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ABSTRACT

Magnetic resonance current density imaging (MRCDI) of the human brain aims to reconstruct the
current density distribution caused by transcranial electric stimulation from MR-based
measurements of the current-induced magnetic fields. The reconstruction problem is challenging
due to a low signal-to-noise ratio and a limited volume coverage of the MR-based measurements,
the lack of data from the scalp and skull regions and because MRCDI is only sensitive to the
component of the current-induced magnetic field parallel to the scanner field. Most existing
reconstruction approaches have been validated using simulation studies and measurements in
phantoms with simplified geometries. Only one reconstruction method, the projected current
density algorithm, has been applied to human in-vivo data so far, however resulting in blurred

current density estimates even when applied to noise-free simulated data.

We analyze the underlying causes for the limited performance of the projected current density
algorithm when applied to human brain data. In addition, we compare it with an approach that
relies on the optimization of the conductivities of a small number of tissue compartments of
anatomically detailed head models reconstructed from structural MR data. Both for simulated
ground truth data and human in-vivo MRCDI data, our results indicate that the estimation of
current densities benefits more from using a personalized volume conductor model than from
applying the projected current density algorithm. In particular, we introduce a hierarchical
statistical testing approach as a principled way to test and compare the quality of reconstructed
current density images that accounts for the limited signal-to-noise ratio of the human in-vivo
MRCDI data and the fact that the ground truth of the current density is unknown for measured
data. Our results indicate that the statistical testing approach constitutes a valuable framework for
the further development of accurate volume conductor models of the head. Our findings also
highlight the importance of tailoring the reconstruction approaches to the quality and specific

properties of the available data.

Keywords: Magnetic resonance current density imaging, magnetic resonance electrical

impedance imaging, projected current density algorithm, hierarchical model selection.
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INTRODUCTION

Knowledge of electrical current density (J) and conductivity (o) distributions in the human brain
is important in many neuroscience applications. It enables the control and optimization of the brain
areas targeted by transcranial brain stimulation, and is needed for localizing neural sources from
electro- and magnetoencephalography data. Also, it might be useful for characterizing malignant
tissue (Holdefer et al., 2006; Miranda et al., 2014; Nathan et al., 1993). Magnetic resonance current
density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT)
are two modalities using transcranial current injections and MR imaging (MRI) to reconstruct
current density and conductivity distributions in the brain (Scott et al., 1991). In both methods, the
currents are injected in synchrony with an MRI pulse sequence to create a magnetic flux density
distribution that changes the magnetic field of the MR scanner. As a result, the phase of the
measured MR signal is modulated by the z-component of the current-induced magnetic flux
density (B,), i.e. the part that is parallel to the static scanner field. The MR phase information thus

can be used to obtain cross-sectional images of the current-induced magnetic flux density B,.

Several methods have been developed to reconstruct the current density distribution from the
measured B, images. Considering Ampere’s law, a unique and unambiguous reconstruction
requires knowledge of all three components of the current-induced magnetic flux density. As only
the B, component parallel to the main magnetic field of the MRI scanner can be measured during
an MRCDI experiment, accurate and complete current density mapping requires rotating the
measured object inside the scanner (Eyiiboglu, 2006; Scott et al., 1991; Woo and Seo, 2008), which
is impractical for human in-vivo brain imaging. Alternative methods thus aim to reconstruct the
two components of the electrical current density that are orthogonal to the main scanner field (i.e.,
Jx and J,) from a single B, image (Ider et al., 2010; Jeong et al., 2014; Park et al., 2007). In
particular, the “projected current density” method introduced by Jeong et al (2014) was used in
recent studies on in-vivo human brain MRCDI (Chauhan et al., 2018; Goksu et al., 2018a;
Kasinadhuni et al., 2017). Combined with data from diffusion tensor imaging, projected current
densities estimated with this method for two current injection directions (left-right and anterior-
posterior) have also been used to reconstruct the ohmic conductivity distribution in the human
brain (Chauhan et al., 2018). The accuracy of the reconstructed current density distribution
depends on both the quality of the B, images and the properties of the reconstruction methods.

Usually, their performances are good for simple phantoms with one or more conductivity
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inhomogeneities inside a homogenous well-conductive background (Kwon et al., 2007; Oh et al.,
2003; Park et al., 2007). Also the reconstruction method used so far for in-vivo human brain
MRCDI studies was validated in this way (Jeong et al., 2014). However, this situation is strongly
simplified compared to MRCDI measurements of the human head, which has a complex anatomy

and where the brain is surrounded by the highly resistive skull and conductive scalp.

In an earlier study (Goksu et al., 2018), we observed that the reconstructed current densities were
only coarse estimates of the current flow in the brain even when applied to noise-free simulated
data. Here, we explore the underlying causes and reveal fundamental limitations that occur when
applying the projected current density method of Jeong et al (2014) to B, image of the human
brain. We then explore whether the method can be modified to achieve better reconstruction
performance. We also test an alternative approach to estimate the current density distribution that
is based on the optimization of the conductivities of an anatomically detailed head model to fit the
measured B, image. Using both simulated B, data serving as ground truth and B, data from human
in-vivo measurements, we show that the alternative approach performs better than the projected
current density method. In particular, we advocate for systematic statistical evaluations of the
goodness of fit between measured and simulated B, data as a principled way to draw conclusions

on the accuracy of simulations. A preprint of this paper was published on biorxiv.
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MATERIAL AND METHODS

Human Brain Imaging

Two healthy volunteers, who had no previous neurological and psychiatric disorders, were
included in this study. Written informed consent was obtained from the participants prior to the
scans and they were screened for contraindications to MRI and transcranial electric stimulation
(TES). The study complied with the Helsinki declaration on human experimentation and was
approved by the Ethics Committee of the Capital Region of Denmark. We injected electrical
current with =1 mA magnitude in the left-right (LR) and anterior-posterior (AP) directions via
surface electrodes attached to the head. The currents were applied in synchrony with a multi-
gradient-echo MR pulse sequence (Goksu et al., 2018a; Goksu et al., 2018b) on a 3T MRI scanner
equipped with a 64-channel head coil (Magnetom PRISMA, Siemens). We measured B,
distributions by post processing the acquired MR phase images (Goksu et al., 2018a) and corrected
unwanted effects of the magnetic stray field caused by the cable currents on the B, measurements
(Goksu et al., 2019). The B, measurements were denoised with a Gaussian filter with a full width
at half maximum (FWHM) value of 3 pixels.

We generated 3D individualized head models of the subjects by utilizing prior structural T1- and
T2-weighted measurements (Nielsen et al., 2018) to simulate the current density distribution in the
head and the resulting magnetic field distribution caused by the currents. As described in more
detail below, we used different head models of increasing anatomical complexity (single

compartment, three compartments, four compartments) for the simulations.

Forward Simulations

Current densities were calculated using the Finite Element Method (FEM) implemented in
SimNIBS 3.1.0 (Thielscher et al., 2015). The initial part of the study relied on the head model
ernie included in the example dataset. This volume conductor model has a high resolution and is
composed of 4.58x10° tetrahedral elements with an average volume of 1 mm?®. For the later part,
individual head models with similarly high resolutions were reconstructed from T1-weighted and
T2-weighted structural MR images. Detailed explanations on the construction of the head model

are given in (Nielsen et al., 2018).
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For the full models with all tissue types, the ohmic conductivities were assigned as 0gcqip = 0.465,
Osiunn = 0.01, oy = 0.126, o5y = 0.275, and o5 = 1.654 S/m (Fig. 1A) (Thielscher et al.,
2011). In addition, we simulated anatomically simplified models by combining tissue types. A
single compartment (1c, i.e. homogenous) model was used by setting all conductivities to g, =
1 S/m. A model with three compartments (3c) was created by assigning the same conductivity
Oinsize = 0.34 S/m to CSF, GM and WM (0scqip = 0.465 S/m, gy = 0.01 S/m). The
conductivity g;,si4e Was calculated by taking the average conductivity of the region composed of
WM, GM, and CSF volumes, weighted according to their relative volumes, in the slice being
imaged. Finally, a model with four compartments (4c) was created by combining GM and WM
with a conductivity of 03,4in, = 0.18 S/m that was determined as the average of oy, and ogp, in
the imaged slice (O5cqp = 0.465, Ogxyyy = 0.01 S/m, 0¢sp=1.654). In all models, we injected
electrical current with 1 mA magnitude in LR and AP directions to calculate J distributions in the
brain using FEM for numerically solving the Laplace equation for the electric potential (Saturnino
et al., 2019a). The current-induced B distributions were determined from the current density by
applying the Biot—Savart law using the Fast Fourier Transform (Yazdanian et al., 2020). In

particular, the z-component of the current-induced magnetic flux density B, is given by

(=)= Jy(x=x") , ,
lp—p'3 ap’, ()

B,(p) =22,

where p = [x,y, z] is the position at which B, is evaluated, V' denotes the head model and p’ =
[x',y',z'] are positions inside V. J = []x, Iy ]Z] is the current density in the head model and
constant y, is the magnetic permeability of free space.

In addition, we aimed to test how much the projected current density J"¢¢, reconstructed in the
imaging slice using the projected current density algorithm (equation (2) below), changes the
current-induced B, distributions. For that, we substituted the calculated J distributions by J"¢¢ at
the positions corresponding to CSF and brain in the imaging slice before determining the current-

induced B distribution.
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Projected Current Density Algorithm

The projected current density algorithm introduced by Jeong et al (2014) reconstructs a current

density distribution J"¢ from a B, image

rec _ jo o 1 [0(Bz—B7) —0(B;—B%)
J =J +uo[ ay '’ dx '0]’ (2)

using simulated current densities J° = [],? Iy 7 ] and magnetic flux densities B? that are based on
a volume conductor model of the subject. In the original form of the algorithm, J° and B, are
obtained for a model with a homogeneous conductivity o, (lc) and the outer shape of the imaged
object (Fig. 1B). The reconstructed current density distribution J"¢¢ is then composed of a smooth
and curl-free component J° that is superimposed onto a high contrast component based on
directional derivatives of B, — B?. The latter scales with the local difference between measured
and simulated magnetic flux densities.

The algorithm can be easily derived from Ampére’s law. The unknown true current density J that
gives rise to the magnetic field B can be written as:

[0(Bz=B9) _ 3(By=BY)]

| oy 9z |
_ jo _qoy —_qo 4 L _ 0\ — J0 ila(Bx—B,‘C’)_O(BZ—Bg)I
J=1"+U-J) =)+ -(VxB-VxB%) =]+ -|— 221 (3)
la(By—Bﬁ _a(Bx—B,%J
ox dy

As we only measure B,, our best possible assumption about the spatial derivatives of the two

0 J0B d0B? ) .
unknown components of B are an/az ~ an/az and y/az ~ y/az' In this case, equation

(3) simplifies to equation (2). For example, this assumption will approximately hold in phantoms
that is uniform along the z-direction and in which the z-component of the injected current can be

kept small.

The algorithm is straightforward to implement and can be applied to single cross-sectional
simulated B, images in case of limited volume coverage. In contrast to the original projected
current density method that employs a second-order Laplacian operator (Park et al., 2007), the

modified variant proposed by Jeong et al (2014) relies only on first-order spatial derivatives of the
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B, image data. This reduces the amplification of high-frequency noise by the derivative operations
and potentially improves the quality of the reconstructed current density images from B, data with
lower signal-to-noise ratios (SNR). In addition, the method introduced by Jeong et al (2014) only
requires local derivative operations, making it applicable to data from objects that contain large
regions with low or no signal such as the human head with the skull and air cavities. On the
downside, an error analysis by Jeong et al (2014) suggests that the simplified method will likely
suffer from higher reconstruction errors for high SNR B, images compared to the original approach

suggested in (Park et al., 2007).

Error Metrics
We evaluated the difference between a current density J, and a reference current density ];;f

using the relative root mean square (RMS) differences:

2| (-1 (i))2+(1y(i>—1;ef ®)’
=, (5 w2 @2)

Sy = x 100 % ()

Here, i is the pixel index and N is the number of pixels inside the measured region composed of
WM, GM and CSF. Please note that we restricted the comparison to the x- and y-components of
the current flow, as only those influence the z-component of the magnetic flux density B, measured
by MRI and as only the x- and y-components of the current density are changed by the projected

current density algorithm. For completeness, we also evaluated the difference between J, and the

. ref .
z-component of a reference current density J, T in selected cases as

2, (-1 )
2, (15 @)

8= x 100 %. (5)

In addition, we quantified the differences between the z-component of the current induced

. . re
magnetic flux density B, and a reference case B, I as
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N, (BB (i))2

o (57 )

632

z

X 100 %. (6)

Finally, we calculated relative noise floors (nf, the inverse SNR) for the experimentally measured

current-induced B, images as

N (B;n@OmA (i))z

=, (B2 ()"

nf = x 100 %, 7)

where B[ and B]"@™4 are the measured B, fields with and without current injection, respectively.

Optimization of conductivities
As alternative approach to estimate current densities from magnetic flux densities, we optimized
the tissue-specific conductivities using the sequential least squares programming (SLSQP)

algorithm (Kraft, 1988) with the goal to minimize the error 65 between the simulated magnetic

flux density B, given by the head models and the reference B, e Initially, we used the simulated
magnetic flux density of the full model with all tissue types as reference to confirm the stability of
the optimization approach. Subsequently, measured B, images from the human imaging data
served as reference. We implemented constraints on the conducitivities to reduce the likelihood of
overfitting that could occur, e.g. in case of systematic differences of the volume conductor models
to the true head anatomy. For the 3¢ model, we constrained scq1p, Oskun and Ojngiqge to the ranges
[0.2 < 05caip<1, 0.003 < 0gpyy < 0.03, 0.2 < Gjpgige < 0.95] S/m. For the 4¢c model, we used
the ranges [0.2 < ggcqip < 1, 0.003 < g4y < 0.03, 1.2 < g¢sp < 1.9, 0.05 < Gppgin < 0.95]
S/m. We also fitted the full model with five conductivities (5¢) to human imaging data by using
the ranges [0.2 < 0scqip < 1, 0.003 < g4y < 0.03, 1.2 < 0¢sr < 1.9, 0.05 < gy < 0.95,
0.05 < g5y < 0.95] S/m. For the 5¢ model, we imposed a;p > oy as an additional constraint.
For the 5c model, the ranges were chosen to well include the conductivities reported in studies that
measured relatively fresh or live tissue, preferably human at low frequencies (0—100 kHz) near
body temperature (Saturnino et al., 2019b, Table 1). The ranges of the combined tissue regions of

the 3c and 4c models were chosen correspondingly using volume-weighted averages of the ranges
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for the tissues of the 5¢ model. We initialized the optimization algorithm with [0gcqi, = 0.465,
Osicurt = 0.01, 0ipsige = 0.34] S/m for the 3¢ model and [05cq1p = 0.465, 05y = 0.01, 0prgin =
0.18] S/m for the 4c model and [0scqp = 0.465, gy = 0.01, o¢sp = 1.654, oy = 0.126,
ey = 0.275] S/m for the 5¢c model.

It is worth noting that without additional knowledge of the total resistance between the two
stimulation electrodes, the tissue conductivities are only determined up to a common scaling factor.
That is, for a head model with N tissue compartments, only N-1 conductivity ratios are uniquely
determined via the optimization algorithm. We could have directly optimized N-1 conductivity
ratios instead. However, this would have required the choice of an arbitrary “reference” tissue and
would have made the use of biologically plausible conductivity ranges as constraints in the
optimization difficult.

Applying the optimization algorithm requires the repeated evaluation of B, for varying
conductivities of the head models. This is computationally expensive when it is based on FEM
simulations for obtaining the current densitiy J and subsequent solving of the Biot—Savart law
using the Fast-Fourier Transform. Therefore, we employed a non-intrusive generalized polynomial
chaos (gPC) expansion for the fast evaluation of B, as a function of the conductivities (scalp, skull,
CSF, GM, WM) (Codecasa et al., 2015; Ghanem et al., 2017; Saturnino et al., 2019b; Wiener,
1938). For the gPC expansions, we used a Jacobian polynomial basis set with a maximum order
of 10 and sampled the conductivities by using uniform probability density functions. We selected
the conductivity ranges of the gPC expansions slightly larger than the corresponding bounds of the
optimization algorithm in order to ensure sufficient accuracy of the B, fields across the tested
conductivity range. We used K-fold cross validation with K = 10 for the evaluation of the relative
error between the B, fields obtained from the forward simulations and gPC expansions, and set the
relative error of the gPC method to 1%. Training of the gPC converged after ~250 FEM
simulations. Using the gPC model, we were then able to reevaluate the B, fields in the complete
head model as a function of the conductivity parameters with a computation time in the order of a

few seconds. For further details on our gPC implementation, please refer to (Saturnino et al.,

2019b).
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Statistical Testing

Taking the measured current-induced B, images from the human imaging data as reference, we
assessed the differences &g, (eq. 6) between the simulated and measured B, data as an indication
of the quality of the simulations. In particular, we compared two simulations by calculating

Adp = 6g1—08p2, where 651 and 852 denote the root mean square differences between simulations
z z z z z

and measured B, data. We generated H, distributions by randomly assigning the voxels of the two
simulated B, images to two “test images” and calculating Adp_for these test images. This was
repeated 10000 times. We then calculated a one-sided p-value, testing if a more complex model
results in smaller differences when compared to the reference data. This was done by assessing the
proportion of sampled permutations where the difference was greater than or equal to the observed
difference Adp_ . Significance was then assessed at p=0.01, Bonferroni corrected for the number of
comparisons.

In order to systematically compare the 5c, 4c and 3¢ head models with optimized conductivities,
we randomly selected 80% of the imaged slice as input for the optimization algorithm. Then, we
calculated the errors 61 and 85z for the remaining 20% of the slice for each of the two head
models, and determined the difference Adp, = §51—8 52, between the simpler (851) and the more
complicated model (62). This was repeated 10000 times. Finally, as above, we calculated a one-
sided p-value by assessing the proportion where the absolute difference was greater than the
observed difference Adg , and tested for significance at p=0.01, Bonferroni corrected for the
number of comparisons. We used the same procedure to compare the conductivity-optimized 3¢
head model with the 1¢ head model, however keeping the conductivity of the 1¢c model fixed and

only repeatedly optimizing the 3¢ model.

Data and Code Availability

The original MR data cannot be made publicly available due to privacy restrictions. The largest
part of the methods is publicly available via our project homepage www.simnibs.org. This includes
the methods for building the head volume conductors from structural MR images, forward
simulations of the current densities and current-induced magnetic fields and non-intrusive
generalized polynomial chaos expansions for fast re-evaluation of the current-induced magnetic

fields in case of changing conductivities. The scripts for statistical testing were developed to
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address our immediate research needs, but not as easy-to-use software for dissemination and will

therefore not be made publicly available at the current time point.

RESULTS

In the following, we start by characterizing the performance of the “standard” projected current
density algorithm, using simulated ground truth data as reference. We then assess whether the
reconstruction accuracy of the algorithm can be improved by using more realistic volume
conductor models, and test how sensitive the reconstructed current density is to errors of the head
models when the latter become more detailed. We continue by evaluating the performance of an
alternative approach to estimate the current density that is based on optimizing the conductivities
of detailed volume conductor models to maximize the fit of the simulated and the reference B,
data. Complementing our initial assessments based on simulated data, we test the two approaches
for B, data obtained from MR imaging of the human brain. In particular, we introduce a
hierarchical statistical testing approach as a principled way to test and compare the quality of
reconstructed current density images that accounts for the limited signal-to-noise ratio of measured

B, data and the fact that the ground truth of the current density is unknown in reality.

Projected Current Density Algorithm based on a Homogenous (1¢) Head Model

Figure 1A shows the conductivity distribution ¢ in an axial slice through a realistic head model
(first column) and the simulated current density distribution |J¥;}*¢| for a left-to-right (LR) current
injection (second column). The z-component B¢ of the magnetic field arising from the injected
current flow is shown in the third column. In practice, MRI measures B, only inside CSF and the
brain, which is considered here by applying a corresponding mask. Applying the standard
projected current density algorithm to the B, distribution results in the reconstructed current
distribution | J §§,C| shown in the fourth column of Figure 1A. It is obvious that the reconstructed

current density differs strongly from the true simulated current density distribution inside the

true

cranial cavity both in terms of its spatial pattern and average strength (R*=0.22 between |J5,

and |]§§,C|; average strengths: |Ji5*¢| 0.039 A/m?, |]§§,C| 0.058 A/m?). In particular, | ]§§,C| fails to
capture the spatial details of the current flow, even those that originate from large anatomical

structures such as the ventricles. In contrast, the spatial pattern of | ]§§C| is more similar to the
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current flow |J2, | inside a homogeneous conductor (Figure 1B, second column; R>=0.68 between
/%y | and | IS |, average strength of |J2, |: 0.068 A/m?). This shows that the results of the projected
current density algorithm are dominated by the simulated current density J° (eq. 2), and are less
influenced by the actually measured B, data. The reason for this low performance gets apparent
when visualizing the terms that are neglected in the projected current density algorithm (see eq. 3)
as they involve the non-measurable B, and B, components of the magnetic field (first and second
column of Fig 1C). For the simulated head anatomy, the neglected terms are as strong and even
stronger than the included terms that depend on the measured B, component (third and fourth
column of Fig 1C), which prevents a reasonable reconstruction of the true current density
distribution.

The projected current density algorithm shows similar performance for an anterior-to-posterior
(AP) current direction (rows one and two of Fig. SIA). Very similar results were also obtained
when using a head model as ground truth that incorporated anisotropic brain conductivity, derived
from diffusion MR data (Fig. S2). These control results confirm the limited applicability of the
algorithm for realistic head anatomies. In contrast, the algorithm performs better for a volume
conductor that is uniform along the z-axis, as the neglected terms are close to zero in this case (row

three in Fig. S3). For this simplified “head” model, |J55°| captures the spatial details of [J3}}*°],

especially throughout the ventricles (R>=0.63 between [J3*°| and |J35°|; average strengths: |J3)*

0.035 A/m?, | J §§C| 0.032 A/m?). The remaining differences show mostly up as blurring, caused by
a limited numerical accuracy of the gradient calculations in equation (2). This effect has also been

observed in previous studies using simplified phantoms (Sajib et al., 2012).

Projected Current Density Algorithm based on Inhomogeneous Head Models

Using more realistic volume conductor models of the head can help to make the simulated J° more
similar to the true current density. By that, the strength of the terms that are neglected in the
projected current density algorithm will also be reduced. In the following, we tested whether this
helps to improve the performance of the algorithm. For that, the reconstructed current densities
were compared when using three different head models to calculate J°: 1) A model with a single
compartment (1c) as used in the original algorithm. 2) A model with three compartments

corresponding to scalp, skull and the cranial cavity (3¢ in Fig. 2B). 3) A model with four
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compartments corresponding to scalp, skull, CSF and the brain (4c in Fig. 2B). Please see the

Methods section for the choice of the conductivities for the 3¢ and 4c models.

Expectedly, the reconstructed current density (4" column in Fig. 2B) approaches the true current
density distribution (Fig. 2A) when the head models get closer to the full model used as reference.
For example, the current density in the brain is clearly overestimated close to the electrodes when
using the 1c¢ model that does not account for the “shielding” effects of the low-conductive skull.
This effect is mostly corrected by using the 3¢ model, but only the 4c model also achieves a
reasonable estimation of the current density around the ventricles and in the sulci. Evaluation of

the RMS errors §;, (eq. 4) for the I¢, 3¢ and 4¢ models (Fig. 3A) reveals that most of the

improvement resulted from the better models used to calculate J°, while the projected current
density algorithm causes only little additional improvement. The underlying reason is that the
neglected terms are still very strong even for the more detailed models (Fig. 2C shows all terms
for the 3¢ model as example). For the 3¢ model, the algorithm reconstructs some of the details of
the current flow in the brain that are missing in the underlying J%, distribution (second row of Fig.
2B). However, this results only in a small overall improvement in §;,, (Fig. 3A). A visual
inspection of the spatial distribution of the reconstruction error revealed that the projected current
density algorithm decreased the error in many parts of the brain, but also resulted in localized
increases at several positions, in particular around the sulci (data not shown). For confirmation, an

anterior-to-posterior current direction was also tested (Figs. S1 and S4), giving similar results.

While using more realistic head models seems straightforward to reduce the reconstruction error,
it is important to note that these models still include errors, e.g. due to inaccurate segmentations
of the structural MR images or incorrectly chosen ohmic tissue conductivities which deviate from
their unknown ground truth. That is, more detailed head models will result in current density
distributions appearing realistic with more spatial high frequency content, but which are not
necessarily closer to the real current density distribution. In the following, it is therefore tested
how robustly improvements can be obtained when the head model for the J° simulations differs
from the real volume conductor and whether the projected current density algorithm is helpful to

correct errors introduced by deviations of the head models from the ground truth.

Fig. 3A shows the RMS errors 6y, for selected variations of the anatomy of the 4c model, namely

overall thinner and thicker skulls (affecting the amount of current entering the cranial cavity) and
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opened and closed sulci (affecting the amount of well-conductive CSF in the sulci and by that the
local current flow distribution). While varying the skull thickness changed the current flow only
little, modifying the sulci increased the error almost to the level of the 3¢ model (Fig. S5 shows

rec

the corresponding |J%, | and | Iy |). Fig. 3B depicts the RMS errors for the homogenous, 3¢ and
4c models when varying selected conductivities of the full model that was used as ground truth.
The scalp conductivity of the full model was set to half and double of the standard value, and the
conductivities of GM and WM were halved and doubled. In all cases, the 3¢ and 4c models
maintained a better performance than the 1¢ model. Both for the tested variations of anatomy and
conductivity, the projected current density algorithm achieved no or only moderate improvements.
In particular, changing to anatomically more accurate head models resulted in stronger

improvements than those that could be obtained by using the algorithm.

Optimization of the Tissue Conductivities of the Inhomogeneous Head Models

The above results indicate that the fit between the estimated and true current densities can be
improved more by choosing an appropriate volume conductor model than by applying the
projected current density algorithm. A straightforward approach to estimate the current density
distribution is thus to use the measured B, data to optimize the tissue conductivities of
anatomically detailed volume conductor models that are determined via the segmentation of
structural MR data. The following section provides a basic proof-of-concept that this optimization
approach can successfully account for conductivity changes of the full model used as ground truth.
The performance for volume conductor models that differ in the amount of anatomical detail is
also tested and it is assessed how the presence of inaccurate segmentations impacts reconstruction

performance.

It can be exemplarily seen in Fig. 2A and B that the similarity of the estimated and true current
density distributions J2, and Ji)'*¢ co-vary with the similarity between B? and B¢ when
changing between the 1c, 3¢ and 4c models. This is also revealed in the corresponding co-variation
between the RMS errors &)y, and §p, in Fig. 4A and C (solid lines — 1¢, 3¢ and 4c). In addition,
when varying the conductivities of the full model that serves as ground truth (solid lines in Figure

4B and D), both errors show similar dependences on the conductivity and the model (R?>=0.86

between &)y, and &g for the non-optimized cases). That is, the errors in ], relative to its ground
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truth are well reflected in the errors in B,. This favorable behavior of B, occurs as, by the Biot-
Savart law, B, is fully determined by the three-dimensional distribution of ], , with the impact of
the current density scaling with distance to the measured B, (eq. 1). It is interesting to note that,
by Ampere’s law, ], is determined by the spatial changes of all components of the magnetic field
rather than only B, (eq. 3). This explains why the projected current density algorithm can have low

performance despite a close relation between J,,, and B,.

The demonstrated relation between &), and 65 suggests that minimizing the RMS errors for B,
by optimizing the conductivities of the head models might be a useful approach to improve the
similarity between the simulated J,, and the ground truth. Indeed, optimizing the tissue
conductivities of the 3¢ and 4c models to minimize §p consistently improves the fit for J,,
(dashed lines in Fig. 4B and D, R*=0.86 between §,,, and 6, for the optimized cases). Expectedly,
the achievable improvement scales with the level of detail of the head model. Rather trivially, the
errors approach zero when the full head model is used for the optimizations (data not shown). In
general, optimization reduces 6 more than §,,, when compared to the RMS errors of the non-
optimized cases. Still, also after optimization, the remaining &p reflect well the relative
differences between the §jy,, of the different head models, making the former a useful parameter

for model comparison.

Optimizing the tissue conductivities in the presence of anatomical inaccuracies hardly changes
8)xy (dashed line in Fig. 4A) although it reduces 85 for all cases (R*=0.61 between §,,, and
6p, for the optimized cases). This indicates that constraining the optimization to a few
conductivities which affect the current flow globally reduces the risk of overfitting. However, it
also shows that accurate segmentation of the brain anatomy from the MR images is required to
ensure accurate estimations of local details of the current density distribution via this approach. In
particular, also for the non-optimized cases, changing the sulcal structure of the 4c model affects
J xy, but hardly changes B, (solid lines in Figure 4A and C). This indicates that B, is not a sensitive

marker of localized errors in the estimated current density distribution.

For confirmation, an anterior-to-posterior current direction was also tested (Fig. S6), giving similar
results. The error for J, is shown in Fig. 4E and F for completeness. Even though the relationship

between J, and B, is only indirect, it follows the same general dependence on the head model and
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conductivities as observed for J,, and B,. As an alternative to optimizing the model conductivities,
Kwon and colleagues (2016) introduced an iterative version of the projected current density
algorithm that, combined with an anatomically detailed head model, achieved good reconstruction
accuracy for simulated ground truth data. However, our initial tests suggest that stable convergence
depends on the availability of B, data for the complete head volume including scalp and skull

(Supplementary Material B).

Hierarchical Model Selection based on Statistical Testing

The results so far indicate that the tested projected current density algorithm has limited
capabilities to reconstruct the current density distribution for the complex anatomy of the human
head. Instead, a better estimation of the true current density distribution is achievable by using
detailed volume conductor models that are reconstructed from structural MR scans and optimizing
their conductivities based on the measured B, data. In contrast to the above tests that used
simulated B, data also as ground truth, measured B, data contains noise. Therefore, the difference
between the simulated and measured B, fields would not fully disappear even if the head model
was perfect. In order to quantify the quality of current density distributions calculated via head
models in practice, the difference between the simulated and measured B, field thus has to be
compared to the expected noise level of the B, measurements, for example obtained in independent
control measurements without current injection. Specifically, when optimizing model parameters
such as the conductivity values, this comparison can help to identify cases of overfitting in which
the remaining difference can be lower than the expected noise level. This is particularly relevant
for models with many free parameters. Finally, as the ground truth with regards to the conductivity
distribution is unknown, it is important to demonstrate that the current density distribution
calculated via a detailed volume conductor model results in B, data that is closer to the measured
B, data when compared to the current density distribution obtained for an anatomically simpler
model. This ensures that increasing the complexity of the head model indeed helps to improve the

approximation of the unknown true current density distribution.

In the following, rigorous statistical testing is employed to assess the quality of current density
estimates for measured B, data for two current injection directions in two participants. Initially

focusing on the current density estimates obtained for head models with pre-defined conductivities
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taken from literature, permutation testing is used to assess the difference between the models (see
the Methods section for details). Figure SA shows the measured B, data of two electrode montages
(LR and AP) for one participant, and Figure 5B and 5C depict the simulated data and the remaining
difference. The results also confirm that the current density estimated via the 4c model explains
the measured B, significantly better than that of simpler models (Fig. 5D) (A = 77.0 % and A =
10.7 % between 4c and 3¢ models for LR and AP,p < 0.01 corrected). This also holds for the
current density estimated via the standard projected current density algorithm (“lc+rec.” in Fig.
5), which achieves moderate improvements in g, compared to the 1c head model (A=25.3 % and
A=8.8 % for LR and AP, p < 0.01 corrected). As the projected current density algorithm changes
the current density only within the brain and CSF area of the imaged slice, the moderate differences
in 8p, are partly caused by the need to use J° of the 1¢ model in the remaining parts of the head
volume for calculating B,. In order to ensure a fair comparison to the 3c model, we use the same
approach when determining B, of the 3¢ model (indicated by the squares in Fig. 5D), still revealing
statistically significant differences of 11.8 % and 3.1 % for the LR and AP injections, respectively.
The results also show that the current density estimated using the 5S¢ model explains the measured
B, significantly better than the 4c model for the LR injection (A=14.6 %, p < 0.01 corrected),
whereas we do not observe a statistically significant difference for the AP injection (Fig. 5D). For
the AP montage, the impact of the ventricles on the B, distribution in the image center are visible
in both the measured B, data and the results of the 4c and 5S¢ models, but are absent for the simpler
models. However, even for the 4c and 5¢ models, the remaining differences are above the expected
noise floor seen for the control measurement for 0 mA. In addition, they exhibit clear spatial
patterns, suggesting that the 4c and 5c¢ models do not fully explain all aspects of the underlying

current density distribution.

Fig. 7A shows the corresponding current density estimates for the different models. At the SNR
of the measured B,, the projected current density algorithm (1¢ model) does not recover details of
the inhomogeneous current flow pattern that are expected to occur due to the different
conductivities between the brain and CSF. Also, the 3¢ model does not reconstruct any details of
the inhomogeneous current flow pattern, but still explains the measured B, field better because it
corrects for the impact of the low-conductive skull on the average strength of the current flow in

the cranial cavity. The 4c and 5S¢ models improve the fit to the measured B, field by accounting
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for the spatially varying conductivities in the cranial cavity. The results for the second subject are

shown in Figs. S7 and S9A, confirming the above observations.

Hierarchical Model Selection for Models with Optimized Conductivities

The B, fields of the 3¢, 4c and 5¢c models with optimized conductivities are shown in Fig. 6B for
the first subject, and the remaining differences to the measured fields are shown in Fig. 6C.
Compared to the models using literature values for the conductivities, optimization reduced the
average strength of the simulated B, fields. This decrease is a main cause of the largely improved
O, of the 3¢, 4c and 5¢ models compared to the 1c case (Fig. 6D vs 5D), and is correspondingly
reflected in the on average lower current densities of the optimized 3c, 4c and 5¢ models in Fig.
7B compared to their counterparts in Fig. 7A. In addition, the optimized B, fields in Fig. 6B also
better reflect the measured spatial variations of the simulated B, fields close to the electrodes in

particular for the LR injections.

The improvement of &5, for the 4c versus 3¢ model is statistically significant for both LR and AP
injections. Increasing the level of detail of the model further from 4c to Sc results in statistically
significant improvements for the LR injection, but not in case of the AP injection (Fig. 6D). The
B, fields obtained for the 3¢, 4c and 5¢ models result in residuals with similar spatial patterns (Fig.
6C). However, visual inspection of the 4c and 5c¢c models with the 3¢ model for the AP injection
reveals localized variations of the simulated B, fields in the middle of the brain due to the CSF-
filled ventricles. The peak absolute differences in this region are in the order of 0.3 nT, which is
similar to the differences of the simulated B, field of the 3c model and the measured B, field in
that region. These findings indicate the minimal measurement sensitivity that is required to reliably
resolve B, variations caused by large brain structures for a current injection of 1 mA baseline-to-
peak. Similar effects of the CSF-filled ventricles are also visible for the AP injection for the second

subject in in S8B (S9B shows the corresponding current densities).

While optimization strongly reduces the differences between simulated and measured B, fields,
the remaining differences still show spatial patterns that are above the strength of the noise floor
for the 0 mA results. This indicates that also the 4c and 5¢c models with optimized conductivities
do not account for all aspects of the measured B, field. The optimized conductivities are shown in

Fig. S10 for completeness.
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DISCUSSION

Using simulated and measured data, we demonstrated that the tested variant of the projected
current density algorithm (Jeong et al., 2014) achieves only coarse reconstructions of the current
density distribution in the human brain, while working as expected for artificial geometries that
are uniform along the z-direction. The algorithm neglects the components of Ampere’s law (eq. 3)
that depend on the B, and B,, components of the current-induced magnetic field. These components
are weak in geometries that are uniform along the z-direction, but can be dominant in case of the
human head. This might also explain why the projected current density algorithm achieved little
additional improvements when we tested it in combination with more detailed head models instead
of a single compartment model. In contrast, increasing the anatomical detail of the head model
alone already had a large effect on the accuracy of the estimated current densities. In our tests with
simulated ground truth data, this still held when the head model suffered from uncertainties of the
ohmic tissue conductivities or had a limited segmentation accuracy. We confirmed that these
conclusions derived from simulated ground truth data also apply to measured data: Current
densities calculated with a 3-compartment model and tissue conductivities taken from literature
explained measured B, images significantly better than current densities reconstructed using the

standard projected current density algorithm.

Our results demonstrate the importance of formal statistical testing for systematic comparisons of
volume conductor models that have different levels of anatomical detail. Statistical testing within
a hierarchical model selection framework ensured that more detailed models did indeed provide
more accurate estimations of the unknown true current density. Expanding the framework beyond
models with fixed conductivities, we also demonstrated that the framework allows for the
systematic assessment of current density estimates derived from volume conductor models that
use optimized tissue conductivities based on the measured B, images. Complemented by results
for simulated ground truth data that showed a stable convergence towards the true current densities
with varying tissue conductivities for the employed optimization approach, these findings suggest
that using the measured B, images to fit the tissue conductivities of personalized volume conductor

models might be a valuable approach in order to estimate the unknown true current density.

It is worth noting that the possibility to distinguish between the quality of different volume

conductor models using measured B, data and statistical testing also scales with the measurement
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SNR. Specifically, differences between models will occur as non-significant when the
corresponding changes of the B, data are below the noise levels. While a systematic evaluation of
the required SNR levels is outside the scope of this study, our results indicate that a sensitivity of
around 0.3 nT is required for a current injection of 1 mA in order to reveal the conductivity contrast

caused between the ventricles and surrounding brain areas.

Relation to Prior Studies

Our findings show that the blurriness and lack of detail of current density reconstructions for
human in-vivo data do not merely result from a low SNR of the B, images (Chauhan et al., 2018;
Goksu et al., 2018; Kasinadhuni et al., 2017) and a lack of accounting for the magnetic stray fields
cause by the electrode cables in two of the studies (Goksu et al., 2019). Rather, they are also due
to a limited applicability of the reconstruction algorithm to the human head anatomy. As the
reconstructed current density is biased towards the smooth current flow occurring in a volume
conductor with homogenous conductivity (Fig. 1A&B), it is likely that the similarity between the
current density distributions reconstructed from measured B, data of different persons will be
artificially increased, camouflaging interindividual differences. This effect also explains why in
our prior study the fit between current densities reconstructed from simulated and measured B,
data were consistently better than the fit between the simulated and measured B, data itself (Goksu
et al., 2018a). It is likely that also the performance of methods such as DT-MREIT (Jeong et al.,
2017), which uses the reconstructed current densities in combination with diffusion tensor images
for estimating the conductivities of brain tissues, will be markedly affected by the low accuracy of
the spatial patterns and strengths of the reconstructed current densities, leading to biased
conductivity estimates. We only assessed a specific variant of the projected current density method
(Jeong et al., 2014) so that our findings will not necessarily generalize to other current density or
conductivity reconstruction methods. However, they point towards the need to carefully ensure the
desired behavior of reconstruction algorithms when applying them to B, data of the human head.
The lacking uniformity along the z-direction and the lack of data from the scalp and skull regions

render the reconstruction problem fundamentally more difficult than for typical MREIT phantoms.

Kwon and colleagues (2016) introduced a method that combines an anatomically detailed head

model with an iterative updating procedure to improve the accuracy of the reconstructed current
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densities by minimizing the difference between calculated and measured B, data. It showed
promising performance on a simulated case in which B, data were available for the complete head
volume. However, our initial tests indicate that it requires further development to be applicable to
measured B, data with limited volume coverage and lack of data from the scalp and skull

(Supplementary Material B).

Our approach to optimize conductivities shares similarities with the algorithm proposed in (Gao
etal., 2006). Both methods optimize the conductivity values of a few tissue types instead of aiming
at a voxel-wise conductivity reconstruction, and both methods use polynomial expansions (here:
generalized polynomial chaos expansion; Gao et al.: response surface method) for representing the
functional dependence between simulated B, and conductivity in order to avoid the costly re-
evaluation of the forward model during conductivity optimization. They differ in the level of detail
of the head models and the optimized cost functions. While we chose to minimize the relative root
mean square differences between measured and simulated B,, Gao and colleagues choose a more
complex cost function that additionally incorporates the correlation coefficient. While beyond the
scope of this study, the impact of the choice of the cost function on the stability and accuracy of
the optimization procedure for low-SNR B, data might be a relevant topic to develop the overall
approach further. The largest difference concerns our use of statistical testing for model selection
in order to ensure the quality of the estimated current density distribution despite the lack of a

ground truth in case of measured B, data.

Limitations and Future Steps

We used the optimization of model conductivities as a means to estimate the current density
distribution, and systematically ensured the quality of the calculated current density distribution
by statistical testing. However, this does not imply that the optimized conductivities (or their
ratios) are necessarily robust and trustworthy, as conductivity variations of different tissues can
have quite similar effects on the current flow patterns and the measured current-induced magnetic
fields. For example, increasing scalp conductivity and decreasing skull conductivity both have the
same main effect of increasing the amount of current shunted through the scalp and decreasing the
current that enters the intracranial cavity. Alternatively, also decreasing the overall conductivity

of the intracranial tissues will have a similar impact on the current flow pattern. In other words,
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various combinations of the tissue conductivities can give similar current flow patterns, rendering
a stable estimation of the conductivities in the presence of measurement noise challenging. This
limitation does not affect the stability of the estimated current flow distributions. The
conductivities are fitted to best explain the magnetic field in the imaged slice that is strongly
depending on the current flow in the surrounding region. The simulated current flows in distant
regions are thus not necessarily more accurate than simulations based on standard conductivities
taken from literature. Similarly, they do not necessarily generalize to other electrode positions,
which becomes obvious when comparing the scalp conductivities for the LR and AP injections
(Fig. S10). Interestingly, both skull thickness and composition underneath the electrode positions
are different for the two injection schemes, which might be reflected in the change of the

conductivities.

The main aims of this study were to analyze how well the projected current density algorithm can
be applied to in-vivo B, data from the human intracranial region and to compare it with an
approach that relies on the optimization of a low number of parameters (the compartmental tissue
conductivities) of anatomically detailed head models. While voxel-wise reconstructions of the
current densities or conductivities remain the ultimate aim of MREIT and MRCDI, our findings
highlight the importance of tailoring the reconstruction approaches to the quality and specific
properties of the measurements. We based our conclusions also on hierarchical statistical testing
and in-vivo B, data, as we feel that this best ensured the validity of our findings. In contrast, for
pure simulation studies, it is more challenging to ensure transferability of the results to the
envisioned application and to properly account for factors such as deviations of the noise floor

from spatially independent and identically distributed Gaussian noise.

Our results suggest that MRCDI data might be very valuable for the further development of
personalized volume conductor models of the head. A relevant question to address would be to
examine which aspects of the head modeling need to be improved to ensure that the same
conductivity values for the modelled tissue compartments are reached independent of electrode
montage. Considering that the residuals still contain spatial patterns above the noise floor also for
the 4c and 5c¢ head models with optimized conductivities, it seems promising to test the impact of
new segmentation methods (Puonti et al., 2020) on data from a larger group of subjects. In addition,
as the simulations assume homogenous conductivities of the brain tissues, it might be interesting

to explore whether localized changes of the tissue conductivities due to pathologies such as tumors
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are detectable as outlier regions in the residual images. This effect would be similar to the local
increases in the residual images around the ventricles for 3c models and the AP injections seen
here. Increased coverage of the imaged region beyond a single slice would be beneficial for these
developments. However, this requires a careful tradeoff against maintaining and further increasing

the SNR and robustness to physiological noise.
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FIGURE LEGENDS

Figure 1 Current density reconstruction for a LR current injection. (A) Volume conductor models
of the head with different levels of anatomical detail (1c, 3¢, 4c, and full models). The results are
shown for an axial slice of these models. (B) The conductivity distribution ¢ of the full model used

as ground truth and the corresponding simulated | ]fcg,”e| and Bf™¢ distributions are shown in

columns 1-3. The current density distribution |]§§,C| that was reconstructed from B¢ by the

projected current density algorithm is shown in column 4. (C) Conductivity, current density and
magnetic field distributions for the homogenous (1c) head model that was used in the projected
current density algorithm. (D) Visualization of the terms that are neglected and included,

respectively, in the projected current density algorithm (see eq. 3) for the 1¢ head model.

Figure 2 Current density reconstructions based on different head models for a LR current injection.
(A) The conductivity distribution o of the full model used as ground truth and the corresponding

simulated |J%*¢| and B{™¢ distributions. (B) Results for the lc, 3¢ and 4c head models. Columns

1-3 show the conductivity distributions and the simulated | ]§y| and B? distributions. Column 4
depicts the current densities [J%5°| that were reconstructed by the projected current density

algorithm with the corresponding head model. (C) Visualization of the terms that are neglected

and included, respectively, in the projected current density algorithm based on the 3¢ head model.

Figure 3 RMS errors §j,, of different head models for a LR current injection, with and without
applying the projected current density algorithm. Solid and dashed lines represent the §,,,, values
for the J%,, and J35° distributions, respectively. (A) Dependence of §),,, on the anatomical level of
detail of the head model (1c, 3c and 4c models) and on segmentation errors of the 4c model. (B)
Dependence of §;4,, on variations of the conductivity of the full model that was used as ground

truth.
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Figure 4 RMS errors §),, 65, and §;, of different head models for a LR current injection, with
and without optimized conductivities. Solid and dashed lines correspond to the error values
obtained for the models with literature and optimized conductivities, respectively. The first column
(A, C & E) shows the dependence of §},,, 65, and §;, on the anatomical level of detail of the head
model (1c, 3¢ and 4c models) and on segmentation errors of the 4c model. The second column (B,
D & F) shows the dependence of §jy,, dp, and §,;, on variations of the conductivity of the full

model that was used as ground truth.

Figure 5 Experimental B, measurements and the corresponding simulated B, distributions for the
first subject. The conductivity values of the 3c, 4c and 5S¢ models were chosen from literature
values, using the procedure described in Methods section. (A) Measured B, distributions with and
without 1 mA current injections in LR and AP directions. (B) Simulated B, distributions obtained
for the Ic, 3¢, 4c and 5c¢ models and for the projected current density reconstruction based on the
lc model (1ctrec.). For the latter, B, was calculated by using the reconstructed current density
J7¢¢ in the imaged slice and J° of the homogenous head model in the rest of the head volume. (C)
Differences between the measured and simulated B, distributions. (D) Dependence of &z, on the
model. Asterisks (*) indicate significant differences between the models at p < 0.01, Bonferroni
corrected for 8 comparisons. The squares () represent 65, values obtained for B, distributions
reconstructed using J° of the 3¢ model in the imaged slice and J° of the homogenous model in the
rest of the head volume. This was done for a fair comparison of the 1c+rec. results with the 3¢
model, as the reconstructed current density algorithm only changes the current distribution in the
imaged slice and the change in B, is correspondingly lower. The dashed green and purple lines
represent the noise floors nf (eq. 7). The 65, difference between the 4c and 5S¢ models of the AP

case is non-significant (ns).

Figure 6 Results for the 3¢, 4c and 5¢ models with optimized conductivities for the first subject,
determined by minimizing the difference to the measured B, distributions. (A) Measured B,
distributions with and without 1 mA current injections. (B) Optimized B, distributions for the 3c,

4c and 5c models, corresponding to the median dz, shown in D. (C) Difference between the
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measured and optimized B, distributions. (D) Dependence of 65, on the model. The red lines
indicate the median, the boxes mark the 25th and 75th percentiles and the whisker lengths is set to
1.5 times the interquartile range. Values outside that range are marked as outliers. Blue asterisks
(*) indicate significant differences between the models at p < 0.01, Bonferroni corrected for 6

comparisons. The dashed green lines indicate the noise floors.

Figure 7 Estimated current density distributions |] | for the first subject. (A) Results for the 1c,
3¢, 4c and 5c models based on literature conductivities. Also, the results for the projected current
density reconstruction based on the 1¢c model are shown (1c+rec.). The corresponding B, fields are
shown in Fig. 5. (B) Results for the 3c, 4c and 5¢ models based on optimized conductivities. The

corresponding B, fields are shown in Fig. 6.
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