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Abstract

Across the Metazoa, similar genetic programs are found in the development of analogous,
independently evolved, morphological features. The functional significance of this reuse and the
underlying mechanisms of co-option remain unclear. Here we identify the co-option of the
canonical bilaterian limb pattering program redeployed during cephalopod lens development, a
functionally unrelated structure. We show radial expression of transcription factors SP6-9/spl,
DIx/dll, Pbx/exd, Meis/hth, and a Prdl homolog in the squid Doryteuthis pealeii, similar to
expression required in Drosophila limb development. We assess the role of Wnt signaling in the
cephalopod lens, a positive regulator in the developing limb, and find the regulatory relationship
reversed, with ectopic Wnt signaling leading to lens loss. This regulatory divergence suggests that
duplication of SP6-9 in cephalopods may mediate this co-option. These results suggest that the
limb network does not exclusively pattern appendage outgrowth but is performing a more universal

developmental function: radial patterning.
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INTRODUCTION

In the Metazoa, homologous networks of transcription factors are necessary for the
development of some analogous structures in distantly related taxa. The limb patterning program
is an example of this developmental process homology (Shubin et al., 1997; Erwin & Davidson,
2002; Pueyo & Couso, 2005). The limb program was first identified in the development of the
proximal-distal axis of the Drosophila leg. The transcription factor SP6-9/sp1 is upstream of other
program members, DIx/dll, Pbx/exd, Meis/hth, Dac and Arx/ar, each required for patterning
specific regions of limb outgrowth (Panganiban et al., 1994; Panganiban et al., 1997; Dong et al.,
2001, Dong et al., 2002; Peuyo & Couso, 2005; Estella et al., 2012; Campbell & Tomlinson, 1998).
This network is necessary in both vertebrate and cephalopod limb development and is expressed
in a similar proximodistal pattern in a diversity of outgrowths (Panganiban et al., 1997; Shubin et
al., 1997; Maas & Bei, 1997; Mercader et al., 1999; Panganiban & Rubenstein, 2002; Prpic, 2003;
Angelini & Kaufman, 2005; Pueyo & Couso, 2005; Shubin et al., 2009; Moczek & Rose, 2009;
Capellini et al. 2011; Lapan & Reddien, 2011; Ibarretxe et al., 2012; Grimmel et al., 2016; Sanz-
Navarro et al., 2019; Ramanathan et al. 2018; Setton & Sharma; 2018; Tarazona et al., 2019; Prpic,
2019). This suggests that, although each appendage is not homologous, an outgrowth program may
have been present in the ancestor. Current fossil evidence and the prevalence of limbless taxa does
not support an ancestor with appendages and therefore the network’s ancestral function remains
unclear (Shubin et al., 1997; Erwin & Davidson, 2002; Pueyo & Couso, 2005). Many alternative
hypotheses have been proposed, including an ancestral role in the nervous system, body axis
formation and radial patterning (Minelli, 2000; Pueyo & Couso, 2005; Lemons et al. 2010;
McDougall et al., 2011; Plavicki et al., 2016; Carroll et al., 1994; Erwin & Davidson, 2002). To
understand the nature of this homology and how these co-option events occur, experiments with
better sampling across the phylogeny of animals and greater diversity of developmental context
are required.

Recent work identified a duplication of SP6-9 in cephalopods (McCulloch and Koenig,
2020). Both paralogs are expressed in the developing limb in the squid Doryteuthis pealeii, while
one paralog, DpSP6-9a, shows unique expression in the lens-making cells during eye development
(McCulloch and Koenig, 2020). With SP6-9 a known regulator in the limb patterning program,
this new domain of expression could result in the co-option of the program in the cephalopod eye,
providing a useful heterologous developmental context to better understand the network’s

function.
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The image-forming eye is a classic example of biological complexity and the lens is a
requisite innovation in all high-resolution visual systems (Darwin, 1859; Arendt, 2009; Dakin,
1928; Walls, 1939; Koenig & Gross, 2020; Nilsson, 2013; Jonasova & Kozmik, 2008).
Cephalopods have a single-chambered eye, morphologically convergent with the vertebrate eye,
composed of a cup shaped retina and a single refractive lens (Packard, 1972). Here we perform the
first in-depth molecular description of lens development in the squid Doryteuthis pealeii, we
identify spaciotemporal expression of the limb patterning program in the developing eye and lens,
and we demonstrate a negative regulatory role of canonical Wnt signaling upstream of the

program.

RESULTS AND DISCUSSION
Cephalopod Lentigenic Cell Differentiation and Early Anterior Segment Heterogeneity

The anterior of the cephalopod eye, or the anterior segment, is composed primarily of lens
generating cells (lentigenic cells) (Williams, 1909; Arnold, 1967; Brahma, 1978). Lentigenic cells
are arranged circumferentially around the developing lens and extend long cellular processes,
fusing into plates to form the lens (Figure 1A) (Meinertzhagen, 1990; Williams, 1909; Arnold,
1965; Arnold, 1967; West et al., 1995). We identified the first evidence of differentiated lentigenic
cells starting at late stage 21, using a previously described nuclear morphology, unique to one of
the three lentigenic cell types (LC2) (Figure 1B) (Arnold, 1967; West et al., 1995; Koenig et al.,
2016). The number of LC2 cells continues to grow until reaching pre-hatching stage (Stage 29).
We performed staged in situ hybridization for a homolog of DpS-Crystallin, the most abundant
family of proteins in the cephalopod lens (Chiou, 1984; West et al., 1994) (Supplemental Figure
1). The first evidence of expression corresponds to changes in nuclear morphology at stage 21
(Figure 1C).

We sought to understand the molecular heterogeneity of cells in the early developing
anterior segment, of which nothing is currently known. Using previously published candidates and
RNA-seq data, we performed in situ hybridization screens at stage 23 to identify unique cell
populations (Koenig et al., 2016; Ogura et al., 2013). We find DpSix3/6 at stage 23 expressed in
the anterior segment in the distal cells that make a central cup (cc), as well as a marginal population
of cells in the most proximal tissue (pm) (Figure 2B’”). The proximal central cells lacking DpSix3/6
expression correspond to the LC2 population (Figure 2A’° &B’’). Asymmetry along the animal
anterior-posterior axis in the eye is also apparent, with enrichment on the anterior side of the animal

(Figure 2B’”). We also find the gene DpLhx1/5, expressed in a distal-marginal population of cells
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97  in the anterior segment (dm), and excluded from the distal central cup cells (cc) (Figure 2C’).
98  Together these genes show distinct populations of cells present early in development and provide
99  a helpful molecular map of the anterior segment tissue at this time point: central cup cells (cc),

100  LC2 cells (/c2), proximal-marginal cells (pm), and distal-marginal cells (dm) (Figure 2) .

101

102 Proximal-Distal Limb Patterning Genes in the Anterior Segment of the Cephalopod

103 To assess whether genes involved in appendage patterning may be required for cephalopod
104  lens development, we identified and performed in situ hybridization for the genes Dlx, Pbx, Meis,
105  and Dac at stage 21 and 23 (Figure 2, Supplemental Figure 2). All genes were clearly expressed
106  in the developing anterior segment and lentigenic cells with the exception of DpDac (Figure 2E-
107 G, Supplemental Figure 21-2J"). We find DpDIx and DpSP6-9a have overlapping expression, in
108  the central cup cells (cc) and all proximal cells (LC2 and pm) (Figure 2D-E’’*). DpPbx and DpMeis
109  are both broadly expressed in the anterior segment during lens development, with DpPbx excluded
110 from the LC2 cells (Figure 2F’& 2G”’).

111 It is known that the transcription factor aristaless is necessary for the most distal tip of the
112 Drosophila limb in the limb program (Campbell and Tomlinson, 1998). The evolutionary
113 relationship of Prd-like homologs (Arx/Aristaless, Alx/Aristaless-like, Rx/Retinal Homeobox and
114  Hbn/Homeobrain) is ambiguous across species (Schiemann et al., 2017). We identified three
115  candidate Prd-like genes in D. pealeii and performed in situ hybridization for all three homologs,
116  DpHbn, DpPrdl-1 and DpPrdl-2 (Supplemental Figure 2K, L) (Koenig et al, 2016). DpHbn is
117  expressed in the anterior segment in the distal central cup cells (cc) while DpPrdl-1 and DpPrdl-
118 2 are excluded from the eye (Figure 2H’’ and Supplemental Figure 2C, C’, K and L). DpHbn'’s
119  central, distal expression recapitulates aristaless expression in the developing Drosophila limb.
120 Our data show that the majority of the proximal-distal patterning genes in the developing
121 limb, including SP6-9, Dilx, Meis, Pbx, as well as the Prd-like homolog, Hbn, show expression in
122 concentric and overlapping cell populations surrounding the developing lens in the squid (Figure
123 2). This pattern of expression is strikingly similar to the bullseye-like pattern of expression of these
124 genes in the developing Drosophila limb imaginal disc and suggests a co-option of this regulatory
125  program for a new function: patterning the cephalopod anterior segment and lens (Angelini &
126  Kaufman, 2005).

127

128  Canonical Wnt Signaling Genes Expressed During Anterior Segment Development
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129 The duplication of SP6-9 in cephalopods provides a substrate for the evolution of cis-
130  regulation, which could result in novel expression of the limb patterning program in the
131  cephalopod lens. In appendage outgrowth, active Wnt signaling is upstream of the expression of
132 SP6-9 (Cohen, 1990; Estella et al., 2003). To assess whether Wnt may be acting upstream in the
133 cephalopod anterior segment or whether novel regulatory mechanisms may be at play, we
134 performed in situ hybridization for members of the Wnt signaling pathway at stage 21 and stage
135 23 (Figure 3, Supplemental Figure 3). We were interested in identifying cells in the anterior
136  segment or in adjacent tissue that may be a source of the Wnt morphogen. We performed in situ
137  hybridization for seven Wnt homologs, with most Wnt genes expressed in the retina (Figure 3A°,
138  3C’, 3D-G). DpWnt8, DpWntll and DpProtostome-specific Wnt show the most robust retinal
139 expression (3A’, 3F & 3G) and DpWhnt7 is the only Wnt expressed in the anterior segment (Figure
140  3C). DpWnt6 showed no evidence of expression in the developing eye (data not shown). These
141  data support the hypothesis that Wnt signals emanating from neighboring tissues could regulate
142 anterior segment development.

143 To identify cells with potential active Wnt signaling, we analyzed the expression of Fz
144  genes, which encode a family of Wnt receptors. We find that DpFz receptors are expressed broadly
145  throughout the embryo. A subset of these (e.g. DpFz1/2/7, DpFz4, and DpFz5/8) are expressed in
146  the majority of cells in the anterior segment, while others, like DpFz9/10, are excluded from the
147  anterior segment (Figure 3H-K, Supplemental Figure 3). On close examination we find that
148  DpFz5/8 is excluded asymmetrically in the anterior segment and may be important for anterior-
149  posterior patterning (Figure 3)° & J**). DpFz1/2/7 is excluded from the distal-marginal cells and
150  central cup cells and interestingly, the central cup cells lacking DpFz1/2/7 are those that express
151  all the limb patterning program genes (Figure 3K’&K’”). These data suggested that the exclusion
152 of active Wnt signaling may be important in the cephalopod anterior segment, supporting a
153  potential negative regulatory role for Wnt signaling.

154

155  Ectopic Wnt Activation Leads to the Loss of the Lens

156 To assess the hypothesis that Wnt signaling is playing a negative regulatory role in anterior
157  segment development, we utilized well-characterized pharmacological compounds that act as
158  agonists of the Wnt pathway (Hedgepeth et al. 1997; Klein & Melton; Sato et al., 2004). We
159  empirically determined a working concentration of both LiCl (0.15M) and CHIR99021 (250um).
160  We bathed embryos in the compound or vehicle control for 24 hours at stage 21, the onset of

161  lentigenic cell differentiation, and immediately fixed thereafter. Embryos were sectioned and
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162  assessed for phenotypes. Stage 21 control embryos show a thickened anterior segment, identifiable
163  lentigenic cells, and small lens primordia (Figure 3L). LiCl-treated stage 21 embryos show a
164  complete absence of lens formation: No anterior segment thickening, lentigenic cells, or lens
165  tissue. These data suggest that ectopic Wnt pathway activation inhibits lens and anterior segment
166  development (Figure 3L’, Supplemental Figure 4A). CHIR99021 treatment showed similar
167  phenotypes (Supplemental Figure 4A). We assessed LiCl treated and control animals for cell death
168 and find little difference between control and treated eyes suggesting that toxicity is unlikely the
169  reason for these phenotypic changes (Supplemental Figure 4B).

170 We were interested in the consequence of activating the Wnt pathway after lentigenic cell
171  differentiation. We performed the same 24 hour LiCl exposure at stage 23 and find the lens smaller
172 and the anterior segment less thick than control animals, but lentigenic cells and lens tissue remain
173 identifiable. This suggests that ectopic Wnt signaling does not impact cell identity in differentiated
174 lentigenic cells (Figure 3M & M”).

175 The lack of lens growth in stage 21 treated animals may be a result of an imposed delay in
176  lens formation or it may be a result of the loss of lens potential. To differentiate between these
177  possibilities we allowed treated animals to recover. We bathed experimental and control embryos,
178  at both stage 21 and 23, for 24 hours, washed out the solution and allowed animals to develop for
179  an additional 48 hours. LiCl treated stage 21 embryos never recover a lens (Figure 4N & 4N’)
180  while LiCl treated stage 23 embryos do form a small but morphologically abnormal lens (Figure
181 40 & 40’). This abnormal lens is larger than the lens found in animals immediately fixed after
182  treatment, suggesting that existing lentigenic cells at stage 23 continue to contribute to lens
183  formation and growth. However, because the stage 23 treated lens is markedly smaller than control,
184 it suggests that further lentigenic cell differentiation is lost in treated animals. These data suggest
185  that ectopic Wnt signaling leads to the disruption of lens potential and the lack of proper lentigenic
186  cell differentiation.

187 Despite the remarkable loss of the lens, these data do not clearly distinguish between the
188  loss of lentigenic cell fate or proper cell function, such as the growth of the cellular processes that
189  form the lens. To assess if lentigenic cell fate is lost, we performed in situ hybridization
190  experiments for DpS-Crystallin on LiCl treated animals. We saw two types of expression
191  phenotypes, either a significant decrease (Type I) or a complete loss (Type II) in DpS-Crystallin
192  expression as compared to control (Figure 4P, P’ & P’”). We find all DpS-Crystallin expression
193 exclusively dorsal to the site of lens formation suggesting that these cells may differentiate first.

194  These data show that ectopic Wnt signaling results in the loss of lentigenic cell fate and that our
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195 treatment may have interrupted a dorsal-to-ventral wave of differentiation in some embryos
196  (Figure 4A). In addition, we assessed other anterior segment markers, including DpSix3/6 and
197  DpLhx1/5, and these genes show a consistent loss of expression in the most severe phenotypes,
198  (Supplemental Figure 4C).
199
200  Limb Patterning Program Regulatory Evolution
201 To address if Wnt signaling is upstream of the limb patterning program, we performed in
202  situ hybridization of limb transcription factors after LiCl treatment (Figure 3Q-3S, Supplementary
203 Figure 4C). Similar to DpS-Crystallin expression, we again see a mild reduction (Type I) or loss
204  and severe reduction (Type II) of expression. Our milder phenotypes, again, show a dorsal
205  asymmetry, which can be most easily seen in DpSP6-94, DpDIx and DpHbn (Figure 3Q, Q’, Q”’,
206 3R, R’, R’ and 3S, S’°, S”’). Changes are also visible but less obvious in DpPbx and DpMeis
207  expression, with DpPbx only showing a mild phenotype (Supplemental figure 4C). These data
208  support the placement of Wnt signaling upstream of the limb patterning program in a negative
209  regulatory role.
210
211  Conclusion
212 Our findings indicate that the limb patterning program has been co-opted for anterior
213 segment and lens development in cephalopods and that this co-option does not have a homologous
214  upstream regulatory relationship with Wnt signaling as found in the limb (Estella et al., 2003;
215  Tarazona et al., 2019). This change in signaling and the known duplication of SP6-9 identifies the
216  paralog SP6-9a as a mediator of limb patterning program co-option in the anterior segment.
217  Finally, with little similarity between limb and lens, our work suggests that the function of the limb
218  patterning program in a limbless ancestor was likely a more generic developmental function than
219  outgrowth. Considering present findings, previous work and hypotheses we conclude that the
220  ability to pattern in a radial fashion, as previously proposed, is a more inclusive and likely ancestral
221  function (Figure 4B) (Carroll et al., 1994; Erwin & Davidson, 2002). This work shows the
222 cephalopod lens to be a unique context for future investigation of comparative regulatory changes
223 responsible for co-option, and for identifying the regulatory mechanisms responsible for the
224 emergent radial pattern found in embryos across species.
225
226
227
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228  Methods

229  Animal Husbandry

230  Doryteuthis pealeii egg sacks were obtained from the Marine Biological Labs. Egg sacks were
231  kept at 20 degrees Celsius. Although not required, European guidelines for cephalopod research
232 were followed.

233

234  Histology and TUNEL Staining

235  Embryos were fixed at 4 degrees Celsius overnight in 4% PFA in filter-sterilized seawater. After
236  fixation embryos were transitioned into 15% and 30% sucrose and embedded in TFM and stored
237  at-80 degrees Celsius. Embryos were cryosectioned in 12 um sections, stained with Sytox Green
238  1:1000 and Phalloidin 555 1:300 in PBS overnight (Molecular Probes). Tunel stained tissue was
239  processed after sectioning using the Click-iT TUNEL Alexa Fluor 488 kit according to
240  manufacturer’s instructions (Invitrogen). Embryos were mounted in VECTASHIELD Hardset
241  antifade mounting medium and imaged on a Zeiss 880 confocal.

242

243  Homolog Identification and Phylogenetics

244 Genes were preliminarily identified using reciprocal BLAST with Mus musculus and Drosophila
245  melanogaster sequences as bait with the exception of S-Crystallin where previous Doryteuthis
246  opalescens sequences were also used (Altschul et al., 1990). Top hits in the D. pealeii
247  transcriptome were trimmed for coding sequence and translated to amino acid sequences. To find
248  related sequences, BLASTp was used, searching only the RefSeq protein database in NCBI filtered
249  for vertebrate and arthropod models, as well as spiralian models for when published annotated
250  sequences could be found. The top hits of each gene name were downloaded and aligned with our
251  D. pealeii sequences for each tree using MAFFT in Geneious (Katoh, 2002). To check sequence
252  redundancy and proper outgroups quick trees were made using FastTree. We constructed
253  maximum-likelihood trees on the FASRC Cannon cluster supported by the FAS Division of
254  Science Research Computing Group at Harvard University (Price et al. 2010). Using PTHREADS
255 RAxML v.8.2.10, we ran the option for rapid bootstrapping with search for best maximum
256  likelihood tree, resampling with 1000 bootstrap replicates, the PROTGAMMAAUTO model of
257  amino acid substitution, and otherwise default parameters (Stamatakis, 2014). Fasta alignments,
258  Nexus tree files are found in the Supplemental Data Folder. All PDF versions of the trees are found
259  in Supplemental Figure 1.

260
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261  Cloning and Probe Synthesis
262  Embryos stg 21-29 were crushed in Trizol reagent. RNA was extracted using standard phenol-
263  chloroform extraction with a clean-up using the Qiagen RNeasy Micro kit. cDNA was synthesized
264  using iScript (Bio-Rad) according to manufacturer protocols. Primers were designed using Primer3
265 in the Geneious software package from available transcriptomic data (Koenig et al., 2016). PCR
266  products were ligated into the Pgem-T Easy plasmid and isolated using the Qiagen miniprep kit.
267  Plasmids were linearized using restriction enzymes. Sense and anti-sense probes were synthesized
268  using T7 and SP6 polymerase with digoxygenin labelled nucleotides.
269
270  In situ Hybridization
271  Embryos were fixed as previously described (Koenig et al. 2016) and were dehydrated in 100%
272  ethanol and stored at -20 degrees Celsius. Whole-mount in situ hybridization was performed as
273  previously described (Koenig et al., 2016). Embryos were imaged using a Zeiss Axio Zoom.V16.
274  Embryos were fixed for sectioning overnight in 4% PFA in artificial seawater and dehydrated in
275  100% ethanol. Embryos were transitioned into histoclear and embedded in paraffin. Embryos were
276  sectioned on a Leica RM2235 microtome in 5-micron sections. Sections were dewaxed for in situ
277  in Histoclear, rehydrated through an EtOH series, and re-fixed for 5 minutes at 4 degrees Celsius
278  in 4% PFA in PBS. Embryos were exposed to Proteinase K for 20 minutes at 37 degrees Celsius
279  and then quenched with glycine. The embryos were then de-acetylated with acetic anhydride.
280  Slides were then pre-hybridized at 65 degrees Celsius for 30-60 minutes and then exposed to probe
281  overnight. Slides were washed in 50% formamide/1x SSC/0.1% Tween-20 hybridization buffer
282  twice, then twice in 1x SSC, .2x SSC and 0.02x SSC, all at 70 degrees Celsius. The slides were
283  then washed at room temperature in MABT three times and blocked in Roche Blocking Buffer for
284  an hour. Slides were incubated in Anti-Dig antibody (Roche) at 1/4000 overnight at 4 degrees
285  Celsius. Slides were washed with MABT and then placed in AP reaction buffer. Slides were then
286  exposed to BCIP/NBT solution until reacted and stopped in PBS. Slides were counterstained with
287  Sytox 1:1000 overnight. Slides mounted in ImmunoHistoMount (Abcam) and imaged on a Zeiss
288  Axioscope. DpS-Crystallin embryo in situs were transitioned to sucrose and embedded after
289  imaging in whole-mount. Embryos were image on a Zeiss Axioscope.
290
291  Ex ovo Experimental Culture
292 Ex ovo culture was performed as previously described in Koenig, 2016. Embryos were bathed in

293 25 M, .15 M and .07 M LiCl and 100nm, 250nm and 500nm concentration of Wnt Agonist
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(CHIR99021) in Pen-Step filter-sterilized seawater to determine a working concentration. Control

animals were bathed in equivalent amounts of DMSO or Pen-Strep alone.

Supplemental Data Files
RAXML Maximum Likelihood trees, 1000 bootstraps.

ANTP ML 1000bs_final.nex
Axin_ML 1000bs_final.nex
Cry_ ML 1000bs_final.nex
Dach ML 1000bs_final.nex
Dsh ML 1000bs_final.nex

Fz ML 1000bs_final.nex
GSK3 ML 1000bs_final.nex
Lhx ML 1000bs_final.nex
LRP1I ML 1000bs_final.nex
Pangolin ML 1000bs_ final.nex
Prd domain ML 1000bs_final.nex
TALE ML 1000bs_final.nex
Wnt ML 1000bs_final.nex

MAFFT sequence alignments

ANTP ML 1000bs_final.fasta
Axin_ML 1000bs_final.fasta
Cry ML 1000bs_final.fasta
Dach ML 1000bs_final.fasta
Dsh ML 1000bs_final.fasta

Fz ML 1000bs_final.fasta
GSK3 ML 1000bs_final.fasta
Lhx ML 1000bs_final.fasta

LRP1I ML 1000bs_final.fasta
Pangolin ML 1000bs_final.fasta
Prd domain ML 1000bs_final.fasta
TALE ML 1000bs_final.fasta
Wnt ML _1000bs_final.fasta

Authors’ contributions
K.M.K. designed the experiments. S.N., K.J.M., F.N., C.D., J.C.,, and K.M.K. performed
experiments. K.J.M. performed phylogenetic analyses. K.M.K., S.N., and K.J.M. wrote the

manuscript with consultation from all authors.

Competing Interests

Authors declare no competing interests.


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Funding
This work is supported by the Office of the NIH Director 1DP50D023111-01, and the John

Harvard Distinguished Science Fellowship to K.M.K.

Acknowledgements

The authors would like to thank the Koenig and Srivastava lab members for helpful discussions as
well as Kevin Woods and the John Harvard Distinguished Science Fellows community for support.
We would like to thank Jeffrey Gross, Alex Schier, Mansi Srivastava, and Andrew Murray for
comments on the manuscript. We also thank the Marine Biological Labs, the Marine Resources
Center, Owen Nichols, Ernie Eldredge, and Shannon Eldredge for assisting in the acquisition of
embryos. We would also like to acknowledge the Harvard College undergraduates of LS50:
Integrated Science Laboratory Course: Zach Alerte, Vlad Batagui, Eli Burnes, Stephen Casper,
Chris Chen, Ahab Chopra, Ralph Estanboulieh, Lily Gao, Pedro Garcia, Saimun Habib, Harry
Hager, Maxwell Ho, Charlie Horowitz, Ray Jiang, Prashanth Kumar, Truelian Lee, Arian Mansur,
Matthew Mardo, Mark Theodore Meneses, Kendrick Nguyen, Francesco Rolando, Simon
Schnabl, Taylor Shirtliff-Hinds, Sorscher Lincoln, William Stainier, Avi Swartz, David Szanto,
Sophia Tang, Joey Toker, Analli Torres, Nina Uzoigwe, Rowen VonPlagenhoef, Evelyn Wong,
Alexandra Zaloga, Maxwell Zhu.

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local
alignment search tool. Journal of molecular biology, 215(3), 403-410. doi: 10.1016/s0022-
2836(05)80360-2

Angelini, D. R., & Kaufman, T. C. (2005). Insect appendages and comparative ontogenetics.
Developmental biology, 286(1), 57-77. doi: 10.1016/j.ydbi0.2005.07.006

Arnold, J. M. (1965). Normal embryonic stages of the squid, Loligo pealii (Lesueur). The
Biological Bulletin, 128(1), 24-32. doi: 10.2307/1539386

Arnold, J. M. (1966). On the occurrence of microtubules in the developing lens of the squid Loligo
pealii. Journal of ultrastructure research, 14(5-6), 534-539. doi: 10.1016/s0022-5320(66)80080-
1

Arnold, J. M. (1967). Fine structure of the development of the cephalopod lens. Journal of
ultrastructure research, 17(5-6), 527-543. doi: 10.1016/s0022-5320(67)80139-4

Arendt, D., Hausen, H., & Purschke, G. (2009). The ‘division of labour’model of eye evolution.
Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1531), 2809-2817.
doi: 10.1098/rstb.2009.0104


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which

377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Brahma, S. K. (1978). Ontogeny of lens crystallins in marine cephalopods. Development, 46(1),
111-118. doi: 10.1016/b978-0-12-483180-3.50009-5

Beldade, P., Brakefield, P. M., & Long, A. D. (2002). Contribution of Distal-less to quantitative
variation in butterfly eyespots. Nature, 415(6869), 315. doi: 10.1038/415315a

Brakefield, P. M., Gates, J., Keys, D., Kesbeke, F., Wijngaarden, P. J., Monteiro, A., French, V.,
& Carroll, S. B. (1996). Development, plasticity and evolution of butterfly eyespot patterns.
Nature, 384(6606), 236. doi: 10.1038/384236a0

Campbell, G., & Tomlinson, A. (1998). The roles of the homeobox genes aristaless and Distal-
less in patterning the legs and wings of Drosophila. Development, 125(22), 4483-4493.

Capellini, T. D., Zappavigna, V., & Selleri, L. (2011). Pbx homeodomain proteins: TALEnted
regulators of limb patterning and outgrowth. Developmental Dynamics, 240(5), 1063-1086. doi:
10.1002/dvdy.22605

Carroll, S. B., Gates, J., Keys, D. N., Paddock, S. W., Panganiban, G. E., Selegue, J. E., &
Williams, J. A. (1994). Pattern formation and eyespot determination in butterfly wings. Science,
265(5168), 109-114. doi: 10.1126/science.7912449.

Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2013). From DNA to diversity: molecular
genetics and the evolution of animal design. John Wiley & Sons. doi: 10.1002/ajmg.a.20051

Chiou, S. H. (1984). Physicochemical characterization of a crystallin from the squid lens and its
comparison with vertebrate lens crystallins. The Journal of Biochemistry, 95(1), 75-82. doi:
10.1093/oxfordjournals.jbchem.al134605

Chow, R. L., & Lang, R. A. (2001). Early eye development in vertebrates. Annual review of cell
and developmental biology, 17(1), 255-296. doi: 10.1146/annurev.cellbio.17.1.255

Cohen, S. M. (1990). Specification of limb development in the Drosophila embryo by positional
cues from segmentation genes. Nature, 343(6254), 173. doi: doi: 10.1038/343173a0

Cvekl, A., & Ashery-Padan, R. (2014). The cellular and molecular mechanisms of vertebrate
lens development. Development, 141(23), 4432-4447. doi: 10.1242/dev.107953

Dakin, W. J. (1928). The eyes of Pecten, Spondylus, Amussium and allied Lamellibranchs, with a
short discussion on their evolution. Proceedings of the Royal Society of London. Series B,
Containing Papers of a Biological Character, 103(725), 355-365. doi:10.1098/rspb.1928.0047
Darwin, C. (2016). On the origin of species, 1859. Routledge.

Dong, P. S., Chu, J., & Panganiban, G. (2001). Proximodistal domain specification and interactions
in developing Drosophila appendages. Development, 128(12), 2365-2372.

Dong, P. S., Dicks, J. S., & Panganiban, G. (2002). Distal-less and homothorax regulate multiple
targets to pattern the Drosophila antenna. Development, 129(8), 1967-1974.


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Estella, C., Rieckhof, G., Calleja, M., & Morata, G. (2003). The role of buttonhead and Sp1 in
the development of the ventral imaginal discs of Drosophila. Development, 130(24), 5929-5941.
doi: 10.1242/dev.00832

Estella, C., Voutev, R., & Mann, R. S. (2012). A dynamic network of morphogens and
transcription factors patterns the fly leg. In Current topics in developmental biology (Vol. 98, pp.
173-198). Academic Press. doi: 10.1016/B978-0-12-386499-4.00007-0

Erwin, D. H., & Davidson, E. H. (2002). The last common bilaterian ancestor. Development,
129(13), 3021-3032.

Grimmel, J., Dorresteijn, A. W., & Frobius, A. C. (2016). Formation of body appendages during
caudal regeneration in Platynereis dumerilii: adaptation of conserved molecular toolsets.
EvoDevo, 7(1), 1-14.

Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M., & Klein, P. S. (1997).
Activation of the Wnt signaling pathway: a molecular mechanism for lithium action.
Developmental biology, 185(1), 82-91. doi: 10.1006/dbi0.1997.8552

Ibarretxe, G., Aurrekoetxea, M., Crende, O., Badiola, 1., Jimenez-Rojo, L., Nakamura, T., ... &
Unda, F. (2012). Epiprofin/Sp6 regulates Wnt-BMP signaling and the establishment of cellular
junctions during the bell stage of tooth development. Cell and tissue research, 350(1), 95-107.
doi: 10.1007/s00441-012-1459-8

Jonasova, K., & Kozmik, Z. (2008, April). Eye evolution: lens and cornea as an upgrade of
animal visual system. In Seminars in cell & developmental biology (Vol. 19, No. 2, pp. 71-81).
Academic Press. doi: 10.1016/j.semcdb.2007.10.005

Katoh, K., Misawa, K., Kuma, K. 1., & Miyata, T. (2002). MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic acids research, 30(14),
3059-3066. doi: 10.1093/nar/gkf436

Klein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on
development. Proceedings of the National Academy of Sciences, 93(16), 8455-8459. doi:
10.1073/pnas.93.16.8455

Koenig, K. M., Sun, P., Meyer, E., & Gross, J. M. (2016). Eye development and photoreceptor
differentiation in the cephalopod Doryteuthis pealeii. Development, 143(17), 3168-3181. doi:
10.1242/dev.134254

Koenig, K. M., & Gross, J. M. (2020) Evolution and development of complex eyes: A celebration
of diversity. Development, 147(19). doi: 10.1242/dev.182923

Lapan, S. W., & Reddien, P. W. (2011). dIx and sp6-9 Control optic cup regeneration in a
prototypic eye. PLoS Genet, 7(8), €1002226. doi: 10.1371/journal.pgen.1002226

Lemons, D., Fritzenwanker, J. H., Gerhart, J., Lowe, C. J., & McGinnis, W. (2010). Co-option of
an anteroposterior head axis patterning system for proximodistal patterning of appendages in early
bilaterian evolution. Developmental biology, 344(1), 358-362.


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which

477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Maas, R., & Bei, M. (1997). The genetic control of early tooth development. Critical Reviews in
Oral Biology & Medicine, 8(1), 4-39. doi: 10.1177/10454411970080010101

Mazza, M. E., Pang, K., Reitzel, A. M., Martindale, M. Q., & Finnerty, J. R. (2010). A conserved
cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and
Protostomia. EvoDevo, 1(1), 3.

McCulloch, K. J., & Koenig, K. M. (2020). Kriippel-like factor/specificity protein evolution in
the Spiralia and the implications for cephalopod visual system novelties. Proceedings of the
Royal Society B, 287(1937), 20202055. doi: 10.1098/rspb.2020.2055

McDougall, C., Korchagina, N., Tobin, J. L., & Ferrier, D. E. (2011). Annelid Distal-less/DIx
duplications reveal varied post-duplication fates. BMC evolutionary biology, 11(1), 1-16.

Meinertzhagen, 1. A. (1990). Development of the squid’s visual system. In Squid as experimental
animals (pp. 399-419). Springer, Boston, MA.

Mercader, N., Leonardo, E., Azpiazu, N., Serrano, A., Morata, G., Martinez-A, C., & Torres, M.
(1999). Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature,
402(6760), 425-429. doi: 10.1038/46580

Minelli, A. (2000). Limbs and tail as evolutionarily diverging duplicates of the main body axis.
Evolution & development, 2(3), 157-165. doi: 10.1046/7.1525-142x.2000.00054.x

Moczek, A. P., & Rose, D. J. (2009). Differential recruitment of limb patterning genes during
development and diversification of beetle horns. Proceedings of the National Academy of
Sciences, 106(22), 8992-8997.

Nilsson, D. E. (2013). Eye evolution and its functional basis. Visual neuroscience, 30(1-2), 5-20.
doi: 10.1017/S0952523813000035

Ogura, A., Yoshida, Ma., Moritaki, T., Plida,Y ., Sese, J., Shimizu, K., Sousounis, K., & Tsonis,
P. A. (2013) Loss of the six3/6 controlling pathways might have resulted in pinhole-eye
evolution in Nautilus. Scientific Reports 3, 1432. doi: 10.1038/srep01432

Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47(2),
241-307.

Panganiban G., Irvine S.M., Lowe C., Roehl H., Corley L.S., Sherbon B., Grenier J.K., Fallon
J.F., Kimble J., Walker M., Wray G.A., Swalla B.J., Martindale M.Q., & Carroll S.B. (1997).

The origin and evolution of animal appendages. Proceedings of the National Academy of
Sciences. 94(10):5162-6. doi: 10.1073/pnas.94.10.5162.

Panganiban, G., Nagy, L., & Carroll, S. B. (1994). The role of the Distal-less gene in the
development and evolution of insect limbs. Current Biology, 4(8), 671-675. doi: 10.1016/s0960-
9822(00)00151-2

Panganiban, G., & Rubenstein, J. L. (2002). Developmental functions of the Distal-less/DIx
homeobox genes. Development, 129(19), 4371-4386.


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

527  Pueyo, J. 1., & Couso, J. P. (2005). Parallels between the proximal—distal development of

528  vertebrate and arthropod appendages: homology without an ancestor?. Current opinion in

529  genetics & development, 15(4), 439-446. doi: 10.1016/j.gde.2005.06.007

530

531  Plavicki, J. S., Squirrell, J. M., Eliceiri, K. W., & Boekhoff-Falk, G. (2016). Expression of the
532 Drosophila homeobox gene, Distal-less, supports an ancestral role in neural development.

533 Developmental Dynamics, 245(1), 87-95. doi: 10.1002/dvdy.24359

534

535  Price, M. N,, Dehal, P. S., & Arkin, A. P. (2010). FastTree 2—approximately maximum-

536 likelihood trees for large alignments. PloS one, 5(3), €9490. doi: 10.1371/journal.pone.0009490
537

538  Prpic, N. M., & Tautz, D. (2003). The expression of the proximodistal axis patterning genes
539  Distal-less and dachshund in the appendages of Glomeris marginata (Myriapoda: Diplopoda)
540  suggests a special role of these genes in patterning the head appendages. Developmental biology,
541  260(1),97-112. doi: 10.1016/s0012-1606(03)00217-3

542

543 Prpic, N. M. (2019). Limb Development: A lesson in homology. eLife, 8, e48335. doi:

544 10.7554/eLife.48335

545

546  Ramanathan, A., Srijaya, T. C., Sukumaran, P., Zain, R. B., & Kasim, N. H. A. (2018).

547  Homeobox genes and tooth development: Understanding the biological pathways and

548  applications in regenerative dental science. Archives of oral biology, 85, 23-39. doi:

549  10.1016/j.archoralbio.2017.09.033

550

551  Sanz-Navarro, M., Delgado, I., Torres, M., Mustonen, T., Michon, F., & Rice, D. P. (2019).
552 Dental Epithelial Stem Cells Express the Developmental Regulator Meis1. Frontiers in

553 physiology, 10, 249. doi: 10.3389/fphys.2019.00249

554

555  Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of
556  pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a
557  pharmacological GSK-3-specific inhibitor. Nature medicine, 10(1), 55-63. doi: 10.1038/nm979
558

559  Schiemann, S. M., Martin-Duran, J. M., Berve, A., Vellutini, B. C., Passamaneck, Y. J., &

560  Hejnol, A. (2017). Clustered brachiopod Hox genes are not expressed collinearly and are

561  associated with lophotrochozoan novelties. Proceedings of the National Academy of Sciences,
562  114(10), E1913-E1922. doi: 10.1073/pnas.1614501114

563

564  Setton, E. V., & Sharma, P. P. (2018). Cooption of an appendage-patterning gene cassette in the
565  head segmentation of arachnids. Proceedings of the National Academy of Sciences, 115(15),
566  E3491-E3500. doi: 10.1073/pnas.1720193115

567

568  Shubin, N., Tabin, C., & Carroll, S. (1997). Fossils, genes and the evolution of animal limbs.
569  Nature, 388(6643), 639-648. doi: 10.1038/41710

570

571  Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary
572 novelty. Nature, 457(7231), 818-823. doi: 10.1038/nature07891

573

574  Stamatakis, A. (2014). RAXML version 8: a tool for phylogenetic analysis and post-analysis of
575  large phylogenies. Bioinformatics, 30(9), 1312-1313. doi: 10.1093/bioinformatics/btu033

576


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

577  Tarazona, O. A., Lopez, D. H., Slota, L. A., & Cohn, M. J. (2019). Evolution of limb

578  development in cephalopod mollusks. eLife, 8, e43828. doi: 10.7554/eLife.43828

579  Walls, G. L. (1939). Origin of the vertebrate eye. Archives of Ophthalmology, 22(3), 452-486.
580

581  West, J. A, Sivak, J. G., & Doughty, M. J. (1995). Microscopical evaluation of the crystalline
582  lens of the squid (Loligo opalescens) during embryonic development. Experimental eye

583  research, 60(1), 19-35. doi: 10.1016/s0014-4835(05)80080-6

584

585  West, J. A, Sivak, J. G., Pasternak, J., & Piatigorsky, J. (1994). Immunolocalization of S-

586  crystallins in the developing squid (Loligo opalescens) lens. Developmental dynamics, 199(2),
587  85-92. doi: 10.1002/aja.1001990202

588

589  Williams, L. W. (1909). Anatomy of the Common Squid, Loligo pealii, Lesueur. London: E.J.

590  Brill.


https://doi.org/10.1101/2021.04.22.441006
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.441006; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

591  Figure Titles and Legends

Ly

O Stage 19 [Stage21  [Stage23  [Stage25  |Stage27 |
p /m m—sg m\’
A r A “ b
\ N\ ‘/as "\ ‘ L 2
/ o R aco
Ip '
— \y E Ny TN

592
593  Figure 1: Lentigenic cell differentiation and DpS-Crystallin expression in the squid

594  A) Cartoon diagram of a squid embryo (anterior), en face cartoon of the developing eye (red dotted
595  line shows cross-section plane) and developing lentigenic cells and lens. (Cartoon of lens and
596  lentigenic cells based on Arnold, 1967) B) Cross-section of the developing anterior segment at
597  Arnold stages 21 late, 23, 25, 27 and 29 identifying differentiation of lentigenic cells (Arnold,
598 1968). White: Sytox-Green labeling nuclei, Yellow: False-colored lentigenic cell nuclei
599  corresponding to the LC2 population identified by nuclear morphology (Arnold, 1967; West et al.,
600  1995; Koenig et al., 2016). Blue is the outline of the lens, as identified using phalloidin staining
601  (not shown). First evidence of LC2 cells is late stage 21. Lentigenic cell number multiplies and
602  distribution grows across the anterior segment (as) throughout development. Scale is 50 microns.
603  C) In situ hybridization of DpS-Crystallin in whole-mount and cryo-section. Stage 19 is an anterior
604  view, the boundary between the retina placode and the lip cells is highlighted with a dotted line.
605  No DpS-Crystallin expression is apparent at this stage. Stage 21-27 are shown in a lateral view of
606  the embryo on the left and a cross-section of the eye on the right. Anterior of the embyro is down
607  in the sections. The retina is outlined with a dashed grey line in stage 21 and 23. DpS-Crystallin
608  expression corresponds with LC2 lentigenic cell population. Scale is 500 microns in whole mount
609  images. Scale is 100 microns in sectioned images. as, anterior segment; a, arm; aco, anterior
610  chamber organ; e, eye; f, funnel /p, lip; m, mantle; mo, mouth; rp, retina placode; r, retina; y, yolk.
611  Red arrow highlights the lens.
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612  Figure 2: Limb patterning program expressed in the developing anterior segment

613  For each gene: left to right, anterior whole-mount view, lateral whole-mount view (anterior left),
614  cross-section (anterior is down), cartoon summary of anterior segment expression. Dotted white
615  outline in lateral view outlines the perimeter of the eye. A-C) Defining cell populations in the
616  developing anterior segment at stage 23. A, A’, A’’) DpS-Crystallin expression in the anterior
617 segment at stage 23, expressed in the proximal, central cells corresponding with the LC2 cells
618  (lc2). Expression is also apparent in the lens. B, B’, B’”) Expression of DpSix3/6. B’”) Expression
619 is apparent in the distal, central cup cells (cc) and the proximal-marginal (pm) anterior segment
620  cells. The proximal-central cells (Ic2) lack expression of DpSix3/6. C, C’, C*’) DpLhx1/5
621  expression. C’’) Expression of DpLhx1/5 is found in the distal-marginal cell (dm) population.
622  Expression is excluded from the central cup (cc). D-G) Expression of the limb patterning program
623  genes. Summary of the proximodistal expression of each Drosophila homolog during
624  proximodistal patterning of the limb is shown on the right H) Prd-like homolog Homeobrain (Hbn)
625  expression in the distal, central cup cells. a, arms; aco, anterior chamber organ; cc, cup cells; dm,
626  distal-marginal cells; e, eye; /, lens; Ic2, LC2 cells; m, mantle; mo, mouth; pm, proximal-marginal
627  cells; r, retina; y, yolk. Anterior segment highlighted in grey in the cartoon. Orientation
628  abbreviations: M, marginal; C, central; Pr, proximal; D, Distal; A, anterior; P, posterior. Scale for
629  whole-mount anterior view is 500 microns. Scale for lateral whole-mount view 200 microns. Scale

630  for sectioned images 50 microns.
631

G
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Figure 3: Wnt signaling pathway expression in the developing cephalopod eye
A-G) Whnt gene expression at stage 23. Based on expression, Wnt7, Wn8, Wnt2, Wntl1 and Prot
Whnt are possible candidates to signal the anterior segment. A) Lateral, whole-mount expression of
Wnt8. A’) Dorsal retina expression of Wnt8. Location of the section indicated by the orange line
in B. A””) Central section lacking retina expression. Location of the section indicated by the red
line in B. B) Cartoon of the lateral whole-mount embryo at stage 23. Orange and red lines
correspond to the location of the two sections shown in A, A’, and C, C’. D-G) Expression of other
Wnt homologs in central sections. H-K) Expression of Frizzled receptors at stage 23. Fz1/2/7
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640  shows asymmetric expression and Fz5/8 shows specific exclusion from the central cup cells. J
641  and K are lateral view of the whole mount expression. J’” and K’’ are cartoons of expression in J’
642  and K’ respectively. Black dotted line in sectioned images show the perimeter of the retina. L-O)
643  Anterior segment and lens morphology after Wnt agonist treatment (LiCl). Embryos were
644  cryosectioned and stained with sytox-green (nuclei, cyan) and phalloidin (F-actin, magenta).. L
645 and L’) Control and LiCl agonist treatments started at stage 21, treated for 24 hours and fixed
646  immediately. M and M”) Control and Wnt agonist (LiCl) treatments started at stage 23 for 24 hours
647  and fixed immediately. N and N”) Control and Wnt agonist (LiCl) treatments started at stage 21,
648  treated for 24 hours and allowed to recover for 48 hours and fixed. O and O’) Control and Wnt
649  agonist (LiCl) treatments started at stage 23, treated for 24 hours and allowed to recover for 48
650  hours and fixed. Arrowhead highlights the lens. P-S) In sifu hybridization of anterior segment
651  markers after 24 hour control and LiCl treatments starting at stage 23. Phenotypes are characterized
652  as Type I (mild) and Type II (severe). The white dotted line outlines the eye in the lateral image
653  and the number of eyes scored in control and the two phenotypes is found in LiCl treated animals
654  in the top right corner. Scale for all lateral whole-mount view images is 200 microns. Scale for all
655  sectioned images is 50 microns. Anterior is down in all sectioned images. White dotted line in
656  whole mount images identify the perimeter of the eye. m, mantle; a, arms; aco, anterior chamber
657  organ; mo, mouth; r, retina; /, lens.
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Figure 4: Ectopic Wnt signaling activation leads to loss of the lens

A) Model for lentigenic cell differentiation at stage 21. LC2 lentigenic cells differentiate on the
dorsal side of the eye first, with a wave moving ventrally. Type I DpS-Crystallin embryos have
been interrupted in progress. B) En face summary of sample radial expression of the limb
patterning program across developmental contexts (Tarazona, 2019; reviewed in Moczek, 2009
and Angelini & Kaufman, 2005).
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667  Supplemental Tables

668  Supplemental Table 1: All Primer sequences

669

Forward Reverse
DpS-Crystallin | GAACATCATGTCGCACCACG AGTTGCTCGCCTGAGAAGAC
DpLhx1/5 GAAGTGTCTTCGTGCTCCCA ATTATCGACCGGCGAGGAAC
DpDIx GGCAAGGCTTGGGTAAAACG GGGGTAGCAGCGATGAGTTT
DpMeis TAGCGTTTCCAAAAGGACCT CCCCAATACCCGTCATACTC
DpPbx TACTTCGGGAGCAGAGTCGA TAGCGGTCGTCGTCGTAATG
DpHbn ATACAACGACGACGACCACC CGCGTGAATACATCCGGGTA
DpPrdI-1 AGAACAACCCAACGTACACA GCAAACATCGAGTGAATCCC
DpPrdl-2 TCGCATTGAGGATTGATCTT GGTTGTTGTTGTTGTGTTGTT
DpDac CTGTATGGCTCCAAGTCCTC GATCTCTGGTCGTCGTTTCA
DpGSK3 GATACGGGTGAACTGGTAGCAATC CACCAACTGGATAGCCTCTGATG
DpLRP1 TTCCTTGAATAGCCTCATCGGTC TTCCAAAAAGTGGGTGTGCG
DpAxin CCCTCATTATTCTCCAACCTCCTC CACAGAGCACTTCAAAAACGGG
DpTCF/LEF GCTTGGGTGGCAAAATGTCG TGCTGGACTGTTCTGGCAAAC
DpDv! GCAGGCACTTTTTTTAGTAGCGTG ATGTCCGTTGATGCGAGGTG
DpWnt-Prot GACAGCCTACCTTTATGCCA TACATTCGCAGTCTTCCGTT
DpWnt1 GTTTGCTTGTATTCGTGCGA CCCTCCAATCCCAATGAAGT
DpWnt2 GTCGTTTGTGGTCCTTGTTG GAATGTCAGTTCCAGTTGCG
DpWnt7 GTGCGTTGATGAATCTCCAC TGTACTCCTCCGTCTTGTTG
DpWnt8 CTGCCAGATACTCCGTGACATTTAC TTGGTTGGGGAATCGCACTG
DpWnt11l CTTGACATAGCAGCACCACACG GAACAGTTTGCCAACAGAAGATGG
DpFz9/10 CGTAGTTTCTTGCCCGTAGAC CGCTGTTTTGTATCAACCCCA
DpFz1/2/7 AAAGCCCCTTAAAGCATCCA GACCATGCAATTCCACCTTG
DpFz4 TCAGTTCGTCAGCATCAACAT CCGATATCCTCAACTGCACAA
DpFz5/8 TATTTGCTACCCACGGATCGC CCGACCACCAAACACATAAAGT
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670  Supplemental Figure titles

671  Sup Figure 1: Maximum-likelihood phylogenetic trees for genes identified in this study
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673
674  Sup Figure 2: Limb network supplemental data

675  A-I) Gene expression at stage 21 for limb network genes. For all genes from left to right, Anterior
676  whole-mount and lateral whole-mount, anterior to the left. Scale for whole-mount anterior view is
677 500 microns. Scale for lateral whole-mount view 200 microns. J, J’) Stage 23 Dac expression. J)
678  Lateral whole mount, anterior to the left. J’) Sectioned image of the eye. Anterior is down. K & L)
679  Sectioned image of expression of Prdl-land Prdl-2. Scale is 50 microns on eye sections, 100
680  microns on brain section (Prdl-2)
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683  Sup Figure 3: Wnt signaling expression supplemental data

684  A) Wnt signaling pathway member expression, Gsk3, Lrp, Pan, and Axin, at stage 21 and 23 in
685  whole-mount. Anterior view of stage 21and lateral views of stage 21 and stage 23 (anterior to the
686  left). B) Wnt gene expression at stage 21 in section. Anterior is down. C) Fz receptor gene
687  expression at stage 21. Anterior is down. Scale for whole-mount anterior view is 500 microns.
688  Scale for lateral whole-mount view 200 microns. Scale for sectioned images 50 microns.
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691  Sup Figure 4: Wnt agonist experiment supplemental data

692  A) Wnt agonist experiments starting at stage 21. Embryos were treated for 24 hours and fixed
693  immediately. LiCl and Chir99021 show similar phenotypes: Lack of anterior segment thickness
694  and loss of lens formation. Sytox nuclear stain in cyan, Phalloidin stain in magenta. Scale is 50
695  microns. B) Tunel staining of the eye of Control and LiCl treated embryos. Sytox nuclear stain in
696  cyan, Tunel stain in magenta. Similar amounts of cell death observed in control and treated
697  animals. Scale is 100 microns C) In situ hybridization of limb patterning program members and
698  and anterior segment markers after LiCl treatment. Type I (mild) and Type II (severe) phenotype.
699  White dotted line outlines the eye in the lateral image. Number of eyes scored in control and the
700  two phenotypes found in LiCl treated animals in the bottom right corner. Scale for lateral whole-
701  mount view 200 microns.
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