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Abstract:

Follicular lymphoma (FL) is a B-cell lymphoma with a complex tumor microenvironment that is
rich in non-malignant immune cells. We applied single-cell RNA-sequencing to characterize the
diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL
T-cells including a novel cytotoxic CD4 T-cell population. Their relative proportions of T-cells
defined four major FL subtypes, characterized by differential representation or relative depletion
of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations
are associated with, but not definitive for, reduced antigen presentation on FL cells. In turn,
expression of MHC class Il genes by FL cells was associated with significant differences in the
proportions and targetable immunophenotypic characteristics. This provides a classification
framework of the FL microenvironment, their association with FL genotypes and antigen
presentation, and informs different potential immunotherapeutic strategies based upon tumor cell

MHC class Il expression.

Statement of significance: We have characterized the FL-infiltrating T-cells, identified cytotoxic

CD4 T-cells as an important component, showed that the abundance of these T-cell populations
is associated with tumor-cell-intrinsic characteristics, and identified sets of targetable immune

checkpoints on T-cells that differed between FLs with normal versus low antigen presentation.
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Introduction

Follicular lymphoma (FL) is an indolent lymphoma of germinal center B-cells that maintain follicle-
like architecture and interact closely with T-cells and other immune cells. These immune
interactions are critical to FL etiology' and can be perturbed by somatic mutations that are
frequent in FLs**. Understanding the immune tumor microenvironment (iTME) of FL and the
interplay between perturbed immune interactions and distinct tumor-infiltrating T-cell (TINT)
populations will be important for building precision immunotherapeutic approaches, but these
concepts have yet to be comprehensively addressed using high-throughput approaches. Single
cell RNA-sequencing (scRNA-seq) is a powerful and high-throughput approach that has revealed
the deregulation of normal B-cell developmental programs and allowed for the characterization of
targetable immune checkpoints on TINT cells®®. However, these studies have been limited to a
few patients and has not yet been used to investigate broader iTME profiles, or the relationship
between somatic mutations, tumor B-cell expression profiles and changes in the iTME. Using
scRNA-seq of FL lymph node biopsies, we characterized phenotypically distinct subsets of TINT
cells, including a novel cytotoxic CD4 T-cell population, and validated in a large series that the
composition of these T-cell subsets defines four distinct subtypes of iTME in FLs. By integrating
exome sequencing and scRNA-sequencing data, we showed that somatic mutations in chromatin
modifying genes can affect the expression of immune interaction genes encoding proteins such
as major histocompatibility complex (MHC) class | and class Il on tumor cells, which is in turn
associated with changes in the frequencies and targetable immune profiles of T-cell subsets in

FL tumors.
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87 Results

88 Single cell RNA sequencing (scRNA-seq) of FL

89  We performed scRNA-seq of 20 FL and three reactive lymph nodes (RLN) using the 10X
90 Chromium platform to profile the transcriptome in addition to T-cell receptor (TCR) and
91 immunoglobulin (lIg) repertoires (Table S1). Additional marker genes were subjected to targeted
92 sequencing by CaplD, as previously described’. Each biopsy was analyzed fresh to retain cell
93 types that are sensitive to cryopreservation, and included 11 previously untreated and nine
94  relapsed FLs (median 1 line of prior therapy, range 1-6) that were grade 1-2 (n=14) or 3a (n=6).
95 RLN (n=3) samples were included as controls. We sequenced a median of 6,138 (range; 635-
96 11,070) cells per sample to a median of 57,933 (range; 49,833-324,873) reads per cells and
97 detected a median of 1,115 (range; 447-2,979) genes per cell. After rigorous quality filtering,
98 137,147 cells were retained for subsequent analyses (Figure 1A). Unsupervised clustering
99 analysis following batch effects correction identified six major cell lineages: B-cell, T-cell,
100 monocyte/macrophage, follicular dendritic cell (fDC), plasmacytoid dendritic cell (pDC), and
101  erythroid cell clusters, as determined by cluster marker genes (Figure 1B-C; Table S2).

102

103  B-cells were re-clustered (Fig. 1D-E) and cells defined as either tumor or non-malignant by the
104 presence/absence of a clonal immunoglobulin sequence (Fig. 1F) or DNA copy number
105  alterations (Fig. S1). Clusters of non-malignant B-cells (C2), plasma cells (C15) and proliferating
106  B-cells (C6) included non-malignant cells from both FL and RLN samples (Fig. 1D-E). A central
107  cluster (CO) was also found to contain cells from multiple samples, but consisted exclusively of
108 clonal malignant B-cells from FLs, suggesting that tumor cells from a subset of cases have shared
109 transcriptional characteristics. These FLs consisted of both low and high-grade tumors, but 74%
110  of cells originated from treatment-naive tumors (Table S1) suggesting that tumor B-cells from
111  relapsed FLs have a greater inter-sample divergence in transcriptional profiles compared to

112 treatment-naive FLs.
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113

114  Tumor infiltrating T-cell composition defines iTME subtypes of FL

115  T-cells comprised of a median of 87.6% (range 73.8% to 98.9%) of the non-malignant cells within
116  the iTME (Fig. 2A). We further characterized phenotypically distinct subsets of CD4 and CD8 T-
117  cells by subclustering analysis (Fig. S2; Table S3). Clusters of CD8 T-cells included naive (CCR7,
118 SELL, and IL7R), effector (granzymes GZMA/B/K and PRF1) and exhausted (CD8gxn, high
119  expression of inhibitory immune checkpoint genes such as TIGIT and LAG3, and a high
120  exhaustion score) subsets (Fig. 2B-C). Trajectory analysis showed that these represent a
121 functional continuum from naive through to exhausted states (Fig. S3). Subclustering analysis of
122 CD4 T-cells identified four transcriptome states (Fig. 2D), including naive (high expression of
123 CCR7, SELL and IL7R), T-regulatory (Tres; high expression of FOXP3, CTLA4, IL2RA), T
124  follicular helper (Trn; high expression of PDCD1, TOX, TOX2, CXCR5 and CD40LG), and
125  cytotoxic CD4 T-cells (CD4cri; high expression of GZMA/K, NKG7, and EOMES), all of which
126  were detected in both FL and RLN samples. While naive, Trec and Trn cells are well-described
127  components of FL', there are no prior reports of CD4cr. cells in FL or any other germinal center
128  derived lymphoma. CD4cr. cells express CD4 but not CD8A/B, have a high cytotoxicity score with
129 GZMK expression detectable in 89.6% of cells, and high expression of the EOMES transcription
130 factor that is implicated in CD4cr. development®. In addition, CD4cr. cells bear some similarities
131  to Trw cells, including high expression of CXCL13 and PDCD1, and are most closely related to
132  Teru cells by trajectory analysis (Fig. S3). A high fraction of CD4cr. expressed co-inhibitory
133 receptors (LAG3, CTLA4, HAVCRZ2; Table S3) that are potentially targetable. Thus, our scRNA-
134  seq analysis revealed a novel cytotoxic CD4 T-cells component of the lymphoid and FL iTME that
135  requires further functional exploration.

136

137 The abundance of functionally distinct tumor infiltrating T-cell (TINT) populations that we

138 characterized by scRNA-seq were highly variable across patients (Fig. 2A). We therefore
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139  assessed their representation across an external validation set of bulk gene expression profiling
140 (GEP) from 1,269 FLs compiled from 15 datasets. Signatures derived from our scRNA-seq data
141  were validated in publicly available scRNA-seq data (Fig. S4), then used to infer the abundance
142  of each cell type by single cell gene set enrichment analysis (ssGSEA) followed by clustering the
143  inferred frequencies to define sets of tumors with similar TINT profiles (Fig. 2E), as previously
144  described®. This revealed four distinct subtypes of iTME in primary human FL based on the
145  relative abundance of TINT cells: (TINT1) high in CD8 effector, CD8 naive and CD4 naive;
146 (TINT2) high in CD8gxn, Tres, Trn @and CD4cri; (TINT3) high in malignant B-cells and depleted of
147  T-cell subsets; (TINT4) high in malignant B-cells and depletion of CD8 effector, CD8 naive and
148  CD4 naive. The landscape of TINT as defined by scRNA-seq cell composition and measured in
149  bulk GEP data therefore defines four distinct subsets of iTME in primary human FL.

150

151 Multiple mechanisms of MHC class Il loss on FL tumor B cells

152  Mutations in chromatin modifying genes (CMGs) are a hallmark of FL'°, and affect the expression
153  of genes in tumor B-cells through epigenetic dysregulation. The most frequently mutated CMGs
154 (KMT2D, CREBBP and EZH2) have each been implicated in deregulating interactions between
155  tumor cells and T-cells®*4'"!, leading us to hypothesize that these mutations may underlie tumor-
156  cell-intrinsic gene expression changes that drive differential TINT profiles. Using whole exome
157  sequencing of tumors with available DNA (n=19; Table S5; Fig. 3A), we applied single cell
158  differential gene expression profiling to identify genes that were significantly altered in association
159  with these mutations (Fig. 3B; Tables S6). Collectively, the union of genes with significantly
160 reduced expression (FDR g-value<0.05, fold change>1.2; n=355; Table S6) in association with
161 one or more of these mutations was significantly enriched for genes involved in immune cell
162 interactions (p = 1.4x107) including those with a role in antigen processing and presentation (p =
163  2.2x10%°), confirming that these mutations alter genes involved in immune cell interactions (Fig.

164  3C). In line with prior reports, CREBBP and EZH2 mutations were both associated with reduced
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165  expression of multiple genes involved in antigen presentation through the MHC molecule®,
166  which present antigens that are recognized by T-cell receptors and therefore affect T-cell
167  activation. Mutations of CREBBP co-occurred with EZH2 mutations in three out of four cases and
168  were predominantly associated with lower MHC class Il (MHCII) expression (Fig. 3D), while EZH2
169 mutations were selectively associated with lower MHC class | (MHCI) expression. KMT2D
170  mutations were also associated with reduced expression of a subset of MHCI genes, and co-
171  occurred with EZH2 mutations in three out of four tumors. Using non-malignant B-cells from RLNs
172  as reference to define normal MHCI and MHCII expression levels, we observed that loss of MHCI
173 and/or MHCII was not restricted to EZH2 and/or CREBBP mutant tumors (Fig. 3E). Specifically,
174  MHCII loss was most prevalent and observed in 58% (11/19) of tumors, but 27% (3/11) of MHCII-
175 low tumors lacked CREBBP or EZH2 mutations. Further, one CREBBP mutant tumor did not
176  show MHCII loss at mRNA level. CMG mutations in FL are therefore associated with perturbed
177  expression of immune interaction genes on tumor B-cells, but additional mechanisms exist for
178  MHCI and MHCII loss that are likely to have an equal impact on tumor infiltrating immune cells
179  via deregulation of immune synapse formation.

180

181 Frequencies and targetable features of TINT are associated with tumor B-cell MHCII expression

182  Having observed different patterns of TINT in FL, and mutation-associated changes in MHCI and
183  MHCII expression on tumor B-cells, we next evaluated whether these features were associated.
184  Tumor MHCII loss was more significantly associated with TINT frequencies than somatic
185  mutations of CREBBP, EZH2 or KMT2D (Table S7), and was more frequent than MHCI loss, so
186  we focused on this feature. MHCII-low tumors had significantly reduced levels of CD8gx and
187  CD4cr. (Fig. 4A) — features of the TINT2 microenvironment subtype (Fig. 2E). Despite a relatively
188  modest sample size, we observed both a quantitative and qualitative relationship between MHCII
189  expression/status and the frequencies of these TINT subsets (Fig. 4B-D). In mantle cell

190 lymphoma, tumor cell immunopeptidome profiling revealed presentation of tumor idiotype
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191  peptides in MHCII that were recognized by CD4cr. in the peripheral blood'. We therefore
192 reasoned that loss of MHCII may be selectively acquired in cells that have accumulated
193 immunogenic mutations in their idiotype sequences, and thus may be restricted to immunogenic
194 clades of the immunoglobulin hierarchy. By evaluating paired single cell BCR sequencing data,
195 we found anecdotal evidence of this in three FL tumors (Fig. S5), but this trend was not
196  widespread in this cohort.

197

198 In addition to changes in the frequencies of CD4 T-cells, we explored differences in gene
199  expression of tumor infiltrating CD4 and CD8 T-cells using single cell differential gene expression
200 analysis (Table S8-S9; Fig. 4E-J). Cells were clustered within the space of the differentially
201  expressed genes (DEGs), which revealed three clusters for both CD4 and CD8 T-cells that had
202  significantly different representation of cells from MHCII-high vs MHCII-low tumors (Fig. 4E, CD4,
203  p=3.8x10°7; Fig. 4H, CD8, p=2.1x10%"). The DEGs includes markers of activation, transcription
204  factors and multiple targetable cell surface immune checkpoint molecules. C1 clusters which have
205  the lowest frequency of cells from MHCII-low tumors expressed the highest level of these genes,
206  and C3 clusters which have the greatest frequency of cells from MHCII-low tumors express low
207 levels of these genes. This is suggestive of higher levels of T-cell activation and exhaustion in
208  tumors that have retained MHCII expression, as supported by GSVA analysis of a previously
209  described exhaustion score (Fig. 4G & J), and in line with prior associations between MHCII
210 expression and superior response to immune checkpoint blockade's. We therefore aimed to
211  assess the most dynamic pairs of immune checkpoints that may serve as therapeutic targets in
212 FL tumors with high MHCII (Fig. 4K). Within the CD8 T-cell compartment, the most significant
213  change was increased frequencies of LAG3 and TIGIT dual-expressing cells (fold-change = 4.3;
214  FDR g-value = 1.6x1073; Fig. 4K & L), which have yet to be explored as combination therapeutic
215  targets in lymphoma. The most significant change in the CD4 T-cell compartment was the

216  increased prevalence of TNFRSF4 (aka. OX40) and CTLA4 dual-expressing CD4 T-cells (fold-
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217  change = 3.9; FDR g-value = 0.01; Fig. 4K & M), combined targeting of which has been shown
218  to be highly efficacious in preclinical models of lymphoma®. Thus, tumor cell MHCII expression
219  correlates with the frequency and targetable immune profile of TINT cells in FL, highlighting
220 subsets of FL that are likely to have differential responses to specific immune checkpoint
221  blockade.

222

223 Discussion

224  Follicular lymphoma is an indolent disease, with some patients having equivalent overall survival
225 to age-matched controls'®'6, Decreasing the use of cytotoxic chemotherapy in the treatment of
226  FL is therefore a priority. The iTME of FL is a complex ecosystem that includes large numbers of
227  T-cells that provide survival signals that are integral to disease etiology, offering an attractive
228  opportunity for immunotherapeutics that target critical nexuses. However, single agent checkpoint
229  blockers such as anti-PD1/PD-L1 are largely ineffective in FL'7. Understanding the characteristics
230 of the FL iTME and how it is modulated by tumor-cell-intrinsic characteristics is therefore an
231  important step towards the rational design of combination immunotherapeutic strategies that may
232 have increased efficacy.

233

234  The large number of cells that we sequenced afforded us the power to identify functionally distinct
235  subsets of T-cells. Among these was a subset of CD4cr. that have not been previously
236  appreciated as a component of the FL iTME, and have been infrequently described in other
237  cancers such as bladder cancer'® and in the peripheral blood of mantle cell ymphoma patients’?.
238 In the latter, these cells were shown to recognize tumor idiotype peptides presented in MHCII.
239  However, we did not find strong evidence in support of this in FL. CD4cr. play an important role
240 in antiviral immune responses?®, and their development in this context has been shown to be
241  mediated by the transcription factors T-bet or EOMES?. Consistent with this, we observed high

242 expression of EOMES in the CD4cr. that we defined. Interestingly, CD4cr. were also detected
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243 within RLN samples suggesting that these cells may be a normal component of the lymphoid
244  microenvironment. However, there were significant differences in gene expression between
245  CD4cr. from FLs compared to RLN such as the downregulation of costimulatory receptors and
246  IL6 signaling genes that are suggestive of dysfunction in FL. In addition, we identified multiple
247  potential therapeutic targets on CDA4cr., including exhaustion markers CTLA4, LAG3 and
248 HAVCR2 (aka. TIM-3). Future studies are needed to characterize the role of CD4cr. in normal
249  and malignant lymphoid tissues, and whether these cells can be targeted to induce anti-lymphoma
250  immunity.

251

252  Loss of antigen presentation is common in FL and has been linked to recurrent mutations in
253 CREBBP and EZH23"". We confirmed this association but also identified multiple cases of FL with
254  mutation-independent loss of antigen presentation and showed that the antigen presentation
255 status is more significantly associated with TINT characteristics than somatic mutations.
256  Specifically, we observed an association between normal MHCII expression on tumor B-cells and
257  higher frequencies of CD4cr. and CD8gx T-cells. The high expression of exhaustion markers on
258  both CD4cr. and CD8exn suggests that FL tumors with normal MHCII expression may have an
259 inflammatory microenvironment that promotes adaptive immune suppression and T-cell
260 exhaustion. In other cancers, ‘warm’ microenvironments such as this show greater response to
261 immune checkpoint blockade'®. We explored potential therapeutic targets on the T-cells from FL
262  tumors with retained MHCII expression and identified LAG3+TIGIT and CTLA4+TNFRSF4 as
263  potential combination immunotherapy targets for CD8 and CD4 T-cells, respectively. Our data
264  also suggest that tumors with MHCII loss may have ‘cold’ microenvironments and be less
265  responsive to immune checkpoint blockade. Therefore, tumor cell MHCII expression status should
266  be prospectively explored as a potential biomarker for selection of, and response to, immune
267  checkpoint therapies in FL.

268
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269  CD19 chimeric antigen receptor (CAR) T-cell therapy is highly efficacious in relapsed/refractory
270  FL and has recently been FDA approved in this setting. Responses are likely to be impacted by
271 the tumor microenvironment characteristics of FL, but these characteristics have not been
272 thoroughly explored in a large series of tumors. We therefore leveraged our signatures from
273  scRNA-seq data to explore the relative representation of T-cell subsets in a large nhumber of
274  tumors using bulk GEP data. This identified four major subtypes of FLs characterized by different
275  patterns of TINT cells, including ‘warm’ (TINT1, TINT2), ‘cold’ (TINT3) and intermediate (TINT4)
276  subtypes, consistent with prior observations using NanoString GEP?°. Mutation data were not
277  available for these tumors to evaluate the relationship between tumor microenvironment subtype
278  and mutations of CREBBP or EZH2, and tumor MHCII status cannot be predicted due to highly
279  variable frequencies of tumor infiltrating T-cells and other antigen presenting cells. This will
280 therefore require prospective validation using orthogonal approaches. However, consistent with
281  our scRNA-seq data, T-cell subsets that express high levels of exhaustion markers (CD4c¢r. and
282  CD8exn) were correlated in their relative representation across these microenvironment subtypes.
283  We therefore suggest that evaluation of these tumor infiltrating T-cell subtypes may be important
284  to prospectively evaluate in FL patients being treated with CD19 CAR T-cells and other cellular
285  therapies or immunotherapies.

286

287  In conclusion, the FL tumor microenvironment is highly variable across patients and influenced
288 by tumor-cell-intrinsic characteristics such as somatic mutations and antigen presentation status.
289  The characteristics of tumor infiltrating T-cells allow for data-driven selection of combination
290 immunotherapy targets, and highlight ‘warm’ and ‘cold’ microenvironments that are important to
291  prospectively consider as potential determinants of immunotherapeutic and cellular therapy
292  responses in FL patients.

293

294
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295  Methods

296  For detailed methods, please refer to the supplementary information. FL and RLN biopsies were
297  obtained following informed consent under protocols approved by the Institutional Review Board
298  of MD Anderson Cancer Center (Protocols 2005-0656 and PA19-0420). Tissues were processed
299 fresh by physical disaggregation through a metal screen followed by a 40uM filter and loaded
300 onto a 10X Chromium with 5GEX chemistry to obtain a goal of 10,000 cells per sample.
301  Transcriptome, BCR and TCR libraries were prepared and sequenced according to the
302 manufacturer’s protocol. CaplD hybrid-capture sequencing of transcriptome libraries was
303 performed as previously described’. Single cell RNA-sequencing analysis was performed
304 following quality filtering and batch correction using Seurat?'. Genomic DNA from residual cells
305 and interrogated by whole exome sequencing using Nimblegen SeqCap Exome v3. Somatic
306 mutations were identified and annotated as previously described??.

307
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398 Figure Legends

399  Figure 1: Overview of major cell types and clusters from single cell RNA sequencing of 20
400 FL tumors. A-B) UMAP plots show 137,147 cells from 20 FL tumors and 3 RLT controls by
401  sample ID (A) and cluster ID (B). Major cell types are annotated in B. C) Bubble plot of cell lineage
402 marker genes are shown for B-cell, T-cell, natural killer cell (NK), erythroid,
403  monocyte/macrophage (MM), plasmacytoid dendritic cell (pDC) and follicular dendritic cell (fDC)
404  clusters. D-F) UMAP plots show re-clustering of 99,610 B-cells by cluster ID (D), sample ID (E),
405 and immunoglobulin clonotype (F). Among B-cell clusters, we identified those corresponding to
406  non-malignant B-cells (C2), proliferating cells (C6), plasma cells (C15). A malignant B-cell cluster
407  bearing cells from multiple samples was identified (C0). The contribution of each sample to each
408 cluster is shown in the bar graph in E, with many clusters consisting of tumor B-cells from a single
409 sample as determined by immunoglobulin clonotype (F) or patterns of inferred copy number
410  variation (Figure S1).
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423  Figure 2: Tumor infiltrating T-cell populations in follicular ymphoma. A) A bar graph shows
424  the frequency of non-malignant immune cell populations within FL, with the majority of cells
425  belonging to the T-cell lineages. B) UMAP plots from re-clustering of 6,700 CD8 T-cells shows 3
426  major populations aligning with naive, effector (eff) and exhausted (exh) states. Single cell GSVA
427  of a CD8 T-cell exhaustion signature shows the highest expression in the CD8gx cluster, which
428 is also characterized by high expression of TIGIT and LAG3. C) A bubble plot shows the
429  proportion of cells of CD8 and CD4 T-cell clusters expressing known phenotypic marker genes
430 (size of circles) and their average expression levels (color of circles). D) UMAP plots from re-
431  clustering of 22,782 CD4 T-cells shows 4 major subpopulations aligning with naive, regulatory
432  (Tree), T follicular helper (Trn) and CD4 cytotoxic (CD4cr.) states. Single cell GSVA of a cytotoxic
433  score including immune effector molecules shows high expression in the CD4cr. cluster, which is
434  also characterized by high expression of GZMK and EOMES. E) A heatmap shows the relative
435  proportions of CD8 and CD4 tumor infiltrating T-cell (TINT) populations calculated by
436  deconvolution from publicly available bulk gene expression microarray or RNA-sequencing
437  datasets (n=1,269 FL tumors from 15 datasets, see Supplementary Methods). Unsupervised
438  clustering identified 4 characteristics patterns (TINT1-4) with different relative abundance of
439  tumor-infiltrating T-cell populations.
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448  Figure 3: Effect of somatic mutations on tumor B-cell expression profiles. A) An oncoplot
449  shows recurrently mutated genes in the 19 FL tumors with available DNA. B) Volcano plots
450 displaying differentially expressed genes between tumor B-cells from KMT2D (left), CREBBP
451  (middle) or EZH2 (right) wild-type and mutant tumors. Examples are annotated and the full list
452  provided in Table S6. C) Venn diagrams display the overlap of genes with increased (left) or
453  decreased (right) expression associated with each mutation, with genes encoding cell surface
454  proteins annotated. D) Odds ratio (+/- 95% CI) are shown for association between individual
455  mutations and MHCII status (two-tailed Fisher’s exact test p=0.028). E) The expression of MHCII
456  (brown, above) and MHCI genes (green, below) are shown for individual tumor B-cells from each
457  tumor with available mutation data. Mutations of CREBBP, EZH2 and KMT2D are annotated at
458  the top. Sample IDs are colored according to Figure 1A and tumors with additional mutations in
459  *CIITA and **B2M that may also affect MHCIl and MHCI expression, respectively, are annotated
460 by asterisk.
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474  Figure 4: Association between tumor MHCIl status and tumor infiltrating T-cell
475  populations. A) A bar graph shows the fold change of CD8 and CD4 T-cell populations between
476  MHCII low and MHCII high tumors, colored by Fisher Exact FDR g-value. The CD8 exhausted
477  (exh; fold-change 3.43, Fisher exact q=0.05) and CD4cr. (fold-change 2.11; Fisher exact q=0.07)
478  populations are significantly higher in MHCII high tumors compared to MHCII low tumors. B-C)
479  Scatter plots and bar plots show the quantitative and qualitative association between CD8
480 exhausted (B) and CD4cr. (C) populations and either the expression or status of MHCII on tumor
481  B-cells, respectively. D) UMAP density plots show the relative representation of CD8 exhausted
482  (exh; above) and CD4cr. (below) populations between MHCII low (left) or MHCII high (right)
483  tumors. E) Differentially expressed genes (DEG) between CD8 T-cells from MHCII low vs MHCII
484  high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with
485  significantly different proportions of cells from MHCII low/high tumors (top track, P=3.8x10¢7). F)
486 A bar graph of cell states in each DEG cluster from E, which shows higher fractions of CD8
487  exhausted (exh) cells in C1 and a higher fraction of CD8 effector cells (eff) cells in C3. G) GSVA
488  showed higher expression of exhaustion signature genes in cells within C1 compared to either
489  C2or C3. H) Differentially expressed genes (DEG) between CD4 T-cells from MHCII low vs MHCII
490 high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with
491  significantly different proportions of cells from MHCII low/high tumors (top track, P=2.1x10"). 1)
492 A bar graph of cell states in each DEG cluster from H, which shows higher fractions of CD4cr.,
493  Trn and Trec cells in C1 and a higher fraction of CD4 naive cell in C3. J) GSVA showed higher
494  expression of exhaustion signature genes in cells within C1 compared to either C2 or C3. K) A
495  bubble plot shows the average expression of immune-modulatory genes on CD4 (above) or CD8
496  (below) T-cells in MHCII low or high tumors. The center grid shows the fold-change and
497  significance of pairs of immune-modulatory genes between MHCII low and high tumors for CD4

498  (top left) and CD8 (bottom right) T-cells. L-M) Scatter plots show the co-expression of significant
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499  pairs of targetable immune modulatory genes in CD8 (L, LAG3 and TIGIT) and CD4 (M, TNFRSF4

500 and CTLA4) T-cells from MHCII low (left) or MHCII high (right) tumors.
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