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ABSTRACT 
We present a new method, Multi-Ancestry Meta-Analysis (MAMA), which combines 
genome-wide association study (GWAS) summary statistics from multiple populations 
to produce new summary statistics for each population, identifying novel loci that would 
not have been discovered in either set of GWAS summary statistics alone. In 
simulations, MAMA increases power with less bias and generally lower type-1 error rate 
than other multi-ancestry meta-analysis approaches. We apply MAMA to 23 phenotypes 
in East-Asian- and European-ancestry populations and find substantial gains in power. 
In an independent sample, novel genetic discoveries from MAMA replicate strongly. 
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INTRODUCTION 

The past decade has seen the discovery of hundreds of thousands of credible 

genetic associations for complex traits and diseases1. Many of these discoveries were 

identified by meta-analyzing genome-wide association studies (GWAS)2–4 conducted in 

multiple cohorts, boosting statistical power relative to GWAS in any one cohort. GWAS 

summary statistics are now facilitating progress in many areas, including novel drug 

development5,6 and disease prediction for potential clinical application7. 

Unfortunately, GWAS research to date has overwhelmingly been conducted in 

European-ancestry samples. Consequently, GWAS estimates for European populations 

are substantially more precise than those for other populations, potentially generating 

unequal gains from the scientific advances. Clearly, correcting these imbalances requires 

intensifying data-collection efforts in non-European populations8,9, and a number of 

promising efforts are underway10–14. However, it will take years before levels of precision 

are reached comparable to those currently available for European-ancestry studies. Even 

then, for many traits, further increases in precision would almost certainly still be 

valuable.  

To complement the current efforts to improve the precision of GWAS effect-size 

estimates for non-European-ancestry populations, we have developed a new method, 

Multi-Ancestry Meta-Analysis (MAMA), that efficiently shares information across 

populations via cross-ancestry GWAS meta-analysis. Currently, researchers who wish to 

meta-analyze summary statistics from different-ancestry cohorts must confront two well-

known obstacles. First, the populations may differ in allele frequencies and linkage 

disequilibrium (LD) patterns. Second, the effects of SNPs may not be identical across the 

two populations. Both obstacles induce heterogeneity in marginal (i.e., GWAS) effect sizes 
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between populations. Consequently, a naïve meta-analysis of summary statistics that 

ignores these obstacles would generally result in biased estimates for both populations. 

In different contexts, the two obstacles above have each been addressed separately 

in previously developed methods. For example, POPCORN directly models allele-

frequency and LD differences to estimate genetic correlation between populations15. 

MTAG accounts for heterogeneity of marginal effect sizes across GWAS summary 

statistics in a one-population, multi-trait setting16. MAMA adapts and combines strategies 

from both methods, accounting for differences between populations in conditional 

effects, allele frequencies, and LD. 

Several methods have been developed for cross-ancestry meta-analysis17–21. 

Compared to these, MAMA has a unique combination of attractive features: 

 

(i) it only requires GWAS summary statistics and a reference panel for each 

population; 

(ii) under plausible assumptions discussed below, it is the best linear unbiased 

estimator, but also appears robust under alternative assumptions; 

(iii) it has a linear, closed-form solution, ensuring fast computation time. 

 

For MAMA’s intuition, first consider an inverse-variance-weighted (IVW) meta-

analysis18 applied to GWAS summary statistics with no heterogeneity (e.g., each GWAS 

sample is from the same population). In such a case, IVW is unbiased and efficient. 

However, if there is heterogeneity in the marginal effect sizes between populations, then 

the estimate from the alternate ancestry needs to be adjusted to avoid bias, and the 

relative weight applied to the alternate ancestry’s estimate must be reduced to be 
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efficient16. Before meta-analyzing, MAMA estimates the heterogeneity across ancestries 

for each SNP and optimally adjusts the estimates and relative weights on the alternate 

ancestries.  

To evaluate MAMA, we apply it to GWAS summary statistics for a wide range of 

anthropometric, health, and behavioral phenotypes in populations with European and 

East-Asian ancestries. MAMA identifies many new loci that were not found using either 

of the single-ancestry GWAS results. For some phenotypes, we calculate that MAMA 

generates increases in power approximately equivalent to an increase of hundreds of 

thousands of individuals in the East Asian discovery sample. In comparisons of the signs 

of estimates from MAMA-identified loci to the signs of GWAS estimates from 

independent samples, MAMA’s replication record is strong. 

For a less technical description of the paper and of how MAMA results should—

and should not—be interpreted, see the Frequently Asked Questions (FAQs in 

Supplementary Information). 

RESULTS 

The MAMA Framework 

MAMA is an extension of the related method, MTAG16, adapting its assumptions 

to the multi-ancestry context and generalizing it to allow for differences across ancestries. 

To make the relationship clear, our derivation of MAMA is parallel to Turley et al.’s16 

derivation of MTAG. We highlight where the derivations differ, due to modeling the 

conditional effects of SNPs (rather than marginal associations of SNPs) and differences 

in allele frequencies and LD, all of which are crucial for cross-ancestry meta-analysis. 

More details are in the supplementary materials. 

Background. To begin, let 𝑦!,# denote the phenotype of interest for individual 𝑖 in 
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population 𝑝, normalized to have mean zero within its population. Let 𝒙!,# denote the 

vector of genotypes for the set of all SNPs in the reference panel, including unmeasured 

SNPs. We assume that genotypes are mean centered within their population, but all of 

our results below generalize to any assumption about the genotype units used (e.g., raw 

allele counts, standard deviations of allele counts), but we assume that genotypes are 

mean centered within their population. Let 𝒓! ≡ Var*𝒙!,#+ denote the variance-covariance 

matrix (i.e., LD matrix) of the genotype vector in population 𝑝. 

We use an additive model: 𝑦!,# = 𝒙!,#𝒃! + 𝜀!,#, where 𝒃! is the vector of conditional 

effects in population 𝑝. We treat the effects across each of 𝑃 populations {𝒃$, … , 𝒃%} as 

random and allow SNPs’ effects to be correlated across populations.  

MAMA’s key assumption is that the effects have constant (co)variance across 

SNPs: Var*𝑏$,& , … , 𝑏%,&+ = 𝝎 for all SNPs 𝑗, where 𝝎 is a 𝑃 × 𝑃 positive-semidefinite 

matrix. We call this the “homogeneous-𝝎” assumption. A special case is perfect genetic 

correlation, where the conditional effects of SNPs are equal or proportional across 

populations. As we discuss below, perfect genetic correlation may be reasonable to 

assume in some cases (as we do in our real-data analysis). However, MAMA allows for the 

genetic correlation and variances to be any values, as long as they are the same across 

SNPs. MAMA’s key assumption differs from MTAG’s key assumption because MTAG 

assumes constant (co)variance of marginal effects, whereas MAMA assumes constant 

(co)variance of conditional effects (conditioning on all SNPs in the reference panel). 

MAMA’s assumption is more plausible in the multi-ancestry context because the 

distribution of marginal effects should depend on LD structure. 

The GWAS estimate for SNP 𝑗 in population 𝑝, 𝛽:!,&, is an estimate of the marginal 
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association. The estimand of MAMA is similarly the marginal association 𝛽!,&. As inputs, 

MAMA uses (i) the vector of GWAS effect-size estimates for SNP 𝑗 across populations, 𝜷<&, 

and their standard errors across multiple populations and (ii) an LD matrix 𝒓! for each 

population from a reference panel. For the reference panel, in our applications, we use 

data from the 1000 Genomes Project22, but any reference panel corresponding to the 

ancestries of the GWAS samples would also work. 

Summary of MAMA Derivation. To define the two matrices needed for the 

estimator, note that the 𝑝th element of 𝜷<& is a function of the population 𝑝’s true 

conditional SNP effects 𝒃!, LD matrix 𝒓!, and error: 

 𝛽:&,! = ∑ '!,#$
'!,##

𝑏!,(( + 𝑒!,& , (1) 

where 𝑟!,&( is the (𝑗, 𝑘)th element of 𝒓!, 𝑏!,( is the 𝑘th element of 𝒃!, and 𝑒!,& includes 

sampling variation and confounding biases. Thus, the vector 𝜷<& can be decomposed into 

the true marginal association 𝜷& plus error: 𝜷<& = 𝜷& + 𝒆&. The two matrices we need are 

the variance-covariance matrix of the true marginal associations conditional on the LD 

matrices, denoted 𝛀& ≡ Var*𝜷&|{𝒓$, … , 𝒓%}+, and the variance-covariance matrix of the 

error, denoted 𝚺& ≡ Var*𝒆&|{𝒓$, … , 𝒓%}+. Because samples drawn from different 

populations do not overlap, 𝚺& is diagonal. 

MAMA is a Generalized Method of Moments (GMM) estimator23. It is defined by 

a vector of 𝑃 moment conditions, 𝐸 H𝜷<& − J
𝛀⋅!,#
*!!,#

K𝛽!,&|{𝒓$, … , 𝒓%}L = 𝟎, where 𝛀⋅!,& is the 𝑝th 

column of 𝛀& and Ω!!,& is the (𝑝, 𝑝)th element of 𝛀&. Each moment condition is a necessary 

condition for a best linear unbiased estimate of the marginal association for SNP 𝑗 in 

population 𝑝. The MAMA estimator is the efficient GMM estimator based on these 
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moment conditions: 

 𝛽:,-,-,!,& =

𝛀⋅!,#
'

(!!,#
.𝛀#/

𝛀⋅!,#
' 𝛀⋅!,#
(!!,#

0𝚺#2
)*

𝛀⋅!,#
'

(!!,#
.𝛀#/

𝛀⋅!,#
' 𝛀⋅!,#
(!!,#

0𝚺#2
)*

𝛀⋅!,#
(!!,#

𝜷<&. (2) 

Two special cases may help with intuition. First, suppose conditional effect sizes 

are equal in all populations, and consider a SNP where LD patterns are identical between 

populations. Then all elements of 𝛀& are equal, and equation (2) specializes to the formula 

for inverse-variance-weighted (IVW) meta-analysis: 𝛽:,-,-,!,& = *𝟏3𝚺&/$𝜷<&+/*𝟏3𝚺&/$𝟏+, 

where 𝟏 is a vector of ones. Second, suppose conditional effect sizes are uncorrelated 

across populations or LD patterns are uncorrelated at a particular SNP. Then 𝛀& is 

diagonal, and equation (2) sets each population’s MAMA estimate equal to the 

population’s GWAS estimate: 𝛽:,-,-,!,& = 𝛽:!,&. 

More generally, when conditional effect sizes and/or LD patterns are imperfectly 

correlated, MAMA produces estimates in between these two special cases. MAMA is 

unbiased because it optimally modifies the GWAS estimates from other populations 

before meta-analyzing them with population 𝑝: MAMA deflates another population’s 

GWAS estimates when the correlation with population 𝑝’s GWAS estimates is smaller and 

inflates them when the other population’s heritability is smaller than	𝑝’s  (this is the 
𝛀⋅!,#
'

*!!,#
 

term in the numerator of equation (2)). MAMA has the minimum variance among linear 

unbiased estimators because, in addition to putting lower relative weight on estimates 

with greater sampling variance (as in IVW meta-analysis), it puts lower relative weight on 

estimates with greater heterogeneity in marginal effect sizes (the term in the inverse in 

the numerator). 
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MAMA’s moment conditions and estimator closely resemble MTAG’s. Like MTAG, 

MAMA is asymptotically unbiased and has lower expected mean squared error than that 

of the original GWAS summary statistics. Under the homogeneous-𝝎 assumption, MAMA 

is the best linear unbiased estimator (see Supplementary Note). 

Estimating 𝜴& and 𝜮&. Above, we assume that 𝛀& and 𝚺& are known. In practice, we 

estimate them using an approach similar to LD score regression (LDSC)24 and 

POPCORN15. From equation (1), 

 𝛽!,& = ∑ '!,#$
'!,##

𝑏!,(( . (3) 

The 𝑗th diagonal element of 𝛀& is the variance of 𝛽!,&: Ω!!,& = ∑ *𝑟!,&(/𝑟!,&&+
4	( Var*𝑏!,(+. By 

the homogeneous-𝝎 assumption, 𝜔!! ≡ Var*𝑏!,(+. Thus, Ω!!,& = 𝜔!!ℓ&,!!, where ℓ&,!! ≡

∑ *𝑟!,&(/𝑟!,&&+
4	(  is closely related to the LD score used in LDSC. 

The (𝑝, 𝑞)th off-diagonal entry of 𝛀& is the covariance between 𝛽!,& and 𝛽5,& for 

populations 𝑝 and 𝑞. Similarly as for the diagonal entries, Ω!5,& = 𝜔!5ℓ&,!5, where 𝜔!5 ≡

Cov*𝑏!,( , 𝑏5,(+ is the covariance of conditional effect sizes between population 𝑝 and 𝑞 and 

ℓ&,!5 ≡ ∑ *𝑟!,&(𝑟5,&(+/*𝑟!,&&𝑟5,&&+(  is a cross-ancestry generalization of an LD score. The LD 

score ℓ&,!5 is similar to that used in POPCORN15. Since the variance of the error, 𝚺&, is the 

residual variance in 𝜷<& after accounting for 𝛀&, it can be estimated using the LDSC 

intercept. 

Using these relationships, we estimate the elements of 𝛀& and 𝚺&. First, we calculate 

LD scores ℓ&,!! and cross-ancestry LD scores ℓ&,!5 using a reference panel. Then, we 

regress 𝛽:!,&4  onto the vector of single-ancestry LD scores, ℓ&,!!, and we regress 𝛽:!,&𝛽:5,& onto 

the vector of ℓ&,!5. The slope coefficients of these regressions are consistent estimates of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441003doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/


 10 

𝜔!! and 𝜔!5, respectively, and the intercept is a consistent estimate of the corresponding 

element of 𝚺&. Using these estimates of ℓ&,!!,6, ℓ&,!5,6, 𝜔!!, and 𝜔!5, we construct the sample 

analog of 𝛀&, which is a consistent (method of moments) estimator for 𝛀&. Finally, we 

substitute our estimates of 𝛀& and 𝚺& into equation (1) to obtain MAMA estimates. 

This procedure treats estimates of 𝛀& and 𝚺& as if they were estimated without 

error. This has two important implications. First, MAMA standard errors may be too 

small. Because the relevant aspects of MAMA are identical to those of MTAG, based on 

the simulations described in Turley et al.16, we anticipate this effect to be negligible as 

long as fewer than five populations are analyzed at once and as long as the reference 

panel used to construct LD scores is of sufficiently similar ancestry to the GWAS sample. 

Second, when the GWAS for one or more populations is low powered, estimates 

of 𝜔!5 may be very noisy, leading to bias and/or loss of statistical power. In such cases, 

it may increase precision to assume perfect genetic correlation between the populations 

(i.e., 𝜔!5 = [𝜔!!𝜔55.) When perfect genetic correlation is assumed, it is particularly 

important to verify the robustness of novel findings. Specifically, we recommend both 

replicating novel results and validating that the results are robust to assuming lower 

levels of genetic correlation. 

LD Correlation. The LD scores used by MAMA can be combined to produce a 

metric of the similarity of LD patterns local to a certain SNP for a pair of populations. This 

metric, which we call the LD correlation, is 

 𝑟78,!5,& =
ℓ#,!+

:ℓ#,!!ℓ#,++
. (4) 

When 𝑟!,&( = 𝑟5,&( for all 𝑘 for some SNP 𝑗, then ℓ&,!5 = ℓ&,!! = ℓ&,55 and therefore 𝑟78,!5,& =

1. Alternatively, if 𝑟!,&( is uncorrelated with 𝑟5,&( across SNPs 𝑘 for some SNP 𝑗, then 
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𝑟78,!5,& = 0. As such, 𝑟78,!5,& may be thought of as a measure of the correlation of the LD 

patterns local to SNP 𝑗. As discussed below, the performance of MAMA and other cross-

ancestry meta-analysis methods differs across SNPs with different LD correlations.   

Comparison to other methods and simulation 

 Several existing methods have been used to conduct GWAS meta-analysis across 

populations, including fixed-effect IVW meta-analysis (FE, e.g., 17,18), the modified 

random effects meta-analysis approach of Han and Eskin (RE2)19, Meta-Analysis of 

Transethnic Association studies (MANTRA)20, and Meta-Regression of Multi-Ethnic 

Genetic Association (MR-MEGA)21. These approaches rely on different assumptions and 

have varying computational intensity. For example, FE is computationally fast but 

assumes that the marginal effect of each SNP is the same across populations. RE2, 

MANTRA, and MR-MEGA model cross-population heterogeneity of marginal effects, 

but none incorporate information on LD differences. MANTRA is substantially more 

computationally intensive than any of these other methods, and MR-MEGA can only be 

run on three or more populations at once. 

We conducted simulations to compare MAMA to (i) a standard single-ancestry 

GWAS, (ii) FE, (iii) MTAG, (iv) RE2, (v) MANTRA, and (vi) MR-MEGA. MTAG was not 

developed for cross-ancestry meta-analysis, but we include it because it accounts for 

heterogeneity across GWAS summary statistics. 

We assessed three metrics of performance: bias, mean 𝜒4 statistic, and type-1 

error rate. To evaluate bias, we orient each SNP such that the true marginal effect is 

positive and report the mean difference between the estimated effect size and the true 

marginal effect. For the type-1 error rate, we report the fraction of SNPs with null 

marginal effects that have a P value of less than 0.05. MANTRA, which is a Bayesian 
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method, does not report a standard error, so we cannot calculate a standard mean 𝜒4 

statistic or type-1 error rate. We therefore use the posterior standard deviation as an 

imperfect proxy for the standard error to calculate these performance metrics. Because 

the bias, mean 𝜒4 statistic, and type-1 error rate are a function of the LD correlation, 

𝑟78,!5,&, we evaluate these performance metrics in five LD correlation bins. 

We conducted two- and three-population simulations. The summary statistics in 

our simulations are based on estimated LD patterns of the AFR, EAS, and EUR 

subsamples from the 1000 Genome Project data22. We assess the bias and mean 𝜒4 

statistic of each method in data simulated under an infinitesimal genetic architecture 

that satisfies MAMA’s homogeneous-𝝎 assumption. We test the type-1 error rate with 

data simulated under a spike-and-slab model, where some SNPs are null in the EAS 

population but non-null in the other population(s). For the SNPs that are null only in 

the EAS population, this model violates the homogeneous-𝝎 assumption. We use these 

SNPs to assess the robustness of each method when this assumption is violated. For 

more details, see the Online Methods.  

Figures 1-3 show the results of the three-population simulations for EAS; 

Supplementary Figures 1-3 show the full three-population results, and Supplementary 

Figures 4-6 show the results of the two-population simulations. Bias estimates for each 

method and LD correlation bin are in Figure 1. Across the three populations, only GWAS 

and MAMA have low bias for the entire LD correlation spectrum. MTAG estimates are 

biased at high and low LD correlation levels. All other methods have substantial bias 

toward zero, with the exception of MR-MEGA in the AFR population. These estimates 

have low bias because MR-MEGA puts little weight on the EAS and EUR summary 
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statistics, so little bias can be introduced. MANTRA has the largest bias, but it is a 

Bayesian estimator so shrinkage toward zero is expected. 

Figure 2 shows the mean 𝜒4 statistic of each method. The patterns are the same 

for the EAS and EUR populations. In our simulations, MANTRA, RE2, FE, and MR-

MEGA generally have a greater mean 𝜒4 statistic than MAMA, and MTAG tends to have 

a comparable mean 𝜒4 statistic. However, as shown in Figure 1, these gains in power 

come at the cost of substantial bias. 

Figure 3a reports the type-1 error rate of SNPs that are null in all three 

populations. The type-1 error rate is controlled if it is less than 0.05. MANTRA is the 

only method that has an uncontrolled type-1 error rate, but this just means that the 

posterior standard deviation is not a good proxy for the standard error of MANTRA 

estimates. Both MAMA and MTAG have a type-1 error rate less than 0.05. That is 

because both methods include a stratification correction (even though there is no 

stratification in the simulation), which slightly inflates the standard errors. 

Figure 3b reports the type-1 error rate of SNPs that were null in the EAS 

population but non-null in the AFR and EUR populations, a violation of the 

homogeneous-𝝎 assumption. For these SNPs, MAMA has an uncontrolled type-1 error 

rate, especially for SNPs with a high LD correlation. However, MANTRA, RE2, and FE 

each have even higher type-1 error rates. MR-MEGA has higher type-1 error rates than 

MAMA in all but the highest LD correlation bin. In this scenario, MTAG has lower type-

1 error rate across most of the LD correlation spectrum. 

In summary, although some methods have greater statistical power (as measured 

by the mean 𝜒4 statistic) than MAMA, MAMA generally is the least biased across the LD 

correlation spectrum. Furthermore, although all methods considered except MANTRA 
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control the type-1 error rate when the homogeneous-𝝎 assumption holds, MAMA is 

more robust to a plausible violation of this assumption than all other methods except 

MTAG. 

Application in Real Data 

We applied MAMA to GWAS summary statistics for 23 phenotypes that were 

available from the China Kadoorie Biobank (CKB) and/or the Biobank Japan (BBJ) and 

for which we had access to comparable phenotypes in the UK Biobank (UKB). In the 

CKB and BBJ cohorts, we restricted our sample to those classified as having EAS 

ancestries; in the UKB cohort, we restricted our sample to those classified as having 

EUR ancestries. The complete list of phenotypes and cohorts we considered are in 

Supplementary Table 2. For each phenotype, each cohort is split into discovery and 

replication samples, and separate GWASs are run in each sample. Sample and SNP 

filters used by each cohort are in Supplementary Tables 3 and 4. 

The LD score regression estimates, 𝜔_!!, 𝜔_55, and 𝜔_!5 yield an estimator of the 

genetic correlation between populations 𝑝 and 𝑞: 𝜔_!5/[𝜔_!!𝜔_55. When heritability is low 

and sample size is small, the resulting estimate can be noisy and often nonsensical. For 

example, the estimated EAS-EUR genetic correlation for hematocrit is 3.4, and the 

average estimate across phenotypes is 1.4 (See Supplementary Table 1). Because the 

estimates are noisy (and not inconsistent with perfect genetic correlation), we impose 

perfect genetic correlation but allow for differences in heritability across populations 

(see Online Methods). Later, we explore the robustness of our results to alternative 

assumptions. 

Before summarizing results across all phenotypes, we illustrate the performance 
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of MAMA using two phenotypes: BMI, which has a smaller difference in sample sizes 

across populations, and educational attainment, which has a larger difference. For BMI, 

we use GWAS summary statistics from Biobank Japan and the China Kadoorie Biobank 

(combined N = 188,613) and the UK Biobank (N = 350,011). For educational attainment, 

we use summary statistics from the China Kadoorie Biobank (N = 42,435) and from the 

EUR-based GWAS meta-analysis reported in Lee et al.25 except omitting our UKB 

replication sample from the meta-analysis (combined N = 1,037,282). For brevity, we 

focus our discussion on the gains from MAMA in the EAS population; results for the EUR 

population are in the Supplementary Figures. 

Figures 4-5 display Manhattan plots corresponding to the EAS GWAS and MAMA 

summary statistics. For both phenotypes, MAMA generates large increases in statistical 

power. In the GWAS of BMI in the EAS sample, we find 94 lead SNPs; using MAMA, we 

find 201. We categorize each MAMA lead SNP as (i) being the same as a genome-wide-

significant SNP from any of the input GWAS, (ii) being in LD with a genome-wide-

significant SNP from either of the input GWAS, or (iii) being (approximately) 

uncorrelated with any genome-wide significant SNP in either input GWAS. We refer to 

SNPs in group (iii) as “novel lead SNPs.” By this definition, of the 201 lead SNPs, 56 are 

novel. In order to obtain an increase in the mean 𝜒4 statistic equivalent to that observed 

in the EAS MAMA summary statistics, we would have to increase the GWAS sample size 

from 188,613 to 282,048 individuals (see Online Methods). For educational attainment, 

where the sample-size difference is starker, the EAS GWAS contains no genome-wide 

significant SNPs, but the MAMA results identify 105 independent loci. Six of these loci 

are novel by our definition above. Attaining the same mean 𝜒4 statistic in an EAS-ancestry 

GWAS as we observe in the MAMA results would require 542,873 individuals, compared 
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to the 42,435 individuals available in this study.  

To address the concern that our assumption of perfect genetic correlation could 

lead to false discoveries, we validate the robustness of our results to alternate 

assumptions. When we assume a cross-ancestry genetic correlation of 0.9, we find that 

179 out of 201 lead SNPs for BMI and 80 of 105 lead SNPs for educational attainment 

remain genome-wide significant. Out of the 56 novel lead SNPs for BMI and 6 for EA, 

48 and 3 remain genome-wide significant, respectively. 

We also address concerns about false discoveries with a replication analysis. In 

our independent EAS-ancestry holdout sample, MAMA-identified lead SNPs for BMI 

have inflated test statistics and have concordant signs with the MAMA associations 

more often than would be expected by chance if all MAMA lead SNPs were truly null. 

This is seen in Figures 5-6, which show QQ plots of the lead SNPs identified by MAMA 

but estimated in the EAS-ancestry replication sample. For BMI, 192 of the 201 lead 

SNPs have a concordant sign between the MAMA and replication samples (𝑃 ≤

1.11 × 10/$;). Among the novel lead SNPs (i.e., those not in LD with the lead SNPs 

identified in either the EAS or the EUR GWAS), 54 out of 56 SNPs have a concordant 

sign (𝑃 = 2.22 × 10/$<; see Panel B). For educational attainment, 71 out of 105 lead 

SNPs have a concordant sign (𝑃 = 1.95 × 10/<). A test of concordant signs for the novel 

lead SNPs is not well powered because there are only 6. This low power is reflected in 

the sign-test P value of 0.891. Overall, however, these results, together with the 

robustness of lead SNPs at lower assumed levels of genetic correlation, lend credibility 

to the loci discovered by MAMA. 

Table 1 contains a summary of results for all phenotypes tested. The patterns 

observed for the two example phenotypes are also present overall. The average increase 
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in effective sample size of the MAMA summary statistics in the EAS population is 183,303 

individuals. Across all phenotypes we find 3,257 lead SNPs for the EAS population, 359 

of which are novel (i.e., are not identified in the GWAS results for either the EAS or EUR 

population). Of these 359 novel SNPs, 303 remain genome-wide-significant assuming a 

genetic correlation of 0.9 instead of 1 (See Supplementary Table 5). Finally, in a series of 

42 sign tests (21 phenotypes each with 2 ancestries), the novel MAMA loci replicate with 

P values less than the Bonferroni-adjusted threshold of 0.05/42 in 38 cases. Overall, these 

results provide reassuring evidence that MAMA identifies robust associations.  

DISCUSSION 

Substantial undersampling of non-European-ancestry individuals has resulted in 

disparities in the value of the genetics research conducted during the GWAS era. There is 

broad agreement that more genome-wide data should be gathered from 

underrepresented populations. To complements these data-gathering efforts, here we 

developed a method for cross-ancestry meta-analysis, MAMA, that efficiently leverages 

existing European-ancestry GWAS summary statistics to add information to GWAS 

summary statistics from other ancestry populations. 

Like all tools, MAMA has strengths and limitations. We emphasize four limitations 

and interpretational caveats. 

First, MAMA may produce spurious results if some SNPs affect the phenotype of 

interest in one population but not the other. That said, our simulation results suggest that 

MAMA is more robust (with respect to the Type-1 error rate) for such SNPs than other 

methods we considered. 

Second, if the empirical estimates of 𝜴& are biased or imprecise, MAMA will 

generally have lower power to detect associations, and MAMA estimates may be biased. 
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There are two primary reasons estimates of 𝜴& may be poor: (i) the reference sample is 

too small or is not representative of the corresponding GWAS sample or (ii) the GWAS 

sample size is too small. Reason (i) will lead to biased estimates of 𝜴&. Therefore, we 

recommend limiting MAMA analyses to summary statistics from populations with a large, 

representative reference sample available. Reason (ii) will lead to imprecise estimates of 

𝜴&. Therefore, if a large GWAS sample is not available, we recommend that users fix the 

genetic correlation between populations to 1 but check which novel loci remain significant 

when lower genetic correlation values are assumed. 

Third, the gains from MAMA are not uniform genome-wide; increases in power 

will be larger for SNPs that have more similar LD structure between populations26. As a 

result, MAMA is more likely to miss genetic signal that is concentrated in regions of high 

LD variability across populations.  

Finally, although a polygenic predictor based on MAMA-generated weights for 

population j should generally outperform a polygenic predictor derived from population 

j’s GWAS summary statistics alone, MAMA is not designed as a prediction tool. The 

unbiasedness of MAMA estimates is a strength for gene discovery, but it is a limitation 

for prediction. Methods that generate biased estimates but less sampling variance—

including standard, inverse-variance-weighted meta-analysis of cross-ancestry GWAS 

summary statistics, not taking into account LD and other population differences—can 

outperform MAMA in prediction accuracy. Exploring optimal ways to use GWAS 

summary statistics from European-ancestry populations to improve polygenic prediction 

in non-European-ancestry populations is an active and important area of research27,28. 

We have shown that MAMA can be a useful tool for multi-ancestry genetics 

research. In our simulations, MAMA did not always yield the greatest gains in reported 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2021. ; https://doi.org/10.1101/2021.04.23.441003doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.23.441003
http://creativecommons.org/licenses/by/4.0/


 19 

statistical power, but we consistently found that MAMA estimates were less biased than 

other methods and more robust to violations of key assumptions. We anticipate that 

MAMA estimates will prove especially valuable when it is important to have 

approximately unbiased estimates of SNP associations. For example, many methods for 

fine-mapping29, partitioning heritability30,31, and biological annotation32,33 depend on 

reliable estimates of effect sizes. 

 

DATA AVAILABILITY 

For each phenotype that we analyze, we report GWAS and MAMA summary statistics. 

With the exception of the summary statistics for educational attainment (which include 

data from 23andMe), complete summary statistics for both the EAS and EUR samples 

will be available for download at the SSGAC website (http://www.thessgac.org/data) 

upon publication. SNP-level summary statistics from analyses based entirely or in part 

on 23andMe data can only be reported for up to 10,000 SNPs. Therefore, for this 

phenotype, we provide summary statistics for only the genome-wide-significant SNPs 

from that analysis. In addition, we provide complete summary statistics for an analysis 

that omits 23andMe. The full GWAS summary statistics for the 23andMe discovery data 

set will be made available through 23andMe to qualified researchers under an 

agreement with 23andMe that protects the privacy of the 23andMe participants. Please 

visit https://research.23andme.com/collaborate/#dataset-access/ for more information 

and to apply to access the data. 

 

CODE AVAILABILITY: 

The MAMA software is available at https://github.com/JonJala/mama. 
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FIGURES 

Figure 1. Bias for cross-ancestry meta-analysis methods by LD correlation 
bin.  

 
 
Note: Bias estimates in EAS defined as the difference between marginal SNP effects and 
meta-analyzed SNP effects averaged within LD correlation bins. All SNPs are oriented 
such that their marginal effects are positive. 95% confidence intervals are represented 
by vertical bars. In the three-population case, rLD is calculated as the average rLD value 
between the two population pairs that contain the target population (i.e., EAS-EUR and 
EAS-AFR for EAS). SNPs are binned into 5 groups of equal width between zero and one, 
and the bias is reported for SNPs within a bin. 
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Figure 2. Mean 𝝌𝟐 statistic for cross-ancestry meta-analysis methods by LD 
correlation bin. 

    
  
Note: Mean 𝝌𝟐 estimates in EAS defined as the squared ratio of the meta-analyzed SNP 
effect over the SNP’s standard error averaged within LD correlation bins.  RE2 mean 
𝝌𝟐uses the reported RE2 P value and evaluates it on the inverse 𝝌𝟐	distribution with one 
degree of freedom. In the three-population case, rLD is calculated as the average rLD 
value between the two population pairs that contain the target population (i.e., EAS-
EUR and EAS-AFR for EAS). SNPs are binned into 5 groups of equal width between zero 
and one, and the mean 𝝌𝟐 estimate is reported for SNPs within a bin.  
Figure 3. Type-1 error rate for cross-ancestry meta-analysis methods by LD correlation 
bin. Note: Type-1 error rate in (a) EAS for SNPs that are null in all three populations and 
(b) EAS for SNPs that are null in the EAS population but nonnull in the other 
populations.  Type-1 error rate is defined as the fraction of null SNPs whose P value is 
less than 0.05. rLD is calculated as the average rLD value between the two population 
pairs that contain the target population (i.e., EAS-EUR and EAS-AFR for EAS). SNPs 
are binned into 5 groups of equal width between zero and one, and the type-1 error rate 
is reported for SNPs within a bin. 
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Figure 3. Type-1 error rate for cross-ancestry meta-analysis methods by LD 
correlation bin. 
 
    (a)                                                                                         

 
  
      (b)  

 
 
Note: Type-1 error rate in (a) EAS for SNPs that are null in all three populations and (b) 
EAS for SNPs that are null in the EAS population but nonnull in the other populations.  
Type-1 error rate is defined as the fraction of null SNPs whose P value is less than 0.05. 
rLD is calculated as the average rLD value between the two population pairs that contain 
the target population (i.e., EAS-EUR and EAS-AFR for EAS). SNPs are binned into 5 
groups of equal width between zero and one, and the type-1 error rate is reported for 
SNPs within a bin. 
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Figure 4. Manhattan plots for GWAS and MAMA results for BMI in an EAS 
population. 
 
 
(a)           

 
(b) 

 
 
Note: BMI for (a) EAS GWAS and (b) EAS MAMA. The x-axis is chromosomal position, 
and the y-axis is the P value on a -log10 scale (note the y-axes scale logarithmically). The 
dashed line marks the threshold for genome-wide significance (P = 5 × 10-8). For the 
GWAS Manhattan plots, lead SNPs (i.e., approximately independent SNPs surpassing 
the genome-wide-significance threshold) are marked with a red ×. For the MAMA 
Manhattan plots, lead SNPs are binned into one of three mutually exclusive categories: 
matching a GWAS lead SNP in either population (marked with a red ×), in LD with a 
GWAS lead SNP in either population (marked with a black •), or a novel SNP that is 
independent of any GWAS lead SNP in either population (marked with a yellow ▲). 
Details on lead SNP and novel SNP identification can be found in Online Methods. 
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Figure 5. Manhattan plots for GWAS and MAMA results for Educational 
Attainment in an EAS population. 
 
(a)          

 
 
(b)  

 
 
 
Note: Educational Attainment for (a) EAS GWAS and (b) EAS MAMA. The x-axis is 
chromosomal position and the y-axis is the P value on a -log10 scale (note the y-axes 
scale logarithmically). The dashed line marks the threshold for genome-wide 
significance (P = 5 × 10-8). For the GWAS Manhattan plots, lead SNPs (i.e., 
approximately independent SNPs surpassing the genome-wide-significance threshold) 
are marked with a red ×. For the MAMA Manhattan plots, lead SNPs are binned into 
one of three mutually exclusive categories: matching a GWAS lead SNP in either 
population (marked with a red ×), in LD with a GWAS lead SNP in either population 
(marked with a black •), or a novel SNP that is independent of any GWAS lead SNP in 
either population (marked with a yellow ▲). Details on lead SNP and novel SNP 
identification can be found in Online Methods. 
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Figure 6. QQ plot of the lead SNPs and novel lead SNPs for BMI in an 
independent EAS population. 
 
(a)        

 
(b)  

 
Note: QQ plot and sign-test replication for BMI of (a) all lead SNPs in MAMA EAS and 
(b) all novel lead SNPs in MAMA EAS. The x-axis corresponds to the uniform 
distribution of P values expected under the null hypothesis, and the y-axis corresponds 
to the observed P values in the replication GWAS output. P values are reported on the -
log10 scale. The 45-degree line is plotted for reference. The sign of each MAMA SNP is 
compared against an independent replication GWAS. SNPs whose sign matches the sign 
reported in the replication GWAS are marked with a dark blue ▲, and SNPs whose sign 
does not match the sign reported in the replication GWAS are marked with a light blue 
•. Sign test P values are drawn from the binomial distribution with success probability 
1/2. Details on lead SNP and novel SNP identification can be found in Online Methods. 
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Figure 7. QQ plot of the lead SNPs and novel lead SNPs for Educational 
Attainment in an independent EAS population. 
 
(a)        

  
(b)  

 
 
Note: QQ plot and sign-test replication for Educational Attainment of (a) all lead SNPs 
in MAMA EAS and (b) all novel lead SNPs in MAMA EAS. The x-axis corresponds to the 
uniform distribution of P values expected under the null hypothesis, and the y-axis 
corresponds to the observed P values in the replication GWAS output. P values are 
reported on the -log10 scale. The 45-degree line is plotted for reference. The sign of each 
MAMA SNP is compared against an independent replication GWAS. SNPs whose sign 
matches the sign reported in the replication GWAS are marked with a dark blue ▲, and 
SNPs whose sign does not match the sign reported in the replication GWAS are marked 
with a light blue •. Sign test P values are drawn from the binomial distribution with 
success probability 1/2. Details on lead SNP and novel SNP identification can be found 
in Online Methods. 
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TABLES 

Table 1. Summary of MAMA results of 23 phenotypes. 
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Online Methods 

 

This article is accompanied by a Supplementary Note with further details. 

Data Generating Procedure for Simulations 

In our simulations, we generate GWAS summary statistics for hypothetical AFR, 

EAS, and EUR populations. For the infinitesimal model used to measure bias and the 

mean 𝜒4 statistic, we generate true marginal effect sizes with the following approach. 

First, for the corresponding subsample of the 1000 Genomes Project data22 (consisting 

of all individuals with a genotype missingness rate no greater than 2%), we estimate the 

LD between each pair of SNPs that have an allele frequency greater than 1% and a 

missingness rate no more than 2% within their subsample in every population. We fix 

the LD between a pair of SNPs to zero if they are farther than 1 centimorgan apart or if 
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they are on different chromosomes. We then draw true conditional effect sizes for each 

standardized SNP in these samples from a standard normal distribution. We assume 

that the cross-ancestry genetic correlation is 1 for each pair of populations, which means 

that the conditional effect of each standardized SNP is the same in each population. 

True marginal effect sizes for each population are calculated using equation (3). For 

computational reasons, we retain only every 100th SNP for the subsequent steps of the 

simulation, resulting in 60,107 SNPs. 

For the spike-and-slab model used to measure type-1 error rate, we generate true 

marginal effect sizes using the same procedure as above with an additional step at the 

end. Specifically, we take the 60,107 SNPs for which we have marginal effects and we 

randomly set 10% of the marginal effects to zero in all three populations. We then 

randomly set the marginal effect to zero in just the EAS population for a random 10% set 

of SNPs that do not overlap with the 10% that have a zero marginal effect in all three 

populations. The EAS population was chosen arbitrarily in this simulation. By 

symmetry, we would anticipate comparable results no matter which population we 

chose to be null. Thus, 80% of SNPs have a non-zero marginal effect in all three 

populations, 10% of SNPs have a non-zero marginal effect in just the EUR and AFR 

populations, and 10% of SNPs have a zero marginal effect in all three populations. 

Finally, in all simulations, we construct standardized GWAS effect-size estimates 

by adding mean-zero, normally distributed noise with variance 100 to each true 

marginal effect. Thus, the standard error for each SNP is √100 = 10. For the 

infinitesimal-model summary statistics, this results in a mean 𝜒4 statistics of 2.271, 

2.576, and 2.666 in the AFR, EAS, and EUR-based summary statistics, respectively. In 

the spike-and-slab model, the corresponding mean 𝜒4 statistics are 2.144, 2.287, and 
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2.517, respectively. Next, we divide the true standardized marginal effect size, the 

standardized GWAS estimates, and standard errors by [2𝑀𝐴𝐹!,&(1 − 𝑀𝐴𝐹!,&), where 

𝑀𝐴𝐹!,& is the allele frequency of SNP 𝑗 in population 𝑝, to transform these quantities into 

allele-count units rather than standardized units. This is done because published 

summary statistics are reported in allele-count units, and these are the units required 

for summary statistics provided to MAMA. 

In simulations with just two populations, only the EAS and EUR summary 

statistics are retained, corresponding to the ancestries of the samples used in our 

empirical applications in this paper. 

Biobank Japan 

The BioBank Japan Project (https://biobankjp.org/english/index.html) is a 

national hospital-based biobank started in 2003. The BBJ collected DNA, serum and 

clinical information of approximately 200,000 patients with any of 47 target diseases 

between fiscal years of 2003 and 2007 from 66 hospitals throughout Japan. Details of 

study design, sample collection, baseline clinical information, genotyping, and 

imputation are described elsewhere34–36. We retrieved individual phenotypes from 

medical records and applied standard quality control criteria followed by inverse-rank 

normalization as described previously37. We restricted our analysis to unrelated 

individuals and held out a random sample of 5,000 individuals as a replication sample. 

GWAS was conducted using Hail v0.238 under a linear regression model with covariates 

including age, age2, sex, age × sex, age2 × sex, and the top 20 PCs. 

China Kadoorie Biobank 
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China Kadoorie Biobank (CKB, https://www.ckbiobank.org) is a population-

based prospective cohort of approximately 513,000 adults aged 30-79 recruited in 

2004-8 from 10 geographically defined regions of China39. Questionnaire and physical 

measurement data and biological samples were collected at baseline and at periodic re-

surveys of 25,000 randomly selected surviving participants. Through linkages to death 

and disease registries and to health insurance databases, all participants are followed for 

cause-specific mortality and morbidity and for any hospital admission. Local, national 

and international ethics approval was obtained, and all participants provided written 

informed consent. Genotyping was conducted on custom Affymetrix Axiom® arrays, 

with 100,706 unique samples and 511,885 variants passing QC. Genotypes were phased 

using SHAPEIT3 v4.12 and imputed into the 1000 Genomes Phase 3 reference with 

IMPUTE4 v4.r265. GWAS was conducted stratified by both sex and the 10 recruitment 

regions, using BOLT-LMM v2.3.2 with age and age2 as covariates. Analyses using CKB 

data were conducted under research approval 2018-0087. 

UK Biobank 

The UK Biobank Project enrolled 500,000 people aged between 40-69 years in 

2006-2010 from across the country, as described previously40. Details of the study 

design, data access, and other relevant information are described elsewhere 

(https://www.ukbiobank.ac.uk/). We conducted GWAS as described previously 

(http://www.nealelab.is/uk-biobank/ukbround2announcement) using a linear 

regression model with the same covariates as described in the BBJ analyses with one 

modification. We created a holdout validation set consisting of 10,000 individuals from 

the original GWAS analyses, then included the remaining individuals in GWAS, totaling 
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a maximum of 351,194 individuals (in contrast, the original GWAS conducted by the 

Neale Lab had a maximum of N= 361,194 individuals). 

Construction of LD scores 

LD scores used in these analyses were constructed using the 1000 Genomes 

Project Phase 3 samples. The LD scores were constructed using the –std-geno-ldsc units 

option, which assumes that the genotypes in the model are in allele-count units (see 

Supplementary Materials Section 1.2). We used the EUR samples (489 individuals) to 

construct LD scores for the European-ancestry-population summary statistics and used 

the EAS samples (481 individuals) to construct the LD scores for the East-Asian-

ancestry-population summary statistics. Before making the score, we restricted the 

SNPs to just those with a minor allele frequency greater than 1% in either the EAS or 

EUR samples. This resulted in 10,294,523 SNPs in total (7,627,153 SNPs in the EAS 

population, 8,676,825 SNPs in the EUR population, and 6,009,455 SNPs in the 

intersection). The distributions of the LD scores and of the LD score correlations are in 

Supplementary Figure 50. 

MAMA settings in empirical applications 

 The MAMA analyses in this paper are conducted using the following settings. We 

assume that the phenotype has a genetic correlation of 1 between populations but that 

the heritability may differ between populations. We also assume that the model is in 

standardized units. This assumption implies that the conditional effect of a one-

standard deviation change in genotype is independently and identically distributed 

across the genome. This assumption also implies that the expected magnitude of effect 

sizes (in allele count units) is larger for SNPs that are rarer. Finally, because there is 

little to no variation in sample size across SNPs within each population’s summary 
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statistics in our data, there is also little variation in the standard errors. Thus, the 

intercept and squared standard error term are highly collinear in the LD score 

regression step of MAMA. To address this issue, we fix the intercept to zero and freely 

estimate the coefficient on the squared standard errors. 

GWAS-equivalent sample size 

 As one of the metrics of performance, MAMA reports the “GWAS-equivalent 

sample size.” It is parallel to the identically named metric used by MTAG16. This metric 

quantifies how large a GWAS sample you would need to observe the same gains in the 

mean 𝜒4 statistic in MAMA relative to the original GWAS summary statistics. Because 

one minus the mean 𝜒4 statistic scales linearly with sample size in expectation, the 

GWAS-equivalent sample size for MAMA is defined as 

𝑁>?-@/ABCDE ≡
𝜒FGFG4 − 1

𝜒HIGJ
4 − 1

𝑁HIGJ 

where 𝜒FGFG4  is the mean 𝜒4 statistic of the MAMA summary statistics, 𝜒HIGJ
4  is the 

mean 𝜒4 statistic of the GWAS summary statistics, and 𝑁HIGJ is sample size of the 

GWAS. Because MAMA standard errors are implicitly corrected for population 

stratification using the LD score intercept, to make the mean 𝜒4 statistic comparable 

between the GWAS and MAMA summary statistics, the GWAS standard errors were 

corrected using the LD score intercept before calculating 𝜒HIGJ
4 . One difference between 

the GWAS-equivalent sample size in MAMA relative to MTAG is that the amount of 

weight put on the alternate set of summary statistics varies by SNP in MAMA, whereas it 

is constant in MTAG. As a result, the GWAS-equivalent sample size does not represent 

the sample size needed to obtain a certain level of power for any individual SNP, but 
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instead it represents how large a sample would be needed to obtain an average amount 

of power genome-wide. For MAMA, the SNP-level effective sample size will be larger 

when the LD correlation is higher between the pairs of populations (see Supplementary 

Materials Section 1.5.1). 

Identifying lead SNPs 

 Using the discovery GWAS and MAMA results for each phenotype, we identify a 

set of genome-wide-significant lead SNPs. If there are no SNPs with a P value less than 5 

´ 10-8, then there are no genome-wide significant lead SNPs for that set of summary 

statistics. Otherwise, we use the following algorithm to identify lead SNPs. (1) The SNP 

with the smallest P value is set aside as a potential lead SNP. (2) All SNPs that are on the 

same chromosome as the SNP identified in (1) and that are correlated with the SNP at 

R2 > 0.1 are removed from the summary statistics. (3) Steps (1) and (2) are repeated 

until no SNP remains with a P value less than 5 ´ 10-8.  (4) Among the list of potential 

lead SNPs, the SNP with the lowest P value is added to the final list of lead SNPs. (5) 

Any potential lead SNP within 500 kbp of the lead SNP identified in (4) is removed. (6) 

Steps (4) and (5) are repeated until no SNPs remain among the potential lead SNPs. 

These steps are executed using two rounds of Plink’s clumping algorithm. R2 values 

were calculated using the 1000 Genomes Project reference panel sample corresponding 

to the population of the GWAS or MAMA summary statistics. 

Identifying Novel SNPs 

 To assess whether the lead SNPs identified by MAMA are novel relative to the 

input GWAS summary statistics, we first remove any of the SNPs from the MAMA lead-

SNP list that have the same rsID as any genome-wide-significant SNPs from the GWAS 

summary statistics used to generate the MAMA summary statistics. We then combine 
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the reduced set of MAMA lead SNPs with the lead SNPs from the input GWASs, 

adjusting the P values of the lead SNPs from the GWASs so they are smaller than the 

minimum P value in the MAMA lead-SNP list. We then conduct the two-stage clumping 

algorithm described in the Methods section “Identifying lead SNPs” to this combined set 

of SNPs. Any of the SNPs that are retained from the reduced set of MAMA lead SNPs 

after clumping are considered “novel lead SNPs.” Note that “novel” in this case does not 

imply that the SNPs are novel relative to the literature but rather that the SNPs are 

novel relative to the summary statistics used in the analysis. 

Replication 

 To validate the lead SNPs and the novel lead SNPs identified by MAMA, we look 

up these SNPs in GWAS in an independent sample from the same population. We then 

compare the sign of the novel lead SNPs from MAMA to the signs of the GWAS in the 

replication sample corresponding to the same population and phenotype. Under the null 

hypothesis that the novel lead SNPs from MAMA are null in the replication sample, the 

number of times the MAMA estimates have a concordant sign with the replication 

GWAS estimates will have a Binomial(M,0.5) distribution, where M is the number of 

novel lead SNPs. We perform a one-sided test measuring whether the sign concordance 

is higher than expected given the null hypothesis. We did not perform a replication 

analysis for Physical Activity because no lead SNPs were found, nor for Schizophrenia 

because we did not have access to a replication sample. 
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