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Abstract 

Reinforcement learning is a core facet of motivation and alterations have been 

associated with various mental disorders. To build better models of individual learning, 

repeated measurement of value-based decision-making is crucial. However, the focus 

on lab-based assessment of reward learning has limited the number of measurements 

and the test-retest reliability of many decision-related parameters is therefore 

unknown. Here, we developed an open-source cross-platform application Influenca 

that provides a novel reward learning task complemented by ecological momentary 

assessment (EMA) for repeated assessment over weeks. In this task, players have to 

identify the most effective medication by selecting the best option after integrating 

offered points with changing probabilities (according to random Gaussian walks). 

Participants can complete up to 31 levels with 150 trials each. To encourage replay on 

their preferred device, in-game screens provide feedback on the progress. Using an 

initial validation sample of 127 players (2904 runs), we found that reinforcement 

learning parameters such as the learning rate and reward sensitivity show low to 

medium intra-class correlations (ICC: 0.22-0.52), indicating substantial within- and 

between-subject variance. Notably, state items showed comparable ICCs as 

reinforcement learning parameters. To conclude, our innovative and openly 

customizable app framework provides a gamified task that optimizes repeated 

assessments of reward learning to better quantify intra- and inter-individual differences 

in value-based decision-making over time.  
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Introduction 

Learning from past experiences is essential to optimize decision-making and 

adaptive behavior. Reinforcement learning models provide useful quantifications of 

individual choice behavior and the integration of information over repeated decisions 

(Sutton & Barto, 2018). Hence, disturbances in reward learning may result in 

maladaptive choices and are associated with various mental and metabolic disorders, 

such as depression (Chen, Takahashi, Nakagawa, Inoue, & Kusumi, 2015; Eshel & 

Roiser, 2010; Mkrtchian, Aylward, Dayan, Roiser, & Robinson, 2017), eating disorders 

(Schaefer & Steinglass, 2021), and obesity (Coppin, Nolan-Poupart, Jones-Gotman, & 

Small, 2014; Kroemer & Small, 2016). Parameters of individual reinforcement learning, 

such as the learning rate or reward sensitivity may even serve as transdiagnostic 

biomarkers (Montague, Dolan, Friston, & Dayan, 2012) for aberrant cognitive 

processes that contribute to key symptoms of disorders, such as apathy or anhedonia 

(Husain & Roiser, 2018; Huys, Pizzagalli, Bogdan, & Dayan, 2013). In the light of 

growing interest in reinforcement learning for psychological diagnostics, it is worth 

noting that the effective use of measures as biomarkers for prediction and classification 

of mental function requires a thorough evaluation of their psychometric properties 

(Fröhner, Teckentrup, Smolka, & Kroemer, 2019; Hedge, Powell, & Sumner, 2018; 

Moriarity & Alloy, in press). However, since most studies are conducted in laboratory 

settings with limited numbers of participants and repeated measures, a systematic 

evaluation of the psychometric properties of reinforcement learning parameters, such 

as their test-retest reliability, is still lacking.   

To overcome practical limitations of scale of lab-based testing, online and 

smartphone-based assessments are becoming increasingly popular. Once a setup is 

established and verified, they enable data acquisition of many individuals across 
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multiple time points embedded in different situations (Gillan & Rutledge, 2021). These 

aspects facilitate longitudinal data collection and may help improve generalization to 

robust behavioral predictions outside of the laboratory. Especially in the domain of 

mental health, methods such as ecological momentary assessment (EMA) or 

experience sampling are increasingly common to monitor fluctuations in mood or other 

psychological and physiological states (e.g., Blain & Rutledge, 2020; Ebner-Priemer & 

Trull, 2009; Killingsworth & Gilbert, 2010; Mason et al., 2018; Perrez, Schoebi, & 

Wilhelm, 2000; Wonderlich et al., 2018). Consequently, assessing such fluctuations in 

mental states over time may help predict the onset of disorder-related behavior which 

is impossible to recreate in the lab, such as binge eating (Smyth et al., 2009; Svaldi, 

Werle, Naumann, Eichler, & Berking, 2019; Wonderlich et al., 2018) or binge drinking 

(Dvorak & Simons, 2014; Shiffman, 2009; Wray, Merrill, & Monti, 2014). Beyond 

practical aspects of data collection, smartphone-based assessments may also reach 

a more diverse population of users, which increases the variance between participants 

and improve generalizability (Gillan & Rutledge, 2021; Spook, Paulussen, Kok, & Van 

Empelen, 2013). Such an online format has been used for reinforcement learning tasks 

as well, leading to big samples that contributed to revisions of commonly used models 

(Gillan, Kosinski, Whelan, Phelps, & Daw, 2016; Rutledge, Skandali, Dayan, & Dolan, 

2014). However, a similar innovation with repeated assessments has yet to 

materialize. To conclude, online-based assessments of reinforcement learning may 

provide a powerful means to collect ecologically and psychometrically valid estimates 

to predict individual trajectories, but this requires a framework for the repeated 

collection of decision-related parameters over time. 

To interpret individual trajectories, including potential effects of interventions or 

as markers of clinical progression (Dubois & Adolphs, 2016), a sufficiently high level of 

test-retest reliability is necessary. Reliability is a prerequisite of a paradigm’s validity 
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(Cronbach & Meehl, 1955) and a lack of the formal assessment of reliability might 

hamper the widespread application of reinforcement learning tasks in the study of 

psychopathology (Rodebaugh et al., 2016). Amongst common decision-making tasks, 

reliabilities range from r = .15 to .69 (Buelow & Barnhart, 2018). For common 

probabilistic reinforcement learning tasks, parameter estimates of computational 

models, such as the learning rate, only show low to moderate reliability. For example, 

Santesso et al. (2008) reported a test–retest correlation for reward learning of r = .50 

in a probabilistic reward learning task. In a go-no-go reinforcement learning task, 

Moutoussis et al. (2018) reported low to moderate test-retest correlations (range ρ: .07  

[noise parameter] to  .37 [model fit]) of parameter estimates. In clinical samples, even 

lower reliabilities (mean ICC = .33, range: .08 - .58) have been reported for such tasks, 

for example, in individuals suffering from schizophrenia (Pratt et al., 2020; Shiner et 

al., 2012). Based on online assessments of probabilistic reinforcement learning and 

reversal learning tasks, Weidinger, Gradassi, Mollemann, and van den Bos (2019) 

reported fair to good ICCs for basic outcome measures (i.e., task accuracy or win-stay: 

ICC between .43 - .76) and learning rate estimates (ICC = .54) (Weidinger et al., 2019). 

Likewise, measures of self-regulation show poor to moderate reliability in online 

behavioral assessments (median ICC = 0.311, IQR = −0.091 - 0.665), which is lower 

compared to questionnaire surveys (mean ICC = 0.716) and published ICCs for lab-

based assessment (mean ICC = 0.610 (Enkavi et al., 2019)) that could be, however, 

overly optimistic. Notably, raw dependent variables (i.e., response time and accuracy) 

had comparable reliabilities to latent variables (i.e., model estimates such as drift rate; 

(Enkavi et al., 2019)). Taken together, compared to questionnaire measures and 

despite the widespread use of reward learning tasks, there is insufficient information 

on the reliability of potential biomarkers related to value-based decision-making and 

reward learning, and the few studies point to low or, at best, fair test-retest reliability.  
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To summarize, cross-sectional measures provide a snapshot of value-based 

decision-making, which might be of limited use for future applications to predict 

individual trajectories, specifically if they lack sufficient test-retest reliability. 

Consequently, psychometric evaluations of repeated assessments of alleged 

biomarkers are crucial to uncover the psychobiological processes contributing to key 

symptoms of mental disorders. Here, we present an innovative cross-platform open-

source app (Influenca, www.neuromadlab.com/en/influenca-2), designed to assess 

value-based decision-making and reward learning over weeks on the participants’ 

preferred devices. By measuring decision-making over extended time periods, we can 

also evaluate the reliability of behavioral parameters with much higher precision. Better 

knowledge about the parameters’ psychometric characteristics may improve future 

clinical decisions (e.g., targeted prevention or treatment monitoring) regarding mental 

disorders that are characterized by dysfunctions in value-based decision-making. 

   

Methods 

Participants 

The initial sample included 294 individuals who downloaded and played the app 

until 15th of October 2020. For the current analyses, we included all participants that 

completed at least 10 runs of Influenca surpassing our data quality screening (i.e., 316 

runs were excluded due to random or deterministic behavior; 5 < log-likelihood < 

102.58). This led to a final sample of N = 127 participants (Mage = 35.78 years, SD ± 

14.13) with 2904 valid runs.  

The collected data was part of a study approved by the local ethics committee 

and was conducted in accordance with the ethical code of the World Medical 

Association (Declaration of Helsinki). Informed consent was obtained twice, depending 
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on the stages of the study. First, all participants provided informed consent by clicking 

a checkbox (Kraut et al., 2004) when registering for the app, stating they agree with 

the terms of service and usage of pseudonymized and anonymized data for the 

specified scientific objectives. Second, participants were provided with a second 

informed consent form before completing the online questionnaires. Participants who 

completed the app as part of a clinical study (n = 99) received a fixed compensation 

(€20) for the complete online assessment, which included questionnaires. 

Influenca and reinforcement learning game 

To repeatedly assess reinforcement learning, we developed the cross-platform 

app Influenca. The app includes 31 runs of a reinforcement learning game based on a 

classic paradigm (Behrens, Woolrich, Walton, & Rushworth, 2007) with changing 

reward probabilities. Before each run, participants completed several EMA items 

capturing momentary metabolic (hunger, satiety, thirst, time since last meal, 

consumption of coffee or snacks in the last two hours) and mental states (alertness, 

happiness, sadness, stress, distraction by environment, distraction by thoughts). 

Responses were given using either visual analog scales (VAS: hunger, fullness, thirst, 

alertness, happiness, sadness, stress, distraction by environment, distraction by 

thoughts), Likert scales (last meal), or binary scales (snack, coffee, binges).   

In the gamified scenario of Influenca, participants had to fight a virus pandemic 

by finding the most effective medication. In each run, participants were presented a 

new virus. In each trial, they had to choose between two medications depicted as 

syringes of different colors with (initially) unknown win probabilities (Figure 1). 

Notepads corresponding to each syringe showed the number of people cured in the 

trial, if the chosen medication was correct (“win”). The corresponding points were 

added to the total score. If the chosen option resulted in a loss, the points were 
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subtracted from the total score instead. A counter in the upper left corner showed the 

number of completed trials and the current total score. 

In each trial, the number of points added up to 100 across both options. Win 

probabilities were independent of reward and added up to 1 across both options. Since 

participants repeated the task up to 31 times, win probabilities of the options were 

determined by a Gaussian random walk algorithm and thus fluctuated over time. The 

use of random walks was intended to reduce meta-learning about when reversals or 

changes in contingencies would occur (Boehme et al., 2017; Hämmerer et al., 2019). 

Each run was randomly initialized with a “good” (pwin = 0.8) and a “bad” (pwin = 0.2) 

option. To encourage replay, participants had to fight against a new virus in each run. 

After completing a run, the defeated virus was added to a scoreboard and each level 

highlighted the scientists’ increased “prestige” by showing an improved quality of the 

lab equipment, as depicted in the game’s graphics. 
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Figure 1: Illustration of the reinforcement learning task design. A. Representative in-game 
screen of Influenca. To earn points, participants must identify which medication is most 
effective in fighting pathogens. In each trial, only one drug is effective to cure people. In this 
trial, the orange drug could treat 71 people and the turquoise drug would only treat 29 people. 
The circle depicts the color of the drug that was effective in the previous trial. If participants 
pick the correct medication, their score increases by the number of cured people (win). In 
contrast, if they pick the incorrect medication, the number of falsely treated people will be 
subtracted from the score (loss). B. Procedure of the Influenca levels. Each level starts with 
EMA questions about participants’ current mood and other states prior to the actual game, 
followed by 150 trials of the reinforcement learning paradigm. To ensure sampling across 
different states, there was a minimum of 2 hours waiting time enforced between the runs. 

 

Experimental procedure 

Participants installed the app on their preferred device by obtaining the installer 

file from our homepage (https://neuromadlab.com/en/influenca-2/). They provided a 
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mail address at registration for app-specific communication (e.g., sending automated 

reminder mails, to send the individualized link for the questionnaires and the activation 

code to unlock level 11 to 31 after completing the online questionnaires). To ensure 

confidentiality, the mail address was stored apart from the experimental data.  

Before starting the first run, participants were asked to read through a detailed 

instruction explaining the controls as well as the game’s cover story and rationale. They 

could re-read this instruction at any time by opening it via the game’s menu. A version 

of this instruction was also posted at the download section on our lab homepage. 

Participants were instructed to play at different times throughout the day and in different 

(metabolic) states to sample data in diverse situations to improve generalizability. To 

ensure sufficient distinctiveness across runs, we required a delay between runs of at 

least 2 h, but there was no time restriction to complete the 31 runs. Collected data was 

stored locally on the participant’s device and, once connected to the Internet, 

synchronized with a database located at the Department of Psychiatry and 

Psychotherapy, University of Tübingen. 

Data analysis 

Reinforcement learning model 

To model different facets of reward learning, we used choice data from 

individual runs and estimated individual learning parameters: learning rate (α), reward 

sensitivity (β), and risk aversiveness (γ) using an established reinforcement learning 

model (Behrens et al., 2007; Neuser, Kühnel, Svaldi, & Kroemer, 2020). In this model, 

participants are assumed to decide between the options in each trial based on the 

inferred win probability of each option. These probability estimates, pwin, are learned, 

by integrating over outcomes of previous decisions following a simple delta rule: 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2021. ; https://doi.org/10.1101/2021.04.27.441601doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.27.441601
http://creativecommons.org/licenses/by-nd/4.0/


Reliability of Influenca Neuser et al. 11  

𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡+1 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) =  𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) +  𝛼𝛼 ∗ 𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)  (1) 

where α ∈ [0, 1] denotes the learning rate that quantifies the speed of adaptation of an 

individual’s choice preference along with changing outcome contingencies. In other 

words, high learning rates lead to quick updates by putting more weight on recent 

choice outcomes. In contrast, low learning rates lead to slow updates by putting less 

weight on recent choice outcomes and more weight on former feedback (Figure 2a). 

Formally, the learning rate scales the reward prediction error, RPE, that describes the 

difference between the choice outcome, r, and the expected probability of winning for 

a chosen option: 

𝑅𝑅𝑅𝑅𝐸𝐸𝑡𝑡(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) = 𝑟𝑟𝑡𝑡 − 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)    (2) 

𝑟𝑟 =  � 1  𝑖𝑖𝑖𝑖  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤
0  𝑖𝑖𝑖𝑖  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    (3) 

Choices in each trial are then generated based on the estimated win probability of the 

option (𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡+1 (𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐴𝐴)) and the associated reward values of each option (f) (𝑓𝑓𝐴𝐴  ∈

 [0, 100] and 𝑓𝑓𝐵𝐵  ∈  [0, 100] 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝐴𝐴 = 100 − 𝑓𝑓𝐵𝐵). In the optimal case, an individual 

chooses the option that maximizes the expected outcome by scaling the win probability 

of each option with its associated reward into action weights (W) 

𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) = 𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) ∗ 𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)  and   (4) 

𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵) = (1 −  𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)) ∗ 𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵)   (5) 

However, it is unlikely that all individuals always act in a rational manner, as some may 

be more risk prone and decide predominantly based on the win probability while 

ignoring the associated rewards at stake. In contrast, other individuals may choose the 

potentially more rewarding option even if it is less probable to lead to a win. Differences 
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in this evaluation can be quantified by an additional parameter, γ, representing the 

individual risk aversiveness: 

𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) = F(𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴), 𝛾𝛾) ∗ 𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)  and  (4.a) 

𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵) = F((1 −  𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)), 𝛾𝛾) ∗ 𝑓𝑓(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐵𝐵)  (5.a) 

Here, 𝐹𝐹 is a linear transform that scales the win probability according to the individual 

level of risk aversiveness yet ensures that it remains within the bounds of 0 and 1.  

𝐹𝐹�𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡,𝛾𝛾� = max�min�(𝛾𝛾 ∗ (𝑝𝑝𝑤𝑤𝑤𝑤𝑤𝑤,𝑡𝑡(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) − 0.5� + 0.5� , 1], 0]  (6) 

The previously described case of rational decision-making would be achieved with γ = 

1, whereas γ > 1 would lead to risk-averse behavior since decisions are predominantly 

based on the learned probabilities and less on differences in reward points. In contrast, 

γ < 1 would make differences in reward points more important. Finally, the probability 

to choose a given option is computed with a sigmoidal probability function based on 

the action weights. 

𝑝𝑝𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴) =  exp (𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)∗ 𝛽𝛽)
(exp(𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴)∗ 𝛽𝛽)+exp (𝑊𝑊𝑡𝑡 (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑜𝑜𝑜𝑜 𝐵𝐵)∗𝛽𝛽))

    (7) 

Note that this function contains the reward sensitivity, β ∈ [0, Inf], that scales the 

subjective value. The reward sensitivity indicates the predictability of value-based 

decisions in such a way that high reward sensitivity leads to very predictable choices 

based on the action weights, while low reward sensitivity leads to noisier decisions 

(Neuser et al., 2020). 

We fit the model using maximum likelihood estimation with the fmincon 

algorithm implemented in MATLAB 2018b. We previously showed that parameters 

could be successfully estimated in simulated data (Neuser et al., 2020) in case of 

rational decision making (γ = 1).  
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Since many reinforcement learning models only include learning rate and 

reward sensitivity parameters, we compared this basic reinforcement model with fixed 

risk aversiveness (γ = 1; assuming rational integration of win probability and expected 

reward) with a model including γ as free parameter. The likelihood ratio test (lratiotest; 

LR) based on the log-likelihood of the model fit provided strong evidence for the 

extended model including risk aversiveness (LR = 43624, p < .001, df = 2904), 

confirming a better fit for 108 out of 127 participants. Thus, we performed all following 

analyses using the extended model including all three parameters.  

To ensure that the choice behavior of participants was sufficiently well 

approximated by the model, we used the log-likelihood of each run as criterion. We 

excluded 316 runs (8.3 % of all runs) with a poor model fit due to random or invariant 

choices (e.g., always option A) from further analyses (5 < log-likelihood< 102.58, 

boundaries estimated from simulated data with random choices). As model-

independent performance measures, we used the average of earned points per trial 

for each run and response times for each decision. Trials with extreme response times 

(50 ms < response time < 10,000 ms) were excluded from the response time analysis 

(5159 trials, 0.9% of all trials). 

Run effects  

To estimate effects of repeatedly playing the game on estimated parameters, 

we used linear mixed-effects models (lmerTest; Kuznetsova, Brockhoff, & Christensen, 

2017). We predicted the estimated behavioral parameters and model fit using the log-

transformed run number as fixed effect. To account for inter-individual differences, run 

number and the intercept were modeled as random effects.  
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Test-retest reliability 

To assess the reliability of behavioral parameters and state items, we estimated 

ICCs using linear mixed-effects models (Raudenbush & Bryk, 2002). The ICC 

describes the reliability of a measure on the scale of a correlation coefficient, where 

values close to 1 reflect high similarity within participants (“classes”, denoted as ID), 

whereas lower ICCs indicate lower similarity within participants. As described in 

Raudenbush and Bryk (2002), we derived unconditional ICC based on the null model: 

Parameter ~ (1|ID) with the formula: 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  𝜎𝜎𝑢𝑢0
(𝜎𝜎𝑢𝑢0+ 𝜎𝜎𝑒𝑒)

       (8) 

where 𝜎𝜎𝑢𝑢𝑢𝑢 is the variance explained the random intercept (ID) and 𝜎𝜎𝑒𝑒 denotes 

the residual variance. Additionally, we calculated the conditional ICC taking (fixed) run 

effects (log-transformed) into account with the following mixed-effects model:  

Parameter ~ 1 + Run + (1|ID).      (9) 

We interpreted ICC values according to recommendations by Shrout and Fleiss 

(1979) so that values < 0.4 reflect poor, values between 0.4 and 0.6 reflect fair, 

between 0.6 to 0.75 reflect good, and values > 0.75 reflect excellent reliability. Lastly, 

to better describe which runs within the game provide the most reliable parameter 

estimates, we calculated the test-retest rank correlation (Spearman) for each run with 

the average of the respective parameter across all other runs. We interpreted the 

correlations according to recommendations by Taylor (1990) for correlation 

coefficients. Here, rs < .35 reflect low, rs between .36 and .67 reflect modest, rs > .67 

reflect high correlations.  
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Statistical threshold and software 

All statistical tests were performed using a significance level of α = 0.05 (two-

tailed). Data preprocessing was done with MATLAB 2020a. Linear mixed-effects 

models and ICCs were estimated in R Studio (R Version 3.5.3; R Core Team, 2014). 

Plots were created in R (R Version 3.5.3; R Core Team, 2014) using the package 

ggplot2 (Wickham, 2011). 

 

Results 

Validation of parameter estimates and game mechanics  

In each run, participants made 150 choices between two options of varying 

reward value and fluctuating win probabilities that had to be inferred over time. To 

estimate reinforcement learning parameters from value-based choices, we applied 

computational modeling. The task was designed to encourage expression of inter-

individual differences in reward learning by providing a large plateau of moderate to 

high average rewards per run across a wide parameter space (Figure 2a). Comparable 

patterns of average reward across different combinations of estimates are also evident 

in empirical data (Figure 2b and 2c), albeit with a narrower range compared to 

simulations that do no entail correlations of estimated parameters (Daw, 2011). We 

see an increased average reward for moderate learning rates α ~ 0.20 (Figure 2b), 

indicating that integrating over multiple decisions is advantageous to track “true” 

fluctuations in the hidden random walks. This basic insight is illustrated in Figure 3a, 

where a high learning rate (top panel) leads to fast switches in choices due to recent 

events. In contrast, a lower learning rate (Figure 3a, bottom panel), leads to more 

patience in light of surprising choice outcomes reducing the number of sharp transitions 

between preferred options.  
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In line with simulated results, our data shows a clear association of higher 

average rewards with higher reward sensitivities, although the improvement plateaus 

around the upper limit of our simulation (β > 4.5). Since reward sensitivity reflects the 

predictability of choices based on inferred differences in values, a high value leads to 

more deterministic choices even for small relative differences in the values of the 

options. In contrast, reward sensitivity close to zero corresponds to random decisions.  
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Figure 2. Reward outcome per run for different combinations of learning parameters based on 
simulated and behavioral data. A. Simulation of N = 50,000 players shows high rewards for 
different combinations of learning rate and reward sensitivity. B. Empirical data from the 
participants show high average rewards for moderate learning rates and moderate reward 
sensitivity. 

 
The risk aversiveness parameter reflects whether participants put more 

emphasis on the win probability than the value. A low gamma parameter corresponds 

to low risk aversiveness (Figure 3c, upper panel), indicating that choices are mainly 

driven by the potential value of the outcome. A high gamma parameter corresponds to 
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high risk aversiveness (Figure 3c, lower panel), indicating that choices are mainly 

driven by the inferred win probability. Notably, almost all participants showed a higher 

than rational risk aversiveness (96%) suggesting they weighed option values less and 

focused more strongly on the probability to win than optimal when making a choice. 
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Figure 3. Illustration of estimated parameters and 
their relation to differences in value-based 
decision-making and learning (representative 
participants). A. The reward sensitivity beta 
scales how action weights (i.e., a combination of 
estimated probability and potential reward value) 
are translated into choices. Higher reward 
sensitivities translate to more deterministic 
choices (i.e., exploitation), whereas lower reward 
sensitivities lead to more random choices (i.e., 
exploration). B. The learning rate alpha captures 
how quickly estimated win probabilities are 
updated in light of new information. High learning 
rates (upper panel) lead to fast updates and quick 
forgetting of long-term outcomes. The black line 
depicts the latent win probability, while the points 
depict the estimated win probability based on the 
reinforcement learning model. C. Risk 
aversiveness scales the importance of the 
estimated win probability of each option 
compared to the offered rewards. Low values (<1, 
upper panel) reduce the importance of the 
learned win probabilities leading to choices based 
primarily on the potential reward at stake. In 
contrast, high values (>1, lower panel) increase 
the importance of the learned win probabilities. If 
the parameter is very high, it may lead to very 
deterministic choices, as small differences in the 
inferred probability to win are exaggerated. 
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Conditional and unconditional ICCs of average rewards per run were lower 

compared to the parameter estimates (unconditional and conditional ICC = 0.09), 

indicating little grouping of data within individuals compared to overall variability across 

runs. Response times ranged from 0.054 to 9.9 s with higher unconditional and 

conditional ICCs compared to average reward rates (0.33 and 0.38, respectively; Table 

1).  

Reinforcement learning improves over runs 

To investigate changes in reinforcement learning over runs, we estimated a 

mixed-effects model for each behavioral parameter, including intercept and log(run) 

(random intercept and slopes). Repeatedly playing the game led to decreased reaction 

times (b = -314 ms, t = 20.03, p < .001) indicating increased familiarity with the task. In 

general, participants successfully learned the correct choice within the task as 

indicated by a positive average reward obtained (first run: M = 8.98, SD = 5.85; all 

runs: M = 12.63, SD = 5.55), and these rewards increased over runs (b = 1.37, t = 9.53, 

p < .001). Moreover, the decrease in response times and increase in reward were 

negatively correlated (r = -.25; p < .001) suggesting that increased proficiency also 

speeds up decisions without a detrimental effect on accuracy. The improvement in 

model-independent performance indices was mirrored in the parameter estimates. 

Over runs, the learning rate decreased (Figure 4a, b = -0.08, t = -9.00, p < .001) and 

the reward sensitivity increased (Figure 4b, b = 0.24, t = 3.95, p < .001), both 

associated with higher average reward (Figure 2a-b). Moreover, the model fit (log-

likelihood) also increased over runs (Figure 4d, b = 6.87, t = 11.09, p < .001), 

suggesting that choices became more aligned with the estimated reinforcement 

learning model. Nonetheless, participants became more risk averse over runs (Figure 

4c; b = 0.73, t = 3.55, p < .001), even if this led to greater deviations from rational 

behavior. 
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Figure 4. Reinforcement learning parameters and model-independent performance indices 
improve over runs. A. Learning rate, α, decreases over runs  (b = -0.08, p < .001). B. Reward 
sensitivity β increases over runs (b = 0.24, p < .001). C. Risk aversiveness, γ, increases over 
runs (b = 0.73, p < .001). D. The model fit (log-likelihood) improves over runs (b = 6.87, p < 
.001). E. Response times decrease over runs (b = -314 ms, p < .001) and F. The average 
reward increases over runs (b = 1.37, p < .001). The dots show mean values with 95% 
bootstrapped confidence intervals. 

 

Reliability of reinforcement learning parameters is comparable to momentary 

states 

To assess the reliability of reinforcement learning parameters, we computed 

unconditional and conditional ICCs adjusting for the behavioral adaptation over runs 

(Figure 4), yielding fair ICCs for learning rates (unconditional ICC = 0.49, conditional 

ICC = 0.52) and poor ICC values for both reward sensitivity (unconditional ICC = 0.36, 

conditional ICC = 0.37) and risk aversiveness (unconditional and conditional ICC = 

0.22; Table 1). To investigate whether early or late runs are more reliable, we 

calculated the Spearman rank correlation for each run with the average of all other 
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runs. Notably, test-retest correlations of early runs were lower compared to late runs 

and improved until reaching a plateau after approximately 7 runs (Figure 5). This 

indicates that behavior within the task becomes more reliable with higher task 

proficiency, suggesting that late runs are better estimates of the “typical” performance 

on the task compared to early runs.  

 

 
Figure 5. Reliability of parameter estimates from the learning model improves after the first 
runs. Dots depict the correlation of parameter estimates in one run with the mean across all 
other runs (leave-run out), separated per parameter. Red dashed lines show the classification 
of correlation magnitudes according to Taylor (1990). 
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Table 1. Descriptive statistics and reliabilities of dependent variables  

Measures Mean SD Median 10th 
Percentile 

90th 

Percentile 
ICCunc ICCcond 

Behavioral indices        

Response time [s] 0.99 0.69 0.85 0.52 1.79 0.33 0.38 

Wins 12.63 5.55 12.72 5.66 19.58 0.09 0.09 

Model parameters        

Log-likelihood -52.93 19.10 -53.05 -78 -28.7 0.34 0.31 

Learning rate 0.36 0.27 0.26 0.08 0.83 0.49 0.52 

Reward sensitivity 2.87 1.16 2.70 1.67 4.17 0.36 0.37 

Risk aversiveness 5.45 6.28 2.71 1.11 14.05 0.22 0.22 

State items        

Alertness 56.99 23.00 58 26 88 0.29  

Happiness 59.82 24.03 62 26 91 0.45  

Sadness 27.84 24.69 21 1 67 0.43  

Stress 29.42 24.21 24 1 65 0.47  

Distraction by 
environment 

26.10 23.19 20 1 61 0.39  

Distraction by 
thoughts 

30.55 25.06 24 2 68 0.53  

Note: SD = standard deviation, ICC = intraclass correlation coefficient 

 

To relate the reliability of reinforcement learning parameters with the reliability 

of other measures (i.e., momentary states), we analyzed a subset of state items that 

are assessed prior to each run. We calculated descriptive statistics and ICCs of EMA 

items alertness, happiness, sadness, stress, distraction by environment, and 

distraction by thoughts (Table 1, Figure 6). The ICCs of the EMA items ranged between 

poor (alertness: 0.29, distraction by environment: 0.39) and fair (sadness: 0.43, 

happiness: 0.45, stress: 0.47, distraction by thoughts: 0.53) values. Of note, they were 

in a comparable range as the reinforcement learning parameters. Illustratively, items 

reflecting emotional states (happiness, sadness, stress) had similar ICCs as the 
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learning rate, the most reliable reinforcement learning parameter. These results point 

to a comparable ratio of within- and between-subject variance for behavioral 

parameters as for alleged state items.  

 

 
Figure 6. State items show poor to fair intra-class correlation coefficients (0.29-0.53). A-F. 
Mean and variance of selected EMA items per individual, ranked by mean value of each 
participant across runs. Dots represent values per run as entered via VAS.   
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Discussion 

Value-based decision-making and learning are integral parts of adaptive 

behavior. Since alterations have been linked to multiple mental disorders, it is pivotal 

to develop accessible tools that capture reliable inter-individual differences in value-

based decisions to propel the use of deeply phenotyped behavioral data for clinical 

classification and prediction. To this end, we introduce our open-source cross-platform 

application Influenca, which comprises multiple runs of a reward learning task and 

(customizable) EMA state items. Using preliminary data of 2904 runs from users with 

a minimum of ten runs, we show that our app provides detailed insight into the reliability 

of common indices of value-based decision-making and learning over extended 

periods of time. In line with the few available reports of test-retest reliability in 

comparable lab-based assessments, the reliabilities of the estimated model 

parameters were poor to fair, suggesting that learning parameters fluctuate 

substantially over runs. Such fluctuations may limit the prospect of using single runs 

for individual diagnostics. Likewise, reliability of single-run estimates improved after 

several runs, highlighting the benefit of multi-run assessments to boost psychometric 

properties. Taken together, future use of innovative tools such as Influenca in large-

scale, naturalistic assessments may provide a much more nuanced perspective on 

individual trajectories in decision-making and learning and their contribution to mental 

health.  

Our app Influenca features several key innovations to study value-based 

decision-making and learning at a large scale as part of longitudinal studies in a 

naturalistic setting. Since the app was made available on the participants’ preferred 

devices and was completed outside of a controlled laboratory setting, a careful 

evaluation of the data quality is essential (Crump, McDonnell, & Gureckis, 2013; 
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Germine et al., 2012; Gillan & Rutledge, 2021). To validate the online assessment, we 

show that participants quickly learn to do the task well and perform it in a moderately 

reliable manner after a few runs. Consequently, players win many more points than 

expected by chance in most of the runs 98% (score > .33; highest average win per trial 

when choices are simulated randomly) and wins increase over runs, indicating that 

participants played the task with increasing proficiency. In parallel with improvements 

in learning across runs, response times decreased, indicating that participants speed 

up their deliberation process with increasing proficiency as well. Beyond basic 

performance indices, we observed that participants showed changes in reinforcement 

learning parameters over runs. For example, the learning rate decreased on average 

over runs, indicating an integration of feedback about win probabilities over more 

consecutive decisions. In contrast, reward sensitivity increased over runs, reflecting 

greater exploitation of learned contingencies with increased task proficiency (Cohen, 

McClure, & Yu, 2007; Daw, O'doherty, Dayan, Seymour, & Dolan, 2006; Lee, Zhang, 

Munro, & Steyvers, 2011). Moreover, in line with previous findings (Fox & Poldrack, 

2009; Kahneman & Tversky, 1980; Tom, Fox, Trepel, & Poldrack, 2007; Tversky & 

Kahneman, 1992), we observed that participants were more risk averse compared to 

a rational integration of relative value and probabilities. By design, the app does not 

promote a narrow range of learning rates and, instead, tries to capture individual 

differences in value-based decision-making over the course of the game. Such inter-

individual variance is crucial for the effective use of tasks for individual prediction or 

classification (Hedge et al., 2018). To conclude, our newly developed app captures 

differences in inter-individual and intra-individual decision-making in a naturalistic 

setting and tracks increased proficiency and test-retest reliability of behavioral 

estimates over time.  
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Based on our extensive data of repeated runs of the task, we can provide a 

more refined insight into the test-retest reliability of value-based decision-making and 

learning. Across all runs, the reliability of the behavioral indices was poor to fair, 

indicating a limited trait-like characteristic of value-based decision-making (Neuser et 

al., 2020). However, the observed ICCs of the learning rate are in accordance with 

previous studies using lab-based assessments (Moutoussis et al., 2018; Pratt et al., 

2020; Shiner et al., 2012) suggesting that this is unlikely due to the naturalistic setting. 

To see whether increased task proficiency would lead to improved reliability, we 

correlated estimates of single runs with the average of the held-out runs. Crucially, 

reliability of the learning rate increased up to Run 7, suggesting that initial variance in 

the parameter estimates is not necessarily as predictive of trait-like differences in 

learning as late variance in the presence of substantial task expertise. Therefore, multi-

run assessments conducted across various states may provide a better approximation 

of generalizable inter-individual differences in value-based decision-making compared 

to the typical single-run assessments in the lab after limited practice on the task.   

Despite its notable strengths, the study has several limitations that should be 

addressed in future research. First, in comparison to lab-based experimental setups, 

we cannot control the testing environment our participants are confronted with when 

they initiate the app. Still, we argue that the naturalistic setting of EMA has important 

advantages that can outweigh the limited control over standardized data collection, 

such as more data per person collected during representative circumstances they will 

face in their life outside the laboratory. Second, to illustrate the rationale of our app, 

we chose a reinforcement learning model suggested in the seminal work by Behrens 

and colleagues (Behrens et al., 2007). More advanced models could provide deeper 

insights into the decision-making processes and their progression over repeated runs. 

Potential advances include a hierarchical Bayesian framework (Mathys, Daunizeau, 
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Friston, & Stephan, 2011), allowing to track the agent’s estimate of the current volatility 

in the environment, and asymmetric learning rates for wins and losses (Kravitz, Tye, & 

Kreitzer, 2012). Moreover, in our model fitting, we did not incorporate the nested data 

structure, which could be further exploited with Bayesian fitting methods to improve the 

estimation of trait-like characteristics of behavior (Boehm, Marsman, Matzke, & 

Wagenmakers, 2018). Third, apart from the rich possibilities provided by extensions in 

the computational models, future work may shed light on the reciprocal influence of 

momentary states (including metabolic states such as hunger) and the parameter 

estimates of value-based decision-making (Blain & Rutledge, 2020; Rutledge et al., 

2017). 

To summarize, online and smartphone-based assessment has gained traction 

as a scalable method for longitudinal studies in larger and more representative 

samples embedded in a naturalistic setting that may improve generalizability. Here, we 

provide a psychometric evaluation of our open source, cross-platform reinforcement 

learning task for future use in large-scale assessments of individual differences in 

value-based decision-making. We show that the gamified task captures inter-individual 

and intra-individual differences in decision-making and learning, which can be 

associated with fluctuations in state measures or potentially linked with interventional 

designs to provide more nuanced insight into behavioral changes. Based on our 

extensive longitudinal assessment of reinforcement learning over days, we provide 

detailed information on the test-retest reliability of the behavioral performance indices 

and model parameters, suggesting that multiple runs per participant might be 

necessary to provide sufficient diagnostic information at the individual level. To 

conclude, our reinforcement learning task can be used to precisely track the dynamics 

of value-based decision-making and learning providing a new avenue for future 
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research to improve the individualized prediction of behavior as well as the 

classification of individuals for diagnostic or clinical applications.  
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Code availability 

The app was written in the open-source programming language HAXE 

(https://haxe.org/, Version 3.4.7). The source code for the Influenca framework is 

available via github (https://github.com/VTeckentrup/mind-mosaic). Compiled 

installers are available and will be maintained on our website 

www.neuromadlab.com/en/influenca-2. 
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