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Abstract:  35 

Follicular lymphoma (FL) is a B-cell lymphoma with a complex tumor microenvironment that is 36 

rich in non-malignant immune cells. We applied single-cell RNA-sequencing to characterize the 37 

diverse tumor and immune cell populations of FL and identified major phenotypic subsets of FL 38 

T-cells including a novel cytotoxic CD4 T-cell population. Their relative proportions of T-cells 39 

defined four major FL subtypes, characterized by differential representation or relative depletion 40 

of distinct T-cell subsets. By integrating exome sequencing, we observed that somatic mutations 41 

are associated with, but not definitive for, reduced antigen presentation on FL cells. In turn, 42 

expression of MHC class II genes by FL cells was associated with significant differences in the 43 

proportions and targetable immunophenotypic characteristics. This provides a classification 44 

framework of the FL microenvironment, their association with FL genotypes and antigen 45 

presentation, and informs different potential immunotherapeutic strategies based upon tumor cell 46 

MHC class II expression.  47 

 48 

 49 

Statement of significance: We have characterized the FL-infiltrating T-cells, identified cytotoxic 50 

CD4 T-cells as an important component, showed that the abundance of these T-cell populations 51 

is associated with tumor-cell-intrinsic characteristics, and identified sets of targetable immune 52 

checkpoints on T-cells that differed between FLs with normal versus low antigen presentation. 53 

 54 

 55 

 56 

 57 

 58 

 59 
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Introduction 61 

Follicular lymphoma (FL) is an indolent lymphoma of germinal center B-cells that maintain follicle-62 

like architecture and interact closely with T-cells and other immune cells. These immune 63 

interactions are critical to FL etiology1 and can be perturbed by somatic mutations that are 64 

frequent in FLs2-4. Understanding the immune tumor microenvironment (iTME) of FL and the 65 

interplay between perturbed immune interactions and distinct tumor-infiltrating T-cell (TINT) 66 

populations will be important for building precision immunotherapeutic approaches, but these 67 

concepts have yet to be comprehensively addressed using high-throughput approaches. Single 68 

cell RNA-sequencing (scRNA-seq) is a powerful and high-throughput approach that has revealed 69 

the deregulation of normal B-cell developmental programs and allowed for the characterization of 70 

targetable immune checkpoints on TINT cells5,6. However, these studies have been limited to a 71 

few patients and has not yet been used to investigate broader iTME profiles, or the relationship 72 

between somatic mutations, tumor B-cell expression profiles and changes in the iTME. Using 73 

scRNA-seq of FL lymph node biopsies, we characterized phenotypically distinct subsets of TINT 74 

cells, including a novel cytotoxic CD4 T-cell population, and validated in a large series that the 75 

composition of these T-cell subsets defines four distinct subtypes of iTME in FLs. By integrating 76 

exome sequencing and scRNA-sequencing data, we showed that somatic mutations in chromatin 77 

modifying genes can affect the expression of immune interaction genes encoding proteins such 78 

as major histocompatibility complex (MHC) class I and class II on tumor cells, which is in turn 79 

associated with changes in the frequencies and targetable immune profiles of T-cell subsets in 80 

FL tumors.  81 

 82 

 83 

 84 

 85 

 86 
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Results 87 

Single cell RNA sequencing (scRNA-seq) of FL 88 

We performed scRNA-seq of 20 FL and three reactive lymph nodes (RLN) using the 10X 89 

Chromium platform to profile the transcriptome in addition to T-cell receptor (TCR) and 90 

immunoglobulin (Ig) repertoires (Table S1). Additional marker genes were subjected to targeted 91 

sequencing by CapID, as previously described7. Each biopsy was analyzed fresh to retain cell 92 

types that are sensitive to cryopreservation, and included 11 previously untreated and nine 93 

relapsed FLs (median 1 line of prior therapy, range 1-6) that were grade 1-2 (n=14) or 3a (n=6). 94 

RLN (n=3) samples were included as controls. We sequenced a median of 6,138 (range; 635-95 

11,070) cells per sample to a median of 57,933 (range; 49,833-324,873) reads per cells and 96 

detected a median of 1,115 (range; 447-2,979) genes per cell. After rigorous quality filtering, 97 

137,147 cells were retained for subsequent analyses (Figure 1A). Unsupervised clustering 98 

analysis following batch effects correction identified six major cell lineages: B-cell, T-cell, 99 

monocyte/macrophage, follicular dendritic cell (fDC), plasmacytoid dendritic cell (pDC), and 100 

erythroid cell clusters, as determined by cluster marker genes (Figure 1B-C; Table S2).  101 

 102 

B-cells were re-clustered (Fig. 1D-E) and cells defined as either tumor or non-malignant by the 103 

presence/absence of a clonal immunoglobulin sequence (Fig. 1F) or DNA copy number 104 

alterations (Fig. S1). Clusters of non-malignant B-cells (C2), plasma cells (C15) and proliferating 105 

B-cells (C6) included non-malignant cells from both FL and RLN samples (Fig. 1D-E). A central 106 

cluster (C0) was also found to contain cells from multiple samples, but consisted exclusively of 107 

clonal malignant B-cells from FLs, suggesting that tumor cells from a subset of cases have shared 108 

transcriptional characteristics. These FLs consisted of both low and high-grade tumors, but 74% 109 

of cells originated from treatment-naïve tumors (Table S1) suggesting that tumor B-cells from 110 

relapsed FLs have a greater inter-sample divergence in transcriptional profiles compared to 111 

treatment-naïve FLs.  112 
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 113 

Tumor infiltrating T-cell composition defines iTME subtypes of FL 114 

T-cells comprised of a median of 87.6% (range 73.8% to 98.9%) of the non-malignant cells within 115 

the iTME (Fig. 2A). We further characterized phenotypically distinct subsets of CD4 and CD8 T-116 

cells by subclustering analysis (Fig. S2; Table S3). Clusters of CD8 T-cells included naïve (CCR7, 117 

SELL, and IL7R), effector (granzymes GZMA/B/K and PRF1) and exhausted (CD8Exh, high 118 

expression of inhibitory immune checkpoint genes such as TIGIT and LAG3, and a high 119 

exhaustion score) subsets (Fig. 2B-C). Trajectory analysis showed that these represent a 120 

functional continuum from naïve through to exhausted states (Fig. S3). Subclustering analysis of 121 

CD4 T-cells identified four transcriptome states (Fig. 2D), including naïve (high expression of 122 

CCR7, SELL and IL7R), T-regulatory (TREG; high expression of FOXP3, CTLA4, IL2RA), T 123 

follicular helper (TFH; high expression of PDCD1, TOX, TOX2, CXCR5 and CD40LG), and 124 

cytotoxic CD4 T-cells (CD4CTL; high expression of GZMA/K, NKG7, and EOMES), all of which 125 

were detected in both FL and RLN samples. While naïve, TREG and TFH cells are well-described 126 

components of FL1, there are no prior reports of CD4CTL cells in FL or any other germinal center 127 

derived lymphoma. CD4CTL cells express CD4 but not CD8A/B, have a high cytotoxicity score with 128 

GZMK expression detectable in 89.6% of cells, and high expression of the EOMES transcription 129 

factor that is implicated in CD4CTL development8. In addition, CD4CTL cells bear some similarities 130 

to TFH cells, including high expression of CXCL13 and PDCD1, and are most closely related to 131 

TFH cells by trajectory analysis (Fig. S3). A high fraction of CD4CTL expressed co-inhibitory 132 

receptors (LAG3, CTLA4, HAVCR2; Table S3) that are potentially targetable. Thus, our scRNA-133 

seq analysis revealed a novel cytotoxic CD4 T-cells component of the lymphoid and FL iTME that 134 

requires further functional exploration. 135 

 136 

The abundance of functionally distinct tumor infiltrating T-cell (TINT) populations that we 137 

characterized by scRNA-seq were highly variable across patients (Fig. 2A). We therefore 138 
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assessed their representation across an external validation set of bulk gene expression profiling 139 

(GEP) from 1,269 FLs compiled from 15 datasets. Signatures derived from our scRNA-seq data 140 

were validated in publicly available scRNA-seq data (Fig. S4), then used to infer the abundance 141 

of each cell type by single cell gene set enrichment analysis (ssGSEA) followed by clustering the 142 

inferred frequencies to define sets of tumors with similar TINT profiles (Fig. 2E), as previously 143 

described9. This revealed four distinct subtypes of iTME in primary human FL based on the 144 

relative abundance of TINT cells: (TINT1) high in CD8 effector, CD8 naïve and CD4 naïve; 145 

(TINT2) high in CD8Exh, TREG, TFH and CD4CTL; (TINT3) high in malignant B-cells and depleted of 146 

T-cell subsets; (TINT4) high in malignant B-cells and depletion of CD8 effector, CD8 naïve and 147 

CD4 naïve. The landscape of TINT as defined by scRNA-seq cell composition and measured in 148 

bulk GEP data therefore defines four distinct subsets of iTME in primary human FL.  149 

 150 

Multiple mechanisms of MHC class II loss on FL tumor B cells 151 

Mutations in chromatin modifying genes (CMGs) are a hallmark of FL10, and affect the expression 152 

of genes in tumor B-cells through epigenetic dysregulation. The most frequently mutated CMGs 153 

(KMT2D, CREBBP and EZH2) have each been implicated in deregulating interactions between 154 

tumor cells and T-cells3,4,11, leading us to hypothesize that these mutations may underlie tumor-155 

cell-intrinsic gene expression changes that drive differential TINT profiles. Using whole exome 156 

sequencing of tumors with available DNA (n=19; Table S5; Fig. 3A), we applied single cell 157 

differential gene expression profiling to identify genes that were significantly altered in association 158 

with these mutations (Fig. 3B; Tables S6). Collectively, the union of genes with significantly 159 

reduced expression (FDR q-value<0.05, fold change>1.2; n=355; Table S6) in association with 160 

one or more of these mutations was significantly enriched for genes involved in immune cell 161 

interactions (p = 1.4x10-7) including those with a role in antigen processing and presentation (p = 162 

2.2x10-29), confirming that these mutations alter genes involved in immune cell interactions (Fig. 163 

3C). In line with prior reports, CREBBP and EZH2 mutations were both associated with reduced 164 
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expression of multiple genes involved in antigen presentation through the MHC molecule3,11, 165 

which present antigens that are recognized by T-cell receptors and therefore affect T-cell 166 

activation. Mutations of CREBBP co-occurred with EZH2 mutations in three out of four cases and 167 

were predominantly associated with lower MHC class II (MHCII) expression (Fig. 3D), while EZH2 168 

mutations were selectively associated with lower MHC class I (MHCI) expression. KMT2D 169 

mutations were also associated with reduced expression of a subset of MHCI genes, and co-170 

occurred with EZH2 mutations in three out of four tumors. Using non-malignant B-cells from RLNs 171 

as reference to define normal MHCI and MHCII expression levels, we observed that loss of MHCI 172 

and/or MHCII was not restricted to EZH2 and/or CREBBP mutant tumors (Fig. 3E). Specifically, 173 

MHCII loss was most prevalent and observed in 58% (11/19) of tumors, but 27% (3/11) of MHCII-174 

low tumors lacked CREBBP or EZH2 mutations. Further, one CREBBP mutant tumor did not 175 

show MHCII loss at mRNA level. CMG mutations in FL are therefore associated with perturbed 176 

expression of immune interaction genes on tumor B-cells, but additional mechanisms exist for 177 

MHCI and MHCII loss that are likely to have an equal impact on tumor infiltrating immune cells 178 

via deregulation of immune synapse formation. 179 

 180 

Frequencies and targetable features of TINT are associated with tumor B-cell MHCII expression 181 

Having observed different patterns of TINT in FL, and mutation-associated changes in MHCI and 182 

MHCII expression on tumor B-cells, we next evaluated whether these features were associated. 183 

Tumor MHCII loss was more significantly associated with TINT frequencies than somatic 184 

mutations of CREBBP, EZH2 or KMT2D (Table S7), and was more frequent than MHCI loss, so 185 

we focused on this feature. MHCII-low tumors had significantly reduced levels of CD8Exh and 186 

CD4CTL (Fig. 4A) – features of the TINT2 microenvironment subtype (Fig. 2E). Despite a relatively 187 

modest sample size, we observed both a quantitative and qualitative relationship between MHCII 188 

expression/status and the frequencies of these TINT subsets (Fig. 4B-D). In mantle cell 189 

lymphoma, tumor cell immunopeptidome profiling revealed presentation of tumor idiotype 190 
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peptides in MHCII that were recognized by CD4CTL in the peripheral blood12. We therefore 191 

reasoned that loss of MHCII may be selectively acquired in cells that have accumulated 192 

immunogenic mutations in their idiotype sequences, and thus may be restricted to immunogenic 193 

clades of the immunoglobulin hierarchy. By evaluating paired single cell BCR sequencing data, 194 

we found anecdotal evidence of this in three FL tumors (Fig. S5), but this trend was not 195 

widespread in this cohort.  196 

 197 

In addition to changes in the frequencies of CD4 T-cells, we explored differences in gene 198 

expression of tumor infiltrating CD4 and CD8 T-cells using single cell differential gene expression 199 

analysis (Table S8-S9; Fig. 4E-J). Cells were clustered within the space of the differentially 200 

expressed genes (DEGs), which revealed three clusters for both CD4 and CD8 T-cells that had 201 

significantly different representation of cells from MHCII-high vs MHCII-low tumors (Fig. 4E, CD4, 202 

p=3.8x10-67; Fig. 4H, CD8, p=2.1x10-61). The DEGs includes markers of activation, transcription 203 

factors and multiple targetable cell surface immune checkpoint molecules. C1 clusters which have 204 

the lowest frequency of cells from MHCII-low tumors expressed the highest level of these genes, 205 

and C3 clusters which have the greatest frequency of cells from MHCII-low tumors express low 206 

levels of these genes. This is suggestive of higher levels of T-cell activation and exhaustion in 207 

tumors that have retained MHCII expression, as supported by GSVA analysis of a previously 208 

described exhaustion score (Fig. 4G & J), and in line with prior associations between MHCII 209 

expression and superior response to immune checkpoint blockade13. We therefore aimed to 210 

assess the most dynamic pairs of immune checkpoints that may serve as therapeutic targets in 211 

FL tumors with high MHCII (Fig. 4K). Within the CD8 T-cell compartment, the most significant 212 

change was increased frequencies of LAG3 and TIGIT dual-expressing cells (fold-change = 4.3; 213 

FDR q-value = 1.6x10-3; Fig. 4K & L), which have yet to be explored as combination therapeutic 214 

targets in lymphoma. The most significant change in the CD4 T-cell compartment was the 215 

increased prevalence of TNFRSF4 (aka. OX40) and CTLA4 dual-expressing CD4 T-cells (fold-216 
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change = 3.9; FDR q-value = 0.01; Fig. 4K & M), combined targeting of which has been shown 217 

to be highly efficacious in preclinical models of lymphoma14. Thus, tumor cell MHCII expression 218 

correlates with the frequency and targetable immune profile of TINT cells in FL, highlighting 219 

subsets of FL that are likely to have differential responses to specific immune checkpoint 220 

blockade. 221 

 222 

Discussion 223 

Follicular lymphoma is an indolent disease, with some patients having equivalent overall survival 224 

to age-matched controls15,16. Decreasing the use of cytotoxic chemotherapy in the treatment of 225 

FL is therefore a priority. The iTME of FL is a complex ecosystem that includes large numbers of 226 

T-cells that provide survival signals that are integral to disease etiology, offering an attractive 227 

opportunity for immunotherapeutics that target critical nexuses. However, single agent checkpoint 228 

blockers such as anti-PD1/PD-L1 are largely ineffective in FL17. Understanding the characteristics 229 

of the FL iTME and how it is modulated by tumor-cell-intrinsic characteristics is therefore an 230 

important step towards the rational design of combination immunotherapeutic strategies that may 231 

have increased efficacy. 232 

 233 

The large number of cells that we sequenced afforded us the power to identify functionally distinct 234 

subsets of T-cells. Among these was a subset of CD4CTL that have not been previously 235 

appreciated as a component of the FL iTME, and have been infrequently described in other 236 

cancers such as bladder cancer18 and in the peripheral blood of mantle cell lymphoma patients12. 237 

In the latter, these cells were shown to recognize tumor idiotype peptides presented in MHCII. 238 

However, we did not find strong evidence in support of this in FL. CD4CTL play an important role 239 

in antiviral immune responses8, and their development in this context has been shown to be 240 

mediated by the transcription factors T-bet or EOMES8. Consistent with this, we observed high 241 

expression of EOMES in the CD4CTL that we defined. Interestingly, CD4CTL were also detected 242 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441656
http://creativecommons.org/licenses/by-nc-nd/4.0/


Han and Deng et al.   10 
 

within RLN samples suggesting that these cells may be a normal component of the lymphoid 243 

microenvironment. However, there were significant differences in gene expression between 244 

CD4CTL from FLs compared to RLN such as the downregulation of costimulatory receptors and 245 

IL6 signaling genes that are suggestive of dysfunction in FL. In addition, we identified multiple 246 

potential therapeutic targets on CD4CTL, including exhaustion markers CTLA4, LAG3 and 247 

HAVCR2 (aka. TIM-3). Future studies are needed to characterize the role of CD4CTL in normal 248 

and malignant lymphoid tissues, and whether these cells can be targeted to induce anti-lymphoma 249 

immunity. 250 

 251 

Loss of antigen presentation is common in FL and has been linked to recurrent mutations in 252 

CREBBP and EZH23,11. We confirmed this association but also identified multiple cases of FL with 253 

mutation-independent loss of antigen presentation and showed that the antigen presentation 254 

status is more significantly associated with TINT characteristics than somatic mutations. 255 

Specifically, we observed an association between normal MHCII expression on tumor B-cells and 256 

higher frequencies of CD4CTL and CD8Exh T-cells. The high expression of exhaustion markers on 257 

both CD4CTL and CD8Exh suggests that FL tumors with normal MHCII expression may have an 258 

inflammatory microenvironment that promotes adaptive immune suppression and T-cell 259 

exhaustion. In other cancers, ‘warm’ microenvironments such as this show greater response to 260 

immune checkpoint blockade19. We explored potential therapeutic targets on the T-cells from FL 261 

tumors with retained MHCII expression and identified LAG3+TIGIT and CTLA4+TNFRSF4 as 262 

potential combination immunotherapy targets for CD8 and CD4 T-cells, respectively. Our data 263 

also suggest that tumors with MHCII loss may have ‘cold’ microenvironments and be less 264 

responsive to immune checkpoint blockade. Therefore, tumor cell MHCII expression status should 265 

be prospectively explored as a potential biomarker for selection of, and response to, immune 266 

checkpoint therapies in FL.  267 

 268 
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CD19 chimeric antigen receptor (CAR) T-cell therapy is highly efficacious in relapsed/refractory 269 

FL and has recently been FDA approved in this setting. Responses are likely to be impacted by 270 

the tumor microenvironment characteristics of FL, but these characteristics have not been 271 

thoroughly explored in a large series of tumors. We therefore leveraged our signatures from 272 

scRNA-seq data to explore the relative representation of T-cell subsets in a large number of 273 

tumors using bulk GEP data. This identified four major subtypes of FLs characterized by different 274 

patterns of TINT cells, including ‘warm’ (TINT1, TINT2), ‘cold’ (TINT3) and intermediate (TINT4) 275 

subtypes, consistent with prior observations using NanoString GEP20. Mutation data were not 276 

available for these tumors to evaluate the relationship between tumor microenvironment subtype 277 

and mutations of CREBBP or EZH2, and tumor MHCII status cannot be predicted due to highly 278 

variable frequencies of tumor infiltrating T-cells and other antigen presenting cells. This will 279 

therefore require prospective validation using orthogonal approaches. However, consistent with 280 

our scRNA-seq data, T-cell subsets that express high levels of exhaustion markers (CD4CTL and 281 

CD8Exh) were correlated in their relative representation across these microenvironment subtypes. 282 

We therefore suggest that evaluation of these tumor infiltrating T-cell subtypes may be important 283 

to prospectively evaluate in FL patients being treated with CD19 CAR T-cells and other cellular 284 

therapies or immunotherapies. 285 

 286 

In conclusion, the FL tumor microenvironment is highly variable across patients and influenced 287 

by tumor-cell-intrinsic characteristics such as somatic mutations and antigen presentation status. 288 

The characteristics of tumor infiltrating T-cells allow for data-driven selection of combination 289 

immunotherapy targets, and highlight ‘warm’ and ‘cold’ microenvironments that are important to 290 

prospectively consider as potential determinants of immunotherapeutic and cellular therapy 291 

responses in FL patients. 292 

 293 

 294 
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Methods 295 

For detailed methods, please refer to the supplementary information. FL and RLN biopsies were 296 

obtained following informed consent under protocols approved by the Institutional Review Board 297 

of MD Anderson Cancer Center (Protocols 2005-0656 and PA19-0420). Tissues were processed 298 

fresh by physical disaggregation through a metal screen followed by a 40µM filter and loaded 299 

onto a 10X Chromium with 5’GEX chemistry to obtain a goal of 10,000 cells per sample. 300 

Transcriptome, BCR and TCR libraries were prepared and sequenced according to the 301 

manufacturer’s protocol. CapID hybrid-capture sequencing of transcriptome libraries was 302 

performed as previously described7. Single cell RNA-sequencing analysis was performed 303 

following quality filtering and batch correction using Seurat21. Genomic DNA from residual cells 304 

and interrogated by whole exome sequencing using Nimblegen SeqCap Exome v3. Somatic 305 

mutations were identified and annotated as previously described22. 306 

 307 
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Figure Legends 398 

Figure 1: Overview of major cell types and clusters from single cell RNA sequencing of 20 399 

FL tumors. A-B) UMAP plots show 137,147 cells from 20 FL tumors and 3 RLT controls by 400 

sample ID (A) and cluster ID (B). Major cell types are annotated in B. C) Bubble plot of cell lineage 401 

marker genes are shown for B-cell, T-cell, natural killer cell (NK), erythroid, 402 

monocyte/macrophage (MM), plasmacytoid dendritic cell (pDC) and follicular dendritic cell (fDC) 403 

clusters. D-F) UMAP plots show re-clustering of 99,610 B-cells by cluster ID (D), sample ID (E), 404 

and immunoglobulin clonotype (F). Among B-cell clusters, we identified those corresponding to 405 

non-malignant B-cells (C2), proliferating cells (C6), plasma cells (C15). A malignant B-cell cluster 406 

bearing cells from multiple samples was identified (C0). The contribution of each sample to each 407 

cluster is shown in the bar graph in E, with many clusters consisting of tumor B-cells from a single 408 

sample as determined by immunoglobulin clonotype (F) or patterns of inferred copy number 409 

variation (Figure S1). 410 
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Figure 2: Tumor infiltrating T-cell populations in follicular lymphoma. A) A bar graph shows 423 

the frequency of non-malignant immune cell populations within FL, with the majority of cells 424 

belonging to the T-cell lineages. B) UMAP plots from re-clustering of 6,700 CD8 T-cells shows 3 425 

major populations aligning with naïve, effector (eff) and exhausted (exh) states. Single cell GSVA 426 

of a CD8 T-cell exhaustion signature shows the highest expression in the CD8Exh cluster, which 427 

is also characterized by high expression of TIGIT and LAG3. C) A bubble plot shows the 428 

proportion of cells of CD8 and CD4 T-cell clusters expressing known phenotypic marker genes 429 

(size of circles) and their average expression levels (color of circles). D) UMAP plots from re-430 

clustering of 22,782 CD4 T-cells shows 4 major subpopulations aligning with naïve, regulatory 431 

(TREG), T follicular helper (TFH) and CD4 cytotoxic (CD4CTL) states. Single cell GSVA of a cytotoxic 432 

score including immune effector molecules shows high expression in the CD4CTL cluster, which is 433 

also characterized by high expression of GZMK and EOMES. E) A heatmap shows the relative 434 

proportions of CD8 and CD4 tumor infiltrating T-cell (TINT) populations calculated by 435 

deconvolution from publicly available bulk gene expression microarray or RNA-sequencing 436 

datasets (n=1,269 FL tumors from 15 datasets, see Supplementary Methods). Unsupervised 437 

clustering identified 4 characteristics patterns (TINT1-4) with different relative abundance of 438 

tumor-infiltrating T-cell populations. 439 
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Figure 3: Effect of somatic mutations on tumor B-cell expression profiles. A) An oncoplot 448 

shows recurrently mutated genes in the 19 FL tumors with available DNA. B) Volcano plots 449 

displaying differentially expressed genes between tumor B-cells from KMT2D (left), CREBBP 450 

(middle) or EZH2 (right) wild-type and mutant tumors. Examples are annotated and the full list 451 

provided in Table S6. C) Venn diagrams display the overlap of genes with increased (left) or 452 

decreased (right) expression associated with each mutation, with genes encoding cell surface 453 

proteins annotated. D) Odds ratio (+/- 95% CI) are shown for association between individual 454 

mutations and MHCII status (two-tailed Fisher’s exact test p=0.028). E) The expression of MHCII 455 

(brown, above) and MHCI genes (green, below) are shown for individual tumor B-cells from each 456 

tumor with available mutation data. Mutations of CREBBP, EZH2 and KMT2D are annotated at 457 

the top. Sample IDs are colored according to Figure 1A and tumors with additional mutations in 458 

*CIITA and **B2M that may also affect MHCII and MHCI expression, respectively, are annotated 459 

by asterisk. 460 
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Figure 4: Association between tumor MHCII status and tumor infiltrating T-cell 474 

populations. A) A bar graph shows the fold change of CD8 and CD4 T-cell populations between 475 

MHCII low and MHCII high tumors, colored by Fisher Exact FDR q-value. The CD8 exhausted 476 

(exh; fold-change 3.43, Fisher exact q=0.05) and CD4CTL (fold-change 2.11; Fisher exact q=0.07) 477 

populations are significantly higher in MHCII high tumors compared to MHCII low tumors. B-C) 478 

Scatter plots and bar plots show the quantitative and qualitative association between CD8 479 

exhausted (B) and CD4CTL (C) populations and either the expression or status of MHCII on tumor 480 

B-cells, respectively. D) UMAP density plots show the relative representation of CD8 exhausted 481 

(exh; above) and CD4CTL (below) populations between MHCII low (left) or MHCII high (right) 482 

tumors. E) Differentially expressed genes (DEG) between CD8 T-cells from MHCII low vs MHCII 483 

high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with 484 

significantly different proportions of cells from MHCII low/high tumors (top track, P=3.8x10-67). F) 485 

A bar graph of cell states in each DEG cluster from E, which shows higher fractions of CD8 486 

exhausted (exh) cells in C1 and a higher fraction of CD8 effector cells (eff) cells in C3. G) GSVA 487 

showed higher expression of exhaustion signature genes in cells within C1 compared to either 488 

C2 or C3. H) Differentially expressed genes (DEG) between CD4 T-cells from MHCII low vs MHCII 489 

high tumors were subjected to unsupervised hierarchical clustering identifying 3 clusters with 490 

significantly different proportions of cells from MHCII low/high tumors (top track, P=2.1x10-61). I) 491 

A bar graph of cell states in each DEG cluster from H, which shows higher fractions of CD4CTL, 492 

TFH and TREG cells in C1 and a higher fraction of CD4 naïve cell in C3. J) GSVA showed higher 493 

expression of exhaustion signature genes in cells within C1 compared to either C2 or C3. K) A 494 

bubble plot shows the average expression of immune-modulatory genes on CD4 (above) or CD8 495 

(below) T-cells in MHCII low or high tumors. The center grid shows the fold-change and 496 

significance of pairs of immune-modulatory genes between MHCII low and high tumors for CD4 497 

(top left) and CD8 (bottom right) T-cells. L-M) Scatter plots show the co-expression of significant 498 
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pairs of targetable immune modulatory genes in CD8 (L, LAG3 and TIGIT) and CD4 (M, TNFRSF4 499 

and CTLA4) T-cells from MHCII low (left) or MHCII high (right) tumors. 500 
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