

1    **The nature of intraspecific genome size variation in taxonomically complex eyebrights**

2    **Authors:**

3    Hannes Becher<sup>1</sup>, Robyn F. Powell<sup>2</sup>, Max R. Brown<sup>1,3</sup>, Chris Metherell<sup>4</sup>, Jaume Pellicer<sup>2,5</sup>, Ilia J.  
4    Leitch<sup>2</sup>, Alex D. Twyford<sup>1,6,7</sup>

5    1 Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh,  
6    Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK

7    2 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, UK

8    3 current address: Wellcome Trust Genome Campus, Hinxton, Saffron Walden CB10 1RQ

9    4 Botanical Society of Britain and Ireland, 4 High Firs Crescent, Harpenden, Hertfordshire AL5  
10   1NA, UK

11   5 Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn,  
12   08038, Barcelona, Spain

13   6 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK

14   7 correspondence: [Alex.Twyford@ed.ac.uk](mailto:Alex.Twyford@ed.ac.uk)

15   Word counts:

16   Total word count for the main body of the text (Introduction, Materials and Methods, Results,  
17   Discussion): 5826

18   Section word counts: Intro 1035, M&M 1320, Results 1730, Discussion 1741

19   Figures: 3, all colour

20   Tables: 1

21   Supporting Figures: 2

22   Supporting Tables: 2

23

24

25

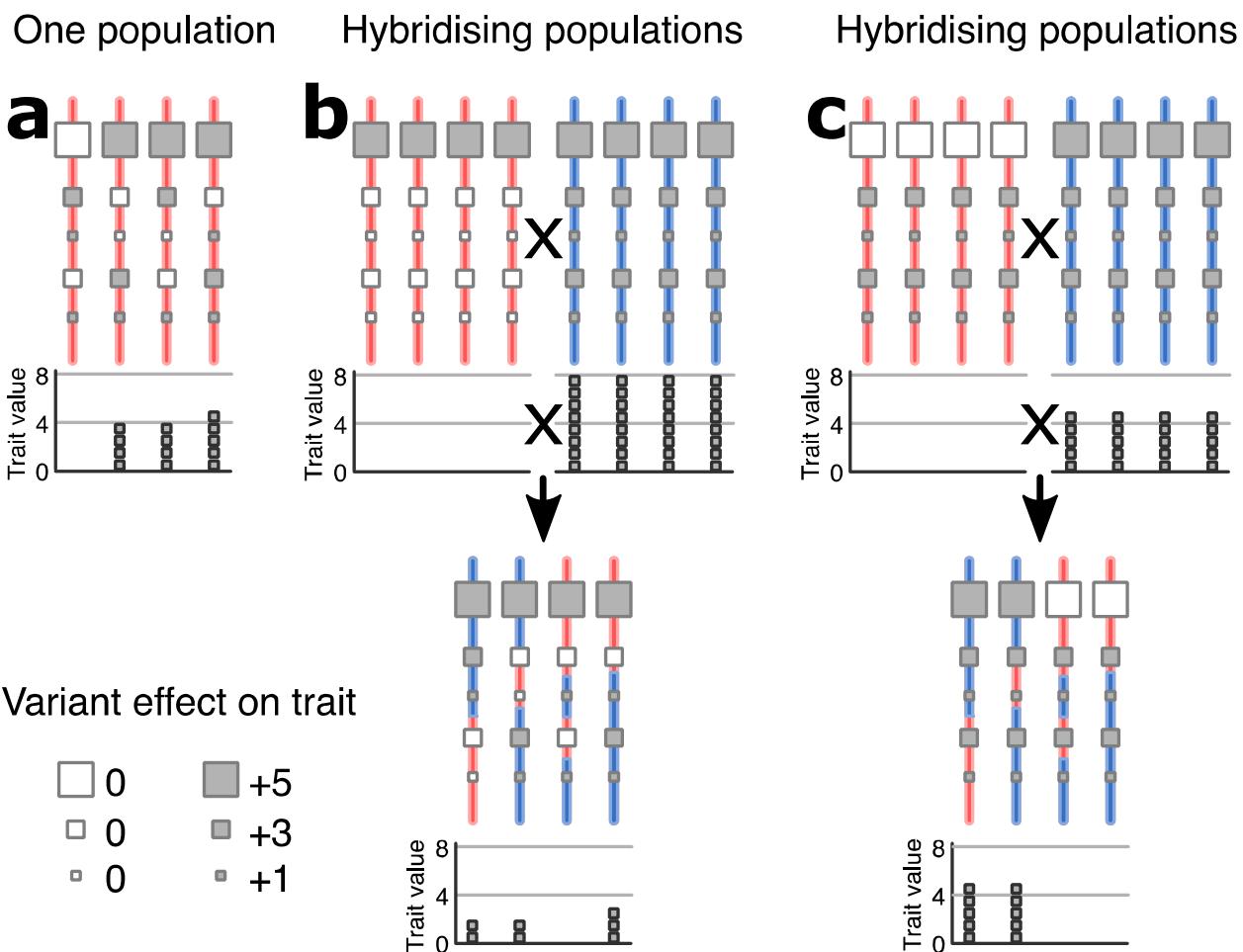
26

27 **Summary**

28 • Genome size (GS) is a key trait related to morphology, life history, and evolvability.  
29 Although GS is, by definition, affected by presence/absence variants (PAVs), which are  
30 ubiquitous in population sequencing studies, GS is often treated as an intrinsic property  
31 of a species. Here, we studied intra- and interspecific GS variation in taxonomically  
32 complex British eyebrights (*Euphrasia*).  
33 • We generated GS data for 192 individuals of diploid and tetraploid *Euphrasia* and  
34 analysed GS variation in relation to ploidy, taxonomy, population affiliation, and  
35 geography. We further compared the genomic repeat content of 30 samples.  
36 • We found considerable genuine intraspecific GS variation, and observed isolation-by-  
37 distance for GS in outcrossing diploids. Tetraploid *Euphrasia* showed contrasting  
38 patterns, with GS increasing with latitude in outcrossing *Euphrasia arctica*, but little GS  
39 variation in the highly selfing *Euphrasia micrantha*. Interspecific differences in GS  
40 genomic repeat percentages were small.  
41 • We show the utility of treating GS as the outcome of polygenic variation. Like other types  
42 of genetic variation, such as single nucleotide polymorphisms, GS variation may be  
43 increased through hybridisation and population subdivision. In addition to selection on  
44 associated traits, GS is predicted to be affected indirectly by selection due to pleiotropy  
45 of the underlying PAVs.

46 **Keywords:** Genome size, polygenic trait, *Euphrasia*, ploidy, intraspecific variation, selection,  
47 pleiotropy, genomic repeats

48


## 49 INTRODUCTION

50 Genome size (GS), defined as the amount of DNA in an individual's unreplicated haploid  
51 nucleus (Greilhuber *et al.*, 2005), is associated with an organism's life history strategy,  
52 development, physiology, ecology, and gene and genome dynamics and evolution (Van't Hof &  
53 Sparrow, 1963; Beaulieu *et al.*, 2008; Šimová & Herben, 2012; Greilhuber & Leitch, 2013;  
54 Simonin & Roddy, 2018; Bilinski *et al.*, 2018; Novák *et al.*, 2020a; Roddy *et al.*, 2020). Genome  
55 size is estimated to show a c. 64,000-fold variation across Eukaryotes, and c. 2440-fold  
56 variation in flowering plants (Pellicer *et al.*, 2018). Much is known about broad-scale variation in  
57 GS across land plants and algae, with different phyla characterised by different GS ranges  
58 (Pellicer & Leitch, 2020), and showing, in many cases, a strong phylogenetic signal (e.g. Weiss-  
59 Schneeweiss *et al.*, 2006; Vallès *et al.*, 2013; Wang *et al.*, 2016; Bainard *et al.*, 2019; Cacho *et*  
60 *al.*, 2021). Genome size has also been explored in polyploid species, with studies showing that  
61 while whole genome duplication events initially lead to an increase in GS, their subsequent  
62 evolution is often accompanied by genome downsizing over time (Leitch *et al.*, 2008; Leitch &  
63 Leitch, 2008; Pellicer *et al.*, 2010; Wong & Murray, 2012; Wendel, 2015; Zenil-Ferguson *et al.*,  
64 2016). Recently, community ecology studies have started to include data on GS and  
65 demonstrate its influence in shaping plant diversity (Guignard *et al.*, 2016, 2019). While  
66 representative GS estimates have been obtained for approximately two thirds of flowering plant  
67 families (Pellicer & Leitch, 2020), variation between individuals and populations within species  
68 has typically received less attention, despite the increasing realisation that such variation may  
69 be common (e.g. Šmarda *et al.*, 2010; Kolář *et al.*, 2017).

70 GS has often been considered a property of a species, and there has been much debate as to  
71 whether it genuinely varies within species (Greilhuber, 2005; Gregory & Johnston, 2008;  
72 Šmarda & Bureš, 2010). Genuine intraspecific differences in DNA content have been reported  
73 or are predicted between individuals with: (1) heteromorphic sex chromosomes (Costich *et al.*,  
74 1991; Renner *et al.*, 2017), (2) different numbers of B chromosomes (Leitch *et al.*, 2007)  
75 dysploidy and aneuploidy, or (3) the presence/absence of specific DNA sequences such as (a)  
76 structural variants including insertion-deletion polymorphisms (indels), (b) copy number variation  
77 in protein-coding genes, commonly found in pan-genome studies (Hirsch *et al.*, 2014; Wang *et*  
78 *al.*, 2018b; Gao *et al.*, 2019; Hübner *et al.*, 2019; Göktay *et al.*, 2020), and (c) copy number  
79 variation of rDNA copies (Long *et al.*, 2013) or of other genomic repeats (Chia *et al.*, 2012;  
80 Haberer *et al.*, 2020). Some differences, such as small indels, can be as small as one base pair,  
81 while others are large-scale (many megabases), including sequence duplications or loss of a

82 dispensable chromosome. The above types of genetic variation can be subsumed under the  
83 term presence/absence variants (PAVs), a type of structural genomic variation, and may be  
84 detectable by methods for estimating GS, such as flow cytometry. Modern protocols using flow  
85 cytometry with appropriate reference standards, and following best practice approaches, can be  
86 accurate and highly precise (Greilhuber *et al.*, 2007; Pellicer *et al.*, 2021) and reveal genuine  
87 intraspecific variation that can be confirmed by genome sequencing. Such sequencing has also  
88 been used to reveal that repeat differences can be useful genetic markers, including  
89 microsatellites and AFLPs. Consequently, there are an increasing number of well-documented  
90 reports of genuine intraspecific GS variation (e.g. Achigan-Dako *et al.*, 2008; Šmarda *et al.*,  
91 2010; Díez *et al.*, 2013; Hanušová *et al.*, 2014; Blommaert, 2020).

92 Our study considers such variation as polygenic, meaning heritable, and with a value affected  
93 by multiple independent loci in the genome (Figure 1). Many polygenic traits are known, with the  
94 most renowned example being human height (Fisher, 1919). Loci underpinning polygenic  
95 variation need not be protein-coding genes, but may also involve non-coding sequences  
96 including introns, promoters, trans elements, or genomic repeats. Loci underpinning a polygenic  
97 trait may differ in their effect sizes, as shown by Koornneef *et al.* (1991) for flowering time in  
98 *Arabidopsis thaliana* (see also Napp-Zinn, 1955). Further, variants at a genetic locus are  
99 commonly pleiotropic, affecting multiple traits and thus potentially being the target of multiple  
100 selective effects. An early example of treating GS as such is the study of Meagher *et al.* (2005)  
101 on the relationship between GS and flower size in *Silene latifolia*, that showed correlations  
102 between floral traits and GS in male plants.



105 Each red or blue line represents an individual's genome. Squares represent genetic variants  
106 with different effect sizes on a trait. The bar charts indicate individuals' trait values, relative to  
107 the individual with the lowest value. (a) A population (or species) with genetic variability for the  
108 trait. The effect of hybridisation between populations with different trait values depends on the  
109 genetic architecture of the trait difference. If the populations differ in many variants with small  
110 effects (b), recombinant offspring (denoted by mixed red and blue lines) are likely to have  
111 similar trait values. If, however, trait differences are due to a few variants with large effects (c),  
112 segregation in the recombinant offspring can produce higher trait variation. Applied to GS, open  
113 squares correspond to DNA missing and filled squares to DNA present at some site in the  
114 genome, as detailed in the main text.

115

116 Here we explore GS variation in British eyebrights (*Euphrasia* L., Orobanchaceae), a recently  
117 radiating group of facultative hemiparasites. They comprise five diploid ( $2n = 2x = 22$ ) and 15  
118 tetraploid species ( $2n = 4x = 44$ ) (Metherell & Rumsey, 2018), with genomic sequencing  
119 showing that British tetraploids are closely related allotetraploids, with one sub-genome derived  
120 from, or closely related to, British diploids (Becher *et al.*, 2020). The genus is an ideal model  
121 group for investigating GS variation within and between closely related species because species  
122 diversification is frequently postglacial (Gussarova *et al.*, 2008; Wang *et al.*, 2018a), with many  
123 taxa being narrow endemics or recent hybrid species. *Euphrasia* therefore provides multiple  
124 opportunities to study GS changes at the early stages of species divergence. Heterogeneous  
125 ecological conditions may promote local adaptation, and extensive hybridisation may result in  
126 local geographic homogenisation with variation in GS structured by geography rather than by  
127 taxonomy, as seen previously in microsatellite and AFLP studies of population structure  
128 (Kolseth & Lönn, 2005; French *et al.*, 2008).

129 To investigate the nature of GS variation in British *Euphrasia* species, we generated a  
130 comprehensive dataset of 192 GS estimates across 13 species and 10 hybrid combinations,  
131 supplemented with genomic sequence data to estimate the abundance of genomic repeats for  
132 30 diverse diploids and tetraploids. Our study aims to answer the following questions: (1) How  
133 variable is GS within species, between species, and between ploidy levels? (2) What is the  
134 contribution of genomic repeats to GS variation in British *Euphrasia*, and how does repeat  
135 content differ between the ploidy levels? (3) Does GS variation correspond with known patterns  
136 of genetic structure and/or environmental variables in British *Euphrasia*? We discuss our results  
137 in the light of polygenic variation, and we argue for a closer integration of population genomics  
138 research with research on GS variation.

139

## 140 METHODS

### 141 Population and species-level genome size variation

142 **Population sampling.** Our sampling for GS estimation aimed to collect from across the  
143 diversity of British *Euphrasia* taxa, and from a wide geographic area. Samples from 90  
144 populations comprising 13 species and 10 hybrid combinations were either wild-collected and  
145 used directly for GS estimates (54 samples) or collected as seeds and grown at the Royal  
146 Botanic Garden Edinburgh following Brown *et al.* (2020) prior to GS estimation (138 samples). A

147 full list of samples analysed including their origin is given in Supplementary Information Table  
148 S1. The identification of species and hybrids were made by the *Euphrasia* taxonomic expert  
149 Chris Metherell, based on morphology.

150 **Genome size measurements.** Nuclear DNA content of *Euphrasia* samples was estimated by  
151 flow cytometry using propidium iodide (PI) stained nuclei, following the one step method (see  
152 Pellicer *et al.*, 2021). Briefly, for each *Euphrasia* accession, two small leaves (c. 1-2 cm) were  
153 chopped together with the internal standard *Oryza sativa* 'IR36' (1C = 0.5 pg; Bennett & Smith,  
154 1991) using a new razor blade, in a petri dish containing 1 mL of 'general purpose isolation  
155 buffer' (GPB; Loureiro *et al.*, 2007), supplemented with 3% PVP-40 and 0.4 µL of β-  
156 mercaptoethanol. An additional 1 mL of buffer was added to the homogenate, and then this was  
157 filtered through a 30 µm nylon mesh to discard debris. Finally, the sample was stained with  
158 100 µL of PI (1 mg/mL, Sigma) and incubated for 20 min on ice. For each accession analysed,  
159 one sample was prepared, and this was run three times on the flow cytometer. The nuclear  
160 DNA content of each sample run was estimated by recording at least 5,000 particles (c.1,000  
161 nuclei per fluorescence peak) using a Cyflow SL3 flow cytometer (Sysmex-Partec GmbH,  
162 Munster, Germany) fitted with a 100-mW green solid-state laser (Cobolt Samba). Resulting  
163 output histograms were analysed using the FlowMax software (v. 2.9, Sysmex-Partec GmbH)  
164 for statistical calculations. We report only GS estimates for samples where the coefficients of  
165 variation (CV) of the sample and standard peaks in the flow histogram were less than 5% (see  
166 Supporting Information Figure S1a and b for illustrative histograms of each ploidy level).

167 Where differences in GS were detected within a species, combined samples containing at least  
168 two accessions were prepared following the same procedure as for individual runs. Genuine  
169 intraspecific variation was confirmed where multiple fluorescence peaks were identified from the  
170 combined run.

171 Throughout the paper we give 1C values in pg, where necessary converting published GS  
172 values reported in Gbp to pg using a conversion factor of 0.978 following Doležel *et al.* (2003).

### 173 **Repeat content variation**

174 **Sequence data generation.** We used a combination of existing and newly generated genomic  
175 sequencing data to investigate repeat variation in 31 samples comprising seven diploids and 23  
176 tetraploids of *Euphrasia* plus *Bartsia alpina* as an outgroup. We downloaded short-read Illumina  
177 data from the sequence read archive (SRA, see Supplementary Information Table S2). These

178 included 18 samples in total, including 12 tetraploid samples from the isolated island of Fair Isle  
179 (Shetland, Scotland) generated for the study of Becher *et al.* (2020), which allowed us to study  
180 genomic repeat profiles in sympatric populations. This dataset also included a total of six  
181 representative diploid and tetraploid species from elsewhere in Britain.

182 We supplemented this previous data with newly generated sequence data from eleven  
183 additional UK samples representing a wider range of species and geographic locations,  
184 including 11 UK *Euphrasia* samples, an Austrian sample of *Euphrasia cuspidata* intended as a  
185 close outgroup to UK species, and *Bartsia alpina* as an outgroup to the full sample set. Genomic  
186 DNA was extracted from 12 silica-dried samples and herbarium material of *E. cuspidata* using  
187 the Qiagen Plant Mini Kit (Qiagen, Manchester, UK), and used to prepare NEBUltra PCR-based  
188 libraries. Pooled libraries were sent to Edinburgh Genomics where they were run on a single  
189 lane of HiSeq 2500 using high output mode with 125 bp paired-end sequencing.

190 **Repeat content.** We ran the RepeatExplorer2 (RE) pipeline (<https://repeatexplorer.elixir.cerit-sc.cz/>; Novák *et al.*, 2010, 2013, 2020) on a data set of 25,000 randomly selected read pairs of  
191 each of the 31 samples (1,550,000 reads in total). This slightly exceeded the maximal number  
192 of reads that can be analysed with default settings (which depends on the data). Our dataset  
193 was therefore down-sampled to approximately 20,500 read pairs per sample. In comparative RE  
194 analyses, read numbers are often supplied in proportion to genome sizes to assure repeats of  
195 similar genome proportion can be detected in all samples (e.g. Novák *et al.*, 2020a). This logic  
196 does not apply here, where the British samples comprise 23 closely related tetraploids and six  
197 closely related diploids, with the diploid genome very similar to one of the tetraploid sub-  
198 genomes (Becher *et al.*, 2020). No matter what genome proportion is chosen per sample, there  
199 will always be more of the shared sub-genome than of the sub-genome restricted to tetraploids.  
200 To minimise mate overlaps of short insert sizes, each read was trimmed to 100 nucleotides.  
201 Further, we only used reads where at least 90 nucleotides had phred quality scores > 30. To  
202 analyse the genomic repeat content, we excluded clusters annotated by RE as plastid DNA or  
203 Illumina process controls. Our numbers thus deviate slightly from RE's automatic annotation.

205 **Statistical analyses.** Most GS analyses were conducted across all individuals or populations.  
206 However, for *E. arctica*, *E. anglica*, and *E. micrantha*, where sampling covered most of their  
207 large geographical range in Britain, we also analysed data from each species separately. All  
208 analyses were done using R version 3.6.1 (R Core Team, 2019). For analyses of variance  
209 (ANOVAs) we used the function aov(). To test whether sample means of GS were significantly

210 different, we used the function `t.test()`, with Bonferroni correction in cases of multiple testing. To  
211 analyse how GS variation was partitioned by ploidy, taxon, and population we used ANOVA. To  
212 test the effect of 'species', we then re-ran the ANOVAs without hybrids (Table 1). To test the  
213 significance of GS variance differences between species pairs, we divided the population mean  
214 genome sizes by each species' grand mean (centring) and then applied an *F* test (R function  
215 `var.test()`).

216 We tested the association between GS and latitude using a mixed effect model (R package  
217 `nlme`, function `lme()`). For species analysed separately, we used linear models. We carried out  
218 Mantel tests to assess the relationship between geographic distance and GS difference across  
219 all samples as done by Duchoslav *et al.* (2013). Unlike genetic data, which require population  
220 information, these Mantel tests could be carried out on individual-based genome size  
221 differences or population means. Isolation by distance was assessed using Mantel tests (R  
222 package `vegan` version 2.5-6) with 999 permutations.

223 To analyse genomic repeat patterns, we used hierarchical clustering and PCA on a matrix of the  
224 per-sample genome proportions of the 100 largest repeat clusters in R using the functions  
225 `hclust()` and `prcomp()`. *Bartsia alpina* was removed from the final PCA data set, because its  
226 divergence from *Euphrasia* accounted for most of the variance in the data set, obscuring  
227 variation within *Euphrasia*. To identify repeat clusters with large contributions to the first  
228 principal component, we selected those clusters which had absolute values > 0.1 in the first  
229 eigenvector. We further used binomial-family generalised linear models to estimate the average  
230 genomic proportion individually for each repeat cluster. For each estimate, we computed the  
231 residual sum of squares as a measure of the variation in genomic abundance between  
232 individuals. We used linear models to assess the differences in relative abundance of individual  
233 repeat types between ploidy levels.

234 To investigate a possible association of individual repeat clusters with GS, we used nine  
235 tetraploid samples for which we had both an estimate of the population average GS and repeat  
236 data (samples marked with asterisks in Supporting Information Table S2). We used the function  
237 `cor.test()` to assess the significance level of any associations between the genome proportion of  
238 each individual repeat cluster and population average GS.

239

240 **Results**

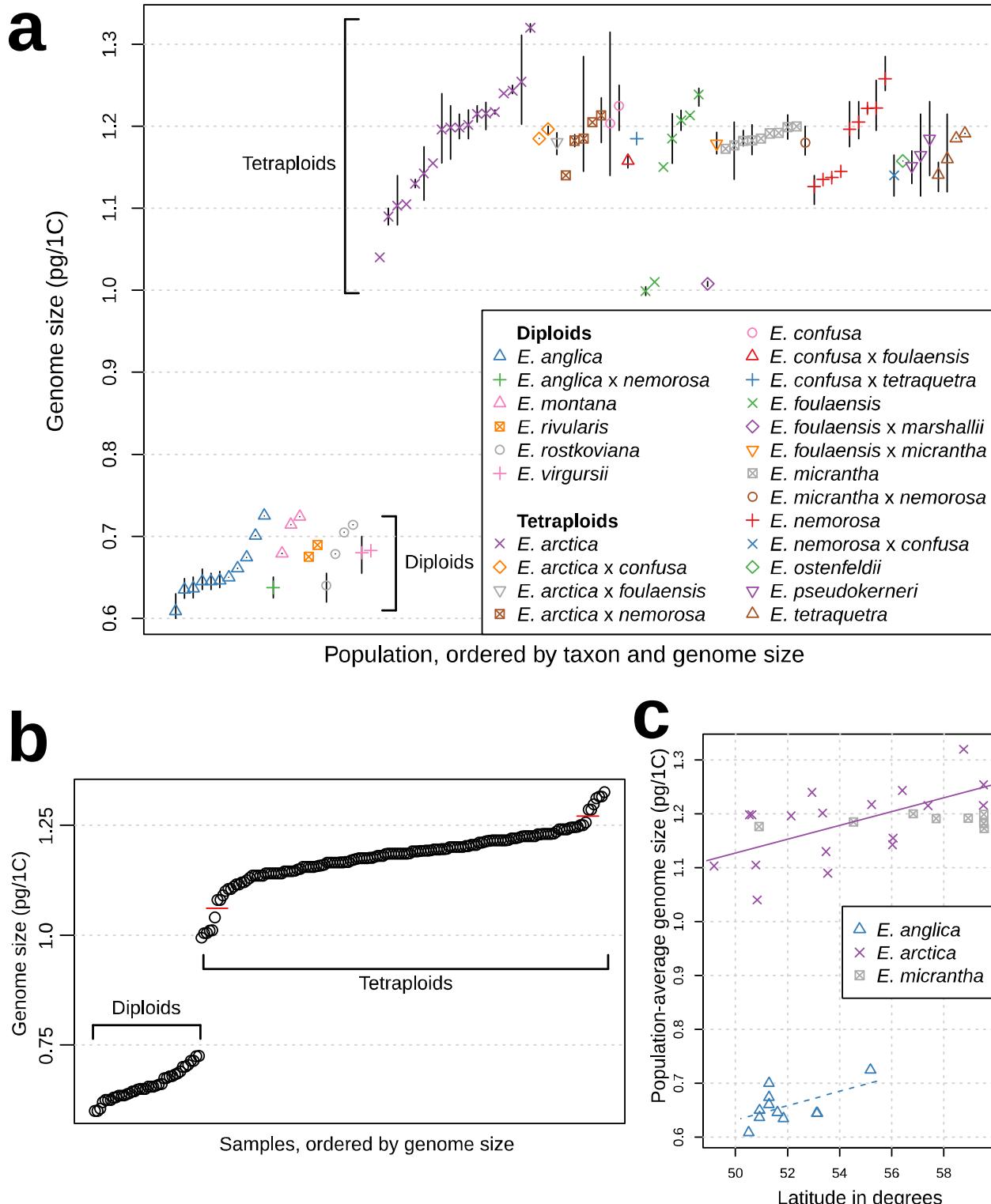
241 *Population and species-level genome size variation*

242 Genome size estimates from all 192 individuals passed our quality checks. These samples  
243 came from 13 different species and 10 hybrid combinations, including 40 diploid and 152  
244 tetraploid individuals (Supporting Information Table **S1**). Our samples covered a particularly  
245 wide geographic range for the large-flowered species *E. anglica* (diploid, 552 km) and *E. arctica*  
246 (tetraploid, 1152 km), and the small-flowered and highly selfing *E. micrantha* (tetraploid,  
247 962 km).

248 The mean GS across all tetraploids was 1.18 pg (s.e. 0.004 pg), which is 11% less than twice  
249 the mean GS of the diploids (0.66 pg, s.e. 0.008 pg). In the diploids, individual values ranged  
250 1.2-fold, from 0.60 pg in *E. anglica* (population BED) to 0.73 pg in *E. anglica* in Dumfriesshire  
251 (E4E0085). In tetraploids there was 1.3-fold variation, from 0.99 pg in *E. foulensis* in Fair Isle  
252 (FIA105) to 1.33 pg in *E. arctica* in Orkney (E4E0033).

253 Intraspecific GS ranges were widest in *E. arctica* (n = 43) and *E. foulensis* (n = 13) (both 1.3-  
254 fold), and *E. anglica* (n = 23) (1.2-fold). *Euphrasia confusa* (n = 6), *E. nemorosa* (n = 22), *E.*  
255 *pseudokernerii* (n = 9), and *E. rostkoviana* (n = 9) had GS ranges greater than 1.1-fold. While  
256 individuals with different GS values were often found in distant populations, such as in *E.*  
257 *anglica* (0.6 pg and 0.73 pg, 525 km apart), and in *E. arctica* (1.04 pg and 1.33 pg, 903 km  
258 apart), we also found considerable GS variation between populations in close proximity in *E.*  
259 *foulensis* (0.99 pg and 1.25 pg, 2.5 km apart) and in *E. confusa* (1.14 pg and 1.32 pg, same  
260 population). In all cases, tests to distinguish genuine intraspecific variation from technical  
261 artefacts confirmed the GS differences reported between individuals (see Methods and  
262 Supporting Information Figure **S1c** and **d**). Generally, we found wider GS ranges in taxa with  
263 more populations sampled. A notable exception was *E. micrantha* (GS range 1.14-1.21 pg from  
264 17 individuals analysed from 9 populations, up to 962 km apart), which is discussed below.

265 In ANOVAs, the vast majority of the overall GS variation was explained by 'ploidy', while 'taxon'  
266 and 'population' accounted for smaller significant fractions (Table 1). 'Population' accounted for  
267 considerably more variation than 'taxon' – 3 or 8 times, depending on whether hybrids were  
268 included in the analysis or not. This difference is due to the few data available for most hybrids  
269 (Figure 2a, Supplementary Information Table **S1**). The fact that 'taxon' generally accounts for  
270 only a small amount of variance is reflected by the near-continuous distribution of GSs within  
271 each ploidy level (Figure 2b). The distribution of tetraploid GS values has two gaps, caused by a


272 few exceptional individuals with extreme outliers in their GS values. While most tetraploid GS  
273 values are between 1.07 and 1.26 pg (red horizontal lines in Figure 2b), six samples had lower  
274 (*E. arctica*, *E. foulensis*, and *E. foulensis* x *marshallii*), and seven higher, GS (*E. arctica*).

275

276 **Table 1. Partitioning of GS variation across *Euphrasia* species and hybrids.** Top analysis  
277 includes all 192 samples from 13 species and 10 hybrids, and the lower analysis 157 samples  
278 comprising just the 13 species (lower analysis). Both ANOVA tables detail the variance  
279 components (Sum Sq) accounted for by ploidy, taxon and population.

|                 |            | df  | Sum Sq | Mean Sq | F       | p                                |
|-----------------|------------|-----|--------|---------|---------|----------------------------------|
| With hybrids    | Ploidy     | 1   | 8.67   | 8.67    | 9505.96 | <b>&lt; 2.0×10<sup>-16</sup></b> |
|                 | Taxon      | 21  | 0.11   | 0.01    | 6.00    | <b>4.1×10<sup>-10</sup></b>      |
|                 | Population | 67  | 0.34   | 0.01    | 5.48    | <b>7.8×10<sup>-15</sup></b>      |
|                 | Residuals  | 102 | 0.09   | 0.00    |         |                                  |
| Without hybrids | Ploidy     | 1   | 7.96   | 7.96    | 8763.74 | <b>&lt; 2.0×10<sup>-16</sup></b> |
|                 | Taxon      | 11  | 0.04   | 0.00    | 4.17    | <b>6.9×10<sup>-5</sup></b>       |
|                 | Population | 62  | 0.33   | 0.01    | 5.92    | <b>1.5×10<sup>-13</sup></b>      |
|                 | Residuals  | 82  | 0.07   | 0.00    |         |                                  |

280



281

282 **Figure 2. Patterns of GS variation in British *Euphrasia*.** **a** The distribution of population-  
283 average GS for 90 populations of 23 taxa (13 species and 10 hybrids). Vertical bars indicate the  
284 GS range within each population where more than one individual was analysed. **b** Distribution of  
285 individual GS estimates for all 192 samples. Horizontal red lines indicate the limits of the

286 continuous part of the tetraploid GS distribution. **c** Population average genome sizes plotted  
287 against latitude for the three most widely sampled species. The solid purple line indicates a  
288 significant statistical relationship of GS with latitude across 17 populations of *E. arctica*. This  
289 relationship was only marginally significant for 11 populations of *E. anglica* (dashed blue line).  
290 No significant association was found across nine populations of the highly selfing *E. micrantha*.

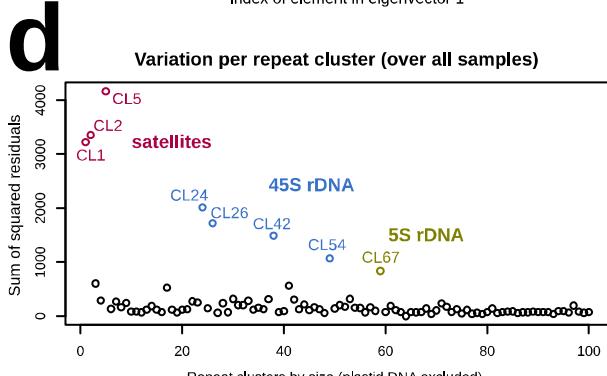
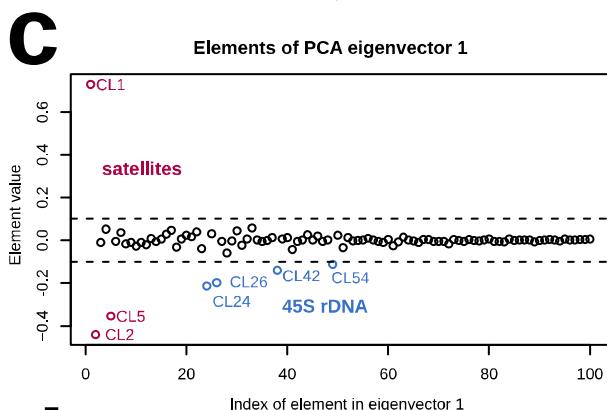
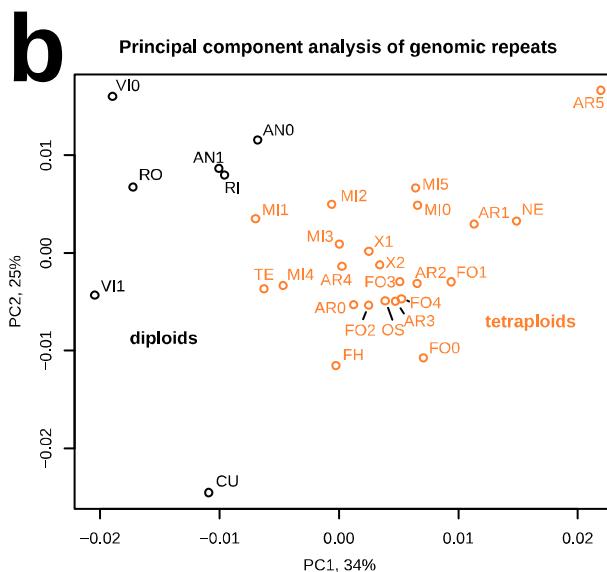
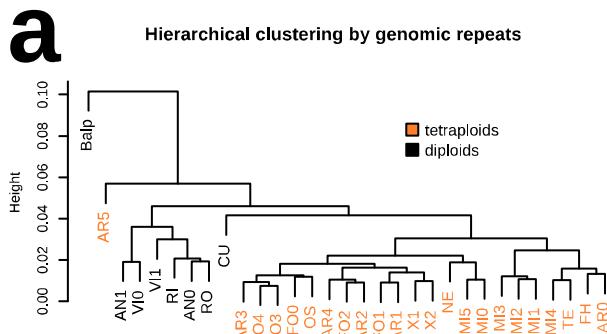
291

292

293 Analyses of the three geographically widespread species with wider population sampling  
294 revealed that GS variation was significantly partitioned by population for mixed-mating *E.*  
295 *anglica* ( $F_{10,12}=9.86$ ,  $p=2.3\times 10^{-4}$ ) and *E. arctica* ( $F_{17,25}=10.5$ ,  $p < 1.7\times 10^{-7}$ ), but not for highly  
296 selfing *E. micrantha* ( $F_{8,8}=0.31$ ,  $p=0.94$ ). Further, the variance in population average GS was  
297 significantly lower in *E. micrantha* than in *E. anglica* ( $F_{10,8}=11.65$ ,  $p=9.6\times 10^{-4}$ ) or *E. arctica*  
298 ( $F_{17,8}=53.2$ ,  $p=2.3\times 10^{-6}$ ).

299 Individual-based Mantel tests to link geographic distance and GS variation were significant over  
300 all 40 diploid samples (Mantel statistic  $r=0.25$ ,  $p=0.001$ ) and all 152 tetraploids ( $r=0.04$ ,  $p=0.01$ ).  
301 We then carried out Mantel tests based on population averages to exclude the very local  
302 distance component. These tests were significant over all diploids ( $r=0.27$ ,  $p=0.002$ ) but not  
303 over all tetraploid populations ( $r=0.04$ ,  $p=0.09$ ). However, *E. arctica*, the most widespread  
304 tetraploid species, showed a pattern of isolation-by-distance at this level ( $r=0.24$ ,  $p=0.015$ ).

305 We confirmed a strong relationship between ploidy and latitude (ANOVA  $F_{1,190}=18.79$ ,  
306  $p=2.4\times 10^{-5}$ ), with diploids generally limited to lower latitudes (being particularly abundant in  
307 southern England, Supporting Figure S2) while tetraploids extend to the very north of Britain.  
308 However, there was no significant association between GS and latitude within ploidy levels  
309 (treating taxon as a random effect,  $t=0.63$ ,  $p=0.53$ ). We then analysed the data for each of the  
310 three widely sampled species individually using linear models (Figure 2c). There was a non-  
311 significant trend for the diploid *E. anglica* (slope=0.013 pg/(degree latitude),  $F_{1,9}=4.23$ ,  $p=0.07$ ,  
312  $r^2=0.24$ ). Of the tetraploids, *E. arctica* did show that GS increases significantly with latitude  
313 (slope=0.013 pg/(degree latitude),  $F_{1,16}=9.36$ ,  $p=0.008$ ,  $r^2=0.31$ ), whereas *E. micrantha* did not  
314 ( $F_{1,7}=0.34$ ,  $p=0.577$ ).





315

316 Variation in genomic repeat content

317 To investigate the nature of the PAVs underpinning GS variation, we analysed the genomic  
318 repeat content from whole genome sequencing data in 31 samples using the RE pipeline. RE's  
319 output includes a set of annotated repeat clusters, representing individual repeat types. Our  
320 samples included *B. alpina* (Orobanchaceae), 29 British *Euphrasia* samples (six diploids and 23  
321 tetraploids), and one Austrian diploid (Supporting Information Table **S2**). Overall, 69.9% of all  
322 *Euphrasia* reads analysed were identified as derived from repetitive DNA (i.e. they formed  
323 repeat clusters with genome proportions > 0.01%). The average genomic repeat contents of  
324 diploid and tetraploid *Euphrasia* samples differed, being 71.4% and 69.1%, respectively  
325 ( $F_{1,28}=8.14$ ,  $p=0.008$ ). The repeat content for *B. alpina* was only 42.4%, which is an under-  
326 estimate because repeats private to the species may have failed to form individual clusters  
327 given our sampling design and cut-off threshold.

328 The most abundant repeat family, ranging from 25% in *E. anglica* (AN1) to 30% in *E. cuspidata*  
329 (CU), was Angela, a type of Ty1/Copia long terminal repeat retrotransposon (LTR), which is  
330 typically c. 8.5 kbp in length. Overall, all types of Ty1/Copia elements identified accounted for  
331 30-39% of each *Euphrasia* genome, while Ty3/Gypsy elements typically occupied just 3-6% of  
332 the genome (Supplementary Information Table S2).

333 To assess how well genomic repeat profiles in samples from different populations correspond  
334 with species identity based on morphology, we used two unsupervised machine learning  
335 techniques: hierarchical clustering and principal component analysis (PCA). We focussed our  
336 analyses on the largest 100 repeat clusters, which together account for approximately 50% of  
337 each genome, no matter if diploid or tetraploid. Each smaller repeat cluster had a genomic  
338 proportion of < 0.7% in each sample. Hierarchical clustering resulted in a tree that grouped  
339 samples largely by ploidy, rather than species identity, with the exception of (i) a sample of the  
340 Austrian alpine *E. cuspidata* (CU), a species considered diploid, which grouped as sister to the  
341 tetraploids, and (ii) tetraploid *E. arctica* from Cornwall (AR5), which grouped as sister to all other  
342 *Euphrasia* samples (Figure 3a). All species with multiple samples formed mixed branches with  
343 other species in this tree. Among the sympatric samples from Fair Isle, *E. micrantha* (MI1-3)  
344 clustered separately from *E. arctica* (AR1-3) and *E. foulensis* (FO1-4), both of which were  
345 mixed with other species, similar to previous patterns of clustering from SNP-based analyses  
346 (Becher *et al.*, 2020).



348 [one col] **Figure 3. Clustering of *Euphrasia* samples based on genomic repeat content. a**  
349 Hierarchical clustering shows grouping largely by ploidy. **b** A PCA of the relative proportions of  
350 the top 100 repeat clusters in 30 samples of *Euphrasia*. Diploids are shown in black and  
351 tetraploids in orange. **c** Contribution of each repeat cluster to the first principal component (of  
352 panel b). Clusters with negative values are enriched in diploids while those with positive values  
353 are enriched in tetraploids. **d** The extent of variation in the genomic proportions of all individuals  
354 for each repeat cluster. The codes in **a** and **b** are: Balp-*Bartsia alpina* (outgroup), five diploid  
355 species (seven samples): AN-*E. anglica*, CU-*E. cuspidata*, VI-*E. vigursii*, RI-*E. rivularis*, RO-*E.*  
356 *rostkoviana*, seven tetraploid species and two tetraploid hybrids: AR-*E. arctica*, FO-*E.*  
357 *foulaensis*, MI-*E. micrantha*, NE-*E. nemorosa*, FH-*E. fharaidensis*, OS-*E. ostenfeldii*, TE-*E.*  
358 *tetraquetra*, and X-tetraploid hybrids.

359 PCA without the outgroup *B. alpina* yielded a PC1 that explained 34% of the variance in our  
360 repeat data, separating the diploid and tetraploid samples (Figure 3b), whereas there was no  
361 clear separation by species. The samples for some species were spread widely across the plot  
362 (e.g. *E. arctica* (AR0-5) and *E. vigursii* (VI0, VI1)), while those of *E. micrantha* (MI0-5) grouped  
363 relatively tightly. Although this does not preclude the possibility of species-specific repeat  
364 patterns in *Euphrasia*, it is clear that there are no major differences in the relative abundance of  
365 the common repeat types between the species. Within the 138 largest repeat clusters, none  
366 was species-specific (i.e. present in individuals of only one species). Within the largest 701  
367 clusters, none was diagnostic for a species (i.e., none was present in all samples of one species  
368 but absent in all other samples).

369 To further analyse which repeat clusters separate diploids and tetraploids in the PCA (Figure  
370 3b), we plotted the elements of eigenvector 1, which correspond to the effect of each repeat  
371 cluster on the position of a sample along PC1 (Figure 3c). Seven repeat clusters have a large  
372 effect on PC1, the satellite clusters CL1, CL2 and CL5, and all clusters of the 45S ribosomal  
373 DNA (CL24, CL26, CL42, and CL56). Satellite clusters CL1 and CL2 have monomer size peaks  
374 of approximately 145 nucleotides as commonly seen in centromeric repeats. In addition, some  
375 reads of CL1 and CL2 had paired-end mates in CL22, indicating physical proximity of the  
376 repeats within the genome. CL22, in turn, had been annotated as CRM, which is a type of  
377 Ty3/Gypsy chromovirus retrotransposon that commonly targets centromeric sequences (Nagaki  
378 *et al.*, 2003; Neumann *et al.*, 2011).

379 Among all 17 broad repeat types identified by RE (see Supplementary Information Table S2),  
380 we found significant differences between ploidy levels for two. Diploid genomes contained  
381 higher average proportions of 45S rDNA (4.9%) than tetraploids (2.0%,  $F_{1, 28}=20.4$ ,  $p_{\text{corr}}<0.001$ ),  
382 with the genomic proportion ranging from 1.7% to 5.7% in diploids and from 0.8% to 3.4% in

383 tetraploids. Tetraploids contained, on average, more Ty1/copia Ale elements (0.15%) than  
384 diploids (0.09%,  $F_{1,28}=11.18$ ,  $p_{\text{corr}}=0.018$ ). While our PCA approach had identified some  
385 satellites as highly differentiated in copy number (see above), differences over all satellites were  
386 not significant. This is because there was differential enrichment in the ploidy levels for CL1  
387 versus CL2 and CL5 (Figure 3c). Overall, there is comparatively little differentiation in genomic  
388 repeats between the ploidy levels.

389 We also assessed the variation in repeat content over all samples for each repeat cluster. The  
390 eight most variable clusters (i.e. having the biggest differences in repeat proportions between  
391 individuals, Figure 3d), are all tandem repeats (satellites including rDNA). The first seven are  
392 the same repeats that separated the ploidy levels in the PCA. The eighth most variable repeat  
393 (CL67), which is variable in both ploidy levels, corresponds to the 5S rDNA.

394 Of the samples analysed with RE, nine tetraploids were from populations which also had GS  
395 estimates obtained in this study. Testing the largest 100, 200, and 1000 repeat clusters for  
396 correlations between GS and abundance of individual repeat clusters, and correcting for  
397 multiple testing by Bonferroni correction, no repeat cluster showed a significant correlation  
398 between its abundance in an individual and the population-average genome size. All evidence  
399 from repetitive elements suggests that the GS differences between *Euphrasia* individuals of the  
400 same ploidy levels are not due to large changes in the genomic proportion of any one specific  
401 repeat.

402

## 403 **Discussion**

404 In this study, we investigated the nature of GS variation across taxonomically complex diploid  
405 and tetraploid British *Euphrasia*. We complemented an extensive population survey of GS  
406 variation with an analysis of genomic repeat composition from seven diploids and 23 tetraploid  
407 *Euphrasia*. Overall, we find notable GS variation between populations of the same species,  
408 representing a wide range of genuine intraspecific GS variation. Within ploidy levels there is a  
409 continuum of GS variation, though ploidy levels have discrete GS ranges. These differences  
410 within and between ploidy levels are not attributable to large copy number changes of an  
411 individual DNA repeat, but rather to multiple segregating PAVs. Here, we first discuss the link  
412 between GS variation and population dynamics and speciation history, highlighting how GS is  
413 shaped by many similar processes as population-level sequence variation. We then consider

414 the landscape of repeat dynamics and the potential association with *Euphrasia* polyploid  
415 genome history. Finally, we consider the wider implications of framing GS variation in a  
416 population genetic framework.

417 *Genome size variation mirrors population genetic patterns*

418 *Euphrasia* are renowned as a taxonomically complex group where species are recent in origin  
419 and show subtle morphological differences, and taxa readily hybridise in areas of secondary  
420 contact (Gussarova *et al.*, 2008; Wang *et al.*, 2018a). Previous population genetic analysis have  
421 shown genetic variation is not clearly partitioned by species (Kolseth & Lönn, 2005; French *et*  
422 *al.*, 2008; Becher *et al.*, 2020), particularly in widespread co-occurring outcrossers, with only  
423 certain taxa, like the moorland selfing species *E. micrantha*, being genetically diverged. Here,  
424 we find GS variation mirrors these findings of population genetic structure inferred from  
425 molecular data. Our results add doubt to the distinctiveness of species, with taxa clearly not  
426 showing distinct GS ranges indicative of reproductive isolation. Moreover, previous findings  
427 have reported a considerably higher mean GS of 2.73 pg for five samples of diploid *E.*  
428 *rostkoviana* from Bosnia and Herzegovina (Siljak-Yakovlev *et al.*, 2010) compared with our  
429 estimates that ranged 0.62 -0.71 pg. This notable discrepancy raises a number of non-mutually  
430 exclusive hypotheses: (1) heterogeneous GS variation within currently named species may be a  
431 consequence of different taxonomic concepts applied across Europe; (2) lower GS variation  
432 within British *Euphrasia* may be a consequence of hybridisation and homogenisation of GS  
433 variation in Britain or a distinct polyploid history elsewhere in Europe; (3) identification problems  
434 or technical issues may affect previous GS estimates.

435 The continuous GS distribution across species boundaries within ploidy levels in *Euphrasia*  
436 resembles the findings of Hanušová *et al.* (2014) for species of the lycophyte *Diphasiastrum* at  
437 allopatric and sympatric sites. These authors concluded that considerable GS variation within  
438 species resulted from introgression from other sympatric species. Depending on the sizes and  
439 number of segregating PAVs (see Figure 1b and c), hybridisation between divergent  
440 populations may homogenise local GS, or introduce GS differences. In our study, three  
441 populations from Fair Isle (one *E. foulensis* x *E. marshallii* and two *E. foulensis*) located within  
442 5 km of each other show likely signals of introgression. Their GS estimates were more than 10%  
443 lower than the mean GS of all tetraploids, including all other Fair Isle samples (Figure 2a). While  
444 these populations might have independently evolved lower GS, it seems more plausible that  
445 they share large GS difference variants (such as missing dispensable chromosomes or

446 chromosome regions, Figure 1c). An explanation of genomic homogenisation in sympatry is in  
447 keeping with the growing body of plant research showing gene flow at the early stages of  
448 species divergence, or between closely related species (e.g. Strasburg & Rieseberg, 2008;  
449 Papadopoulos *et al.*, 2011; Brandvain *et al.*, 2014; Sawangproh *et al.*, 2020). Such observations  
450 of divergence with gene flow are often coupled with species differences being maintained by a  
451 few diverged regions under strong selection maintaining species identities (e.g. Twyford &  
452 Friedman, 2015), a possibility we are currently investigating in *Euphrasia*.

453 Within three of the widespread species that we sampled extensively, we found considerably  
454 higher GS variation in the mainly outcrossing *E. anglica* and *E. arctica* than in highly selfing *E.*  
455 *micrantha*. Unlike the outcrossing species, *E. micrantha* shows no increase in GS at higher  
456 latitudes. Lower diversity is expected for several reasons in young selfing lineages such as *E.*  
457 *micrantha*. Firstly, selfing reduces the effective population size, resulting in lower genetic  
458 variation (Nordborg, 1997), presumably including PAVs. Secondly, the reduced effective rate of  
459 crossing over between the chromosomes of a selfing species further reduces the effective  
460 population size (Conway *et al.*, 1999). Thirdly, selfing species are rarely polymorphic for B  
461 chromosomes (Burt & Trivers, 2008), one source of GS variation in the Orobanchaceae, for  
462 instance in closely related *Rhinanthus* (Wulff, 1939; Hamblen, 1953). Finally, partially selfing  
463 species are less likely to acquire GS variants through introgression (e.g. Pajkovic *et al.*, 2014).  
464 Older highly selfing lineages may, however, have diversified ecologically and become restricted  
465 to different habitats, and might evolve GS differences.

466

467 *Genome size differences and genomic repeats*

468 We found very low differentiation of genomic repeats between species of British *Euphrasia*, with  
469 few species-specific repeats. Consistent with phylogenetic work (Gussarova *et al.*, 2008; Wang  
470 *et al.*, 2018a), there were no examples where all species samples cluster together based on  
471 repeat content (Figure 3a). The fact that species of British *Euphrasia* are closely related and  
472 often hybridise, makes lineage-specific large-scale gains or losses of individual repeat groups,  
473 as seen in other plants (Piegu *et al.*, 2006; Macas *et al.*, 2015; McCann *et al.*, 2020), an unlikely  
474 cause for the observed GS variation. Instead, the observed differences are likely due to  
475 changes in numerous different repeats segregating within the *Euphrasia* gene pool. At present,  
476 it is hard to tell whether these PAVs comprise numerous individual repeat copies or whether

477 there are (also) larger-scale PAVs like the loss or gain of chromosome fragments as  
478 hypothesised in hybridising species of *Anacyclus* (Agudo *et al.*, 2019; Vitales *et al.*, 2020). The  
479 high frequency of hybridisation in *Euphrasia* may lead to increased levels of structural  
480 rearrangements due to ectopic recombination, which may be more common between  
481 heterozygous genomic repeats (Morgan, 2001).

482 Between ploidy levels of *Euphrasia*, we found allotetraploids had an 11% lower mean GS  
483 compared with the value predicted from doubling the mean GS of diploids. This discrepancy  
484 may have originated from genome downsizing, commonly seen during re-diploidisation. It may  
485 also be explained by the fusion of two diverged diploid genomes of different size, as seen in  
486 allopolyploid *Gossypium* (Hendrix & Stewart, 2005) and *Arabidopsis suecica* (Burns *et al.*,  
487 2021). However, the absence of interploidy repeat divergence in *Euphrasia* differs from other  
488 allotetraploid systems, where diverged sub-genomes tend to show differences in genomic  
489 repeats (Zhao *et al.*, 1998; Hawkins *et al.*, 2006; Renny-Byfield *et al.*, 2015; Dodsworth *et al.*,  
490 2020). This lack of repeat differentiation is notable because nuclear k-mer spectra (Becher *et*  
491 *al.*, 2020) and rDNA sequences (Wang *et al.*, 2018a) suggest considerable sequence  
492 divergence between the tetraploid sub-genomes, corresponding to a split of approximately 8  
493 million years (Gussarova *et al.*, 2008).

494 Tandem repeats such as rDNA and other satellite DNAs are generally found to be the fastest  
495 evolving fraction of the repeatome, showing divergence in both copy number and sequence  
496 between closely related species (e.g. Tek *et al.*, 2005; Ambrozová *et al.*, 2011; Renny-Byfield *et*  
497 *al.*, 2012; Becher *et al.*, 2014; Ávila Robledillo *et al.*, 2020) and populations (Ananiev *et al.*,  
498 1998). We confirmed this in *Euphrasia*, where tandem repeats accounted for the eight repeat  
499 clusters with the highest inter-individual variation in genomic abundance (Figure 3d). While  
500 differing across individuals, repeat content did not show any clear signal of divergence between  
501 particular species. For example, the comparison between *E. micrantha* and divergent tetraploids  
502 such as *E. arctica*, did not reveal a signal of divergence in repeat content. This is surprising not  
503 just because of their morphological distinctiveness, but their difference in outcrossing rate, with  
504 theory predicting that the copy-number and equilibrium frequency of transposable elements  
505 depends on the level of selfing in a population (Morgan, 2001; Dolgin & Charlesworth, 2006). A  
506 likely explanation is that the shift to high-selfing in *E. micrantha* is relatively recent compared to  
507 the time it takes for the genomic repeat content to reach equilibrium level.

508

509 *Evolution of genome size variation*

510 The continuous GS variation within and between *Euphrasia* species, coupled with these  
511 differences likely being a product of segregating PAV across the genome, underlines the  
512 polygenic nature of GS variation. Regarding GS differences as the result of segregating (i.e.  
513 genetic) variants blurs the classic distinction between genotype and nucleotype, where  
514 “nucleotype” refers to “conditions of the nucleus that affect the phenotype independently of the  
515 informational content of the DNA”, essentially identical to GS (Bennett, 1971, 1977). Because  
516 GS has been shown to be correlated with many traits including cell size, stomatal pore size, the  
517 duration of cell division, and life-history differences (e.g. Šimová & Herben, 2012; Bilinski *et al.*,  
518 2018; Roddy *et al.*, 2020), it is plausible the GS is affected indirectly by selection on such traits.  
519 There might be additional indirect selection on GS according according to the mutational-hazard  
520 hypothesis (e.g. Lynch, 2011), which proposes that large GS may be selected against because  
521 there is more opportunity for the accumulation of deleterious mutations.

522  
523 It follows that individual PAVs may be under different kinds of simultaneous selection, potentially  
524 of different directionality. For instance, there might be positive selection on an adaptive  
525 insertion, which is simultaneously selected against because it increases GS. Further, because  
526 selection at one locus affects regions that are physically linked (i.e. selection at linked sites,  
527 Maynard Smith & Haigh, 1974; Charlesworth *et al.*, 1993), the footprint of selection on genome  
528 regions is modified by the (effective) rate of crossing over, which varies along genomes and  
529 between mating systems.

530  
531 Research on GS is somewhat decoupled from studies on sequence-based variation in  
532 populations. We suggest future research into GS evolution should consider both patterns of total  
533 GS and the population processes underlying this variation. In addition to furthering our  
534 understanding of intraspecific GS diversity in *Euphrasia* and other plant groups, answers to  
535 these questions will also improve our understanding of GS evolution between species and  
536 across phylogenies, which starts at the population level.

537

538 **Acknowledgements**

539 ADT was supported by NERC research grants NE/L011336/1 and NE/N006739/1. The Royal  
540 Botanic Garden Edinburgh (RBGE) is supported by the Scottish Government's Rural and

541 Environment Science and Analytical Services Division. JP was supported by a Ramón y Cajal  
542 Fellowship (RYC- 2017-2274) funded by the Ministerio de Ciencia y Tecnología (Gobierno de  
543 España). We thank Alistair Godfrey, Andrew Shaw, Anne Haden, C.W. Hurfurt, Chris Miles,  
544 David Harris, David Nash, Dot Hall, Elizabeth Sturt, Francis Farrow, Geoffrey Hall, Graeme  
545 Coles, Jim Hurley, John Crossley, John Wakely, John and Monika Walton, Margaret Chapman,  
546 Paul Kirby, Philip H. Smith, Rosemary Parslow, S.J. Bungard, and Stephanie Miles for providing  
547 *Euphrasia* samples; Natacha Frachon, Laura Gallagher and Ross Irvine for care of plants;  
548 Edgar Wong for preparing NGS libraries; Fergal Waldron for laboratory assistance; Deborah  
549 Charlesworth for extensive comments on an earlier version of the manuscript.

550

551

552

### 553 **Author Contributions**

554 • HB analysed the data with input from MRB and ADT  
555 • ADT, CM, HB, and MRB collected samples.  
556 • CM confirmed species identifications.  
557 • ADT and IJL designed the study.  
558 • RFP, JP, and IJL generated the GS data.  
559 • HB and ADT wrote the manuscript.  
560 • All authors read and commented on the manuscript.

561

### 562 **Data Availability**

563 The whole genome-sequencing data are available from the sequence read archive, Bioprojects  
564 PRJNA624746 and PRJNA678958. The scripts and data required to replicate our results are  
565 available from GitHub, repository: [zzzzzzzz](#) (to be added upon acceptance).

566

567 **References**

568 **Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR. 2008.** Flow cytometric analysis in  
569 *Lagenaria siceraria* (Cucurbitaceae) indicates correlation of genome size with usage types and  
570 growing elevation. *Plant Systematics and Evolution* **276**: 9.

571 **Agudo AB, Torices R, Loureiro J, Castro S, Castro M, Álvarez I. 2019.** Genome Size  
572 Variation in a Hybridizing Diploid Species Complex in *Anacyclus* (Asteraceae: Anthemideae).  
573 *International Journal of Plant Sciences* **180**: 374–385.

574 **Ambrozová K, Mandáková T, Bures P, Neumann P, Leitch IJ, Koblížková A, Macas J,**  
575 **Lysák M a. 2011.** Diverse retrotransposon families and an AT-rich satellite DNA revealed in  
576 giant genomes of *Fritillaria* lilies. *Annals of Botany* **107**: 255–268.

577 **Ananiev E V, Phillips RL, Rines HW. 1998.** A knob-associated tandem repeat in maize  
578 capable of forming fold-back DNA segments: Are chromosome knobs megatransposons?  
579 *Proceedings of the National Academy of Sciences* **95**: 10785 LP – 10790.

580 **Ávila Robledillo L, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. 2020.**  
581 Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe  
582 Fabaceae. *Molecular Biology and Evolution* **37**: 2341–2356.

583 **Bainard JD, Newmaster SG, Budke JM. 2019.** Genome size and endopolyploidy evolution  
584 across the moss phylogeny. *Annals of Botany* **125**: 543–555.

585 **Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008.** Genome size is a strong  
586 predictor of cell size and stomatal density in angiosperms. *New Phytologist* **179**: 975–986.

587 **Becher H, Brown MR, Powell G, Metherell C, Riddiford NJ, Twyford AD. 2020.** Maintenance  
588 of species differences in closely related tetraploid parasitic *Euphrasia* (Orobanchaceae) on an  
589 isolated island. *Plant Communications*: 100105.

590 **Becher H, Ma L, Kelly LJ, Kovařík A, Leitch IJ, Leitch AR. 2014.** Endogenous pararetrovirus  
591 sequences associated with 24 nt small RNAs at the centromeres of *Fritillaria imperialis* L.  
592 (Liliaceae), a species with a giant genome. *The Plant journal* **80**: for cell and molecular biology  
593 **80**: 823–833.

594 **Bennett MD. 1971.** The duration of meiosis. *Proceedings of the Royal Society of London.*

595 Series B, *Biological Sciences* **178**: 277–299.

596 **Bennett MD. 1977.** The time and duration of meiosis. *Philosophical Transactions of the Royal*  
597 *Society of London. B, Biological Sciences* **277**: 201–226.

598 **Bennett MD, Smith JB. 1991.** Nuclear DNA amounts in angiosperms. *Philosophical*  
599 *Transactions of the Royal Society of London. B, Biological Sciences* **334**: 309–345.

600 **Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K,**  
601 **Yang J, Ross-Ibarra J. 2018.** Parallel altitudinal clines reveal trends in adaptive evolution of  
602 genome size in *Zea mays*. *PLOS Genetics* **14**: e1007162.

603 **Blommaert J. 2020.** Genome size evolution: towards new model systems for old questions.  
604 *Proceedings of the Royal Society B: Biological Sciences* **287**: 20201441.

605 **Brandvain Y, Kenney AM, Flagel L, Coop G, Swigart AL. 2014.** Speciation and  
606 Introgression between *Mimulus nasutus* and *Mimulus guttatus*. *PLoS Genetics* **10**: e1004410.

607 **Brown MR, Frachon N, Wong ELY, Metherell C, Twyford AD. 2020.** Life history evolution,  
608 species differences, and phenotypic plasticity in hemiparasitic eyebrights (*Euphrasia*). *American*  
609 *Journal of Botany* **107**: 456–465.

610 **Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY,**  
611 **Nordborg M. 2021.** Gradual evolution of allopolyploidy in *Arabidopsis suecica*. *bioRxiv*:  
612 2020.08.24.264432.

613 **Burt A, Trivers R. 2008.** *Genes in conflict: The biology of selfish genetic elements*. Cambridge  
614 (Massachusetts): Harvard University Press.

615 **Cacho NI, McIntyre PJ, Kliebenstein DJ, Strauss SY. 2021.** Genome size evolution is  
616 associated with climate seasonality and glucosinolates, but not life history, soil nutrients or  
617 range size, across a clade of mustards. *Annals of Botany*.

618 **Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B,**  
619 **Geller L, Glaubitz JC, et al. 2012.** Maize HapMap2 identifies extant variation from a genome in  
620 flux. *Nature Genetics* **44**: 803–807.

621 **Conway DJ, Roper C, Oduola AMJ, Arnot DE, Kremsner PG, Grobusch MP, Curtis CF,**

622 **Greenwood BM. 1999.** High recombination rate in natural populations of *Plasmodium*  
623 *falciparum*. *Proceedings of the National Academy of Sciences* **96**: 4506 LP – 4511.

624 **Costich DE, Meagher TR, Yurkow EJ. 1991.** A rapid means of sex identification in *Silene*  
625 *latifolia* by use of flow cytometry. *Plant Molecular Biology Reporter* **9**: 359–370.

626 **Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon MI.**  
627 **2013.** Genome size variation in wild and cultivated maize along altitudinal gradients. *New*  
628 *Phytologist* **199**: 264–276.

629 **Dodsworth S, Guignard MS, Pérez-Escobar OA, Struebig M, Chase MW, Leitch AR. 2020.**  
630 Repetitive DNA restructuring across multiple *Nicotiana* allopolyploidisation events shows a lack  
631 of strong cytoplasmic bias in influencing repeat turnover. *Genes* **11**.

632 **Doležel J, Bartoš J, Voglmayr H, Greilhuber J. 2003.** Letter to the editor. *Cytometry* **51A**:  
633 127–128.

634 **Dolgin ES, Charlesworth B. 2006.** The fate of transposable elements in asexual populations.  
635 *Genetics* **174**: 817–827.

636 **Duchoslav M, Šafářová L, Jandová M. 2013.** Role of adaptive and non-adaptive mechanisms  
637 forming complex patterns of genome size variation in six cytotypes of polyploid *Allium*  
638 *oleraceum* (Amaryllidaceae) on a continental scale. *Annals of Botany* **111**: 419–431.

639 **Fisher RA. 1919. XV.—The correlation between relatives on the supposition of mendelian**  
640 *inheritance*. *Transactions of the Royal Society of Edinburgh* **52**: 399–433.

641 **French GC, Hollingsworth PM, Silverside AJ, Ennos RA. 2008.** Genetics, taxonomy and the  
642 conservation of British *Euphrasia*. *Conservation Genetics* **9**: 1547–1562.

643 **Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL,**  
644 **Stromberg KA, Sacks GL, et al. 2019.** The tomato pan-genome uncovers new genes and a  
645 rare allele regulating fruit flavor. *Nature Genetics* **51**: 1044–1051.

646 **Göktay M, Fulgione A, Hancock AM. 2020.** A new catalog of structural variants in 1,301 *A.*  
647 *thaliana* lines from africa, eurasia, and north america reveals a signature of balancing selection  
648 at defense response genes. *Molecular Biology and Evolution*.

649 **Gregory TR, Johnston JS. 2008.** Genome size diversity in the family Drosophilidae. *Heredity*  
650 **101:** 228–238.

651 **Greilhuber J. 2005.** Intraspecific variation in genome size in angiosperms: Identifying its  
652 existence. *Annals of Botany* **95:** 91–98.

653 **Greilhuber J, Doležel J, Lysák MA, Bennett M. 2005.** The origin, evolution and proposed  
654 stabilization of the terms 'Genome Size' and 'C-Value' to describe nuclear DNA contents.  
655 *Annals of Botany* **95:** 255–260.

656 **Greilhuber J, Leitch IJ. 2013.** Genome size and the phenotype: Physical Structure, Behaviour  
657 and Evolution of Plant Genomes. In: Greilhuber J, Dolezel J, Wendel JF, eds. *Plant Genome*  
658 *Diversity Volume 2.* Vienna: Springer, 323–344.

659 **Greilhuber J, Temsch EM, Loureiro JCM. 2007.** Nuclear DNA content measurement. *Flow*  
660 *Cytometry with Plant Cells:* 67–101.

661 **Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ.**  
662 **2019.** Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and  
663 insects on a temperate grassland. *Proceedings of the Royal Society B: Biological Sciences* **286:**  
664 20182619.

665 **Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ,**  
666 **Leitch AR. 2016.** Genome size and ploidy influence angiosperm species' biomass under  
667 nitrogen and phosphorus limitation. *New Phytologist* **210:** 1195–1206.

668 **Gussarova G, Popp M, Vitek E, Brochmann C. 2008.** Molecular phylogeny and biogeography  
669 of the bipolar *Euphrasia* (Orobanchaceae): Recent radiations in an old genus. *Molecular*  
670 *Phylogenetics and Evolution* **48:** 444–460.

671 **Haberer G, Kamal N, Bauer E, Gundlach H, Fischer I, Seidel MA, Spannagl M, Marcon C,**  
672 **Ruban A, Urbany C, et al. 2020.** European maize genomes highlight intraspecies variation in  
673 repeat and gene content. *Nature Genetics* **52:** 950–957.

674 **Hambler DJ. 1953.** Prochromosomes and supernumerary chromosomes in *Rhinanthus minor*  
675 Ehrh. *Nature* **172:** 629–630.

676 **Hanušová K, Ekrt L, Vít P, Kolář F, Urfus T. 2014.** Continuous morphological variation

677 correlated with genome size indicates frequent introgressive hybridization among *Diphasiastrum*  
678 species (Lycopodiaceae) in Central Europe. *PLOS ONE* **9**: e99552.

679 **Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. 2006.** Differential lineage-specific  
680 amplification of transposable elements is responsible for genome size variation in *Gossypium*.  
681 *Genome Research* **16**: 1252–1261.

682 **Hendrix B, Stewart JM. 2005.** Estimation of the nuclear DNA content of *Gossypium* species.  
683 *Annals of Botany* **95**: 789–797.

684 **Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B,**  
685 **Peñagaricano F, Lindquist E, Pedraza MA, Barry K, et al. 2014.** Insights into the maize pan-  
686 genome and pan-transcriptome. *The Plant Cell* **26**: 121–135.

687 **Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute**  
688 **GJ, Owens GL, Grassa CJ, et al. 2019.** Sunflower pan-genome analysis shows that  
689 hybridization altered gene content and disease resistance. *Nature Plants* **5**: 54–62.

690 **Kolář F, Čertner M, Suda J, Schönswitter P, Husband BC. 2017.** Mixed-ploidy species:  
691 progress and opportunities in polyploid research. *Trends in Plant Science* **22**: 1041–1055.

692 **Kolseth A-K, Lönn M. 2005.** Genetic structure of *Euphrasia stricta* on the Baltic island of  
693 Gotland, Sweden. *Ecography* **28**: 443–452.

694 **Koornneef M, Hanhart CJ, van der Veen JH. 1991.** A genetic and physiological analysis of  
695 late flowering mutants in *Arabidopsis thaliana*. *Molecular and General Genetics MGG* **229**: 57–  
696 66.

697 **Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak M a, Fay MF. 2007.** Punctuated genome  
698 size evolution in Liliaceae. *Journal of evolutionary biology* **20**: 2296–308.

699 **Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR. 2008.** The ups  
700 and downs of genome size evolution in polyploid species of *Nicotiana* (Solanaceae). *Annals of*  
701 *Botany* **101**: 805–814.

702 **Leitch AR, Leitch IJ. 2008.** Genomic plasticity and the diversity of polyploid plants. *Science*  
703 **320**: 481–3.

704 **Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjálmsson BJ,**  
705 **Korte A, Nizhynska V, et al.** 2013. Massive genomic variation and strong selection in  
706 *Arabidopsis thaliana* lines from Sweden. *Nature Genetics* **45**: 884–890.

707 **Loureiro J, Rodriguez E, Doležel J, Santos C.** 2007. Two new nuclear isolation buffers for  
708 plant DNA flow cytometry: A test with 37 Species. *Annals of Botany* **100**: 875–888.

709 **Lynch M.** 2011. Statistical inference on the mechanisms of genome evolution. *PLOS Genetics*  
710 **7**: e1001389.

711 **Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fuková I, Doležel J,**  
712 **Kelly LJ, Leitch IJ.** 2015. In depth characterization of repetitive DNA in 23 plant genomes  
713 reveals sources of genome size variation in the legume tribe Fabeae. *PLOS ONE* **10**:  
714 e0143424.

715 **McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H.** 2020.  
716 Differential genome size and repetitive DNA evolution in diploid species of *Melampodium* sect.  
717 *Melampodium* (Asteraceae). *Frontiers in Plant Science* **11**: 362.

718 **Meagher TR, Gilies ACM, Costich DE.** 2005. Genome size, quantitative genetics and the  
719 genomic basis for flower size evolution in *Silene latifolia*. *Annals of Botany* **95**: 247–254.

720 **Metherell C, Rumsey FJ.** 2018. *Eyebrights (Euphrasia) of the UK and Ireland* (J Edmondson,  
721 Ed.). Bristol: Botanical Society of Britain and Ireland.

722 **Morgan MT.** 2001. Transposable element number in mixed mating populations. *Genetical  
723 Research* **77**: 261–275.

724 **Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones  
725 KM, Dawe RK, et al.** 2003. Molecular and cytological analyses of large tracks of centromeric  
726 DNA reveal the structure and evolutionary dynamics of maize centromeres. *Genetics* **163**: 759  
727 LP – 770.

728 **Napp-Zinn K.** 1955. Genetische Grundlagen des Kältebedürfnisses bei *Arabidopsis thaliana*  
729 (L.) Heynh. *Naturwissenschaften* **42**: 650.

730 **Neumann P, Navrátilová A, Koblížková A, Kejnovský E, Hřibová E, Hobza R, Widmer A,  
731 Doležel J, Macas J.** 2011. Plant centromeric retrotransposons: a structural and cytogenetic

732 perspective. *Mobile DNA* **2**: 4.

733 **Nordborg M. 1997.** Structured coalescent processes on different time scales. *Genetics* **146**:  
734 1501 LP – 1514.

735 **Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S,**  
736 **Kovařík A, Pellicer J, Wang W, et al. 2020a.** Repeat-sequence turnover shifts fundamentally  
737 in species with large genomes. *Nature Plants* **6**: 1325–1329.

738 **Novák P, Neumann P, Macas J. 2010.** Graph-based clustering and characterization of  
739 repetitive sequences in next-generation sequencing data. *BMC Bioinformatics* **11**: 378.

740 **Novák P, Neumann P, Macas J. 2020b.** Global analysis of repetitive DNA from unassembled  
741 sequence reads using RepeatExplorer2. *Nature Protocols* **15**: 3745–3776.

742 **Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013.** RepeatExplorer: a Galaxy-based  
743 web server for genome-wide characterization of eukaryotic repetitive elements from next-  
744 generation sequence reads. *Bioinformatics* **29**: 792–793.

745 **Pajkovic M, Lappe S, Barman R, Parisod C, Neuenschwander S, Goudet J, Alvarez N,**  
746 **Guadagnuolo R, Felber F, Arrigo N. 2014.** Wheat alleles introgress into selfing wild relatives:  
747 empirical estimates from approximate Bayesian computation in *Aegilops triuncialis*. *Molecular  
748 Ecology* **23**: 5089–5101.

749 **Papadopoulos AST, Baker WJ, Crayn D, Butlin RK, Kynast RG, Hutton I, Savolainen V.**  
750 **2011.** Speciation with gene flow on Lord Howe Island. *Proceedings of the National Academy of  
751 Sciences* **108**: 13188–13193.

752 **Pellicer J, Garcia S, Canela MÁ, Garnatje T, Korobkov AA, Twibell JD, Vallès J. 2010.**  
753 Genome size dynamics in *Artemisia* L. (Asteraceae): following the track of polyploidy. *Plant  
754 Biology* **12**: 820–830.

755 **Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. 2018.** Genome size diversity and its impact on  
756 the evolution of land plants. *Genes* **9**: 88.

757 **Pellicer J, Leitch IJ. 2020.** The Plant DNA C-values database (release 7.1): an updated online  
758 repository of plant genome size data for comparative studies. *New Phytologist* **226**: 301–305.

759 **Pellicer J, Powell RF, Leitch IJ. 2021.** The application of flow cytometry for estimating genome  
760 size, ploidy level endopolyploidy, and reproductive modes in plants BT - Molecular Plant  
761 Taxonomy: Methods and Protocols. In: Besse P, ed. New York, NY: Springer US, 325–361.

762 **Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Sanyal A, Kim H, Collura K, Brar DS, Jackson S, et al. 2006.** Doubling genome size without polyploidization: dynamics of  
763 retrotransposition-driven genomic expansions in *Oryza australiensis*, a wild relative of rice.  
764 *Genome research* **16**: 1262–9.

766 **R Core Team. 2019.** R: A Language and Environment for Statistical Computing.

767 **Renner SS, Heinrichs J, Sousa A. 2017.** The sex chromosomes of bryophytes: Recent  
768 insights, open questions, and reinvestigations of *Frullania dilatata* and *Plagiochila asplenioides*.  
769 *Journal of Systematics and Evolution* **55**: 333–339.

770 **Renny-Byfield S, Gong L, Gallagher JP, Wendel JF. 2015.** Persistence of subgenomes in  
771 paleopolyploid cotton after 60 My of evolution. *Molecular Biology and Evolution* **32**: 1063–1071.

772 **Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, Leitch AR. 2012.**  
773 Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic  
774 allopolyploids of *Nicotiana tabacum*. *PloS one* **7**: e36963.

775 **Roddy AB, Théroux-Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro  
776 S, Gilbride AB, Jensen B, Jiang G-F, et al. 2020.** The scaling of genome size and cell size  
777 limits maximum rates of photosynthesis with implications for ecological strategies. *International  
778 Journal of Plant Sciences* **181**: 75–87.

779 **Sawangproh W, Hedenäs L, Lang AS, Hansson B, Cronberg N. 2020.** Gene transfer across  
780 species boundaries in bryophytes: evidence from major life cycle stages in *Homalothecium  
781 lutescens* and *H. sericeum*. *Annals of Botany* **125**: 565–579.

782 **Siljak-Yakovlev S, Pustahija F, Solic EM, Bogunic F, Muratovic E, Basic N, Catrice O,  
783 Brown SC. 2010.** Towards a genome size and chromosome number database of Balkan flora:  
784 C-values in 343 taxa with novel values for 242. *Advanced Science Letters* **3**: 190–213.

785 **Simonin KA, Roddy AB. 2018.** Genome downsizing, physiological novelty, and the global  
786 dominance of flowering plants. *PLOS Biology* **16**: e2003706.

787 **Šimová I, Herben T. 2012.** Geometrical constraints in the scaling relationships between  
788 genome size, cell size and cell cycle length in herbaceous plants. *Proceedings of the Royal  
789 Society B: Biological Sciences* **279**: 867–875.

790 **Šmarda P, Bureš P. 2010.** Understanding intraspecific variation in genome size in plants.  
791 *Preslia* **82**: 41–61.

792 **Šmarda P, Horová L, Bureš P, Hralová I, Marková M. 2010.** Stabilizing selection on genome  
793 size in a population of *Festuca pallens* under conditions of intensive intraspecific competition.  
794 *New Phytologist* **187**: 1195–1204.

795 **Strasburg JL, Rieseberg LH. 2008.** Molecular demographic history of the annual sunflowers  
796 *Helianthus annuus* and *H. petiolaris* - Large effective population sizes and rates of long-term  
797 gene flow. *Evolution* **62**: 1936–1950.

798 **Tek AL, Song J, Macas J, Jiang J. 2005.** Sobo, a recently amplified satellite repeat of potato,  
799 and its implications for the origin of tandemly repeated sequences. *Genetics* **170**: 1231–1238.

800 **Twyford AD, Friedman J. 2015.** Adaptive divergence in the monkey flower *Mimulus guttatus* is  
801 maintained by a chromosomal inversion. *Evolution* **69**: 1476–1486.

802 **Vallès J, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev  
803 S, Vitales D, Garnatje T. 2013.** Genome size variation and evolution in the family Asteraceae.  
804 *Caryologia* **66**: 221–235.

805 **Van't Hof J, Sparrow AH. 1963.** A relationship between DNA content, nuclear volume, and  
806 minimum mitotic cycle time. *Proceedings of the National Academy of Sciences of the United  
807 States of America* **49**: 897–902.

808 **Vitales D, Álvarez I, Garcia S, Hidalgo O, Nieto Feliner G, Pellicer J, Vallès J, Garnatje T.  
809 2020.** Genome size variation at constant chromosome number is not correlated with repetitive  
810 DNA dynamism in *Anacyclus* (Asteraceae). *Annals of Botany* **125**: 611–623.

811 **Wang X, Gussarova G, Ruhsam M, de Vere N, Metherell C, Hollingsworth PM, Twyford  
812 AD. 2018a.** DNA barcoding a taxonomically complex hemiparasitic genus reveals deep  
813 divergence between ploidy levels but lack of species-level resolution. *AoB PLANTS* **10**.

814 **Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang**

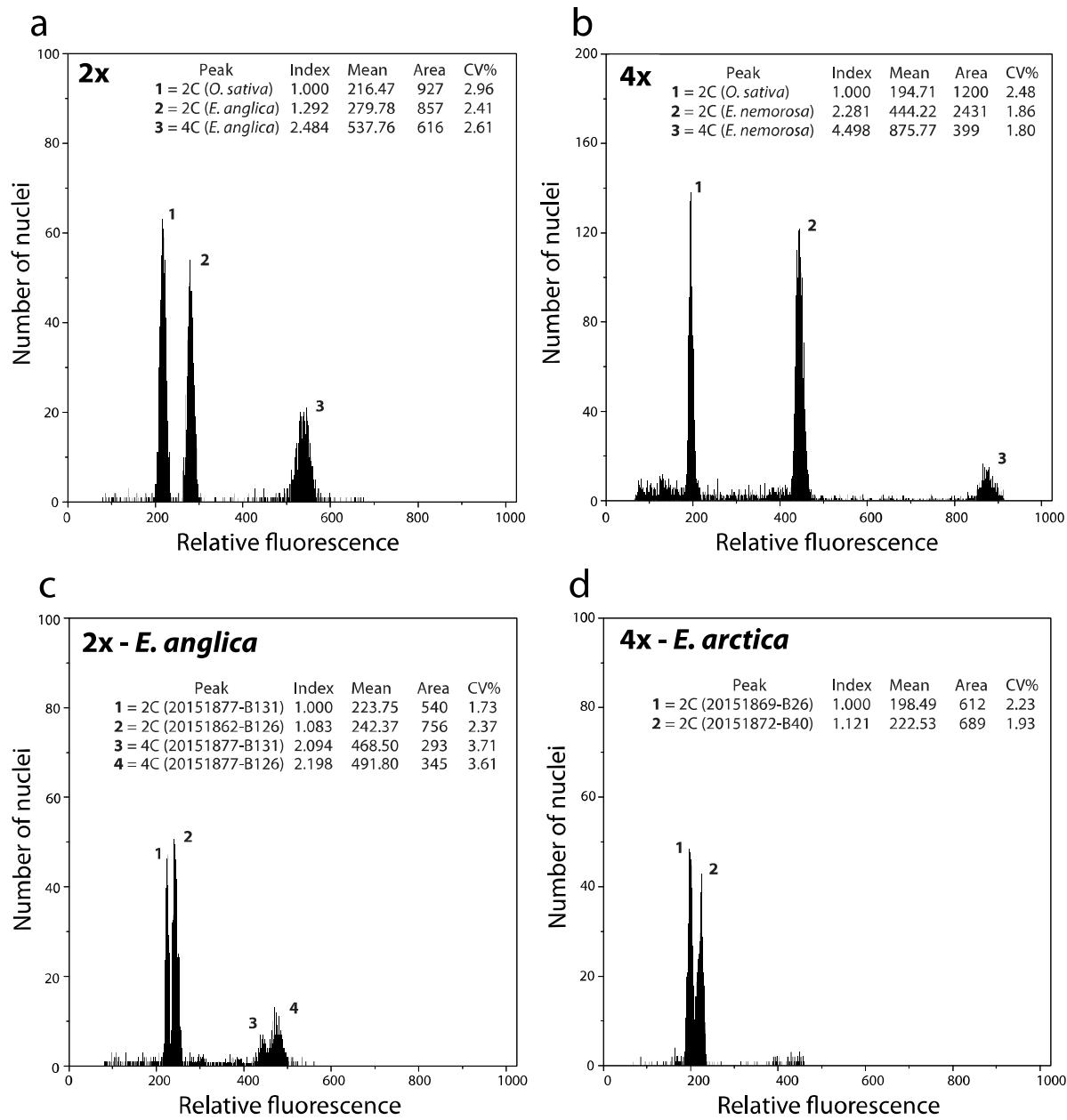
815 **F, et al. 2018b.** Genomic variation in 3,010 diverse accessions of Asian cultivated rice. *Nature*  
816 **557:** 43–49.

817 **Wang N, McAllister HA, Bartlett PR, Buggs RJA. 2016.** Molecular phylogeny and genome  
818 size evolution of the genus *Betula* (Betulaceae). *Annals of Botany* **117:** 1023–1035.

819 **Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM. 2006.** Genome size evolution in  
820 holoparasitic *Orobanche* (Orobanchaceae) and related genera. *American Journal of Botany* **93:**  
821 148–156.

822 **Wendel JF. 2015.** The wondrous cycles of polyploidy in plants. *American Journal of Botany*  
823 **102:** 1753–1756.

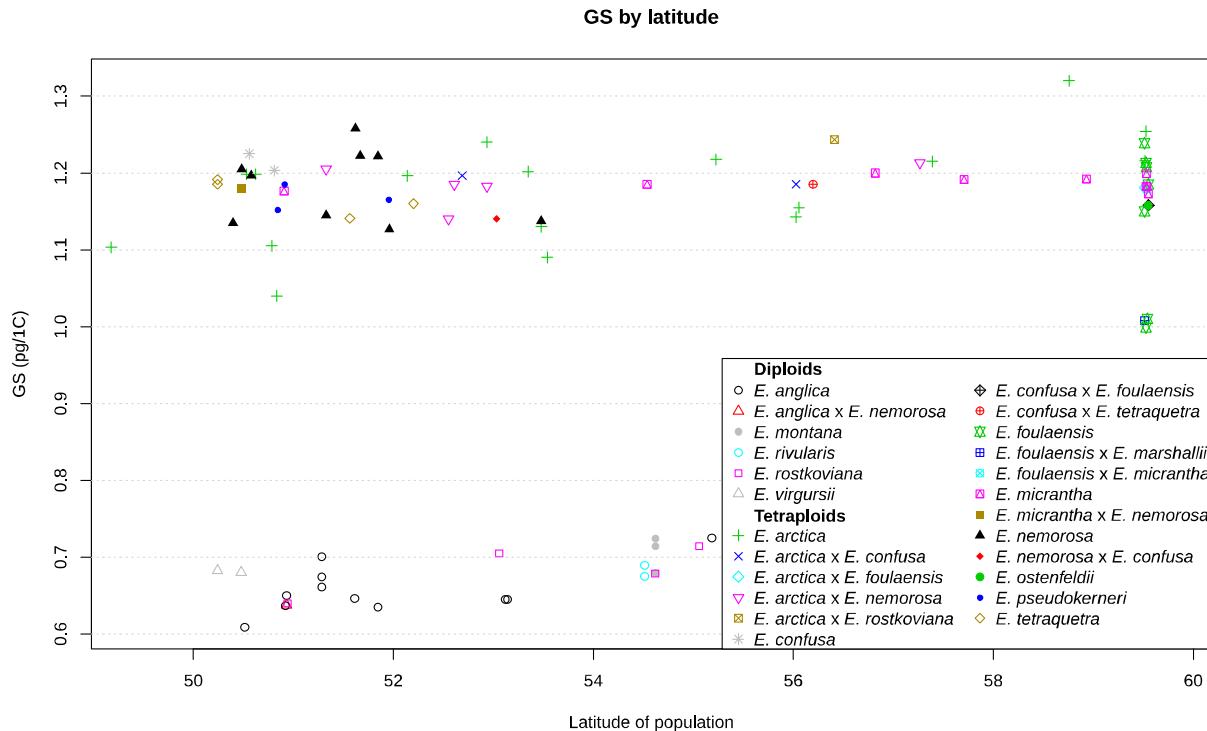
824 **Wong C, Murray BG. 2012.** Variable changes in genome size associated with different  
825 polyploid events in *Plantago* (Plantaginaceae). *Journal of Heredity* **103:** 711–719.


826 **Wulff HD. 1939.** Chromosomenstudien an der schleswigholsteinischen Angiospermen-Flora.  
827 *Berichte der Deutschen Botanischen Gesellschaft* **57:** 84–91.

828 **Zenil-Ferguson R, Ponciano JM, Burleigh JG. 2016.** Evaluating the role of genome  
829 downsizing and size thresholds from genome size distributions in angiosperms. *American  
830 Journal of Botany* **103:** 1175–1186.

831 **Zhao X-. P, Si Y, Hanson RE, Crane CF, Price HJ, Stelly DM. 1998.** Dispersed repetitive DNA  
832 has spread to new genomes since polyploid formation in cotton. *Genome Research* **8.**

833


834 **SUPPLEMENTAL DATA**



835

836 **Figure S1. Flow cytometry histograms.** A diploid (a) and a tetraploid (b) sample. Intraspecific  
 837 GS variation in a diploid (c) and a tetraploid (d) species.

838



839

840 **Figure S2. Genome size plotted against latitude.**

841

842 **Table S1. Sample information and genome size information**

843 (Submitted separately)

844 **Table S2. Details of the whole-genome sequencing data sets generated and genomic**  
845 **proportions of repeat types.**

846 (Submitted separately)

847