FL iTME and how it is modulated by tumor-cell-intrinsic characteristics is therefore an
231 important step towards the rational design of combination immunotherapeutic strategies that may
232 have increased efficacy.

233

234 The large number of cells that we sequenced afforded us the power to identify functionally distinct
235 subsets of T-cells. Among these was a subset of CD4_{CTL} that have not been previously
236 appreciated as a component of the FL iTME, and have been infrequently described in other
237 cancers such as bladder cancer¹⁸ and in the peripheral blood of mantle cell lymphoma patients¹².
238 In the latter, these cells were shown to recognize tumor idiotype peptides presented in MHCII.
239 However, we did not find strong evidence in support of this in FL. CD4_{CTL} play an important role
240 in antiviral immune responses⁸, and their development in this context has been shown to be
241 mediated by the transcription factors T-bet or EOMES⁸. Consistent with this, we observed high
242 expression of *EOMES* in the CD4_{CTL} that we defined. Interestingly, CD4_{CTL} were also detected

243 within RLN samples suggesting that these cells may be a normal component of the lymphoid
244 microenvironment. However, there were significant differences in gene expression between
245 CD4_{CTL} from FLs compared to RLN such as the downregulation of costimulatory receptors and
246 IL6 signaling genes that are suggestive of dysfunction in FL. In addition, we identified multiple
247 potential therapeutic targets on CD4_{CTL}, including exhaustion markers *CTLA4*, *LAG3* and
248 *HAVCR2* (aka. *TIM-3*). Future studies are needed to characterize the role of CD4_{CTL} in normal
249 and malignant lymphoid tissues, and whether these cells can be targeted to induce anti-lymphoma
250 immunity.

251

252 Loss of antigen presentation is common in FL and has been linked to recurrent mutations in
253 *CREBBP* and *EZH2*^{3,11}. We confirmed this association but also identified multiple cases of FL with
254 mutation-independent loss of antigen presentation and showed that the antigen presentation
255 status is more significantly associated with TINT characteristics than somatic mutations.
256 Specifically, we observed an association between normal MHCII expression on tumor B-cells and
257 higher frequencies of CD4_{CTL} and CD8_{Exh} T-cells. The high expression of exhaustion markers on
258 both CD4_{CTL} and CD8_{Exh} suggests that FL tumors with normal MHCII expression may have an
259 inflammatory microenvironment that promotes adaptive immune suppression and T-cell
260 exhaustion. In other cancers, ‘warm’ microenvironments such as this show greater response to
261 immune checkpoint blockade¹⁹. We explored potential therapeutic targets on the T-cells from FL
262 tumors with retained MHCII expression and identified *LAG3+TIGIT* and *CTLA4+TNFRSF4* as
263 potential combination immunotherapy targets for CD8 and CD4 T-cells, respectively. Our data
264 also suggest that tumors with MHCII loss may have ‘cold’ microenvironments and be less
265 responsive to immune checkpoint blockade. Therefore, tumor cell MHCII expression status should
266 be prospectively explored as a potential biomarker for selection of, and response to, immune
267 checkpoint therapies in FL.

268

269 CD19 chimeric antigen receptor (CAR) T-cell therapy is highly efficacious in relapsed/refractory
270 FL and has recently been FDA approved in this setting. Responses are likely to be impacted by
271 the tumor microenvironment characteristics of FL, but these characteristics have not been
272 thoroughly explored in a large series of tumors. We therefore leveraged our signatures from
273 scRNA-seq data to explore the relative representation of T-cell subsets in a large number of
274 tumors using bulk GEP data. This identified four major subtypes of FLs characterized by different
275 patterns of TINT cells, including 'warm' (TINT1, TINT2), 'cold' (TINT3) and intermediate (TINT4)
276 subtypes, consistent with prior observations using NanoString GEP²⁰. Mutation data were not
277 available for these tumors to evaluate the relationship between tumor microenvironment subtype
278 and mutations of *CREBBP* or *EZH2*, and tumor MHCII status cannot be predicted due to highly
279 variable frequencies of tumor infiltrating T-cells and other antigen presenting cells. This will
280 therefore require prospective validation using orthogonal approaches. However, consistent with
281 our scRNA-seq data, T-cell subsets that express high levels of exhaustion markers (CD4_{CTL} and
282 CD8_{Exh}) were correlated in their relative representation across these microenvironment subtypes.
283 We therefore suggest that evaluation of these tumor infiltrating T-cell subtypes may be important
284 to prospectively evaluate in FL patients being treated with CD19 CAR T-cells and other cellular
285 therapies or immunotherapies.

286

287 In conclusion, the FL tumor microenvironment is highly variable across patients and influenced
288 by tumor-cell-intrinsic characteristics such as somatic mutations and antigen presentation status.
289 The characteristics of tumor infiltrating T-cells allow for data-driven selection of combination
290 immunotherapy targets, and highlight 'warm' and 'cold' microenvironments that are important to
291 prospectively consider as potential determinants of immunotherapeutic and cellular therapy
292 responses in FL patients.

293

294

295 **Methods**

296 For detailed methods, please refer to the supplementary information. FL and RLN biopsies were
297 obtained following informed consent under protocols approved by the Institutional Review Board
298 of MD Anderson Cancer Center (Protocols 2005-0656 and PA19-0420). Tissues were processed
299 fresh by physical disaggregation through a metal screen followed by a 40 μ M filter and loaded
300 onto a 10X Chromium with 5'GEX chemistry to obtain a goal of 10,000 cells per sample.
301 Transcriptome, BCR and TCR libraries were prepared and sequenced according to the
302 manufacturer's protocol. CapID hybrid-capture sequencing of transcriptome libraries was
303 performed as previously described⁷. Single cell RNA-sequencing analysis was performed
304 following quality filtering and batch correction using Seurat²¹. Genomic DNA from residual cells
305 and interrogated by whole exome sequencing using Nimblegen SeqCap Exome v3. Somatic
306 mutations were identified and annotated as previously described²².

307

308 **Acknowledgements**

309 This work was supported by R01 CA201380 (MRG), the MD Anderson Cancer Center Support
310 Grant (P30 CA016672), the Jaime Erin Follicular Lymphoma Research Consortium (MRG, SN),
311 the Futch Foundation (LN, MRG), and an MD Anderson Institutional Research Grant (LW).
312 MRG is a Scholar of the Leukemia and Lymphoma Society. HY is a fellow of the Leukemia and
313 Lymphoma Society. PS is supported by a Lymphoma Research Foundation Career Development
314 Award.

315

316 **Disclosures**

317 OK, MM, SI, NK, KN, AB and NF report employment by BostonGene Corporation. SA reports
318 consultancy for Tessa Therapeutics and research funding from Seattle Genetics. SI reports
319 research funding from Merck, Seattle Genetics, Rhizen, Affimed, Spectrum, Trillium, CrisprRx,
320 Novartis and honoraria from Target Oncology, Curio Biosciences outside the submitted work. FV

321 reports research funding from CRISP Therapeutics and Geron Corporation, and honoraria from
322 i3Health, Elsevier, America Registry of Pathology, and Society of Hematology Oncology. PS
323 reports consultancy for Roche-Genentech and research support from Astrazeneca-Acerta. SSN
324 reports honoraria from Kite/Gilead, Merck, Bristol Myers Squibb, Novartis, Celgene, Pfizer,
325 Allogene Therapeutics, Cell Medica/Kuur, Incyte, Precision Biosciences, Legend Biotech, Adicet
326 Bio, Calibr, and Unum Therapeutics, research support from Kite/Gilead, Bristol Myers Squibb,
327 Merck, Poseida, Cellectis, Celgene, Karus Therapeutics, Unum Therapeutics, Allogene
328 Therapeutics, Precision Biosciences, and Acerta, and royalties from Takeda Pharmaceuticals.
329 LJN reports honorarium from ADC Therapeutics, Bayer, BMS/Celgene, Epizyme Genentech,
330 Gilead/Kite, Janssen, Morphosys, Novartis, Pfizer, TG Therapeutics and research support from
331 BMS/Celgene, Caribou Biosciences, Epizyme Genentech, IgM Biosciences, Janssen, Merck,
332 Novartis, Pfizer, and TG Therapeutics. MRG reports research funding from Sanofi, Kite/Gilead,
333 Abbvie and Allogene, honoraria from Tessa Therapeutics and Daiichi Sankyo, and stock
334 ownership of KDAc Therapeutics.

335

336 References:

- 337 1. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. *J Clin Invest.* 2012;122(10):3424-3431.
- 338 2. Green MR, Alizadeh AA. Common progenitor cells in mature B-cell malignancies: 339 implications for therapy. *Curr Opin Hematol.* 2014;21(4):333-340.
- 340 3. Ennishi D, Takata K, Beguelin W, et al. Molecular and Genetic Characterization of MHC 341 Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition. *Cancer 342 Discov.* 2019.
- 343 4. Wang G, Chow RD, Zhu L, et al. CRISPR-GEMM pooled mutagenic screening identifies 344 KMT2D as a major modulator of immune checkpoint blockade. *Cancer Discov.* 2020.
- 345 5. Milpied P, Cervera-Marzal I, Mollichella ML, et al. Human germinal center transcriptional 346 programs are de-synchronized in B cell lymphoma. *Nat Immunol.* 2018;19(9):1013-1024.
- 347 6. Andor N, Simonds EF, Czerwinski DK, et al. Single-cell RNA-Seq of follicular lymphoma 348 reveals malignant B-cell types and coexpression of T-cell immune checkpoints. *Blood.* 349 2019;133(10):1119-1129.
- 350 7. Deng Q, Han G, Puebla-Osorio P, et al. Characteristics of anti-CD19 CAR T-cell infusion 351 products associated with efficacy and toxicity in patients with large B-cell lymphomas. *Nat Med.* 352 2020;26(12):1878-1887.
- 353 8. Juno JA, van Bockel D, Kent SJ, Kelleher AD, Zaunders JJ, Munier CM. Cytotoxic CD4 T 354 Cells-Friend or Foe during Viral Infection? *Front Immunol.* 2017;8:19.

356 9. Kotlov N, Bagaev A, Revuelta MV, et al. Clinical and biological subtypes of B-cell
357 lymphoma revealed by microenvironmental signatures. *Cancer Discov.* 2021.

358 10. Green MR. Chromatin modifying gene mutations in follicular lymphoma. *Blood.*
359 2018;131(6):595-604.

360 11. Green MR, Kihira S, Liu CL, et al. Mutations in early follicular lymphoma progenitors are
361 associated with suppressed antigen presentation. *Proc Natl Acad Sci U S A.*
362 2015;112(10):E1116-1125.

363 12. Khodadoust MS, Olsson N, Wagar LE, et al. Antigen presentation profiling reveals
364 recognition of lymphoma immunoglobulin neoantigens. *Nature.* 2017;543(7647):723-727.

365 13. Rodig SJ, Gusenleitner D, Jackson DG, et al. MHC proteins confer differential sensitivity
366 to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. *Sci Transl Med.*
367 2018;10(450):eaar3342.

368 14. Marabelle A, Kohrt H, Sagiv-Barfi I, et al. Depleting tumor-specific Tregs at a single site
369 eradicates disseminated tumors. *J Clin Invest.* 2013;123(6):2447-2463.

370 15. Rivas-Delgado A, Magnano L, Moreno-Velazquez M, et al. Response duration and
371 survival shorten after each relapse in patients with follicular lymphoma treated in the rituximab
372 era. *Br J Haematol.* 2018.

373 16. Magnano L, Alonso-Alvarez S, Alcoceba M, et al. Life expectancy of follicular lymphoma
374 patients in complete response at 30 months is similar to that of the Spanish general population.
375 *Br J Haematol.* 2019;185(3):480-491.

376 17. Flowers CR, Leonard JP, Nastoupil LJ. Novel immunotherapy approaches to follicular
377 lymphoma. *Hematology Am Soc Hematol Educ Program.* 2018;2018(1):194-199.

378 18. Oh DY, Kwek SS, Raju SS, et al. Intratumoral CD4(+) T Cells Mediate Anti-tumor
379 Cytotoxicity in Human Bladder Cancer. *Cell.* 2020;181(7):1612-1625 e1613.

380 19. Duan Q, Zhang H, Zheng J, Zhang L. Turning Cold into Hot: Firing up the Tumor
381 Microenvironment. *Trends Cancer.* 2020;6(7):605-618.

382 20. Tobin JWD, Keane C, Gunawardana J, et al. Progression of Disease Within 24 Months in
383 Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration. *J Clin Oncol.*
384 2019;37(34):3300-3309.

385 21. Butler A, Hoffman P, Smibert P, Papalex E, Satija R. Integrating single-cell transcriptomic
386 data across different conditions, technologies, and species. *Nat Biotechnol.* 2018;36(5):411-420.

387 22. Ma MCJ, Tadros S, Bouska A, et al. Subtype-specific and co-occurring genetic alterations
388 in B-cell non-Hodgkin lymphoma. *Haematologica.* 2021.

389

390

391

392

393

394

395

396

397

398 Figure Legends

399 **Figure 1: Overview of major cell types and clusters from single cell RNA sequencing of 20**
400 **FL tumors. A-B)** UMAP plots show 137,147 cells from 20 FL tumors and 3 RLT controls by
401 sample ID (A) and cluster ID (B). Major cell types are annotated in B. **C)** Bubble plot of cell lineage
402 marker genes are shown for B-cell, T-cell, natural killer cell (NK), erythroid,
403 monocyte/macrophage (MM), plasmacytoid dendritic cell (pDC) and follicular dendritic cell (fDC)
404 clusters. **D-F)** UMAP plots show re-clustering of 99,610 B-cells by cluster ID (D), sample ID (E),
405 and immunoglobulin clonotype (F). Among B-cell clusters, we identified those corresponding to
406 non-malignant B-cells (C2), proliferating cells (C6), plasma cells (C15). A malignant B-cell cluster
407 bearing cells from multiple samples was identified (C0). The contribution of each sample to each
408 cluster is shown in the bar graph in E, with many clusters consisting of tumor B-cells from a single
409 sample as determined by immunoglobulin clonotype (F) or patterns of inferred copy number
410 variation (Figure S1).

411

412

413

414

415

416

417

418

419

420

421

422

423 **Figure 2: Tumor infiltrating T-cell populations in follicular lymphoma. A)** A bar graph shows
424 the frequency of non-malignant immune cell populations within FL, with the majority of cells
425 belonging to the T-cell lineages. **B)** UMAP plots from re-clustering of 6,700 CD8 T-cells shows 3
426 major populations aligning with naïve, effector (eff) and exhausted (exh) states. Single cell GSVA
427 of a CD8 T-cell exhaustion signature shows the highest expression in the CD8_{Exh} cluster, which
428 is also characterized by high expression of *TIGIT* and *LAG3*. **C)** A bubble plot shows the
429 proportion of cells of CD8 and CD4 T-cell clusters expressing known phenotypic marker genes
430 (size of circles) and their average expression levels (color of circles). D) UMAP plots from re-
431 clustering of 22,782 CD4 T-cells shows 4 major subpopulations aligning with naïve, regulatory
432 (T_{REG}), T follicular helper (T_{FH}) and CD4 cytotoxic (CD4_{CTL}) states. Single cell GSVA of a cytotoxic
433 score including immune effector molecules shows high expression in the CD4_{CTL} cluster, which is
434 also characterized by high expression of *GZMK* and *EOMES*. **E)** A heatmap shows the relative
435 proportions of CD8 and CD4 tumor infiltrating T-cell (TINT) populations calculated by
436 deconvolution from publicly available bulk gene expression microarray or RNA-sequencing
437 datasets (n=1,269 FL tumors from 15 datasets, see Supplementary Methods). Unsupervised
438 clustering identified 4 characteristics patterns (TINT1-4) with different relative abundance of
439 tumor-infiltrating T-cell populations.

440

441

442

443

444

445

446

447

448 **Figure 3: Effect of somatic mutations on tumor B-cell expression profiles. A)** An oncoplot
449 shows recurrently mutated genes in the 19 FL tumors with available DNA. **B)** Volcano plots
450 displaying differentially expressed genes between tumor B-cells from *KMT2D* (left), *CREBBP*
451 (middle) or *EZH2* (right) wild-type and mutant tumors. Examples are annotated and the full list
452 provided in Table S6. **C)** Venn diagrams display the overlap of genes with increased (left) or
453 decreased (right) expression associated with each mutation, with genes encoding cell surface
454 proteins annotated. **D)** Odds ratio (+/- 95% CI) are shown for association between individual
455 mutations and MHCII status (two-tailed Fisher's exact test $p=0.028$). **E)** The expression of MHCII
456 (brown, above) and MHCI genes (green, below) are shown for individual tumor B-cells from each
457 tumor with available mutation data. Mutations of *CREBBP*, *EZH2* and *KMT2D* are annotated at
458 the top. Sample IDs are colored according to Figure 1A and tumors with additional mutations in
459 **CITA* and ***B2M* that may also affect MHCII and MHCI expression, respectively, are annotated
460 by asterisk.

461

462

463

464

465

466

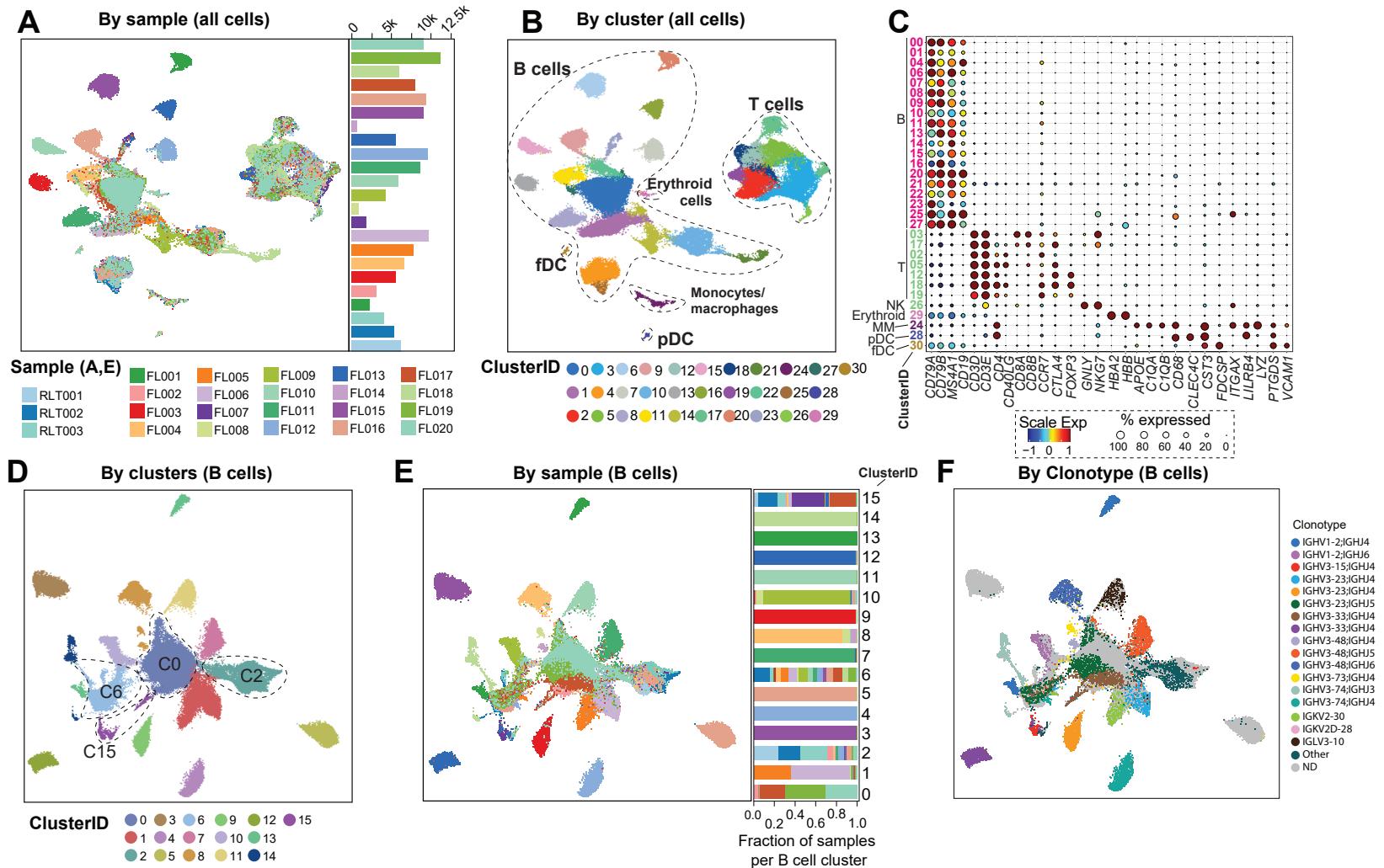
467

468

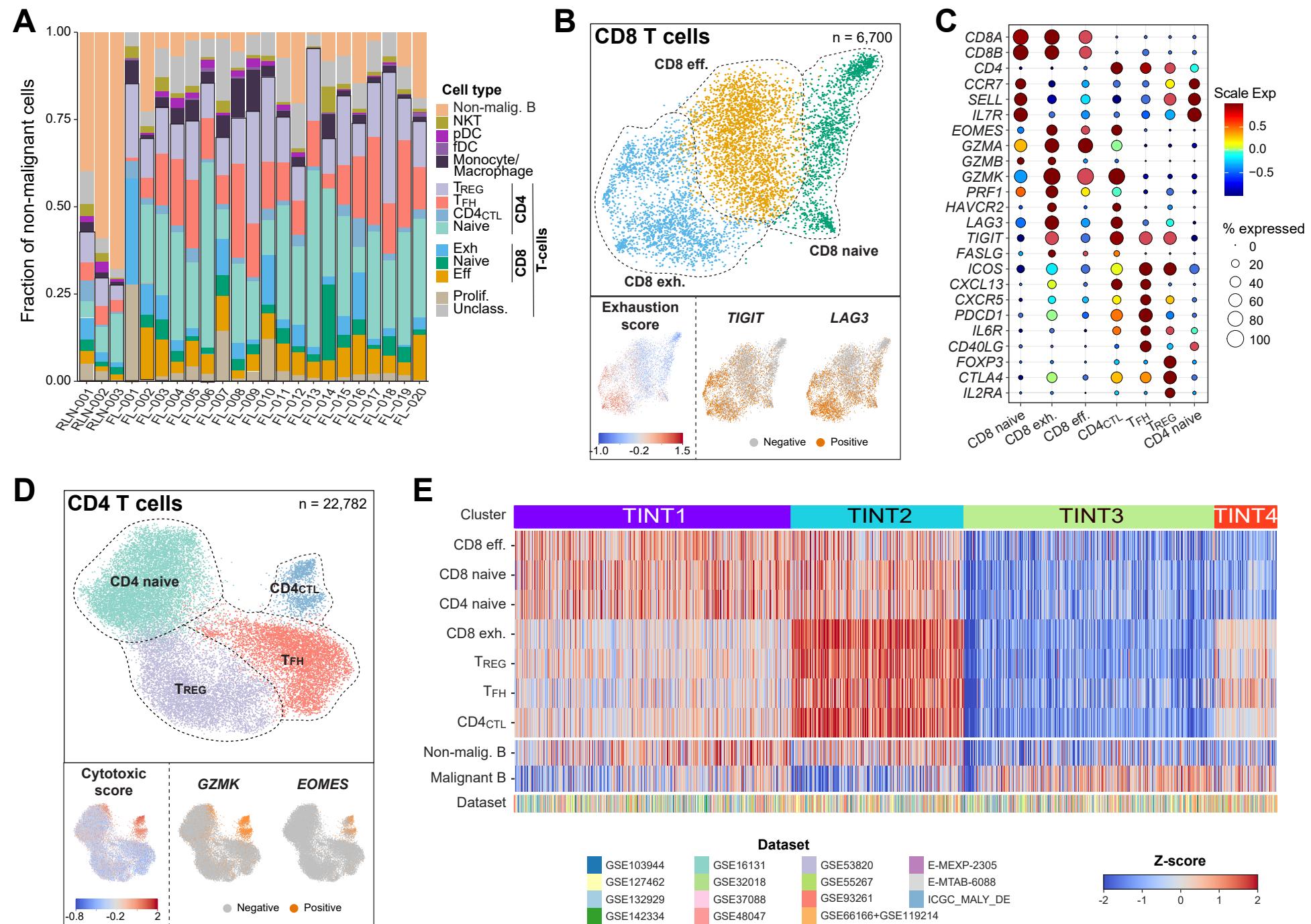
469

470

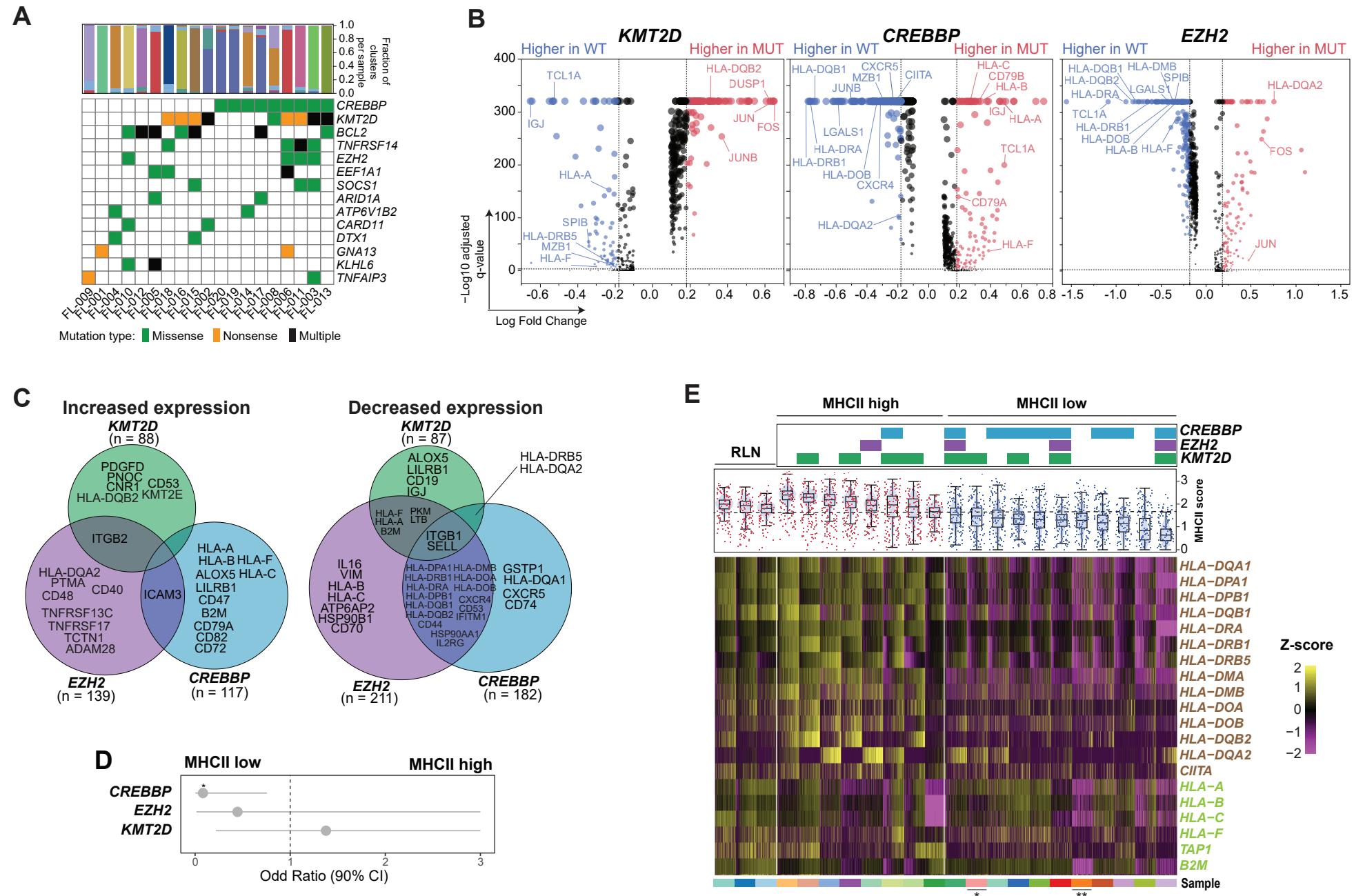
471


472

473


474 **Figure 4: Association between tumor MHCII status and tumor infiltrating T-cell**
475 **populations. A)** A bar graph shows the fold change of CD8 and CD4 T-cell populations between
476 MHCII low and MHCII high tumors, colored by Fisher Exact FDR q-value. The CD8 exhausted
477 (exh; fold-change 3.43, Fisher exact q=0.05) and CD4_{CTL} (fold-change 2.11; Fisher exact q=0.07)
478 populations are significantly higher in MHCII high tumors compared to MHCII low tumors. **B-C)**
479 Scatter plots and bar plots show the quantitative and qualitative association between CD8
480 exhausted (B) and CD4_{CTL} (C) populations and either the expression or status of MHCII on tumor
481 B-cells, respectively. **D)** UMAP density plots show the relative representation of CD8 exhausted
482 (exh; above) and CD4_{CTL} (below) populations between MHCII low (left) or MHCII high (right)
483 tumors. **E)** Differentially expressed genes (DEG) between CD8 T-cells from MHCII low vs MHCII
484 high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with
485 significantly different proportions of cells from MHCII low/high tumors (top track, $P=3.8\times10^{-67}$). **F)**
486 A bar graph of cell states in each DEG cluster from E, which shows higher fractions of CD8
487 exhausted (exh) cells in C1 and a higher fraction of CD8 effector cells (eff) cells in C3. **G)** GSVA
488 showed higher expression of exhaustion signature genes in cells within C1 compared to either
489 C2 or C3. **H)** Differentially expressed genes (DEG) between CD4 T-cells from MHCII low vs MHCII
490 high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with
491 significantly different proportions of cells from MHCII low/high tumors (top track, $P=2.1\times10^{-61}$). **I)**
492 A bar graph of cell states in each DEG cluster from H, which shows higher fractions of CD4_{CTL},
493 T_{FH} and T_{REG} cells in C1 and a higher fraction of CD4 naïve cell in C3. **J)** GSVA showed higher
494 expression of exhaustion signature genes in cells within C1 compared to either C2 or C3. **K)** A
495 bubble plot shows the average expression of immune-modulatory genes on CD4 (above) or CD8
496 (below) T-cells in MHCII low or high tumors. The center grid shows the fold-change and
497 significance of pairs of immune-modulatory genes between MHCII low and high tumors for CD4
498 (top left) and CD8 (bottom right) T-cells. **L-M)** Scatter plots show the co-expression of significant

499 pairs of targetable immune modulatory genes in CD8 (L, *LAG3* and *TIGIT*) and CD4 (M, *TNFRSF4*
500 and *CTLA4*) T-cells from MHCII low (left) or MHCII high (right) tumors.


Figure 1

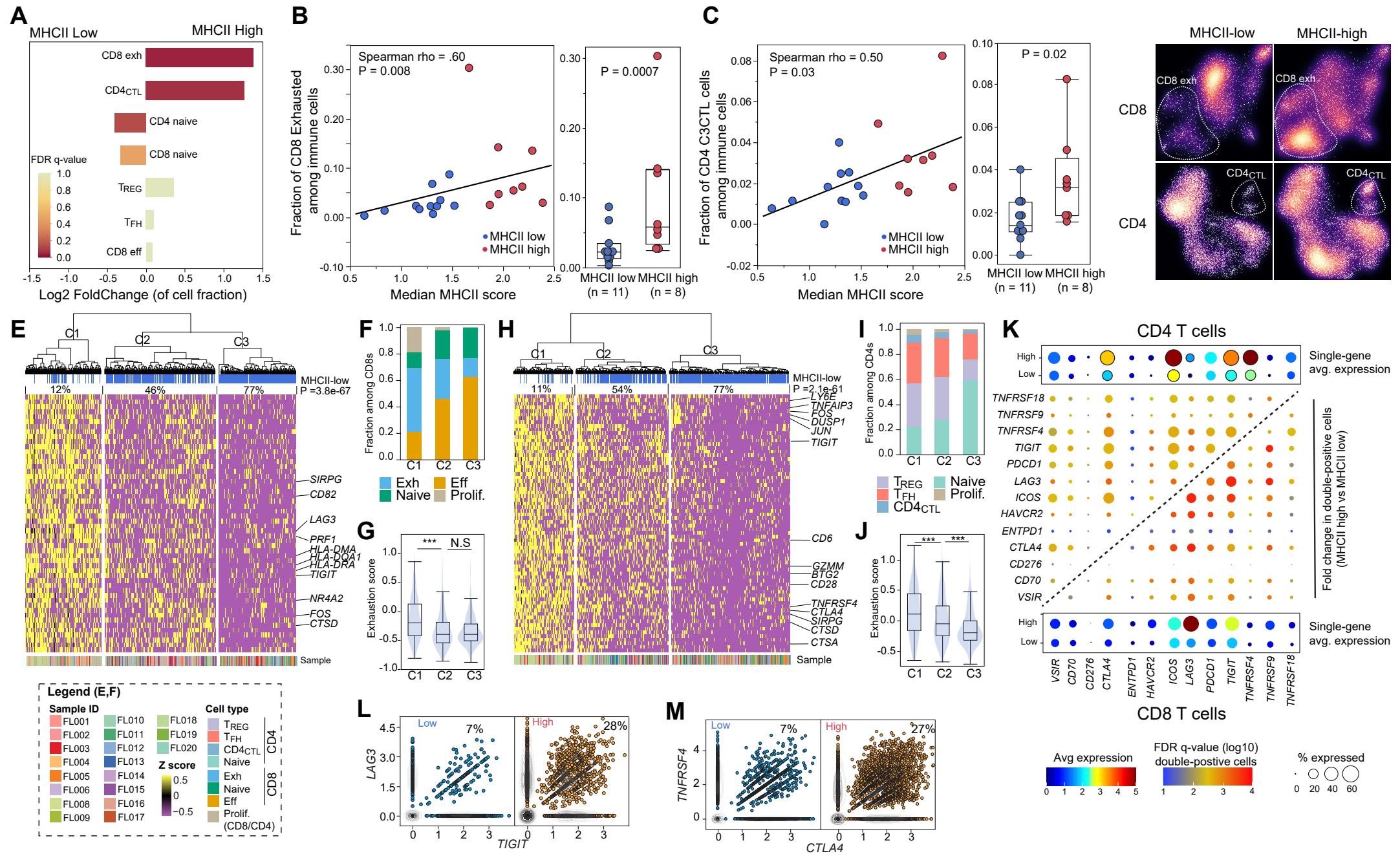

Figure 2

Figure 3

Figure 4

