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Abstract

The human brain vasculature is of vast medical importance: its dysfunction causes disability and
death, and the specialized structure it forms—the blood-brain barrier—impedes treatment of
nearly all brain disorders. Yet, no molecular atlas of the human brain vasculature exists. Here,
we develop Vessel Isolation and Nuclei Extraction for Sequencing (VINE-seq) to profile the
major human brain vascular and perivascular cell types through 143,793 single-nucleus
transcriptomes from 25 hippocampus and cortex samples of 17 control and Alzheimer’s disease
(AD) patients. We identify brain region-enriched pathways and genes divergent between
humans and mice, including those involved in disease. We describe the principles of human
arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell
continuum; but discover that many zonation and cell-type markers differ between species. We
discover two subtypes of human pericytes, marked by solute transport and extracellular matrix
(ECM) organization; and define perivascular versus meningeal fibroblast specialization. In AD,
we observe a selective vulnerability of ECM-maintaining pericytes and gene expression patterns
implicating dysregulated blood flow. With an expanded survey of brain cell types, we find that 30
of the top 45 AD GWAS genes are expressed in the human brain vasculature, confirmed in situ.
Vascular GWAS genes map to endothelial protein transport, adaptive immune, and ECM
pathways. Many are microglia-specific in mice, suggesting an evolutionary transfer of AD risk to
human vascular cells. Our work unravels the molecular basis of the human brain vasculature,

informing our understanding of overall brain health, disease, and therapy.
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Main Text

Brain health depends on brain vascular health. The brain is one of the most highly
perfused organs in the body, necessary to meet its unique metabolic needs'. Brain vascular
dysfunction is a major contributor to stroke, the second leading cause of death worldwide®™.
Dysfunction causes serious long-term disability: vascular-specific genes are mutated in
congenital neurological disorders®® and age-related vascular impairments are increasingly
appreciated in neurodegenerative disease’''. The brain vasculature moreover forms a special
structure, the blood-brain barrier (BBB), that mediates selective movement of molecules

12—

between the blood and the brain'*'°. While necessary for optimal neuronal function'®'’, the

15,18,19

BBB frustrates the pharmacological treatment of nearly all brain disorders , and extensive

efforts are underway to identify targets on the BBB for enhanced drug delivery?®2. These brain
vascular properties arise from a complex ecosystem of cells and their interactions'”23:24;
endothelial cells, adjacent mural smooth muscle cells and pericytes, perivascular immune cells,
and surrounding astrocytes that differ across brain regions and vary along an arteriovenous
gradient'*?>%_ Heterogeneity along this gradient produces functionally segmented circulatory,
metabolic, and permeability properties®?’.

Recent studies have characterized the cellular heterogeneity of the human brain in
health and disease using single-nucleus RNA sequencing (snRNA-seq)?**. They have
elucidated cell type-specific perturbations in multiple sclerosis, autism, and Alzheimer’s disease;
pinpointed which cell types express risk genes identified in genome-wide association studies

(GWAS); and nominated biological pathways for further study. Yet, though vascular cell

34,35 34,36)

density is estimated at 70,000 cells/mm? (approaching total glia density , such studies, to
our knowledge, have mostly lost these cells during the isolation process for unknown reasons.
Pioneering work has profiled the mouse brain vasculature®~*?, but it remains unclear how
conserved these findings are in humans, given the approximately 96 million years of
evolutionary divergence®. Indeed, recent studies have documented species-specific pathways
in microglia, notably in disease GWAS loci**; and recent attempts to advance brain-penetrant
AAVs into the clinic have stalled because of mouse-specific expression of the cognate
endothelial receptor LYBA***". Moreover, mouse brain vascular sequencing studies so far have
been limited to the non-diseased setting and without regard to brain region heterogeneity.
Given the scientific, medical, and pharmacological importance of the human brain
vasculature, we set out to systematically characterize the principal vascular cell types in both

the hippocampus and cortex of control and AD patients.
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Cells of the human brain vasculature
We hypothesized that unlike parenchymal nuclei, vascular cells and nuclei remain
entombed in the basement membranes of blood vessels after typical dounce homogenization

28-3348-52 Such vessel fragments are

and processing of frozen brain tissue for snRNA-seq
caught on strainers prior to droplet capture, and vessel fragments that do pass through can yield
doublet or hybrid nuclei resulting in unreliable or artificial clusters upon analysis. Thus, we set
out to develop methods to first physically isolate brain vessels and then extract discrete nuclei
from them. Specifically, after density centrifugation®® and strainer capture®, we tested various
enzymatic (e.g., papain, collagenase, trypsin), chemical (e.g., osmolarity, detergents), and
physical (e.g., sonication, TissueRuptor) approaches to liberate nuclei. Nearly all resulted in
nuclei damage or nuclei devoid of RNA reads. We finally found success adapting a gentle
protocol for splenocyte isolation®® (Methods)—and combined it with extensive sucrose and
FACS-based cleanup to ensure high-quality data (Fig. 1a, Supplemental Fig. 1).

With our new method, which we call VINE-seq (Vessel Isolation and Nuclei Extraction for
Sequencing), we processed 25 samples: the hippocampus of 9 AD and 8 age- and sex-matched
controls, as well as the superior frontal cortex from a subset of 8 patients (4 samples per group,
Supplemental Table 1). Samples included a range of APOE genotypes (E3/3, E3/4, E4/4). After
quality-control (Methods), we obtained 143,793 single nucleus transcriptomes. Visualization in
uniform manifold approximation and projection (UMAP) space separated nuclei into distinct
clusters, which we mapped to 15 major cell types (Fig. 1b), including all known vascular and
perivascular cell types, many not captured before from human brains: endothelial cells (arterial,
capillary, venous), smooth muscle cells, pericytes, astrocytes, perivascular macrophages, T
cells, and both perivascular and meningeal fibroblasts. The number of cerebrovascular nuclei
captured here exceed those in the literature by at least several hundred-fold (Fig. 1b,
Supplemental Fig. 2). Canonical markers used to identify cell types (Supplemental Fig. 3-4,
Supplemental Table 2) were validated for their predicted vascular localization in situ (Fig. 1c).
Expression levels for each gene across cell types are available to browse at https://twc-
stanford.shinyapps.io/human_bbb.

The distributions of cell types differed between the hippocampus and frontal cortex (Fig.
1d). Astrocyte and oligodendrocyte progenitor cell (OPC) frequencies were higher in the
hippocampus, recapitulating prior cell density studies®***°. Amongst all cell types, astrocyte
transcriptional identity was the most influenced by brain region, forming distinct hippocampus-
and cortex-enriched cell subclusters (Supplemental Fig. 4d-g). Pericytes, critical for regulating

blood-brain barrier (BBB) function'®?*2* were reduced already in control hippocampi relative to
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cortices. Each vascular cell type exhibited brain region-specific enrichments in genes and
pathways (Supplemental Table 3). For example, hippocampal endothelial cells demonstrated
greater baseline inflammation, such as IFN-y signaling, than those in the cortex (Fig. 1e). Such
inflammatory signaling has recently been described to inhibit hippocampal neurogenesis®~°,
and together with the aforementioned pericyte loss, provides a molecular hypothesis for the
particular susceptibility of the hippocampal vasculature to dysfunction in both aging®** and AD*.
We next compared nuclei transcriptomes between human and mouse endothelial cells
and pericytes. Using a strict cutoff (>10x difference, logCPM > 0.5, Supplemental Table 4), we
found hundreds of species-enriched genes (Fig. 1f). These include the known mouse-specific
endothelial anion transporter Slco1c¢1%° and AAV PHP.eB receptor Ly6a***’. These also include
disease-related genes such as A2M and CASS4, implicated in B-amyloid processing (Fig. 1g)°"
6 Several small molecule transporters varied, suggesting species differences in brain
metabolism. For instance, the GABA transporter SLC6A12 is enriched in human over mouse
pericytes, with implications for GABAergic neurotransmission and associated diseases like
epilepsy®®. We confirmed the vascular localization of SLC6A12 and other human-enriched
genes in human brain tissue at the protein level (Fig. 1g, Supplemental Fig. 5). Several genes of
high pharmacological importance mediating small molecule and protein BBB transport vary
between species (Supplemental Fig. 6). Finally, this dataset enables study of diseases that
involve the human brain vasculature, such as genes relevant to SARS-CoV-2 neuroinvasion®®7,
neurotoxicities associated with cancer immunotherapies® (e.g., no CD79 expression in human
adult brain pericytes), and the cell type etiology of ALS®® (Supplemental Fig. 7). Together, the
VINE-seq method introduced here opens the human brain vasculature for molecular study and

provides an important data resource for interrogating its diverse cell types.

Organizing principles of human brain endothelial and mural cells

With our capture of large numbers of vascular nuclei (>30x mouse®’, >200x human?®2
prior studies), we sought to comprehensively characterize the molecular basis of endothelial
and mural cell organization along the human brain arteriovenous axis. Cellular and molecular
changes along this axis have been referred to as zonation'>% #1707 Beginning with endothelial
cells, a UMAP representation resolved the 36,825 captured nuclei into the known vessel
segments: arterial and venous clusters were located at opposite ends, separated by a major
capillary cluster (Fig. 2a, Supplemental Fig. 8a-b). These clusters were defined by established
zonation markers, such as arterial VEGFC and ALPL; capillary MFSD2A and SLC7AS5; and

venous IL1R1 and NR2F2*"*, While capillaries make up the vast majority (~90%)?""2 of the
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endothelium, our method facilitated robust capture of rarer arterial (at 19%) and venous (at
27%) endothelial cells, likely either because of more efficient strainer retention or nuclei
liberation. We also noticed a small endothelial cluster (571 nuclei, ~0.1%) outside conventional
arteriovenous zonation. This cluster expressed genes characteristic of ‘tip’ cells (e.g., PLAUR
and LAMB1)™ as well as ‘proteostatic’ heat shock proteins®’.

We next ordered and aligned endothelial nuclei along a single one-dimensional Monocle
pseudotime’ range to better recapitulate the anatomical arteriovenous axis. As expected,
known arterial and venous markers peaked at opposite ends of this range, and capillary
markers peaked in between (Fig. 2b). We used the 665 most significantly variable cluster genes
to order the endothelial nuclei and observed a distribution of seven gradually changing gene
expression patterns, representing arterial, capillary, or venous segments, and combinations
thereof (Fig. 2c). We confirmed that the Monocle range represented a cell order matching
anatomical arteriovenous zonation by examining data from the Human Protein Atlas’
(Supplemental Fig. 9a). Our patterns recapitulate the gradual/ seamless zonation continuum
described in mice—but interestingly, this similar overall continuum arises from significantly
different individual/ component zonation markers (Supplemental Table 2, 5). For example, only
a minority of the top 100 human arterial, capillary, and venous markers are such in mice (Fig.
2j), even if we expand the denominator of mouse genes compared against to 500 genes.

We thus wondered whether established zonation markers in mice would be conserved in
humans. We calculated a score (Methods) measuring each gene’s specificity to a given
zonation (e.g., arterial, capillary, venous). Indeed, we observed across all vessel segments a
significant number of markers that lost their predictive value between species (Fig. 2d,
Supplemental Fig. 10). For example, the blood clotting gene von Willebrand factor (VWF) is
largely expressed in mouse venous endothelial cells*”. However, in humans, VWF is highly
expressed throughout the endothelium, even in small diameter capillaries (Fig. 2d-e). VWF

76,77

abundance has been tied to increased risk for ischemic stroke™ ', and its species-specific

distribution could be one reason why mouse models of stroke have faced notoriously low
translational success rates’® .

We next visualized and clustered 34,508 mural cell nuclei in UMAP space, resolving
clusters for arterial smooth muscle cells (aSMCs) and arteriolar SMCs (aSMCs)—but
interestingly, we also discovered two subclusters of pericytes (Fig. 2f, Supplemental Fig. 8c-e).
One pericyte subcluster was enriched for small molecule transmembrane transport activity,
which we refer to as T-pericytes (for transport); while the other for extracellular matrix (ECM)

formation and regulation, which we refer to as M-pericyte (for matrix). This suggests that
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function rather than anatomical location is the major driver of pericyte transcriptional identity in
humans, and that both capillary and venous (vSMC) pericytes span these two functional
clusters (confirmed below, Fig. 2g-h, Supplemental Fig. 9b, d). The existence of an M-pericyte
cluster holds interesting implications for small vessel diseases like CADASIL, CARASIL, and
Collagen IV deficiencies for which perturbations in the vascular ECM cause disease®*?’.
Moreover, human T-pericytes—but not mouse pericytes—express transporters like the GABA
transporter 1 SLC6A1 (involved in epilepsy) and glutamate transporter SLC1A3 (Supplemental
Fig. 9c), suggesting an evolutionary pressure for expanded solute transport across the human
BBB. Because recent mouse pericyte datasets have reported confounding endothelial

contamination®”.71:82:83

, we assessed and found no such contamination in our human pericyte
nuclei (Supplemental Fig. 3, 7b). The isolation of nuclei instead of whole cells may aid in
minimizing contaminating endothelial fragments.

To study mural cell zonation, we similarly compared the distribution of known mural cell
transcripts across the Monocle range with corresponding protein expression in situ (Fig. 2g,
Supplemental Fig. 9b, d). We used the 799 most significantly variable cluster genes to order all
36,825 mural cell nuclei and observed the expected order of aSMC markers on one end (e.g.,
ACTA2, TAGLN), followed by aaSMC (e.g., CTNNAS3, SLIT3); and pericyte markers on the other
end (e.g., ABCC9, PTN). Recapitulating the mural cell pattern described in mice*’—and as
opposed to the gradual zonation pattern in endothelial cells—, we observe in human mural cells
an abrupt transition between SMCs and pericytes: one set of transcripts are expressed highly in
aSMCs and aaSMCs but at low levels in pericytes, while another set of transcripts exhibits the
opposite pattern (Fig. 2g). As expected from their clustering by functional pathways, the two
pericyte subclusters did not segregate along the Monocle range and localized across both large
and small diameter vessels in situ, suggesting that they intercalate throughout the capillary and
venous vasculature (Fig. 2h). Moreover, previously reported vSMC markers®” were expressed in
both pericyte clusters (Supplemental Fig. 9d).

Given species-specific differences across all brain cell types, we find that only a minority
of the top mouse SMC and pericyte markers retain their predictive value in humans (Fig 2j,
Supplemental Fig. 9d). Because the proteins encoded by zonation marker genes perform a
variety of important functions at defined arteriovenous locations, species-specific endothelial
and mural cell differences likely reflect fundamental differences in brain vascular properties that

can now be tested to inform translational studies.

Molecular definitions for perivascular and meningeal fibroblasts
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Complex barrier structures maintain brain homeostasis®*. Cooperating with the vascular
BBB, the recently (re)discovered meningeal lymphatics plays important roles in waste clearance

and neuroimmune surveillance®-%. Using annotations from recent mouse studies*?8%%,

we
noticed our capture of fibroblast-like cells from both the meningeal and vascular barriers
provided the opportunity to directly compare these populations for insights into their specialized
functions (Fig. 3a-e). First, we noticed that fibroblasts transcriptionally segregated according to
anatomical location: vascular versus meningeal (Fig. 3a-b), but also separated according to the
layers of the meninges (Fig. 3a, d). No strong differences were observed between hippocampal
and cortical-derived fibroblasts (Supplemental Fig. 11b), suggesting that the micro- but not
macro-environment shapes brain fibroblast identity.

Pathway enrichment analysis of marker genes demonstrated a strong divergence in
fibroblast functions by anatomical location (Fig. 3b, e): perivascular fibroblast-like cells showed
enriched expression for ECM structural components or its modifiers and receptors (e.g., “TGF- 3
regulation of the ECM), while meningeal fibroblasts enriched for solute transporters. This
suggests that perivascular but not meningeal fibroblasts form fibrotic scars after brain injury®'%.
Closer comparison of differentially expressed genes between fibroblast populations (Fig. 3e)
revealed a remarkable polarization of solute influx and efflux pumps: meningeal fibroblasts
specifically expressed SLC influx solute transporters, while perivascular fibroblasts exclusively
expressed ABC efflux pumps (Fig. 3f). Perivascular fibroblasts reside in the Virchow-Robin
space, and thus like meningeal fibroblasts, come into contact with the cerebrospinal fluid (CSF).
This cooperative circuit of polarized transporters suggests fibroblast regulation of solute
exchange between the brain and CSF. A gradient of polarized influx/ efflux within a shared CSF
compartment also provides evidence for convective rather than diffusive fluid flow via the
recently described ‘glymphatic’ system®.

Because perivascular fibroblast-like cells reside in close proximity to other vascular cells
captured, we used our single-cell data to infer cell-cell communication pathways®*®*. This
corroborated fibroblast-like cells as major recipients of TGF-f signaling (Supplemental Fig. 11c-
d). Overstimulation of TGF-f signaling in the brain vasculature promotes ECM basement
membrane thickening and triggers neuropathology, though the effector cell type has been
unknown®%. This analysis nominates perivascular fibroblast-like cells. Cell-cell communication
analysis also predicted signaling between capillaries and fibroblast-like cells, despite their
localization in mice exclusively around arterial and venous vasculature®. Using fibroblast-
specific genes conserved in mice and humans, we surprisingly found fibroblast-like cell marker

co-localization around human capillaries (<10 uM diameter) as well as larger vessels in situ
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(Fig. 3h, Supplemental Fig. 12). Fibroblast or fibroblast-derived protein localization in capillaries
poses interesting questions for vessel development and maintenance. As in endothelial and

mural cells, perivascular fibroblast-like cell markers varied by species (Fig. 3j). Together, these
data provide a first characterization of human brain fibroblast diversity, revealing the molecular

basis of their anatomical specialization and a cooperative circuit for CSF solute exchange.

Vascular cell-type specific perturbations in Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder culminating in
severe impairment of memory, cognition, and executive functions®*¢. These impairments arise

99—

from complex perturbations in cell composition and gene expression®-"°". We thus sought to
profile changes in the AD human brain vasculature at single-cell resolution. We defined our AD
patient group by clinical diagnosis and confirmed via immunohistochemistry the presence of 3-
amyloid plaques in the hippocampus and cortex (Supplemental Fig. 13).

Recent studies have identified context-dependent, disease associated glial
subpopulations?®-3%¢7.192 \We did not observe new vascular cell subclusters emerging with AD

(Fig. 4a, Supplemental Fig. 8). However, in contrast to parenchymal cells?

, we found a strong
loss of brain vascular nuclei—across endothelial, SMC, pericyte, and fibroblast-like cells—with
AD (Fig. 4a-b). This is consistent with reports of focal cerebrovascular damage in AD?"'%, but
suggests that vascular loss is widespread across cells types throughout the arteriovenous axis.
Interestingly, among pericytes, only M-pericytes involved in ECM organization declined (Fig.
4b). This selective, disease-associated susceptibility provides a molecular hypothesis for the
physical BBB breakdown and vascular ECM disruption reported in AD'®. Finally, because the
observed reductions in vascular nuclei could also reflect an increased fragility during isolation,
we stained for and confirmed our findings in situ (Fig. 4c). In short, instead of a new AD-
associated subpopulation emerging, we find in the vasculature an AD-associated
disappearance of specific cell type subpopulations.

We next systematically examined cell type-specific gene expression changes in AD
(Methods). Across the vascular cell types captured in sufficient numbers for statistical power, we
identified 463 unique differentially expressed genes using more stringent thresholds (DEGs,
Methods, Fig. 4d, Supplemental Table 6). Overall, mural cells exhibited the strongest changes,
with other cell types showing a signature of gene repression: 61-78% of DEGs were
downregulated (Fig. 4d). DEGs were robustly detected across different levels of expression
(Supplemental Table 6). The vast majority of DEGs were cell type- (Fig. 4e-f) and zonation-

specific, suggesting a heterogenous response to AD pathology across the vasculature.
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Intriguingly, several DEGs are risk genes implicated in recent AD and small vessel disease
GWAS studies (Fig. 4f). At the pathway level, DEGs in mural cells and fibroblast-like cells
implicated dysregulated vasoconstriction and compromised blood flow (Fig. 4g). This provides a
molecular basis for the cerebral hypoperfusion discernible in MRI-based imaging of living AD
patients'%'%_ Interestingly, DEGs in pericytes and SMCs resembled those found in CADASIL
and CARASIL'="% (Fig. 4h), rare hereditary diseases also marked by impaired blood flow,
cognitive deficits, repeated strokes, and dementia.

APOEA4 carriers have been reported to exhibit accelerated BBB breakdown before
cognitive impairment''"", though the underlying mechanisms are unclear in humans. With
patient APOE genotypes, we performed similar DEG analysis, finding dramatic interferon
inflammation in the endothelium of APOE4 carriers (Fig. 4i, Supplemental Fig. 14, Supplemental
Table 7). Finally, we sought to understand the overlap between human vascular AD DEGs and
those in mouse models of AD. Such models have facilitated mechanistic study of 3-amyloid
pathology, but recent reports describe significant species differences in various cell types, such
as microglia®®**'%2, We isolated brain endothelial cells from 12-14 month old Thy1-hAPP-o"S*e
mice (and littermate wild-type controls)''? that present prominent amyloidosis,
neuroinflammation, and synapto-dendritic degeneration—and processed them for single-cell
sequencing. Surprisingly, we observed minimal overlap between human AD and mouse hAPP
DEGs in brain endothelial cells (Fig. 4j).

AD pathology begins and spreads via a strikingly consistent regional pattern® '3, We
thus assessed the impact of AD on brain regional vascular specialization (Fig. 1e). Within
controls, we found greater vascular density in the cortex compared to hippocampus (Fig. 4k),
reflecting either regional baseline differences or hippocampal deficits with normal aging'"*. We
found these regional differences erased in AD patients (Fig. 4k). Likewise, by comparing the
number of DEGs between the cortex and hippocampus of the same patients, we noticed a
global loss of brain regional specialization across vascular cell types in AD patients (Fig. 41)—
suggesting impairments in brain region-specific vascular function. Together, these findings show
that AD patients exhibit heterogeneous cell type-, zonation-, region-, and species-specific
perturbations across the brain vasculature that require dedicated isolation and single-cell

approaches to profile.

AD GWAS disease variants enriched in the human brain vasculature
A major goal of biomedical research is to identify genes that cause or contribute to

disease. GWAs studies have shed insight into the molecular pathways contributing to AD"'*11¢,
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though the cell type context in which GWAS genes are expressed was long unknown. Recent
snRNA-seq and other cell type-resolved studies have strongly implicated microglia as the major
AD GWAS-expressing cell type?®-3064116-121 '\ye wondered, however, whether the unintended
depletion of brain vascular cells in conventional preparations may have prematurely dismissed
such evidence in brain vascular cells. We curated recent AD GWAS studies''"~"19122123 tg
identify and order the top 45 risk genes. With our more comprehensive survey of brain cell
types, we calculated the cell type proportional expression for each GWAS gene using
Expression Weighted Cell Type Enrichment (EWCE)'*. We indeed observed among brain
parenchymal cells a specific myeloid signature for top AD GWAS genes such as TREM2,
MS4A6A, CR1, and SPI1 that are now the subject of intense mechanistic study (Fig. 5a, right).

Intriguingly, we noticed that several GWAS genes were strongly expressed in human
brain vascular and perivascular cell types (Fig. 5a, left, Supplemental Fig. 15). This included the
two GWAS genes previously implicated in the mouse vasculature, PICALM and CD2AP%*"?,
But this also included other surprising genes, such as the immune-related PLCG2 and HLA-
DRB1/5 in arterial cells, the endocytic INPP5D and USP6NL in capillaries, and ECM-related
ADAMTS1, ADAMTS4, FERMT2, and AGRN in SMCs and pericytes (Fig. 5a). Within pericytes,
expression varied across M- and T-pericyte subtypes (Supplemental Fig. 16a). APOE, often
linked to myeloid cells and astrocytes, was robustly expressed in human SMCs and meningeal
fibroblasts. Remarkably, several GWAS genes like ABCA7 and CLNK were enriched in
perivascular T cells. Consistent with our findings, an independent dataset shows minimal
expression of these genes in parenchymal brain cell types (Supplemental Fig. 16b). Likewise,
several GWAS genes like ABCA1, FHL2, HESX1, and IL34 were enriched in perivascular and
meningeal fibroblasts. Importantly, we confirmed our findings via immunohistochemical staining.
We observed vascular localization for 12 proteins encoded by predicted-vascular GWAS genes,
such as CASS4, FERMT2, ACE, PLCG2, and FHL2 (Fig. 5b). Most GWAS genes exhibited
minor expression differences between the hippocampus and cortex (Supplemental Fig. 16c). In
total, at least 30 of the top 45 AD GWAS genes are enriched in cells of the human brain
vasculature (not including those solely in perivascular macrophages). Their distribution across
all vascular cell types suggests that vascular and perivascular involvement in AD pathology may
be more thorough and complex than anticipated.

The human brain vascular expression of putatively parenchymal—especially myeloid—
AD GWAS genes made us wonder whether these genes are expressed in different cell types
between mice and humans. We thus examined the expression of human vascular GWAS genes
in mouse datasets®. Indeed, many genes like APOE, CASS4, INPP5D, and HLA-DRB1 were
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predominately expressed in microglia in mice but then also exhibited vascular expression in
humans (Fig. 5¢, Supplemental Fig. 16d). Corroborating this, nearly every top GWAS gene
expressed in BECs exhibited greater expression in humans than in mice (Fig. 5¢). Together,
these data suggest a partial evolutionary transfer of AD risk genes and pathways from microglia
to the vasculature from mice to humans, with implications for translational studies.

We next broadened our scope to a previously compiled list of hundreds of GWAS genes
for AD and AD-related traits (Supplemental Fig. 17a-b)*°. We observed robust expression
across vascular and perivascular cell types (Supplemental Fig. 17a-b). Using EWCE analysis,
we found that many risk genes were expressed cell type-specifically (Supplemental Fig. 17). For
each gene, we assigned the cell type with the strongest expression, discovering surprisingly,
that endothelial cells harbored the most AD-related GWAS genes, followed by microglia/
macrophages (Fig. 5d, Supplemental Table 8). Within BECs, AD-related GWAS genes (Fig. 5a-
b) enriched for protein endo- and transcytosis components, such as receptor and clathrin
vesicle components (Fig. 5d). We recently demonstrated a decline in BEC clathrin-mediated
transcytosis'® with age, suggesting one mechanism by which aging and GWAS genes converge
to impair B-amyloid clearance and increase AD risk. In total, over half of all AD-related GWAS
genes mapped to vascular or perivascular cell types (383 of 651).

As with top AD GWAS genes, we observed enhanced human over mouse expression of
AD-related genes in both BECs and pericytes (Fig. 5e). Importantly, this human-enhanced
expression is not observed for the whole transcriptome. Together, these data provide a more
comprehensive understanding of the cell types contributing to AD risk. We suggest that a
vascular-microglia axis underlies the genetic risk for AD via shared protein clearance (BEC-
microglia) and inflammatory pathways (BEC-T cell-microglia) (Fig. 5f), and that this axis is

evolutionarily expanded in humans.

Discussion

We report here 143,793 single-cell, genome-wide quantitative transcriptomes from the
human brain vasculature in health and AD. We use these transcriptomes to molecularly define
the principal vascular cell types; their differences by brain region and species; the organizational
principles of endothelial, mural, and fibroblast-like cells; a selective loss of M-pericytes and the
transcriptomic perturbations contributing to clinical AD dementia; and the unexpected
expression of AD GWAS genes across the human brain vasculature. We subsequently confirm
these findings in situ at the protein level. Single-cell resolution was necessary for these findings,

which would have been obscured in the average profiles generated via bulk RNA-sequencing.
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365 How do human vascular GWAS genes fit into established AD pathways? Current

366  understanding implicates B-amyloid metabolism, cholesterol/ lipid dysfunction, innate immunity,
367 and endocytosis'?"'?, Vascular GWAS gene expression confirms these pathways and expands
368 the set of cell types involved, such as B-amyloid endocytosis and clearance via BEC clathrin-
369 mediated transport; and adaptive in addition to innate immunity via perivascular T cells (Fig. 5f).
370  We propose that the dramatic expansion of the human brain, brain activity, and activity

371 byproducts (like B-amyloid'?) necessitates enhanced neuroimmune surveillance and clearance
372  mechanisms. In this model, microglia are still frontline participants in AD pathogenesis. But

373  more so than in mice, human vascular and perivascular cells partake. For example, the

374  clearance functions of microglia can become overwhelmed'?’, diverting debris clearance to

375 BECs. This is supported by recent studies finding microglial depletion results in cerebral amyloid
376  angiopathy'?. But unlike microglia'®®, vascular cells are unable to proliferate efficiently'. Thus,
377  constant vascular exposure to B-amyloid triggers dysfunction via cell loss and impaired blood
378 and CSF flow™' (Fig. 4). Recent work identified a human-unique CD8 Temra (CD45RACD277)
379  population clonally expanded in AD CSF'*2. Thus, it is possible that perivascular/ meningeal T
380 cell GWAS hits contribute to inflammatory pathology in ways not seen in mice. Together, we

381  suggest an intertwined microglia-vascular axis expanded in humans, with vascular cells playing
382  an auxiliary role via shared endocytosis and inflammatory pathways. We note though the

383 likelihood of additional vascular contributions, as evidenced by SMC, pericyte, and both

384  perivascular and meningeal fibroblast-enriched GWAS genes of unclear function.

385 Given the evolutionary divergence between mice and humans, these data expand by
386  orders of magnitude the number of arteriovenous markers in the human brain that can now be
387  used for vessel type identification, to assess the fidelity of in vitro human cell and organoid

388 cultures, and to reliably deconvolute and enhance the utility of hundreds of publicly available
389  bulk brain RNA-seq datasets (Supplemental Table 2). Mechanistic studies in mouse models can
390 now be combined with this dataset to systematically pinpoint the cell types and genes mediating
391  core vascular functions such as cerebral autoregulation and BBB permeability that are often

392  seen perturbed in disease by clinical imaging'®. Despite recent landmark studies on human

116

393  brain parenchymal cells'™®, many AD and other disease risk variants remain unmapped.

394  Because such variants enrich in gene expression-regulating enhancer regions'® that undergo
395  accelerated evolution™*, they may exert their influence through human brain vascular cells. With
396 further optimization, this method should be compatible with ATAC-, ChIP-, and PLAC-seq

135-

397  assays'>®> ¥ to address this possibility.
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Our work opens several translational opportunities. This dataset informs ongoing efforts
to develop ‘brain shuttles’ and other modalities to better deliver therapeutics to treat human
brain disorders'>?'. This method facilitates study of the brain vasculature across a variety of
disease conditions, such as stroke, multiple sclerosis, and even COVID-19%. Together, the field
now has a near complete catalog of cell types in the human brain, which can be integrated into

138

ongoing efforts such as the Human Cell Atlas'>°. As with recent high-profile snRNA-seq studies

28-32139 it will now be important to distinguish which of the vascular

of the brain parenchyma
transcriptional perturbations observed in disease are responsive versus driving, clarify their links
to various clinical and pathologic traits, and dissect the exact mechanisms by which vascular-
expressed AD GWAS genes confer greater disease risk. Overall, the VINE-seq method
introduced here and the ensuing single-cell data (https://twc-stanford.shinyapps.io/human_bbb)
provide a blueprint for finally studying the molecular makeup of the human brain vasculature,

promising further discoveries in health, disease, and therapy.
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Figures
Figure 1. Cells of the human brain vasculature.
a, Method optimized to enriched cerebrovascular nuclei from post-mortem human brain samples.

b, Uniform Manifold Approximation and Projection (UMAP) of 143,793 nuclei captured from 25 human
hippocampus and superior frontal cortex samples across 17 patients, colored by cell type and labeled
with the number of nuclei.

¢, Immunohistochemical validation of cell type-specific gene markers from (b) for brain endothelial cells
(BECs), pericytes, and perivascular fibroblast-like cells. Arrowhead (middle) identifies staining of thin-
strand pericyte morphology. C (right) indicates capillary staining. Scale bar = 50 microns. Images from the
Human Protein Atlas (http://www.proteinatlas.org)’s-14°.

d, Distribution of cell populations, identified from nuclei isolated from the hippocampus and frontal
superior cortex, after sub-clustering analysis. Color code corresponds to (b).

e, Enriched biological pathways in BECs from the hippocampus compared to the superior frontal cortex,
and vice versa, in control patient samples.

f, Scatter plot depicting mMRNA expression levels (logCPM) of mouse and human genes with one-to-one
orthologs in BECs (left) and pericytes (right), highlighting significantly differentially expressed genes in
human (blue) and mouse microglia (green) (>10-fold difference, minimum 0.5 log2CPM expression).

d, Immunohistochemical validation of A2M protein localized specifically in the human but not mouse
vasculature. Scale bar = 50 microns.
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Figure 1. Cells of the human brain vasculature. Related to S/ Figures 1-7.
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Figure 2. Organizing principles of human brain endothelial and mural cells.
a, UMAP of 36,825 human brain endothelial cell (BEC) nuclei, colored by zonation.

b, Zonal expression of transcripts across human BECs sorted by Monocle pseudotime. LOWESS local
regression line (orange) and density of black lines (counts) correspond with average expression levels. A
= arterial, C = capillary, and V = venous.

¢, Heatmap of zonation-dependent gene expression in human BECs.

d, Scatter plot depicting the specificity of transcripts for venous BECs in mouse’"* compared to humans.
Venous specificity score = avg(logFC(vein/cap), logFC(vein/art)). For example, VWF is predicted to be
more specific to venous BECs in mice than it is in humans. See Supplemental Figure 9 for arterial and
capillary specificity plots.

e, Immunohistochemical validation of VWF specificity to venous BECs in mice but not in humans.
Comparison of VWF gene expression in mice and human BECs (top) and corresponding VWF protein
staining (bottom). Scale bar = 50 microns.

f, UMAP of 34,508 human pericyte and smooth muscle cell nuclei, colored by cell subtype. Enriched
biological pathways from directly comparing amongst the pericyte and SMC populations. aSMC = arterial
smooth muscle cell (aSMC), aaSMC = arteriole SMCs, T-Pericyte = solute transport pericytes, and M-
Pericyte = Extracellular matrix regulating pericytes.

g, As in (c) but for pericytes and smooth muscle cells. Solid line delineating aaSMC/aSMCs from
pericytes reflects an abrupt transcriptomic transition.

h, Immunohistochemical localization of T- and M-pericyte markers in both large and small diameter
vessels, suggesting pericyte subtypes do not represent a pericyte-vSMC split. Scale bar = 50 microns.
Images from the Human Protein Atlas (http://www.proteinatlas.org)’®49,

i, Overlap between the top 100 human endothelial and mural cell subtype markers and those identified in
mice. A more lenient set of 500 (instead of 100) mouse markers®” were used for comparison to ensure
claims of species-specificity were robust.

Note: the species-conservation of a cell type marker depends on species-specific changes in the given
cell type and changes amongst the remaining background cell types.
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Figure 2. Organizing principles of human brain endothelial and mural cells. Related to SI Figures 8-10.
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Figure 3. Molecular definitions for brain perivascular and meningeal fibroblasts.

a, Anatomical reference of the human meninges (dura and arachnoid) and perivascular space, each with
a resident fibroblast population.

b, UMAP of 2,985 human perivascular fibroblast-like nuclei and 428 meningeal fibroblast nuclei. Enriched
biological pathways derived from respective fibroblast cell type markers (Supplemental Table 2).

c, Expression of example markers demarcating perivascular from meningeal fibroblasts.

d, UMAP of 428 meningeal fibroblast nuclei, subclustering into anatomically segregated dural and
arachnoid space fibroblasts.

e, Differentially expressed genes (DEG) comparing perivascular and meningeal fibroblasts (MAST,
Benjamini Hochberg correction; FDR < 0.01 and logFC>0.5 [log2FC>0.72] to be colored significant).

f, Expression of all differentially expressed (from (d)) SLC and ABC family members across perivascular
and meningeal fibroblasts.

g, Circle plot showing the number of statistically significant intercellular signaling interactions among
cerebrovascular cells for the TGF-B family of molecules (permutation test, CellChat®?).

h, Expression of perivascular fibroblast-like cell-specific markers CYP1B1 and ABCA8 compared to all
other CNS cell types (top). Immunohistochemical co-localization (bottom) of CYP1B1 and ABCAS8 to small
diameter (< 10 microns, black brackets, ‘C’) capillaries in the human brain. Scale bar = 50 microns.

i, Overlap between the top 100 perivascular fibroblast-like cell markers and those identified in mice. A
more lenient set of 500 (instead of 100) mouse markers®” were used for comparison to ensure claims of
species-specificity were robust.

Note: the species-conservation of a cell type marker depends on species-specific changes in the given
cell type and changes amongst the remaining background cell types.
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Figure 3. Molecular definitions for brain perivascular and meningeal fibroblasts. Related to Sl Figures 11-12.
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Figure 4. Vascular cell-type specific perturbations in Alzheimer’s disease.

a, UMAP of 143,793 nuclei captured from 17 human hippocampus and superior frontal cortex samples,
colored by Alzheimer’s disease (AD) diagnosis.

b, Proportion of cell types captured in AD and controls (left). Proportion of brain endothelial vessel
segments and pericyte subpopulations in AD and controls (right) (n = 8 controls, n =9 AD, two-sided t-
test; mean +/- s.e.m.).

¢, Immunohistochemical validation of a loss of BECs in AD. Scale bar = 50 microns (n = 5 controls and
AD, nested two-sided t-test; mean +/- s.e.m.).

d, Differentially expressed gene (DEG) counts for each cell type in AD. The intensity of the blue color and
the size of the squares are proportional to entry values.

e, Matrix layout for intersections of AD DEGs shared across and specific to each cell type. Circles in the
matrix indicate sets that are part of the intersection, showing that most DEGs are cell type-specific.

f, Example differentially expressed genes (DEGs) in AD: arterial (Art), capillary (Cap), venous (Vein),
pericyte (Peri), perivascular fibro blast-like cell (P. fibro), and smooth muscle cell (SMC). Blue arrow
indicates upregulated and grey arrow downregulated genes.

g, Enriched biological pathways from AD differentially expressed genes in pericytes, smooth muscle cells,
and perivascular fibroblast-like cells, plotted by Pathway Representation (in a given pathway, what
proportion of all members are DEGs) and Significance (-log1oP) of pathway enrichment.

h, Rare diseases associated with differentially expressed genes in pericytes and smooth muscle cells.

i, Enriched biological pathways from genes upregulated in AD APOE4 carriers in capillary and venous
endothelial cells.

j, Venn diagram comparing DEG BECs in human AD samples compared to those from the Thy1-hAPP
T41B"S*e amyloidosis mouse model''?. Note that only genes with human-mouse orthologs are shown,
and that the absolute logFC threshold for calling DEGs in mouse APP BECs was lowered to 0.15 (by half)
to ensure claims of limited overlap with human BECs were robust.

k, Among patients with both hippocampus and superior frontal cortex profiled (n=4 controls and n=4 AD),
quantification of the relative abundance of major vascular cell types (control hippocampus set as
reference, unpaired two-sided t-test; mean +/- s.e.m.).

I, As in (k), but comparison of the number of DEGs between brain regions for each cerebrovascular cell
type. Analysis done separately for control and AD samples (n=7 cell types, unpaired two-sided t-test;
mean +/- s.e.m.)
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Figure 4. Vascular cell-type specific perturbations in Alzheimer’s disease. Related to S/ Figures 13-14.
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Figure 5. GWAS disease variants are enriched in the human brain vasculature.

a, Proportional expression of the top 45 AD GWAS genes across all major brain cell types. Expression
values for a given gene sums to 1 across cell types using the EWCE method'?*. Genes ordered in
approximate risk strength''7-119123 Asterisks denote strongest expressing cell types. Cells to the left of
dashed line are from the vasculature, newly added here; to the right, parenchymal cells captured before.
Numbers on the bottom summarize the number of GWAS genes enriched in a given cell type.

Note: MSA46A represents the average expression of MS4A46A, MS4A4A, and MS4A4E; likewise, HLA-
DRB1 averages HLA-DRB1 and HLA-DRBS5. As in prior human brain RNA-seq datasets®®, EPHA1 was
not robustly detected.

b, Immunohistochemical confirmation of vascular localization of proteins encoded by 12 top AD GWAS
genes from (a). Scale bar = 25 microns. Arrowheads in APOE point to signal around larger diameter
vessels, consistent with predicted SMC expression. Images from the Human Protein Atlas
(http://www.proteinatlas.org)’s-140.

¢, Enrichment of top AD GWAS genes in human over mouse endothelial cells (left). BEC heatmap of top
AD GWAS genes is colored by logFC(human/mouse) and labeled by the linear fold-change
(human/mouse) value. Example genes highly expressed in or specific to microglia in mice that are then
expressed in vascular cells in humans (right).

d, Quantification of the number of AD and AD-related trait GWAS genes?® most expressed in a given cell
type. 383 of 651 genes (59%) mapped to vascular or perivascular cell types. PPl network of GO Cellular
Components enriched in BECs at significance P < 0.05 (Metascape™").

A = arterial, C = capillary, V = venous endothelial cell (EC). Mg = microglia, and M@ = macrophage. In
fibroblasts, M = meningeal and P = perivascular. In mural cells, S = SMC and P = pericyte.

e, Human enrichment of AD-related trait GWAS genes?® highest expressed in BECs (left) and mural cells
(right). In contrast to GWAS genes, the ratio of human to mouse expression across the whole
transcriptome is less than or ~1 for both cell types (bottom, paired two-sided t-test, ****P < 0.0001 and
***P =0.0002).

f, Summary of AD GWAS genes enriched in microglia and vascular cells mediating common pathways in
protein clearance and inflammation. Mouse and human superscripts denote whether expression has been
confirmed in that species for a given gene. Proposed model is described in Discussion.
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Figure 5. GWAS disease variants are enriched in the human brain vasculature. Related to S| Figures 15-17.
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Methods

Isolation of vascular nuclei from frozen post-mortem brain tissue

Post-mortem fresh-frozen hippocampus and superior frontal cortex tissue were obtained from
the Stanford/ VA/ NIA Aging Clinical Research Center (ACRC) with approval from local ethics
committees and patient consent. Group characteristics are presented in Supplemental Table 1.
Note, patients were grouped by clinical diagnosis, with two of the control patients exhibiting
amyloid beta plaque staining in the hippocampus, though not to a sufficient degree for an expert
pathologist to diagnose Alzheimer’s disease by histopathological criteria. Clinical instead of
pathologic diagnosis was chosen because of potentially vascular contributions to AD
independent of the well-known hallmarks of AD, B-amyloid and tau pathophysiology’. All
procedures were carried out on ice in a 4°C cold room as rapidly as possible. 0.3 grams or more
of brain tissue was thawed on ice for 5 minutes with 5 ml of nuclei buffer (NB): 1% BSA
containing 0.2 U pl™' RNase inhibitor (Takara, 2313A) and EDTA-free Protease Inhibitor Cocktail
(Roche, 11873580001). Tissue was quickly minced and homogenized with 7 ml glass douncers
(357424, Wheaton) until no visible chunks of debris remained. Similar to before®, homogenates
were transferred into 50 ml tubes containing 35 ml of chilled 32% dextran (D8821, Sigma) in
HBSS. Samples were vigorously mixed before centrifugation at 4,400g for 20 minutes with no
brake. After centrifugation, samples separate into a top myelin layer, middle parenchymal layer,
and vascular-enriched pellet. The myelin layer was aspirated, tips changed, and the
parenchymal layer carefully removed without disturbing the pellet. Pellets were resuspended in
8 ml of 32% dextran, transferred to 15 ml falcon tubes, and centrifuged again. Vascular-
enriched pellets were gently resuspended in 1ml of NB and added to pre-wetted 40 um strainer
sitting atop 50 ml falcon tubes. From here diverging from prior protocol, strainers were washed
with 10 ml of cold 0.32 M sucrose in PBS and 90 ml of PBS until flow through the strainers was
unimpeded to deplete contaminating parenchymal cells from trapped microvessels. At this step,
retained microvessels turn white in color, indicating removal of circulating blood cells. Strainers
were switched to new collection 50 ml falcon tubes. Various techniques were tested and
optimized to extract vascular cells from the isolated microvessels (e.g., enzymatic digestion,
TisssueRuptor, sonication, etc.), but nearly all resulted in loss of nuclei integrity or low nuclei
complexity (<50 median genes/ nuclei). Eventually, adapting a method for the isolation of
murine splenocytes proved successful: vascular fragments were mashed four times through the
cell strainer using the plunger end of a 3 ml syringe, with intermittent elution via 10 ml of 0.32
sucrose and 40 ml of PBS. Liberated vascular cells were pelleted at 500g for 10 minutes and
resuspended in 1.5 ml of EZ Prep Lysis Buffer (Sigma, NUC101) spiked with 0.2 U ul™" RNase
inhibitor (Takara, 2313A) and EDTA-free Protease Inhibitor Cocktail (Roche, 11873580001).
Nuclei were homogenized with 2 ml glass douncers (D8938, Sigma) 20 times with pestle B
(pestle A optional). Spiked EZ lysis buffer was added to samples up to 4 ml and incubated on
ice for 5 minutes before pelleting at 500g for 6 minutes. This incubation step was repeated.
Debris was depleted via a sucrose gradient before flow cytometry isolation of nuclei. Briefly,
pelleted nuclei were resuspended in 0.5ml of NB before the addition of 0.9 ml of 2.2 M sucrose
in PBS. This mixture was layered atop 0.5 ml of 2.2 M and samples were centrifuged at 14,000g
for 45 minutes at 4°C, with no brake. Pellets were aspirated in 1ml of NB, filtered through a 40
pum strainer (Flowmi), transferred to FACS tubes, stained with Hoechst 3342 (1:2000, Thermo)
and rabbit monoclonal anti-NeuN Alexa Fluor® 647 (1:500, Abcam, ab190565), and nuclei
collected on a SH800S Cell Sorter into chilled tubes containing 1 ml of NB without protease
inhibitor. In pilot runs, we noticed the cytometer overestimated nuclei counts by ~3.4x, and thus
we sorted ~34,000 nuclei to target ~10,000 nuclei per sample. Sorted samples were inspected
for lack of debris on a brightfield microscope. We note that an iodixanol gradient®? can substitute
for the 2.2 M sucrose, but that unfortunately with either gradient, flow sorting is required—unlike
parenchymal myelin debris, vascular debris is not sufficiently removed by gradient centrifugation
alone. Vascular debris will confound downstream cDNA traces with higher background and low


https://doi.org/10.1101/2021.04.26.441262
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441262; this version posted April 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

molecular weight peaks. We are happy to share the detailed protocol widely but note that since
high-quality human postmortem brain tissue is difficult to obtain, tissue would be limited in
quantities to share widely.

Droplet-based snRNA-sequencing

For droplet-based snRNA-seq, libraries were prepared using the Chromium Single Cell 3' v3
according to the manufacturer’s protocol (10x Genomics), targeting 10,000 nuclei per sample
after flow sorting (Sony SH800S Cell Sorter). 15 PCR cycles were applied to generate cDNA
before 16 cycles for final library generation. Generated snRNA-seq libraries were sequenced on
S4 lanes of a NovaSeq 6000 (150 cycles, Novogene).

snRNA-seq quality control

Gene counts were obtained by aligning reads to the hg38 genome (refdata-gex-GRCh38-2020-
A) using CellRanger software (v.4.0.0) (10x Genomics). To account for unspliced nuclear
transcripts, reads mapping to pre-mRNA were counted. As previously published, a cut-off value
of 200 unique molecular identifiers (UMIs) was used to select single nuclei for further analysis®.
As initial reference, the entire dataset was projected onto two-dimensional space using Uniform
Manifold Approximation and Projection (UMAP) on the top 30 principal components'*2. Three
approaches were combined for strict quality control: (1) outliers with a high ratio of mitochondrial
(>5%, <200 features) relative to endogenous RNAs and homotypic doublets (> 5000 features)
were removed in Seurat'*?; (2) after scTransform normalization and integration, doublets and
multiplets were filtered out using DoubletFinder'**; and (3) after DoubletFinder, nuclei were
manually inspected using known cell type-specific marker genes, with nuclei expressing more
than one cell type-specific marker further filtered'**. For example, BEC nuclei containing any
reads for the following cell type markers were subsequently filtered: MOBP, MBP, MOG,
SLC38A11, LAMA2, PDGFRB, GFAP, SLC1A2, and AQP4. We note that the vascular nuclei in
prior human single cell datasets exhibit contamination with other cell type-specific gene
markers, potentially confounding downstream analysis. After applying these filtering steps, the
dataset contained 143,793 high-quality, single nuclei.

Cell annotations & differential gene expression analysis

Seurat’s Integration function was used to align data with default settings. Genes were projected
into principal component (PC) space using the principal component analysis (RunPCA). The
first 30 dimensions were used as inputs into Seurat’s FindNeighbors, FindClusters (at 0.2
resolution) and RunUMAP functions. Briefly, a shared-nearest-neighbor graph was constructed
based on the Euclidean distance metric in PC space, and cells were clustered using the Louvain
method. RunUMAP functions with default settings was used to calculate 2-dimensional UMAP
coordinates and search for distinct cell populations. Positive differential expression of each
cluster against all other clusters (MAST) was used to identify marker genes for each cluster'.
We annotated cell-types using previously published marker genes?3°%2%¢_For brain endothelial
cells, zonation specificity scores for each gene were calculated separately for arterial, capillary,
and venous segments as in the following example for a given gene in capillaries:

Capillary logCPM Capillary logCPM
Arterial logCPM )' ( Veinous logCPM )

Differential gene expression of genes comparing Alzheimer’s disease, ApoE4, and
control samples—or comparing cell type sub-cluster markers—was done using the MAST'#°
algorithm, which implements a two-part hurdle model. Seurat natural log (fold change) > 0.5
(absolute value), adjusted P value (Bonferroni correction) < 0.01, and expression in greater than
10% of cells in both comparison groups were required to consider a gene differentially
expressed for subcluster analysis and natural log (fold change) > 0.3 (absolute value), adjusted
P value (Bonferroni correction) < 0.01, and expression in greater than 10% of cells in both

Capillary specificity score = Average[log (
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comparison groups for Alzheimer’s disease and ApoE4 comparisons, both more stringent than
the default Seurat settings. We incorporated age, gender, and batch as covariates in our model.
A more lenient threshold of the above but with natural log (fold change) > 0.2 (absolute value)
was used for brain region (i.e., hippocampus vs cortex. Biological pathway and gene ontology
enrichment analysis was performed using Enrichr'*” or Metascape'' with input species set to
Homo sapiens''. UpSet plots were generated using identified differentially expressed genes as
inputs using the R package UpSetR'*®. Diagrams were created with BioRender.

Monocle trajectory analysis

Monocle was used to generate the pseudotime trajectory analysis in brain endothelial and mural
cells’. Cells were clustered in Seurat and cluster markers used as input into Monocle to infer
arteriovenous relationships within endothelial cells and pericytes. Specifically, UMAP
embeddings and cell sub-clusters generated from Seurat were converted to a cell_data_set
object using SeuratWrappers (v.0.2.0) and then used as input to perform trajectory graph
learning and pseudo-time measurement through Independent Component Analysis (ICA) with
Monocle. Cluster marker genes identified in Seurat were used to generate a pseudotime route
and plotted using the ‘plot_pseudotime_heatmap’ function.

Cell-cell communication

Cell-cell interactions based on the expression of known ligand-receptor pairs in different cell
types were inferred using CellChatDB®® (v.0.02). Briefly, we followed the official workflow and
loaded the normalized counts into CellChat and applied the preprocessing functions
identifyOverExpressedGenes, identifyOverExpressedinteractions, and projectData with
standard parameters set. As database we selected the Secreted Signaling pathways and used
the pre-compiled human Protein-Protein-Interactions as a priori network information. For the
main analyses the core functions compute CommunProb, compute CommunProbPathway, and
aggregateNet were applied using standard parameters and fixed randomization seeds. Finally,
to determine the senders and receivers in the network the function netAnalysis_signalingRole
was applied on the netP data slot.

Mouse wild-type and APP T41B BEC single-cell and nuclei sequencing

Whole cell isolation from the CNS followed previously described methods?*4%®, Briefly, cortices
and hippocampi were microdissected, minced, and digested using the Neural Dissociation Kit
(Miltenyi). Suspensions were filtered through a 100 ym strainer and myelin removed by
centrifugation in 0.9 M sucrose. The remaining myelin-depleted cell suspension was blocked for
ten minutes with Fc preblock (CD16/ CD32, BD 553141) on ice and stained for 20 minutes with
antibodies to distinguish brain endothelial cells (CD31*/ CD45"). Brain endothelial cells from 12-
14 month old Thy1-hAPP""S*¢ mice and littermate wild-type control''? mice (pool of 4-6 mice
per group) were sorted into PBS with 0.1% BSA. Nuclei isolation from 4-6 month-old mouse
hippocampi followed protocols adapted from previous studies?®-20°2"%°_Briefly, tissue was
homogenized using a glass douncer in 2 ml of ice-cold EZ PREP buffer (Sigma, N3408) and
incubated on ice for 5 min. Centrifuged nuclei were resuspended in 1% BSA in PBS with 0.2 U
ul”' RNase inhibitor and filtered through a 40 um cell strainer. Cells or nuclei were immediately
counted using a Neubauer haemocytometer and loaded on a Chromium Single-Cell Instrument
(10x Genomics, Pleasanton, CA, USA) to generate single-cell GEMs. The 10x-Genomics v3
libraries were prepared as per the manufacturer’s instructions. Libraries were sequenced on an
lllumina NextSeq 550 (paired-end; read 1: 28 cycles; i7 index: 8 cycles, i5 index: 0 cycles; read
2: 91 cycles). De-multiplexing was performed using the Cellranger toolkit (v3.0.0) “cellranger
mkfastq” command and the “cellranger count” command for alignment to the mouse
transcriptome, cell barcode partitioning, collapsing unique-molecular identifier (UMI) to
transcripts, and gene-level quantification. ~70% sequencing saturation (>20,000 reads per cell)
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was achieved, for a median of ~2,000 genes detected per cell and ~16,500 genes detected in
total. Downstream analysis using the Seurat package (v3)'*° was performed as previously
described®, applying standard algorithms for cell filtration, feature selection, and dimensionality
reduction. Samples with fewer than 1,000 and more than 4,000 unique feature counts, samples
with more than 15% mitochondrial RNA, samples with more than 15% small subunit ribosomal
genes (Rps), and counts of more than 10,000 were excluded from the analysis. Genes were
projected into principal component (PC) space using the principal component analysis
(RunPCA). The first 30 dimensions were used as inputs into Seurat’s FindNeighbors and
RunTsne functions. Briefly, a shared-nearest-neighbor graph was constructed based on the
Euclidean distance metric in PC space, and cells were clustered using the Louvain method.
RunTsne functions with default settings was used to calculate 2-dimensional tSNE coordinates
and search for distinct cell populations. Cells and clusters were then visualized using 3-D t-
distributed Stochastic Neighbor embedding on the same distance metric. Differential gene
expression analysis was done by applying the Model-based Analysis of Single-cell
Transcriptomics (MAST). Significant differentially expressed genes in Thy1-hAPP-"S*¢ BECs
were called by Log (fold change) > 0.15 (absolute value), adjusted P value (Bonferroni
correction) < 0.01. This lowered Log (fold change) was to ensure our claims of limited overlap
with human AD BECs were robust.

GWAS analysis

For calculation of proportional cell type-specific gene expression, we followed the expression
weighted cell type enrichment (EWCE) method described by Skene et al.'*, and used
previously on human snRNA-seq data®. For Alzheimer’s disease (AD) analysis, we compiled a
list of top GWAS risk genes from Lambert et al.'"’, Kunkle et al.'*®, and Jansen et al.”*®, sorted
descending by approximate P-value. Each gene’s expression sums to 1 across the cell types,
with each heatmap cell showing the fraction of total gene expression as determined from EWCE
analysis. The set of 720 AD and AD-related trait GWAS genes were obtained from Grubman, et
al.?°, and using EWCE analysis, the strongest expressing cell type was determined for each
gene. Note that the original list was slightly parsed to 720, as several genes were not detected
as expressed in our dataset.

For analysis across CNS diseases, from the GWAS catalog'®', we obtained GWAS risk
genes for neurological disorders [Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS),
brain aging, multiple system atrophy (MSA), multiple sclerosis (MS), Parkinson’s disease (PD),
and narcolepsy], psychiatric disorders [Attention deficit hyperactivity disorder (ADHD), autism,
bipolar disorder, depression, psychosis, post-traumatic stress disorder (PTSD), and
schizophrenia], and neurobehavior traits [Anxiety, suicidality, insomnia, neuroticism, risk
behavior, intelligence, and cognitive function]. We removed gene duplicates and GWAS loci
either not reported or in intergenic regions and used a P < 9 x 107° to identify significant
associations?. Then, since GWAS signals can point to multiple candidate genes within the
same locus, we focused on the ‘Reported Gene(s) (genes reported as associated by the
authors of each GWAS study). Following gene symbol extraction, we curated the gene set by
(1) removing unknown or outdated gene names using the HGNChelper package (v.0.8.6), (2)
converting remaining Ensembl gene IDs to actual gene names using the packages ensembldb
(v.2.10.0) and EnsDb.Hsapiens.v86 (v.2.99.0), and (3) removing any remaining duplicates. For
each disease, we allocated each of its GWAS risk genes to the cell type that proportionally
expressed it most (EWCE analysis), before tallying this number in both counts and as a
percentage of the diseases total number of GWAS risk genes. Finally, a statistical enrichment of
each overlap against background was calculated using a hypergeometric test with the total
background size set equal to the number of unique genes (21,306).

Immunohistochemistry
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Fresh-frozen control and AD human brain tissue (hippocampus and superior frontal cortex)
adjacent to tissue processed for snRNA-seq was subjected to immunohistochemistry (IHC). 10
pum sections mounted on SuperFrost Plus glass slides were fixed with 4% paraformaldehyde
(Electron Microscopy Services, 15714S) diluted in PBS at 4°C for 15 minutes before
dehydration via an ethanol series or air drying. Sections were blocked in TBS++ (TBS + 3%
donkey serum (130787, Jackson ImmunoResearch) + 0.25% Triton X-100 (T8787, Sigma-
Aldrich)) for 1.5 hours at room temperature. Sections were incubated with primary antibodies at
4°C overnight: mouse monoclonal anti-CD31 (1:100, JC70A, Dako), rabbit polyclonal anti-VWF
(1:100, GA527, Dako), rabbit polyclonal anti-SLC39A10 (1:100, HPA066087, Atlas Antibodies),
rabbit polyclonal anti-ALPL (1:100, HPA007105, Atlas Antibodies), rabbit polyclonal anti-A2M
(1:100, HPA002265, Atlas Antibodies), rabbit monoclonal anti-B-Amyloid (1:500, clone D54D2
XP, CST), and mouse monoclonal anti-Actin, a-Smooth Muscle - Cy3 (1:100, clone 1A4,
Sigma). Sections were washed, stained with Alexa Fluor-conjugated secondary antibodies
(1:250) and Hoechst 33342 (1:2000, H3570, Thermo), mounted and coverslipped with ProLong
Gold (Life Technologies) or VECTASHIELD (Vector Laboratories before imaging on a confocal
laser scanning microscope (Zeiss LSM880). Age-related autofluorescence was quenched prior
to mounting with Sudan Black B, as before'>*®. National Institutes of Health ImageJ software
was used to quantify the percentage of vasculature (CD31) or the predicted DEG SLC39A10
among CD31+ vasculature, following previously described protocols''%2'53_ All analyses were
performed by a blinded observer.

Data Availability. Raw sequencing data is deposited under NCBI GEO: GSE163577. Data is
also available to explore via an interactive web browser:
https://twc-stanford.shinyapps.io/human_bbb.
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Supplemental Figures
Supplemental Figure 1. Characterization of vascular nuclei captured.

a, Total number of nuclei, median number of unique molecular identifiers (UMI), and median number of
genes for each human sample sequenced from hippocampus and superior frontal cortex.

b, Quantification of the median number of genes detected per nuclei in medial frontal cortex and choroid
plexus (n=17 hippocampus and n=8 cortex, two-sided t-test; mean +/- s.e.m.).

¢, Quantification of the median number of genes detected per nuclei in controls and Alzheimer’s disease
(AD) samples in hippocampus and superior frontal cortex (n=8 controls and n=9 AD, two-sided t-test;
mean +/- s.e.m.).
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Supplemental Figure 1. Characterization of vascular nuclei captured.
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Supplemental Figure 2. Enhanced representation of brain vascular cells.

a, tSNE and UMAP projections of recent snRNA-seq studies?®?® on post-mortem AD samples, capturing a
relatively low representation of cerebrovascular cell types.

b, ¢, Quantification of the number (b) and proportion (c) of cerebrovascular cell types captured via the
method introduced here compared to recent snRNA-seq studies?®2°.

d, Quantification of the proportion (left) and number (right) of captured cell types by control and AD
patients (n=8 controls and n=9 AD, two-sided t-test; mean +/- s.e.m.).

e, Quantification of the proportion of captured cell types per patient.
f, For patients with both hippocampus and superior frontal cortex profiled, quantification of the proportion

of cerebrovascular cell types captured in each region (n=4 controls and n=4 AD, two-sided t-test; mean
+/- s.e.m.).
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Supplemental Figure 2. Enhanced representation of brain vascular cells.
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Supplemental Figure 3. Cell type-specific gene markers to annotate human cerebrovascular cells.

a, Discovery of the top cell type-specific marker genes across the major classes of cells captured. The
color bar indicates gene expression from low (blue) to high (yellow).

b, Validation of cell type annotations and confirmation of minimal doublet contamination using established
cell type-specific markers.
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Supplemental Figure 4. Perivascular immune cell identity and astrocyte heterogeneity.

a, Expression of top gene markers for various T cell subtypes (top), and quantification of their expression
as a module (bottom)'4. Brain perivascular T cells exhibit highest expression of markers corresponding to
CD8 cytotoxic and CD4 Naive/Central memory (NV/CM) T cells.

b, UMAP projection of captured myeloid cells, forming two distinct clusters corresponding to parenchymal
microglia and perivascular macrophages. Example marker genes listed. Positive perivascular
macrophage staining denoted by arrowheads.

¢, Immunohistochemical validation of microglial and perivascular macrophage markers. Scale bar = 50
microns. Images from the Human Protein Atlas (http://www.proteinatlas.org)’®'4.

d, UMAP projection of captured astrocytes, forming two distinct clusters, and split by brain region.
Example marker genes listed.

e-f, Quantification of astrocyte cluster 0 (b) and 1 (c) frequency in the cortex and hippocampus (n=8
cortex and n=17 hippocampus, Mann-Whitney t-test; mean +/- s.e.m.).

g, Immunohistochemical validation of the brain region-specific astrocyte marker TENM4. Scale bar = 50
microns. Images from the Human Protein Atlas (http://www.proteinatlas.org)’®'4.
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Supplemental Figure 5. Examples of predicted human-enriched vascular-expressed genes
confirmed in situ.

Immunohistochemical confirmation of genes predicted to be enriched or specific to human
cerebrovascular cells compared to mouse (isolated mouse nuclei and per Vanlandewijck, et al., 2018)%,
in terms of overall expression or zonation. In parenthesis is the cell type predicted to be uniquely or
exhibiting enriched expressed in human over mouse. Scale bar = 50 microns. Images from the Human
Protein Atlas (http://www.proteinatlas.org)’>4°,
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Supplemental Figure 6. Comparison of protein transcytosis and small molecule transport genes
in mice and human BECs.

Mouse and human brain endothelial cell expression of genes mediating protein transcytosis (a) and small
molecule influx and efflux (b).
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Supplemental Figure 6. Comparison of protein transcytosis and small molecule transport genes in mice and human BECs.
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Supplemental Figure 7. BBB expression of species-divergent genes relevant to disease.

a, Brain vascular expression of genes relevant to SARS-CoV-2 brain entry, as summarized in ladecola, et
al. 2020°%.

b-c, Expression of the immuno-oncology target CD719 and its chaperone CD87 across all 143,793 nuclei
captured in this study (b) and in human adult brain pericytes and smooth muscle cells (c).

Note: cells with any finite expression are ordered to the front to ensure all expression is visible, but this
carries the potential to visually overestimate average expression

d, Expression of the mouse perivascular fibroblast-like gene Spp1 is instead specifically expressed in
human myeloid cells and oligodendrocytes (SPP1, top), with corroborating data from an independent
dataset®® (bottom).
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Supplemental Figure 7. BBB expression of species-divergent genes relevant to disease.

a Brain vascular expression of genes relevant to SARS-CoV-2 brain entry
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Supplemental Figure 8. Brain endothelial and mural cell zonation and subpopulations.

a, UMAP projection of captured brain endothelial cells, organizing by arteriovenous zonation. Bottom, tip
cell markers expressed in the tip-like/ proteostatic EC cluster.

b, Validation of brain endothelial cell zonation clusters using established zonation markers®. Violin plots
are centered around the median, with their shape representing cell distribution.

¢, d, As in (a-b) but for pericytes and smooth muscle cells. Note that the anatomical locations of pericyte
0 and 1 have not yet been determined.

e, Immunohistochemical validation of ACTAZ2 (a-SMA) expression in human smooth muscle cells and less
so in capillary pericytes. A denotes arterial and C denotes capillary. Arrowheads specify capillary
pericytes expressing ACTA2. Scale bar = 50 microns.

f, g, As in (a-b) but for perivascular fibroblast-like cells, as recently discovered in mice®.
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Supplemental Figure 8. Brain endothelial and mural cell zonation and subpopulations.
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Supplemental Figure 9. Validation of brain endothelial and mural cell zonation markers.

a-b, Immunohistochemical validation of zonation and cell subtype markers in brain endothelial (a) and
mural cells (b). Scale bar = 50 microns. Images from the Human Protein Atlas
(http://www.proteinatlas.org)’>-140.

¢, Mouse expression®” of example transport genes observed in human T-pericytes, indicating an
evolutionary divergence.

d, Expression of top vSMC markers®” across both T- and M-pericytes.
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Supplemental Figure 9. Validation of brain endothelial and mural cell zonation markers.
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Supplemental Figure 10. Zonation markers in mice and humans.

a-c, Comparison of the zonal specificity of genes in arterial (a), capillary (b), and venous (c) cells. Axis plot a
specificity score, as defined in the Methods. For example, specificity score for capillaries =
avg(logFC(cap/ven), logFC(cap/art))

d-e, Immunohistochemical validation of capillary expression in human brains of the mouse venous-specific
marker VWF (d) and CA4 (e), with similar patterns observed across multiple primary antibody clones. Scale
bar = 100 microns. Images from the Human Protein Atlas (http://www.proteinatlas.org)’®14.
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Supplemental Figure 10. Zonation markers in mice and humans.
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Supplemental Figure 11. Extracellular and intercellular interactions in the human BBB.

a, Brain vascular expression of genes encoding extracellular matrix proteins, as summarized in Baeten &
Akassoglou, 2012'%5,

b, UMAP of fibroblasts colored by brain region of origin (left). Quantification of perivascular and
meningeal fibroblast frequencies from each brain region (right, Mann-Whitney test; mean +/- s.e.m.).

c, Patterns of outgoing signals from cerebrovascular cells, as identified by ligand-receptor mapping
(permutation test, CellChat®?).

d, Circle plot showing the number of statistically significant intercellular signaling interactions among
cerebrovascular cells for the PDGF and VEGF family of molecules (permutation test, CellChat®®).
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Supplemental Figure 11. Extracellular and intercellular interactions in the human BBB.

a Expression of genes encoding ECM proteins across cerebrovascular cell types
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Supplemental Figure 12. Proteins specific to perivascular fibroblast-like cells co-localize with
human brain capillaries.

a, CYP1B1 expression specifically in mouse®” perivascular fibroblast-like cells.
b, Immunohistochemical localization of fibroblast-derived CYP1B1 with larger diameter arterial and
venous (A/V) vasculature as well as capillaries (C) in the human brain. Scale bar = 50 microns. Images

from the Human Protein Atlas (http://www.proteinatlas.org)’®14°.

c-f, As in (a-b) but for other fibroblast-enriched genes, COL15A1 (c-d) and THBS1 (e-f).
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Supplemental Figure 12. Proteins specific to perivascular fibroblast-like cells co-localize with human brain capillaries.

a CYP1B1 in mouse fibroblast-like cells (Vanlandewijck, et al. 2018) b cypriB1 protein protein in han brains
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Supplemental Figure 13. Confirmation of AD pathology.

a, Immunohistochemistry with anti-B-amyloid antibody (D54D2, white), Thioflavin S (green), and Hoechst
(blue) in the hippocampus of control and AD patients. Scale bar = 40 microns.

b, Quantification of B-amyloid immunostaining in (a) for overall f-amyloid (n=4 controls and AD, two-sided
t-test; mean +/- s.e.m.).

¢, As in (b) but for cored and neuritic -amyloid plaques (n=3 controls and AD, two-sided t-test; mean +/-
s.e.m.).
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Supplemental Figure 13. Confirmation of AD pathology.
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Supplemental Figure 14. Vascular cell-type specific perturbations in ApoE4 carriers.

a, Differentially expressed gene (DEG) counts for each cell type in ApoE4 carriers (n =5 ApoE3/3, n = 11
ApoE3/4 or ApoE4/4): arterial (Art), capillary (Cap), venous (Vein), pericyte (Peri), perivascular fibro blast-
like cell (P. fibro), and smooth muscle cell (SMC). The intensity of the blue color and the size of the
squares are proportional to entry values.

b, Matrix layout for intersections of ApoE4 DEGs shared across and specific to each cell type. Circles in
the matrix indicate sets that are part of the intersection, showing that most DEGs are cell type-specific.

¢, Immunohistochemical validation of the predicted upregulated anti-inflammatory DEG SLC39A10 in
venous BECs of ApoE4 carriers. Scale bar = 50 microns (n = 4 ApoE3/3 and ApoE4 carriers, nested two-
sided t-test; mean +/- s.e.m.).
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Supplemental Figure 14. Vascular cell-type specific perturbations in ApoE4 carriers.
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Supplemental Figure 15. Re-evaluation of putative cell type-specifically expressed AD GWAS
genes.

a, GWAS genes found to be expressed cell-type specifically among cells captured using the conventional
nuclei isolation process, from Grubman, Chew, Ouyang, et al. 2019%°.

b, As in (a) but now evaluated for cells captured with the new nuclei isolation process. Several GWAS
genes believed specifically expressed in microglia are also expressed in vascular cells (asterisks).

¢, As in (a-b), but plotting differential expression of these GWAS risk genes amongst vascular cells in AD.
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Supplemental Figure 15. Re-evaluation of putative cell type-specifically expressed AD GWAS genes.
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Supplemental Figure 16. Brain region- and species-specific expression of top AD GWAS genes.
a, Heterogeneous expression of AD GWAS genes across T- and M-pericyte subtypes.

b, RNA-seq data of the predicted perivascular T cell-specific AD GWAS genes EPHA1 and ABCA7 in an
independent dataset®®, corroborating minimal expression across resident/ parenchymal brain cells.

¢, Heatmap comparing expression patterns of top AD GWAS genes in the hippocampus and superior
frontal cortex: e.g., several microglia-expressed GWAS genes like APOE, MS4A4A, and TREM?2 are
more highly expressed in hippocampal compared to cortical microglia/ macrophages.

d, Expression of top AD GWAS genes in mouse®’. Asterisks indicate vascular cell types where gene is
also strongly expressed in humans (Fig. 5a-b).
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Supplemental Figure 16. Brain region- and species-specific expression of top AD GWAS genes.
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Supplemental Figure 17. Brain vascular and perivascular expression of major AD GWAS genes.

a, Expression of Alzheimer’s disease (AD) and AD-related GWAS risk genes (from Grubman, Chew,
Ouyang, et al. 2019)?® across human vascular cells.

b, Enriched biological pathways amongst AD and AD-related trait GWAS genes expressed in each cell
type.

¢, For each cell type, the top 10 most specifically expressed AD and AD-related trait GWAS genes.
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Supplemental Figure 17. Brain vascular and perivascular expression of major AD GWAS genes.
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