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Multi-Ancestry Meta-Analysis yields novel genetic discoveries and ancestry-
specific associations
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ABSTRACT

We present a new method, Multi-Ancestry Meta-Analysis (MAMA), which combines
genome-wide association study (GWAS) summary statistics from multiple populations
to produce new summary statistics for each population, identifying novel loci that would
not have been discovered in either set of GWAS summary statistics alone. In
simulations, MAMA increases power with less bias and generally lower type-1 error rate
than other multi-ancestry meta-analysis approaches. We apply MAMA to 23 phenotypes
in East-Asian- and European-ancestry populations and find substantial gains in power.
In an independent sample, novel genetic discoveries from MAMA replicate strongly.
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INTRODUCTION

The past decade has seen the discovery of hundreds of thousands of credible
genetic associations for complex traits and diseases!. Many of these discoveries were
identified by meta-analyzing genome-wide association studies (GWAS)24 conducted in
multiple cohorts, boosting statistical power relative to GWAS in any one cohort. GWAS
summary statistics are now facilitating progress in many areas, including novel drug
developments® and disease prediction for potential clinical application?.

Unfortunately, GWAS research to date has overwhelmingly been conducted in
European-ancestry samples. Consequently, GWAS estimates for European populations
are substantially more precise than those for other populations, potentially generating
unequal gains from the scientific advances. Clearly, correcting these imbalances requires
intensifying data-collection efforts in non-European populations89, and a number of
promising efforts are underway'o-14. However, it will take years before levels of precision
are reached comparable to those currently available for European-ancestry studies. Even
then, for many traits, further increases in precision would almost certainly still be
valuable.

To complement the current efforts to improve the precision of GWAS effect-size
estimates for non-European-ancestry populations, we have developed a new method,
Multi-Ancestry Meta-Analysis (MAMA), that efficiently shares information across
populations via cross-ancestry GWAS meta-analysis. Currently, researchers who wish to
meta-analyze summary statistics from different-ancestry cohorts must confront two well-
known obstacles. First, the populations may differ in allele frequencies and linkage
disequilibrium (L.D) patterns. Second, the effects of SNPs may not be identical across the

two populations. Both obstacles induce heterogeneity in marginal (i.e., GWAS) effect sizes
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between populations. Consequently, a naive meta-analysis of summary statistics that
ignores these obstacles would generally result in biased estimates for both populations.

In different contexts, the two obstacles above have each been addressed separately
in previously developed methods. For example, POPCORN directly models allele-
frequency and LD differences to estimate genetic correlation between populations?s.
MTAG accounts for heterogeneity of marginal effect sizes across GWAS summary
statistics in a one-population, multi-trait setting'¢. MAMA adapts and combines strategies
from both methods, accounting for differences between populations in conditional
effects, allele frequencies, and LD.

Several methods have been developed for cross-ancestry meta-analysis!7—21,

Compared to these, MAMA has a unique combination of attractive features:

6)) it only requires GWAS summary statistics and a reference panel for each
population;

(ii))  under plausible assumptions discussed below, it is the best linear unbiased
estimator, but also appears robust under alternative assumptions;

(iii) it has a linear, closed-form solution, ensuring fast computation time.

For MAMA'’s intuition, first consider an inverse-variance-weighted (IVW) meta-
analysis!® applied to GWAS summary statistics with no heterogeneity (e.g., each GWAS
sample is from the same population). In such a case, IVW is unbiased and efficient.
However, if there is heterogeneity in the marginal effect sizes between populations, then
the estimate from the alternate ancestry needs to be adjusted to avoid bias, and the

relative weight applied to the alternate ancestry’s estimate must be reduced to be
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efficient®. Before meta-analyzing, MAMA estimates the heterogeneity across ancestries
for each SNP and optimally adjusts the estimates and relative weights on the alternate
ancestries.

To evaluate MAMA, we apply it to GWAS summary statistics for a wide range of
anthropometric, health, and behavioral phenotypes in populations with European and
East-Asian ancestries. MAMA identifies many new loci that were not found using either
of the single-ancestry GWAS results. For some phenotypes, we calculate that MAMA
generates increases in power approximately equivalent to an increase of hundreds of
thousands of individuals in the East Asian discovery sample. In comparisons of the signs
of estimates from MAMA-identified loci to the signs of GWAS estimates from
independent samples, MAMA'’s replication record is strong.

For a less technical description of the paper and of how MAMA results should—
and should not—be interpreted, see the Frequently Asked Questions (FAQs in
Supplementary Information).

RESULTS
The MAMA Framework

MAMA is an extension of the related method, MTAG?®, adapting its assumptions
to the multi-ancestry context and generalizing it to allow for differences across ancestries.
To make the relationship clear, our derivation of MAMA is parallel to Turley et al.’s®
derivation of MTAG. We highlight where the derivations differ, due to modeling the
conditional effects of SNPs (rather than marginal associations of SNPs) and differences
in allele frequencies and LD, all of which are crucial for cross-ancestry meta-analysis.
More details are in the supplementary materials.

Background. To begin, let y, ; denote the phenotype of interest for individual i in


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

population p, normalized to have mean zero within its population. Let x,,; denote the
vector of genotypes for the set of all SNPs in the reference panel, including unmeasured
SNPs. We assume that genotypes are mean centered within their population, but all of
our results below generalize to any assumption about the genotype units used (e.g., raw
allele counts, standard deviations of allele counts), but we assume that genotypes are
mean centered within their population. Let , = Var(x,,;) denote the variance-covariance
matrix (i.e., LD matrix) of the genotype vector in population p.

We use an additive model: y,,; = x,,;b,, + &, ;, where b,, is the vector of conditional

pis
effects in population p. We treat the effects across each of P populations {b,, ..., bp} as
random and allow SNPs’ effects to be correlated across populations.

MAMA'’s key assumption is that the effects have constant (co)variance across

SNPs: Var(by j, ..., bp;) = w for all SNPs j, where w is a P x P positive-semidefinite

matrix. We call this the “homogeneous-w” assumption. A special case is perfect genetic
correlation, where the conditional effects of SNPs are equal or proportional across
populations. As we discuss below, perfect genetic correlation may be reasonable to
assume in some cases (as we do in our real-data analysis). However, MAMA allows for the
genetic correlation and variances to be any values, as long as they are the same across
SNPs. MAMA’s key assumption differs from MTAG’s key assumption because MTAG
assumes constant (co)variance of marginal effects, whereas MAMA assumes constant
(co)variance of conditional effects (conditioning on all SNPs in the reference panel).
MAMA’s assumption is more plausible in the multi-ancestry context because the

distribution of marginal effects should depend on LD structure.

The GWAS estimate for SNP j in population p, [?p, j» 1s an estimate of the marginal
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association. The estimand of MAMA is similarly the marginal association f3, ;. As inputs,
MAMA uses (i) the vector of GWAS effect-size estimates for SNP j across populations, f;,
and their standard errors across multiple populations and (ii) an LD matrix r,, for each

population from a reference panel. For the reference panel, in our applications, we use
data from the 1000 Genomes Project22, but any reference panel corresponding to the
ancestries of the GWAS samples would also work.

Summary of MAMA Derivation. To define the two matrices needed for the
estimator, note that the pth element of B; is a function of the population p’s true
conditional SNP effects b,,, LD matrix r,, and error:

Bip = Zk%bnk T épj (1)
where 1, ;. is the (j, k)" element of r,,, b,, , is the kth element of b, and e,, ; includes
sampling variation and confounding biases. Thus, the vector 8 ; can be decomposed into
the true marginal association 8; plus error: B j = B + e;. The two matrices we need are
the variance-covariance matrix of the true marginal associations conditional on the LD
matrices, denoted Q; = Var(ﬂ i, .., rp}), and the variance-covariance matrix of the
error, denoted £; = Var(e;|{ry, ..., 5}). Because samples drawn from different

populations do not overlap, X; is diagonal.

MAMA is a Generalized Method of Moments (GMM) estimator23. It is defined by

. = Qi .
a vector of P moment conditions, E [B ;= <ﬁ) By il{rs, ..., Tp}| = 0, where Q.,, ; is the pt

column of Q; and Q,,,, ; is the (p, p)t element of Q;. Each moment condition is a necessary
condition for a best linear unbiased estimate of the marginal association for SNP j in

population p. The MAMA estimator is the efficient GMM estimator based on these
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moment conditions:

-1

! !
. /Q %, ):j>
pp i\ Lpp,j

’ ’ -1
p.j fﬂj p,j%p,j s ) Lp,j
Qpp,j\ Qpp,j Qpp,j

B;. (2)

BMAMA,p, j=

Two special cases may help with intuition. First, suppose conditional effect sizes
are equal in all populations, and consider a SNP where LD patterns are identical between
populations. Then all elements of Q; are equal, and equation (2) specializes to the formula
for inverse-variance-weighted (IVW) meta-analysis: fuamap; = (1'Z7'B8;)/(1'57'1),
where 1 is a vector of ones. Second, suppose conditional effect sizes are uncorrelated
across populations or LD patterns are uncorrelated at a particular SNP. Then Q; is
diagonal, and equation (2) sets each population’s MAMA estimate equal to the
population’s GWAS estimate: fyamapj = Bp,)-

More generally, when conditional effect sizes and/or LD patterns are imperfectly
correlated, MAMA produces estimates in between these two special cases. MAMA is
unbiased because it optimally modifies the GWAS estimates from other populations
before meta-analyzing them with population p: MAMA deflates another population’s

GWAS estimates when the correlation with population p’s GWAS estimates is smaller and

!

. . Q.
inflates them when the other population’s heritability is smaller than p’s (this is the Q—p"'
pp.J

term in the numerator of equation (2)). MAMA has the minimum variance among linear
unbiased estimators because, in addition to putting lower relative weight on estimates
with greater sampling variance (as in IVW meta-analysis), it puts lower relative weight on
estimates with greater heterogeneity in marginal effect sizes (the term in the inverse in

the numerator).
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MAMA’s moment conditions and estimator closely resemble MTAG’s. Like MTAG,
MAMA is asymptotically unbiased and has lower expected mean squared error than that
of the original GWAS summary statistics. Under the homogeneous-w assumption, MAMA
is the best linear unbiased estimator (see Supplementary Note).

Estimating 2; and X;. Above, we assume that Q; and X; are known. In practice, we

estimate them using an approach similar to LD score regression (LDSC)24 and

POPCORN?5, From equation (1),

Boj = T2 b, . (3)

Tpjj
The jth diagonal element of Q; is the variance of B, ;: O, = Sie(Tyjx/T,i;)" Var(by). By

where ¢;,, =

the homogeneous-w assumption, w,, = Var(b, ). Thus, Q,, ; = wy,? oD

j.pp>
Y (1o,ji /) j)z is closely related to the LD score used in LDSC.
The (p, q)™ off-diagonal entry of Q; is the covariance between f,, ; and f, ; for

?

i pq» Where @

populations p and g. Similarly as for the diagonal entries, Q w.

pa.j = Wpq pa =

Cov(bp . by ) is the covariance of conditional effect sizes between population p and g and
ivq = 2k(rpjxrain)/(1pjjTq ;) 1S @ cross-ancestry generalization of an LD score. The LD
score ¢, is similar to that used in POPCORN'5. Since the variance of the error, Z;, is the
residual variance in 8 ; after accounting for ;, it can be estimated using the LDSC
intercept.

Using these relationships, we estimate the elements of Q; and X;. First, we calculate

LD scores ¢;,, and cross-ancestry LD scores £;,, using a reference panel. Then, we

regress ,[?,f ; onto the vector of single-ancestry LD scores, ¢; ,,,,, and we regress f3,, ; 3, ; onto

the vector of ¢;,,,. The slope coefficients of these regressions are consistent estimates of
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wp, and w,,, respectively, and the intercept is a consistent estimate of the corresponding
element of ;. Using these estimates of £} ,,,, ¢, €} yq.¢» Wpp, and w, 4, we construct the sample
analog of Q;, which is a consistent (method of moments) estimator for Q;. Finally, we
substitute our estimates of ; and £; into equation (1) to obtain MAMA estimates.

This procedure treats estimates of Q; and X; as if they were estimated without
error. This has two important implications. First, MAMA standard errors may be too
small. Because the relevant aspects of MAMA are identical to those of MTAG, based on
the simulations described in Turley et al.16, we anticipate this effect to be negligible as
long as fewer than five populations are analyzed at once and as long as the reference
panel used to construct LD scores is of sufficiently similar ancestry to the GWAS sample.

Second, when the GWAS for one or more populations is low powered, estimates
of w,, may be very noisy, leading to bias and/or loss of statistical power. In such cases,
it may increase precision to assume perfect genetic correlation between the populations

(i.e., wpq = \/wppwqq-) When perfect genetic correlation is assumed, it is particularly

important to verify the robustness of novel findings. Specifically, we recommend both
replicating novel results and validating that the results are robust to assuming lower
levels of genetic correlation.

LD Correlation. The LD scores used by MAMA can be combined to produce a
metric of the similarity of LD patterns local to a certain SNP for a pair of populations. This

metric, which we call the LD correlation, is

£

irq
7 e
LDra. Yipptiaq (4)

Whenr, ;, = r, i for all k for some SNP j, then ¢; ,, = ¢;

ipp = tjqq and therefore rp ,q i =

1. Alternatively, if 7, ;. is uncorrelated with r, ;. across SNPs k for some SNP j, then

10
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Tippq,; = 0. As such, 775 ., ; may be thought of as a measure of the correlation of the LD

patterns local to SNP j. As discussed below, the performance of MAMA and other cross-
ancestry meta-analysis methods differs across SNPs with different LD correlations.
Comparison to other methods and simulation

Several existing methods have been used to conduct GWAS meta-analysis across
populations, including fixed-effect IVW meta-analysis (FE, e.g., 17:18), the modified
random effects meta-analysis approach of Han and Eskin (RE2)9, Meta-Analysis of
Transethnic Association studies (MANTRA)2°, and Meta-Regression of Multi-Ethnic
Genetic Association (MR-MEGA)2t. These approaches rely on different assumptions and
have varying computational intensity. For example, FE is computationally fast but
assumes that the marginal effect of each SNP is the same across populations. RE2,
MANTRA, and MR-MEGA model cross-population heterogeneity of marginal effects,
but none incorporate information on LD differences. MANTRA is substantially more
computationally intensive than any of these other methods, and MR-MEGA can only be
run on three or more populations at once.

We conducted simulations to compare MAMA to (i) a standard single-ancestry
GWAS, (ii) FE, (iii) MTAG, (iv) RE2, (v) MANTRA, and (vi) MR-MEGA. MTAG was not
developed for cross-ancestry meta-analysis, but we include it because it accounts for
heterogeneity across GWAS summary statistics.

We assessed three metrics of performance: bias, mean y? statistic, and type-1
error rate. To evaluate bias, we orient each SNP such that the true marginal effect is
positive and report the mean difference between the estimated effect size and the true
marginal effect. For the type-1 error rate, we report the fraction of SNPs with null

marginal effects that have a P value of less than 0.05. MANTRA, which is a Bayesian

11
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method, does not report a standard error, so we cannot calculate a standard mean y?
statistic or type-1 error rate. We therefore use the posterior standard deviation as an
imperfect proxy for the standard error to calculate these performance metrics. Because
the bias, mean y? statistic, and type-1 error rate are a function of the LD correlation,
T1p,pq,j» We evaluate these performance metrics in five LD correlation bins.

We conducted two- and three-population simulations. The summary statistics in
our simulations are based on estimated LD patterns of the AFR, EAS, and EUR
subsamples from the 1000 Genome Project data22. We assess the bias and mean y?
statistic of each method in data simulated under an infinitesimal genetic architecture
that satisfies MAMA’s homogeneous-w assumption. We test the type-1 error rate with
data simulated under a spike-and-slab model, where some SNPs are null in the EAS
population but non-null in the other population(s). For the SNPs that are null only in
the EAS population, this model violates the homogeneous-w assumption. We use these
SNPs to assess the robustness of each method when this assumption is violated. For
more details, see the Online Methods.

Figures 1-3 show the results of the three-population simulations for EAS;
Supplementary Figures 1-3 show the full three-population results, and Supplementary
Figures 4-6 show the results of the two-population simulations. Bias estimates for each
method and LD correlation bin are in Figure 1. Across the three populations, only GWAS
and MAMA have low bias for the entire LD correlation spectrum. MTAG estimates are
biased at high and low LD correlation levels. All other methods have substantial bias
toward zero, with the exception of MR-MEGA in the AFR population. These estimates

have low bias because MR-MEGA puts little weight on the EAS and EUR summary

12
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statistics, so little bias can be introduced. MANTRA has the largest bias, but it is a
Bayesian estimator so shrinkage toward zero is expected.

Figure 2 shows the mean y? statistic of each method. The patterns are the same
for the EAS and EUR populations. In our simulations, MANTRA, RE2, FE, and MR-
MEGA generally have a greater mean y? statistic than MAMA, and MTAG tends to have
a comparable mean y? statistic. However, as shown in Figure 1, these gains in power
come at the cost of substantial bias.

Figure 3a reports the type-1 error rate of SNPs that are null in all three
populations. The type-1 error rate is controlled if it is less than 0.05. MANTRA is the
only method that has an uncontrolled type-1 error rate, but this just means that the
posterior standard deviation is not a good proxy for the standard error of MANTRA
estimates. Both MAMA and MTAG have a type-1 error rate less than 0.05. That is
because both methods include a stratification correction (even though there is no
stratification in the simulation), which slightly inflates the standard errors.

Figure 3b reports the type-1 error rate of SNPs that were null in the EAS
population but non-null in the AFR and EUR populations, a violation of the
homogeneous-w assumption. For these SNPs, MAMA has an uncontrolled type-1 error
rate, especially for SNPs with a high LD correlation. However, MANTRA, RE2, and FE
each have even higher type-1 error rates. MR-MEGA has higher type-1 error rates than
MAMA in all but the highest LD correlation bin. In this scenario, MTAG has lower type-
1 error rate across most of the LD correlation spectrum.

In summary, although some methods have greater statistical power (as measured
by the mean y? statistic) than MAMA, MAMA generally is the least biased across the LD

correlation spectrum. Furthermore, although all methods considered except MANTRA

13
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control the type-1 error rate when the homogeneous-w assumption holds, MAMA is
more robust to a plausible violation of this assumption than all other methods except
MTAG.
Application in Real Data

We applied MAMA to GWAS summary statistics for 23 phenotypes that were
available from the China Kadoorie Biobank (CKB) and/or the Biobank Japan (BBJ) and
for which we had access to comparable phenotypes in the UK Biobank (UKB). In the
CKB and BBJ cohorts, we restricted our sample to those classified as having EAS
ancestries; in the UKB cohort, we restricted our sample to those classified as having
EUR ancestries. The complete list of phenotypes and cohorts we considered are in
Supplementary Table 2. For each phenotype, each cohort is split into discovery and
replication samples, and separate GWASs are run in each sample. Sample and SNP
filters used by each cohort are in Supplementary Tables 3 and 4.

A~ ~

The LD score regression estimates, &,,, @44, and @,4 yield an estimator of the
genetic correlation between populations p and q: @,4/,/ @,,®4,.- When heritability is low

and sample size is small, the resulting estimate can be noisy and often nonsensical. For
example, the estimated EAS-EUR genetic correlation for hematocrit is 3.4, and the
average estimate across phenotypes is 1.4 (See Supplementary Table 1). Because the
estimates are noisy (and not inconsistent with perfect genetic correlation), we impose
perfect genetic correlation but allow for differences in heritability across populations
(see Online Methods). Later, we explore the robustness of our results to alternative
assumptions.

Before summarizing results across all phenotypes, we illustrate the performance
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of MAMA using two phenotypes: BMI, which has a smaller difference in sample sizes
across populations, and educational attainment, which has a larger difference. For BMI,
we use GWAS summary statistics from Biobank Japan and the China Kadoorie Biobank
(combined N = 188,613) and the UK Biobank (IN = 350,011). For educational attainment,
we use summary statistics from the China Kadoorie Biobank (IV = 42,435) and from the
EUR-based GWAS meta-analysis reported in Lee et al.25 except omitting our UKB
replication sample from the meta-analysis (combined N = 1,037,282). For brevity, we
focus our discussion on the gains from MAMA in the EAS population; results for the EUR
population are in the Supplementary Figures.

Figures 4-5 display Manhattan plots corresponding to the EAS GWAS and MAMA
summary statistics. For both phenotypes, MAMA generates large increases in statistical
power. In the GWAS of BMI in the EAS sample, we find 94 lead SNPs; using MAMA, we
find 201. We categorize each MAMA lead SNP as (i) being the same as a genome-wide-
significant SNP from any of the input GWAS, (ii) being in LD with a genome-wide-
significant SNP from either of the input GWAS, or (iii) being (approximately)
uncorrelated with any genome-wide significant SNP in either input GWAS. We refer to
SNPs in group (iii) as “novel lead SNPs.” By this definition, of the 201 lead SNPs, 56 are
novel. In order to obtain an increase in the mean y? statistic equivalent to that observed
in the EAS MAMA summary statistics, we would have to increase the GWAS sample size
from 188,613 to 282,048 individuals (see Online Methods). For educational attainment,
where the sample-size difference is starker, the EAS GWAS contains no genome-wide
significant SNPs, but the MAMA results identify 105 independent loci. Six of these loci
are novel by our definition above. Attaining the same mean y? statistic in an EAS-ancestry

GWAS as we observe in the MAMA results would require 542,873 individuals, compared
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to the 42,435 individuals available in this study.

To address the concern that our assumption of perfect genetic correlation could
lead to false discoveries, we validate the robustness of our results to alternate
assumptions. When we assume a cross-ancestry genetic correlation of 0.9, we find that
179 out of 201 lead SNPs for BMI and 80 of 105 lead SNPs for educational attainment
remain genome-wide significant. Out of the 56 novel lead SNPs for BMI and 6 for EA,
48 and 3 remain genome-wide significant, respectively.

We also address concerns about false discoveries with a replication analysis. In
our independent EAS-ancestry holdout sample, MAMA-identified lead SNPs for BMI
have inflated test statistics and have concordant signs with the MAMA associations
more often than would be expected by chance if all MAMA lead SNPs were truly null.
This is seen in Figures 5-6, which show QQ plots of the lead SNPs identified by MAMA
but estimated in the EAS-ancestry replication sample. For BMI, 192 of the 201 lead
SNPs have a concordant sign between the MAMA and replication samples (P <
1.11 x 1071¢). Among the novel lead SNPs (i.e., those not in LD with the lead SNPs
identified in either the EAS or the EUR GWAS), 54 out of 56 SNPs have a concordant
sign (P = 2.22 x 10~1*; see Panel B). For educational attainment, 71 out of 105 lead
SNPs have a concordant sign (P = 1.95 x 10™*). A test of concordant signs for the novel
lead SNPs is not well powered because there are only 6. This low power is reflected in
the sign-test P value of 0.891. Overall, however, these results, together with the
robustness of lead SNPs at lower assumed levels of genetic correlation, lend credibility
to the loci discovered by MAMA.

Table 1 contains a summary of results for all phenotypes tested. The patterns

observed for the two example phenotypes are also present overall. The average increase
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in effective sample size of the MAMA summary statistics in the EAS population is 183,303
individuals. Across all phenotypes we find 3,257 lead SNPs for the EAS population, 359
of which are novel (i.e., are not identified in the GWAS results for either the EAS or EUR
population). Of these 359 novel SNPs, 303 remain genome-wide-significant assuming a
genetic correlation of 0.9 instead of 1 (See Supplementary Table 5). Finally, in a series of
42 sign tests (21 phenotypes each with 2 ancestries), the novel MAMA loci replicate with
Pvalues less than the Bonferroni-adjusted threshold of 0.05/42 in 38 cases. Overall, these
results provide reassuring evidence that MAMA identifies robust associations.
DISCUSSION

Substantial undersampling of non-European-ancestry individuals has resulted in
disparities in the value of the genetics research conducted during the GWAS era. There is
broad agreement that more genome-wide data should be gathered from
underrepresented populations. To complements these data-gathering efforts, here we
developed a method for cross-ancestry meta-analysis, MAMA, that efficiently leverages
existing European-ancestry GWAS summary statistics to add information to GWAS
summary statistics from other ancestry populations.

Like all tools, MAMA has strengths and limitations. We emphasize four limitations
and interpretational caveats.

First, MAMA may produce spurious results if some SNPs affect the phenotype of
interest in one population but not the other. That said, our simulation results suggest that
MAMA is more robust (with respect to the Type-1 error rate) for such SNPs than other
methods we considered.

Second, if the empirical estimates of £2; are biased or imprecise, MAMA will

generally have lower power to detect associations, and MAMA estimates may be biased.
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There are two primary reasons estimates of £; may be poor: (i) the reference sample is
too small or is not representative of the corresponding GWAS sample or (ii) the GWAS
sample size is too small. Reason (i) will lead to biased estimates of ;. Therefore, we
recommend limiting MAMA analyses to summary statistics from populations with a large,
representative reference sample available. Reason (ii) will lead to imprecise estimates of
0;. Therefore, if a large GWAS sample is not available, we recommend that users fix the
genetic correlation between populations to 1 but check which novel loci remain significant
when lower genetic correlation values are assumed.

Third, the gains from MAMA are not uniform genome-wide; increases in power
will be larger for SNPs that have more similar LD structure between populations26. As a
result, MAMA is more likely to miss genetic signal that is concentrated in regions of high
LD variability across populations.

Finally, although a polygenic predictor based on MAMA-generated weights for
population j should generally outperform a polygenic predictor derived from population
J’'s GWAS summary statistics alone, MAMA is not designed as a prediction tool. The
unbiasedness of MAMA estimates is a strength for gene discovery, but it is a limitation
for prediction. Methods that generate biased estimates but less sampling variance—
including standard, inverse-variance-weighted meta-analysis of cross-ancestry GWAS
summary statistics, not taking into account LD and other population differences—can
outperform MAMA in prediction accuracy. Exploring optimal ways to use GWAS
summary statistics from European-ancestry populations to improve polygenic prediction
in non-European-ancestry populations is an active and important area of research27:28,

We have shown that MAMA can be a useful tool for multi-ancestry genetics

research. In our simulations, MAMA did not always yield the greatest gains in reported
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statistical power, but we consistently found that MAMA estimates were less biased than
other methods and more robust to violations of key assumptions. We anticipate that
MAMA estimates will prove especially valuable when it is important to have
approximately unbiased estimates of SNP associations. For example, many methods for
fine-mapping29, partitioning heritability3°-31, and biological annotation32:33 depend on

reliable estimates of effect sizes.

DATA AVAILABILITY

For each phenotype that we analyze, we report GWAS and MAMA summary statistics.
With the exception of the summary statistics for educational attainment (which include
data from 23andMe), complete summary statistics for both the EAS and EUR samples
will be available for download at the SSGAC website (http://www.thessgac.org/data)
upon publication. SNP-level summary statistics from analyses based entirely or in part
on 23andMe data can only be reported for up to 10,000 SNPs. Therefore, for this
phenotype, we provide summary statistics for only the genome-wide-significant SNPs
from that analysis. In addition, we provide complete summary statistics for an analysis
that omits 23andMe. The full GWAS summary statistics for the 23andMe discovery data
set will be made available through 23andMe to qualified researchers under an
agreement with 23andMe that protects the privacy of the 23andMe participants. Please
visit https://research.23andme.com/collaborate/#dataset-access/ for more information

and to apply to access the data.

CODE AVAILABILITY:

The MAMA software is available at https://github.com/JonJala/mama.

19


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ACKNOWLEDGEMENTS:

This research was carried out with the support of the Social Science Genetic Association
Consortium (SSGAC). This research was conducted using the UK Biobank Resource
under application numbers 11425 and 31063. The study was supported by funding from
the Ragnar Soderberg Foundation (E42/15, D.C.), the Swedish Research Council (2019-
00244, D.C., PI: Sven Oskarsson), Open Philanthropy (010623-00001, D.J.B. and
M.N.M.), Riksbankens Jubileumsfond P18-0782:1 (D.C., PI: S.0.), Pershing Square
Fund for Research on the Foundations of Human Behavior (D.L.), and the
NIA/NIH/NIMH through grants R24-AG065184 (D.J.B.) to the University of California
Los Angeles; K99-AG062787-01 (P.T.), K9g/RooMH117229 (A.R.M.) and Ko1-
MH121659 (E.G.A.) to Massachusetts General Hospital; 1Ro1-MH101244-02 (B.M.N.),
5U001-MH109539-02 (B.M.N.), and 5 R37 MH107649 (B.M.N.) to the Broad Institute at
Harvard and MIT. We thank the following biobanks and consortia for sharing GWAS
summary statistics: BBJ, CKB, SSGAC (educational attainment), and the Psychiatric
Genomics Consortium (PGC, schizophrenia). We thank the research participants and
employees of 23andMe for making this work possible. A full list of acknowledgements is
provided in the Supplementary Note.

China Kadoorie Biobank acknowledges the contribution of participants, project
staff, and the China National Centre for Disease Control and Prevention (CDC) and its
regional offices. China Kadoorie Biobank was supported as follows: Baseline survey and
first re-survey: Hong Kong Kadoorie Charitable Foundation; long-term follow-up and
second re-survey: UK Wellcome Trust (212946/Z/18/Z, 202922/7./16/Z,

104085/Z/14/Z, 088158/7Z/09/Z), National Natural Science Foundation of China

20


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

(91846303), and National Key Research and Development Program of China (2016YFC
0900500, 0900501, 0900504, 1303904). DNA extraction and genotyping:
GlaxoSmithKline, UK Medical Research Council (MC_PC_13049, MC-PC-14135). The
UK Medical Research Council (MC_UU_o00017/1, MC_UU_12026/2
MC_U137686851), Cancer Research UK (C16077/A29186; C500/A16896) and the
British Heart Foundation (CH/1996001/9454), provide core funding to the Clinical
Trial Service Unit and Epidemiological Studies Unit at Oxford University for the project.
The Biobank Japan Project was supported by the Tailor-Made Medical Treatment
program (the BioBank Japan Project) of the Ministry of Education, Culture, Sports,
Science, and Technology (MEXT), and the Japan Agency for Medical Research and

Development (AMED).

AUTHOR CONTRIBUTIONS:

P.T., ARM., D.J.B. and B.M.N. oversaw the study. The theory underlying MAMA was
conceived of and developed by P.T. and A.R.M., with contributions from B.M.N., D.J.B.,
D.C.,and R.K.W. G.G., H.L. and J.B.J. developed the MAMA software. G.G. and H.L. were
the primary analysts for the empirical applications in this paper and contributed equally
to this work. M.K., RK.W,, C.C., D.P.,, M.Z., E.G.A., R.G.W, L.Y.M, K.L,, Z.C, and L.L also
made contributions to the empirical work. P.T., A.R.M., and D.J.B. coordinated the
writing of the manuscript. S.C. and M.M. provided feedback on the ethical implications
of the research. S.C. advised on the characterization of populations used in this work,
emphasizing the importance of understanding genomic diversity within continental

groups. P.T., A.R.M., S.C,, D.L., M.M, and D.B. wrote the FAQs. G.G., M.K,, and R.W. also

21


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

contributed to the writing. All authors provided input and revisions for the final

manuscript.

COMPETING FINANCIAL INTERESTS:

A.R.M has consulted for 23andMe and Illumina, and she has received speaker fees from
Genentech, Illumina, and Pfizer. B.M.N. is a member of the scientific advisory board at
Deep Genomics and RBNC Therapeutics, Member of the scientific advisory committee at
Milken and a consultant for Camp4 Therapeutics, Takeda Pharmaceutical and Biogen.
D.S.P. is an employee of Genomics ple, all contributions were performed prior to him

joining the company.

22


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

FIGURES

Figure 1. Bias for cross-ancestry meta-analysis methods by LD correlation

bin.
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Note: Bias estimates in EAS defined as the difference between marginal SNP effects and
meta-analyzed SNP effects averaged within LD correlation bins. All SNPs are oriented
such that their marginal effects are positive. 95% confidence intervals are represented
by vertical bars. In the three-population case, rip is calculated as the average rip value
between the two population pairs that contain the target population (i.e., EAS-EUR and
EAS-AFR for EAS). SNPs are binned into 5 groups of equal width between zero and one,
and the bias is reported for SNPs within a bin.
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Figure 2. Mean y? statistic for cross-ancestry meta-analysis methods by LD

correlation bin.
Mean y? Statistic of EAS Estimates
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Note: Mean y? estimates in EAS defined as the squared ratio of the meta-analyzed SNP
effect over the SNP’s standard error averaged within LD correlation bins. RE2 mean
x?uses the reported RE2 P value and evaluates it on the inverse y? distribution with one
degree of freedom. In the three-population case, rip is calculated as the average rip
value between the two population pairs that contain the target population (i.e., EAS-
EUR and EAS-AFR for EAS). SNPs are binned into 5 groups of equal width between zero
and one, and the mean y? estimate is reported for SNPs within a bin.

Figure 3. Type-1 error rate for cross-ancestry meta-analysis methods by LD correlation
bin. Note: Type-1 error rate in (a) EAS for SNPs that are null in all three populations and
(b) EAS for SNPs that are null in the EAS population but nonnull in the other
populations. Type-1 error rate is defined as the fraction of null SNPs whose P value is
less than 0.05. rip is calculated as the average rip value between the two population
pairs that contain the target population (i.e., EAS-EUR and EAS-AFR for EAS). SNPs
are binned into 5 groups of equal width between zero and one, and the type-1 error rate
is reported for SNPs within a bin.

24


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 3. Type-1 error rate for cross-ancestry meta-analysis methods by LD
correlation bin.
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Note: Type-1 error rate in (a) EAS for SNPs that are null in all three populations and (b)
EAS for SNPs that are null in the EAS population but nonnull in the other populations.
Type-1 error rate is defined as the fraction of null SNPs whose P value is less than 0.05.
rip is calculated as the average rip value between the two population pairs that contain
the target population (i.e., EAS-EUR and EAS-AFR for EAS). SNPs are binned into 5
groups of equal width between zero and one, and the type-1 error rate is reported for
SNPs within a bin.
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Figure 4. Manhattan plots for GWAS and MAMA results for BMI in an EAS
population.
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Note: BMI for (a) EAS GWAS and (b) EAS MAMA. The x-axis is chromosomal position,
and the y-axis is the P value on a -log10 scale (note the y-axes scale logarithmically). The
dashed line marks the threshold for genome-wide significance (P = 5 x 10°8). For the
GWAS Manhattan plots, lead SNPs (i.e., approximately independent SNPs surpassing
the genome-wide-significance threshold) are marked with a red x. For the MAMA
Manhattan plots, lead SNPs are binned into one of three mutually exclusive categories:
matching a GWAS lead SNP in either population (marked with a red x), in LD with a
GWAS lead SNP in either population (marked with a black ¢), or a novel SNP that is
independent of any GWAS lead SNP in either population (marked with a yellow A).
Details on lead SNP and novel SNP identification can be found in Online Methods.
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Figure 5. Manhattan plots for GWAS and MAMA results for Educational
Attainment in an EAS population.
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Note: Educational Attainment for (a) EAS GWAS and (b) EAS MAMA. The x-axis is
chromosomal position and the y-axis is the P value on a -log10 scale (note the y-axes
scale logarithmically). The dashed line marks the threshold for genome-wide
significance (P = 5 x 108). For the GWAS Manhattan plots, lead SNPs (i.e.,
approximately independent SNPs surpassing the genome-wide-significance threshold)
are marked with a red x. For the MAMA Manhattan plots, lead SNPs are binned into
one of three mutually exclusive categories: matching a GWAS lead SNP in either
population (marked with a red x), in LD with a GWAS lead SNP in either population
(marked with a black ), or a novel SNP that is independent of any GWAS lead SNP in
either population (marked with a yellow A). Details on lead SNP and novel SNP
identification can be found in Online Methods.
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Figure 6. QQ plot of the lead SNPs and novel lead SNPs for BMI in an
independent EAS population.
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Note: QQ plot and sign-test replication for BMI of (a) all lead SNPs in MAMA EAS and
(b) all novel lead SNPs in MAMA EAS. The x-axis corresponds to the uniform
distribution of P values expected under the null hypothesis, and the y-axis corresponds
to the observed P values in the replication GWAS output. P values are reported on the -
log10 scale. The 45-degree line is plotted for reference. The sign of each MAMA SNP is
compared against an independent replication GWAS. SNPs whose sign matches the sign
reported in the replication GWAS are marked with a dark blue A, and SNPs whose sign
does not match the sign reported in the replication GWAS are marked with a light blue
«. Sign test P values are drawn from the binomial distribution with success probability
1/2. Details on lead SNP and novel SNP identification can be found in Online Methods.
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Figure 7. QQ plot of the lead SNPs and novel lead SNPs for Educational
Attainment in an independent EAS population.
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Note: QQ plot and sign-test replication for Educational Attainment of (a) all lead SNPs
in MAMA EAS and (b) all novel lead SNPs in MAMA EAS. The x-axis corresponds to the
uniform distribution of P values expected under the null hypothesis, and the y-axis
corresponds to the observed P values in the replication GWAS output. P values are
reported on the -log10 scale. The 45-degree line is plotted for reference. The sign of each
MAMA SNP is compared against an independent replication GWAS. SNPs whose sign
matches the sign reported in the replication GWAS are marked with a dark blue A, and
SNPs whose sign does not match the sign reported in the replication GWAS are marked
with a light blue . Sign test P values are drawn from the binomial distribution with
success probability 1/2. Details on lead SNP and novel SNP identification can be found
in Online Methods.
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TABLES

Table 1. Summary of MAMA results of 23 phenotypes.
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Online Methods

This article is accompanied by a Supplementary Note with further details.
Data Generating Procedure for Simulations

In our simulations, we generate GWAS summary statistics for hypothetical AFR,
EAS, and EUR populations. For the infinitesimal model used to measure bias and the
mean y? statistic, we generate true marginal effect sizes with the following approach.
First, for the corresponding subsample of the 1000 Genomes Project data22 (consisting
of all individuals with a genotype missingness rate no greater than 2%), we estimate the
LD between each pair of SNPs that have an allele frequency greater than 1% and a
missingness rate no more than 2% within their subsample in every population. We fix

the LD between a pair of SNPs to zero if they are farther than 1 centimorgan apart or if
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they are on different chromosomes. We then draw true conditional effect sizes for each
standardized SNP in these samples from a standard normal distribution. We assume
that the cross-ancestry genetic correlation is 1 for each pair of populations, which means
that the conditional effect of each standardized SNP is the same in each population.
True marginal effect sizes for each population are calculated using equation (3). For
computational reasons, we retain only every 100t SNP for the subsequent steps of the
simulation, resulting in 60,107 SNPs.

For the spike-and-slab model used to measure type-1 error rate, we generate true
marginal effect sizes using the same procedure as above with an additional step at the
end. Specifically, we take the 60,107 SNPs for which we have marginal effects and we
randomly set 10% of the marginal effects to zero in all three populations. We then
randomly set the marginal effect to zero in just the EAS population for a random 10% set
of SNPs that do not overlap with the 10% that have a zero marginal effect in all three
populations. The EAS population was chosen arbitrarily in this simulation. By
symmetry, we would anticipate comparable results no matter which population we
chose to be null. Thus, 80% of SNPs have a non-zero marginal effect in all three
populations, 10% of SNPs have a non-zero marginal effect in just the EUR and AFR
populations, and 10% of SNPs have a zero marginal effect in all three populations.

Finally, in all simulations, we construct standardized GWAS effect-size estimates
by adding mean-zero, normally distributed noise with variance 100 to each true
marginal effect. Thus, the standard error for each SNP is /100 = 10. For the
infinitesimal-model summary statistics, this results in a mean y? statistics of 2.271,
2.576, and 2.666 in the AFR, EAS, and EUR-based summary statistics, respectively. In

the spike-and-slab model, the corresponding mean y? statistics are 2.144, 2.287, and

34


https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.23.441003; this version posted April 24, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2.517, respectively. Next, we divide the true standardized marginal effect size, the

standardized GWAS estimates, and standard errors by \/2MAF,, ;(1 — MAF, ;), where
MAF, ; is the allele frequency of SNP j in population p, to transform these quantities into
allele-count units rather than standardized units. This is done because published
summary statistics are reported in allele-count units, and these are the units required
for summary statistics provided to MAMA.

In simulations with just two populations, only the EAS and EUR summary
statistics are retained, corresponding to the ancestries of the samples used in our
empirical applications in this paper.

Biobank Japan

The BioBank Japan Project (https://biobankjp.org/english/index.html) is a
national hospital-based biobank started in 2003. The BBJ collected DNA, serum and
clinical information of approximately 200,000 patients with any of 47 target diseases
between fiscal years of 2003 and 2007 from 66 hospitals throughout Japan. Details of
study design, sample collection, baseline clinical information, genotyping, and
imputation are described elsewhere34-3¢, We retrieved individual phenotypes from
medical records and applied standard quality control criteria followed by inverse-rank
normalization as described previously37. We restricted our analysis to unrelated
individuals and held out a random sample of 5,000 individuals as a replication sample.
GWAS was conducted using Hail v0.238 under a linear regression model with covariates
including age, agez, sex, age X sex, age2 X sex, and the top 20 PCs.

China Kadoorie Biobank
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China Kadoorie Biobank (CKB, https://www.ckbiobank.org) is a population-

based prospective cohort of approximately 513,000 adults aged 30-79 recruited in
2004-8 from 10 geographically defined regions of China39. Questionnaire and physical
measurement data and biological samples were collected at baseline and at periodic re-
surveys of 25,000 randomly selected surviving participants. Through linkages to death
and disease registries and to health insurance databases, all participants are followed for
cause-specific mortality and morbidity and for any hospital admission. Local, national
and international ethics approval was obtained, and all participants provided written
informed consent. Genotyping was conducted on custom Affymetrix Axiom® arrays,
with 100,706 unique samples and 511,885 variants passing QC. Genotypes were phased
using SHAPEITS v4.12 and imputed into the 1000 Genomes Phase 3 reference with
IMPUTE4 v4.r265. GWAS was conducted stratified by both sex and the 10 recruitment
regions, using BOLT-LMM v2.3.2 with age and age2 as covariates. Analyses using CKB
data were conducted under research approval 2018-0087.
UK Biobank

The UK Biobank Project enrolled 500,000 people aged between 40-69 years in
2006-2010 from across the country, as described previously4°. Details of the study
design, data access, and other relevant information are described elsewhere

(https://www.ukbiobank.ac.uk/). We conducted GWAS as described previously

(http://www.nealelab.is/uk-biobank/ukbround2announcement) using a linear

regression model with the same covariates as described in the BBJ analyses with one
modification. We created a holdout validation set consisting of 10,000 individuals from

the original GWAS analyses, then included the remaining individuals in GWAS, totaling
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a maximum of 351,194 individuals (in contrast, the original GWAS conducted by the
Neale Lab had a maximum of N= 361,194 individuals).
Construction of LD scores

LD scores used in these analyses were constructed using the 1000 Genomes
Project Phase 3 samples. The LD scores were constructed using the —std-geno-ldsc units
option, which assumes that the genotypes in the model are in allele-count units (see
Supplementary Materials Section 1.2). We used the EUR samples (489 individuals) to
construct LD scores for the European-ancestry-population summary statistics and used
the EAS samples (481 individuals) to construct the LD scores for the East-Asian-
ancestry-population summary statistics. Before making the score, we restricted the
SNPs to just those with a minor allele frequency greater than 1% in either the EAS or
EUR samples. This resulted in 10,294,523 SNPs in total (7,627,153 SNPs in the EAS
population, 8,676,825 SNPs in the EUR population, and 6,009,455 SNPs in the
intersection). The distributions of the LD scores and of the LD score correlations are in
Supplementary Figure 50.
MAMA settings in empirical applications

The MAMA analyses in this paper are conducted using the following settings. We
assume that the phenotype has a genetic correlation of 1 between populations but that
the heritability may differ between populations. We also assume that the model is in
standardized units. This assumption implies that the conditional effect of a one-
standard deviation change in genotype is independently and identically distributed
across the genome. This assumption also implies that the expected magnitude of effect
sizes (in allele count units) is larger for SNPs that are rarer. Finally, because there is

little to no variation in sample size across SNPs within each population’s summary
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statistics in our data, there is also little variation in the standard errors. Thus, the
intercept and squared standard error term are highly collinear in the LD score
regression step of MAMA. To address this issue, we fix the intercept to zero and freely
estimate the coefficient on the squared standard errors.
GWAS-equivalent sample size

As one of the metrics of performance, MAMA reports the “GWAS-equivalent
sample size.” It is parallel to the identically named metric used by MTAG?®. This metric
quantifies how large a GWAS sample you would need to observe the same gains in the
mean y? statistic in MAMA relative to the original GWAS summary statistics. Because
one minus the mean y? statistic scales linearly with sample size in expectation, the

GWAS-equivalent sample size for MAMA is defined as

2
N _ Xmama— 1
GWAS—-equiv =

> Newas
Xewas — 1

where y7 44 1 the mean y? statistic of the MAMA summary statistics, x5, 4 is the
mean y? statistic of the GWAS summary statistics, and Ny, 45 is sample size of the
GWAS. Because MAMA standard errors are implicitly corrected for population
stratification using the LD score intercept, to make the mean y? statistic comparable

between the GWAS and MAMA summary statistics, the GWAS standard errors were

corrected using the LD score intercept before calculating yZz,, 4. One difference between
the GWAS-equivalent sample size in MAMA relative to MTAG is that the amount of
weight put on the alternate set of summary statistics varies by SNP in MAMA, whereas it
is constant in MTAG. As a result, the GWAS-equivalent sample size does not represent

the sample size needed to obtain a certain level of power for any individual SNP, but
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instead it represents how large a sample would be needed to obtain an average amount
of power genome-wide. For MAMA, the SNP-level effective sample size will be larger
when the LD correlation is higher between the pairs of populations (see Supplementary
Materials Section 1.5.1).
Identifying lead SNPs

Using the discovery GWAS and MAMA results for each phenotype, we identify a
set of genome-wide-significant lead SNPs. If there are no SNPs with a P value less than 5
108, then there are no genome-wide significant lead SNPs for that set of summary
statistics. Otherwise, we use the following algorithm to identify lead SNPs. (1) The SNP
with the smallest P value is set aside as a potential lead SNP. (2) All SNPs that are on the
same chromosome as the SNP identified in (1) and that are correlated with the SNP at
R2 > 0.1 are removed from the summary statistics. (3) Steps (1) and (2) are repeated
until no SNP remains with a P value less than 5 x 10-8. (4) Among the list of potential
lead SNPs, the SNP with the lowest P value is added to the final list of lead SNPs. (5)
Any potential lead SNP within 500 kbp of the lead SNP identified in (4) is removed. (6)
Steps (4) and (5) are repeated until no SNPs remain among the potential lead SNPs.
These steps are executed using two rounds of Plink’s clumping algorithm. R2 values
were calculated using the 1000 Genomes Project reference panel sample corresponding
to the population of the GWAS or MAMA summary statistics.
Identifying Novel SNPs

To assess whether the lead SNPs identified by MAMA are novel relative to the
input GWAS summary statistics, we first remove any of the SNPs from the MAMA lead-
SNP list that have the same rsID as any genome-wide-significant SNPs from the GWAS

summary statistics used to generate the MAMA summary statistics. We then combine
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the reduced set of MAMA lead SNPs with the lead SNPs from the input GWASs,
adjusting the P values of the lead SNPs from the GWASs so they are smaller than the
minimum P value in the MAMA lead-SNP list. We then conduct the two-stage clumping
algorithm described in the Methods section “Identifying lead SNPs” to this combined set
of SNPs. Any of the SNPs that are retained from the reduced set of MAMA lead SNPs
after clumping are considered “novel lead SNPs.” Note that “novel” in this case does not
imply that the SNPs are novel relative to the literature but rather that the SNPs are
novel relative to the summary statistics used in the analysis.
Replication

To validate the lead SNPs and the novel lead SNPs identified by MAMA, we look
up these SNPs in GWAS in an independent sample from the same population. We then
compare the sign of the novel lead SNPs from MAMA to the signs of the GWAS in the
replication sample corresponding to the same population and phenotype. Under the null
hypothesis that the novel lead SNPs from MAMA are null in the replication sample, the
number of times the MAMA estimates have a concordant sign with the replication
GWAS estimates will have a Binomial(M,0.5) distribution, where M is the number of
novel lead SNPs. We perform a one-sided test measuring whether the sign concordance
is higher than expected given the null hypothesis. We did not perform a replication
analysis for Physical Activity because no lead SNPs were found, nor for Schizophrenia

because we did not have access to a replication sample.
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