

1 **Rapid blood acid-base regulation by European sea bass (*Dicentrarchus*
2 ***labrax*) in response to sudden exposure to high environmental CO₂****

3 Running title: Rapid acid-base regulation by bass

4 Daniel W. Montgomery^{a*}, Garfield T. Kwan^{b,c}, William G. Davison^a, Jennifer
5 Finlay^a, Alex Berry^a, Stephen D. Simpson^a, Georg H. Engelhard^{d,e}, Silvana N.R.
6 Birchenough^b, Martin Tresguerres^b, Rod W. Wilson^{a*}

7 ^a Biosciences, Geoffrey Pope Building, University of Exeter, UK

8 ^b Marine Biology Research Division, Scripps Institution of Oceanography,
9 University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA

10 ^c National Oceanic and Atmospheric Administration Fisheries Service, Southwest
11 Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA

12 ^d Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield
13 Road, Lowestoft, UK

14 ^e School of Environmental Sciences, University of East Anglia, Norwich, UK

15 *corresponding authors: danwmont@gmail.com/R.W.Wilson@exeter.ac.uk

16

17 Summary statement: European sea bass exposed to 1 kPa (10,000 µatm) CO₂
18 regulate blood and red cell pH within 2 hours and 40 minutes, respectively,
19 protecting O₂ transport capacity, via enhanced gill acid excretion.

20

21 Keywords: hypercapnia, ionocytes, respiratory acidosis, O₂ transport, gill
22 plasticity

23

24

25

26

27

28

29 **Abstract**

30 Fish in coastal ecosystems can be exposed to acute variations in CO₂ that can
31 approach 1 kPa CO₂ (10,000 μ atm). Coping with this environmental challenge
32 will depend on the ability to rapidly compensate the internal acid-base
33 disturbance caused by sudden exposure to high environmental CO₂ (blood and
34 tissue acidosis); however, studies about the speed of acid-base regulatory
35 responses in marine fish are scarce. We observed that upon exposure to ~1 kPa
36 CO₂, European sea bass (*Dicentrarchus labrax*) completely regulate erythrocyte
37 intracellular pH within ~40 minutes, thus restoring haemoglobin-O₂ affinity to pre-
38 exposure levels. Moreover, blood pH returned to normal levels within ~2 hours,
39 which is one of the fastest acid-base recoveries documented in any fish. This was
40 achieved via a large upregulation of net acid excretion and accumulation of HCO₃⁻
41 in blood, which increased from ~4 to ~22 mM. While the abundance and
42 intracellular localisation of gill Na⁺/K⁺-ATPase (NKA) and Na⁺/H⁺ exchanger 3
43 (NHE3) remained unchanged, the apical surface area of acid-excreting gill
44 ionocytes doubled. This constitutes a novel mechanism for rapidly increasing acid
45 excretion during sudden blood acidosis. Rapid acid-base regulation was
46 completely prevented when the same high CO₂ exposure occurred in seawater
47 with experimentally reduced HCO₃⁻ and pH, likely because reduced
48 environmental pH inhibited gill H⁺ excretion via NHE3. The rapid and robust acid-
49 base regulatory responses identified will enable European sea bass to maintain
50 physiological performance during large and sudden CO₂ fluctuations that
51 naturally occur in coastal environments.

52

53 **Introduction**

54 Increased CO₂ in aquatic environments, or environmental hypercapnia,
55 causes significant physiological challenges for water breathing animals including
56 fish. As environmental CO₂ increases, there is a corresponding rise in CO₂ within
57 the fish's blood, which in turn induces a decrease in blood pH. This condition is
58 referred to as a respiratory acidosis, and depending on its magnitude, can disrupt
59 multiple homeostatic processes including gas exchange (Crocker and Cech Jr,
60 1998; Eddy et al., 1977; Perry and Kinkead, 1989) and cardiovascular function
61 (Lee et al., 2003; Perry and McKendry, 2001; Perry et al., 1999). Globally, CO₂

62 levels in the ocean are increasing as a result of anthropogenic climate change,
63 and are predicted to reach ~0.1 kPa (0.1% CO₂, 1,000 μ atm) by 2100 under a
64 'business as usual' scenario (Orr et al., 2005; Doney et al., 2011; IPCC, 2014).

65 The increase in oceanic CO₂ levels, known as ocean acidification (OA)
66 (Doney et al., 2009), has renewed interest in acid-base regulatory mechanisms
67 of aquatic organisms. However, coastal and estuarine environments already
68 experience much larger variations in CO₂ levels (Sunda and Cai, 2012; Wallace
69 et al., 2014), which will likely be exacerbated in the future (Cai et al., 2011;
70 Melzner et al., 2013). These fluctuations may occur rapidly over minutes to hours,
71 and reach levels as high as ~1 kPa (1% CO₂, 10,000 μ atm) (Borges et al., 2006;
72 Baumann et al., 2015). This type of environmental hypercapnia implies a different
73 physiological challenge compared to OA. Firstly, as environmental CO₂ levels
74 increase above CO₂ levels in venous blood (typically ~0.3 kPa), CO₂ diffusion
75 gradients are reversed resulting in net uptake from the environment into the blood
76 and inducing a much more pronounced respiratory acidosis (Tresguerres and
77 Hamilton, 2017). Secondly, the sudden and extreme CO₂ fluctuations must be
78 met by equally fast, robust, and reversible acid-base regulatory responses.

79 Fish have a great capacity to restore blood pH to compensate for CO₂-induced
80 respiratory acidosis, which is largely achieved by excreting excess H⁺ and
81 absorbing HCO₃⁻ using their gills (Brauner et al., 2019; Claiborne et al., 2002;
82 Esbaugh, 2017; Evans et al., 2005; Perry and Gilmour, 2006). At the cellular level,
83 these processes take place in specialized ion-transporting cells, or ionocytes.
84 However, the underlying ion-transporting proteins and regulatory mechanisms
85 are intrinsically different between freshwater and marine fishes and may also vary
86 between species (Brauner and Baker, 2009; Claiborne et al., 2002; Evans et al.,
87 2005; Perry and Gilmour, 2006). The few studies that have investigated acid-
88 base regulation after acute exposure to ~1 kPa CO₂ in marine fish have reported
89 large variation of responses, with full blood pH compensation occurring between
90 ~2 and 24 hours depending on the species (Hayashi et al., 2004; Larsen et al.,
91 1997; Perry, 1982; Toews et al., 1983). Given the exquisite sensitivity of most
92 proteins to changes in pH, variation in the time course of acid-base regulatory
93 responses between species has important implications for whole organism
94 performance. Haemoglobins (Hb) of fish species show strong Bohr and Root
95 effects (Wells, 2009) which reduces Hb-O₂ binding affinity and the O₂ carrying

96 capacity when erythrocyte intracellular pH (pH_i) decreases. While fish have
97 adaptations to regulate pH_i of erythrocytes (Cossins and Richardson, 1985;
98 Nikinmaa and Tufts, 1989; Thomas and Perry, 1992), erythrocyte pH_i in many fish
99 species (particularly marine fish) is closely linked to whole blood pH (Brauner and
100 Baker, 2009; Shartau et al., 2020). Therefore, adaptations which enhance the
101 speed of whole blood acid-base regulation will also provide faster restoration of
102 O_2 transport capacity and minimise disruption to energetically expensive activities
103 such as foraging and digestion. However, little is known about why some species
104 are able to compensate respiratory acidosis faster than others.

105 The gill ionocytes of marine fish excrete H^+ using apical Na^+/H^+ exchangers
106 (NHEs) driven by basolateral Na^+/K^+ -ATPase (NKAs) (Brauner et al., 2019;
107 Claiborne et al., 2002; Evans et al., 2005). Theoretically, H^+ excretion during
108 sudden exposure to hypercapnia could be upregulated by increased biosynthesis
109 of NKA and NHE; however, transcriptional and translational responses typically
110 take at least a few hours (e.g. Tresguerres et al., 2005, 2006). Furthermore,
111 protein turnover is energetically expensive (Pan et al., 2015), so short-term
112 regulation of H^+ excretion by synthesis and degradation of ion-transporting
113 proteins would not be particularly efficient. Alternatively, the rapid upregulation of
114 H^+ excretion may be mediated by post-translational regulatory modifications such
115 as insertion of pre-existing proteins into the ionocyte membrane, or morphological
116 adjustments of its apical area, as reported by a variety of fishes in response to
117 other acid-base disturbances (reviewed in Brauner et al., 2019; Tresguerres et
118 al., 2019).

119 In the present study we investigated acid-base regulation of European sea
120 bass, *Dicentrarchus labrax*, an active predator which seasonally inhabits shallow
121 coastal, estuarine and saltmarsh environments (Doyle et al., 2017) where rapid
122 and large fluctuations in CO_2 levels occur (Borges et al., 2006). Specifically, we
123 characterised blood acid-base regulation, erythrocyte intracellular pH (pH_i) and
124 O_2 affinity, effects of seawater chemistry on speed of acid-base regulation, and
125 changes in ionocyte NKA and NHE3 abundance, intracellular localisation, and
126 apical surface area during acute exposure to $\sim 1 \text{ kPa CO}_2$.

127 **Methods**

128 **Capture and Pre-Experimental Condition**

129 Juvenile European sea bass were obtained by seine netting in estuaries and
130 salt marshes from Dorset and the Isle of Wight on the south coast of the United
131 Kingdom. Sea bass were transferred to the Aquatic Resources Centre of the
132 University of Exeter where they were held in ~500 L tanks in a recirculating
133 aquaculture system (RAS, total volume ~ 2500 L) at temperatures between 14
134 and 22°C. Sea bass were fed three times a week with commercial pellet (Horizon
135 80, Skretting) with a supplement of chopped frozen mussel (*Mytilus edulis*) once
136 a week. For ~6 months before experiments sea bass were maintained at a
137 temperature of 14°C and seawater CO₂ levels of ~0.05-0.06 kPa (pH~8.10). Prior
138 to all experimental procedures, sea bass were withheld food for a minimum of 72
139 hours. Animal collections were conducted under appropriate permits (Marine
140 Management Organisation permit #030/17 & Natural England permit
141 #OLD1002654) and all experimental procedures were carried out under home
142 office licence P88687E07 and approved by the University of Exeter's Animal
143 Welfare and Ethical Review Board.

144 **Hypercapnia exposure**

145 Individual sea bass were moved to isolation tanks (~20 L) and left to acclimate
146 overnight for a minimum of 12 hours before exposure to hypercapnia. During the
147 acclimation period isolation tanks were fed by the RAS at a rate of ~4 L min⁻¹;
148 with overflowing water recirculated back to the RAS. After overnight acclimation,
149 hypercapnia exposure began by switching inflow of water from low CO₂ control
150 conditions to high CO₂ seawater delivered from a header tank (~150 L) in which
151 pCO₂ levels had already been increased to ~1 kPa using an Aqua Medic pH
152 computer (AB Aqua Medic GmbH). The pH computer maintained header tank
153 pCO₂ levels using an electronic solenoid valve which fed CO₂ to a diffuser in the
154 header tank if pH rose above 6.92 and stopped CO₂ flow if pH dropped below
155 6.88. Additionally, to reduce CO₂ fluctuation in isolation tanks during exposures,
156 the gas aerating each tank was switched from ambient air to a gas mix of 1%
157 CO₂, 21% O₂ and 78% N₂ (G400 Gas mixing system, Qubit Biology Inc.). During
158 exposures overflowing water from each isolation tank recirculated to the header
159 tank creating an isolated experimental system of ~250 L. The experimental
160 system was maintained at 14°C using a heater/chiller unit (Grant TX150 R2,
161 Grant Instruments) attached to a temperature exchange coil in the header tank.
162 To characterise the time course of acid-base regulation sea bass were exposed

163 to hypercapnia (~1 kPa CO₂) for either ~10 minutes, ~40 minutes, or ~135
164 minutes before measurements were taken. pH of isolation tanks was monitored
165 with a separate pH probe and matched the header tank ~5 minutes after initial
166 exposure. Measurements of an additional group of sea bass were obtained at
167 normocapnic CO₂ levels (~0.05 kPa CO₂) to act as a pre-exposure control
168 (hereafter this group is referred to as time = 0). At the time of sampling
169 measurements of seawater pH (NBS scale), temperature and salinity, as well as
170 samples of seawater to measure total CO₂ (TCO₂)/Dissolved Inorganic Carbon
171 (DIC), were taken from each isolation tank. DIC analysis was conducted using a
172 custom built system described in detail by Lewis *et al.* (2013). Measurements of
173 pH, salinity, temperature and DIC were then input into CO2SYS (Pierrot *et al.*,
174 2006) to calculate *p*CO₂ and total alkalinity (TA) based on the equilibration
175 constants refitted by Dickson and Millero (1987).

176 **Blood sampling and analysis**

177 Following hypercapnia exposures (Table 1), sea bass were individually
178 anaesthetised in-situ with a dose of 100 mg L⁻¹ benzocaine. Blood samples were
179 then obtained following the methodology outlined by Montgomery *et al.* (2019).
180 The gill irrigation tank used was filled with water from the header tank and
181 maintained at an appropriate CO₂ level by aeration with the same gas mix feeding
182 the isolation tanks. The water chemistry of the gill irrigation chamber was
183 measured following the same procedures outlined for the isolation chambers,
184 with one DIC sample taken at the end of blood sampling (Table S1).

185 **Table 1:** Mean \pm s.e.m. of water chemistry parameters within isolation tanks
186 during hypercapnia exposures prior to blood sampling.

	Duration			
	0 min (Control)	~10 min (10.8 \pm 0.26 min)	~40 min (41.0 \pm 2.82 min)	~135 min (133.9 \pm 2.27 min)
Temperature (°C)	13.94 \pm 0.04	13.90 \pm 0.03	13.94 \pm 0.02	13.89 \pm 0.04
pH (NBS)	8.15 \pm 0.01	6.98 \pm 0.01	6.96 \pm 0.01	6.95 \pm 0.01
Salinity	34.1 \pm 0.1	34.1 \pm 0.1	34.7 \pm 0.2	34.0 \pm 0.1
pCO₂ (kPa)	0.059 \pm 0.001	0.898 \pm 0.022	0.944 \pm 0.072	0.945 \pm 0.017
TA (μM)	3,251 \pm 20	2,804 \pm 16	2,833 \pm 11	2,777 \pm 29

188 Immediately after sampling, extracellular pH was measured on 30 μ L of whole
189 blood using an Accumet micro pH electrode and Hanna HI8314 pH meter
190 calibrated to 14 °C using pH_{NBS} 7.04 and 9.21 appropriate buffers. Measurements
191 of blood pH were made in a temperature-controlled water bath. Three 75 μ L micro
192 capillary tubes were then filled with whole blood and anaerobically sealed with
193 Critoseal capillary tube sealant (Fisher) and paraffin oil and centrifuged for 2
194 minutes at 10,000 rpm. Haematocrit (Hct) was measured using a Hawksley
195 micro-haematocrit reader. Plasma was then extracted from capillary tubes for
196 analysis of TCO₂ using a Mettler Toledo 965D carbon dioxide analyser. Plasma
197 pCO₂ and HCO₃⁻ were then calculated from TCO₂, temperature and blood pH
198 using the Henderson-Hasselbalch equation with values for solubility and pK^{1app}
199 based on Boutilier *et al.* (1984, 1985). Haemoglobin (Hb) content of 10 μ L of
200 whole blood was also assessed by the cyanmethemoglobin method (after
201 addition to 2.5 mL of Drabkin's reagent, Sigma). Half the remaining whole blood
202 was centrifuged at 10,000 rpm for 2 minutes at 4°C. The resulting plasma was
203 separated and 10 μ L was diluted in ultrapure water, snap frozen in liquid N₂, and
204 stored at -80°C before later being used to measure plasma cation and anion
205 concentrations using ion chromatography (Dionex ICS 1000 & 1100, Thermo-
206 Scientific, UK). The remaining plasma was snap frozen in liquid N₂ and stored at
207 -80°C before measurements of plasma lactate and glucose were made (YSI
208 2900D Biochemistry Analyzer, Xylem Analytics). After separating the plasma, the
209 surface of the leftover erythrocyte pellet was blotted to remove the leukocyte
210 layer. The erythrocyte pellet was then snap frozen in liquid nitrogen for 10
211 seconds and thawed in a 37°C water bath for 1 minute prior to intracellular pH
212 (pH_i) measurements as described by Zeidler and Kim (1977), and validated by
213 Baker *et al.* (2009). All measurements or storage of blood occurred within 10
214 minutes of blood sampling. Finally, Hb-O₂ affinity was measured following the
215 methods outlined in Montgomery *et al.* (2019) using a Blood Oxygen Binding
216 System (BOBS, Loligo systems), as detailed by Oellermann *et al.* (2014).

217 **Flux measurements**

218 The flux of acid-base relevant ions between sea bass and seawater was
219 measured over a ~135 minute time period in normocapnic conditions (n = 7) and
220 immediately following exposure to hypercapnia (n = 8, Table 2). At the start of
221 the measurements the flow to the isolation tanks was stopped and water

chemistry maintained at the desired $p\text{CO}_2$ by gassing the tanks with either ambient air (control) or a 1% CO_2 gas mix (hypercapnia). Seawater samples for measuring TA were taken at the beginning and end of the ~135 minute flux period, preserved by adding 40 μL of 4% (w/v) mercuric chloride per 10 mL of seawater, and stored at 4 °C (Dickson et al., 2007) prior to analysis by double titration using an autotitrator (Metrohm 907 Titrando with 815 Robotic USB Sample Processor XL, Metrohm). TA measurements were made using a double titration method modified from Cooper *et al.* (2010) as detailed by Middlemiss *et al.* (2016). Briefly, 20 mL samples were titrated to pH 3.89 using 0.02 M HCl whilst gassing with CO_2 -free N_2 , pH was then returned to starting values by titrating with 0.02 M NaOH. Samples for measuring total ammonia were frozen at -20°C before ammonia concentration was measured using a modified version of the colourimetric method of Verdouw *et al.* (1978) at 660 nm using a microplate reader (NanoQuant infinite M200 pro, Tecan Life Sciences). A calibration curve was constructed using NH_4Cl standards in seawater.

Table 2: Mean \pm s.e.m. of water chemistry parameters within individual tanks during flux measurements.

Treatment	Duration (min)	pH (NBS)	Temperature (°C)	Salinity	$p\text{CO}_2$ (kPa)	TA (μM)
Normocapnia	132.3 \pm 0.9	7.96 \pm 0.01	14.03 \pm 0.04	33.6 \pm 0.2	0.072 \pm 0.002	2395 \pm 21
Hypercapnia	123.6 \pm 2.4	6.91 \pm 0.03	13.90 \pm 0.12	33.6 \pm 0.0	0.862 \pm 0.056	2299 \pm 33

239

240 Acid-base relevant fluxes ($\mu\text{mol kg}^{-1} \text{ h}^{-1}$) were then calculated using the
241 following equation:

242
$$J_x = [([X]_i - [X]_f) \times V] / (M \times t)$$

243 as described by Wilson and Grosell (2003), where V is the volume of water (L) in
244 the isolation tank (after the initial sample is taken), M is the mass of the sea bass
245 (kg), t is the duration of the flux period (h) and $[X]_i$ and $[X]_f$ are the ion
246 concentrations in the chamber water ($\mu\text{mol L}^{-1}$) at the beginning and end of the
247 flux period. By reversing the initial and final values titratable acid, instead of base,
248 fluxes can be calculated so that a positive value equals acid uptake (i.e. HCO_3^-
249 excretion) and a negative value equals acid excretion (i.e. HCO_3^- uptake). We
250 then calculated net acid-base fluxes ($\mu\text{eq kg}^{-1} \text{ h}^{-1}$) as the sum of titratable acid
251 and total ammonia (T_{amm}) flux (McDonald and Wood, 1981).

252 **Exposure to Low Total Alkalinity**

253 Sufficient 1 M HCl was added to ~250 L seawater to reduce TA by over 90%
254 from ~2,800 μM to ~200 μM , followed by overnight aeration to equilibrate CO_2
255 with atmospheric levels. We then adjusted the $p\text{CO}_2$ of the low TA seawater to
256 the desired level of ~1 kPa as described above, and a pH set point of 5.75. Sea
257 bass were placed in the individual isolation boxes (fed by the RAS as detailed for
258 normal TA hypercapnia exposures) and left to acclimate overnight before being
259 exposed to the combined low TA and hypercapnia treatment. Flow to individual
260 isolation boxes was stopped, and ~75% of the water from the isolation box was
261 drained and refilled with low TA, hypercapnic water. This process was repeated
262 3 times over a period of ~5 minutes. The gas mix aerating each isolation box was
263 switched from ambient air to a 1% CO_2 gas mix to maintain the desired $p\text{CO}_2$
264 levels. After ~135 minutes exposure, each seabass was anaesthetised and
265 sampled for blood acid-base measurements as detailed previously. The water
266 chemistry of isolation boxes (Table S2) and gill irrigation chambers (Table S3)
267 was measured at the time of blood sampling.

268 **Gill sampling**

269 Gill tissue was sampled from sea bass exposed to ambient CO_2 conditions (n
270 = 5) and to hypercapnia for ~135 minutes ($n=5$, taken immediately after the flux
271 measurements) in normal TA seawater (Table S4). Mean water chemistry
272 conditions during flux measurements (Table 2) and experienced by sea bass prior
273 to gill sampling (Table S4) differ because gill samples were only collected from 5
274 of the 8 sea bass used for flux measurements. After euthanizing the sea bass in
275 an anaesthetic bath (benzocaine, 1 g L^{-1}), gills were dissected and rinsed in
276 phosphate buffered saline (PBS). The first gill arch on the left side was flash
277 frozen in liquid N_2 and stored at -80°C for Western blotting, and the first gill arch
278 on the right side was fixed in 4% paraformaldehyde in 0.1 M phosphate buffer
279 saline (PBS) (diluted from 16% electron microscopy grade paraformaldehyde.
280 Electron Microscope Science catalogue # 15710), overnight at 4°C for
281 immunohistochemistry. Following a ~10-hour fixation, gill samples were
282 transferred to 50% ethanol for ~10 hours at 4 °C, and then stored in 70% ethanol
283 at 4°C.

284 **Antibodies**

285 NKA was immunodetected using a5, a mouse monoclonal antibody against
286 the α -subunit of chicken NKA (a5, Developmental Studies Hybridoma Bank, Iowa
287 City, IA, USA; Lebovitz *et al.*, 1989). This antibody universally recognizes NKA in
288 teleost fishes including yellowfin tuna (*Thunnus albacares*; Kwan *et al.*, 2019),
289 Pacific chub mackerel (*Scomber japonicus*; Kwan *et al.*, 2020), and California
290 killifish (*Fundulus parvipinnis*; Nadler *et al.*, 2021). Rabbit anti-NHE3 polyclonal
291 antibodies were generously donated by Dr Junya Hiroi (St. Marianna University
292 School of Medicine, Kawasaki, Japan); they target two epitope regions within
293 rainbow trout (*Oncorhynchus mykiss*) NHE3b (GDEDfefsegdsasg and
294 PSQRAQLRLPWTPSNLRRRLAPL), and recognize NHE3 of multiple teleost
295 species including European sea bass (*D. labrax*; Blondeau-Bidet *et al.*, 2019).
296 The secondary antibodies were goat anti-mouse HRP-linked and goat anti-rabbit
297 HRP-linked (Bio-Rad, Hercules, CA, USA) for immunoblotting, and goat anti-
298 mouse Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 488 (Invitrogen, Grand
299 Island, USA) for immunohistochemistry.

300 **Western Blotting**

301 Western blotting followed the procedures outlined in Kwan *et al.*, (2019, 2020).
302 While frozen on dry ice, the gill filament and lamellae were separated from the
303 gill arch using a razor blade. The excised tissue was then immersed in liquid N₂
304 and pulverized in a porcelain grinder, then submerged within an ice-cold,
305 protease inhibiting buffer (250 mmol L⁻¹ sucrose, 1 mmol L⁻¹ EDTA, 30 mmol L⁻¹
306 Tris, 10 mmol L⁻¹ benzamidine hydrochloride hydrate, 1 mmol L⁻¹
307 phenylmethanesulfonyl fluoride, 1 mmol L⁻¹ dithiothreitol, pH 7.5). Samples were
308 further homogenized using a handheld VWR Pellet Mixer (VWR, Radnor, PA,
309 USA) for 15 second intervals (3 times) while on ice. Next, samples were
310 centrifuged (3,000 g, 4°C; 10 minutes), and the resulting supernatant was
311 considered the crude homogenate. An aliquot of the crude homogenate was
312 further subjected to a higher speed centrifugation (21,130xg, 4°C; 30 minutes),
313 and the pellet was saved as the membrane-enriched fraction. Bradford assay was
314 used to determine protein concentration (Bradford, 1976), which was used to
315 normalize protein loading.

316 On the day of Western blotting, samples were mixed with an equal volume of
317 90% 2x Laemmli buffer and 10% β -mercaptoethanol. Samples were then heated
318 at 70°C for 5 minutes, and the proteins (20 μ g per lane) were loaded onto a

319 polyacrylamide mini gel (4% stacking; 10% separating) – alternating between
320 control and high CO₂ treatments to avoid possible gel lane effects. The gel ran at
321 60 volts for 15 minutes, then 100 V for 1.5 hours, and proteins were transferred
322 onto a polyvinylidene difluoride (PVDF) membrane using a wet transfer cell (Bio-
323 Rad) at 70 volts for 2 hours at 4 °C. PVDF membranes were then incubated in
324 Tris-buffered saline with 1% tween (TBS-T) with milk powder (0.1 g/mL) at room
325 temperature for 1 hour, then incubated with primary antibody (NKA: 10.5 ng/ml;
326 NHE3: 1:1,000) in blocking buffer at 4°C overnight. On the following day, PVDF
327 membranes were washed in TBS-T (three times; 10 minutes each), incubated in
328 blocking buffer with secondary antibodies (1:10,000) at room temperature for 1
329 hour, and washed again in TBS-T (three times; 10 minutes each). Bands were
330 made visible through addition of ECL Prime Western Blotting Detection Reagent
331 (GE Healthcare, Waukesha, WI) and imaged with the Universal III Hood
332 (BioRad). Following imaging, the PVDF membrane was incubated in Ponceau
333 stain (10 minutes, room temperature) to estimate protein loading. Relative NKA
334 and NHE protein abundance (n = 5 per treatment) was quantified using the Image
335 Lab software (version 6.0.1; BioRad) and normalized by the protein content in
336 each lane.

337 **Immunohistochemistry**

338 Immunohistochemistry was performed as described in Kwan *et al.*, (2020).
339 Fixed gill tissue stored in 70% ethanol was rehydrated in PBS + 0.1% tween
340 (PBS-T) for 10 minutes, and gill filaments were dissected out to ease subsequent
341 imaging. Autofluorescence was quenched by rinsing in ice-cold PBS with sodium
342 borohydride (1.0 – 1.5 mg mL⁻¹; six times; 10 minutes each), followed by
343 incubation in blocking buffer (PBS-T, 0.02% normal goat serum, 0.0002%
344 keyhole limpet haemocyanin) at room temperature for one hour. Samples were
345 incubated with blocking buffer containing primary antibodies (NKA: 40 ng/mL;
346 NHE3: 1:500 [c.f. Seo *et al.*, (2013)]) at 4°C overnight. On the following day,
347 samples were washed in PBS-T (three times at room temperature; 10 min each),
348 and incubated with the fluorescent secondary antibodies (1:500) counterstained
349 with DAPI (1 µg mL⁻¹) at room temperature for 1 hour. Samples were washed
350 again in PBS-T as before, then placed on a concave slide for imaging using an
351 inverted confocal microscope (Zeiss LSM 800 with Zeiss ZEN 2.6 blue edition

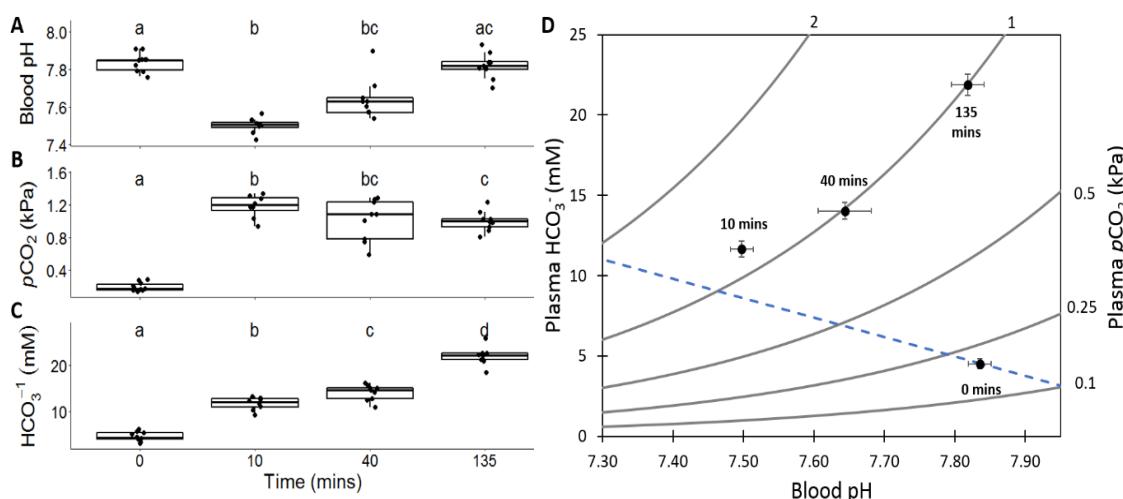
352 software; Cambridge, United Kingdom). Samples incubated without primary
353 antibodies had no signal (Fig. S1).

354 **Quantification of Ionocyte Apical Surface Area**

355 The apical surface area of gill ionocytes were quantified through a
356 combination of whole-mount imaging (40X objective lens with deionized water
357 immersion), optical sectioning, and XZ- and YZ-plane analysis. A relatively flat
358 surface on the gill filament was selected under 0.5x scanning confocal
359 magnification to ensure imaging would be performed on ionocytes in an upright
360 position thus minimizing errors in apical surface area quantification due to angle
361 distortion. After locating an ionocyte by its distinctive NKA signal, the scanning
362 confocal magnification was increased to 5.0X and the entire cell was Z-stack
363 imaged (optimal interval automatically selected: 0.07-0.12 μm per slice).
364 Subsequent viewing of the Z-stack from the X-Z and Y-Z planes allowed us to
365 assess intracellular localisation, and to identify the image slice that captured the
366 entire apical surface (typically, the second slice from the top of the cell). Next, the
367 ionocyte's apical surface area (identified by NHE3 immunofluorescence signal)
368 was quantified using FIJI (Schindelin et al., 2012). For each sea bass (n=5 per
369 treatment), the average apical surface area was calculated from three ionocytes
370 from different gill filaments.

371 **Statistical Analysis**

372 All statistical analysis was performed using R v3.6.3 (R Core Team, 2020).
373 Changes in blood chemistry parameters over time in response to hypercapnia
374 exposure were analysed using one-way ANOVA before assumptions of equal
375 variances of data and normality of model residuals were checked. Post-hoc tests
376 were conducted on least-square means generated by package 'emmeans'
377 (Lenth, 2020), with Tukey adjusted p-values for multiple comparisons. Some data
378 did not meet required assumptions for one-way ANOVA. Unequal variances were
379 observed in measurements of $p\text{CO}_2$ between treatments, as such we used
380 Welch's ANOVA with Tukey's pairwise comparisons using Benjamini-Hochberg
381 corrections for post-hoc testing. Measurements of blood pH and P_{50} did not meet
382 assumptions of normality and were analysed using the Kruskal-Wallis test with
383 post-hoc comparisons made with Dunn's test from package 'FSA' (Ogle et al.,
384 2020), using Benjamini-Hochberg corrections for multiple comparisons. As a
385 result of unusually high measurements of plasma $[\text{Cl}^-]$ and $[\text{Na}^+]$ in some samples

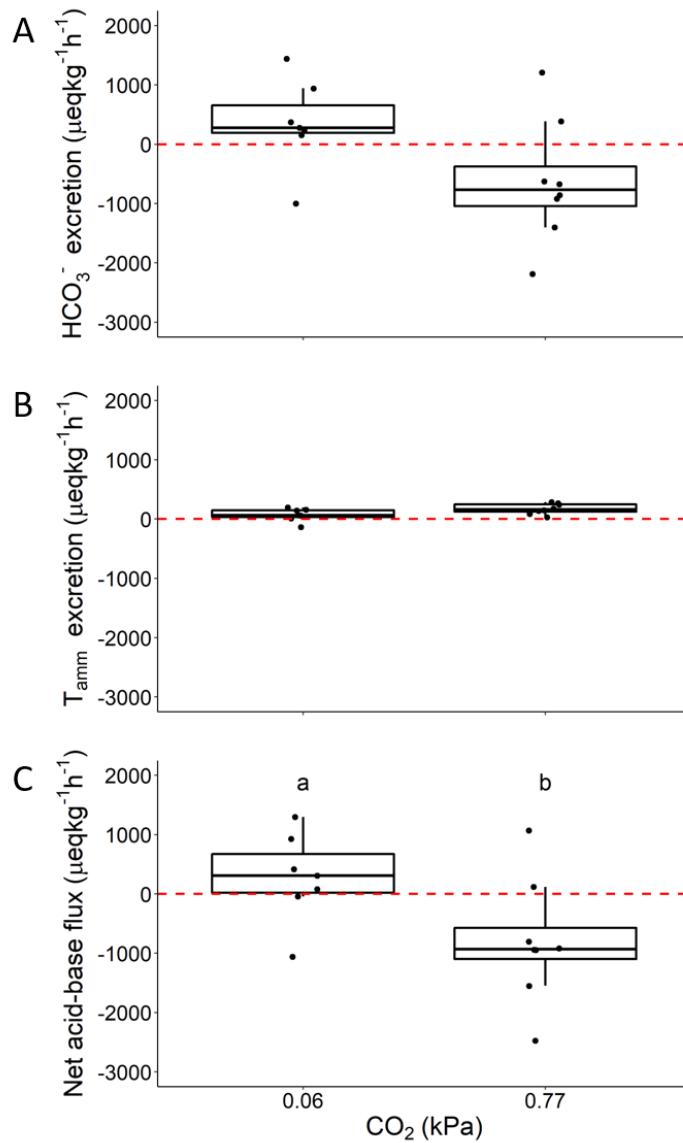

386 a ROUT test was conducted ($Q = 0.5\%$) in Graphpad Prism 9 to identify potential
387 outliers (Motulsky and Brown, 2006). Samples in which plasma $[Cl^-]$ and $[Na^+]$
388 were both identified as outliers by the ROUT test were excluded from the dataset
389 prior to subsequent statistical analysis. Flux measurements were analysed using
390 Student's t-test after checking data met assumptions of normality and equal
391 variance. Relative protein abundance and ionocyte apical area met both
392 assumptions of normality and equal variance and were analysed using one-tailed
393 t-test (control response $<$ CO_2 -exposed response).

394 **Results**

395 **Blood chemistry**

396 Exposure to environmental hypercapnia caused significant changes in blood
397 pH of sea bass over time (Kruskal-Wallis test, $\chi^2 = 25.0$, $df = 3$, $p < 0.001$). There
398 was a pronounced acidosis of the blood from $pH = 7.84$ (± 0.02) in control
399 conditions (normocapnia, time = 0) to 7.50 (± 0.03) after exposure to hypercapnia
400 for ~ 10 minutes (Fig. 1A, D). Following this initial acidosis sea bass completely
401 restored blood pH to control levels after ~ 135 minutes (Fig. 1A, D). Blood pH
402 regulation was accompanied by a ~ 5 -fold increase in plasma HCO_3^- , from $4.5 \pm$
403 0.3 to 21.9 ± 0.7 mM, over the ~ 135 minute exposure (Fig. 1C, D, One-way
404 ANOVA, $F = 203.3$, $df = 3$, $p < 0.001$).

405 Plasma pCO_2 showed significant changes during exposure to hypercapnia
406 (Fig. 1B, D, Welch's ANOVA, $F = 202.5$, $df = 3$, $p < 0.001$). The initial decrease
407 in blood pH of sea bass was driven by a rapid and large (~ 6 -fold) increase in
408 plasma pCO_2 , from 0.200 ± 0.016 to 1.185 ± 0.049 kPa CO_2 , within the first 10
409 minutes of exposure. There was a small but significant decline in plasma pCO_2
410 between sea bass sampled ~ 10 minutes after exposure and sea bass sampled
411 ~ 135 minutes after exposure (Fig. 1B). There were no significant differences in
412 plasma glucose or lactate levels between any treatment groups with values for
413 all sea bass of 5.90 ± 0.43 mM and 0.45 ± 0.05 mM respectively.



414

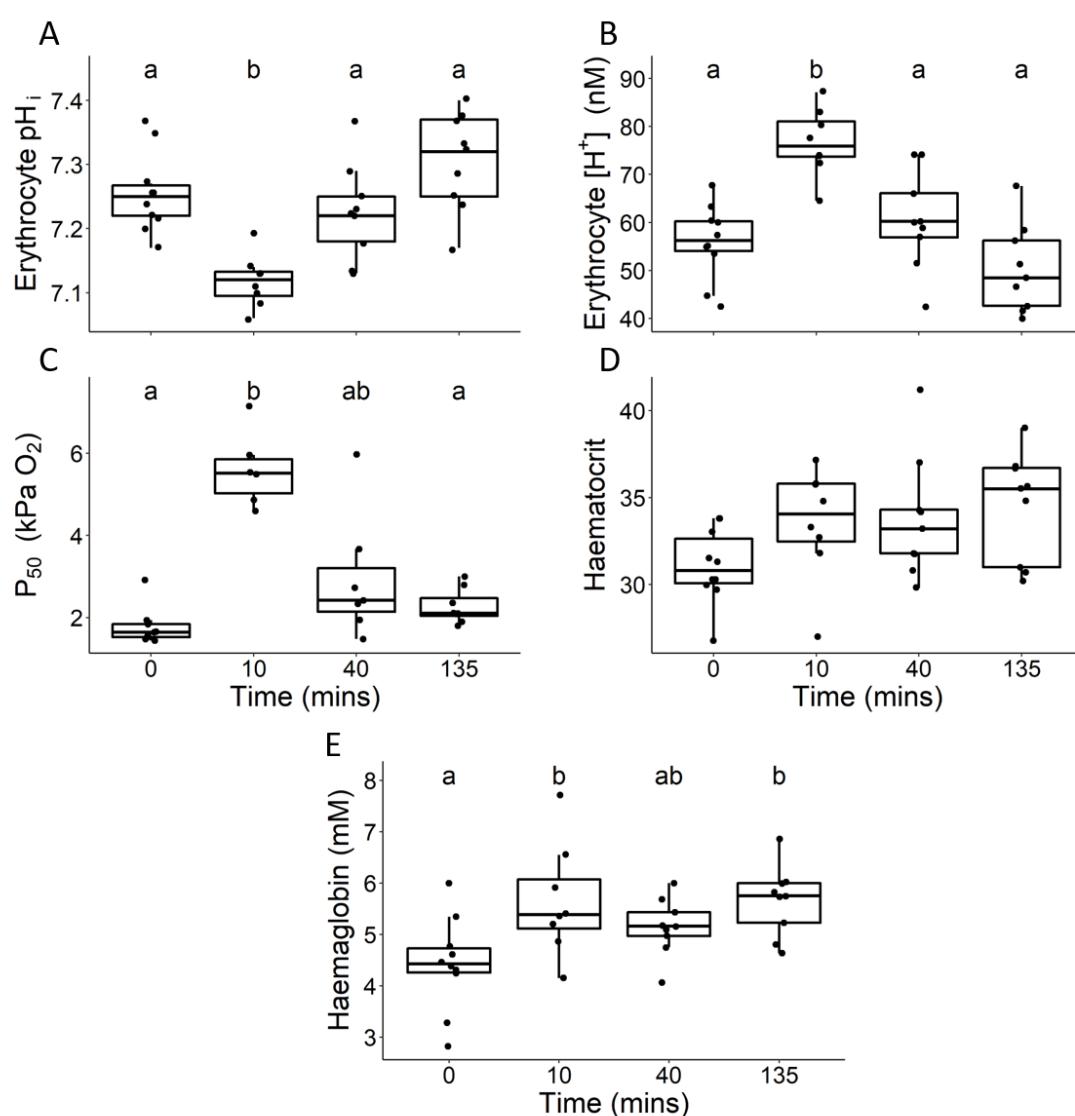
415 **Figure 1:** Changes in **A.** blood pH, **B.** plasma $p\text{CO}_2$, and **C.** plasma HCO_3^-
416 between European sea bass in control conditions (~0.05 kPa CO_2 , Time = 0, n=10) and after exposure to ~0.9 kPa CO_2 for ~10 minutes (n = 8), ~40 minutes (n = 9), and ~135 minutes (n = 9). Significant differences between parameters at
417 each time point are indicated by different lower case letters (**A.** Dunn's test, p < 0.05; **B.** Pairwise comparison using Benjamini-Hochberg correction, P < 0.05 **C.** Pairwise comparison of least square means, p < 0.05) **D.** Combined changes of
418 all three acid-base parameters are expressed as a pH/ HCO_3^- / $p\text{CO}_2$ diagram (blue dashed line indicates estimated non-bicarbonate blood buffer line based on
419 equations from Wood *et al.* (1982)) values represent mean \pm s.e.m.
420
421
422
423
424

425 Flux measurements

426 Sea bass switched from slight net base excretion under control normocapnic
427 conditions to net acid excretion that was ~2.5-fold larger in magnitude during 135
428 minutes of hypercapnia (Fig. 2C, Student's t-test, t = -2.25, df = 13, p = 0.042).
429 This was driven by a switch from a small apparent HCO_3^- excretion to a large
430 apparent HCO_3^- uptake (Fig. 2A). There were no significant differences in T_{Amm}
431 excretion (Fig. 2B).

432

433 **Figure 2:** Changes in **A.** excretion of HCO₃⁻, **B.** excretion of total ammonia (T_{amm})
434 and **C.** net acid-base flux between European sea bass in control conditions (n =
435 7, ~0.07 kPa CO₂) and after ~135 minutes exposure to hypercapnia (n = 8, ~0.84
436 kPa CO₂). Significant difference in parameters are indicated by different lower-
437 case letters (Student's t-test, p < 0.05).

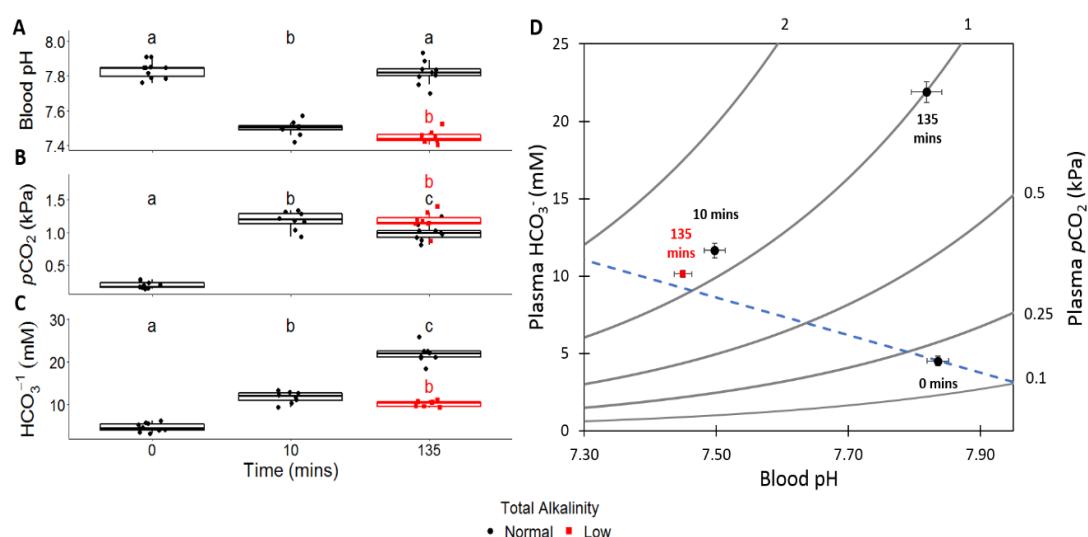

438 **Oxygen transport capacity**

439 The initial drop in blood pH during hypercapnia exposure was reflected in
440 changes in erythrocyte pH_i (Fig. 3A, One-way ANOVA, F = 12.34, df = 3, p <
441 0.001) and erythrocyte [H⁺] (Fig. 3B, One-way ANOVA, F = 14.64, df = 3, P <
442 0.001). However, erythrocyte pH_i and [H⁺] returned to control levels after ~40
443 minutes of exposure to hypercapnia (Fig. 3A, B). As expected, the significant
444 changes in erythrocyte pH_i and [H⁺] affected haemoglobin-O₂ binding affinity

445 leading to a ~3-fold increase in P_{50} after 10 minutes, from 1.78 kPa O₂ (\pm 0.30
446 kPa O₂) in control sea bass to 5.60 kPa O₂ (\pm 0.36 kPa O₂) (Kruskall-Wallis test,
447 $\chi^2 = 17.4$, df = 3, p < 0.001). There were no changes in Hills' number across
448 hypercapnia exposure (One-way ANOVA, F = 1.48, df = 3, p = 0.248). The rapid
449 recovery of erythrocyte pH_i and [H⁺] after ~40 minutes led to P_{50} returning to pre-
450 exposure levels (Fig. 3B).

451 Sea bass exposed to hypercapnia also experienced a ~25% increase in
452 haemoglobin levels (Fig. 3D), at ~10 minutes and ~135 minutes compared to
453 control sea bass (One-way ANOVA, F = 4.60, df = 3, p = 0.009). In addition, sea
454 bass exposed to hypercapnia exhibited an ~8-10% increase in haematocrit (Fig.
455 3C), although this increase was marginally non-significant (One-way ANOVA, F
456 = 2.40, df = 3, 0.086).

457



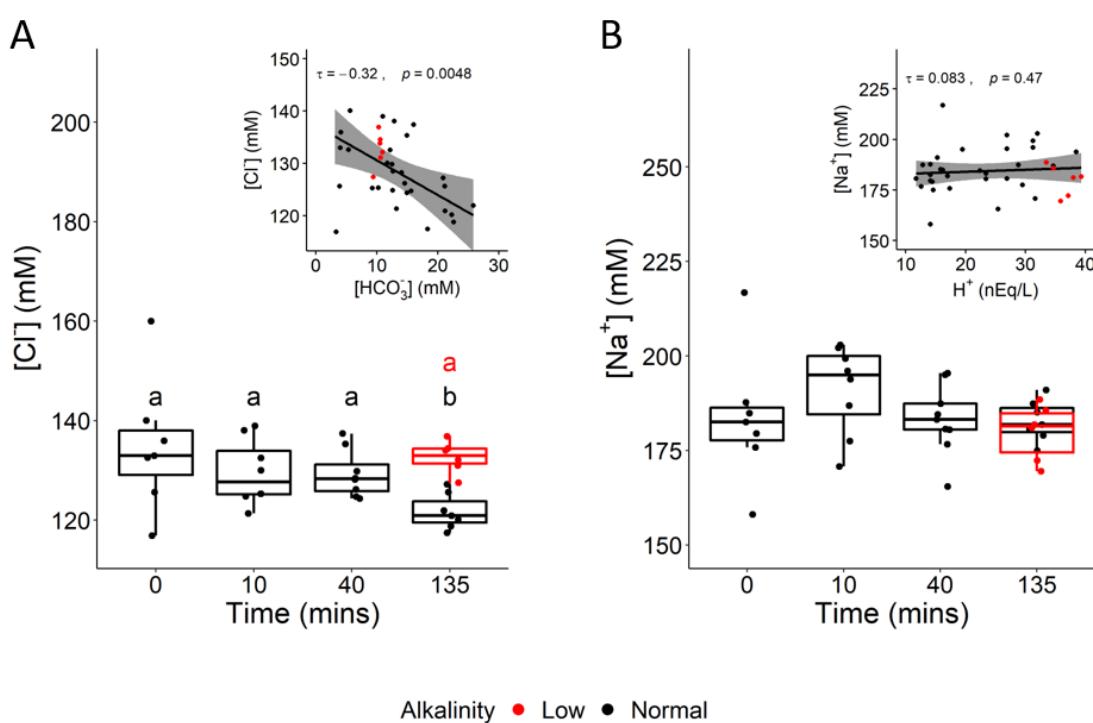
458

459 **Figure 3:** Changes in **A.** erythrocyte intracellular pH (erythrocyte pH_i), **B.**
460 erythrocyte [H⁺], **C.** haemoglobin-O₂ binding affinity (P₅₀), **D.** haematocrit and **E.**
461 haemoglobin level between European sea bass in control conditions (~0.05 kPa
462 CO₂, Time = 0) and after exposure to ~0.9 kPa CO₂ for ~10 minutes, ~40 minutes,
463 and ~135 minutes. Significant differences between parameters at each time point
464 are indicated by different lowercase letters (**A.**, **B.**, **D.** and **E.** Pairwise
465 comparisons of least square means, p < 0.05, **C.** Dunn's test, p < 0.05).

466 **Response to Hypercapnia in Seawater with Low Total Alkalinity**

467 To test the influence of environmental availability of [HCO₃⁻] on acid-base
468 regulation, a group of sea bass were exposed to hypercapnia in low alkalinity
469 seawater. These sea bass were unable to compensate for a respiratory acidosis
470 when exposed to acute hypercapnia for ~135 minutes (Fig. 4A). Blood pH was
471 0.37 units (95 % CI = 0.33-0.41) lower than sea bass exposed to hypercapnia in
472 normal alkalinity seawater for the same length of time and the same blood pH as
473 we recorded in sea bass ~10 minutes after exposure to hypercapnia in normal
474 seawater. Additionally, sea bass in low alkalinity seawater did not actively
475 accumulate HCO₃⁻ when exposed to environmental hypercapnia for ~135
476 minutes (Fig. 4C). Indeed, the 11.8 mM increase in plasma [HCO₃⁻] (95% CI =
477 10.6-12.9 mM) followed the predicted non-bicarbonate buffering line (Fig. 4D).

478

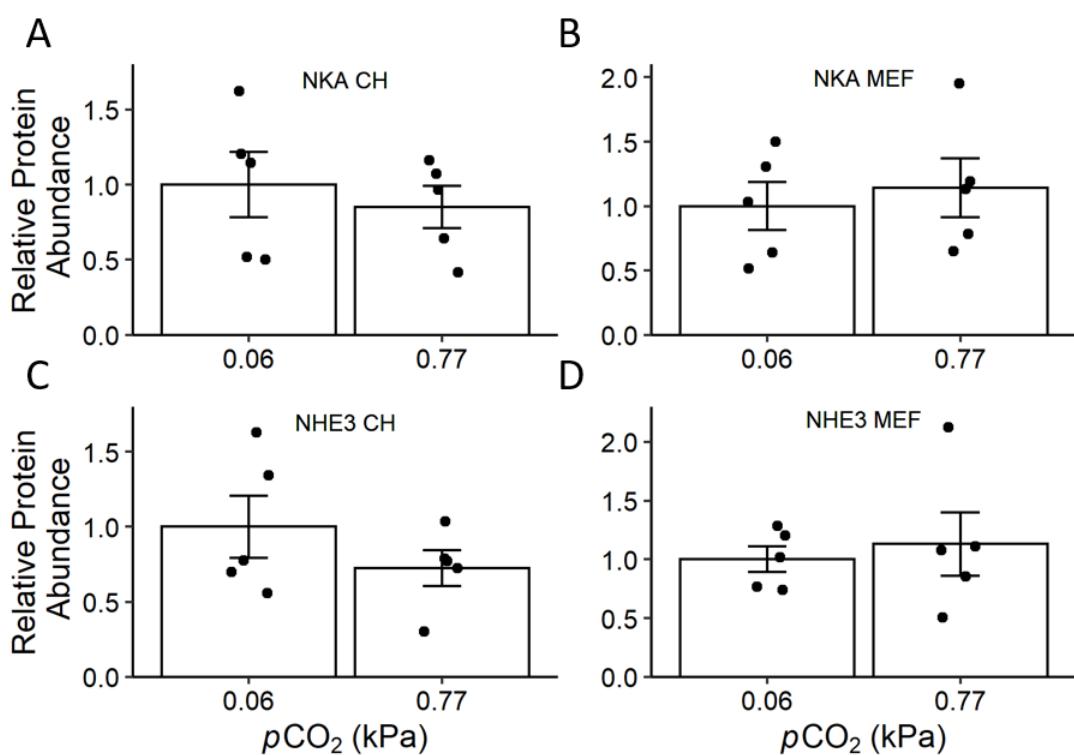

479 **Figure 4:** Comparison of **A.** blood pH, **B.** plasma pCO₂ and **C.** plasma HCO₃⁻
480 between European sea bass in control conditions (n = 10, Time = 0), exposed to
481 hypercapnia for ~10 minutes (n = 8) in normal (~2800 μM) total alkalinity (TA)
482 seawater, exposed to hypercapnia for ~135 minutes in normal (~2800 μM) TA

483 seawater ($n = 9$), and exposed to hypercapnia for ~ 135 minutes in low (~ 200 μM)
484 TA seawater ($n = 8$). Significant differences between parameters at each time
485 point are indicated by different lower-case letters (Pairwise comparison of least
486 squares means, $p < 0.05$). For measurements taken after ~ 135 minutes of
487 exposure to hypercapnia the colour indicates the TA treatment (i.e. black =
488 normal TA, red = low TA). **D.** Combined changes of all three acid-base
489 parameters are expressed as a pH/ HCO_3^- / $p\text{CO}_2$ diagram (blue dashed line
490 indicates estimated non-bicarbonate blood buffer line based on equations from
491 Wood *et al.* (1982)) values represent mean \pm s.e.m.

492 **Plasma Ion Concentrations**

493 Plasma $[\text{Cl}^-]$ significantly decreased by 13.1 mM (95% CI = 10.1-16.2 mM)
494 from 134.9 mM (± 5.1) in sea bass in normocapnia to 121.7 mM (± 1.3) in sea
495 bass exposed to hypercapnia for ~ 135 minutes (Kruskall-Wallis test, $\chi^2 = 11.1$, df
496 = 4, $p = 0.025$). This decrease in plasma $[\text{Cl}^-]$ was not seen in sea bass exposed
497 to hypercapnia in low alkalinity water (Fig. 5A). Decreases in plasma $[\text{Cl}^-]$ showed
498 a correlation with increasing bicarbonate (Figure 5A inset, Kendall's tau
499 correlation, $\tau = -0.32$, $p = 0.005$). Plasma $[\text{Na}^+]$ showed no significant changes
500 over the time course of hypercapnia exposure (One-way ANOVA, $F = 1.063$, $p =$
501 0.391), and there were no differences in $[\text{Na}^+]$ after ~ 135 minutes of exposure to
502 hypercapnia between sea bass in normal and low TA seawater (Fig. 5B). As such,
503 there was no correlation between plasma $[\text{Na}^+]$ and $[\text{H}^+]$ (Fig. 5B inset, Kendall's
504 tau correlation, $\tau = 0.08$, $p = 0.471$).

505



506

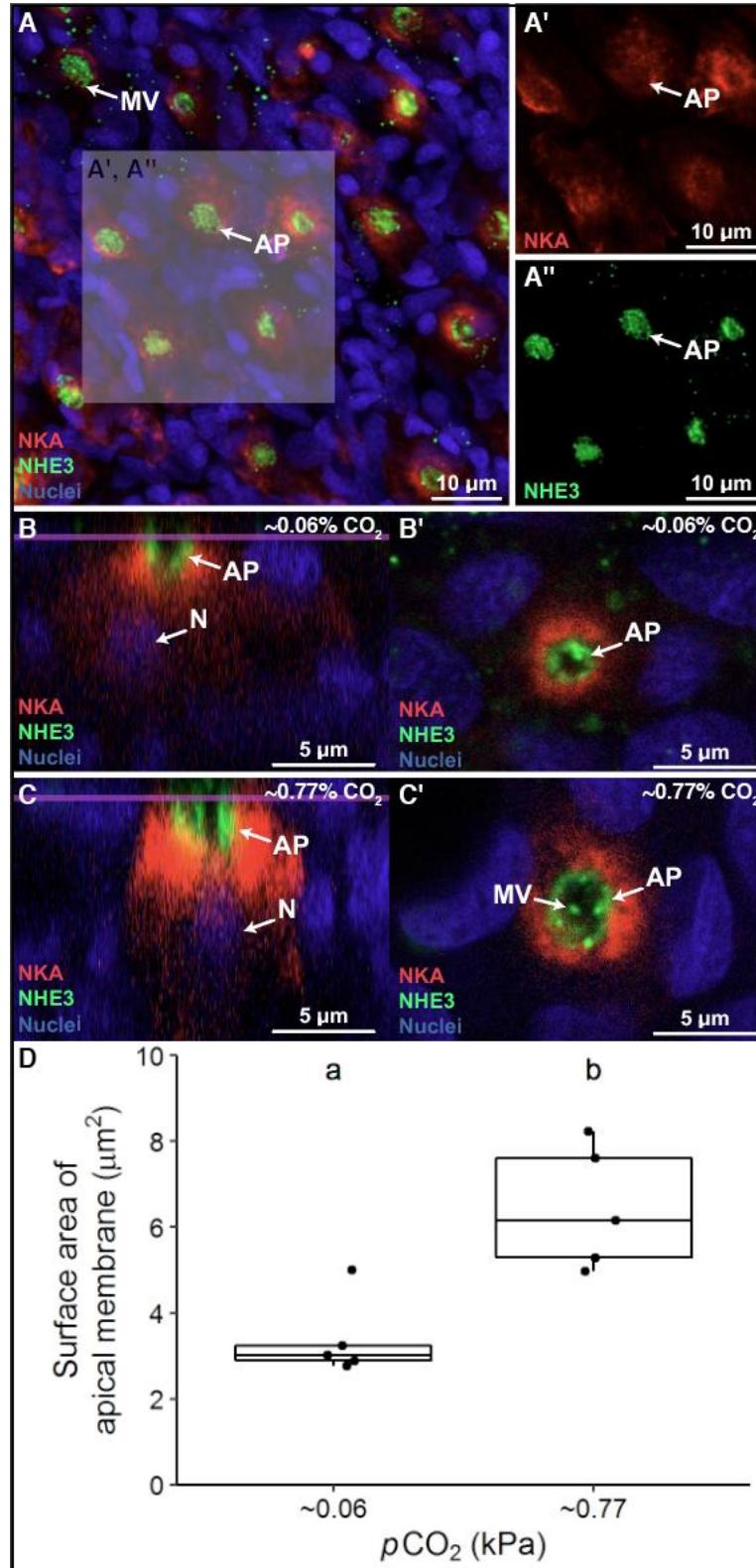
507 **Figure 5:** Comparison of **A.** plasma [Cl⁻] and **B.** plasma [Na⁺] between European
508 sea bass in control conditions (n = 7, Time = 0), exposed to hypercapnia for ~10
509 minutes (n = 8), ~40 minutes in or ~135 minutes in normal (~2800 μ M) TA
510 seawater (n = 7), and exposed to hypercapnia in low (~200 μ M) TA seawater (n
511 = 6). Significant differences between [Cl⁻] at each time point are indicated by
512 different lower-case letters (Pairwise comparison of least squares means,
513 p<0.05). Insets show correlation between **A.** plasma [Cl⁻] and [HCO₃⁻]. **B.** plasma
514 [Na⁺] and [H⁺]. T and p value shown represent results of Kendall's tau correlation.
515 Shaded area represents 95% CI of linear regression between measures. For
516 insets and measurements taken after ~135 minutes of exposure to hypercapnia
517 the colour indicates the TA treatment (i.e. black = normal TA, red = low TA).

518 **NKA and NHE3 Protein Abundance**

519 Exposure to hypercapnia did not induce significant changes in the abundance
520 of NKA or NHE3 in crude homogenates (indicative of total protein abundance) or
521 the abundance of NKA and NHE3 in membrane-enriched fractions (indicative of
522 protein that was present in the apical or basolateral plasma membranes) (One-
523 tailed t-test, P > 0.05; Fig. 6).

524

525 **Figure 6:** Comparison of gill **A.** Na⁺/K⁺-ATPase (NKA) in crude homogenates
526 (CH), **B.** NKA in the membrane-enriched fraction (MEF) as well as **C.** Na⁺/H⁺
527 Exchanger 3 (NHE3) CH, and **D.** NHE3 MEF abundance between European sea
528 bass exposed to control conditions (~0.06 kPa CO₂) and to hypercapnia (~0.77
529 kPa CO₂) for ~135 minutes (n = 5 per treatment, 1-tailed t-test). Bars show mean
530 ± s.e.m., points show raw data; there were no significant differences between any
531 measurements (1-tailed t-tests, p > 0.05).


532

533 **Ionocyte Intracellular Localisation and Apical Surface Area**

534 NKA-rich ionocytes were primarily localised on the gill filament trailing edges
535 and the basal portion of the gill lamellae (Fig. S1), all NKA-rich ionocytes also
536 expressed NHE3 in their apical region (Fig. 7A). Despite analysis using high
537 magnification imaging, optical sectioning, and XZ- and YZ-plane visualization, we
538 found no evidence of NHE3 intracellular localisation (Figure 7B, B', C, C'). The
539 ionocyte's apical surface area (based on the NHE3 signal) significantly increased,
540 almost doubling from 3.38 ± 0.41 to $6.45 \pm 0.64 \mu\text{m}^2$, after exposure to ~135 min
541 of hypercapnia (one-tailed t-test, t = 4.048, df = 6.828, p = 0.003; Fig. 7D).

542

543

544

545 **Figure 7:** A. The European sea bass' gill ionocytes express abundant A'.
546 basolateral Na^+/K^+ -ATPase (NKA, red) and A''. apical Na^+/H^+ Exchanger 3
547 (NHE3, green). Comparison of gill ionocytes between European sea bass
548 exposed to B, B'. control conditions (~ 0.06 kPa CO_2) and C, C'. to ~ 0.77 kPa CO_2

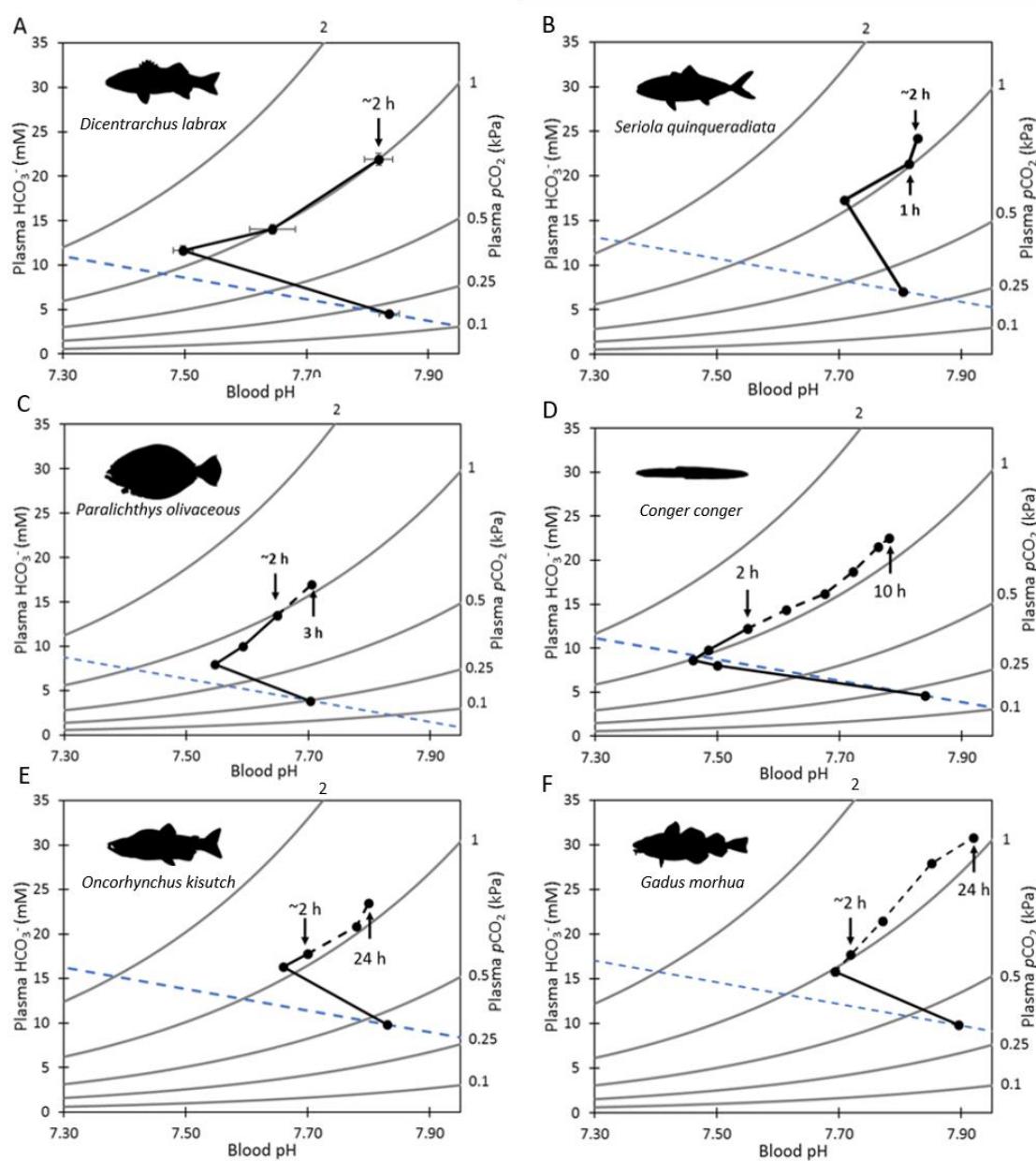
549 for ~135 minutes revealed no changes in intracellular localisation, but determined
550 **D.** hypercapnia-exposed sea bass had significantly wider apical surface area (n
551 = 5 per treatment, 1-tailed t-test, $p = 0.003$). The purple line in **B** and **C** denotes
552 the slice at which **B'** and **C'** were imaged. Nuclei (blue) are stained with DAPI.

553 **Discussion**

554 Our results indicate that European sea bass are able to rapidly compensate
555 for hypercapnia-induced blood acidosis when the environmental CO_2 is at the
556 extreme high end of the spectrum encountered in their natural habitat. Complete
557 restoration of blood pH after exposure to ~1 kPa CO_2 was achieved within ~2
558 hours via a switch from net base excretion to net acid excretion and a subsequent
559 accumulation of HCO_3^- in plasma. In addition, erythrocyte pH_i and Hb-O_2 affinity
560 were restored to pre-exposure levels after just ~40 min, and there was a 20%
561 increase in the blood haemoglobin concentration together with a trend for ~10%
562 haematocrit increase. These results suggest an adrenergic response that
563 stimulates a β -NHEs in the erythrocytes (Nikinmaa, 2012), and contracts the
564 spleen resulting in the release of erythrocytes into the circulation (Crocker and
565 Cech, 1997; Lee et al., 2003; Perry and Kinkead, 1989; Vermette and Perry,
566 1988). The end result is a boost in blood O_2 transport capacity that counteracts
567 the reduced Hb-O_2 affinity induced by the initial hypercapnia-induced acidosis.

568 Regulation of respiratory acidosis by sea bass exposed to hypercapnia in
569 normal alkalinity sea water (TA ~2,800 μM) resulted in an elevation of plasma
570 $[\text{HCO}_3^-]$ by ~18 mM, which was correlated with a decrease in plasma $[\text{Cl}^-]$ of ~13
571 mM. In comparison, while we saw a slight rise in plasma $[\text{Na}^+]$ on initial exposure
572 to hypercapnia, this was transient, and there was no overall correlation between
573 plasma $[\text{Na}^+]$ and $[\text{H}^+]$ during the whole 135 minute experiment. However, a lack
574 of increase in plasma $[\text{Na}^+]$ during acid-base regulation does not preclude
575 increased Na^+ uptake (to facilitate H^+ excretion) during acid-base regulation.
576 Instead, a lack of increased plasma $[\text{Na}^+]$ may simply reflect upregulation of the
577 hypo-ionoregulatory mechanism for NaCl excretion in marine teleosts (Liu et al.,
578 2016), which would presumably occur to compensate for enhanced uptake of Na^+
579 to facilitate H^+ excretion by NHE. This would also help explain the observed
580 reduction in plasma $[\text{Cl}^-]$ in fish exposed to hypercapnia.

581 In comparison, sea bass exposed to hypercapnia in low alkalinity sea water
582 (TA ~200 μ M) showed no ability to accumulate HCO_3^- , to compensate for
583 respiratory acidosis, and did not experience a decrease in plasma $[\text{Cl}^-]$. At face
584 value, these results may support potential direct uptake of HCO_3^- from seawater
585 in exchange for blood Cl^- through $\text{HCO}_3^-/\text{Cl}^-$ exchange across the gills (Esbaugh
586 et al., 2012; Perry and Gilmour, 2006; Tovey and Brauner, 2018). However, the
587 thermodynamics of this proposed mechanism are not clear, as $[\text{Cl}^-]$ is much
588 higher in seawater than in internal fluids of fish, and the opposite is true for $[\text{HCO}_3^-$
589]. This implies that both counterions would have to be transported against their
590 concentration gradients, and furthermore, these gradients would become
591 increasingly unfavourable as blood acidosis is compensated. Importantly, our
592 hypercapnic low alkalinity seawater had a pH of ~5.7, which was ~1.2 pH units
593 lower than hypercapnic normal alkalinity seawater (a 15-fold increase in $[\text{H}^+]$).
594 Based on nominal values of $[\text{Na}^+]$ and $[\text{H}^+]$ inside fish gill ionocytes and
595 calculations in Parks *et al.* (2008), the low alkalinity seawater would not sustain
596 H^+ excretion via NHEs (Table S5). Interestingly, as Na^+ excretion is coupled to
597 Cl^- excretion (via pathways independent of NHE), inactivation of NHE would also
598 explain the lack of increase of plasma $[\text{Cl}^-]$ in low alkalinity sea water. Overall, this
599 evidence supports enhanced NHE mediated H^+ excretion (resulting in retention
600 of metabolically produced HCO_3^- in the blood), rather than direct HCO_3^- uptake
601 from sea water, as the primary mechanism underlying regulation of respiratory
602 acidosis in sea bass.


603 To investigate the mechanisms used by sea bass to enhance acid-excretion,
604 we examined whether changes in gill NKA and NHE3 occur after acute (~135
605 minute) exposure to hypercapnia. Gill NKA and NHE3 protein abundance did not
606 change, ruling out increased protein synthesis as the mechanism responsible for
607 the observed upregulation in acid-excretion; this is not surprising considering the
608 short timeframe of our experiments. We also examined the potential translocation
609 of pre-existing NKA and NHE3 to the ionocyte basolateral and apical membranes,
610 respectively. Such mechanisms upregulate acid-base regulatory ion transport in
611 elasmobranchs (Roa *et al.*, 2014; Tresguerres *et al.*, 2005; Tresguerres *et al.*,
612 2006; Tresguerres *et al.*, 2007b) and hagfish (Parks *et al.*, 2007; Tresguerres *et al.*,
613 2007a); however, NKA and NHE3 protein abundance in the gill membrane
614 fraction of European sea bass gills was also unchanged, ruling out NKA and
615 NHE3 translocation in our experiments. Finally, we hypothesized that sea bass

616 could have remodelled the apical membrane of ionocytes to increase the sites for
617 H^+ excretion in contact with seawater. Indeed, this was the case as the surface
618 area of the NHE3-abundant apical membrane of NKA-rich ionocytes roughly
619 doubled in response to hypercapnia.

620 Previous studies on freshwater fishes have also documented morphological
621 adjustments in gill ionocytes upon comparable hypercapnic exposures. However,
622 the responses were the opposite to our study, as those freshwater fishes
623 experienced a significant reduction in ionocyte apical surface area (Baker et al.,
624 2009a; Goss et al., 1992b; Leino and McCormick, 1984). In some cases, the
625 apical membrane retracted into a more pronounced apical pit (Goss et al., 1992a;
626 Goss et al., 1994), which was suggested to create a microenvironment with
627 higher $[\text{Na}^+]$ compared to the bulk freshwater and facilitate Na^+/H^+ exchange
628 (Kumai and Perry, 2012). However, exposure to more pronounced hypercapnia
629 (8 kPa CO_2 over four days) induced an increase in gill ionocyte apical surface
630 area in freshwater catfish (*Ictalurus punctatus*) (Cameron and Iwama, 1987). This
631 response was similar to the seabass in our study; however, the longer time frame
632 likely allowed for additional responses that were not investigated, such as
633 increased synthesis of ion-transporting proteins or a change in the H^+ excreting
634 mechanism. In any case, the ability of seabass to rapidly compensate a blood
635 respiratory acidosis by increasing gill ionocyte apical surface area is in large part
636 possible due to the overabundance of Na^+ in sea water, which establishes
637 favourable conditions for NHE-mediated H^+ excretion.

638 Freshwater species typically take from 24 h to > 72 h to regulate blood pH
639 after exposure to 1 kPa CO_2 (Baker et al., 2009a; Claiborne and Heisler, 1984;
640 Claiborne and Heisler, 1986; Damsgaard et al., 2015; Larsen and Jensen, 1997;
641 Perry, 1982; Perry et al., 1981; Smatresk and Cameron, 1982). While it is
642 generally believed that marine teleosts can regulate their blood acid-base status
643 at a faster rate than freshwater species (Brauner et al., 2019), relatively little
644 research has been conducted to characterise the speed of acid-base regulation
645 in marine fish. A bibliography search revealed four previous studies on five
646 marine teleost species that characterized the time course of the acid-base
647 regulatory response after exposure to 1 kPa CO_2 (Fig. 8). Of these species, only
648 the Japanese amberjack (*Seriola quinqueradiata*) was able to restore blood pH_e

649 faster than sea bass (~60 min vs ~135 min; Fig. 8B). The remaining four species
650 regulated blood pH_e between 3 and 24 h post CO₂ exposure (Figure 8C, D, E, F).

651

652 **Figure 8:** Blood pH/HCO₃⁻/pCO₂ plots for **A.** European sea bass,
653 *Dicentrarchus labrax* (Present study), **B.** Japanese amberjack, *Seriola*
654 *quinqueradiata* (Hayashi *et al.*, 2004, re-plotted raw data provided by pers. comm.
655 with Dr Atsushi Ishimatsu, Can Tho University), **C.** Japanese flounder,
656 *Paralichthys olivaceus* (Hayashi *et al.*, 2004), **D.** conger eel, *Conger conger*
657 (Toews *et al.*, 1983), **E.** coho salmon, *Oncorhynchus kisutch* (Perry, 1982), and
658 **F.** Atlantic cod, *Gadus morhua* (Larsen *et al.*, 1997). The corresponding blood pH
659 and HCO₃⁻ of each species at a time ~2 h after 1 kPa CO₂ exposure is indicated
660 to allow direct comparisons with European sea bass. Times below the relevant

661 point indicate when blood pH was not statistically different from pre-exposure
662 levels for each species. The time course of the acid-base response after 2 h is
663 indicated by a dashed black line. The dashed blue line is an approximated non-
664 HCO_3^- buffer line based on the mean haematocrit of sea bass from the present
665 study and calculated using the equation for rainbow trout from Wood *et al.* (1982).

666 The robust ability of sea bass to rapidly acid-base regulate in response
667 to hypercapnia likely plays a significant role in their natural environment.
668 Specifically, sea bass feed in shallow coastal estuaries and salt marsh habitats
669 during the summer (Doyle *et al.*, 2017), and these habitats typically experience
670 large fluctuations in CO_2 levels over short time periods (Hofmann *et al.*, 2011;
671 Melzner *et al.*, 2013; Wallace *et al.*, 2014). For example, equivalent salt marshes
672 on the US coast regularly experience CO_2 fluctuations of ~0.4 kPa across tide
673 cycles during the summer (Baumann *et al.*, 2015). The fast acid-base regulatory
674 response observed in our study indicates that sea bass would be able to rapidly
675 correct the respiratory blood acidosis caused by this level of CO_2 variation in <1
676 hour. Critically, regulation of erythrocyte pH by sea bass was the fastest recorded
677 in any fish species. By rapidly restoring erythrocyte pH, O_2 transport capacity is
678 maintained, which is crucial for active predatory teleosts. However,
679 environmental CO_2 variation cannot be the sole driver for enhanced acid-base
680 regulatory capacities in all species. For example, Japanese amberjack show a
681 similarly fast blood acid-base regulatory response (Hayashi *et al.*, 2004) but
682 primarily inhabit pelagic, offshore ecosystems in which large variation in
683 environmental CO_2 may be less likely to occur. An alternative may be that active,
684 predatory species have developed higher capacities for acid-base regulation to
685 deal with large metabolic acidosis (as a result of anaerobic respiration used
686 during intense exercise involved in prey capture). Understanding the
687 mechanisms that determine species-specific differences in acid-base regulatory
688 capacity will help understand differential impacts of acute exposure to elevated
689 CO_2 , both by itself and in combination with other stressors such as hypoxia. For
690 example, we have recently reported that sea bass showed enhanced hypoxia
691 tolerance when exposed to progressive and environmentally relevant
692 hypercapnia and hypoxia over a 6 hour period (Montgomery *et al.*, 2019). In
693 contrast, European plaice (*Pleuronectes platessa*) and European flounder
694 (*Platichthys flesus*) exposed to the same conditions showed reduced hypoxia
695 tolerance (P_{crit}), which was associated with reduced Hb-O_2 affinity and O_2 uptake

696 resulting from an uncompensated respiratory acidosis (Rogers, 2015;
697 Montgomery *et al.* unpublished observations). Thus, species with more robust
698 acid-base regulatory mechanisms seem more resilient to interactive effects
699 between hypercapnia and hypoxia.

700 **Conclusion**

701 Overall, our study highlights the capacity of European sea bass to rapidly (2
702 hours) regulate blood and erythrocyte acid-base status and O₂ transport capacity
703 upon exposure to a pronounced and sudden increase in environmental CO₂
704 levels. Sea bass' ability to rapidly upregulate H⁺ excretion appears to be mediated
705 via the increased exposure of NHE3-containing apical surface area of gill
706 ionocytes, rather than changes in NHE3 or NKA protein abundance or
707 localisation. Additionally, sea bass erythrocyte pH_i is regulated even more rapidly
708 than blood pH (40 minutes), which enables them to quickly restore the affinity of
709 haemoglobin for O₂, and therefore blood O₂ transport capacity during exposure
710 to elevated CO₂. In conjunction, these acid-base regulatory responses will
711 minimise the impact of pronounced and rapidly fluctuating CO₂ in their natural
712 environments, and so may prevent disruption of energetically costly activities
713 such as foraging or digestion, and may make sea bass more resilient to impacts
714 of hypoxia and additional stressors during acute periods of hypercapnia. This is
715 an avenue where we believe further research effort is necessary.

716 **Conflict of Interest:** The authors declare no conflicts of interest.

717 **Author contributions:** D.W.M. designed the experiment, performed all data
718 collection and analysis other than for gill samples, and wrote the manuscript.
719 W.D., J.F., and A.B assisted with data collection, data analysis and editing of the
720 manuscript. R.W.W. supervised the study and assisted with designing the
721 experiments, data collection and analysis, and writing of the manuscript. S.D.S.,
722 G.H.E., and S.N.R.B. assisted with data analysis and editing of the manuscript.
723 G.T.K. conducted all data analysis of gill samples and assisted with writing the
724 manuscript. M.T. assisted with data analysis and writing of the manuscript.

725 **Acknowledgements:** This work was supported by a NERC GW4+ Doctoral
726 Training Partnership studentship from the Natural Environment Research Council
727 [NE/L002434/1] with additional funding from CASE partner, The Centre for
728 Environment, Fisheries and Aquaculture Science (Cefas) to D.W.M., and from

729 the Biotechnology and Biological Sciences Research Council (BB/D005108/1
730 and BB/J00913X/1) and NERC (NE/H017402/1) to R.W.W. G.T.K. was funded
731 by the National Science Foundation (NSF) Postdoctoral Fellowship Program
732 (#1907334). M.T. received funding from NSF IOS #1754994. We thank Dr Junya
733 Hiroi for providing the NHE3 antibodies, and Dr Andrew Esbaugh and Dr Till
734 Harter for discussions related to data interpretation. We would similarly like to
735 thank the aquarium staff, particularly Dr Gregory Paul, Paul Tyson, Rebecca
736 Turner, Alex Bell, and Richard Silcox, of the Aquatic Resource Centre at the
737 University of Exeter for assistance with fish husbandry and maintenance of
738 aquarium facilities.

739

740 **Data availability:** Data will be deposited on the University of Exeter's Open
741 Research Exeter (ORE) depository and a URL to the dataset provided prior to
742 article acceptance or upon request by reviewers.

743

744 **References**

745 **Baker, D. W., Matey, V., Huynh, K. T., Wilson, J. M., Morgan, J. D. and**
746 **Brauner, C. J.** (2009a). Complete intracellular pH protection during
747 extracellular pH depression is associated with hypercarbia tolerance in
748 white sturgeon, *Acipenser transmontanus*. *Am. J. Physiol. Integr. Comp.*
749 *Physiol.* **296**, R1868–R1880.

750 **Baker, D. W., May, C. and Brauner, C. J.** (2009b). A validation of intracellular
751 pH measurements in fish exposed to hypercarbia: the effect of duration of
752 tissue storage and efficacy of the metabolic inhibitor tissue homogenate
753 method. *J. Fish Biol.* **75**, 268–275.

754 **Baumann, H., Wallace, R. B., Tagliaferri, T. and Gobler, C. J.** (2015). Large
755 Natural pH, CO₂ and O₂ Fluctuations in a Temperate Tidal Salt Marsh on
756 Diel, Seasonal, and Interannual Time Scales. *Estuaries and Coasts* **38**,
757 220–231.

758 **Blondeau-Bidet, E., Hiroi, J. and Lorin-Nebel, C.** (2019). Ion uptake
759 pathways in European sea bass *Dicentrarchus labrax*. *Gene* **692**, 126–137.

760 **Borges, A. V., Schiettecatte, L.-S., Abril, G., Delille, B. and Gazeau, F.**
761 (2006). Carbon dioxide in European coastal waters. *Estuar. Coast. Shelf*
762 *Sci.* **70**, 375–387.

763 **Boutilier, R. G., Heming, T. A. and Iwama, G. K.** (1984). Appendix:
764 Physicochemical Parameters for use in Fish Respiratory Physiology**The
765 authors were supported by N.S.E.R.C. (Canada). In *Fish Physiology* (ed.
766 Hoar, W. S.) and Randall, D. J.), pp. 403–430. Academic Press.

767 **Boutilier, R. G., Iwama, G. K., Heming, T. A. and Randall, D. J.** (1985). The
768 apparent pK of carbonic acid in rainbow trout blood plasma between 5 and
769 15°C. *Respir. Physiol.* **61**, 237–254.

770 **Brauner, C. J. and Baker, D. W.** (2009). Patterns of Acid–Base Regulation
771 During Exposure to Hypercarbia in Fishes BT - Cardio-Respiratory Control
772 in Vertebrates: Comparative and Evolutionary Aspects. In (ed. Glass, M. L.)
773 and Wood, S. C.), pp. 43–63. Berlin, Heidelberg: Springer Berlin
774 Heidelberg.

775 **Brauner, C. J., Shartau, R. B., Damsgaard, C., Esbbaugh, A. J., Wilson, R. W. and Grosell, M.** (2019). 3 - Acid-base physiology and CO₂
776 homeostasis: Regulation and compensation in response to elevated
777 environmental CO₂. In *Carbon Dioxide* (ed. Grosell, M.), Munday, P. L.),
778 Farrell, A. P.), and Brauner, C. J. B. T.-F. P.), pp. 69–132. Academic Press.

780 **Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh, J. T., Wang, Y., et al.** (2011).
781 Acidification of subsurface coastal waters enhanced by eutrophication. *Nat. Geosci* **4**, 766–770.

784 **Cameron, J. N. and Iwama, G. K.** (1987). Compensation of Progressive
785 Hypercapnia in Channel Catfish and Blue Crabs. *J. Exp. Biol.* **133**, 183 LP
786 – 197.

787 **Claiborne, J. B. and Heisler, N.** (1984). Acid-Base Regulation and Ion
788 Transfers in the Carp (*Cyprinus Carpio*) During and After Exposure to
789 Environmental Hypercapnia. *J. Exp. Biol.* **108**, 25 LP – 43.

790 **Claiborne, J. B. and Heisler, N.** (1986). Acid-base regulation and ion transfers
791 in the carp (*Cyprinus carpio*): pH compensation during graded long- and
792 short-term environmental hypercapnia, and the effect of bicarbonate
793 infusion. *J. Exp. Biol.* **126**, 41 LP – 61.

794 **Claiborne, J. B., Edwards, S. L. and Morrison-Shetlar, A. I.** (2002). Acid–
795 base regulation in fishes: cellular and molecular mechanisms. *J. Exp. Zool.*
796 **293**, 302–319.

797 **Cooper, C. A., Whittamore, J. M. and Wilson, R. W.** (2010). Ca²⁺-driven
798 intestinal HCO₃[–] secretion and CaCO₃ precipitation in the European
799 flounder *in vivo*: influences on acid-base regulation and blood gas
800 transport. *Am. J. Physiol. Integr. Comp. Physiol.* **298**, R870–R876.

801 **Cossins, A. R. and Richardson, P. A.** (1985). Adrenalin-Induced Na⁺/H⁺
802 Exchange in' Trout Erythrocytes and its Effects Upon Oxygen-Carrying
803 Capacity. *J. Exp. Biol.* **118**, 229 LP – 246.

804 **Crocker, C. E. and Cech, J. J.** (1997). Effects of environmental hypoxia on
805 oxygen consumption rate and swimming activity in juvenile white sturgeon,
806 *Acipenser transmontanus*, in relation to temperature and life intervals.
807 *Environ. Biol. Fishes* **50**, 383–389.

808 **Crocker, C. E. and Cech Jr, J. J.** (1998). Effects of hypercapnia on blood-gas
809 and acid-base status in the white sturgeon, *Acipenser transmontanus*. *J.*
810 *Comp. Physiol. B* **168**, 50–60.

811 **Damsgaard, C., Gam, L. T. H., Tuong, D. D., Thinh, P. V., Huong Thanh, D. T., Wang, T. and Bayley, M.** (2015). High capacity for extracellular acid–
812 base regulation in the air-breathing fish *Pangasianodon hypophthalmus*. *J.*
813 *Exp. Biol.* **218**, 1290 LP – 1294.

815 **Dickson, A. G. and Millero, F. J.** (1987). A comparison of the equilibrium
816 constants for the dissociation of carbonic acid in seawater media. *Deep*
817 *Sea Res. Part A. Oceanogr. Res. Pap.* **34**, 1733–1743.

818 **Dickson, A. G., Sabine, C. L. and Christian, J. R.** (2007). *Guide to best*
819 *practices for ocean CO₂ measurements*. North Pacific Marine Science
820 Organization.

821 **Doney, S. C., Fabry, V. J., Feely, R. A. and Kleypas, J. A.** (2009). Ocean
822 Acidification: The Other CO₂ Problem. *Ann. Rev. Mar. Sci.* **1**, 169–192.

823 **Doyle, T. K., Haberlin, D., Clohessy, J., Bennison, A. and Jessopp, M.**
824 (2017). Localised residency and inter-annual fidelity to coastal foraging
825 areas may place sea bass at risk to local depletion. *Sci. Rep.* **7**, 45841.

826 **Eddy, F. B., Lomholt, J. P., Weber, R. E. and Johansen, K.** (1977). Blood
827 respiratory properties of rainbow trout (*Salmo gairdneri*) kept in water of
828 high CO₂ tension. *J. Exp. Biol.* **67**, 37 LP – 47.

829 **Esbaugh, A. J.** (2017). Physiological implications of ocean acidification for
830 marine fish: emerging patterns and new insights. *J. Comp. Physiol. B* **1**–13.

831 **Esbaugh, A. J., Heuer, R. and Grosell, M.** (2012). Impacts of ocean
832 acidification on respiratory gas exchange and acid-base balance in a
833 marine teleost, *Opsanus beta*. *J. Comp. Physiol. B* **182**, 921–934.

834 **Evans, D. H., Piermarini, P. M. and Choe, K. P.** (2005). The Multifunctional
835 Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base
836 Regulation, and Excretion of Nitrogenous Waste. *Physiol. Rev.* **85**, 97–177.

837 **Goss, G. G., Laurent, P. and Perry, S. F.** (1992a). Evidence for a
838 morphological component in acid-base regulation during environmental
839 hypercapnia in the brown bullhead (*Ictalurus nebulosus*). *Cell Tissue Res.*
840 **268**, 539–552.

841 **Goss, G. G., Perry, S. F., Wood, C. M. and Laurent, P.** (1992b). Mechanisms
842 of ion and acid-base regulation at the gills of freshwater fish. *J. Exp. Zool.*
843 **263**, 143–159.

844 **Goss, G. G., Laurent, P. and Perry, S. F.** (1994). Gill morphology during
845 hypercapnia in brown bullhead (*Ictalurus nebulosus*): role of chloride cells
846 and pavement cells in acid-base regulation. *J. Fish Biol.* **45**, 705–718.

847 **Hayashi, M., Kita, J. and Ishimatsu, A.** (2004). Acid-base responses to lethal
848 aquatic hypercapnia in three marine fishes. *Mar. Biol.* **144**, 153–160.

849 **Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli,
850 F., Paytan, A., Price, N. N., Peterson, B. and Takeshita, Y.** (2011). High-
851 frequency dynamics of ocean pH: a multi-ecosystem comparison. *PLoS
852 One* **6**.

853 **Kumai, Y. and Perry, S. F.** (2012). Mechanisms and regulation of Na⁺ uptake
854 by freshwater fish. *Respir. Physiol. Neurobiol.* **184**, 249–256.

855 **Kwan, G. T., Wexler, J. B., Wegner, N. C. and Tresguerres, M.** (2019).
856 Ontogenetic changes in cutaneous and branchial ionocytes and
857 morphology in yellowfin tuna (*Thunnus albacares*) larvae. *J. Comp. Physiol.
858 B* **189**, 81–95.

859 **Kwan, G. T., Smith, T. R. and Tresguerres, M.** (2020). Immunological
860 characterization of two types of ionocytes in the inner ear epithelium of
861 Pacific Chub Mackerel (*Scomber japonicus*). *J. Comp. Physiol. B* **190**, 419–
862 431.

863 **Larsen, B. K. and Jensen, F. B.** (1997). Influence of ionic composition on acid-
864 base regulation in rainbow trout (*Oncorhynchus mykiss*) exposed to
865 environmental hypercapnia. *Fish Physiol. Biochem.* **16**, 157–170.

866 **Larsen, B. K., Pörtner, H. O. and Jensen, F. B.** (1997). Extra- and intracellular
867 acid-base balance and ionic regulation in cod (*Gadus morhua*) during
868 combined and isolated exposures to hypercapnia and copper. *Mar. Biol.*
869 **128**, 337–346.

870 **Lebovitz, R. M., Takeyasu, K. and Fambrough, D. M.** (1989). Molecular
871 characterization and expression of the ($\text{Na}^+ + \text{K}^+$)-ATPase alpha-subunit in
872 *Drosophila melanogaster*. *EMBO J.* **8**, 193–202.

873 **Lee, K.-S., Kita, J. and Ishimatsu, A.** (2003). Effects of Lethal Levels of
874 Environmental Hypercapnia on Cardiovascular and Blood-Gas Status in
875 Yellowtail, *Seriola quinqueradiata*. *Zoolog. Sci.* **20**, 417–422.

876 **Leino, R. L. and McCormick, J. H.** (1984). Morphological and morphometrical
877 changes in chloride cells of the gills of *Pimephales promelas* after chronic
878 exposure to acid water. *Cell Tissue Res.* **236**, 121–128.

879 **Lenth, R.** (2020). emmeans: Estimated Marginal Means, aka Least-Squares
880 Means.

881 **Lewis, C., Clemow, K. and Holt, W. V** (2013). Metal contamination increases
882 the sensitivity of larvae but not gametes to ocean acidification in the
883 polychaete *Pomatoceros lamarckii* (Quatrefages). *Mar. Biol.* **160**, 2089–
884 2101.

885 **Liu, S.-T., Horng, J.-L., Chen, P.-Y., Hwang, P.-P. and Lin, L.-Y.** (2016). Salt
886 secretion is linked to acid-base regulation of ionocytes in seawater-
887 acclimated medaka: new insights into the salt-secreting mechanism. *Sci.
888 Rep.* **6**, 31433.

889 **McDonald, D. G. and Wood, C. M.** (1981). Branchial and Renal Acid and Ion
890 Fluxes in the Rainbow Trout, *Salmo Gairdneri*, at Low Environmental pH. *J.
891 Exp. Biol.* **93**, 101 LP – 118.

892 **Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange,
893 Hansen, H. P. and Körtzinger, A.** (2013). Future ocean
894 acidification will be amplified by hypoxia in coastal habitats. *Mar. Biol.* **160**,
895 1875–1888.

896 **Middlemiss, K. L., Urbina, M. A. and Wilson, R. W.** (2016). Effects of
897 seawater alkalinity on calcium and acid–base regulation in juvenile
898 European lobster (*Homarus gammarus*) during a moult cycle. *Comp.
899 Biochem. Physiol. Part A Mol. Integr. Physiol.* **193**, 22–28.

900 **Montgomery, D. W., Simpson, S. D., Engelhard, G. H., Birchenough, S. N.
901 R. and Wilson, R. W.** (2019). Rising CO_2 enhances hypoxia tolerance in a
902 marine fish. *Sci. Rep.* **9**, 15152.

903 **Motulsky, H. J. and Brown, R. E.** (2006). Detecting outliers when fitting data

904 with nonlinear regression – a new method based on robust nonlinear
905 regression and the false discovery rate. *BMC Bioinformatics* **7**, 123.

906 **Nadler, L. E., Bengston, E., Eliason, E. J., Hassibi, C., Helland-Riise, S. H.,**
907 **Johansen, I. B., Kwan, G. T., Tresguerres, M., Turner, A. V,**
908 **Weinersmith, K. L., et al.** (2021). A brain-infecting parasite impacts host
909 metabolism both during exposure and after infection is established. *Funct.*
910 *Ecol.* **35**, 105–116.

911 **Nikinmaa, M.** (2012). *Vertebrate red blood cells: adaptations of function to*
912 *respiratory requirements*. Springer Science & Business Media.

913 **Nikinmaa, M. and Tufts, B. L.** (1989). Regulation of acid and ion transfer
914 across the membrane of nucleated erythrocytes. *Can. J. Zool.* **67**, 3039–
915 3045.

916 **Oellermann, M., Pörtner, H. O. and Mark, F. C.** (2014). Simultaneous high-
917 resolution pH and spectrophotometric recordings of oxygen binding in
918 blood microvolumes. *J. Exp. Biol.* **217**, 1430 LP – 1436.

919 **Ogle, D. H., Wheeler, P. and Dinno, A.** (2020). FSA: Fisheries Stock Analysis.

920 **Pan, T.-C. F., Applebaum, S. L. and Manahan, D. T.** (2015). Experimental
921 ocean acidification alters the allocation of metabolic energy. *Proc. Natl.*
922 *Acad. Sci.* **112**, 4696 LP – 4701.

923 **Parks, S. K., Tresguerres, M. and Goss, G. G.** (2007). Blood and gill
924 responses to HCl infusions in the Pacific hagfish (*Eptatretus stoutii*). *Can.*
925 *J. Zool.* **85**, 855–862.

926 **Parks, S. K., Tresguerres, M. and Goss, G. G.** (2008). Theoretical
927 considerations underlying Na⁺ uptake mechanisms in freshwater fishes.
928 *Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.* **148**, 411–418.

929 **Perry, S. F.** (1982). The regulation of hypercapnic acidosis in two Salmonids,
930 the freshwater trout (*Salmo gairdneri*) and the seawater salmon
931 (*Onchorynchus kisutch*). *Mar. Behav. Physiol.* **9**, 73–79.

932 **Perry, S. F. and Gilmour, K. M.** (2006). Acid–base balance and CO₂ excretion
933 in fish: Unanswered questions and emerging models. *Respir. Physiol.*
934 *Neurobiol.* **154**, 199–215.

935 **Perry, S. F. and Kinkead, R.** (1989). The role of catecholamines in regulating
936 arterial oxygen content during acute hypercapnic acidosis in rainbow trout
937 (*Salmo gairdneri*). *Respir. Physiol.* **77**, 365–377.

938 **Perry, S. F. and McKendry, J. E.** (2001). The relative roles of external and
939 internal CO₂ & versus H⁺ in eliciting the cardiorespiratory responses of
940 & *Salmo salar* and *Squalus acanthias* to hyp. *J. Exp. Biol.* **204**, 3963 LP – 3971.

943 **Perry, S. F., Haswell, M. S., Randall, D. J. and Farrell, A. P.** (1981). Branchial
944 Ionic Uptake and Acid-Base Regulation in the Rainbow Trout, *Salmo*
945 *Gairdneri*. *J. Exp. Biol.* **92**, 289 LP – 303.

946 **Perry, S. F., Fritsche, R., Hoagland, T. M., Duff, D. W. and Olson, K. R.**
947 (1999). The control of blood pressure during external hypercapnia in the

948 rainbow trout (*Oncorhynchus mykiss*). *J. Exp. Biol.* **202**, 2177 LP – 2190.

949 **Pierrot, D., Lewis, E. and Wallace, D. W. R.** (2006). CO2SYS DOS Program
950 developed for CO2 system calculations. ORNL/CDIAC-105.

951 **R Core Team** (2020). R: A language and environment for statistical computing.

952 **Roa, J. N., Munévar, C. L. and Tresguerres, M.** (2014). Feeding induces
953 translocation of vacuolar proton ATPase and pendrin to the membrane of
954 leopard shark (*Triakis semifasciata*) mitochondrion-rich gill cells. *Comp.*
955 *Biochem. Physiol. Part A Mol. Integr. Physiol.* **174**, 29–37.

956 **Rogers, N. J.** (2015). The Respiratory and Gut Physiology of Fish: Response to
957 Environmental Change.

958 **Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,**

959 **Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.**

960 (2012). Fiji: an open-source platform for biological-image analysis. *Nat.*
961 *Methods* **9**, 676–682.

962 **Seo, M. Y., Mekuchi, M., Teranishi, K. and Kaneko, T.** (2013). Expression of
963 ion transporters in gill mitochondrion-rich cells in Japanese eel acclimated
964 to a wide range of environmental salinity. *Comp. Biochem. Physiol. Part A*
965 *Mol. Integr. Physiol.* **166**, 323–332.

966 **Shartau, R. B., Baker, D. W., Harter, T. S., Aboagye, D. L., Allen, P. J., Val,**

967 **A. L., Crossley, D. A., Kohl, Z. F., Hedrick, M. S., Damsgaard, C., et al.**

968 (2020). Preferential intracellular pH regulation is a common trait amongst
969 fishes exposed to high environmental
970 CO₂. *J. Exp. Biol.* **223**, jeb208868.

972 **Smatresk, N. J. and Cameron, J. N.** (1982). Respiration and Acid-Base
973 Physiology of the Spotted Gar, a Bimodal Breather: II. Responses to
974 Temperature Change and Hypercapnia. *J. Exp. Biol.* **96**, 281 LP – 293.

975 **Sunda, W. G. and Cai, W.-J.** (2012). Eutrophication Induced CO₂-Acidification
976 of Subsurface Coastal Waters: Interactive Effects of Temperature, Salinity,
977 and Atmospheric PCO₂. *Environ. Sci. Technol.* **46**, 10651–10659.

978 **Thomas, S. and Perry, S. F.** (1992). Control and consequences of adrenergic
979 activation of red blood cell Na⁺/H⁺ exchange on blood oxygen and carbon
980 dioxide transport in fish. *J. Exp. Zool.* **263**, 160–175.

981 **Toews, D. P., Holeton, G. F. and Heisler, N.** (1983). Regulation of the acid-
982 base status during environmental hypercapnia in the marine teleost fish
983 Conger conger. *J. Exp. Biol.* **107**, 9 LP – 20.

984 **Tovey, K. J. and Brauner, C. J.** (2018). Effects of water ionic composition on
985 acid–base regulation in rainbow trout, during hypercarbia at rest and during
986 sustained exercise. *J. Comp. Physiol. B* **188**, 295–304.

987 **Tresguerres, M. and Hamilton, T. J.** (2017). Acid base physiology,
988 neurobiology and behaviour in relation to CO₂-induced ocean acidification.
989 *J. Exp. Biol.* **220**, 2136–2148.

990 **Tresguerres, M., Katoh, F., Fenton, H., Jasinska, E. and Goss, G. G.** (2005).
991 Regulation of branchial V-H⁺-ATPase, Na⁺/K⁺-ATPase and NHE2 in

992 response to acid and base infusions in the Pacific spiny dogfish (*Squalus*
993 *acanthias*). *J. Exp. Biol.* **208**, 345–354.

994 **Tresguerres, M., Parks, S. K., Katoh, F. and Goss, G. G.** (2006). Microtubule-
995 dependent relocation of branchial V-H+-ATPase to the basolateral
996 membrane in the Pacific spiny dogfish (*Squalus acanthias*): a role in base
997 secretion. *J. Exp. Biol.* **209**, 599–609.

998 **Tresguerres, M., Parks, S. K. and Goss, G. G.** (2007a). Recovery from blood
999 alkalosis in the Pacific hagfish (*Eptatretus stoutii*): Involvement of gill V–
1000 H+-ATPase and Na+/K+-ATPase. *Comp. Biochem. Physiol. Part A Mol.*
1001 *Integr. Physiol.* **148**, 133–141.

1002 **Tresguerres, M., Parks, S. K., Wood, C. M. and Goss, G. G.** (2007b). V-H+-
1003 ATPase translocation during blood alkalosis in dogfish gills: interaction with
1004 carbonic anhydrase and involvement in the postfeeding alkaline tide. *Am. J.*
1005 *Physiol. Integr. Comp. Physiol.* **292**, R2012–R2019.

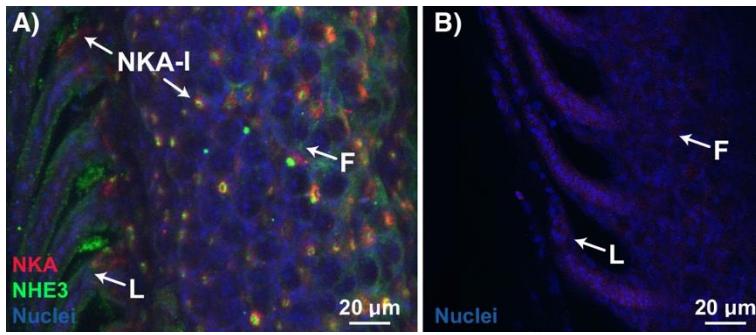
1006 **Tresguerres, M., Milsom, W. K. and Perry, S. F.** (2019). 2 - CO₂ and acid-
1007 base sensing. In *Carbon Dioxide* (ed. Grosell, M.), Munday, P. L.), Farrell,
1008 A. P.), and Brauner, C. J. B. T.-F. P.), pp. 33–68. Academic Press.

1009 **Verdouw, H., Van Echteld, C. J. A. and Dekkers, E. M. J.** (1978). Ammonia
1010 determination based on indophenol formation with sodium salicylate. *Water*
1011 *Res.* **12**, 399–402.

1012 **Vermette, M. G. and Perry, S. F.** (1988). Adrenergic involvement in blood
1013 oxygen transport and acid-base balance during hypercapnic acidosis in the
1014 Rainbow Trout, *Salmo gairdneri*. *J. Comp. Physiol. B* **158**, 107–115.

1015 **Wallace, R. B., Baumann, H., Gear, J. S., Aller, R. C. and Gobler, C. J.**
1016 (2014). Coastal ocean acidification: The other eutrophication problem.
1017 *Estuar. Coast. Shelf Sci.* **148**, 1–13.

1018 **Wells, R. M. G.** (2009). Chapter 6 Blood-Gas Transport and Hemoglobin
1019 Function: Adaptations for Functional and Environmental Hypoxia. In *Fish*
1020 *Physiology* (ed. Jeffrey G. Richards, A. P. F. and C. J. B.), pp. 255–299.
1021 Academic Press.


1022 **Wilson, R. W. and Grosell, M.** (2003). Intestinal bicarbonate secretion in
1023 marine teleost fish—source of bicarbonate, pH sensitivity, and
1024 consequences for whole animal acid–base and calcium homeostasis.
1025 *Biochim. Biophys. Acta - Biomembr.* **1618**, 163–174.

1026 **Wood, C. M., McDonald, D. G. and McMahon, B. R.** (1982). The Influence of
1027 Experimental Anaemia on Blood Acid-Base Regulation In Vivo and In Vitro
1028 in the Starry Flounder (*Platichthys Stellatus*) and the Rainbow Trout (*Salmo*
1029 *Gairdneri*). *J. Exp. Biol.* **96**, 221 LP – 237.

1030 **Zeidler, R. and Kim, H. D.** (1977). Preferential hemolysis of postnatal calf red
1031 cells induced by internal alkalinization. *J. Gen. Physiol.* **70**, 385–401.

1032

1033 1. Supplementary materials

Figure S1: A. Na⁺/K⁺-ATPase (NKA, red) and Na⁺/H⁺ Exchanger 3 (NHE3, green) immunostaining within European sea bass gill. Ionocytes containing NKA and NHE3 (NKA-I) were observed on the filament (F) and base of lamellae (L). **B.** Negative controls (no primary antibodies) had no discernible signal. Nuclei (blue) are stained with DAPI.

Table S1: Water chemistry of gill irrigation chambers used while blood sampling fish

	Exposure length			
	0 min	~10 min	~40 min	~135 min
Temperature (°C)	14.00 ± 0.00	14.05 ± 0.15	14.00 ± 0.30	13.95 ± 0.15
pH (NBS)	8.14 ± 0.02	6.95 ± 0.02	6.91 ± 0.01	6.91 ± 0.04
Salinity	34.6 ± 0.4	35.6 ± 0.5	34.8 ± 0.7	34.6 ± 0.7
pCO ₂ (μatm)	0.060 ± 0.010	0.965 ± 0.045	1.227 ± 0.164	1.024 ± 0.088
TA (μM)	3120 ± 372	2834 ± 36	3301 ± 361	2750 ± 27

Table S2: Mean ± s.e.m. of water chemistry parameters within isolation tanks during low alkalinity hypercapnia exposure

Duration (min)	pH (NBS)	Temperature (°C)	Salinity	pCO ₂ (kPa)	TA (μM)
135.0 ± 4.6	5.70 ± 0.03	13.78 ± 0.07	34.0 ± 0.1	1.141 ± 0.020	188 ± 12

Table S3: Water chemistry of gill irrigation chambers used while blood sampling fish in low alkalinity water

pH (NBS)	Temperature (°C)	Salinity	pCO ₂ (μatm)	TA (μM)
5.53 ± 0.31	14.05 ± 0.05	35.05 ± 0.25	1.288 ± 0.104	188 ± 129

1051 **Table S4:** Mean \pm s.e.m. of water chemistry parameters within isolation boxes
1052 prior to gill sampling. Gill samples from sea bass exposed to hypercapnia were
1053 taken from 5 sea bass immediately after flux measurements were completed.

Treatment	Duration (min)	pH (NBS)	Temperature (°C)	Salinity	pCO ₂ (kPa)	TA (μM)
Normocapnia	n/a	8.05 \pm 0.00	14.12 \pm 0.06	33.6 \pm 0.0	0.055 \pm 0.001	2335 \pm 7
Hypercapnia	132.9 \pm 2.6	6.97 \pm 0.02	14.14 \pm 0.02	33.5 \pm 0.0	0.770 \pm 0.037	2365 \pm 9

1054

1055 **Table S5:** Theoretical calculations of H⁺ excretion by NHE in response to
1056 environmental hypercapnia. Calculations based on Parks *et al.* 2008. If
1057 Na⁺_i/Na⁺_e > H⁺_i/H⁺_e then H⁺ excretion by NHE is thermodynamically unviable.

Treatment	Ionocyte Na ⁺	Seawater Na ⁺	Ionocyte H ⁺	Seawater H ⁺	Na ⁺ _i /Na ⁺ _e	H ⁺ _i /H ⁺ _e
	(Na ⁺ _i , mM)	(Na ⁺ _e , mM)	(H ⁺ _i , mM)	(H ⁺ _e , mM)		
Control	140	480	3.98e ⁻⁰⁸	8.91e ⁻⁰⁹	0.292	4.467
Hypercapnia	140	480	5.01e ⁻⁰⁸	1.12e ⁻⁰⁷	0.292	0.447
Hypercapnia + low TA	140	480	5.01e ⁻⁰⁸	2.00e ⁻⁰⁶	0.292	0.025

1058

1059