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SUMMARY 

Listeners with sensorineural hearing loss (SNHL) struggle to understand speech, especially in 

noise, despite audibility compensation. These real-world suprathreshold deficits are hypothesized 

to arise from degraded frequency tuning and reduced temporal-coding precision; however, 

peripheral neurophysiological studies testing these hypotheses have been largely limited to in-

quiet artificial vowels. Here, we measured single auditory-nerve-fiber responses to a natural 

speech sentence in noise from anesthetized chinchillas with normal hearing (NH) or noise-

induced hearing loss (NIHL). Our results demonstrate that temporal precision was not degraded, 

and broader tuning was not the major factor affecting peripheral coding of natural speech in 

noise. Rather, the loss of cochlear tonotopy, a hallmark of normal hearing, had the most 

significant effects (both on vowels and consonants). Because distorted tonotopy varies in degree 

across etiologies (e.g., noise exposure, age), these results have important implications for 

understanding and treating individual differences in speech perception for people suffering from 

SNHL. 
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INTRODUCTION 

Individuals with SNHL demonstrate speech-perception deficits, especially in noise, which are 

often not resolved even with state-of-the-art hearing-aid strategies and noise-reduction 

algorithms (Lesica, 2018; McCormack and Fortnum, 2013). In fact, difficulty understanding 

speech in noise is the number-one complaint in audiology clinics (Chung, 2004), and can leave 

people with SNHL suffering from communication difficulties that impact their professional, 

social, and family lives, as well as their mental health (Dawes et al., 2015; Mener et al., 2013). 

Although audibility is a factor contributing to these difficulties (Phatak and Grant, 2014), it is 

clear that other suprathreshold deficits associated with dynamic spectrotemporal cues contribute 

as well, especially in noise (Festen and Plomp, 1983; Zeng and Turner, 1990). Unfortunately, 

neurophysiological studies of speech coding in the impaired auditory nerve (AN), the first neural 

site affected by cochlear components of SNHL (Trevino et al., 2019), have been primarily 

limited to synthetic vowels in quiet and have not included everyday sounds with natural 

dynamics. 

The two most common suprathreshold factors hypothesized to underlie speech-perception 

deficits are degraded frequency selectivity and reduced temporal-coding precision. Broader 

tuning, often observed in listeners with SNHL (Glasberg and Moore, 1986), may limit the ability 

to resolve spectral components of speech and allow more background noise into auditory filters 

(Moore, 2007). Reduced perceptual frequency selectivity parallels the broader tuning observed in 

physiological responses following outer-hair-cell dysfunction (Liberman and Dodds, 1984a; 

Ruggero and Rich, 1991). Broadened frequency selectivity often correlates with degraded speech 

perception in noise (e.g., Festen and Plomp, 1983; Glasberg and Moore, 1989), with listeners 

with SNHL being more susceptible to noise than listeners with NH (Horst, 1987). A second 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440950
http://creativecommons.org/licenses/by/4.0/


4 
 

suprathreshold deficit hypothesized to underlie degraded speech perception, especially in noise, 

is a loss of temporal-coding precision following SNHL (Halliday et al., 2019; Lorenzi et al., 

2006; Moore, 2008). While one study has reported a decrease in AN phase locking following 

SNHL (Woolf et al., 1981), others have not found a degradation (Harrison and Evans, 1979; 

Kale and Heinz, 2010); however, these studies have been limited to laboratory stimuli (e.g., 

tones or modulated tones). 

Another neural suprathreshold factor that may contribute to speech-coding degradations is the 

change in on- versus off-frequency sensitivity (i.e., reduced tip-to-tail ratio, TTR) observed in 

AN fibers following NIHL. This phenomenon, which results from a combination of reduced tip 

sensitivity (and associated loss of tuning) and hypersensitive tails, has been well characterized 

with tonal frequency-tuning curves (FTCs; Liberman and Dodds, 1984a). These distortions in 

tonotopic sensitivity have important implications for complex-sound processing but have only 

recently begun to be explored for nontonal stimuli such as broadband noise (Henry et al., 2016, 

2019). 

Several neurophysiological studies have investigated speech coding following SNHL; however, 

these studies have not probed natural speech coding in noise, for which listeners with SNHL 

struggle the most (Sayles and Heinz, 2017; Young, 2012). Studies of NH AN speech coding have 

predominantly used short-duration synthesized vowel- and consonant-like stimuli in quiet (e.g., 

Delgutte and Kiang, 1984b, 1984c; Sinex and Geisler, 1983; Young and Sachs, 1979), with the 

few exploring background noise limited to vowels (Delgutte and Kiang, 1984a; Sachs et al., 

1983). A few studies of NH coding have used natural speech sentences but not in noise (Delgutte 

et al., 1998; Kiang and Moxon, 1974; Young, 2008). Speech-coding studies in hearing-impaired 

(HI) animals have been primarily limited to vowel-like stimuli in quiet (e.g., Miller et al., 1997; 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440950
http://creativecommons.org/licenses/by/4.0/


5 
 

Schilling et al., 1998). Natural speech differs from synthetic speech tokens in its highly dynamic 

nature, with most information contained in its time-varying properties like formant transitions 

and spectrotemporal modulations (Elhilali, 2019; Elliott and Theunissen, 2009). The limited 

study of natural-speech coding is likely due to standard spike-train Fourier-based analyses (e.g., 

Young and Sachs, 1979) not being suitable for temporally varying stimuli (Parida et al., 2021). 

Here, we used a natural speech sentence stimulus and collected AN-fiber spike trains from 

anesthetized chinchillas with either NH or NIHL. The sentence was also mixed with speech-

shaped noise at perceptually relevant signal-to-noise ratios (SNRs). We analyzed dynamic 

formant transitions in vowel responses in noise using newly developed nonstationary analyses 

based on frequency demodulation of alternating-polarity peristimulus-time histograms (Parida et 

al., 2021), and analyzed onset and sustained responses of fricatives and stop consonants. Our 

results provide unique insight into the physiological suprathreshold mechanisms that do and do 

not contribute to degraded natural speech coding in noise, specifically highlighting the important 

role distorted tonotopy plays in increased noise susceptibility following SNHL. These findings 

have important implications for better understanding individual differences in speech perception 

in people with SNHL. 

RESULTS 

Chinchilla model of NIHL captures reduced audibility and degraded frequency selectivity 

Mild-to-moderate hearing loss is the most prevalent degree among patients with hearing loss 

(Goman and Lin, 2016). To investigate the neural coding deficits these patients likely 

experience, we used an established noise-exposure protocol to induce mild-to-moderate SNHL 

(Kale and Heinz, 2010). Thresholds for auditory brainstem responses (ABRs) to tone bursts 
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increased by ~20 dB following NIHL (Figure 1A, statistics in legends). Similarly, DPOAE levels 

decreased by ~15 dB (Figure 1B), indicating the presence of substantial outer-hair-cell damage. 

These electrophysiological changes indicate a mild-to-moderate permanent hearing-loss model 

(Clark, 1981). 

Single-fiber thresholds were elevated by ~25-35 dB for the most-sensitive AN fibers in the  

population (Figures 1C and 1E). This threshold shift was accompanied by substantial loss of 

tuning as quantified by reductions in local Q10 values for individual-fiber FTCs (Figure 1D). 

These physiological effects were similar to previous results from our laboratory (Henry et al., 

2016; Kale and Heinz, 2010). 

NIHL expands AN-fiber threshold distribution: Audiometric threshold shift 

underestimates average fiber-audibility deficit 

Although audiometric thresholds likely relate to the most-sensitive AN fibers in the population, 

suprathreshold speech perception in complex environments likely requires integration across 

many fibers, not just the most sensitive ones (Bharadwaj et al., 2014). These effects can be 

assessed by characterizing changes to the AN-fiber threshold distribution. A traditional 

hypothesis, assuming the most sensitive fibers are the most vulnerable, predicts a compressed 

AN threshold distribution following NIHL (Moore et al., 1985; Ngan and May, 2001). 

Alternatively, an expanded distribution could lead to uncompensated audibility for most AN 

fibers if gain were based on the most sensitive fibers (e.g., using the audiogram). This effect 

could potentially contribute to poorer audibility of consonants compared to vowels despite 

similar audiometric compensation (Phatak and Grant, 2014; Zeng and Turner, 1990).  
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Figure 1. Chinchilla model of noise-induced hearing loss (NIHL) captures reduced audibility, broader 
frequency selectivity, and expanded AN-fiber threshold distribution 
(A) Auditory-brainstem-response (ABR) thresholds for hearing-impaired (HI) chinchillas (red) were elevated by 
~20 dB relative to normal hearing (NH, blue). Thin lines with symbols represent individual animals (n=9/6, NH/HI); 
thick lines represent group averages (main effect of group, F=276.4, p<2.2×10−16). 
(B) Distortion-product otoacoustic emission (DPOAE) amplitudes were reduced by ~15 dB (F=943.6, p<2×10−16). 
(C) AN-fiber thresholds were elevated for the HI group (F=646.36, p<2×10−16; n=286/119, NH/HI). Markers 
represent individual AN fibers; solid and dashed lines represent 50th and 10th percentiles, respectively, computed 
within octave bands for which there were ≥7 fibers in the group. 
(D) Q10 tuning-sharpness values were reduced for HI AN fibers (F=53.87, p=1.2×10−12). Thick lines represent 
octave-band averages. 
(E) Shifts in 50th percentile chinchilla AN-fiber thresholds (squares) following NIHL were greater than shifts in the 
10th percentile (triangles). ABR-threshold shifts are shown with plusses. 
(F) Same format as E, but showing the same threshold-distribution expansion in a more extensive noise-exposed 
data set from cat (n=180/558, NH/HI), reanalyzed from Heinz et al. (2005).  
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To evaluate these hypotheses, we estimated 10th and 50th percentiles for our NH and HI threshold 

distributions in octave-wide characteristic-frequency (CF) bands (Figure 1E). Our results showed 

a greater shift for the 50th percentiles compared to the 10th percentiles following NIHL for all 

bands. We also reanalyzed a more extensive previously published data set from cats (Heinz et al., 

2005), which showed the same expansion (not compression) in AN-fiber threshold distribution 

following NIHL (Figure 1F). These consistent results suggest that any audiometric indicator (i.e., 

based on the most sensitive AN fibers) will underestimate the audibility deficits in many AN 

fibers across the population. 

Temporal-coding precision for natural speech was not degraded by NIHL 

To test whether there was any degradation in the ability of AN fibers to precisely encode 

temporal information in response to natural speech, trial-to-trial precision was quantified using 

the Victor-Purpura (VP) distance metric (Victor and Purpura, 1996). Temporal precision is 

inversely related to VP distance, and was computed for a range of temporal resolutions using the 

time-shift cost parameter (q) of the VP analysis to span the syllabic, voice-pitch, and formant 

time scales of speech (Rosen, 1992). Temporal precision of natural-speech responses was not 

degraded following NIHL for any of the temporal resolutions considered (Figure 2). In fact, there 

was a small but significant increase in precision for all three time-scale conditions. This increase 

in precision may arise due to overrepresentation of lower-frequency information associated with 

distorted tonotopy, where synchrony is stronger than higher frequencies. Overall, these data 

provide no evidence for a degradation in the fundamental ability of AN fibers to precisely phase-

lock to the temporal features in natural speech following NIHL. 
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Figure 2. Temporal-coding precision for natural speech was not degraded by NIHL 
(A) Across-trial precision is plotted versus discharge rate in response to a natural speech sentence in quiet at 
conversational levels. A time-shift cost (q) corresponding to 250-ms time scale was used to represent syllabic rate. 
Symbols represent individual AN fibers across all CFs. 
(B) 10-ms time scale to emphasize voice-pitch coding. 
(C) 0.67-ms time scale to emphasize speech-formant coding. 
A small but significant increase in temporal precision is observed for HI responses (group, F=30.8, p=5.4×10-8), 
which likely derives from increased responses to lower-frequency energy due to distorted tonotopy (CF×group 
interaction, F=5.0, p=0.025).  
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Changes in AN-fiber tuning following NIHL distort the normal tonotopic representation of 

natural vowels 

Normal AN fibers are characterized by high sensitivity (low threshold) and spectral specificity 

(sharp tuning), which allows for selective responses to stimulus energy near their CF. These NH 

properties produce tonotopic responses to complex sounds, as demonstrated previously for 

synthetic steady-state vowels (Miller et al., 1997; Young and Sachs, 1979). Here, we evaluated 

the effects of NIHL on natural-vowel responses (Figures 3 and 4) by examining spectral 

estimates [����] computed from difference PSTHs (which minimize rectifier-distortion artifacts; 

Parida et al., 2021). The exemplar NH AN-fiber response shown in Figure 3 was dominated by 

the second formant F2, the spectral feature closest to fiber CF for the segment considered (Figure 

3B). This effect can be seen in the NH ���� (Figure 3C), which shows a clear peak near F2 (blue 

arrow), representative of a tonotopic response. In contrast, the exemplar HI fiber with similar CF 

had a ���� with a peak near F1 (~ 650 Hz), which is well below its CF (~1.5 kHz, Figures 3B 

and 3C). This HI nontonotopic response could arise from some combination of its elevated tip 

threshold, broadened tuning, and hypersensitive tail, which are typical for AN fibers following 

NIHL (Liberman, 1984; Liberman and Dodds, 1984a). These physiological changes lead to a 

reduced TTR in the FTC (double arrows in Figure 3B), which is a consistent trend in our HI 

population (Figure 3D).  

Distorted tonotopy enhances below-CF coding of voiced speech at the expense of near-CF 

representations, even when audibility is restored 

To quantify the effects of distorted tonotopy on voiced-speech coding at the population level, 

fractional power near-CF and at low frequency (LF) were quantified as metrics related to 

tonotopic coding (Figure 4). Fractional power was used to minimize the effects of overall power  
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Figure 3. Changes in AN-fiber tuning following NIHL distort the normal tonotopic representation of natural 
vowels 
(A) Alternating-polarity PSTHs in response to a “quasi-stationary” segment from a natural sentence in quiet 
(stimulus: dark gray). Darker (lighter) color shades represent PSTHs for positive (negative, reflected across x-axis 
for display) stimulus polarity. Stimulus scaled arbitrarily. 
(B) Spectrum of the stimulus segment (gray, left y-axis) with fundamental frequency (F0) and first and second 
formants (F1 and F2) labeled. Tuning curves (right y-axis) from the two example AN fibers in A and C. Stars 
indicate CF (where the HI CF was chosen based on convention from anatomical labeling studies; Liberman and 
Dodds, 1984c); double-arrows indicate tip-to-tail ratio (TTR) in dB. Both AN fibers have CF near F2. 
(C) Spectra of the difference PSTHs in A [D(f), representing NH and HI TFS responses]. NH D(f) shows a tonotopic 
response (i.e., near CF), with a peak near F2 (blue arrow); HI D(f) has a peak near F1 (red arrow), despite having CF 
near F2 (i.e., nontonotopic response). 
(D) TTR distributions for NH and HI fibers. TTR was consistently (group×CF interaction, F=2.9, p=0.09) and 
significantly (group, F=59.1, p=3.4×10-6) reduced following NIHL.  
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and rate differences, if any. Audibility was not a primary contributing factor as driven rates 

during voiced segments were similar between the two groups (Figure 4A), despite the expected 

reduction in spontaneous rate (SR, Liberman and Dodds, 1984b). 

Near-CF power was significantly lower for HI fibers, particularly at lower (< 3 kHz) CFs. To 

quantify the susceptibility of fibers with higher CFs (> 0.6 kHz) to very LF stimulus energy, the 

power in ���� was computed in a low-pass spectral window (400-Hz 3-dB cutoff). As expected, 

LF power was significantly higher for HI fibers than for NH fibers (Figure 4C). The ratio of 

power near CF to power at LF, which indicates the strength of tonotopic coding (relative to LF 

coding), was > 0 dB on average for NH fibers with CF ≤ 3 kHz. In contrast, this relative-power 

metric was < 0 dB on average for HI fibers in the same CF region. Overall, these results 

demonstrate a disruption of near-CF stimulus energy coding at the expense of very LF stimulus 

energy coding at a single AN-fiber level. These deficits are more severe than previously thought 

(Henry et al., 2016), likely because of the steep negatively sloping spectrum of natural speech.  

What physiological factors contribute to this distortion in tonotopic coding? To address this 

question, a mechanistic linear mixed model was constructed for relative near-CF to LF power 

(Figure 4D) as the response variable, with threshold, local Q10, and TTR included as predictors 

(in addition to the significant dependence on CF, F=11.7, p=7.8×10-4). Whereas traditionally 

hypothesized factors underlying speech-coding deficits include elevated threshold and broader 

bandwidth, the model suggested that threshold was a significant factor (deq=0.35, p=.01), but Q10 

was not (p=0.46). Interestingly, TTR was the major factor underlying this distorted tonotopic 

coding (deq=0.42, p=3×10-3). 
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Figure 4. Distorted tonotopy enhances below-CF coding of voiced speech at the expense of near-CF 
representations, even when audibility is restored 
(A) Driven rates (DR, solid trend lines) for NH and HI AN fibers were comparable in voiced portions of the natural 
speech sentence in quiet (group, F=0.6, p=0.44). Spontaneous rates (SR, dashed lines) were reduced for HI (F=44.1, 
p=1.5×10−10). Triangular-weighted trend lines (here and in the following figures) were computed for 2/3-octave 
averages. 
(B) Fractional response power near CF [in dB re: total power based on the difference-PSTH spectrum, D(f)] was 
significantly reduced for HI primarily at lower (e.g., <3 kHz) CFs (group, F=84.14, p<2×10−16; group×CF 
interaction, F=13.8, p=2.4×10-4). 
(C) Fractional response power in a LF band (<400 Hz) was enhanced for HI (group, F=10.5, p=1.3×10−3; group×CF 
interaction, F=23.0, p=2.5×10-6). 
(D) Ratio of power near CF to power in the low-frequency band was significantly reduced for HI fibers (group, 
F=36.86, p=3.9×10−9; group×CF interaction, F=26.7, p=4.5×10-7).  
CF range: 0.6-5 kHz in all panels.   
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Temporal-place formant representation was more susceptible to background noise 

following NIHL 

The effects of distorted tonotopy on formant coding were evaluated for natural speech in quiet 

and in noise using harmonicgram analyses (Parida et al., 2021). Coding strength for the first 

three formants was quantified as the ����-based power estimate along the dynamic formant 

trajectories at different SNRs (Figure 5). For NH speech-in-quiet responses, fractional power for 

individual formant trajectories peaked at CFs near or slightly above the formants’ mean 

frequencies (Figure 5A, 5D, and 5G), a result consistent with previous reports of tonotopic 

formant coding (Delgutte and Kiang, 1984a; Young and Sachs, 1979). As expected, F1 

representation was expanded for the HI group extending to CFs substantially above F1, (i.e., CFs 

in the F2 and F3 ranges). Coding of F2 and F3 was diminished for the HI group, and the 

corresponding peaks were shifted to higher CFs than expected based on the formant frequencies. 

This distorted tonotopy for natural speech is consistent with system characterization studies that 

report a lowering of best frequency following NIHL (Henry et al., 2016; Liberman, 1984), and 

with previous reports using synthesized vowels (Miller et al., 1997). 

Noise had a strong detrimental effect on the already degraded (reduced strength and 

nontonotopic) representations of F2 and F3 for the HI population. At 0dB SNR, F2 and F3 peaks 

were still strong and tonotopic for the NH pool (Figure 5E and 5H). For HI fibers, the F2 peak 

was still discernible and centered at a CF location much higher than F2, but F3 coding was almost 

nonexistent. Similarly, at -5 dB SNR, the NH pool still showed a discernible and tonotopic peak 

for F2 coding, whereas F2 coding for the HI pool was severely degraded. 

To identify the contribution of various physiological factors to these formant-coding 

degradations, mixed models were constructed for each formant fractional power response with  
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Figure 5. Temporal-place formant representation was more susceptible to background noise following NIHL 
(A, B, and C) Temporal-coding strength for the first formant (F1) is shown for NH (blue) and HI (red) AN-fiber 
responses to the natural speech sentence in quiet (A) and in noise at SNRs of 0 and -5 dB (B, C). Markers represent 
harmonicgram-based fractional power estimates (left y-axis) along the corresponding formant trajectory (thin black 
lines, right y-axis) for the speech response relative to the fractional power for the noise-alone response. F1 coding 
was significantly enhanced for HI fibers (F=25.8, p=5.4×10-7; CF range: 0.5-5 kHz). 
(D, E, and F) Same as (A-C) but for F2. For the NH population, trend lines peak near formants, as expected for 
tonotopic coding. In contrast, HI trend lines peaked at frequencies well above F2. Compared to NH, F2 coding was 
degraded for HI (group, F=23.4, p=2.7×10-6; CF range: 1-2.5 kHz). 
(G, H, and I) Same layout for F3 coding, which was significantly degraded for HI (F=7.3, p=0.01; CF range: 2-3 
kHz).   
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TTR, Q10, and threshold as fixed-effect predictors, in addition to log-CF and SNR. For F1 

enhancement in the HI representation TTR (deq=0.21, p=0.034) was the major contributing factor 

and not threshold (deq=0.19, p=0.051) or Q10 (p=0.26). Similarly for the degraded F2 response 

TTR (deq=0.78, p=2.1×10-6), but not threshold (deq=0.33, p=0.053) or Q10 (p=0.17), was the 

major factor. For F3, TTR (deq=0.80, p=0.022) was the only contributing factor to the degraded 

response (threshold: p=.20; Q10: p=0.71). 

Overall, these results show a degradation of higher-formant (F2 and F3) coding, which is known 

to be important for the perception of vowels as well as consonants, in HI-fiber responses 

following acoustic insult. Moreover, these degradations are more susceptible to the presence of 

noise, which is consistent with the stronger perceptual deficits that listeners with SNHL 

experience in noisy environments. 

Unlike voiced segments, driven rates for the fricative /s/ were not restored in HI fibers 

despite compensating for overall audibility loss 

Fricatives constitute a substantial portion of phoneme confusions among listeners with SNHL 

(Bilger and Wang, 1976; Dubno et al., 1982; Van de Grift Turek et al., 1980). To explore 

potential neural bases underlying these deficits, neural responses to a fricative (/s/) were 

analyzed. Previous studies have reported robust fricative coding by NH AN fibers in terms of 

onset and sustained responses (Delgutte and Kiang, 1984b). NH fibers with higher CFs (i.e., near 

frequencies where /s/ has strong energy, Figure 6A) showed a sharp onset, followed by a robust 

sustained discharge (e.g., Figure 6B). In contrast, HI fibers showed a substantial reduction in 

onset response (e.g., Figure 6B), with less of an effect on the sustained response. This reduction 

in onset response contrasts with previous studies that reported increased onset responses to tones 

following NIHL; however, those results were for equal sensation level (Scheidt et al., 2010).  
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Figure 6. Unlike voiced segments, driven rates for the fricative /s/ were not restored in HI fibers despite 
compensating for overall audibility loss 
(A) Spectrum of /s/ (gray) from the natural sentence and exemplar tuning curves. 
(B) Time-domain waveforms of /s/ (gray) and alternating-polarity PSTHs of AN fibers shown in A. Same format 
and data-analysis parameters as Fig 3A. Cyan (10-ms long) and magenta (80-ms) temporal windows denote the 
masks used to compute onset and sustained response rates. While these example AN fibers had comparable 
sustained rates, the HI onset response was substantially degraded. 
(C) Driven onset rates for the HI population were significantly reduced compared to NH for all CFs. Same format as 
Fig 4A (group, F=120.8, p<2×10−16; group×CF interaction, F=2.0, p=0.15). 
(D) Driven sustained rates were also reduced for the HI group in the high-CF (>2.5 kHz) region where /s/ had 
substantial energy (F=7.0, p=0.009). 
(E) Exemplar FFRENV data from a NH and a HI chinchilla demonstrate a reduced onset response for /s/ following 
NIHL. Cyan window (20-ms) indicates the onset mask. 
(F) Distributions of peak-to-peak onset amplitudes show a significant reduction in FFR onset response for HI 
chinchillas (F=5.8, p=0.039).   
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Driven onset rate was significantly lower for the HI population at all CFs (Figure 6C), whereas 

sustained rate was only slightly, but significantly, reduced for the HI group (Figure 6D). 

To evaluate the noninvasive correlates of these single-fiber degradations in consonant coding, 

frequency-following responses (FFRs) were recorded in response to the speech stimulus from the 

same set of animals. Representative FFR responses from two animals (one from each group) 

reiterate these fricative onset-response degradations (~0.75 s in Figure 6E). While the NH FFR 

had a sharp onset, the HI FFR lacked any clear onset response. In contrast, responses during 

voiced speech were comparable between the NH and HI examples (e.g., ~0.6 s), mirroring the 

AN result that driven rates to voiced speech were similar between the two groups (Figure 4A). 

Thus, despite audibility restoration for voiced speech, there was a significant reduction in 

fricative onset response in the HI group (Figure 6F). 

Driven rates for stop consonants (/d/ and /g/) were also not restored despite overall 

audibility compensation 

Stop consonants are among the most confused phonemes for listeners with SNHL (Bilger and 

Wang, 1976; Van de Grift Turek et al., 1980). The neural representations of two stop consonants 

(/d/ and /g/) present in the speech stimulus (Figure 7A) were also evaluated based on onset and 

sustained rates. In response to /d/ and /g/, the NH AN fiber showed a strong onset response, 

followed by sustained activity that was well-above spontaneous activity (Figures 7B and 7C). In 

contrast, for the HI AN fiber, both onset and sustained activity were substantially reduced. 

Population results show that onset and sustained rates for /d/ and /g/ were significantly degraded 

for the HI population relative to NH (Figures 7D-7G). 
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Figure 7. Driven rates for low-intensity stop consonants (/d/ and /g/) were also not restored despite overall 
audibility compensation 
(A) Spectra for stop consonants /d/ (dark gray) and /g/ (light gray) from the natural sentence in quiet. FTCs of 
representative NH and HI AN fibers. 
(B) Alternating-polarity PSTHs for the two fibers in A in response to /d/. Same format and analysis parameters as 
Fig 6B. Both onset and sustained rates are reduced for the HI fiber. 
(C) Same layout but for /g/, which shows the same general effects as /d/. The onset/sustained windows in (B) and 
(C) were 8-/15-ms long. 
(D) Onset rates in response to /d/ were significantly reduced in the HI population compared to NH (F=57.9, p=2.3×1
0-13). Same format as Fig 6C. 
(E) Same layout and results as D but for /d/ sustained rates (F=149.8, p<2.2×10-16). 
(F and G) Same layouts and results as D and E but for /g/. Onset (F=41, p=1.1×10-9) and sustained (F=132.4, 
p<2×10-16) rates for /g/ were also reduced for the HI group. 
(H) Distributions of FFR peak-to-peak onset amplitudes in response to /d/ for chinchillas in both groups show a 
significant reduction for the HI group (F=5.97, p=0.037). 
(I) Same layout as H but for /g/. The observed reduction in FFR onset amplitudes was not significant (F=0.58, 
p=0.47). 
CF range for statistical analyses: 0.5-8 kHz for /d/ and 0.5-3 kHz for /g/.   
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FFR onset was significantly reduced for /d/ following NIHL (Figure 7H), consistent with the 

universal reduction in onset rate across the whole CF range for HI fibers (Figure 7D). The FFR 

onset response to /g/, however, was only slightly reduced (not significantly) for the HI group 

(Figure 7I). Overall, these FFR data (and those from Figure 6) suggest that degraded consonant 

representations, even when vowel audibility is restored, persist despite central-gain related 

changes that can occur in the midbrain (Auerbach et al., 2014). 

Changes in tuning following NIHL eliminate the noise-resilient benefits of AN fibers with 

lower SR for fricative coding 

As previously described, listeners with SNHL often struggle in noisy environments in identifying 

consonants more so than vowels. Here, we investigated the effect of background noise on coding 

of the fricative /s/, which elicited robust sustained activity for both groups in the quiet condition 

(Figure 6D). When the sentence is mixed with noise at a particular SNR, even negative SNRs, 

the resultant signal often has specific spectrotemporal regions with a favorable SNR (e.g., high-

frequency region for /s/, Figure 8A). These high-SNR regions likely mediate robust speech 

perception in noise (Cooke, 2006). In our data, NH AN fibers that were narrowly tuned near this 

high-SNR region responded selectively to the fricative energy (e.g., Figure 8B). In contrast, HI 

AN fibers showed reduced TTR (Figures 8A and 3D). As a result, HI fibers tuned to higher 

frequencies responded poorly to fricative energy and strongly to LF energy in either the speech 

(e.g., voiced segments) or noise (e.g., Figure 8C). 

Fricative-coding fidelity was quantified by the ������������� metric, defined as the difference 

between the response-envelope correlations for speech-alone and noisy-speech, and speech-alone 

and noise-alone. Responses of AN fibers with low/medium SR, hypothesized to drive robust 

human speech perception in noise (Bharadwaj et al., 2014), were particularly resistant to noise in  
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Figure 8. Changes in tuning following NIHL eliminate the noise-resilient benefits of AN fibers with lower SR 
for fricative coding 
(A) Spectra for /s/ from the natural-speech sentence and the concurrent speech-shaped noise (N) segment for 0 dB 
overall SNR. Although overall SNR was 0 dB, a local high-SNR (10-15 dB) region occurs at high frequencies (> 3 
kHz). FTCs of two example AN fibers that schematize the increased deleterious effect of speech-shaped background 
noise following NIHL, especially compared to an ideal pink noise (pink line). 
(B) PSTHs (grey) in response to speech-alone (S), noisy-speech (SN), and noise-alone for the NH fiber (SR=0.2/s) 
in A. Thick black curves represent response envelopes. Dashed pink lines indicate temporal region in the stimulus 
(green) containing /s/. 
(C) Same layout as B but for the HI fiber (SR=1.1/s). 
(D, E, and F) Speech-in-noise coding fidelity for /s/ at perceptually important SNRs, as quantified by the corrected 
correlation between responses to S and SN (minimum value set to 0.001 for display). Squares and asterisks 
correspond to AN fibers with low/medium SR (<18 /s) and high SR (>18 /s), respectively. For NH, AN fibers with 
low/medium SR show better coding in noise than high-SR fibers; however, the opposite is true following NIHL 
because the noise resilience of low/medium SR fibers was lost resulting in overall degraded fricative fidelity (SR, 
F=16.5, p=6.2×10-5; group, F=3.3, p=0.07; group×SR interaction, F=18.8, p=2.0×10-5).  
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the NH group compared to high-SR fibers (Figure 8D and 8E). In contrast, coding fidelity for 

low/medium-SR fibers was significantly lower than high-SR fibers following NIHL. 

To identify the contribution of various physiological factors to fricative coding in noise, a mixed 

model was constructed with ������������� as the response variable and with TTR, Q10, and 

threshold as fixed-effect predictors, in addition to log-CF and SNR. Results indicated that TTR 

(deq=0.34, p=0.028) had a greater effect compared to Q10 (deq=0.29, p=0.053), whereas threshold 

did not contribute significantly (p=0.54).  

DISCUSSION 

A common statement from patients with SNHL after receiving a hearing aid is “I’m so grateful I 

can hear you now, but I still can’t fully understand you, especially in background noise.” Several 

neurophysiological mechanisms are hypothesized to underlie these suprathreshold deficits; 

however, neurophysiological studies examining the effects of SNHL on speech coding have been 

typically limited to synthesized speech tokens without background noise. Here, we describe the 

first data characterizing the effects of SNHL on AN-fiber responses to a natural speech sentence 

in the presence of background noise. These data elucidate physiological mechanisms that do and 

do not contribute to deficits in peripheral coding of natural speech following SNHL. In 

particular, these data highlight the prominent role that distorted tonotopy plays in degrading the 

coding and increasing the noise susceptibility of both vowels and consonants. 

Commonly hypothesized suprathreshold deficits were not the major factors degrading the 

neural coding of natural speech following NIHL 

The two suprathreshold deficits most commonly hypothesized to affect speech perception in 

noise are degraded frequency selectivity (Glasberg and Moore, 1989; Halliday et al., 2019; 
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Horst, 1987) and diminished temporal-coding precision (e.g., Hopkins et al., 2008; Lorenzi et al., 

2006; Strelcyk and Dau, 2009); however, these hypotheses have not been evaluated in peripheral 

neural responses to natural speech following SNHL. Furthermore, previous neurophysiological 

studies of the effects of SNHL on vowel coding often confounded broadened tuning at the FTC 

tip and hypersensitive tails by quantifying the sharpness measure Q10 based on the broadest 

bandwidth 10 dB above threshold, i.e., including both tip and tail effects in one metric (Henry 

and Heinz, 2012; Henry et al., 2016; Kale and Heinz, 2010; Miller et al., 1997). 

Here, we separated these effects by quantifying Q10 locally to represent only the broadening of 

the FTC tip, more consistent with the classic definition of frequency selectivity based on the 

auditory filter at CF. We found that this local Q10 was not a significant factor in degraded voiced-

speech coding in quiet (Figure 4). This result is consistent with perceptual studies suggesting that 

degraded frequency selectivity may not be the primary factor explaining degraded speech 

perception in quiet (Dubno and Dirks, 1989; Festen and Plomp, 1983). More surprisingly, we 

found that TTR and not Q10 was the most significant factor in explaining the increased 

susceptibility to noise of formant (Figure 5) and fricative coding (Figure 8). 

We also found that there was no degradation in the temporal-coding precision of AN-fiber 

responses to natural speech (Figure 2). Although some studies have reported degraded temporal 

coding (phase locking) after SNHL (Woolf et al., 1981), our result is consistent with the majority 

of studies that have not found degraded phase locking to pure tones in quiet following SNHL 

(e.g., Harrison and Evans, 1979; Henry and Heinz, 2012; Miller et al., 1997). Our quantification 

of temporal precision based on the average across-trial Victor-Purpura distance (Victor and 

Purpura, 1996) in Figure 2 included all CFs from our fiber population, and as such would have 

been sensitive to any shift in the underlying roll off of phase locking versus CF (e.g., reduced 
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roll-off frequency, or reduced maximum phase-locking strength). Thus, these natural-speech 

coding data, along with the majority of previous studies using laboratory stimuli, provide no 

evidence for a reduction in the fundamental ability of AN fibers to encode rapid acoustic 

fluctuations. 

That being said, changes in phase-locking strength in response to complex sounds can be 

observed following SNHL [e.g., a decrease in the balance of fine-structure to envelope coding 

resulting from enhanced envelope coding (Kale and Heinz, 2010); a decrease in tone phase 

locking in background noise due to broadened tuning (Henry and Heinz, 2012); or a small but 

significant increase in temporal precision (Figure 2) resulting from increased coding of lower-

frequency energy due to distorted tonotopy]. Although these changes in temporal-coding strength 

of complex signals may be perceptually relevant, these temporal-coding effects occur due to 

factors other than a change in the fundamental ability of AN fibers to respond to rapid 

fluctuations. 

Distorted tonotopy was the major factor in degraded coding and increased noise 

susceptibility for both vowels and consonants following NIHL 

The primary factor affecting degraded coding of natural speech in noise was the loss of tonotopy, 

a hallmark of normal cochlear processing. This degradation in the coding of complex sounds is 

associated with the loss of FTC tips and/or the hypersensitivity of FTC tails following NIHL 

(Figure 3). For voiced-speech segments where the driven rates in HI AN fibers were comparable 

between the two groups, the spectral content in the responses differed substantially in terms of 

tonotopicity. Our results showed that TTR was the only dominant physiological factor explaining 

the increased representation of LF energy at the expense of near-CF energy for voiced segments 
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of speech (Figure 4). Our analysis of this effect on formant coding in dynamic natural speech 

required a significant advance in neural analyses using frequency demodulation applied to 

alternating-polarity PSTHs (i.e., the harmonicgram, Parida et al., 2021), because standard Fourier 

analysis blurs the coding of dynamic formants. These results at the single-fiber level are also 

consistent with our recent FFRs to natural speech in NH and HI chinchillas, which showed that 

very LF energy (<250 Hz) was overrepresented in the more central evoked responses (Parida and 

Heinz, 2021). In fact, those analyses show that the degree of distorted tonotopy is greater in 

portions of speech that have more negatively sloping spectra. 

Another significant and perceptually relevant effect of distorted tonotopy was the increased 

susceptibility to background noise following NIHL. Increased noise susceptibility in HI fibers 

was seen for both the spectral coding of voiced speech (Figure 5) as well as for fricative coding 

(Figure 8). Our data on fricative coding in speech-shaped noise provide unique insight into the 

real-world significance of this effect. The fricative /s/, which has primarily high-frequency 

energy, normally has a better-than-average SNR due to the steep spectral decay of speech-shaped 

noise and the tonotopic coding in the NH cochlea. Without this normal tonotopicity following 

SNHL, the SNR in AN fibers with CFs within the spectral band of the fricative is greatly reduced 

due to the substantial LF noise now driving the neural response. Based on our previous FFR 

results illustrating the dependence of distorted tonotopy degree on spectral timbre (Parida and 

Heinz, 2021), this deleterious effect on fricative coding is expected to be greater for speech-

shaped noise than for white or even pink background noise. While many environmental sounds 

have more LF energy consistent with a roughly pink spectrum (-3 dB/octave drop in energy), 

long-term speech has a downward spectral slope that is roughly 3 times steeper than pink noise 

(Figure 8A; also see French and Steinberg, 1947). Thus, these neural results have important 
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implications for listening in the presence of multiple talkers, which is a condition of great 

difficulty for many listeners with SNHL (Festen and Plomp, 1990; Le Prell and Clavier, 2017). 

Noise-resistant ability of low/medium SR fibers for fricative coding was substantially 

degraded following NIHL 

Beyond the underlying mechanisms for the increased noise-susceptibility of speech coding 

following NIHL, our data are insightful for fundamental speech coding in noise and have 

implications for other forms of hearing loss. The statistical analyses of our fricative-in-noise 

coding data (Figure 8) showed a significant effect of SR, and an interaction between group and 

SR. The main effect of SR was not surprising given previous reports from NH studies of the 

superior coding-in-noise of low-SR fibers (Costalupes et al., 1984; Young and Barta, 1986), 

including for consonant-vowel tokens (Silkes and Geisler, 1991). The new insight provided by 

our data relates to the interaction between group and SR, which arises because NIHL caused a 

larger deficit in speech fidelity in the low/medium-SR fibers compared to the normally poorer 

high-SR fibers. These results are particularly important as recent studies on the effects of age and 

noise exposure on cochlear synaptopathy show that older listeners with or without noise 

exposure are likely to have fewer low/medium-SR fibers remaining (Fernandez et al., 2015, 

2020; Wu et al., 2019). 

Audibility restoration is not the same for consonants and vowels due to expanded AN-fiber 

threshold distribution following NIHL 

Psychoacoustic studies suggest that reduced fricative perception for listeners with SNHL 

depends on both reduced ability to use formant transitions and a reduced audibility of the 

frication cue (Zeng and Turner, 1990). As discussed for vowels, the dynamic representations of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440950doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440950
http://creativecommons.org/licenses/by/4.0/


27 
 

transitions for higher formants (F2 and F3) were substantially degraded for the HI population, 

especially in noise (Figure 5). Formant transitions are also important for speech-in-noise 

perception of low-intensity stop consonants that are easily masked by noise; thus, the increased 

noise susceptibility of these transitions likely contributes to these perceptual deficits. 

The audibility of consonants in our study, as indexed by driven onset and sustained rates (Figures 

6 and 7), was often not restored, in contrast to vowels (Figure 4A). Such divergent audiometric 

effects are consistent with psychoacoustic studies that report similar audibility differences for 

consonants and vowels even after compensating for overall audibility (Phatak and Grant, 2014). 

This reduced audibility following NIHL likely contributes to consonant confusions, which are 

common for both fricatives and stop consonants (Bilger and Wang, 1976; Turner and Robb, 

1987; Zeng and Turner, 1990). 

Our data suggest that the expanded AN-fiber threshold distribution following NIHL (Figures 1E 

and 1F) may contribute to differences in audibility of consonants and vowels in amplified 

speech. Although this finding is contrary to assumptions made in the psychophysical literature on 

loudness recruitment (Moore et al., 1985; Zeng and Turner, 1991), consistently expanded 

threshold distributions have been observed in both chinchillas and cats following NIHL (Figures 

1E and 1F; Heinz et al., 2005). Thus, compensating for audiometric loss only guarantees the 

restoration of the most sensitive AN fibers. Because the elevation in the 10th percentile 

thresholds underestimated the elevation in the 50th percentile, lower-amplitude consonants 

activated a smaller percentage of the population following NIHL, and thus were not as “audible” 

within the population despite restoration of vowel audibility. 
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Variations in the degree of distorted tonotopy across etiologies may contribute to individual 

differences in real-world speech perception 

There is general consensus among researchers regarding the inadequacies of the audiogram to 

account for real-life perceptual deficits. Individual variability in speech perception, even among 

listeners with similar audiograms, likely stems from variations in the degree of suprathreshold 

deficits. Here, we have demonstrated that distorted tonotopy is a significant factor in the 

degraded coding and increased noise susceptibility of natural speech following NIHL. Because 

the degree of distorted tonotopy appears to vary across different etiologies (e.g., NIHL or age-

related hearing loss) even for similar degrees of hearing loss (Henry et al., 2019), it is likely that 

this variation contributes to individual difference in speech-perception deficits. The development 

of noninvasive diagnostics to identify distorted tonotopy (e.g., Parida and Heinz, 2021) is critical 

for determining the extent and perceptual relevance of this important physiological mechanism 

affecting the neural coding of natural speech. 
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STAR*METHODS 

KEY RESOURCES TABLE 

REAGENT or 
RESOURCE 

SOURCE IDENTIFIER 

Deposited data 

Chinchilla data This study  https://github.com/HeinzLabPurdue/D

T_SpINcoding-paper  

Cat data  Heinz et al., 2005 https://github.com/HeinzLabPurdue/D

T_SpINcoding-

paper/tree/main/CATdata  

Experimental models: organisms/strains 

Chinchillas (chinchilla 
lanigera)  

Ryerson Chinchilla Ranch  N/A 

Software and algorithms 

MATLAB 2018b MathWorks N/A 

R4.0.4 https://www.r-project.org/  N/A 

Victor-Purpura distance  Chicharro et al., 2011 N/A 

Harmonicgram analysis  Parida et al., 2021 https://github.com/HeinzLabPurdue/D
T_SpINcoding-paper  

   

Other 

Enclosed subwoofer Selenium 10PW3 Selenium Components 

DSP boards  Tucker-Davis Technologies  

National Instruments 

RP2, RX8, HB7, PA5 

PCIe-6341, PCIe-6612 
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Speakers  Etymotic Research 

Beyerdynamic  

ER2 

DT48 

Microphone   Etymotic Research  ER10b or ER7c  

Analog amplifiers/filters  World Precision Instruments 

Dagan Corporation 

Krohn-Hite Corporation 

ISO-80 

2400A 

3550  

Spike time/amplitude 
window discriminator  

BAK Electronics DIS-1  

 

RESOURCES AVAILABILITY  

Lead contact  

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Michael Heinz (mheinz@purdue.edu).  

Materials availability  

This study did not generate new unique reagents.  

Data and code availability  

The datasets and code supporting this study are available at 

https://github.com/HeinzLabPurdue/DT_SpINcoding-paper.  

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

All procedures described below followed PHS-issued guidelines and were approved by Purdue 

University Animal Care and Use Committee (Protocol No: 1111000123). Male chinchillas (<1-

year old, weighing between 400 and 700 gm) were used in all experiments. Animals were 
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socially housed in groups of two until they underwent any anesthetized procedure, after which 

they recovered in their own cage. All animal received daily environmental enrichment. Animal 

facility was maintained in a 12-hour light/12-hour dark cycle. 

METHOD DETAILS 

Noise exposure and electrophysiological recordings  

Detailed descriptions of the noise-exposure and electrophysiological-recording procedures are 

provided elsewhere (Parida and Heinz, 2021), with brief descriptions provided here. A single 

discrete noise exposure (116 dB SPL [C-weighted], 2-hour duration, octave-band noise centered 

at 500 Hz) using an enclosed subwoofer (Selenium 10PW3, Harman; placed ~30 cm above the 

animal’s head) was used to induce NIHL. Noise levels were calibrated at the entrance of the ear 

canal using a sound-level meter (886–2, Simpson, Elgin, IL, USA). Animals were allowed at 

least two weeks to recover following noise exposure before any recordings were made. Animals 

were anesthetized using xylazine (2 to 3 mg/kg, subcutaneous) and ketamine (30 to 40 mg/kg, 

intraperitoneal) for data recordings and noise exposure. The rectal temperature of all anesthetized 

animals was maintained at 37°C using a feedback-controlled heating pad (50-7053F, Harvard 

Apparatus). Atipamezole (0.4 to 0.5 mg/kg, intraperitoneal) was used to facilitate faster recovery 

from anesthesia following noninvasive experiments.  

ABRs and FFRs were recorded using three subdermal needle electrodes in a vertical montage 

(vertex to mastoid, differential mode, common ground near animals’ nose; Henry et al., 2011; 

Zhong et al., 2014). ABRs (bandwidth=0.3–3 kHz) and FFRs (30 Hz – 1 kHz) were bandlimited 

using analog filters (ISO-80, World Precision Instruments, Sarasota, FL; 2400A, Dagan, 

Minneapolis, MN). DPOAEs were measure using an in-ear microphone (Etymotic ER-10B, 
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Etymotic Research, Elk Grove Village, IL, USA), following in-ear calibration for each animal. 

Calibrated sound was presented using ER2 speakers (Etymotic Research) for 

electrophysiological recordings. Sound presentation and data recordings were controlled using a 

custom-integrated system of hardware (Tucker-Davis Technologies, Alachua, FL; National 

Instruments, Austin, TX) and software (MATLAB, The MathWorks, Natick, MA).  

Surgical preparation and neurophysiological recordings 

Detailed surgical-preparation and neurophysiological-recording procedures are described by 

Henry et al. (2016), and are only briefly described here. Anesthesia was induced with the same 

doses of xylazine/ketamine used for ABRs and was maintained with sodium pentobarbital (~7.5 

mg/kg/hour, intraperitoneal). Animals were supplemented with lactated Ringer’s solution during 

experiments (~1 ml/hour), which typically lasted 18-24 hours. A posterior fossa approach was 

employed for the craniotomy in the right ear, following venting of the bulla with 30 cm of 

polyethylene tubing to maintain middle-ear pressure.   

Spike trains were recorded from single AN fibers of anesthetized chinchillas using glass 

micropipettes (impedance between 10 and 50 MΩ). Recordings were amplified (2400A, Dagan) 

and filtered from 0.03 to 6 kHz (3550, Krohn-Hite). Isolated spikes were identified using a time–

amplitude window discriminator (BAK Electronics, Mount Airy, MD, USA) and stored digitally 

with 10-µs resolution. Experiments were terminated if sudden shifts in FTC threshold and tuning 

were observed for two or more AN fibers, following which the animal was sacrificed with 

Euthasol (2 ml, intraperitoneal; Virbac AH, Inc., Fort Worth, TX). Single-unit data are from 15 

NH (286 AN fibers) and 6 HI (119 AN fibers) chinchillas. 
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Stimuli 

Screening (ABR and DPOAE) experiments: For ABRs, tone pips (5-ms duration, 1-ms on and off 

ramp) ranging from 0.5 to 8 kHz (octave spaced) were played at 0 dB SPL to 80 dB SPL in 10-

dB steps. 500 repetitions of both positive and negative polarities were played for each intensity 

condition. ABR threshold was calculated based on a cross-correlation analysis (Henry et al., 

2011). Another intermediate (odd multiple of 5 dB) step was used near preliminary ABR 

threshold estimate to fine-tune the final estimate. DPOAEs were measured for pairs of tones (f1, 

f2) presented simultaneously with f2/f1 =1.2 at 75 (f1) and 65 (f2) dB SPL.  

Frequency-following-response (FFR) experiments: A naturally spoken speech sentence (list #3, 

sentence #1) from the Danish speech intelligibility test [CLUE, (Nielsen and Dau, 2009)] was 

used for FFR experiments. Intensity was set to 70 dB SPL for both groups. Both positive and 

negative polarities (500 repetitions/polarity) of the stimulus were used to allow estimation of 

envelope and temporal fine structure components from the FFR. Both envelope (FFRENV = 

average of FFRs to opposite polarities) and temporal fine structure (half the difference between 

FFRs to opposite polarities) amplitudes were comparable between the two groups (also see 

Parida and Heinz, 2021). This restoration in amplitude at 70 dB SPL likely reflects convergence 

in audibility at moderate intensities for mild-moderate hearing loss as well as central-gain related 

changes in the midbrain, which substantially contribute to the FFR (King et al., 2016).  

FFRENV was used to analyze onset responses in Figures 6 and 7. Only the onset response was 

considered to evaluate consonant coding because evoked responses like the FFR require 

synchronous activity (e.g., the onset) across populations of fibers. As sustained responses to 

fricatives lack a clear temporal pattern, they are rather weakly represented in the FFR (Skoe and 
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Kraus, 2010). Onset strength was quantified as the peak-to-peak FFR amplitude in an onset 

window (e.g., Figure 6E). 

AN experiments: Monaural sound was delivered via a custom closed-field acoustic system.  A 

dynamic speaker (DT-48, Beyerdynamic, Farmingdale, NY, USA) was connected to a hollow ear 

bar inserted into the right ear canal to deliver calibrated acoustic stimuli near the tympanic 

membrane. Calibrations of the acoustic system was done at the beginning of the experiment 

using a probe-tube microphone (ER-7C, Etymōtic, Elk Grove Village, IL, USA) that was placed 

within a few millimeters of the tympanic membrane.   

Single AN fibers were isolated by advancing the electrode while playing broadband noise (20-30 

dB re 20 μPa/√Hz; higher as needed for noise-exposed animals) as the search stimulus. 

Monopolar action potential waveform shape was used to confirm that recordings were from AN-

fiber axons (as opposed to bipolar shapes exhibited by cell bodies in the cochlear nucleus). Prior 

to collecting spike-train data in response to speech and/or noise, all AN fibers were characterized 

as follows. An automated algorithm was used to estimate the FTC (Chintanpalli and Heinz, 

2007). FTCs were smoothed by a 3-point triangular window before estimating parameters such 

as CF, threshold, Q10, and TTR. For HI fibers, CF was determined as the local minimum closest 

to the steep high-frequency-side FTC slope, which closely matches the basilar membrane 

frequency map following NIHL (Liberman, 1984; Miller et al., 1997). The threshold at CF was 

considered the threshold of the AN fiber. FTC 10-dB bandwidth was estimated as the minimum 

linearly interpolated bandwidth near the CF corresponding to an FTC threshold equal to 10 dB 

above the CF threshold. This approach of estimating Q10 differs from previous studies that used 

the maximum bandwidth criterion (instead of our minimum bandwidth criterion), and enables us 

to decouple tuning-broadening effects from tonotopic-distortion effects (Henry and Heinz, 2012; 
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Henry et al., 2016; Kale and Heinz, 2010; Miller et al., 1997). Q10 was estimated as the ratio of 

CF to 10-dB FTC bandwidth. For a minority of HI AN fibers, the FTC threshold at the lowest or 

highest frequency measured was below the 10-dB bandwidth criterion (i.e., CF-threshold + 10 

dB); in those cases, the 10-dB bandwidth was based on the lowest or highest frequency 

measured, respectively. This likely led to a slightly overestimated Q10 value for a few very-broad 

HI AN fibers. Tonotopic-distortion effects were quantified using TTR, which was estimated as 

the difference (in dB) between the threshold at CF (i.e., the tip) and the lowest threshold for 

frequencies at least 1.5 octaves below CF (i.e., the tail). Spontaneous rate (SR) was measured 

over a 30-s silence period for each AN fiber.  

For AN experiments, the same speech sentence was used as for the FFRs. The overall intensity 

was set to 65 dB SPL for NH chinchillas and 80 dB SPL for HI chinchillas. The spectrally flat 

gain of 15 dB was roughly based on the half-gain rule (Lybarger, 1978), which has been used in 

AN studies of NIHL (Schilling et al., 1998), and was confirmed to restore driven rates for voiced 

portions of the sentence in preliminary experiments.  Speech was also presented after mixing 

with frozen steady-state speech-shaped noise at three different perceptually relevant SNRs 

(-10, -5, and 0 dB). The speech-shaped noise was spectrally matched to 10 sentences spoken by 

the same speaker using autoregressive modelling. Both polarities of stimuli were presented in an 

interleaved manner (25 trials per polarity for most AN fibers). 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Spike-train temporal-precision analysis  

Temporal precision of spike trains was measured using the Victor-Purpura (VP) distance metric 

(Victor and Purpura, 1996), which quantifies the dissimilarity between two sets of spike trains. If 
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a fiber responds precisely and consistently across different stimulus trials, the VP distance 

between the two spike trains will be small. The VP distance between two spike trains, � (total 

spikes = NX) and 	 (NY), is defined as the total cost involved in transforming � so that it matches 

	. This transformation allows three operations: (1) addition of spikes, (2) deletion of spikes, and 

(3) shifting of spikes. The cost of adding or deleting a spike is set to 1 by convention. The cost of 

shifting a spike by ∆� seconds is proportional to a time-shifting cost parameter (q), which 

controls the temporal resolution of the analysis. This is because when |Δt| ≥ 2/q, the cost of 

shifting the spike is greater than simply deleting the spike and adding a new spike. Note that for 

q=0, this analysis simplifies to a rate code where the cost is simply the difference in the number 

of spikes |NX - NY |. As q increases, the emphasis on temporal coding becomes greater as the 

temporal resolution improves. Specifically, all time shifts |Δt| ≥ 2/q, are maximally costly 

(cost=2) in this analysis, which can be interpreted as saying this analysis is most sensitive to 

frequencies less than q/2. Another way to think about this is for a temporal resolution (sampling 

rate) of 1/q, the Nyquist rate of frequencies considered is q/2 Hz. We have used this 

time/frequency relation to pick the specific q values considered here (Figure 2) with respect to 

the three main temporal resolutions of importance for speech (Rosen, 1992). 

For a given temporal resolution 1/q, the most optimal (smallest total cost) set of operations to 

transform X to Y is determined based on dynamic programming; VP distance between � and 	 is 

computed as the total cost of all operations involved in this optimal transformation. For each pair 

of spike trains X and Y, the maximum possible cost (VPmax) to transform X into Y depends on the 

number of spikes, specifically equal to the sum of the number of spikes in each spike train, NX + 

NY (corresponding to removing all spikes in X and adding in all spikes in Y). The minimum value 

of VP distance is VPmin=| NX - NY |, corresponding to the condition where � 
 0, and the only 
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cost consists of equalizing the number of spikes. To minimize the basic dependence of VP 

distance on the number of spikes, we computed a normalized VP distance: 

������  
  �� � ���	�

���
� � ���	�

,  

where, by definition, ������ ranges from 0 to 1. Note that despite this normalization, some 

dependence on discharge rate remains because with more spikes in each spike train, it is more 

likely to find a nearby spike (i.e., the expected time shift between spikes is less when there are 

more spikes). As such, we compare VP distance (or precision) between groups as a function of 

discharge rate in Figure 2. 

To compute the total VP distance for a given AN fiber and shifting cost parameter q, average 

VPnorm was computed across all combinations of spike trains (i.e., across different stimulus 

trials). Temporal precision was then computed as ln�1 ������⁄ �, where the natural logarithm 

was used to linearize the data for statistical analyses.  

Spectral analyses of alternating-polarity PSTHs 

Temporal and spectral analyses of spike-train responses were based on alternating-polarity PSTH 

analyses (Parida et al., 2021), with a PSTH bin width of 200 µs in all cases. To emphasize 

temporal-fine-structure responses for voiced speech coding in Figures 3-5, the difference PSTH, 

����, was constructed by halving the difference between the PSTHs to opposite stimulus 

polarities. The difference-PSTH spectrum, ����, was computed using multitaper (n=3) analyses 

in Figure 4 (Thomson, 1982). For each AN-fiber response, near-CF fractional power (in dB re: 

total response power) was quantified based on the ���� power in a spectral window centered at 

CF. The spectral window was fourth order, and its 3-dB bandwidth was set to the 50th percentile 
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fit for AN-FTC 3-dB bandwidth for NH chinchillas (Kale and Heinz, 2010). 3-dB bandwidth was 

estimated from 10-dB bandwidth using the following formula, which provided a reasonable 

approximation for fourth order Butterworth filters. 

3 � �� ���� !��" 
  10 � �� ���� !��" # 10�
/�� √2⁄ . 

Low-frequency fractional power was quantified using a low-pass spectral window (cut-off=400 

Hz, 10th order).  

Quantifying formant coding strength using the harmonicgram  

Formant coding is traditionally quantified using the Fourier spectrum of the period histogram or 

the difference PSTH (Sinex and Geisler, 1983; Young and Sachs, 1979). These analyses provide 

sufficient spectrotemporal resolution for analyzing responses to stationary speech tokens like 

those used in many previous studies. To quantify power along dynamic formant trajectories in a 

nonstationary speech stimulus, the harmonicgram can be used as it offers superior 

spectrotemporal resolution compared to the spectrogram (Parida et al., 2021). 

Briefly, the harmonicgram was constructed as follows. The fundamental frequency contour 

(F��n�, where n is the discrete index of time) was estimated from the sentence stimulus using 

Praat (Boersma, 2001). Response components (()�*, ��) along the kth-harmonic of F��n� were 

estimated using frequency demodulation of the difference PSTH ���� followed by low-pass 

filtering (LPF). The low-pass filter was a 6th order zero-phase IIR filter with 10-Hz cut-off 

frequency.  

+��
�
� ��� 
  1

�� , kF��m�
�

���
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��������� 
  ����/���������� ��� 

()�*, �� 
 0�1����������� 

To evaluate the coding strength of a formant, F�, in the response d[n], the fractional power 

(1����� /�) of three harmonics near F�-normalized F� was calculated as:  

1����� /��F�� 
  ∑ ∑ �()�*, ����������

��������
�
���

∑ ∑ �()�*, �����
���

�
���

, 

where 3��� 
 ��4��� ��!�
 ��!�

�, N is the length of d[n], ��4�� is the nearest-integer operator, and 

K is the total number of F� harmonics considered. Because the lowest value for F��n� was ~100 

Hz and phase-locking for chinchillas is substantially degraded beyond 3500 Hz, K was set to 35 

in these analyses.  

For a given SNR condition, fractional power metrics were computed for responses to noisy-

speech [1����� /�"��1��� and noise-alone [1����� /���1��� for individual AN fibers. The 

difference in these two power metrics [i.e., 1����� /�"��1�� –1����� /���1��] was used as 

the strength of 1� coding for each fiber for that SNR condition. For the quiet 

condition, 1����� /���1�� was set to 0.  

Coding fidelity metric for fricatives in noise based on correlation analysis 

To evaluate the fidelity of the neural representation of the fricative /s/ in noise, correlations of 

the slowly varying envelope responses were quantified between speech-alone and noisy-speech 

conditions during the fricative segment. To confirm that these correlation values were not 

spurious correlations between speech and noise, the speech-alone and noisy-speech correlations 
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were corrected by subtracting the correlation between response envelopes of speech-alone and 

noise-alone conditions for the same fricative window.  

Response envelopes were obtained from single-polarity PSTHs using a low-pass filter (fourth-

order, cut-off=32 Hz). Let the response envelope to speech-alone, noisy-speech, and noise-alone 

be denoted by 5", 5"�, and 5�, respectively. Then, a speech-in-noise coding fidelity metric was 

quantified by computing the corrected correlation between 5" and 5"� as:  

��������������5", 5"�� 
 �����5", 5"�� � �����5", 5��, 

where ������, 	� 
 6��	� and 6 is the expectation operator. Minimum value of 

��������������5", 5"�� was set to 0.001 for display purposes in Figures 8D - 8F .  

Plosive coding in noise was not considered because plosives were completely masked by noise, 

even at the highest SNR (i.e., 0 dB) used here. Instead, inferences about plosive coding in noise 

based on formant transitions (as quantifying in Figure 5) are considered in the Discussion. 

Statistical analyses  

Statistical analyses of group effects (i.e., hearing status) were performed in R (version 4.0.3) 

using linear mixed-effects models (lme4 package, Bates et al., 2014). Both p- and F-values were 

estimated using Type II Wald F tests (Kenward and Roger, 1997). Log-transformed CF and its 

interaction with hearing status were included in all statistical models for AN data. CF was log-

transformed because of the logarithmic spacing of frequency in the cochlea. Appropriate CF 

ranges for statistical analyses were determined based on stimulus spectral bandwidth and are 

described in each figure caption. Driven rate and spontaneous rate were included as predictors in 

the temporal-precision analyses in Figure 2. Spontaneous-rate group (low and medium SR, <18 
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spikes/s; high SR, >18 spikes/s) was included as a binomial variable in Figure 8. Interactions 

were included between fixed effects, with main and interaction effects judged to be significant 

when p<0.05.  

The effects of various physiological mechanistic factors on speech-coding fidelity in Figure 4 

(tonotopic coding), Figure 5 (formant coding in noise), and Figure 8 (fricative coding in noise) 

were also evaluated by including the following fixed-effect predictors: log-transformed CF, FTC 

threshold (in dB SPL), TTR (in dB), and local Q10. Animal identifier was treated as a random 

effect. The dequivalent or deq metric was used to indicate effect size of significant and close-to-

significant individual factors, i.e., deq is reported for all effect where p < 0.1 (Rosenthal and 

Rubin, 2003).  
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