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Partial resistance to HDAC inhibitors in FAPs of dystrophic muscles at late stages of
disease is associated to epigenetic and transcriptional features of cellular senescence.
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Abstract

Pharmacological treatment of Duchenne Muscular Dystrophy (DMD) with histone
deacetylase inhibitors (HDACI) is currently being tested in clinical trials. Pre-clinical studies
performed in mdx mice - the mouse model of DMD - have shown that HDACi promote
compensatory muscle regeneration, while inhibiting fibro-adipogenic degeneration, by
targeting fibro-adipogenic progenitors (FAPs); however, these beneficial effects are
restricted to early stages of disease progression. We show here that FAPs from late stage
mdx mice exhibit epigenetic and transcriptional features of senescence that could not be
fully reversed by HDACi. In particular, genome-wide increase in H3K9/14 acetylation at gene
promoters of Senescence Associated Secretory Phenotype (SASP) genes was associated with
their upregulation in late stage mdx FAPs. Treatment with the HDACi Trichostatin A (TSA)
could inhibit SASP gene activation in FAPs, by decreasing H3K9/14 acetylation. Conversely,
combinatorial decrease of H3K27 and/or H3K9/14 acetylation at promoters of genes
required for cycle activation and progression was associated with their downregulation in
FAPs from late stage mdx mice. However, these epigenetic and transcriptional alterations
could not be reversed by TSA, due to a general resistance exhibited by FAPs from late stage
mdx mice to HDACi-induced H3K9/14 hyperacetylation. Overall, this data reveal that
disease-associated features of senescence develop in FAPs of DMD muscle through
epigenetically distinct and pharmacologically dissociable events, and suggests that HDACi
might at least retain anti- fibrotic and inflammatory activity at late stages of DMD, by
repressing FAP-derived SASP.
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Introduction

Duchenne Muscular Dystrophy (DMD) is a fatal genetic disease caused by lack of
dystrophin (dys) expression’?. Genetic correction by restoration of dys expression with gene
therapy approaches®” is predicted to recover the biochemical and functional integrity of the
dystrophin-associated protein complex (DAPC)® and thereby protect myofiber sarcolemma
stability post-contraction’. However, a number of “secondary” pathogenic events caused by
dys deficiency can contribute to DMD progression®™* and might persist even after gene
therapy. Targeting these DMD-associated “secondary” events might therefore be necessary
to achieve complete and long-lasting therapeutic recovery in DMD patients.

Among the “secondary” events caused by dys deficiency, pathogenic activation of
specific sub-populations of muscle resident cells is emerging as key event in DMD
progression'**>. Recent works have lended further support to the activation of “secondary”
pathogenic responses in cell types that do not express dys, by showing alterations of the
transcriptional profiles in various muscle-resident cell types from mdx muscles, in addition
to myonuclei and MuSCs**?°.

A number of pharmacological strategies have been proposed to target the
pathogenic activation of muscle-resident cell types in DMD, including the current standard
treatment with steroids®'. Treatment with HDACi is emerging as novel pharmacological
intervention in DMD??. The therapeutic potential of HDACi for DMD has been shown by
multiple lines of evidence, including preclinical®®*** and early clinical studies®®, and is
currently under evaluation in clinical trials with DMD boys®®. Studies in mdx mice - the DMD
murine model — have shown that the beneficial effects of HDACi are restricted to the early
stages of disease progression?”?%. This loss of beneficial effects observed in DMD mouse
models at late stages of disease suggests that development of disease-associated resistance
might limit the efficacy of HDACi in late stage DMD patients. Among muscle-resident cells,
fibro-adipogenic progenitors (FAPs) have been implicated as central cellular effectors of
DMD progression and key targets of the beneficial effects of HDACi in mdx mice?”*®. FAPs
support muscle-stem cell mediated repair in acutely injured muscles, but turn into cellular
effectors of fibrotic and adipogenic degeneration of muscles exposed to conditions of
chronic damage, such as DMD and other neuromuscular disorders'®?’>>. We have
previously shown that in mdx mice at early stages of disease, FAPs can promote muscle
stem cell (MuSC)-mediated compensatory regeneration and are susceptible to HDACI-
mediated enhancement of their pro-regenerative activity and inhibition of their fibro-
adipogenic potential®”?. Moreover, recent studies have revealed that exposure to HDACi
promotes the formation and release of pro-regenerative and anti-fibrotic extra-cellular
vesicles (EVs) from FAPs of DMD muscles at early stages of disease®. The progressive loss of
pro-regenerative potential and response to HDACi in FAPs from late stages mdx mice?’
suggests that proportional changes in HDAC activity and related histone modifications occur
in these cells during DMD progression. However, it remains currently unknown whether
HDAC activity is altered in FAPs of dystrophic muscles and can generate aberrant profiles of
histone acetylation and gene expression; likewise, it is unknown whether these alterations
could be effectively restored by HDACi at progressive stages of disease progression and
what is their impact on FAP biology.
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Results

We measured class | and class Il HDAC activity from lysates of FAPs isolated from
hind limb muscles of mdx mice at either early (1.5 month old) or late (12 month old) stages
of disease — hereinafter also referred to as “young mdx FAPs” or “old mdx FAPs”,
respectively. The enzymatic activity of all HDAC classes — HDAC |, lla and I/llb — was
increased about two folds in mdx old FAPs, as compared to young mdx FAPs (Fig. 1A). A 15
day treatment with the pan HDACi Trichostatin A (TSA), which we have previously reported
to exert histological and functional beneficial effects in young mdx mice”, could reduce
class | HDAC enzymatic activity with a comparable efficacy in mdx FAPs from either stage
(Fig. 1A, left panel). By contrast, class lla HDAC activity was drastically inhibited (about 10
fold reduction) by TSA in young mdx FAPs, whereas it was only reduced by half in old mdx
mice (Fig. 1A, middle panel). Finally, class I/Ilb HDAC activity was moderately inhibited by
TSA in young mdx FAPs and minimally affected in old mdx FAPs (Fig. 1A, right panel). These
results show that HDAC activity increases in FAPs of mdx muscles along with disease
progression, and that exposure to TSA could reduce the enzymatic activity of class | and Il
HDAC at both stages, although with a greater activity in young mdx FAPs.

As HDAC activity controls histone acetylation, we next sought to determine whether
the different levels of HDAC activity detected in FAPs from muscles of mdx mice at different
stages of disease could generate different profiles of genome-wide distribution of histone 3
(H3) acetylation at lysines 9/14 (H3K9/14ac) and lysine 27 (H3K27ac) - two major histone
modification associated with a chromatin conformation permissive for gene expression®”.
We also investigated the effect of HDACi on these histone acetylation patterns, by exposing
mdx mice to TSA, as described above. In parallel, we performed RNAseq analysis in order to
monitor the transcriptional output from FAPs in the same experimental conditions. Figure
1B illustrates the experimental strategy. ChlP-seq experiments with anti-H3K9/14ac and
H3K27ac antibodies revealed distinct profiles of histone acetylation in FAPs isolated from
hind limb muscles of young (1.5 month) or old (12 month) mdx mice, either untreated or
treated with TSA for 15 days (Fig. 1C-F). Global analysis of the cumulative genomic
distribution of ChlP-seq peak signals for these histone modifications showed that H3K9/14ac
was largely biased toward gene promoters, while H3K27ac signal was distributed between
gene promoters (one half) and intronic or distal intergenic elements that typically harbor
enhancers (Fig. S1). This signal is consistent with the well established enrichment of
H3K27ac at active enhancers and promoters®” . Slightly increased genome-wide levels of
H3K9/14ac were observed at gene promoters of old mdx FAPs, as compared to young mdx
FAPs (Fig. 1C and 1D, middle panel). Interestingly, TSA treatment increased H3K9/14ac
signal at gene promoters in young mdx FAPs (Fig. 1C and 1D, left panel), while did not
significantly alter the global H3K9/14ac levels at gene promoters in old mdx FAPs (Fig. 1C
and D, right panel). Conversely, a dramatic loss of H3K27 acetylation at both gene
promoters and outside was observed in old mdx FAPs, as compared to their younger
counterpart (Fig. 1E and 1F, middle panel). TSA treatment could recover H3K27 acetylation
in old mdx FAPs (Fig. 1E and 1F, right panel) to levels comparable to those of young mdx
FAPs (Fig. 1F, compare middle and right panels). By contrast, TSA decreased H3K27ac signal
in young mdx FAPs inside and outside gene promoters (Fig. 1E and 1F, left panel).

Combinatorial intersection of differentially acetylated loci in FAPs across all
experimental conditions for both histone modifications shows that the large majority of the
H3K9/14ac peaks detected was induced by TSA in young mdx mice, with more than half of
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them specific for this condition (Fig. 1G, left panel). Most of the remainder H3K9/14ac peaks
induced by TSA in young mdx FAPs coincided with H3K9/14 hyperacetylated loci in old mdx
FAPs, with a subset of them also coinciding with H3K9/14 hypoacetylated loci induced by
TSA in old mdx FAPs (Fig. 1G). This pattern of combinatorial intersections identifies a
putative common subset of gene promoters regulated by H3K9/14 acetylation in both
young and old mdx FAPs, whereby common hyperacetylated loci detected in TSA-treated
young mdx FAPs and untreated old mdx FAPs coincided with loci hypoacetylated in
response to TSA treatment in old mdx FAPs. This specific combination suggests that TSA
might differentially affect the H3K9/14ac status of a common subset of gene promoters in
FAPs throughout DMD progression. Interestingly, another subset of H3K9/14
hyperacetylated loci uniquely detected in old mdx FAPs coincided with hypoacetylated loci
in TSA-treated old mdx FAPs (Fig. 1G), further indicating that reversal of H3K9/14
hyperacetylation at gene promoters is a dominant, paradoxical effect of HDACi in old mdx
FAPs. Indeed, TSA-mediated H3K9/14 hyperacetylation in old mdx FAPs was a rare event
and mostly occurred at loci that were also hyperacetylated by TSA in young mdx FAPs (Fig.
1G). These data suggest that along with the disease progression in mdx mice, FAPs might
develop resistance to HDACi-induced H3K9/14 hyperacetylation, while becoming vulnerable
to HDAC-mediated reduction of H3K9/14ac signal at hyperacetylated loci in old mdx FAPs.
Conversely, the most dominant combinatorial patterns of H3K27ac included the
hypoacetylation at gene loci in old mdx FAPs, with about half of these loci in which H3K27
hyperacetylation was recovered by TSA (Fig. 1H). The other half included loci that were also
hypoacetylated in young mdx FAPs treated with TSA or loci uniquely detected in old mdx
FAPs, in which H3K27ac signal was not recovered by TSA (Fig. 1H). This pattern shows that
the reduction of H3K27ac in old mdx FAPs can be recovered by TSA at certain loci, but not at
others, thereby indicating that old mdx FAPs develop partial resistance to HDACi-mediated
H3K27 hyperacetylation. Interestingly, in young mdx FAPs TSA could only reduce H3K27ac,
both at unique loci and at loci that were also hypoacetylated in old mdx FAPs (Fig. 1H).

The alterations of the genome-wide histone acetylation profiles detected in FAPs of
mdx mice at different stages of disease and in response to TSA predict that consensual
alterations in gene expression profiles could also occur in mdx FAPs in the same
experimental conditions. We therefore performed RNAseq to analyze the gene expression
profile of FAPs isolated from the same experimental conditions described above (illustrated
in Fig. 1B). Differentially expressed (DE) genes between young and old mdx FAPs were
almost equally distributed between up- or down-regulated genes (Fig. S2A, middle panel;
Fig. S2B). Likewise, TSA induced a similar number of up- and down-regulated DE genes in
young mdx FAPs (Fig. S2A, left panel; Fig. S2B). In contrast, TSA preferentially dowregulated
gene expression in old mdx FAPs (Fig. S2A, right panel; Fig. S2B). Combinatorial intersection
of DE genes in FAPs across all experimental conditions revealed that the majority of them
were genes either uniquely up-regulated or downregulated in old mdx FAPs, as compared to
their young counterpart; however, while the expression of a proportion of genes
upregulated in old mdx FAPs was recovered by TSA-mediated repression, the expression of
very few genes that were downregulated in old mdx FAPs was recovered by TSA-mediated
activation (Fig. S2C). Overall, TSA-modulated genes in young and old FAPs did not show any
relevant overlap, suggesting that HDACi modulate different patterns of gene expression in
dystrophic FAPs at different stages of disease, as also predicted by their acetylation profiles.
Heatmap of top DE genes across all experimental conditions revealed specific patterns of
gene expression that could discriminate 2 major clusters of DE genes during FAP transition
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from an early to a late stage of disease progression in mdx mice, as well as their differential
response to TSA (Fig. S3 and Fig. 11). Gene ontology analysis identified specific biological
processes for each of these clusters of DE genes. Cluster 1 included a subset of genes whose
expression was induced by TSA in young mdx FAPs, but was repressed, and was not
recovered by TSA, in old mdx FAPs (Fig. S3 and Fig. 11). Gene ontology assigned these genes
to processes related to activation of cell proliferation and migration (Fig. 1J). These genes
encode cell cycle activators, such as cyclins and cyclin-dependent kinases, histone variants,
components of the cytoskeleton as well as activators of glycolysis (Fig. S3 and Fig. 1K).
Cluster 2 included a subset of genes induced in old mdx FAPs, as compared to young mdx
FAPs; however, TSA treatment could downregulate these genes and restore their expression
to levels comparable to those of young mdx FAPs (Fig. S3 and Fig. 11). Gene ontology
analysis indicates that this cluster was enriched in genes implicated in regulation of
extracellular matrix (ECM), response to hypoxia and inflammation, as well as cytokine-
mediated signaling pathways (Fig. 1J). Indeed, these genes encode a number of proteins
implicated in ECM remodeling, several ligands and receptors for activation of intracellular
signaling as well as downstream nuclear transcription factors (Fig. S3 and Fig. 1K).

We next performed an integrated analysis of ChIPseq and RNAseq datasets
generated across all experiemental conditions to identify specific patterns of histone
acetylation and gene expression that could discriminate young from old mdx FAPs and their
different ability to respond to TSA. Specific patterns of histone acetylation were associated
to the expression levels of the nearest gene (-1500/+500 bp distance from the TSS). This
analysis revealed two major trends, one consisting of genes that were upregulated in old
mdx FAPs and marked by H3K9/14 hyperacetylation at their promoters, another consisting
of genes that were downregulated in old mdx FAPs and marked by H3K27 hypoacetylation
(Fig. S4A). Gene ontology revealed that upregulated genes marked by H3K9/14
hyperacetylation were enriched in genes belonging to cluster 2 (Fig. S3 and Fig. 11-K) and
implicated in ECM remodeling (e.g. TGFbeta signaling) and cytokine-mediated signaling
pathways (e.g. TNFalpha or NFkB signaling) (Fig. S4B). Figure 2A shows the association
between increased H3K9/14ac at promoters of representative genes that were upregulated
in old mdx FAPs, such as the components of pro-fibrotic TGFbeta signaling, Smad3, Tgfb2
and Tgfbi (Transforming Growth Factor Beta Induced), (Fig. 2A). The upregulation of these
representative genes and the increased levels of H3K9/14ac at their promoters in old mdx
FAPs, as compared to young mdx FAPs, was validated by independent gPCR (Fig. 2B) and
ChIP-qPCR (Fig. 2C) analyses, respectively. Of note, GSEA enrichment plot for genes
upregulated in old mdx FAPs and marked by promoter H3K9/14 hyperacetylation revealed
their identity as Senescence Associated Secretory Phenotype (SASP) genes (Fig. 2D)*. This
suggests that old mdx FAPs might acquire a secretory phenotype similar to senescent cells.
Interestingly, genes upregulated in old mdx FAPs and marked by promoter H3K9/14
hyperacetylation were also enriched in aging process and negative regulation of cell cycle
(Fig. S4B), further suggesting that FAPs at late stages of DMD progression might adopt
additional features of cellular senescence, such as cell cycle arrest. Consistenlty, genes
downregulated in old mdx FAPs and marked by H3K27 hypoacetylation showed enrichment
for biological processes related to activation of cell cycle progression, DNA replication and
mitosis (Fig. S4C). Figure 2E shows the association between promoter H3K27
hypoacetylation and downregulation of representative genes in old mdx FAPs, such as the
cell cycle activators E2F1, Cdk4 and Check2 (Fig. 2E). The downregulation of these genes and
the decreased levels of H3K27ac at their promoters in old mdx FAPs, as compared to young
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mdx FAPs, were independently validated by gPCR (Fig. 2F) and ChIP-qPCR (Fig. 2G) analyses,
respectively. Accordingly, flow cytometry analysis revealed a drastic decrease of cells
progressing through S/G2 phases in old mdx FAPs, as compared to young mdx FAPs (Fig.
2H). Likewise, old mdx FAPs exhibited decreased number of apoptotic cells (Fig. 2I),
consistent with the decreased susceptibility to apoptosis of cells upon cell cycle withdrawal.
However, old mdx FAPs did not exhibit two conventional markers of cellular senescence,
such as spontaneous expression beta-galactosidase (Fig. 2J) and upregulation of the cyclin-
dependent kinase inhibitors (cdki) p16, although the cdki p21 was increased (see Fig 1K e
Fig. S3). Thus, although FAPs exhibit partial features of senescence, they do not fullfill all
essential criteria of conventional cellular senescence.

Cellular senescence is traditionally considered irreversible, once established*,
however recent evidence demonstrates that individual biological features of senescence
could be reversible****. Thus, we sought to evaluate whether epigenetic and transcriptional
patterns exhibited by old mdx FAPs were reversed, at least partly, by TSA. In this respect,
HDACi have been reported to either promote or counter cellular senescence, depending on
the cell type and experimental context**. We first evaluated whether TSA could reverse the
upregulation of SASP genes in old mdx FAPs. Indeed, the RNAseq expression patterns of
cluster 2, which is enriched in SASP genes, shows a consensual downregulation of gene
expression levels in FAPs isolated from old mdx mice treated with TSA (Fig. 1 I-K; Fig S3).
TSA-mediated downregulation of SASP genes invariably coincided with reduction of
H3K9/14ac at their promoters, as shown by representative genes implicated in a variety of
SASP-related biological processes, including fibrosis (e.g. TGFb-Smad sgnaling), inflammation
(NFkB and p38 signaling) and other components of cytokine- or growth factor-activated
pathways, such as IL6, FGF and BMP signaling (Fig 3A; Fig. S5). The downregulation of these
genes and the decreased levels of H3K9/14ac at their promoters in response to TSA were
independently validated by gPCR (Fig. 3B) and ChIP-qPCR (Fig. 3C) analyses, respectively.
Consistently, immunofluorescence analysis of muscle sections show that FAPs (identified as
CD90 expressing interstitial cells) from old mdx mice exhibited the activation of NFkB
cascade (as measured by nuclear accumulation of the phosphorylated active form of p65
sub-unit) (Fig. 3D-E), p38 pathway (as measured by nuclear accumulation of
phosphorylated-p38 alpha kinase) (Fig. 3F-G) and TGFb signaling (as measured by nuclear
accumulation of phospho-Smad2/3) (Fig. 3H-1). Treatment with TSA invariably reduced the
activation of all these signaling pathways (Fig. 3D-1).

Conversely, TSA could not resume the expression of genes downregulated in old mdx
FAPs and represented in cluster 1, which is enriched in genes implicated in the activation of
cell cycle progression (e.g. cyclins, cdks, histones, E2F family members) as well as glycolysis
(Fig. 1 I-K; Fig S3). The common epigenetic features that accompanied the downregulation
of these genes during the transition of FAPs from young to old mdx mice was the reduced
promoter H3K9/14ac, often in combination with reduced H3K27ac (Fig. 4A; Fig. S6). While
TSA could increase H3K9/14 promoter acetylation and expression of cell cycle genes in
young mdx FAPs, it failed to recover promoter H3K9/14 hyperacetylation and resume the
expression of these genes in old mdx FAPs (Fig. 4A and Fig. S6), as also measured by qPCR
and ChIPgPCR analysis at representative genes, such as Histlh2ae/Histl1h2bg, Cdkl and
CyclinAl (encoded by Ccna2) (Fig. 4B and C). Consistently, the percentage of proliferating
cells detected by flow cytometry analysis of Ki-67 expression — a nuclear protein expressed
throughout the cell cycle progression, except GO and early G1 phases - was slightly reduced
in old mdx FAPs, as compared to young mdx FAPs (Fig. 4D and E). However, while TSA could
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double the percentage of Ki-67 positive FAPs in young mdx mice, old mdx FAPs did not
resume the cell cycle in response to TSA treatment (Fig. 4D and E). Accordingly, the total
number of FAPs was decreased in old mdx mice, as compared to their young counterpart;
however, TSA treatment could not increase FAP number at either stage (Fig. 4F). The lack of
increase in FAP number in TSA-treated young mice is apparently in contrast with the
increased number of proliferating FAPs detected in TSA-treated young mdx mice. We argue
that this discrepancy could be accounted by the increased length of G1-S phase progression
observed in TSA-treated young mdx FAPs, due to the activation of a G1/S phase checkpoint
by TSA reported by others in several cell types® and confirmed by our RNAseq analysis (see
Fig. 5B) . These data indicate that old mdx FAPs are withdrawn from the cell cycle, a
biological feature that is typically associated with an impairment in migratory ability. We
therefore analysed the effect of TSA on FAP migration in young vs old mdx mice, by a cell
migration assay in vivo, using FAPs isolated from young or old mdx mice, treated or not with
TSA for 15 days. Immediately after isolation, FAPs were labelled with PKH67-488 dye and
transplanted into the proximal part of the gastrocnemius muscle of mdx young mice. 5 days
post-injection the number of PKH67-488 positive cells detected in the proximal and distal
sections from the injection site were counted by flow cytometry analysis, as readout of their
migratory ability. Figure 4G-H shows that only FAPs isolated from TSA-treated young mdx
mice were able to migrate from the proximal injection site to the distal section of
gastrocnemious muscles (Fig. 4G-H), indicating that old mdx FAPs are refractory to TSA-
induced migration. Finally, the observation that the expression of several glycolytic genes,
including Eno3 (the muscle-specific isoform of beta-enolase), was repressed in old mdx FAPs
and could not be resumed by TSA, which otherwise upregulates these genes in young mdx
FAPs (Fig. S3), prompted an interest to analyse the ability of FAPs to activate glycolysis in
our experimental conditions. Activation of glycolysis could be observed only in FAPs isolated
from young mdx mice treated with TSA (Fig. 41). Given the functional interdependence
between glycolysis and activation of cell cycle during stem cell activation, and because cell
cycle progression and DNA replication favor nuclear reprograming®’, it is likely that the
resistance of old mdx to resume expression of cell cycle and glycolytic genes prevents full
epigenetic reprogramming by HDACI.

Overall, these data reveal a general trend of loss of response to HDACi-mediated
activation of gene expression in old mdx FAPs, despite these cells retained the ability to
dowregulate gene expression (e.g. SASP genes) in response to HDACI. This trend was further
revealed by a gene ontology analysis of comparative gene expression patterns in FAPs
across our experimental conditions, in graphical representation whereby the size of the
bubbles accounts for the number of genes found to be involved in the GO term (Fig. 5A).
This analysis shows that TSA could both inhibit and promote a variety of cellular processes
in young mdx FAPs; however, in old mdx FAPs TSA activity was only inhibitory toward the
biological processes induced in FAPs during DMD progression (Fig. 5A). Among them, we
noted processes implicated in fibrosis (e.g. remodelling of extracellular matrix) as well as
extracellular exosome formation/secretion. IPA analysis also documented the general trend
of inhibition of gene expression by TSA in old mdx mice, with the notable exception of a
cluster of TSA-induced genes implicated in oxidative phosphorylation (Ox-Phos), TCA cycle,
electron transport and mitochondrial biogenesis (Fig. 5B; Fig. S7A and B). The dominant
epigenetic feature of these genes was the H3K27 hypoacetylation at their promoters that
accompanied their downregulation in old mdx FAPs, as compared to young mdx FAPs (Fig.
5C-E; Fig. S7C). TSA could recover promoter H3K27 hyperacetylation and transcription of
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these genes in mdx old FAPs (Fig. 5C; Fig. S7C). Independent gPCR and ChIPgPCR analysis of
representative genes - Ndufa4, Cycs and Cox6 - confirmed their downregulation (Fig. 5D)
and consensual reduction of H3K27ac promoter levels (Fig. 5E) in old mdx FAPs. These gene
expression patterns were paralleled by coherent changes in mitochondrial activities, with a
general trend of reduction of oxygen consumption rate (basal respiration) and ATP
production in old mdx FAPs, which was recovered by TSA, albeit not to the levels observed
in TSA-treated young mdx FAPs (Fig. S7D and E). Finally, mitosox staining detected an
increased production of superoxide in old mdx FAPs, as biproduct of dysfunctional
mitochondrial oxydative phosphorylation, that was reverted by TSA (Fig. S7F and G).
Interestingly, these genes were not significantly induced by TSA in young mdx FAPs (Fig. 5C-
E; Fig. S7C). This suggests that full metabolic reprogramming of young mdx FAPs is induced
by TSA by a mechanism distinct from TSA-mediated upregulation of Ox-Phos genes in old
mdx FAPs, which can only promote a slightly increase of mitochondrial oxidative
phosphorylation (Fig. S7D-G).
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Discussion

The results shown here revealed that FAPs of mdx mice undergo extensive
epigenetic and transcriptional changes during disease progression, leading to two main
distinctive biological features — cell cycle arrest and SASP - that discriminate late from early
stage FAPs.

Although cell cycle arrest and SASP are well known features of cellular senescence®,
old mdx FAPs did not exhibit conventional hallmarks of cellular senescence, such as beta
galactosidase expression and upregulation of the cyclin-dependent kinase inhibitors (cdki)
pl6. Indeed, the cell cycle arrest observed in old mdx FAPs appears to be caused by a failure
to activate the expression of genes implicated in cell cycle progression and DNA synthesis,
rather than by the upregulation of pl6, as typically observed in cellular senescence.
Moreover, SASP activation in old mdx FAPs entails the upregulation of genes encoding for
growth factors, cytokines, and other secreted proteins implicated in the regulation of
muscle regeneration, inflammation, and ECM remodeling. Some of these genes were
already expressed at low levels in young mdx FAPs and, when induced at moderate levels by
HDACI, some of these genes could promote environmental conditions conducive to muscle
regeneration — e.g. transient inflammation and ECM changes that favor MuSC migration and
proliferation. In old mdx FAPs the simultaneous upregulation and persistent expression of
all these genes ultimately leads to fibrosis and inflammation, which negatively impact on
MuSC-mediated regeneration. Thus, the activation of SASP observed in old mdx FAPs
reflects changes in magnitude of transcription of a large collection of genes implicated in
regeneration, inflammation and ECM remodelling. Consistently, similar features of cellular
senescence have been independently observed in FAPs of mice exposed to exercise-induced
muscle damage and were associated to the ability of FAPs to promote muscle
regenerationAS.

Interestingly, cell cycle arrest and activation of SASP in old mdx FAPs were sustained
by opposite patterns of histone acetylation. Cell cycle arrest was associated with global
hypoacetylation at promoters of repressed genes implicated in cell cycle progression and
DNA synthesis. Activation of SASP was sustained by promoter H3K9/14 hyperacetylation of
SASP genes. Furthermore, transcriptional repression of cell cycle genes was part of a trend
of genome-wide H3K27 hypoacetylation in old mdx FAPs that coincided with a general
increased HDAC activity and could be partly reversed by HDACi at the genome-wide level;
however, HDACi could not recover the expression of cell cycle genes in old mdx FAPs.
Conversely, activation of SASP genes occurred within a trend of H3K9/14 hyperacetylation
that was not reversed by HDACi at genome-wide level; however, HDACi could fully repress
the activation of SASP genes, by promoting H3K9/14 hypoacetylation at their promoters.
The genome-wide increase in H3K9/14ac observed in old mdx FAPs is in apparent conflict
with the increased HDAC activity. Likewise, the reduction of H3K9/14ac observed at
promoters of SASP genes in FAPs of late stage mdx mice exposed to TSA appears at odd with
the expected ability of HDACi to promote hyperacetylation. We argue that these paradoxical
effects are likely accounted by the ability of HDACi to target multiple acetylation-dependent
and independent events**>? as well as by the complexity of HDACi activity in vivo. Indeed,
the final outcome of the systemic exposure of FAPs to HDACi depends on both direct and
indirect effects, with the latter likely being generated by signals derived from other cell
types that are simultaneously exposed to HDACi. This is particularly relevant for
experiments that require long-term exposure to HDACI, as the treatment of mdx mice with
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TSA. Indeed, parallel RNAseq analysis of macrophages and MuSCs of mdx mice exposed to
TSA treatment also show dramatic changes in gene expression (SC, LT and PLP unpublished
data). Hence, it is likely that the overall effects of HDACi on genome-wide histone
acetylation and transcriptional output in mdx FAPs is determined by modulation of the
heterotypic interactions that FAPs establish with muscle-resident cell types. Conceivably,
the senescence-associated features observed in late-stages mdx FAPs might result from
functional interactions with other cell types implicated in DMD pathogenesis; in turn, FAP-
derived SASP can promote the survival or expansion of other cell types that contribute to
DMD progression. Therefore, the permanent cell cycle arrest and SASP observed in FAPs at
late stages of DMD should be considered as disease-associated features of senescence
induced by pathogenic signals released from DMD muscles, rather than conventional
features of cell-autonomous activation of cellular senescence. This contention is also
supported by the observation that cell cycle arrest and activation of SASP could be already
observed in FAPs of mdx mice older than 5 months, but could not be detected in FAPs of
aged (older than 2 years) wild type mice®%. Overall, the ability of HDACi to promote either
moderate and reversible activation of specific SASP genes in young mdx FAPs or global
repression of the SASP genes in old mdx FAPs appears a major determinant of the different
therapeutical effects of HDACi at early vs late stages of DMD progression. In particular, the
global repression of SASP genes by HDACi in old mdx FAPs might account for the resistance
to the pro-regenerative effects of HDACi observed at late stages of disease, but also
indicates that HDACi might retain anti-fibrotic and anti-inflammatory effects at late stages
of DMD. This therapeutic “trade off” is due to the general trend of old mdx FAPs toward a
resistance to HDACi-mediated activation of gene expression and release of other secretory
signals implicated in muscle regeneration (Fig. 5A and B), including release of pro-
regenerative EVs>®.

The differential effects of HDACi observed in young vs old mdx FAPs were associated
to their ability to activate cell cycle, glycolysis as well as Ox/Phos metabolism in young, but
not old, mdx FAPs. Dysfunctional mitochondrial metabolism has been previously reported in
mdx FAPs and correlates with an increased adipogenic potential>>. Although HDACi could
induce the expression of Ox/Phos genes in old mdx FAPs, this effect was not sufficient to
activate basal mitochondrial respiration and ATP production at the extent observed in
young mdx FAPs exposed to HDACi (Fig. 5 and Fig. S7). Given the intimate link between cell
cycle progression, mitochondrial activity, acetyl-coA metabolism and availability of acetyl
groups for histone acetylation®”**, it is possible HDACi-mediated activation of cell cycle and
mitochondrial activities in young mdx FAPs enable histone hyperacetylation at promoters of
genes required for pro-regenerative activities. Conversely, reduced availability of
mitochondria-derived acetyl-CoA in old mdx FAPs might limit their ability to respond to
HDACi with an increased hyperacetylation at gene promoters.

Nonetheless, the HDACi-mediated activation of Ox/Phos genes in old mdx FAPs and
repression of SASP genes could be functionally associated, by the suppression of oxidative
stress, as recently proposed in models of cellular senescence®.

Overall, our data provide evidence that cell cycle arrest and SASP are two senescence-
associated biological features that limit the response to HDACi in old mdx FAPs. However,
their pharmacological dissociation by HDACi (repression of SASP, without reactivation of cell
cycle) suggest that HDACi can exert anti-fibrotic and anti-inflammatory effects also at late
stages of DMD progression.
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Materials and Methods

Animals and in vivo treatments

Mice were bred, handled and maintained according to the standard animal facility
procedures and the internal Animal Research Ethical Committee according to the Italian
Ministry of Health approved experimental protocols and in agreement with the ethic
committee of the Fondazione Santa Lucia (FSL) approved protocols.

C57BI6 mdx mice were purchased from Jackson Laboratories. C57BI6 mdx mice at 1.5 and
12 months of age (respectively defined young and old mdx mice) were treated for 15 days
with daily intra peritoneal injections of Trichostatin A, TSA (0.6 mg/kg/day; #T8552, Sigma),
dissolved in saline solution or in saline alone as vehicle control (CTR).

For the migration assay, FAPs isolated from young or old mdx mice treated or not with TSA
were stained with PKH67-488 (#MINI-67, Sigma) immediately after isolation by FACS and
injected (20 pl at the concentration of 5000 cells/ul) in the proximal part of the
gastrocnemius from the foot-paw of young mdx mice. Mice were sacrificed 5 days post-
injection. Gastrocnemius was harvested and cut in half to obtain proximal and distal
sections from the injection site. PKH67-488" FAPs were detected by flow cytometry.

FACS isolation of FAPs

FAPs were isolated from C57BI6 mdx mice at the end of the treatments immediately after
the sacrifice. Hind limb muscles for each mouse were minced and put into a 15 ml tube
containing 4 ml of digest solution in HBSS (#24020-091,GIBCO) containing 2 mg/ml
Collagenase A (#10103586001, Roche), 2.4 U/ml Dispase |l (#04942078001, Roche), 10
ng/ml DNase | (#11284932001, Roche) for 90 min at 37°C. Cells were filtered through
100um, 70um and 40um cell strainers (#08-771-19, #08-771-2, #08-771-1, BD Falcon) and
resuspended in 0.5 ml of HBSS containing 0.2% w/v BSA and 1% v/v Penicillin—Streptomycin
for the staining of cell surface antigens 30 min on ice. The following antibodies were used:
CDA45-eFluor 450 (1:50, #48-0451-82, eBiosciences), CD31-eFluor 450 (1:50, #48-0311-82,
eBioscience), Ter119-eFluor 450 (1:50, #48-5921-82, eBiosciences), Itga7-649 (1:500, #67-
0010-01, AblLab) and Scal-FITC (1:50, 5981-82, eBioscience). Cells were finally washed and
resuspended in 1 ml of HBSS containing 0.2% w/v BSA and 1% v/v Penicillin-Streptomycin.
FAPs were isolated as Ter1197/CD45/CD317/ ltga7/Scal® cells using a Beckman Coulter
MoFlo Legacy high-speed cell sorter.

Flow cytometry analysis

Hind limb muscles were digested and the cells were stained with antibodies for cell surface
antigens as previously described in the FACS protocol. Then cells were fixed in 4%
Formaldehyde (30 min, RT) and washed in PBS. For cell cycle analysis, Propidium lodide (Pl)
DNA staining was performed (5ul of Pl and 2,5ul of RNAse in 500ul of PBS, 30 min at 37°C in
the dark). For apoptosis analysis, Click-iT® Plus TUNEL Assay (Alexa Fluor™ 594 dye,
C10618, Termofisher) was performed following manufacturer indications. For senescence
analysis, CellEvent™ Senescence Green Detection Kit (C10850, Termofisher) was used
following manufacturer indications. For cell cycle activation analysis, staining with Ki-67
PE/Cy7 (652426, Biolegend) was used. For migration assay, total FAPs were detected as
Scal-APC/Fire 750-positive cells (1:100, #108145, Biolegend) and injected FAPs were
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discriminated as PKH67-488" cells. Cell suspensions were acquired using a CytoFLEX LX flow
cytometer (Beckman Coulter) and data were analyzed using FlowJo software (BD
Biosciences).

HDAC enzymatic activity assay

HDAC activity was evaluated by using different fluorogenic substrates specific for class |,
class lla or Class I/llb HDACs”. The assay was performed as previously described®. Briefly,
freshly isolated FAPs were suspended in PBS (pH 7.4) containing 0.5% Triton X-100, 300 mM
NaCl and protease/phosphatase inhibitor cocktail (Thermo Fisher Scientific) and sonicated
prior to clarification by centrifugation. Protein concentrations were determined using a BCA
Protein Assay Kit (Thermo Fisher Scientific). Extracts were diluted into PBS buffer in 100 pl
total volumes in 96-well plate (8 pug FAPs protein/well). Substrates were added (5 pl of 1
mM DMSO stock solution), and the plates were returned to the 37°C incubator for 3 hours.
Then, developer/stop solution was added (50 pl per well of PBS with 1.5% Triton X-100, 3
UM TSA, and 0.75 mg/ml trypsin), with additional 20’ incubation at 37°C. To detect
fluorescent signal Glowmax (Promega) instrument with excitation and emission filters of
360 nm and 460 nm, respectively was used. Background signals from buffer blanks were
subtracted.

MitoSOX assay

Freshly isolated FAPs were plated in culture media (BIO-AMF-2, Biological Industries) at high
density (3,000 cells, in 96-well dishes). After 24 hrs FAPs were treated with MitoSOX reagent
(Red Mitochondrial Superoxide Indicator, Thermo Fisher, #M36008) and Hoecst 33342
solution (Thermo Fisher, # 62249) following the manufacturer protocols. Images were
acquired using Zeiss LSM 800 confocal microscope and quantified using Imagel software.

Real-time cell metabolic analysis

Mitochondrial function and glycolysis rate were determined using a Seahorse XF96e
Analyzer (Seahorse Bioscience - Agilent, Santa Clara CA, USA). FAPs, 10,000 per well, were
plated on cell tak (2 pug per well; Corning®) coated Seahorse 96-well utility plate, centrifuged
at 1100 rpm for 10 minutes at room temperature and held at 37 ° C in a CO,-free incubator
for 45 minutes prior to testing.

Mitochondrial function was assessed through a Cell Mito Stress test. Growth medium was
replaced with XF test medium (Eagle's modified Dulbecco's medium, 0 mM glucose, pH=7.4;
Agilent Seahorse) supplemented with 1 mM pyruvate, 10 mM glucose and 2 mM L-
glutamine. The test was performed by measuring at first the baseline oxygen consumption
rate (OCR), followed by sequential OCR measurements after injection of oligomycin (1 uM),
carbonyl cyanide 4- (trifluoromethoxy) phenylhydrazone (1 uM) and Rotenone (0,5 uM) +
Antimycin A (0,5 uM) to obtain the key parameters of the mitochondrial function including
basal respiration and ATP-linked respiration.

The rate of glycolysis was determined by measuring the rate of extracellular acidification
(ECAR). Cells were cultured and pretreated as previously described. The growth medium
was replaced with XF test medium (Eagle's modified Dulbecco's medium, 0 mM glucose,
pH=7.4; Agilent Seahorse) supplemented with L-glutamine (1 mM). ECAR was repeatedly
evaluated after the injection of glucose (10 mM), oligomycin (1 uM) and 2D Glucose (50mM)
respectively, in each well.
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XF96 data were calculated using the algorithm described and used by the Seahorse
software package.

Histology and immunofluorescence

Tibialis anterior muscles were snap frozen in liquid nitrogen-cooled isopentane and
then cut transversally with a thickness of 8 um. For immunofluorescence analysis, cryo-
sections were fixed in 4% PFA for 10 min and permeabilized with 0,25% Triton for 15 min at
RT. Muscle sections were blocked for 1h with a solution containing 4% BSA (#A7030, Sigma)
in PBS and then incubated with primary antibodies O.N. at 4°C. Antibody binding was
revealed using secondary antibodies coupled to Alexa Fluor 488, 594, or 647 (Invitrogen).
Sections were incubated 5 min with DAPI in PBS for nuclear staining, washed in PBS, and
mounted with glycerol 3:1 in PBS. The primary antibodies used for immunofluorescences
are: rabbit anti-Laminin (1:400, L9393, Sigma), rabbit anti-Phospho-NFkB p65 (1:1000, 3033,
Cell Signalling,), rabbit anti-Phospho-p38 MAPK (1:1000, 4511, Cell Signalling), rabbit anti-
Phospho-Smad2 (Ser465/467)/Smad3 (Ser423/425) (1:1000, 8828, Cell Signalling).

RNA-seq sample preparation

FAPs were isolated by FACS from 6 C57BI6J mdx male mice for each experimental condition.
RNA was collected using Trizol reagent (#T9424, Sigma) and 1 ug (100 ng/ul) were sent in
duplicate to IGA (Istituto di Genomica Applicata, Udine) for RNA sequencing using Illumina
TruSeq Stranded Total RNA kit Ribo-Zero GOLD on lllumina Hiseq2500 platform.

RNA-seq validation

Total RNA was extracted from freshly isolated FAPs using Trizol and 0.5-1mg were retro-
transcribed using the Tagman reverse transcription kit (Applied Biosystems). Real time
quantitative PCR(RT-qPCR) was performed to analyse relative gene expression levels using
SYBR Green Master mix (Applied Biosystems) following manufacturer indications. Relative
expression values were normalized to the housekeeping gene GAPDH.

Primers sequences are as follow:

CCNA2:
Fwd: GTCCTTGCTTTTGACTTGGC
Rev: ACGGGTCAGCATCTATCAAAC

CDK1:
Fwd: TGCAGGACTACAAGAACACC
Rev: GCCATTTTGCCAGAGATTCG

CDK4:
Fwd: ACAAGTAATGGGACCGTCAAG
Rev: GGGTGTTGCGTATGTAGACTG

CHEK2:
Fwd: CTGAGGACCAAGAACCTGAAG
Rev: CCATCGAAGCAATATTCACAGC
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COX6C:
Fwd: TGCGGGTTCATATTGCTGG
Rev: CAGCCTTCCTCATCTCTTCG

CYCs:
Fwd: CCAAATCTCCACGGTCTGTTC
Rev: ATCAGGGTATCCTCTCCCCAG

E2F1:
Fwd: TCTCTTTGACTGTGACTTTGGG
Rev: TCGTGCTATTCCAATGAGGC

GAPDH:
Fwd: CACCATCTTCCAGGAGCGAG
Rev: CCTTCTCCATGGTGGTGAAGAC

HIST1H2AE:
Fwd: CACATCAGCTTTTCCACTTCCA
Rev: GTCCAGACATTGACGCAAGAAG

NDUFA4:
Fwd: TGCGCTTGGCACTGTTTAATC
Rev: AGTCTGGGCCTTCTTTCTTCA

SMAD3:
Fwd: CCGAGAACACTAACTTCCCTG
Rev: CATCTTCACTCAGGTAGCCAG

TGFBI:
Fwd: AACCGACCACAAGAACGAG
Rev: GCTTCATCCTCTCCAGTAACC

TGFB1:
Fwd: CCTGAGTGGCTGTCTTTTGA
Rev: CGTGGAGTTTGTTATCTTTGCTG

TGFB2:
Fwd: TGCTAACTTCTGTGCTGGG
Rev: GCTTCGGGATTTATGGTGTTG

TNFRSF1B

Fwd: ACTCCAAGCATCCTTACATCG
Rev: TTCACCAGTCCTAACATCAGC

RNA-seq analysis
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RNA sequencing analysis was performed mapping more than 20 millions of reads for each
sample to the Mus Musculus GRCm38.78 genome using TopHat 2.0.9. Read count was
performed with HTSeq-0.6.1p1. Mapped reads were analyzed with R-studio (R version 3.5.2)
using DESeq?2 to obtain differentially expressed (DE) genes with normalized RPKM, p-value,
p-adjusted and log2fold change values. Genes were considered differentially expressed for
p-adjusted < 0.1.

DE genes were visualized by Heatmap, MA plots (generated with DESeq2) and Violin plot
(generated with Prism 8.0).

Deseq?2 differential genes were analysed for overlap between datasets using the Intervene
tool with default parameters. The matrix of overlaps was generated in R 3.5.2 and uploaded
in the intervene shiny app (https://asntech.shinyapps.io/intervene/) and the Upset graph
was generated.

Clusters were manually curated from the total RNA-seq heatmap. For gene ontology DE
genes (p-adj<0.1) were uploaded in https://david.ncifcrf.gov and the most relevant GO
terms were manually selected. Results were processed in the R package GOplot for the
bubble plots. The associated gene expression heatmap was generated by manually selecting
the most relevant genes for each biological category from David Gene Ontology. Heatmaps
and histograms were generated in Graphpad prism 8.0.

QIAGEN Ingenuity Pathway Analysis (IPA) was performed as comparative analysis of the
multiple experimental groups filtering DE genes for p-adj<0.1. A selection of significant
canonical pathways (p-value<0.1) was shown as heatmap generated in Graphpad prism 8.0.
Gene set enrichment analysis (GSEA) was performed using genes H3K9/14 hyper-acetylated
in old versus young mdx FAPs. Weighted statistic was used to reveal significant enrichment
of SASP genes. A list of SASP transcripts was developed and compiled from several sources
studying senescence®” *°,

ChIP-seq sample preparation

FAPs were freshly isolated by FACS from 10 C57BI6) mdx male mice for each experimental
condition. DNA was double-crosslinked to proteins with 37% formaldehyde (Sigma) at a final
concentration of 1%. After incubation for 10 min, glycine was added to give a final
concentration of 0.125 M for 5 min. Cells were washed twice with PBS and resuspended in
Nuclei Lysis buffer (50Mm tris HCL pH 8.1; 10mM EDTA; 1%SDS and protease inhibitors) for
1 hr at +4°C. Chromatin was sonicated to obtain fragments of around 200-300 bp and then
diluted 1:10 in IP Dilution buffer (0.01%SDS; 1.1% TritonX 100; 1.2mM EDTA; 16.7mM
TrisHCI pH 8.1; 167mM NaCl). Chromatin extracts were immunoprecipitated overnight on
rotating platform at 4°C with H3K27ac and H3K9/14ac antibodies. For each
immunoprecipitation, 10 ul of antibody were used for 100ug of chromatin. Antibody-bound
chromatin was incubated with 50 ul of magnetic beads (G-protein magnetic Beads,
Invitrogen) 2 hrs on rotating platform at 4°C. Chromatin was washed twice with Low Salt
buffer (0.1% SDS, 1% Triton, 2mM EDTA; 20mM Tris pH8, 150mM NaCl), High Salt buffer
(0.1% SDS, 1% Triton, 2mM EDTA; 20mM Tris pH8, 500mM NacCl), Lithium Buffer (0.25M
LiCl; 1%NP40; 1% deoxycholate; 1ImM EDTA; 10mM Trish pH8) and TE. Bound DNA
fragments were eluted in IP Elution Buffer (1%SDS; 1mM EDTA; 10mM Trish pH8) at 65°C for
15 minutes and the crosslink was reversed by incubation at 65°C overnight. Proteins were
enzymatically digested with proteinase K, 2 hours at 37°C, and finally DNA was extracted
with phenol chloroform. ChIP-seq samples were sent to IGA (Istituto di Genomica Applicata,
Udine) for ChIP-sequencing on lllumina Hiseq2500 platform.
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ChiP-seq validation

ChlP assay was performed on freshly isolated FAPs following the same protocol for ChIP-seq
sample preparation. Real time quantitative PCR (RT-qPCR) was performed using SYBR Green
Master mix (Applied Biosystems) following manufacturer indications. Acetylation levels
were normalized as percentage of input. Normal rabbit I1gG (Santa Cruz Biotechnology) was
used as a negative control.

Primers sequences are as follow:

CCNA2:
Fwd: GCCCTATTACCCGTCGAGTC
Rev: GTCAACCCCGAAAAACTGGC

CDK1:
Fwd: GTGAGCCTTGCCCTTCCATAA
Rev: TACCTGAGCCTGGGGACACTA

CDK4:
Fwd: GTCTATGGTCTGGCCCGAAG
Rev: CCGATCCTGGATGAGACTGC

CHEK2:
Fwd: CTCTCCGTCTCAGGAAAACTC
Rev: TTCAGCCTCATGAACTGGTAC

COX6C:
Fwd: ACGTGCAAGACATCCTAGTTC
Rev: GGTGTAGAGGTGAGAATGGTG

CYCs:
Fwd: TGATCCTAAGTGCTTCCGCC
Rev: TCTGGGAGGGTGGGTTTGTA

E2F1:
Fwd: CCCGAAGATGTCTCTAACAGTC
Rev: GGCACCAAATTCCCAATTCTG

HIST1H2AE:
Fwd: TAAAAGGCCAGACGAGAAGCT
Rev: GGAAATGAGATGTGGGAGAAGC

NDUFA4:
Fwd: AGACCGTGAACTTACGCTGG
Rev: GGAGGTCCTGGGTGACTTTG
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SMAD3:
Fwd: AAAGGTTCCACATCTCAGACG
Rev: GGAAAGCAGACAAAGGAAAGTG

TGFB1:
Fwd: GGGTCGTGAGATGGAGAGAAAA
Rev: CCAACAACGTCGCTTTCCTTT

TGFB2:
Fwd: CAGCTCGGTCCTTCAGATCC
Rev: GCGAGAAAGTGCAACCTTGG

TGFBI:
Fwd: CAGAGTCAGACAAAAGTGCATG
Rev: CTGGTTTTCCCCTCTATGGTAG

TNFRSF1B:
Fwd: GCTCAGTGCCCAAAGACCTAT
Rev: AGGGGAGTAGAGTGGAAGGTG

ChiIP-seq analysis

ChIP-seq reads were aligned to the genome using bowtie-0.12.7 alignment software.
Duplicated reads were removed using samtools1.3. Regions of H3K9/14ac and H3K27ac
occupancy were determined using macs2 with a FDR < 0.001 and an ExtSize of 147. Input
DNA of each sample was used as the control of the Peak Calling. BlackList regions of the
murine genome (ENCFF547MET.bed) were excluded using bedtools software. Significant
peaks revealed by macs 2 were further filtered using a threshold of macs_score > 100. Peaks
were then processed with Homer to have more than 80 tags. ChlIP-seq signal was visualized
using NGSplot (heatmaps and average plots) and ChIP-Seeker (genomic distribution).
For differential peak calling, a BedSum file, containing the regions to compare, was
generated merging and sorting the two bed files of the samples of interest using bedtools.
The same bed files were processed in tagDir using the Homer makeTagDirectory command.
Differentially acetylated regions were generated comparing the BedSum file to either tagDir
using Homer getDifferentialPeaks command with a fold change greater than 1.1.

Homer differential peaks were analysed for overlapping regions using the Intervene tool
with default parameters. The matrix of overlaps was uploaded in the intervene shiny app
(https://asntech.shinyapps.io/intervene/) and the Upset graph was generated.

For integration of differential ChIP-seq peaks with RNAseq, bed files generated by Homer or
Intervene were intersected with a bed file containing all the promoter locations of mm10
using BedTools intersect. Peaks on the promoters were filtered in R 3.5.2 with transcripts
significantly modulated (Padj < 0.1) by RNA-seq.

Bed files of differential ChIP-seq peaks and RNAseq were analysed for overlapping regions
using the Intervene tool with default parameters. The matrix of overlaps was uploaded in
the intervene shiny app (https://asntech.shinyapps.io/intervene/) and the Upset graph was
generated. For the visualization of the genes of interest, ChIP and RNA-seq bam files were
uploaded in IGV and the graphic was normalized with the group auto scale option. Coverage
signal was used for ChlIP-seq and FPKM value was used for RNA-seq.
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Statistical analysis

The number of independent experimental replications and precision measures are reported
in the figure legends (n, mean + sem). Comparisons between two groups were made using
the student’s t-test assuming a two-tailed distribution, with significance being defined as
*/+p<0.05,' **/Hp<0.01; ***”Hp<0.001; ****/Hﬁp<0.0001. Comparisons between three or more
groups were made using one-way ANOVA with significance being defined as *p<0.05;
"p<0.01; *p<0.001; *p<0.0001. Statistical analysis was conducted in PRISM 8.0
(GraphPad Software).

Significant ChIP-seq peaks were filtered for FDR < 0.001. Significant DE genes in the RNA-seq
were filtered for padj<0.1.
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Figure 1. Differential patterns of HDAC activity and gene expression in FAPs during DMD
progression and treatment with HDACi. YC: young mdx FAPs; YT: young mdx FAPs in vivo
treated with TSA for 15 days; OC: old mdx FAPs; OT: old mdx FAPs in vivo treated with TSA
for 15 days. A) Graphs showing the enzymatic activity of class | (left panel), class Ila (middle
panel) and class I/Ilb (right panel) HDACs performed in FAPs isolated from young and old
mdx mice treated or not with TSA. Data are represented as average + SEM (n=4). " p <0.01,
o p <£0.0001, against YC by t-test; A p < 0.0001 against OC by t-test; *** p<0.0001 by one
way ANOVA. B) Cartoon illustrating the experimental strategy. Mdx mice at 1.5 months
(young) and 12 months (old) of age were treated with TSA or its vehicle of control for 15
days. At the end of the treatment FAPs were isolated by FACS from hindlimb muscles to
perform H3K9/14ac and H3K27ac ChlIP-seq and RNA-seq. C) Heatmap for H3K9/14ac ChlIP-
seq signal in the experimental conditions described in B). D) NGS plot showing H3K9/14ac
comparative patterns in the experimental conditions described in B). E) Heatmap for
H3K27ac ChiIP-seq signal in the experimental conditions described in B). F) NGS plot showing
H3K27ac comparative patterns in the experimental conditions described in B). G) Upset
graph showing the intersection size (in black) between the differentially acetylated loci for
H3K9/14ac (in blue) in the experimental conditions described in B). The top 10 intersections
are shown. H) Upset graph showing the intersection size (in black) between the
differentially acetylated loci for H3K27ac (in blue) in the experimental conditions described
in B). The top 10 intersections are shown. 1) Heatmap showing 2 clusters of DE genes
identified across all the experimental conditions described in B). Gene expression is
represented as z-score calculated across the rows. J) Gene Ontology performed on cluster 1
(left panel) and cluster 2 (right panel) genes. K) Heatmap showing the differential expression
levels by log2 fold change for representative genes of cluster 1 (top panel) and cluster 2
(bottom panel).


https://doi.org/10.1101/2021.04.26.441412
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441412; this version posted April 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 2
A 0 30 B
.......... — Smad3 i
ChiPseq_Jo-30] Smads RNAseq | 41 61 Tofb 25, 19P2
HaKo/4ac YCl FPKM YC
3K/ a0 OCLsulaitmah o shotsobbibity b || FPKMOC cal < c 207
0 5 £,
ChiP-seq |o-18] Tamrm RNAseq 2 %4 215 4
© o ©
HaKg/14ac YOl FPKM YC g2 & £
o o -
iswortane OCl, o s MM, ik o s & sesses| [ FPRMOC ° ® g 101
£ 221 2
< , o X}
ChiP-seq |0-27] Tan2 RNA-seq K 1 ® €05
K9/ 4ac YC FPKM YC
Hakortdac OCl . adbodiile bbb, . || FPkmoc 0 00

YC OC YC OC YC oC

D C
S:nescenf:f Associated Secretory Phenotype Smad3 Tgbi Tgfbo2
g 03] N 10, 154 15+
8§ 02f
E 0.1} . o 8 .
£ 9 - ik 6 104 T 10
z 0.1 Tee 3 5 E] E]
w @ 2 a a
5 El £, £ £
! o
- ‘ ‘ e = Fg | 5 |
£ E
% 4 "oc Yc E 2 -
£ & @ 0 0] 0
S 4 YC oc YC oc YC oc
0 1000 2000 3000 W H3K9/14ac
Rank in Ordered Dataset OlgG
F
E E2f1 Cdk4 Chek2
0 3 157 157 1.5
ChiPseq 028~ ———r1 RNA-si )
H3K27ac YC FPKM YC 5 5 §
H3K27ac OC aae b . || FPKMOC %1-0 . 21.01 @ 1.01
S 0 100 - g s
ChiP-seq |(023]  caka v e | [ s gog 3 3 H
H3K27ac YC FPKM YC 205 205 2 05l
[HoKo7acOC e n  sbieesdoan.. o || FPKMOC 3 3 3 :
0 4 4 4 o
ChiPseq o024, ™ Chekc ™| RNAseq 00 00
H3K27ac YC FPKM YC 0- YC oc “Yc oc “Yc oc
H3K27ac OC A FPKM OC
G E2f1 Cdk4 Chek2
H 259 3, 15
] YC oc
500- 50 40 10
] © = s =
4004 40 % a2 g
£ 300+ 30 + =2 205
. 820 =
200 20 18.4 2
1004 10 ] 0.0
1 YC oc YC oc YC [ele;
0 n 3 ] — 5 04— r
0 10 10 0 10 10 YC oOC M H3K27ac
Propidium iodide (Ply Oige
J
I 80
108 1084, £60 E
s} " w
E +
e +
= [10% 104 g4o !
& g
b S
10°% 10° 20
0 0
— SN — 0 T T
0 104105 107 o 10%10%5 107 YC OC
Tunel 594

B-Gal FITC

Figure 2: Comparative analysis of FAPs from young and old mdx mice reveals features of
cellular senescence during disease progression. YC: young mdx FAPs; OC: old mdx FAPs. A)
Acetylation tracks for H3K9/14ac ChIP-seq (on the left) and corresponding FPKM values by
RNA-seq (on the right) for representative genes in young and old mdx FAPs; B) Graphs
showing RNA levels for the representative genes showed in A) measured by qPCR; C) Graphs
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showing the H3K9/14 acetylation levels for the representative genes showed in A)
measured by ChIP-qPCR. D) GSEA enrichment plot of young and old mdx FAPs gene
expression profile against the gene list of the Senescence Associated Secretory Phenotype.
E) Acetylation tracks for H3K27ac ChIP-seq (on the right) and corresponding FPKM values by
RNA-seq (on the left) for representative genes in young and old mdx FAPs; F) Graphs
showing RNA levels for the representative genes showed in E) measured by qPCR; G) Graphs
showing the H3K27 acetylation levels for the representative genes showed in E) measured
by ChIP-gqPCR. H) Flow cytometry analysis of Propidium lodide (Pl) incorporation to assess
the percentage of young and old mdx FAPs in S/G2 phases. Representative plots of Pl
fluorescence distribution (left panel) and box plot showing the percentage of young and old
mdx FAPs in S/G2 (right panel) are shown. 1) Flow cytometry-based Tunel assay to monitor
apoptosis in young and old mdx FAPs. Representative dots of Tunel-594 fluorescence (left
panel) and box plot showing the percentage of Tunel-594" FAPs (right panel) are shown. J)
Flow cytometry analysis of B-Gal staining in young and old mdx FAPs compared to late
passage IMR90 senescent cells (CTR).

Data are represented as average + SEM (n=3 for B, C, F and G; n=4 for H-J). *p<0.05,
"p<0.01, p<0.001, 'p<0.0001 by t-test.
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Figure 3. HDACi reduce SASP activation in old mdx FAPs. YC: young mdx FAPs; YT: young
mdx FAPs in vivo treated with TSA for 15 days; OC: old mdx FAPs; OT: old mdx FAPs in vivo
treated with TSA for 15 days. A) Acetylation tracks for H3K9/14ac and H3K27ac ChIP-seq (on
the left) and corresponding FPKM values by RNA-seq (on the right) for representative genes
in young and old mdx FAPs treated or not with TSA; B) Graphs showing RNA levels for the
representative genes showed in A) measured by gPCR; C) Graphs showing the H3K9/14
acetylation levels for the representative genes showed in A) measured by ChIP-gPCR. D)
Representative images of the phospho-NFkB staining in FAPs (pNFkB-p65 in red/CD90 in
green/Laminin in grey/DAPI in blue) on tibialis anterior muscle transversal section of young
and old mdx mice treated or not with TSA; Scale bar = 25 um; E) Box plot showing the
percentage of pNFkB-p65 positive FAPs in the staining shown in D). F) Representative
images of the phospho-p38 staining in FAPs (pP38 in red/CD90 in green/Laminin in
grey/DAPI in blue) on tibialis anterior muscle transversal sections of young and old mdx
mice treated or not with TSA. Scale bar = 25 um; G) Box plot showing the percentage of
pP38 positive FAPs in the staining shown in F). H) Representative images of the phospho-
SMAD?2/3 staining in FAPs (pSMAD2/3 in red/CD90 in green/Laminin in grey/DAPI in blue)
on tibialis anterior muscle transversal sections of young and old mdx mice treated or not
with TSA. Scale bar = 25 um; 1) Box plot showing the percentage of pPSMAD2/3 positive FAPs
in the staining shown in H).

Data are represented as average + SEM (n=3); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
against young mdx FAPs by t-test; +p<0.05, H*p<0.001, HHp<0.0001 against old mdx FAPs by
t-test; *p<0.05, *p<0.01, *** p<0.0001 by one way ANOVA.
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Figure 4. FAPs from old mdx mice develop resistance to HDACi-mediated activation of cell
cycle. YC: young mdx FAPs; YT: young mdx FAPs in vivo treated with TSA for 15 days; OC: old
mdx FAPs; OT: old mdx FAPs in vivo treated with TSA for 15 days. A) Acetylation tracks for
H3K9/14ac and H3K27ac ChlP-seq (on the left) and corresponding FPKM values by RNA-seq
(on the right) for representative genes in young and old mdx FAPs treated or not with TSA;
B) Graphs showing RNA levels for the representative genes showed in A) measured by qPCR;
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C) Graphs showing the H3K9/14 acetylation levels for the representative genes showed in A)
measured by ChIP-gqPCR. D) Representative dot-plots of the flow cytometry analysis of KI-67
PE-Cy7 to monitor proliferating FAPs in young and old mdx FAPs treated or not with TSA; E)
Box plot showing the percentage of KI-67* FAPs analysed in D). F) Box plot showing the total
number of FAPs in the same experimental conditions described in D). G) Representative dot-
plots showing the flow cytometry analysis of FAP migration assay. Young and old mdx FAPs
with or without TSA treatment were labelled with PKH67-488 and analysed in the proximal
(top panel) and distal (bottom panel) sections from the injection site in young mdx mice. H)
Stacked bar chart showing the relative percentage of PKH67-488" FAPs detected in the
proximal (blue) and the distal (red) sections for the same experimental conditions described
in G). 1) Histogram showing the level of glycolysis measured by Seahorse as extracellular
acidification rate (ECAR) after glucose administration to young and old mdx FAPs treated or
not with TSA.

Data are represented as average + SEM (n=3 for B and C; n=4 for D-I). *p<0.05, **p<0.01,
""p<0.001 , " p<0.0001 against young mdx FAPs by t-test; *p<0.01, **p<0.001,
###%5<0.0001 by one way ANOVA.
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Figure 5. HDACi promotes oxidative phosphorylation in old mdx FAPs. YC: young mdx
FAPs; YT: young mdx FAPs in vivo treated with TSA for 15 days; OC: old mdx FAPs; OT: old
mdx FAPs in vivo treated with TSA for 15 days (OT). A) Bubble plots showing the Gene
Ontology analysis of RNA-seq performed by DAVID in young mdx FAPs treated or not with
TSA (left panel), young and old untreated mdx FAPs (middle panel) and old mdx FAPs
treated or not with TSA (right panel). The size of the bubbles accounts for the number of
genes found to be involved in the GO terms. B) Heatmap showing a selection of canonical
pathways predicted by IPA in a comparative analysis of young and old mdx FAPs treated or
not with TSA. C) Acetylation tracks for H3K9/14ac and H3K27ac ChlIP-seq (on the left) and
corresponding FPKM values by RNA-seq (on the right) for representative genes in young and
old mdx FAPs treated or not with TSA; D) Graphs showing RNA levels for the representative
genes showed in C) measured by qPCR; E) Graphs showing the H3K27 acetylation levels for
the representative genes showed in C) measured by ChIP-gPCR.

Data are represented as average + SEM (n=3). *p<0.05, **p<0.01, ***p<0.001, against young
mdx FAPs by t-test; +p<0.001, H*p<0.001, HHp<0.0001 against old mdx FAPs by t-test;
#p<0.05, "p<0.01, **p<0.0001 via one way ANOVA.
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Supp. Figure 1. ChIP-seq genomic distribution. A) Graph showing the genomic distribution
in term of percentage of the H3K9/14ac and H3K27ac ChlIP-seq signal. On the bottom, the
colorimetric legend of the features is shown.
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Supp. Figure 2. Differentially expressed genes in FAPs during disease progression and
HDACIi treatment. YC: young mdx FAPs; YT: young mdx FAPs in vivo treated with TSA for 15
days; OC: old mdx FAPs; OT: old mdx FAPs in vivo treated with TSA for 15 days (OT). A) Mean
Average Plot showing the differentially expressed genes (dots, in red for padj<0.1) in the
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RNA-seq comparative analysis by DESEg2of young mdx FAPs treated or not with TSA (left
panel), young and old mdx FAPs (middle panel) old mdx FAPs treated or not with TSA (right
panel). B) Violin plot showing the distribution of the log, fold change in the same analysis
shown in A). C) Upset graph showing the intersection size (in black) between the
differentially expressed genes (in blue) in the same experimental conditions described in A).
The top 14 intersections are shown.
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Supp. Figure 3. Cluster 1 and 2 gene list. YC: young mdx FAPs; YT: young mdx FAPs in vivo
treated with TSA for 15 days; OC: old mdx FAPs; OT: old mdx FAPs in vivo treated with TSA
for 15 days (OT). A) Heatmap showing the name of cluster 1 and cluster 2 DE genes. Gene
expression is represented as z-score calculated across the experimental conditions.
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Supp. Figure 4. ChIP and RNA-seq integration in old mdx FAPs. YC: young mdx FAPs; OC:
old mdx FAPs. A) Graph showing the percentage of genes found in the integration between
differentially expressed (RNA-seq) and differentialy acetylated (ChlIP-seq) genes in the
comparison between young and old mdx mice. B) Gene Ontology performed on genes both
hyper-acetylated in H3K9/14 and up-regulated in old mdx FAPs versus young mdx FAPs. C)
Gene Ontology performed on genes both hypo-acetylated in H3K27 and down-regulated in
in old mdx FAPs versus young mdx FAPs.
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Supp. Figure 5. Acetylation and expression profile of SASP genes. YC: young mdx FAPs; YT:
young mdx FAPs in vivo treated with TSA for 15 days; OC: old mdx FAPs; OT: old mdx FAPs in
vivo treated with TSA for 15 days (OT). A) Acetylation tracks for H3K9/14ac and H3K27ac
ChlP-seq (on the left) and corresponding FPKM values by RNA-seq (on the right) for
representative genes involved in SASP.
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Supp. Figure 6. Acetylation and expression profile of cell cycle genes. YC: young mdx FAPs;
YT: young mdx FAPs in vivo treated with TSA for 15 days; OC: old mdx FAPs; OT: old mdx
FAPs in vivo treated with TSA for 15 days (OT). A) Acetylation tracks for H3K9/14ac and
H3K27ac ChIP-seq (on the left) and corresponding FPKM values by RNA-seq (on the right) for

representative genes involved in cell cycle activation.
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Supp. Figure 7. Acetylation and expression profile of genes involved in mitochondrial
function. YC: young mdx FAPs; YT: young mdx FAPs in vivo treated with TSA for 15 days; OC:
old mdx FAPs; OT: old mdx FAPs in vivo treated with TSA for 15 days (OT). A) Heatmap
showing the name of cluster 3 DE genes. Gene expression is represented as z-score
calculated across the experimental conditions. B) Gene Ontology performed on cluster
cluster 3 DE genes. C) Acetylation tracks for H3K9/14ac and H3K27ac ChIP-seq (on the left)
and corresponding FPKM values by RNA-seq (on the right) for representative genes involved
in mithocondrial function. D) Graphs showing the Basal Respiration measured as oxygen
consumption rate (OCR) by Seahorse in young and old mdx FAPs treated or not with TSA. E)
Graphs showing the levels of ATP production measured as OCR after oligomycin
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administration by Seahorse in the same experimental points described in D). F)
Representative images of the Mitosox staining (red mitochondrial superoxide indicator) in
young and old mdx FAPs treated or not with TSA. Nuclei were counterstained with Hoechst
33342 (Hoechst, in blue); Scale bar = 25 um; G) Box plot showing the quantification of the
red Mitosox staining in the same experimental conditions described in H).

Data are represented as average + SEM (n=3). *p<0.05, ***p<0.001, ****p<0.0001 against
young mdx FAPs by t-test; +p<0.001, +Hp<0.001 against old mdx FAPs by t-test; **p<0.001,
###%5<0.0001 via one way ANOVA.
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