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We developed DreamDIA-XMBD, a software suite for data-independent acquisition (DIA)
data analysis. DreamDIA-XMBD adopts a data-driven strategy to capture comprehensive
information from elution patterns of target peptides in DIA data and achieves considerable
improvements on both identification and quantification performance compared with other
state-of-the-art methods such as OpenSWATH, Skyline and DIA-NN. More specifically, in
contrast to existing methods which use only 6 to 10 selected transitions from spectral library,
DreamDIA-XMBD extracts additional features from dozens of theoretical elution profiles

originated from different ions of each precursor using a deep representation network. To
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achieve higher coverage of target peptides without sacrificing specificity, the extracted fea-
tures are further processed by non-linear discriminative models under the framework of
positive-unlabeled learning with decoy peptides as affirmative negative controls. DreamDIA -
XMBD is written in Python, and is publicly available at https://github.com/xmuyulab/Dream-

DIA-XMBD for high coverage and precision DIA data analysis.

1 Introduction

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has now become
one of the most widely-used approaches for high-throughtput proteomic data acquisition due to
its capability to quantify tens of thousands of peptides per hour!?. To meet the growing demand
of large-scale quantitative proteome research, data-independent acquisition (DIA)*~'* mode was
established. Instead of selecting specific precursors with higher intensities for fragmentation as
in data-dependent acquisition (DDA), DIA encapsulated all precursors in a pre-designed isolation
range for MS2 acquisition in an unbiased way'®>. It has been proven to outperform DDA and
selected reaction monitoring (SRM) on various important aspects such as coverage, quantification

accuracy and reproducibility .

Despite various advantages of DIA, the challenge of DIA data analysis roots in its noisy
spectra data originated from convoluted signals of multiple co-fragmented precursor ions. To over-
come this problem, DIA data analysis is usually performed with the peptide-centric scoring (PCS)
strategy®’, where a spectral library that contains information of precursor ions of interests is queried

against a series of raw data files to achieve higher sensitivity for large-scale complex biological
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samples'®21-22, In general, PCS software tools extract the elution profiles of the transitions in the
library, identify and score them with a series of features and calculate the final discriminant scores
for false positive control*®. Naturally, both the extracted features and the discriminative models
used to generate the final score determine, jointly, the performance of the software to produce
the protein identification and quantification results. For the discriminative model, most DIA data

analysis software tools use linear semi-supervised learning algorithms including semi-supervised
linear discriminant analysis (ssSLDA)?** and semi-supervised support vector machine (ssSVM)>.
Non-linear discriminative models were also introduced in recent years, for instance the optional
XGBoost classifier integrated in a new version of PyProphet?®. DIA-NN?’ also introduced a neu-
ral network-based model that gained great improvement. However, for the elution profile scoring
methods, almost all the existing software tools use manually curated scoring systems based on ex-
pert knowledge such as Pearson correlations, shape of the elution profiles, relative intensities of the

fragments, etc.”’!

, which are heuristic and may not completely cover intrinsic characteristics of
the complex elution patterns in DIA data. These heuristic feature extraction strategies may hinder

the correct identification and accurate quantification of peptides and proteins in DIA projects.

Recently, deep representation learning has become a method of choice for feature extraction
from unstructured data such as natural language’, speech® and image®*. Numeric results have
confirmed that for these data, features from deep representation networks outperform those from
conventional feature engineering strategies as the latter may not be able to exploit the intrinsic
joint distribution of the signals in the high-dimension feature space towards the designated target

of learning®. For DIA data analysis®®, deep learning has also been recently introduced for the
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prediction of fragment intensities, retention time and ion mobility*’*!, and de novo sequencing®.

In this paper, we introduce DreamDIA-XMBD, a PCS software suite for DIA data analy-
sis based on the chromatogram features extracted by a deep representation network (Figure la,
detailed descriptions of the data processing pipelines are in Methods). In contrast to most ex-

isting PCS software tools?3°

which only consider 6 to 10 elution profiles for peptide scoring,
DreamDIA-XMBD considers dozens of additional elution profiles for each precursor that has been
ignored by most PCS software tools including all the theoretical fragment ions, potentially unfrag-
mented precursor ions and isotopic peaks of each precursor (Figure 1b). These elution profiles are
compiled into a set of representative spectral matrices (RSM), which are then further analyzed by
a deep representation network based on the Long Short Term Memory (LSTM) model to capture
more informative precursor features. The deep representation model in DreamDIA-XMBD has

the capability to extract features from the complex elution patterns in RSM, which may bring only

interference for conventional heuristic peptide scoring systems.

To fully untilize the deep representation features for precusor scoring, we further used XG-
Boost as the discriminative model. Breifly, we trained an XGBoost classifier based on all the
precusors in the spectral library. Compared to linear discriminative models such as LDA where the
decision boundary is limited to a linear hyperplane in the feature space, the XGBoost classifier has
the advantage to enable non-linear decision boundary for better sensitivity. Moreover, to prevent
overfitting, we followed the framework of positive-unlabeled learning*® by using the decoy precu-

sors as affirmative negative controls in the training process to prevent the XGBoost classifer from
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picking up false targets (g in the spectral library that are not detectable in a specific sample.

Finally, for accurate quantification, we calculated weighted area under the chromatogram for
each fragment ion, where the weighting of each fragment is determined as the sum of its Pearson
correlations with all the other fragments from the same precursor based on the hypothesis that noise

caused by coeluted peptides should have low correlations with the other true chromatograms.

We compared the identification and quantification performance of DreamDIA-XMBD with
several state-of-the-art open-source PCS software tools including OpenSWATH?’, Skyline®® and
DIA-NN?’. Our proposed method outperformed the other tools with more target precursors iden-

tified in the two-species library test*

and more accurate quantification results in the LFQbench
test*®. DreamDIA-XMBD provides a deep representation network based feature extraction method
for DIA data analysis, in combination with a novel interface for deep learning algorithms to be in-
troduced to obtain better performance for large-scale biological and medical proteome research.
The training data of the deep representation model used in DreamDIA-XMBD can be easily ob-
tained from public datasets. We have provided two trained models that can be directly applied to

analyze DIA data, as well as an application programming interface (API) for customized model.

DreamDIA-XMBD is publicly available at https://github.com/xmuyulab/Dream-DIA-XMBD.

2 Methods

Deep representation models in DreamDIA-XMBD The key step of the DreamDIA-XMBD al-

gorithm is to extract relevant features of the chromatograms with deep representation models. The
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input of the deep representation models is RSM (Figure 1b), a matrix consisting of 130 top elution
profiles selected based on their intensities from four types of elution profiles including library, self,
qt3 and ms1. The library part contains 20 top XICs of fragment ions in the spectral library. The self
part contains 50 top XICs of all theoretical fragment ions of each precursor. For precursors with
two charges, fragment ions with one charge are considered. For precursors with charges greater
than two, fragment ions with one and two charge(s) are considered.. The gt3 part*’ contains top
50 XICs of unfragmented precursor and its isotope peaks in MS2 spectra. The ms/ part contains
top 10 XICs of precursor itself and its isotope peaks. The retention time width of RSM is set to
12 cycles by default, which was long enough for most elution signals by our visual verification on

several DIA datasets.

The deep representation network used in this work consists of two LSTM layers and two full-
connection layers. The first LSTM layer has 128 neurons with input dropout of 0.4 and recurrent
dropout of 0.3. The second LSTM layer with 64 neurons and the same dropout settings was then
stacked on the first layer. Two full-connection layers with 16 and 1 neuron(s) respectively were
added on the top of the model. Rectified linear unit (ReLU) activation function was used for hidden
layers, while sigmoid function was used for the final layer to obtain an output ranging from O to 1.
All the deep representation models were built with Keras in Python. The models were trained on
the RSMs in the training datasets as a binary classifier to differentiate real precursors and decoys
with a cross-entropy loss function. The output of the final layer of the trained deep representation
model, which hereafter referred to as the deep discriminant score (dds) as it represents the likeli-

hood that a certain RSM is from a target peptide present in the sample as seen by the network, is
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used for RT normalization and peak picking in DreamDIA-XMBD. In addition, the 16-dimension
output of the second to last layer of the model is used as the deep representation feature for the
discriminative model to produce the final discriminant scores for each precusor from the spectral

library (Figure 1b).

Building sample-specific spectral libraries The raw data files were first transformed to cen-
troided mzXML files by ProteoWizard*® (version: 3.0.19317) with all the other arguments unchecked.
The resulting mzXML files were processed by DIA-Umpire to generate pseudo MS/MS spectra.
X!Tandem* and Comet™ were used to search these pseudo spectra. The searching results were
then filtered by PeptideProphet®' and ProteinProphet®? in TPP>*>4. Finally, the sample-specific

spectral libraries were generated by SpectraST>.

Training data preprocessing of the deep representation models The training data of the deep
representation model of DreamDIA-XMBD (1.0.0) were generated as follows. First, sample-
specific spectral libraries were built as stated earlier. The resulting spectral libraries were further
processed by DreamDIA-XMBD to generate decoys. Subsequently, OpenSWATH and Pyprophet®
were used to find RT of each target or decoy precursor in the spectral libraries across all runs. All
the necessary XICs were extracted and saved as RSMs. In total two deep representation models
were trained. A generic model was trained based on data from whole cell lysates of HEK 293
cells®® from xxx. In addition, a special model from SCIEX TripleTOF 5600 was trained on data
were from the 1929 mouse dataset’’ as data from it has different characteristics compared with

those of other spectrometers (Supplementary Note 3).
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DreamDIA-XMBD workflow DreamDIA-XMBD supports centroided .mzML or .mzXML MS

data files as input. In addition, it integrates the cross-platform MS file conversion tool ThermoRawFileParser®
to read .raw files directly from Thermo Fisher equipments. After reading a spectral library, DreamDIA-
XMBD generates a decoy for each precursor ion by random shuffling of the sequence using Fisher-

Yates algorithm. Decoys generated from other software tools for instance OpenSWATH can also

be used by DreamDIA-XMBD.

After acquiring the necessary inputs file, DreamDIA-XMBD randomly samples a set of en-
dogenous precursors in the library for RT normalization. DreamDIA-XMBD searches for the best
RSM based on the value of dds provided by the deep representation model for each precursor in
the sampled set across the whole retention time gradient. Then it fits a linear model based on time
points of these best RSMs against their normalized RT, by which the RTs of the other precursors

in the spectral library can be predicted. The Random Sample Consensus (RANSAC)Y

algorithm
is used to detect outliers. Subsequently, DreamDIA-XMBD extracts RSMs within a predefined

range centered on the predicted RT for each target or decoy precursor in the spectral library, and

keep the RSMs with dds higher than a cut-off value.

To distinguish between target and decoy precursors, DreamDIA-XMBD fits a non-linear dis-
criminative model based on the deep representation features in combination with other features
such as peptide lengths and charges (Supplementary Note 1). Due to the existence of false targets
in a spectral library, the discriminative model is trained based on the principle of positive-unlabeled

learning®® with decoy peptides as affirmative negative controls while treating targets as unlabeled.
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XGBoost was chosen as the default discriminative model for its superior performance (Results).
However, the software also provides the option for users to choose other classifiers such as random
forest. To furhter overcome the inaccuracy of RT prediction, we adopt the test-time augmenta-
tion strategy where all the RSMs with higher scores given by the deep representation model are

considered as evidences for a precursor.

After discriminant score calculation, the RSMs with the highest discriminant score for each
precursor are kept for FDR control. DreamDIA-XMBD estimates FDR by dividing the number
of target precursors by the number of all precursors with discriminant scores exceeding a cut-off
score. For a specified FDR level, DreamDIA-XMBD can search for a proper cut-off score for valid
identifications. Protein-level FDR is calculated similarly through dividing the number of target

precursors by the number of all precursors exceeding a cut-off score for each protein respectively.

Peptide and protein quantification For peptide quantification, DreamDIA-XMBD uses a weighted

area method to prevent the influence brought by other co-eluting ions as follows.

n

Q(Precursory) = Z Z Corr(Cr,i(t), Cry(t)) - /

i=1 j=1 to

t

Choi(t)dt

Herein, C'(t) means elution chromatogram of an ion. C'orr() is the Pearson correlation of two frag-
ment ions, and the integration term calculates the area under the ion’s chromatogram. DreamDIA-
XMBD quantifies all fragment ions according to the areas of their chromatograms for each precur-
sor. The weight of each fragment is calculated as the sum of the Pearson correlations with the other
fragments, and the quantification result of a precursor is the weighted sum of the top six fragments
associated with it. For protein level quantification, DreamDIA-XMBD sums the intensities of the

9
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top three abundant precursors for each protein.

Two-species spectral library method As different software tools have different strategies for
FDR calculation, it is difficult to directly compare the identification performance according to their
results. Therefore, we adopt the two-species spectral library method that had been used in previous

work for benchmarking!®-27-4°

, where different ratios of the proteins from another different species
were added to the sample-specific spectral libraries as target precursors, which could then be used

to evaluate the false positive identification of an algorithm.

Software versions for comparison DreamDIA-XMBD (1.0.0) was compared with OpenS WATH?

(2.6.0), Skyline®® (19.1.0.193) and DIA-NN?’ (1.7.11).

Benchmarking of precursor identification The mouse MC dataset, SGS human dataset and
HeLa dataset were first processed to produce sample-specific libraries. Peptides that belonged
to multiple proteins were discarded. Then we extracted yeast and E.coli precursors, which were
not expected to exist in the sample-specific libraries, as the control precursors from the mixed li-
brary built by LFQbench*®. These precursors were filtered to discard sequences that existed in the
sample-specific libraries. Next, we spiked them into the sample-specific libraries with different
ratios to build the two-species libraries. Due to different sizes of the sample-specific libraries and
the number of control precursors of different datasets, the ratios of the two-species library were
ranging from 10% - 40%, 10% - 200% and 10% - 50% for the MC dataset, the SGS human dataset

and the HeLa dataset, respectively.

10


https://doi.org/10.1101/2021.04.22.440949
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.22.440949; this version posted April 23, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Top 6 fragment ions with the highest intensities for each precursor were retained. Subse-
quently, all the sample files were processed by the software tools with the resulting two-species
libraries. For DreamDIA-XMBD, centroided mzXML files were used as input. For Skyline and
DIA-NN, centroided mzML files were used. For OpenSWATH, profile mzXML files were used
as recommended®. After analysis, the identification results were compared at the same control
levels. For fair comparison, we filtered results from all software tools by their discriminant scores
to have the same number of control precursors, where the number is set to FDR of 1% by DIA-NN

(Figure Ic, Supplementary Figure S1, Supplementary Figure S2).

Configuration of the software tools For DreamDIA-XMBD, default settings were used except
that the “--swath” option was specified for SCIEX TripleTOF 5600 data analysis. For DIA-NN,
the Linux commond-line tool with default settings was used. OpenSWATH was run with options “-
readOptions cacheWorkingInMemory -batchSize 0 -rt_extraction_window 1200 -threads 20”. Then
the output was processed by PyProphet-cli (0.0.19)% with “--lambda=0.4 --statistics-mode=local”
options. Suboptimal peak groups were subsequently discarded. For Skyline, the step-by-step set-
tings are described in Supplementary Note 2. We did not perform extensive parameter optimization
to obtain best results for Skyline and OpenSWATH, as it had already been proved?’ that DIA-NN

performs better than both of them, which is also proven by our results.

11
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3 Results

DreamDIA-XMBD shows better identification performance We benchmarked DreamDIA-XMBD
against several mainstream open-source PCS software tools on various public datasets. First, the
performance of peptide identification was tested on the mouse cerebellum dataset®’ (MC dataset,
acquired on Orbitrap Fusion Lumos mass spectometers, Thermo Fisher Scientific) and the SWATH-
MS Gold Standard human dataset?® (SGS human dataset, acquired on TripleTOF 5600 System,
SCIEX). All data were processed by OpenSWATH?, Skyline®’, DIA-NN?” and DreamDIA-XMBD
separately. We used the two-species spectral library method, which has been used for unbiased
software benchmarking'®?”-%%, for our comparisons (Methods). The results show that DreamDIA-
XMBD achieves the best identification performance compared with the other software tools (Fig-
ure 1c and Supplementary Figure S1). For data generated from either Thermo Fisher DIA (Fig-
ure 1c) or SWATH (Supplementary Figure S1) equipments, DreamDIA-XMBD identified more
target precursor ions under the same control levels. We also benchmarked DreamDIA-XMBD on
the HeLa dataset (acquired on QExactive HF, Thermo Fisher Scientific) used in DIA-NN?’ paper
(Supplementary Figure S2). DreamDIA-XMBD still achieved the best identification performance

compared with the other software tools for data acquired at different gradient lengths.

DreamDIA-XMBD produces reliable improvements Although we have filtered the sample-
specific libraries in a relatively strict approach, we cannot regard these target precursors as absolute
ground truth for identification benchmarking. To better illustrate the reliability of the improve-

ments brought by DreamDIA-XMBD, we introduced high confident proteins (HCPs), which were
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defined as proteins with more than 100 identified precursors in at least one run for all the software
tools. We then monitored the numbers of their distinctive precursors reported by different software
tools. Theoretically, precursors represent evidences for each protein to be identified, thus the more
precursors reported, the higher chance for a protein to exist in the sample. As for HCPs, more
precursors reported indicates higher reliability of the software. We found that DreamDIA-XMBD
could identify more precursors for most HCPs compared with the other software tools (22, 20
and 27 out of 29 HCPs compared with DIA-NN, Skyline and OpenSWATH respectively), which

indicated that the improvement brought by DreamDIA-XMBD was reliable (Figure 2).

Deep representation models can extract peptide relevant information from chromatograms
What makes DreamDIA-XMBD a better peptide identification method is that the deep represen-
tation models it uses extract more relevant information from the chromatograms. Compared with
expert knowledge, the deep representation models take advantages of previously acquired data to
understand the intrinsic properties of elution pattern that represent a real peptide in a more precise
and stable manner. We find that positive and negative precursors’ RSM can be visually separated
on the t-SNE dimension reduction embedding of the 16-dimension deep representation features
(Supplementary Figure S3), which indicates that these features are highly informative regarding
positive and negative precursors, and therefore contribute to better identification performance un-

der the same FDR compared with traditional methods.

Non-linear discriminative model improves the performance of DreamDIA-XMBD The final

discriminant score of each precursor in DreamDIA-XMBD is calculated by a binary classifier in-

13
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stead of direct output from the deep learning model itself (Figure 1a). This strategy not only
enables extra features that cannot be described by the deep learning model to be involved in the
identification step (Figure 1a), but also improve the generalization capability of the algorithm.
Moreover, as indicated by the t-SNE map, the distribution of the precursors in the feature space
can be highly non-linear (Supplementary Figure S3), which is difficult for linear classifiers to
discriminate between real peptide signals and noise. In such case, a non-linear classifier could ob-
tain better identification results. To validate this hypothesis, we tested 7 commonly-used machine
learning algorithms including LDA, logistic regression, CART decision tree, Adaboost, gradient
boosting decision tree (GBDT), random forest (RF) and XGBoost on the MC dataset (Figure 3).
Among all the tested classifiers, tree-based ensemble models including gradient boosting decision
tree (GBDT), XGBoost and random forest (RF) obtained better performance due to their non-linear
decision boundary, while linear models such as logistic regression and LDA in general performed
worse than other non-linear models. XGBoost achieves the best performance, and is chosen as the

default discriminative model in DreamDIA-XMBD.

DreamDIA-XMBD has better quantification performance We benchmarked quantification per-
formance of DreamDIA-XMBD against OpenSWATH and DIA-NN using LFQbench software

suite*®

. The internal dataset of LFQbench contains known ratios of the proteins from different
species (human, yeast and E.coli), which can be used to evaluate the accuracy and stability of a
quantification algorithm by monitoring the recovery levels of these ground truth ratios. We chose

the HYE124 samples with 64-window setup acquired from TripleTOF 6600 systems for quantifi-

cation performance benchmarking. Each software tool should output results at 1% FDR based on

14
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its own standard. We kept precursors that had been reported at least once by all the three software
tools. In total, 16556 human precursors, 11892 yeast precursors and 10390 E.coli precursors were
retained for comparison. Compared with OpenSWATH and DIA-NN, DreamDIA-XMBD shows

better quantification performance for the peptides and proteins of yeast and E.coli (Figure 4).

4 Discussion

We developed DreamDIA-XMBD, a deep nerual network based DIA data analysis software. By
adopting a data-driven approach, the deep representation network used in DreamDIA-XMBD
learns a more comprehensive representation of the distribution of the highly-variable elution pro-
files of peptides generated by DIA, thus improves the identification and quantification performance
at both peptide and protein levels. DreamDIA-XMBD consists of a complete DIA data analysis
pipeline from raw acquired data to quantification results and can be independently used without
assistance of any other software. It is anticipated that with the increasing amount of DIA data
for knowledge extraction and model training, deep learning based data-driven strategy can be a
preferred method to overcome the limitations of DIA to further improve its coverage and preci-
sion for large-scale DIA proteome research. The RSM data structure and programming framework

introduced by DreamDIA-XMBD can be a start towards this goal.

5 Key points

We developed DreamDIA-XMBD, a DIA data analysis software tool that introduced deep repre-
sentation networks to extract informative features from elution profiles in DIA data in place of
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conventional heuristic peptide scoring systems.

DreamDIA-XMBD shows better peptide identification and quantification performance com-

pared with several state-of-the-art software tools including OpenSWATH, Skyline and DIA-NN.

DreamDIA-XMBD provides a universal data structure and framework for further introduc-
tion of deep learning methods to obtain better performance for large-scale biological and medical

proteome research in the future.

Data Availability

The SGS dataset is available at Peptide Atlas raw data repository with accession number PASS00289.
Other data used in this study were also public datasets deposited to the ProteomeXchange Consor-
tium via the PRIDE® or iProX® partner repository. The dataset identifiers include PXD015098,
PXD021390, PXD011691, PXD005573 and PXD002952. The source data of all the figures in this

paper are available in supplementary materials.

Code Availability

DreamDIA-XMBD (1.0.0) is open-source and available at https://github.com/xmuyulab/Dream-

DIA-XMBD.
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Figure 1: Schematic illustration of DreamDIA-XMBD and its identification performance. a)
Schematic diagram of DreamDIA-XMBD. First, chromatograms of each target/decoy precursor
and its corresponding fragment ions are extracted. Then the chromatograms are sent into the pre-
trained deep representation model to obtain low-dimensional features. Subsequently, deep repre-
sentation features combined with other features such as precursor m/z and charge are used for dis-
criminant score calculation. b) Architecture of the deep representation model used by DreamDIA-
XMBD. The input RSM contains four types of extracted ion chromatograms (XICs): fragment
ions in the spectral library (library XICs); theoretical fragment ions of the precursor (self XICs);
unfragmented precursor ion and its isotope peaks (qt3 XICs); precursor ion and its isotope peaks
(ms1 XICs). The model contains two LSTM layers and a full-connection layer, by which the input
RSM can be transformed to 16-dimension deep representation features. c¢) Identification perfor-
mance of DreamDIA-XMBD on the mouse cerebellum dataset (MC dataset, acquired on Orbitrap
Fusion Lumos mass spectometers, Thermo Fisher Scientific). Two-species spectral libraries are
used for FDR control for fair comparison (Methods). For each spiking ratio of the control pre-
cursors in the spectral libraries, the numbers of target precursors (mouse) identified by different
software tools under a fixed number of control (yeast or E.coli) precursors are plotted. Each point
stands for the mean and deviation of the results from 10 parallel samples.
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Figure 2: Boxplots of the numbers of precursors for 29 HCPs reported by different software
tools on the MC dataset. Each box stands for the distribution of the numbers of target precursors
identified for each HCP across 10 runs. Spectral library with 40% spiking ratio of control pre-
cursors was used. Single-sided Wilcoxon rank sum tests were performed between the results of
DreamDIA-XMBD and the other three software tools. The numbers of “*” denote the statistical
significance of the tests (*: p-value<0.05; **: p-value<0.01; ***: p-value<0.005). Among the 29
HCPs, DreamDIA-XMBD reported significantly more precursors for 22, 20 and 27 HCPs when p-
value<0.005, and 24, 21 and 29 when p-value<0.01 respectively compared with DIA-NN, Skyline
and OpenSWATH.
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Number of precursors at the same control level

Dream-DIA-XMBD

Figure 3: Comparison of identification performance of various discriminative models on the
MC dataset. The spiking ratio of control precursors is 40%. The numbers of target precursors
(mouse) are shown at the same control level from 1% FDR given by DIA-NN.
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Figure 4: Quantification performance evaluation with LFQbench on the HYE124 datasets.
Quantification results of peptides (the first row) and proteins (the second row) from OpenSWATH,
DIA-NN and DreamDIA-XMBD. All results were obtained at 1% FDR for each sample, and 16556

human precursors, 11892 yeast precursors and 10390 E.coli precursors that reported by all the three
software tools in at least one sample were analyzed and compared.
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