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ABSTRACT 

Magnetic resonance current density imaging (MRCDI) of the human brain aims to reconstruct the 

current density distribution caused by transcranial electric stimulation from MR-based 

measurements of the current-induced magnetic fields. The reconstruction problem is challenging 

due to a low signal-to-noise ratio and a limited volume coverage of the MR-based measurements, 

the lack of data from the scalp and skull regions and because MRCDI is only sensitive to the 

component of the current-induced magnetic field parallel to the scanner field. Most existing 

reconstruction approaches have been validated using simulation studies and measurements in 

phantoms with simplified geometries. Only one reconstruction method, the projected current 

density algorithm, has been applied to human in-vivo data so far, however resulting in blurred 

current density estimates even when applied to noise-free simulated data. 

We analyze the underlying causes for the limited performance of the projected current density 

algorithm when applied to human brain data. In addition, we compare it with an approach that 

relies on the optimization of the conductivities of a small number of tissue compartments of 

anatomically detailed head models reconstructed from structural MR data. Both for simulated 

ground truth data and human in-vivo MRCDI data, our results indicate that the estimation of 

current densities benefits more from using a personalized volume conductor model than from 

applying the projected current density algorithm. In particular, we introduce a hierarchical 

statistical testing approach as a principled way to test and compare the quality of reconstructed 

current density images that accounts for the limited signal-to-noise ratio of the human in-vivo 

MRCDI data and the fact that the ground truth of the current density is unknown for measured 

data. Our results indicate that the statistical testing approach constitutes a valuable framework for 

the further development of accurate volume conductor models of the head. Our findings also 

highlight the importance of tailoring the reconstruction approaches to the quality and specific 

properties of the available data. 

 

 

Keywords: Magnetic resonance current density imaging, magnetic resonance electrical 

impedance imaging, projected current density algorithm, hierarchical model selection. 
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INTRODUCTION 

Knowledge of electrical current density (𝑱) and conductivity (𝜎) distributions in the human brain 

is important in many neuroscience applications. It enables the control and optimization of the brain 

areas targeted by transcranial brain stimulation, and is needed for localizing neural sources from 

electro- and magnetoencephalography data. Also, it might be useful for characterizing malignant 

tissue (Holdefer et al., 2006; Miranda et al., 2014; Nathan et al., 1993). Magnetic resonance current 

density imaging (MRCDI) and magnetic resonance electrical impedance tomography (MREIT) 

are two modalities using transcranial current injections and MR imaging (MRI) to reconstruct 

current density and conductivity distributions in the brain (Scott et al., 1991). In both methods, the 

currents are injected in synchrony with an MRI pulse sequence to create a magnetic flux density 

distribution that changes the magnetic field of the MR scanner. As a result, the phase of the 

measured MR signal is modulated by the z-component of the current-induced magnetic flux 

density (𝐵௭), i.e. the part that is parallel to the static scanner field. The MR phase information thus 

can be used to obtain cross-sectional images of the current-induced magnetic flux density 𝐵௭.  

Several methods have been developed to reconstruct the current density distribution from the 

measured 𝐵௭ images. Considering Ampere’s law, a unique and unambiguous reconstruction 

requires knowledge of all three components of the current-induced magnetic flux density. As only 

the 𝐵௭ component parallel to the main magnetic field of the MRI scanner can be measured during 

an MRCDI experiment, accurate and complete current density mapping requires rotating the 

measured object inside the scanner (Eyüboğlu, 2006; Scott et al., 1991; Woo and Seo, 2008), which 

is impractical for human in-vivo brain imaging. Alternative methods thus aim to reconstruct the 

two components of the electrical current density that are orthogonal to the main scanner field (i.e., 

𝐽௫ and 𝐽௬) from a single 𝐵௭ image (Ider et al., 2010; Jeong et al., 2014; Park et al., 2007). In 

particular, the “projected current density” method introduced by Jeong et al (2014) was used in 

recent studies on in-vivo human brain MRCDI (Chauhan et al., 2018; Göksu et al., 2018a; 

Kasinadhuni et al., 2017). Combined with data from diffusion tensor imaging, projected current 

densities estimated with this method for two current injection directions (left-right and anterior-

posterior) have also been used to reconstruct the ohmic conductivity distribution in the human 

brain (Chauhan et al., 2018). The accuracy of the reconstructed current density distribution 

depends on both the quality of the 𝐵௭ images and the properties of the reconstruction methods. 

Usually, their performances are good for simple phantoms with one or more conductivity 
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inhomogeneities inside a homogenous well-conductive background (Kwon et al., 2007; Oh et al., 

2003; Park et al., 2007). Also the reconstruction method used so far for in-vivo human brain 

MRCDI studies was validated in this way (Jeong et al., 2014). However, this situation is strongly 

simplified compared to MRCDI measurements of the human head, which has a complex anatomy 

and where the brain is surrounded by the highly resistive skull and conductive scalp.  

In an earlier study (Göksu et al., 2018), we observed that the reconstructed current densities were 

only coarse estimates of the current flow in the brain even when applied to noise-free simulated 

data. Here, we explore the underlying causes and reveal fundamental limitations that occur when 

applying the projected current density method of Jeong et al (2014) to 𝐵௭ image of the human 

brain. We then explore whether the method can be modified to achieve better reconstruction 

performance. We also test an alternative approach to estimate the current density distribution that 

is based on the optimization of the conductivities of an anatomically detailed head model to fit the 

measured 𝐵௭ image. Using both simulated 𝐵௭ data serving as ground truth and 𝐵௭ data from human 

in-vivo measurements, we show that the alternative approach performs better than the projected 

current density method. In particular, we advocate for systematic statistical evaluations of the 

goodness of fit between measured and simulated 𝐵௭ data as a principled way to draw conclusions 

on the accuracy of simulations. A preprint of this paper was published on biorxiv. 
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MATERIAL AND METHODS 

 

Human Brain Imaging 

Two healthy volunteers, who had no previous neurological and psychiatric disorders, were 

included in this study. Written informed consent was obtained from the participants prior to the 

scans and they were screened for contraindications to MRI and transcranial electric stimulation 

(TES). The study complied with the Helsinki declaration on human experimentation and was 

approved by the Ethics Committee of the Capital Region of Denmark. We injected electrical 

current with ±1 mA magnitude in the left-right (LR) and anterior-posterior (AP) directions via 

surface electrodes attached to the head. The currents were applied in synchrony with a multi-

gradient-echo MR pulse sequence (Göksu et al., 2018a; Göksu et al., 2018b) on a 3T MRI scanner 

equipped with a 64-channel head coil (Magnetom PRISMA, Siemens). We measured  𝐵௭ 

distributions by post processing the acquired MR phase images (Göksu et al., 2018a)  and corrected 

unwanted effects of the magnetic stray field caused by the cable currents on the 𝐵௭ measurements 

(Göksu et al., 2019). The 𝐵௭ measurements were denoised with a Gaussian filter with a full width 

at half maximum (FWHM) value of 3 pixels.  

We generated 3D individualized head models of the subjects by utilizing prior structural T1- and 

T2-weighted measurements (Nielsen et al., 2018) to simulate the current density distribution in the 

head and the resulting magnetic field distribution caused by the currents. As described in more 

detail below, we used different head models of increasing anatomical complexity (single 

compartment, three compartments, four compartments) for the simulations. 

 

Forward Simulations 

Current densities were calculated using the Finite Element Method (FEM) implemented in 

SimNIBS 3.1.0 (Thielscher et al., 2015). The initial part of the study relied on the head model 

ernie included in the example dataset. This volume conductor model has a high resolution and is 

composed of 4.58×106 tetrahedral elements with an average volume of 1 mm3. For the later part, 

individual head models with similarly high resolutions were reconstructed from T1-weighted and 

T2-weighted structural MR images. Detailed explanations on the construction of the head model 

are given in (Nielsen et al., 2018). 
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For the full models with all tissue types, the ohmic conductivities were assigned as 𝜎௦௖௔௟௣ = 0.465, 

𝜎௦௞௨௟௟ = 0.01, 𝜎ௐெ = 0.126, 𝜎ீெ = 0.275, and 𝜎஼ௌி = 1.654 S/m (Fig. 1A) (Thielscher et al., 

2011). In addition, we simulated anatomically simplified models by combining tissue types. A 

single compartment (1c, i.e. homogenous) model was used by setting all conductivities to 𝜎௢ =

1 S/m. A model with three compartments (3c) was created by assigning the same conductivity 

𝜎௜௡௦௜ௗ௘ = 0.34 S/m to CSF, GM and WM (𝜎௦௖௔௟௣ = 0.465 S/m, 𝜎௦௞௨௟௟ = 0.01 S/m). The 

conductivity 𝜎௜௡௦௜ௗ௘ was calculated by taking the average conductivity of the region composed of 

WM, GM, and CSF volumes, weighted according to their relative volumes, in the slice being 

imaged. Finally, a model with four compartments (4c) was created by combining GM and WM 

with a conductivity of 𝜎௕௥௔௜௡ = 0.18 S/m that was determined as the average of 𝜎ௐெ and 𝜎ீெ in 

the imaged slice (𝜎௦௖௔௟௣ = 0.465 , 𝜎௦௞௨௟௟ = 0.01 S/m, 𝜎஼ௌிୀ1.654). In all models, we injected 

electrical current with 1 mA magnitude in LR and AP directions to calculate 𝑱 distributions in the 

brain using FEM for numerically solving the Laplace equation for the electric potential (Saturnino 

et al., 2019a). The current-induced 𝑩 distributions were determined from the current density by 

applying the Biot–Savart law using the Fast Fourier Transform (Yazdanian et al., 2020). In 

particular, the z-component of the current-induced magnetic flux density 𝐵௭ is given by 

 

𝐵௭(𝒑) =
ఓ೚

ସగ
∫

௃ೣ൫௬ି௬ᇲ൯ି ௃೤൫௫ି௫ᇲ൯

|𝒑ି𝒑ᇲ|య
𝑑𝒑ᇱ

௏
,                                         (1) 

 

where 𝒑 = [𝑥, 𝑦, 𝑧] is the position at which 𝐵௭  is evaluated, 𝑉 denotes the head model and 𝒑′ =

[𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ] are positions inside 𝑉.  𝑱 = ൣ𝐽௫ , 𝐽௬ , 𝐽௭൧ is the current density in the head model and 

constant 𝜇௢ is the magnetic permeability of free space. 

In addition, we aimed to test how much the projected current density 𝑱௥௘௖, reconstructed in the 

imaging slice using the projected current density algorithm (equation (2) below), changes the 

current-induced 𝐵௭ distributions. For that, we substituted the calculated 𝑱 distributions by 𝑱௥௘௖ at 

the positions corresponding to CSF and brain in the imaging slice before determining the current-

induced 𝑩 distribution. 
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Projected Current Density Algorithm 

The projected current density algorithm introduced by Jeong et al (2014) reconstructs a current 

density distribution 𝑱௥௘௖ from a 𝐵௭ image 

 

𝑱௥௘௖ = 𝑱௢ +
ଵ

ఓ೚
ቂ

డ(஻೥ି஻೥
೚)

డ௬
,

ିడ(஻೥ି஻೥
೚)

డ௫
, 0ቃ,                 (2) 

 

using simulated current densities 𝑱௢ = ൣ𝐽௫
௢ , 𝐽௬

௢ , 𝐽௭
௢൧ and magnetic flux densities 𝐵௭

௢ that are based on 

a volume conductor model of the subject. In the original form of the algorithm, 𝑱௢ and 𝐵௭
௢ are 

obtained for a model with a homogeneous conductivity 𝜎௢  (1c) and the outer shape of the imaged 

object (Fig. 1B). The reconstructed current density distribution 𝑱௥௘௖ is then composed of a smooth 

and curl-free component 𝑱௢ that is superimposed onto a high contrast component based on 

directional derivatives of 𝐵௭ − 𝐵௭
௢. The latter scales with the local difference between measured 

and simulated magnetic flux densities. 

The algorithm can be easily derived from Ampère’s law. The unknown true current density 𝑱 that 

gives rise to the magnetic field B can be written as: 

𝑱 = 𝑱௢ + (𝑱 − 𝑱௢) = 𝑱௢ +
ଵ

ఓ೚
(∇ × 𝑩 − ∇ × 𝑩௢) = 𝑱௢ +

ଵ

ఓ೚

⎣
⎢
⎢
⎢
⎢
⎡

డ(஻೥ି஻೥
೚)

డ௬
−

డ൫஻೤ି஻೤
೚൯

డ௭

డ(஻ೣି஻ೣ
೚)

డ௭
−

డ(஻೥ି஻೥
೚)

డ௫

డ൫஻೤ି஻೤
೚൯

డ௫
−

డ(஻ೣି஻ೣ
೚)

డ௬ ⎦
⎥
⎥
⎥
⎥
⎤

. (3) 

 

As we only measure 𝐵௭, our best possible assumption about the spatial derivatives of the two 

unknown components of B are 𝜕𝐵௫
𝜕𝑧

ൗ ≈
𝜕𝐵௫

௢

𝜕𝑧
ൗ  and 

𝜕𝐵௬

𝜕𝑧
ൗ ≈

𝜕𝐵௬
௢

𝜕𝑧
ൗ . In this case, equation 

(3) simplifies to equation (2). For example, this assumption will approximately hold in phantoms 

that is uniform along the z-direction and in which the z-component of the injected current can be 

kept small. 

The algorithm is straightforward to implement and can be applied to single cross-sectional 

simulated 𝐵௭ images in case of limited volume coverage. In contrast to the original projected 

current density method that employs a second-order Laplacian operator (Park et al., 2007), the 

modified variant proposed by Jeong et al (2014) relies only on first-order spatial derivatives of the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2021. ; https://doi.org/10.1101/2021.04.22.440915doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440915
http://creativecommons.org/licenses/by-nc-nd/4.0/


8/32 
 

𝐵௭ image data. This reduces the amplification of high-frequency noise by the derivative operations 

and potentially improves the quality of the reconstructed current density images from 𝐵௭ data with 

lower signal-to-noise ratios (SNR). In addition, the method introduced by Jeong et al (2014) only 

requires local derivative operations, making it applicable to data from objects that contain large 

regions with low or no signal such as the human head with the skull and air cavities. On the 

downside, an error analysis by Jeong et al (2014) suggests that the simplified method will likely 

suffer from higher reconstruction errors for high SNR 𝐵௭ images compared to the original approach 

suggested in (Park et al., 2007). 

 

Error Metrics 

We evaluated the difference between a current density 𝑱௫௬ and a reference current density 𝑱௫௬
௥௘௙ 

using the relative root mean square (RMS) differences: 

  

𝛿௃௫௬ = ඨ
ஊ೔సభ

ಿ ቈ൬௃ೣ(௜)ି௃ೣ
ೝ೐೑(௜)൰

మ

ାቀ௃೤(௜)ି௃೤
ೝ೐೑

(௜)ቁ
మ

቉ 

ஊ೔సభ
ಿ ቀ௃ೣ

ೝ೐೑(௜)మା௃೤
ೝ೐೑(௜)మቁ

× 100 %                          (4) 

 

Here, 𝑖 is the pixel index and 𝑁 is the number of pixels inside the measured region composed of 

WM, GM and CSF. Please note that we restricted the comparison to the x- and y-components of 

the current flow, as only those influence the z-component of the magnetic flux density 𝐵௭ measured 

by MRI and as only the x- and y-components of the current density are changed by the projected 

current density algorithm. For completeness, we also evaluated the difference between 𝐽௭ and the 

z-component of a reference current density 𝐽௭
௥௘௙ in selected cases as 

 

𝛿௃௭ = ඨ
ஊ೔సభ

ಿ ቀ௃೥(௜)ି௃೥
ೝ೐೑

(௜)ቁ
మ

ஊ೔సభ
ಿ ൬௃೥

ೝ೐೑(௜)൰
మ × 100 %.                                           (5) 

 

In addition, we quantified the differences between the z-component of the current induced 

magnetic flux density 𝐵௭ and a reference case 𝐵௭
௥௘௙ as 
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𝛿஻೥
= ඨ

ஊ೔సభ
ಿ ቀ஻೥(௜)ି஻೥

ೝ೐೑
(௜)ቁ

మ

ஊ೔సభ
ಿ ൬஻೥

ೝ೐೑(௜)൰
మ × 100 %.                                           (6) 

 

Finally, we calculated relative noise floors (𝑛𝑓, the inverse SNR) for the experimentally measured 

current-induced 𝐵௭ images as 

 

𝑛𝑓 = ඨ
ஊ೔సభ

ಿ ቀ஻೥
೘@బ೘ಲ(௜)ቁ

మ

ஊ೔సభ
ಿ ൫஻೥

೘(௜)൯
మ × 100 %,                                           (7) 

 

where 𝐵௭
௠ and 𝐵௭

௠@଴௠஺ are the measured 𝐵௭ fields with and without current injection, respectively. 

 

Optimization of conductivities 

As alternative approach to estimate current densities from magnetic flux densities, we optimized 

the tissue-specific conductivities using the sequential least squares programming (SLSQP) 

algorithm (Kraft, 1988) with the goal to minimize the error 𝛿஻೥
 between the simulated magnetic 

flux density 𝐵௭ given by the head models and the reference 𝐵௭
௥௘௙. Initially, we used the simulated 

magnetic flux density of the full model with all tissue types as reference to confirm the stability of 

the optimization approach. Subsequently, measured 𝐵௭ images from the human imaging data 

served as reference. We implemented constraints on the conducitivities to reduce the likelihood of 

overfitting that could occur, e.g. in case of systematic differences of the volume conductor models 

to the true head anatomy. For the 3c model, we constrained 𝜎௦௖௔௟௣, 𝜎௦௞௨௟௟ and 𝜎௜௡௦௜ௗ௘ to the ranges 

[0.2 < 𝜎௦௖௔௟௣<1, 0.003 < 𝜎௦௞௨௟௟ < 0.03, 0.2 < 𝜎௜௡௦௜ௗ௘ < 0.95] S/m. For the 4c model, we used 

the ranges [0.2 < 𝜎௦௖௔௟௣ < 1, 0.003 < 𝜎௦௞௨௟௟ < 0.03, 1.2 < 𝜎஼ௌி < 1.9, 0.05 < 𝜎௕௥௔௜௡ < 0.95] 

S/m. We also fitted the full model with five conductivities (5c) to human imaging data by using 

the ranges [0.2 < 𝜎௦௖௔௟௣ < 1, 0.003 < 𝜎௦௞௨௟௟ < 0.03, 1.2 < 𝜎஼ௌி < 1.9, 0.05 < 𝜎ௐெ < 0.95,                    

0.05 < 𝜎ீெ < 0.95] S/m. For the 5c model, we imposed 𝜎ீெ > 𝜎ௐெ as an additional constraint. 

For the 5c model, the ranges were chosen to well include the conductivities reported in studies that 

measured relatively fresh or live tissue, preferably human at low frequencies (0–100 kHz) near 

body temperature (Saturnino et al., 2019b, Table 1). The ranges of the combined tissue regions of 

the 3c and 4c models were chosen correspondingly using volume-weighted averages of the ranges 
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for the tissues of the 5c model. We initialized the optimization algorithm with [𝜎௦௖௔௟௣ = 0.465, 

𝜎௦௞௨௟௟ = 0.01, 𝜎௜௡௦௜ௗ௘ = 0.34] S/m for the 3c model and [𝜎௦௖௔௟௣ = 0.465, 𝜎௦௞௨௟௟ = 0.01, 𝜎௕௥௔௜௡ =

0.18] S/m for the 4c model and [𝜎௦௖௔௟௣ = 0.465, 𝜎௦௞௨௟௟ = 0.01, 𝜎஼ௌி = 1.654, 𝜎ௐெ = 0.126, 

𝜎ீெ = 0.275] S/m for the 5c model.  

It is worth noting that without additional knowledge of the total resistance between the two 

stimulation electrodes, the tissue conductivities are only determined up to a common scaling factor. 

That is, for a head model with N tissue compartments, only N-1 conductivity ratios are uniquely 

determined via the optimization algorithm. We could have directly optimized N-1 conductivity 

ratios instead. However, this would have required the choice of an arbitrary “reference” tissue and 

would have made the use of biologically plausible conductivity ranges as constraints in the 

optimization difficult. 

Applying the optimization algorithm requires the repeated evaluation of 𝐵௭ for varying 

conductivities of the head models. This is computationally expensive when it is based on FEM 

simulations for obtaining the current densitiy 𝑱 and subsequent solving of the Biot–Savart law 

using the Fast-Fourier Transform. Therefore, we employed a non-intrusive generalized polynomial 

chaos (gPC) expansion for the fast evaluation of 𝐵௭ as a function of the conductivities (scalp, skull, 

CSF, GM, WM) (Codecasa et al., 2015; Ghanem et al., 2017; Saturnino et al., 2019b; Wiener, 

1938). For the gPC expansions, we used a Jacobian polynomial basis set with a maximum order 

of 10 and sampled the conductivities by using uniform probability density functions. We selected 

the conductivity ranges of the gPC expansions slightly larger than the corresponding bounds of the 

optimization algorithm in order to ensure sufficient accuracy of the 𝐵௭ fields across the tested 

conductivity range. We used K-fold cross validation with 𝐾 = 10 for the evaluation of the relative 

error between the 𝐵௭ fields obtained from the forward simulations and gPC expansions, and set the 

relative error of the gPC method to 1%. Training of the gPC converged after ~250 FEM 

simulations. Using the gPC model, we were then able to reevaluate the 𝐵௭ fields in the complete 

head model as a function of the conductivity parameters with a computation time in the order of a 

few seconds. For further details on our gPC implementation, please refer to (Saturnino et al., 

2019b). 
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Statistical Testing 

Taking the measured current-induced 𝐵௭ images from the human imaging data as reference, we 

assessed the differences 𝛿஻೥
 (eq. 6) between the simulated and measured 𝐵௭ data as an indication 

of the quality of the simulations. In particular, we compared two simulations by calculating 

∆𝛿஻೥
= 𝛿஻೥

భ−𝛿஻೥
మ, where 𝛿஻೥

భ and 𝛿஻೥
మ denote the root mean square differences between simulations 

and measured 𝐵௭ data. We generated 𝐻௢ distributions by randomly assigning the voxels of the two 

simulated 𝐵௭ images to two “test images” and calculating ∆𝛿஻೥
 for these test images. This was 

repeated 10000 times. We then calculated a one-sided p-value, testing if a more complex model 

results in smaller differences when compared to the reference data. This was done by assessing the 

proportion of sampled permutations where the difference was greater than or equal to the observed 

difference ∆𝛿஻೥
. Significance was then assessed at p=0.01, Bonferroni corrected for the number of 

comparisons. 

In order to systematically compare the 5c, 4c and 3c head models with optimized conductivities, 

we randomly selected 80% of the imaged slice as input for the optimization algorithm. Then, we 

calculated the errors 𝛿஻೥
భ and 𝛿஻೥

మ for the remaining 20% of the slice for each of the two head 

models, and determined the difference ∆𝛿஻೥
= 𝛿஻೥

భ−𝛿஻೥
మ, between the simpler (𝛿஻೥

భ) and the more 

complicated model (𝛿஻೥
మ). This was repeated 10000 times. Finally, as above, we calculated a one-

sided p-value by assessing the proportion where the absolute difference was greater than the 

observed difference ∆𝛿஻೥
, and tested for significance at p=0.01, Bonferroni corrected for the 

number of comparisons. We used the same procedure to compare the conductivity-optimized 3c 

head model with the 1c head model, however keeping the conductivity of the 1c model fixed and 

only repeatedly optimizing the 3c model. 

 

Data and Code Availability 

The original MR data cannot be made publicly available due to privacy restrictions. The largest 

part of the methods is publicly available via our project homepage www.simnibs.org. This includes 

the methods for building the head volume conductors from structural MR images, forward 

simulations of the current densities and current-induced magnetic fields and non-intrusive 

generalized polynomial chaos expansions for fast re-evaluation of the current-induced magnetic 

fields in case of changing conductivities. The scripts for statistical testing were developed to 
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address our immediate research needs, but not as easy-to-use software for dissemination and will 

therefore not be made publicly available at the current time point. 

 

RESULTS 

In the following, we start by characterizing the performance of the “standard” projected current 

density algorithm, using simulated ground truth data as reference. We then assess whether the 

reconstruction accuracy of the algorithm can be improved by using more realistic volume 

conductor models, and test how sensitive the reconstructed current density is to errors of the head 

models when the latter become more detailed. We continue by evaluating the performance of an 

alternative approach to estimate the current density that is based on optimizing the conductivities 

of detailed volume conductor models to maximize the fit of the simulated and the reference 𝐵௭ 

data. Complementing our initial assessments based on simulated data, we test the two approaches 

for 𝐵௭ data obtained from MR imaging of the human brain. In particular, we introduce a 

hierarchical statistical testing approach as a principled way to test and compare the quality of 

reconstructed current density images that accounts for the limited signal-to-noise ratio of measured 

𝐵௭ data and the fact that the ground truth of the current density is unknown in reality. 

 

Projected Current Density Algorithm based on a Homogenous (1c) Head Model 

Figure 1A shows the conductivity distribution 𝜎 in an axial slice through a realistic head model 

(first column) and the simulated current density distribution |𝑱௫௬
௧௥௨௘| for a left-to-right (LR) current 

injection (second column). The z-component 𝐵௭
௧௥௨௘ of the magnetic field arising from the injected 

current flow is shown in the third column. In practice, MRI measures 𝐵௭ only inside CSF and the 

brain, which is considered here by applying a corresponding mask. Applying the standard 

projected current density algorithm to the 𝐵௭ distribution results in the reconstructed current 

distribution ห𝑱௫௬
௥௘௖ห shown in the fourth column of Figure 1A. It is obvious that the reconstructed 

current density differs strongly from the true simulated current density distribution inside the 

cranial cavity both in terms of its spatial pattern and average strength (R²=0.22 between |𝑱௫௬
௧௥௨௘| 

and ห𝑱௫௬
௥௘௖ห; average strengths: |𝑱௫௬

௧௥௨௘| 0.039 A/m², ห𝑱௫௬
௥௘௖ห 0.058 A/m²). In particular, ห𝑱௫௬

௥௘௖ห fails to 

capture the spatial details of the current flow, even those that originate from large anatomical 

structures such as the ventricles. In contrast, the spatial pattern of ห𝑱௫௬
௥௘௖ห is more similar to the 
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current flow |𝑱௫௬
௢ | inside a homogeneous conductor (Figure 1B, second column; R²=0.68 between 

|𝑱௫௬
௢ | and ห𝑱௫௬

௥௘௖ห, average strength of |𝑱௫௬
௢ |: 0.068 A/m²). This shows that the results of the projected 

current density algorithm are dominated by the simulated current density 𝑱௢ (eq. 2), and are less 

influenced by the actually measured 𝐵௭ data. The reason for this low performance gets apparent 

when visualizing the terms that are neglected in the projected current density algorithm (see eq. 3) 

as they involve the non-measurable 𝐵௫ and 𝐵௬ components of the magnetic field (first and second 

column of Fig 1C). For the simulated head anatomy, the neglected terms are as strong and even 

stronger than the included terms that depend on the measured 𝐵௭ component (third and fourth 

column of Fig 1C), which prevents a reasonable reconstruction of the true current density 

distribution. 

The projected current density algorithm shows similar performance for an anterior-to-posterior 

(AP) current direction (rows one and two of Fig. S1A). Very similar results were also obtained 

when using a head model as ground truth that incorporated anisotropic brain conductivity, derived 

from diffusion MR data (Fig. S2). These control results confirm the limited applicability of the 

algorithm for realistic head anatomies. In contrast, the algorithm performs better for a volume 

conductor that is uniform along the z-axis, as the neglected terms are close to zero in this case (row 

three in Fig. S3). For this simplified “head” model, |𝑱௫௬
௥௘௖| captures the spatial details of |𝑱௫௬

௧௥௨௘|, 

especially throughout the ventricles (R²=0.63 between |𝑱௫௬
௧௥௨௘| and |𝑱௫௬

௥௘௖|; average strengths: |𝑱௫௬
௧௥௨௘| 

0.035 A/m², ห𝑱௫௬
௥௘௖ห 0.032 A/m²). The remaining differences show mostly up as blurring, caused by 

a limited numerical accuracy of the gradient calculations in equation (2). This effect has also been 

observed in previous studies using simplified phantoms (Sajib et al., 2012). 

 

Projected Current Density Algorithm based on Inhomogeneous Head Models 

Using more realistic volume conductor models of the head can help to make the simulated 𝑱௢ more 

similar to the true current density. By that, the strength of the terms that are neglected in the 

projected current density algorithm will also be reduced. In the following, we tested whether this 

helps to improve the performance of the algorithm. For that, the reconstructed current densities 

were compared when using three different head models to calculate 𝑱௢: 1) A model with a single 

compartment (1c) as used in the original algorithm. 2) A model with three compartments 

corresponding to scalp, skull and the cranial cavity (3c in Fig. 2B). 3) A model with four 
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compartments corresponding to scalp, skull, CSF and the brain (4c in Fig. 2B). Please see the 

Methods section for the choice of the conductivities for the 3c and 4c models. 

Expectedly, the reconstructed current density (4th column in Fig. 2B) approaches the true current 

density distribution (Fig. 2A) when the head models get closer to the full model used as reference. 

For example, the current density in the brain is clearly overestimated close to the electrodes when 

using the 1c model that does not account for the “shielding” effects of the low-conductive skull. 

This effect is mostly corrected by using the 3c model, but only the 4c model also achieves a 

reasonable estimation of the current density around the ventricles and in the sulci. Evaluation of 

the RMS errors 𝛿௃௫௬ (eq. 4) for the 1c, 3c and 4c models (Fig. 3A) reveals that most of the 

improvement resulted from the better models used to calculate 𝑱௢, while the projected current 

density algorithm causes only little additional improvement. The underlying reason is that the 

neglected terms are still very strong even for the more detailed models (Fig. 2C shows all terms 

for the 3c model as example). For the 3c model, the algorithm reconstructs some of the details of 

the current flow in the brain that are missing in the underlying 𝑱௫௬
௢  distribution (second row of Fig. 

2B). However, this results only in a small overall improvement in 𝛿௃௫௬ (Fig. 3A). A visual 

inspection of the spatial distribution of the reconstruction error revealed that the projected current 

density algorithm decreased the error in many parts of the brain, but also resulted in localized 

increases at several positions, in particular around the sulci (data not shown). For confirmation, an 

anterior-to-posterior current direction was also tested (Figs. S1 and S4), giving similar results. 

While using more realistic head models seems straightforward to reduce the reconstruction error, 

it is important to note that these models still include errors, e.g. due to inaccurate segmentations 

of the structural MR images or incorrectly chosen ohmic tissue conductivities which deviate from 

their unknown ground truth. That is, more detailed head models will result in current density 

distributions appearing realistic with more spatial high frequency content, but which are not 

necessarily closer to the real current density distribution. In the following, it is therefore tested 

how robustly improvements can be obtained when the head model for the 𝑱௢ simulations differs 

from the real volume conductor and whether the projected current density algorithm is helpful to 

correct errors introduced by deviations of the head models from the ground truth. 

Fig. 3A shows the RMS errors 𝛿௃௫௬ for selected variations of the anatomy of the 4c model, namely 

overall thinner and thicker skulls (affecting the amount of current entering the cranial cavity) and 
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opened and closed sulci (affecting the amount of well-conductive CSF in the sulci and by that the 

local current flow distribution). While varying the skull thickness changed the current flow only 

little, modifying the sulci increased the error almost to the level of the 3c model (Fig. S5 shows 

the corresponding |𝑱௫௬
௢ | and ห𝑱௫௬

௥௘௖ห). Fig. 3B depicts the RMS errors for the homogenous, 3c and 

4c models when varying selected conductivities of the full model that was used as ground truth. 

The scalp conductivity of the full model was set to half and double of the standard value, and the 

conductivities of GM and WM were halved and doubled. In all cases, the 3c and 4c models 

maintained a better performance than the 1c model. Both for the tested variations of anatomy and 

conductivity, the projected current density algorithm achieved no or only moderate improvements. 

In particular, changing to anatomically more accurate head models resulted in stronger 

improvements than those that could be obtained by using the algorithm. 

 

Optimization of the Tissue Conductivities of the Inhomogeneous Head Models 

The above results indicate that the fit between the estimated and true current densities can be 

improved more by choosing an appropriate volume conductor model than by applying the 

projected current density algorithm. A straightforward approach to estimate the current density 

distribution is thus to use the measured 𝐵௭ data to optimize the tissue conductivities of 

anatomically detailed volume conductor models that are determined via the segmentation of 

structural MR data. The following section provides a basic proof-of-concept that this optimization 

approach can successfully account for conductivity changes of the full model used as ground truth. 

The performance for volume conductor models that differ in the amount of anatomical detail is 

also tested and it is assessed how the presence of inaccurate segmentations impacts reconstruction 

performance. 

It can be exemplarily seen in Fig. 2A and B that the similarity of the estimated and true current 

density distributions 𝑱௫௬
௢  and 𝑱௫௬

௧௥௨௘ co-vary with the similarity between 𝐵௭
଴ and 𝐵௭

௧௥௨௘ when 

changing between the 1c, 3c and 4c models. This is also revealed in the corresponding co-variation 

between the RMS errors 𝛿௃௫௬ and 𝛿஻೥
 in Fig. 4A and C (solid lines – 1c, 3c and 4c). In addition, 

when varying the conductivities of the full model that serves as ground truth (solid lines in Figure 

4B and D), both errors show similar dependences on the conductivity and the model (R²=0.86 

between 𝛿௃௫௬ and 𝛿஻೥
 for the non-optimized cases). That is, the errors in 𝑱௫௬ relative to its ground 
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truth are well reflected in the errors in 𝐵௭. This favorable behavior of 𝐵௭ occurs as, by the Biot-

Savart law, 𝐵௭ is fully determined by the three-dimensional distribution of 𝑱௫௬, with the impact of 

the current density scaling with distance to the measured 𝐵௭ (eq. 1). It is interesting to note that, 

by Ampère’s law, 𝑱௫௬ is determined by the spatial changes of all components of the magnetic field 

rather than only 𝐵௭ (eq. 3). This explains why the projected current density algorithm can have low 

performance despite a close relation between 𝑱௫௬ and 𝐵௭.  

The demonstrated relation between 𝛿௃௫௬ and 𝛿஻೥
 suggests that minimizing the RMS errors for 𝐵௭ 

by optimizing the conductivities of the head models might be a useful approach to improve the 

similarity between the simulated 𝑱௫௬ and the ground truth. Indeed, optimizing the tissue 

conductivities of the 3c and 4c models to minimize 𝛿஻೥
 consistently improves the fit for 𝑱௫௬ 

(dashed lines in Fig. 4B and D, R²=0.86 between 𝛿௃௫௬ and 𝛿஻೥
 for the optimized cases). Expectedly, 

the achievable improvement scales with the level of detail of the head model. Rather trivially, the 

errors approach zero when the full head model is used for the optimizations (data not shown). In 

general, optimization reduces 𝛿஻೥
 more than  𝛿௃௫௬ when compared to the RMS errors of the non-

optimized cases. Still, also after optimization, the remaining 𝛿஻೥
 reflect well the relative 

differences between the 𝛿௃௫௬ of the different head models, making the former a useful parameter 

for model comparison. 

Optimizing the tissue conductivities in the presence of anatomical inaccuracies hardly changes 

𝛿௃௫௬ (dashed line in Fig. 4A) although it reduces 𝛿஻೥
 for all cases (R²=0.61 between 𝛿௃௫௬ and 

𝛿஻೥
 for the optimized cases). This indicates that constraining the optimization to a few 

conductivities which affect the current flow globally reduces the risk of overfitting. However, it 

also shows that accurate segmentation of the brain anatomy from the MR images is required to 

ensure accurate estimations of local details of the current density distribution via this approach. In 

particular, also for the non-optimized cases, changing the sulcal structure of the 4c model affects 

𝑱௫௬, but hardly changes 𝐵௭ (solid lines in Figure 4A and C). This indicates that 𝐵௭ is not a sensitive 

marker of localized errors in the estimated current density distribution.  

For confirmation, an anterior-to-posterior current direction was also tested (Fig. S6), giving similar 

results. The error for  𝐽௭  is shown in Fig. 4E and F for completeness. Even though the relationship 

between 𝐽௭  and 𝐵௭ is only indirect, it follows the same general dependence on the head model and 
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conductivities as observed for 𝑱௫௬ and 𝐵௭. As an alternative to optimizing the model conductivities, 

Kwon and colleagues (2016) introduced an iterative version of the projected current density 

algorithm that, combined with an anatomically detailed head model, achieved good reconstruction 

accuracy for simulated ground truth data. However, our initial tests suggest that stable convergence 

depends on the availability of 𝐵௭ data for the complete head volume including scalp and skull 

(Supplementary Material B). 

 

Hierarchical Model Selection based on Statistical Testing 

The results so far indicate that the tested projected current density algorithm has limited 

capabilities to reconstruct the current density distribution for the complex anatomy of the human 

head. Instead, a better estimation of the true current density distribution is achievable by using 

detailed volume conductor models that are reconstructed from structural MR scans and optimizing 

their conductivities based on the measured 𝐵௭ data. In contrast to the above tests that used 

simulated 𝐵௭ data also as ground truth, measured 𝐵௭ data contains noise. Therefore, the difference 

between the simulated and measured 𝐵௭ fields would not fully disappear even if the head model 

was perfect. In order to quantify the quality of current density distributions calculated via head 

models in practice, the difference between the simulated and measured 𝐵௭ field thus has to be 

compared to the expected noise level of the 𝐵௭ measurements, for example obtained in independent 

control measurements without current injection. Specifically, when optimizing model parameters 

such as the conductivity values, this comparison can help to identify cases of overfitting in which 

the remaining difference can be lower than the expected noise level. This is particularly relevant 

for models with many free parameters. Finally, as the ground truth with regards to the conductivity 

distribution is unknown, it is important to demonstrate that the current density distribution 

calculated via a detailed volume conductor model results in 𝐵௭ data that is closer to the measured 

𝐵௭ data when compared to the current density distribution obtained for an anatomically simpler 

model. This ensures that increasing the complexity of the head model indeed helps to improve the 

approximation of the unknown true current density distribution. 

In the following, rigorous statistical testing is employed to assess the quality of current density 

estimates for measured 𝐵௭ data for two current injection directions in two participants. Initially 

focusing on the current density estimates obtained for head models with pre-defined conductivities 
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taken from literature, permutation testing is used to assess the difference between the models (see 

the Methods section for details). Figure 5A shows the measured 𝐵௭ data of two electrode montages 

(LR and AP) for one participant, and Figure 5B and 5C depict the simulated data and the remaining 

difference. The results also confirm that the current density estimated via the 4c model explains 

the measured 𝐵௭ significantly better than that of simpler models (Fig. 5D) (Δ = 77.0 % and Δ =

10.7 % between 4c and 3c models for LR and AP, 𝑝 ≤ 0.01 corrected). This also holds for the 

current density estimated via the standard projected current density algorithm (“1c+rec.” in Fig. 

5), which achieves moderate improvements in 𝛿஻௭ compared to the 1c head model (Δ=25.3 % and 

Δ=8.8 % for LR and AP, 𝑝 ≤ 0.01 corrected). As the projected current density algorithm changes 

the current density only within the brain and CSF area of the imaged slice, the moderate differences 

in 𝛿஻௭ are partly caused by the need to use 𝑱௢ of the 1c model in the remaining parts of the head 

volume for calculating 𝐵௭. In order to ensure a fair comparison to the 3c model, we use the same 

approach when determining 𝐵௭ of the 3c model (indicated by the squares in Fig. 5D), still revealing 

statistically significant differences of 11.8 % and 3.1 % for the LR and AP injections, respectively. 

The results also show that the current density estimated using the 5c model explains the measured 

𝐵௭ significantly better than the 4c model for the LR injection (Δ=14.6 %, 𝑝 ≤ 0.01 corrected), 

whereas we do not observe a statistically significant difference for the AP injection (Fig. 5D). For 

the AP montage, the impact of the ventricles on the 𝐵௭ distribution in the image center are visible 

in both the measured 𝐵௭ data and the results of the 4c and 5c models, but are absent for the simpler 

models. However, even for the 4c and 5c models, the remaining differences are above the expected 

noise floor seen for the control measurement for 0 mA. In addition, they exhibit clear spatial 

patterns, suggesting that the 4c and 5c models do not fully explain all aspects of the underlying 

current density distribution.  

Fig. 7A shows the corresponding current density estimates for the different models. At the SNR 

of the measured 𝐵௭, the projected current density algorithm (1c model) does not recover details of 

the inhomogeneous current flow pattern that are expected to occur due to the different 

conductivities between the brain and CSF. Also, the 3c model does not reconstruct any details of 

the inhomogeneous current flow pattern, but still explains the measured 𝐵௭ field better because it 

corrects for the impact of the low-conductive skull on the average strength of the current flow in 

the cranial cavity. The 4c and 5c models improve the fit to the measured 𝐵௭ field by accounting 
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for the spatially varying conductivities in the cranial cavity. The results for the second subject are 

shown in Figs. S7 and S9A, confirming the above observations.  

 

Hierarchical Model Selection for Models with Optimized Conductivities 

The 𝐵௭ fields of the 3c, 4c and 5c models with optimized conductivities are shown in Fig. 6B for 

the first subject, and the remaining differences to the measured fields are shown in Fig. 6C. 

Compared to the models using literature values for the conductivities, optimization reduced the 

average strength of the simulated 𝐵௭ fields. This decrease is a main cause of the largely improved 

𝛿஻௭ of the 3c, 4c and 5c models compared to the 1c case (Fig. 6D vs 5D), and is correspondingly 

reflected in the on average lower current densities of the optimized 3c, 4c and 5c models in Fig. 

7B compared to their counterparts in Fig. 7A. In addition, the optimized 𝐵௭ fields in Fig. 6B also 

better reflect the measured spatial variations of the simulated 𝐵௭ fields close to the electrodes in 

particular for the LR injections.  

The improvement of 𝛿஻௭ for the 4c versus 3c model is statistically significant for both LR and AP 

injections. Increasing the level of detail of the model further from 4c to 5c results in statistically 

significant improvements for the LR injection, but not in case of the AP injection (Fig. 6D). The 

𝐵௭ fields obtained for the 3c, 4c and 5c models result in residuals with similar spatial patterns (Fig. 

6C). However, visual inspection of the 4c and 5c models with the 3c model for the AP injection 

reveals localized variations of the simulated 𝐵௭ fields in the middle of the brain due to the CSF-

filled ventricles. The peak absolute differences in this region are in the order of 0.3 nT, which is 

similar to the differences of the simulated 𝐵௭ field of the 3c model and the measured 𝐵௭ field in 

that region. These findings indicate the minimal measurement sensitivity that is required to reliably 

resolve 𝐵௭ variations caused by large brain structures for a current injection of 1 mA baseline-to-

peak. Similar effects of the CSF-filled ventricles are also visible for the AP injection for the second 

subject in in S8B (S9B shows the corresponding current densities).  

While optimization strongly reduces the differences between simulated and measured 𝐵௭ fields, 

the remaining differences still show spatial patterns that are above the strength of the noise floor 

for the 0 mA results. This indicates that also the 4c and 5c models with optimized conductivities 

do not account for all aspects of the measured 𝐵௭ field. The optimized conductivities are shown in 

Fig. S10 for completeness.  
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DISCUSSION 

Using simulated and measured data, we demonstrated that the tested variant of the projected 

current density algorithm (Jeong et al., 2014) achieves only coarse reconstructions of the current 

density distribution in the human brain, while working as expected for artificial geometries that 

are uniform along the z-direction. The algorithm neglects the components of Ampère’s law (eq. 3) 

that depend on the 𝐵௫ and 𝐵௬ components of the current-induced magnetic field. These components 

are weak in geometries that are uniform along the z-direction, but can be dominant in case of the 

human head. This might also explain why the projected current density algorithm achieved little 

additional improvements when we tested it in combination with more detailed head models instead 

of a single compartment model. In contrast, increasing the anatomical detail of the head model 

alone already had a large effect on the accuracy of the estimated current densities. In our tests with 

simulated ground truth data, this still held when the head model suffered from uncertainties of the 

ohmic tissue conductivities or had a limited segmentation accuracy. We confirmed that these 

conclusions derived from simulated ground truth data also apply to measured data: Current 

densities calculated with a 3-compartment model and tissue conductivities taken from literature 

explained measured 𝐵௭ images significantly better than current densities reconstructed using the 

standard projected current density algorithm. 

Our results demonstrate the importance of formal statistical testing for systematic comparisons of 

volume conductor models that have different levels of anatomical detail. Statistical testing within 

a hierarchical model selection framework ensured that more detailed models did indeed provide 

more accurate estimations of the unknown true current density. Expanding the framework beyond 

models with fixed conductivities, we also demonstrated that the framework allows for the 

systematic assessment of current density estimates derived from volume conductor models that 

use optimized tissue conductivities based on the measured 𝐵௭ images. Complemented by results 

for simulated ground truth data that showed a stable convergence towards the true current densities 

with varying tissue conductivities for the employed optimization approach, these findings suggest 

that using the measured 𝐵௭ images to fit the tissue conductivities of personalized volume conductor 

models might be a valuable approach in order to estimate the unknown true current density. 

It is worth noting that the possibility to distinguish between the quality of different volume 

conductor models using measured 𝐵௭ data and statistical testing also scales with the measurement 
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SNR. Specifically, differences between models will occur as non-significant when the 

corresponding changes of the 𝐵௭ data are below the noise levels. While a systematic evaluation of 

the required SNR levels is outside the scope of this study, our results indicate that a sensitivity of 

around 0.3 nT is required for a current injection of 1 mA in order to reveal the conductivity contrast 

caused between the ventricles and surrounding brain areas. 

 

Relation to Prior Studies 

Our findings show that the blurriness and lack of detail of current density reconstructions for 

human in-vivo data do not merely result from a low SNR of the 𝐵௭ images (Chauhan et al., 2018; 

Göksu et al., 2018; Kasinadhuni et al., 2017) and a lack of accounting for the magnetic stray fields 

cause by the electrode cables in two of the studies (Göksu et al., 2019). Rather, they are also due 

to a limited applicability of the reconstruction algorithm to the human head anatomy. As the 

reconstructed current density is biased towards the smooth current flow occurring in a volume 

conductor with homogenous conductivity (Fig. 1A&B), it is likely that the similarity between the 

current density distributions reconstructed from measured 𝐵௭  data of different persons will be 

artificially increased, camouflaging interindividual differences. This effect also explains why in 

our prior study the fit between current densities reconstructed from simulated and measured 𝐵௭  

data were consistently better than the fit between the simulated and measured 𝐵௭  data itself (Göksu 

et al., 2018a). It is likely that also the performance of methods such as DT-MREIT (Jeong et al., 

2017), which uses the reconstructed current densities in combination with diffusion tensor images 

for estimating the conductivities of brain tissues, will be markedly affected by the low accuracy of 

the spatial patterns and strengths of the reconstructed current densities, leading to biased 

conductivity estimates. We only assessed a specific variant of the projected current density method 

(Jeong et al., 2014) so that our findings will not necessarily generalize to other current density or 

conductivity reconstruction methods. However, they point towards the need to carefully ensure the 

desired behavior of reconstruction algorithms when applying them to 𝐵௭  data of the human head. 

The lacking uniformity along the z-direction and the lack of data from the scalp and skull regions 

render the reconstruction problem fundamentally more difficult than for typical MREIT phantoms. 

Kwon and colleagues (2016) introduced a method that combines an anatomically detailed head 

model with an iterative updating procedure to improve the accuracy of the reconstructed current 
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densities by minimizing the difference between calculated and measured 𝐵௭  data. It showed 

promising performance on a simulated case in which 𝐵௭  data were available for the complete head 

volume. However, our initial tests indicate that it requires further development to be applicable to 

measured 𝐵௭  data with limited volume coverage and lack of data from the scalp and skull 

(Supplementary Material B). 

Our approach to optimize conductivities shares similarities with the algorithm proposed in (Gao 

et al., 2006). Both methods optimize the conductivity values of a few tissue types instead of aiming 

at a voxel-wise conductivity reconstruction, and both methods use polynomial expansions (here: 

generalized polynomial chaos expansion; Gao et al.: response surface method) for representing the 

functional dependence between simulated 𝐵௭  and conductivity in order to avoid the costly re-

evaluation of the forward model during conductivity optimization. They differ in the level of detail 

of the head models and the optimized cost functions. While we chose to minimize the relative root 

mean square differences between measured and simulated 𝐵௭, Gao and colleagues choose a more 

complex cost function that additionally incorporates the correlation coefficient. While beyond the 

scope of this study, the impact of the choice of the cost function on the stability and accuracy of 

the optimization procedure for low-SNR 𝐵௭ data might be a relevant topic to develop the overall 

approach further. The largest difference concerns our use of statistical testing for model selection 

in order to ensure the quality of the estimated current density distribution despite the lack of a 

ground truth in case of measured 𝐵௭ data. 

 

Limitations and Future Steps 

We used the optimization of model conductivities as a means to estimate the current density 

distribution, and systematically ensured the quality of the calculated current density distribution 

by statistical testing. However, this does not imply that the optimized conductivities (or their 

ratios) are necessarily robust and trustworthy, as conductivity variations of different tissues can 

have quite similar effects on the current flow patterns and the measured current-induced magnetic 

fields. For example, increasing scalp conductivity and decreasing skull conductivity both have the 

same main effect of increasing the amount of current shunted through the scalp and decreasing the 

current that enters the intracranial cavity. Alternatively, also decreasing the overall conductivity 

of the intracranial tissues will have a similar impact on the current flow pattern. In other words, 
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various combinations of the tissue conductivities can give similar current flow patterns, rendering 

a stable estimation of the conductivities in the presence of measurement noise challenging. This 

limitation does not affect the stability of the estimated current flow distributions. The 

conductivities are fitted to best explain the magnetic field in the imaged slice that is strongly 

depending on the current flow in the surrounding region. The simulated current flows in distant 

regions are thus not necessarily more accurate than simulations based on standard conductivities 

taken from literature. Similarly, they do not necessarily generalize to other electrode positions, 

which becomes obvious when comparing the scalp conductivities for the LR and AP injections 

(Fig. S10). Interestingly, both skull thickness and composition underneath the electrode positions 

are different for the two injection schemes, which might be reflected in the change of the 

conductivities.  

The main aims of this study were to analyze how well the projected current density algorithm can 

be applied to in-vivo 𝐵௭ data from the human intracranial region and to compare it with an 

approach that relies on the optimization of a low number of parameters (the compartmental tissue 

conductivities) of anatomically detailed head models. While voxel-wise reconstructions of the 

current densities or conductivities remain the ultimate aim of MREIT and MRCDI, our findings 

highlight the importance of tailoring the reconstruction approaches to the quality and specific 

properties of the measurements. We based our conclusions also on hierarchical statistical testing 

and in-vivo 𝐵௭ data, as we feel that this best ensured the validity of our findings. In contrast, for 

pure simulation studies, it is more challenging to ensure transferability of the results to the 

envisioned application and to properly account for factors such as deviations of the noise floor 

from spatially independent and identically distributed Gaussian noise.  

Our results suggest that MRCDI data might be very valuable for the further development of 

personalized volume conductor models of the head. A relevant question to address would be to 

examine which aspects of the head modeling need to be improved to ensure that the same 

conductivity values for the modelled tissue compartments are reached independent of electrode 

montage. Considering that the residuals still contain spatial patterns above the noise floor also for 

the 4c and 5c head models with optimized conductivities, it seems promising to test the impact of 

new segmentation methods (Puonti et al., 2020) on data from a larger group of subjects. In addition, 

as the simulations assume homogenous conductivities of the brain tissues, it might be interesting 

to explore whether localized changes of the tissue conductivities due to pathologies such as tumors 
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are detectable as outlier regions in the residual images. This effect would be similar to the local 

increases in the residual images around the ventricles for 3c models and the AP injections seen 

here. Increased coverage of the imaged region beyond a single slice would be beneficial for these 

developments. However, this requires a careful tradeoff against maintaining and further increasing 

the SNR and robustness to physiological noise. 
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FIGURE LEGENDS 

 

Figure 1 Current density reconstruction for a LR current injection. (A) Volume conductor models 

of the head with different levels of anatomical detail (1c, 3c, 4c, and full models). The results are 

shown for an axial slice of these models. (B) The conductivity distribution 𝜎 of the full model used 

as ground truth and the corresponding simulated ห𝑱௫௬
௧௥௨௘ห and 𝐵௭

௧௥௨௘ distributions are shown in 

columns 1-3. The current density distribution ห𝑱௫௬
௥௘௖ห that was reconstructed from 𝐵௭

௧௥௨௘ by the 

projected current density algorithm is shown in column 4. (C) Conductivity, current density and 

magnetic field distributions for the homogenous (1c) head model that was used in the projected 

current density algorithm. (D) Visualization of the terms that are neglected and included, 

respectively, in the projected current density algorithm (see eq. 3) for the 1c head model. 

 

Figure 2 Current density reconstructions based on different head models for a LR current injection. 

(A) The conductivity distribution 𝜎 of the full model used as ground truth and the corresponding 

simulated ห𝑱௫௬
௧௥௨௘ห and 𝐵௭

௧௥௨௘ distributions. (B) Results for the 1c, 3c and 4c head models. Columns 

1-3 show the conductivity distributions and the simulated ห𝑱௫௬
௢ ห and 𝐵௭

௢ distributions. Column 4 

depicts the current densities |𝑱௫௬
௥௘௖| that were reconstructed by the projected current density 

algorithm with the corresponding head model. (C) Visualization of the terms that are neglected 

and included, respectively, in the projected current density algorithm based on the 3c head model. 

 

Figure 3 RMS errors 𝛿௃௫௬ of different head models for a LR current injection, with and without 

applying the projected current density algorithm. Solid and dashed lines represent the 𝛿௃௫௬ values 

for the 𝑱௫௬
௢  and 𝑱௫௬

௥௘௖ distributions, respectively. (A) Dependence of 𝛿௃௫௬ on the anatomical level of 

detail of the head model (1c, 3c and 4c models) and on segmentation errors of the 4c model. (B) 

Dependence of 𝛿௃௫௬ on variations of the conductivity of the full model that was used as ground 

truth.  
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Figure 4 RMS errors 𝛿௃௫௬, 𝛿஻௭ and 𝛿௃௭  of different head models for a LR current injection, with 

and without optimized conductivities. Solid and dashed lines correspond to the error values 

obtained for the models with literature and optimized conductivities, respectively. The first column 

(A, C & E) shows the dependence of 𝛿௃௫௬, 𝛿஻௭ and 𝛿௃௭ on the anatomical level of detail of the head 

model (1c, 3c and 4c models) and on segmentation errors of the 4c model. The second column (B, 

D & F) shows the dependence of 𝛿௃௫௬, 𝛿஻௭ and 𝛿௃௭ on variations of the conductivity of the full 

model that was used as ground truth.  

 

Figure 5 Experimental 𝐵௭ measurements and the corresponding simulated  𝐵௭ distributions for the 

first subject. The conductivity values of the 3c, 4c and 5c models were chosen from literature 

values, using the procedure described in Methods section. (A) Measured 𝐵௭ distributions with and 

without 1 mA current injections in LR and AP directions. (B) Simulated 𝐵௭ distributions obtained 

for the 1c, 3c, 4c and 5c models and for the projected current density reconstruction based on the 

1c model (1c+rec.). For the latter, 𝐵௭ was calculated by using the reconstructed current density 

𝑱௥௘௖ in the imaged slice and 𝑱௢ of the homogenous head model in the rest of the head volume. (C) 

Differences between the measured and simulated 𝐵௭ distributions. (D) Dependence of 𝛿஻௭ on the 

model. Asterisks (*) indicate significant differences between the models at 𝑝 ≤ 0.01, Bonferroni 

corrected for 8 comparisons. The squares () represent 𝛿஻௭ values obtained for 𝐵௭ distributions 

reconstructed using 𝑱௢ of the 3c model in the imaged slice and 𝑱௢ of the homogenous model in the 

rest of the head volume. This was done for a fair comparison of the 1c+rec. results with the 3c 

model, as the reconstructed current density algorithm only changes the current distribution in the 

imaged slice and the change in 𝐵௭ is correspondingly lower. The dashed green and purple lines 

represent the noise floors nf (eq. 7). The 𝛿஻௭ difference between the 4c and 5c models of the AP 

case is non-significant (ns). 

 

Figure 6 Results for the 3c, 4c and 5c models with optimized conductivities for the first subject, 

determined by minimizing the difference to the measured 𝐵௭ distributions. (A) Measured 𝐵௭ 

distributions with and without 1 mA current injections. (B) Optimized 𝐵௭ distributions for the 3c, 

4c and 5c models, corresponding to the median 𝛿஻௭ shown in D. (C) Difference between the 
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measured and optimized 𝐵௭ distributions. (D) Dependence of 𝛿஻௭ on the model. The red lines 

indicate the median, the boxes mark the 25th and 75th percentiles and the whisker lengths is set to 

1.5 times the interquartile range. Values outside that range are marked as outliers. Blue asterisks 

(*) indicate significant differences between the models at 𝑝 ≤ 0.01, Bonferroni corrected for 6 

comparisons. The dashed green lines indicate the noise floors.  

 

Figure 7 Estimated current density distributions |𝑱௫௬| for the first subject. (A) Results for the 1c, 

3c, 4c and 5c models based on literature conductivities. Also, the results for the projected current 

density reconstruction based on the 1c model are shown (1c+rec.). The corresponding 𝐵௭ fields are 

shown in Fig. 5. (B) Results for the 3c, 4c and 5c models based on optimized conductivities. The 

corresponding 𝐵௭ fields are shown in Fig. 6. 
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