

1 Decreased overall neuronal activity in a rodent model of impaired consciousness
2 during absence seizures

3 Cian McCafferty, Benjamin Gruenbaum, Renee Tung, Jing-Jing Li, Peter Salvino, Peter Vincent,
4 Zachary Kratochvil, Jun Hwan Ryu, Aya Khalaf, Kohl Swift, Rashid Akbari, Wasif Islam, Prince
5 Antwi, Emily Ann Johnson, Petr Vitkovskiy, James Sampognaro, Isaac Freedman, Adam
6 Kundishora, Basavaraju G. Sanganahalli, Peter Herman, Fahmeed Hyder, Vincenzo Crunelli,
7 Antoine Depaulis, Hal Blumenfeld

8

9 Correspondence: cian.mccafferty@ucc.ie; hal.blumenfeld@yale.edu

10

11 Key words: absence seizure, behavior, epilepsy, thalamus, consciousness, spike-wave-
12 discharge, somatosensory cortex, ensemble recordings, functional magnetic resonance
13 imaging

14

15

16 Authors' contributions

17 CMCC, HB, BG, PH, BS, FH and AD designed research and experiments; CMCC, BG, PH, BS and
18 all other authors performed experiments and analyzed data, CMCC and HB wrote the
19 manuscript with critical review by other authors.

20 Financial disclosures

21 This work was supported by NIH/NINDS R37NS100901.
22

23 **Abstract**

24 Absence seizures are characterized by a brief behavioural impairment including apparent loss
25 of consciousness. Neuronal mechanisms determining the behavioural impairment of absence
26 seizures remain unknown, and their elucidation might highlight therapeutic options for
27 reducing seizure severity. However, recent studies have questioned the similarity of animal
28 spike-wave-discharges (SWD) to human absence seizures both behaviourally and neuronally.
29 Here, we report that Genetic Absence Epilepsy Rats from Strasbourg recapitulate the
30 decreased neuroimaging signals and loss of consciousness characteristic of human absence
31 seizures. Overall neuronal firing is decreased but rhythmic in the somatosensory cortex and
32 thalamus during these seizures. Interestingly, individual neurons in both regions tend to
33 consistently express one of four distinct patterns of seizure-associated activity. These
34 patterns differ in firing rate dynamics and in rhythmicity during seizure. One group of neurons
35 showed a transient initial peak in firing at SWD onset, accounting for the brief initial increase
36 in overall neuronal firing seen in cortex and thalamus. The largest group of neurons in both
37 cortex and thalamus showed sustained decreases in firing during SWD. Other neurons
38 showed either sustained increases or no change in firing. These findings suggest that certain
39 classes of cortical and thalamic neurons may be particularly responsible for the paroxysmal
40 oscillations and consequent loss of consciousness in absence epilepsy.

41

42 **Introduction**

43 Absence epilepsy is a condition defined by recurrent non-convulsive seizures involving brief
44 (~5-30 second) behavioural arrest and electrographic spike-wave-discharges (SWD)
45 (Blumenfeld, 2005). These SWDs are reflective of generalized paroxysmal brain activity, with
46 oscillations particularly prevalent in the cerebral cortex and thalamus (McCormick and
47 Contreras, 2001). Recent studies in multiple animal models of SWDs have advanced
48 understanding of the precise contributions of neuronal populations to these paroxysms. Key
49 features identified include a subset of hyper-excitable deep somatosensory cortical neurons
50 that appear to initiate SWDs (Polack et al., 2007), a leading role of somatosensory cortex in
51 the initial phase of the oscillation (Meeren et al., 2002), and an excitatory drive from cortical
52 (but not thalamocortical) to reticular thalamic neurons throughout an SWD (McCafferty et al.,
53 2018). Furthermore, there is some diversity in cortical and thalamocortical neuronal activity
54 both within and between seizures (McCafferty et al., 2018; Meyer et al., 2018). This diversity
55 raises the possibility that certain components of neuronal activity during seizure may be of
56 particular significance in determining the behavioural features of absence. The specifics of
57 seizure-associated neuronal activity can be directly investigated in animal models of absence
58 epilepsy.

59 There have, however, been recent suggestions that animal SWDs, particularly in rodents, do
60 not usefully resemble those that are part of absence seizures in humans despite their
61 established pharmacological similarities (Crunelli et al., 2020). Rats can vary the duration of
62 their SWDs in order to obtain rewards (Taylor et al., 2017) and SWDs are present to some
63 extent in wild-caught rats (Taylor et al., 2019). Neither these observations nor previous
64 studies (Vergnes et al., 1991) have addressed the fundamental question of whether rodents

65 lose consciousness, and thus the ability to carry out directed behaviours, during SWDs. This
66 may be because of the relationship between absence seizures and arousal level, in both
67 humans and animal models: seizures are more likely to occur in a state of relaxed wakefulness
68 and tend to be entirely suppressed during active engagement in a task (Horita et al., 1991;
69 Zarowski et al., 2011). As such, conventional tests of consciousness, perception and
70 responsiveness cannot be presented during animal SWDs. Another limitation of previous
71 rodent absence models has been the finding of fMRI increases during SWD, whereas human
72 absence seizures show mainly fMRI decreases in widespread cortical networks (Bai et al.,
73 2010; Berman et al., 2010; Guo et al., 2016).

74

75 We sought first to replicate human neuroimaging findings in absence epilepsy by developing
76 a novel model using awake, restraint-habituated GAERS, thereby eliminating the potential
77 confound of anesthetic agents used in prior fMRI studies. In addition, in this study we devised
78 modified paradigms to investigate behaviour and consciousness in GAERS during SWDs. These
79 paradigms, analogous to those previously used in human studies, demonstrated a broad
80 impairment of desirable behaviour during the SWDs. During a small proportion of
81 electrographically distinct events, certain behaviours were spared – an observation that has
82 also been made in humans (Guo et al., 2016). Using ensemble electrophysiological recordings
83 with spike sorting, we then showed that overall neuronal activity in both cortex and thalamus
84 is decreased during these behaviour-impairing SWDs. We also noted that this overall decrease
85 is consistently driven by a subset of excitatory neurons in both regions, with the remaining
86 neurons falling into one of three other seizure-associated activity patterns.

87 **Results**

88 **Neuroimaging signal decreases during GAERS SWD resemble human absence seizures**

89 Human research in children with typical absence seizures has shown prominent fMRI
90 decreases in most cortical regions during generalized SWD (Bai et al., 2010; Berman et al.,
91 2010). However, previous work in rodent models of absence epilepsy, mostly done under
92 anaesthesia, has yielded variable results, with most studies showing cortical fMRI increases
93 during SWD (Tenney et al., 2003, 2004; Nersesyan et al., 2004; David et al., 2008; Mishra et
94 al., 2011). It was proposed that fMRI increases in rodent models were produced by
95 anaesthetic agents not used in human studies; this proposal was further supported by
96 observation of fMRI increases in an anesthetized ferret model, despite that fact that the SWD
97 had similar frequency to humans and the thalamocortical anatomy was more similar to
98 humans than in rodent models (Youngblood et al., 2015). We therefore sought to study
99 neuroimaging signals in a rodent absence epilepsy model without anaesthetic agents. This
100 was accomplished by gradual habituation of the GAERS model to the ambient noise and cloth
101 body restraint used in the neuroimaging environment. In this awake model of spontaneous
102 undrugged SWD, we found that both fMRI and laser Doppler flowmetry signals from the
103 cortex showed predominantly decreased activity. The unanaesthetised GAERS model
104 therefore shows cortical neuroimaging signal decreases during SWD resembling human
105 absence seizures.

106 **Impaired behaviour during GAERS SWD resembles human absence seizures**

107 We investigated the behavioural consequences of GAERS SWDs using two different
108 paradigms, designed to be analogous to the repetitive tapping task (RTT) and continuous
109 performance task (CPT) previously employed to study human behaviour during absence

110 seizures (Guo et al., 2016). It has been challenging in previous rodent absence model work to
111 demonstrate impaired behavior during SWD, at least in part because behavioral tasks
112 increase arousal which tends to suppress or interrupt SWD, preventing testing of behavior
113 during SWD without interruption (van Luijtelaar et al., 1991; Smyk et al., 2011). Therefore, in
114 our studies both tasks were modified to maintain a level of engagement/arousal compatible
115 with uninterrupted seizure expression. In one task, designed to echo the human CPT, we
116 conditioned GAERS to respond within 10 seconds to an 80 dB pure auditory tone at 8 kHz,
117 presented at 60 s intervals, in order to receive a sucrose water reward. The inter-stimulus
118 interval was gradually increased to an average of 180 s (or the automated detection of a SWD
119 based on EEG amplitude) and the intensity decreased to 45 dB. During baseline periods,
120 animals had a $88.2 \pm 2.8\%$ response rate after conditioning (4482 total stimuli in 14 rats) while
121 during SWDs the response rate was decreased ($p = 0.00012$, Wilcoxon signed rank test) to 0.4
122 $\pm 0.3\%$ (156 total stimuli). This behaviour appeared to be restored immediately post-SWD (p
123 $= 0.2163$ compared to pre-seizure, Wilcoxon signed rank test), with response rates recovering
124 to $78.2 \pm 6.8\%$ (330 post-ictal stimuli) (Fig. 1C).

125 In the second task, designed to resemble the human RTT, the instructed repetitive tapping
126 was approximated by providing unheralded sucrose rewards at varying intervals. This
127 paradigm encouraged spontaneous licking at the spout at a mean rate of 0.54 ± 0.07
128 licks/second outside of SWDs (27 rats), and was therefore referred to as a sustained
129 motivated licking task. We observed a decrease in lick rate from approx. 0.75 licks/second 10
130 seconds pre-SWD to a mean lick rate during seizures of 0.007 ± 0.002 licks/second (total of
131 3146 seizures), constituting a significant decrease from pre-seizure periods ($p = 5.6e-6$,
132 Wilcoxon signed rank test). Within 2-3 seconds after seizure end there was an apparent

133 recovery in lick rate, with a mean post-seizure rate of 0.55 ± 0.06 licks/second ($p = 0.8288$

134 relative to all non-seizure periods, Fig. 1F).

135 These results are to our knowledge the first demonstration of consistently impaired

136 behavioral interactions with the environment during SWD in a rodent absence epilepsy

137 model. This provides important face validity for the rodent model to investigate mechanisms

138 of impaired behavioral interactions in human absence epilepsy. As further validation of the

139 model, we sought to determine whether behavior might be spared in some SWD. In human

140 absence epilepsy, behavior may be spared in some SWD especially in tasks that are less

141 behaviorally demanding (Berman et al., 2010; Guo et al., 2016). In addition, in human absence

142 epilepsy, the SWD showing spared behavior are significantly less physiologically severe based

143 on magnitude and duration(Berman et al., 2010; Guo et al., 2016). Similarly, in the GAERS

144 model we found that performance on the more demanding auditory response task was

145 virtually always impaired during SWD (Fig 1d), whereas in the less demanding spontaneous

146 licking task, approximately 5% of all SWDs (158/3146) demonstrated some persistent licking

147 during SWD (Fig 1g,h). Again resembling human absence seizures, the SWD with spared

148 behavior in the rodent model featured significantly lower EEG power in bands corresponding

149 to both the wave (5-9 Hz, $p = 3.213e-9$, rank sum test) and the spike (15-100 Hz, $p = 4.490e-$

150 10, rank sum test) components of the spike-wave oscillation. In addition, the mean duration

151 of SWD with spared behavior (5.9 ± 0.6 s) was significantly shorter compared to SWD with

152 impaired behavior (8.9 ± 0.2 s, $p = 8.8e-9$, rank sum test).

153

154 These behavioural results suggest that SWDs in GAERS have similar effects on consciousness
155 as do absence seizures in humans. As such, neuronal activity during these SWDs may provide
156 valuable insight into potential mechanisms of absence seizures and their symptoms.

157

158 Total neuronal activity accompanying GAERS SWDs

159 Having established that GAERS SWDs were accompanied by impaired behaviour, we
160 investigated the changes in neuronal activity that might cause these impairments. Our
161 investigation of neuronal activity was targeted at representative cortical and thalamic regions
162 known to be involved in SWD based on prior work. Cortical involvement in rodent SWD is
163 most prominent in somatosensory cortex, particularly in the peri-facial areas (Meeren et al.,
164 2002; Polack et al., 2007). To avoid potential extreme values in most intensely involved areas,
165 we therefore recorded from somatosensory cortex but in the trunk region outside the face
166 area. To investigate thalamic activity, we performed new analyses on previously acquired
167 recordings of neuronal activity from ventral basal somatosensory thalamus (McCafferty et al.,
168 2018). First, we studied the firing of 168 individually sorted neurons (Fig. 2A-D) in the
169 somatosensory cortex around SWD initiation and during SWDs. The mean firing rate of these
170 cortical neurons decreased from 3.7 ± 0.4 spikes/second during non-seizure to 2.6 ± 0.3
171 spikes/second during seizure periods ($p = 2.7e-9$, Wilcoxon signed rank test). Interestingly,
172 there was a transient peak in firing just at the point of seizure initiation, followed by a
173 sustained decrease that lasted until seizure termination (Fig. 2E). A similar early peak in
174 neuronal activity followed by sustained firing decreases was observed previously in
175 thalamocortical neurons during SWD (McCafferty et al., 2018), and replicated in the present
176 analysis of total thalamic neuronal firing (Fig. 2F). Analysis of the distribution of neuronal

177 firing surrounding spike-and-wave complex (SWC) peaks (the most extreme voltage value of
178 the spike) in the first second of seizures showed a higher oscillation frequency and higher
179 firing rate than later times in seizures (Fig. 2G,H).

180 Diverse neuronal activity accompanying GAERS SWDs

181 Recent evidence suggests that cortical and thalamic neuronal activity during SWDs may not
182 be as homogeneous as previously thought (McCafferty et al., 2018; Meyer et al., 2018). We
183 investigated whether diversity of firing patterns existed in GAERS somatosensory cortical
184 neurons, and found that the firing rate dynamics of these cells around SWD initiation tended
185 to fall into one of four patterns (Fig. 3A). These were: a peak in firing at seizure initiation,
186 followed by a return to baseline levels throughout (Onset Peak group (OP), 44 neurons, 28%),
187 a sustained increase or decrease in firing throughout the seizure (Sustained Increase (SI) and
188 Sustained Decrease (SD) groups, 15 and 59 neurons; 9% and 37% respectively), or no apparent
189 change in firing rate associated with the seizure (No Change group (NC), 41 neurons, 26%).

190 These patterns were distinctive and consistent within groups.(McCafferty et al., 2018)
191 Interestingly, analysis of thalamic unit activity around SWD revealed that the same four
192 patterns were apparent in these dynamics, with each neuron showing either an Onset Peak
193 (18 neurons, 14%), Sustained Increase (4 neurons, 3%), Sustained Decrease (58 neurons,
194 46%), or No Change (45 neurons, 36%). Having established this diversity in mean firing rate
195 we were also interested in whether the rhythmicity of cells differed according to the firing
196 rate dynamic group (Fig. 3B). We found that the cortical Onset Peak and Sustained Increase
197 groups had the most pronounced increases in rhythmicity of firing, with prominent peaks in
198 firing during the spike phase leading to an overall increase in neuronal firing during SWD in
199 these two neuron groups. In contrast, the Sustained Decrease and No Change neurons had

200 less pronounced increases in rhythmicity (Fig 3B). In the Sustained Decrease neurons troughs
201 were larger and longer than the peaks leading to an overall decrease in firing during SWD. In
202 the No Change neurons the magnitude of peaks and troughs were relatively balanced, leading
203 to little change in firing relative to baseline.

204 Conclusions

205 These results are, to our knowledge, the first scientific demonstration of animal SWDs
206 accompanied by an impairment of motivated behaviour similar to that observed in humans
207 during absence seizures. This constitutes a valuable opportunity to investigate the neuronal
208 mechanisms underlying the impairment – if particular groups of neurons and/or patterns of
209 activity responsible for the loss of consciousness in seizure can be identified, then therapeutic
210 interventions could target them to restore consciousness or even prevent seizures. We also
211 show here the first evidence of specific and diverse patterns of neuronal activity
212 accompanying these consciousness-abolishing SWDs, and suggest that investigating the
213 characteristics and potential different roles of these groups of neurons may indicate prime
214 targets for absence seizure therapeutics.

215

216 Summary Methods

217 Animals

218 Experiments were carried out under approval by the Yale University Office of Animal Research
219 Support (OARS). All experiments were carried out with Genetic Absence Epilepsy Rats from
220 Strasbourg (GAERS), an established polygenic rat model of absence seizures. Animals had
221 access to food and water *ad libitum* unless otherwise noted, and were kept on a 12:12 hour
222 light:dark cycle.

223

224 Behaviour

225 All animals were implanted with fronto-parietal epidural screw electrodes under isoflurane
226 anaesthesia for EEG recording and the identification of SWDs. Both behavioural paradigms
227 were carried out in custom operant chambers (Med Associates Inc.). For the sensory tone
228 detection task, rats were trained by increments to respond to an 8 kHz tone by licking at a
229 port within 10 s in order to receive a reward bolus (90 μ L) of sucrose water. For the sustained
230 motivated licking paradigm, an unheralded reward bolus became available for 10 s periods at
231 intervals varying from 150 to 210 s.

232 Neuronal activity

233 Cortical data was collected using four-shank multi-electrode silicon probes (NeuroNexus) in
234 the GAERS somatosensory cortex (coordinates from bregma AP – 3mm, ML \pm 3 mm) and the
235 OpenEphys digitization/acquisition system. Data was collected during 2-4 hour sessions
236 during which rats were free to explore, rest, and seize in the recording chamber. Signals from
237 each channel were band-pass filtered between 1.1 and 7603.8 Hz and digitized at 30 kHz and
238 192x gain. Thalamic data was used with permission from the dataset described in (McCafferty

239 et al., 2018). Action potential spikes were extracted from the signal and clustered into

240 separate neurons as previously described (McCafferty et al., 2018).

241

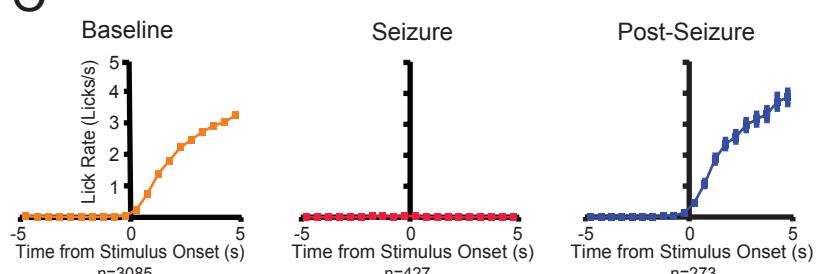
A

Auditory Response

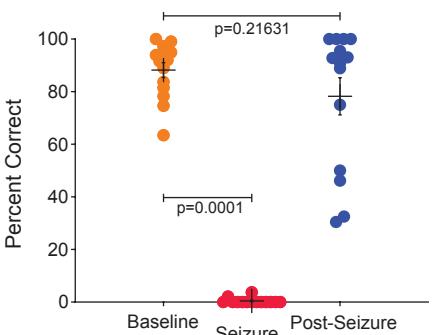
B

Continuous Motivated Licking

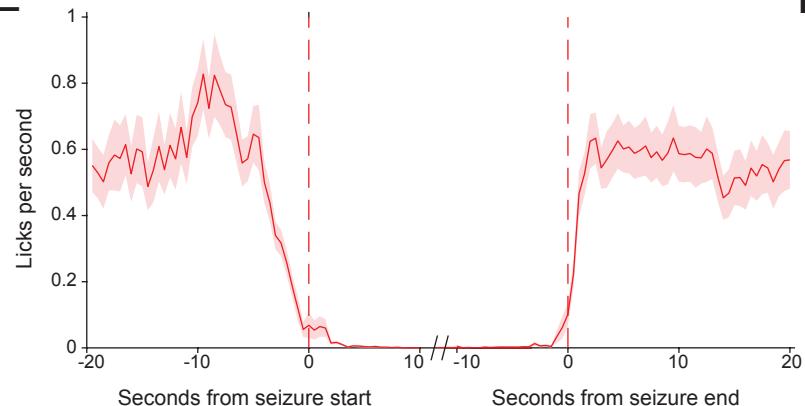
8 kHz tone

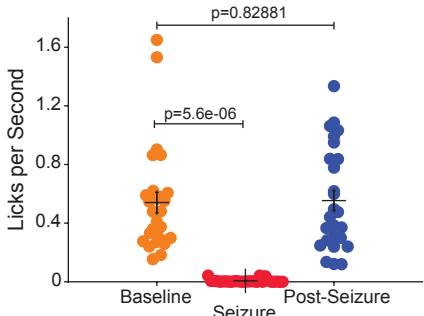

120-240 s interval

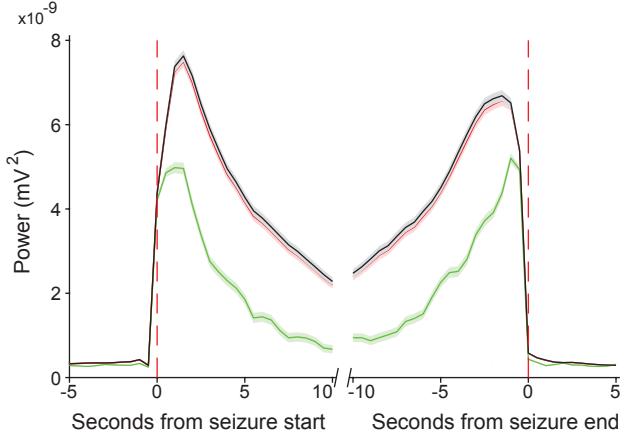
10 s reward window

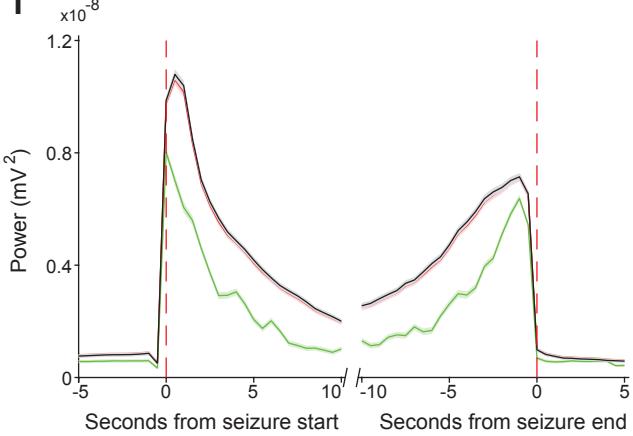

120-240 s interval

10 s reward window

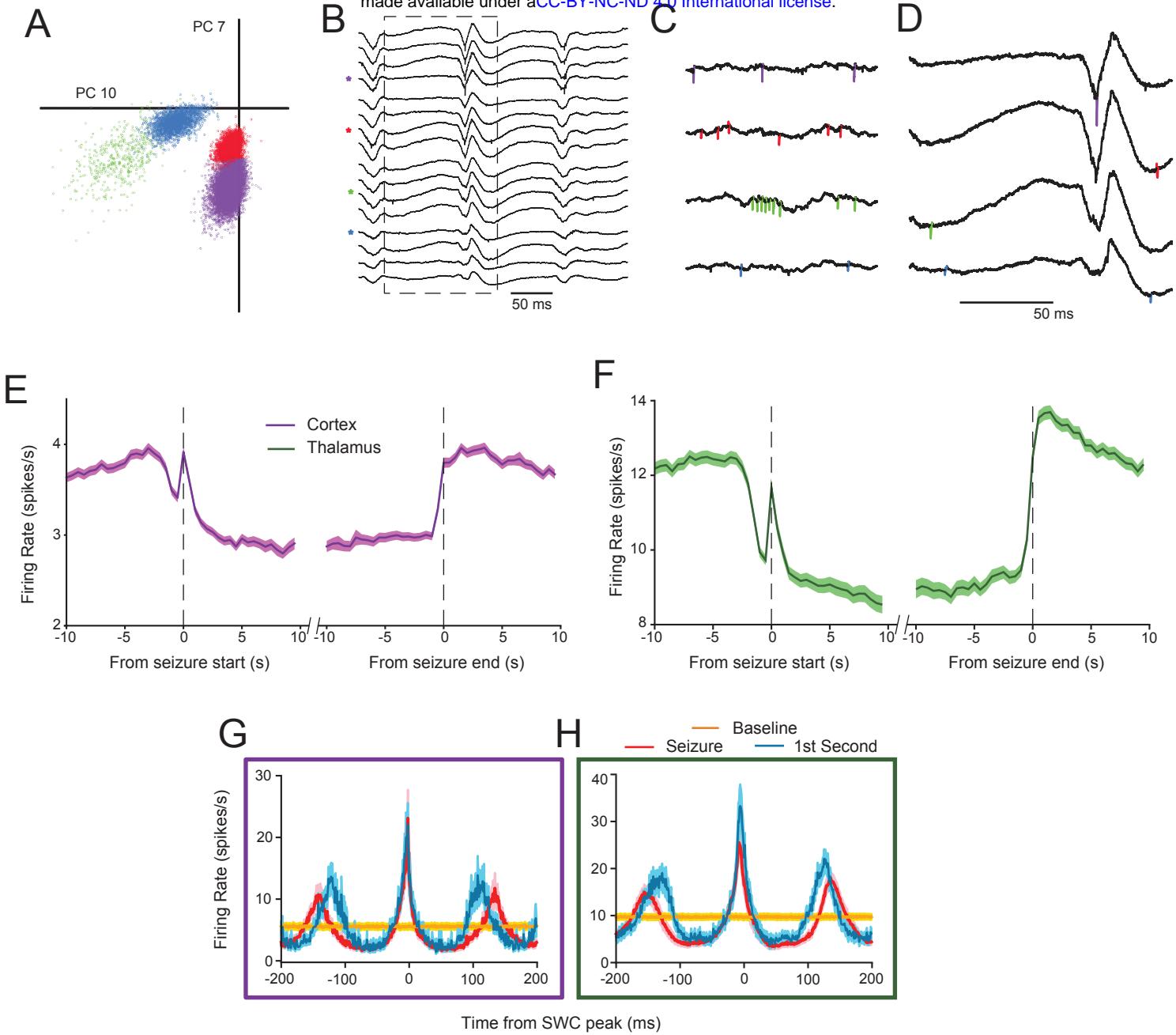

C


D


E

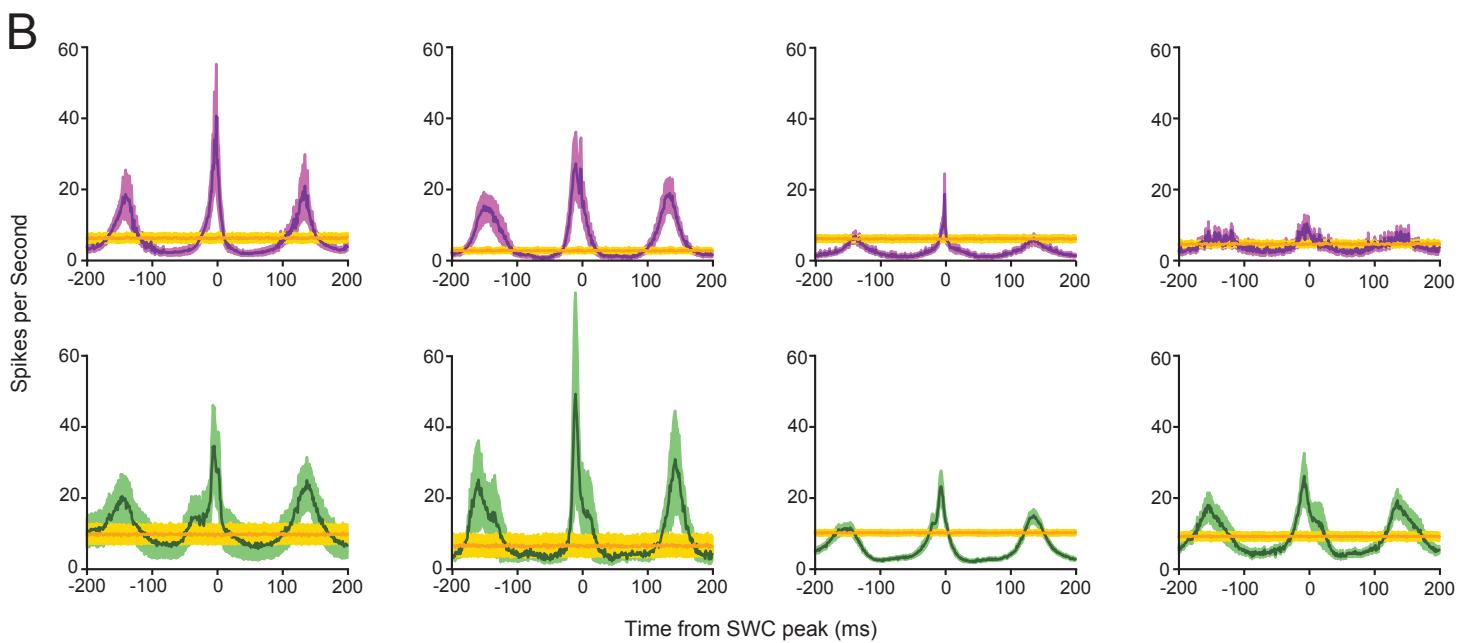
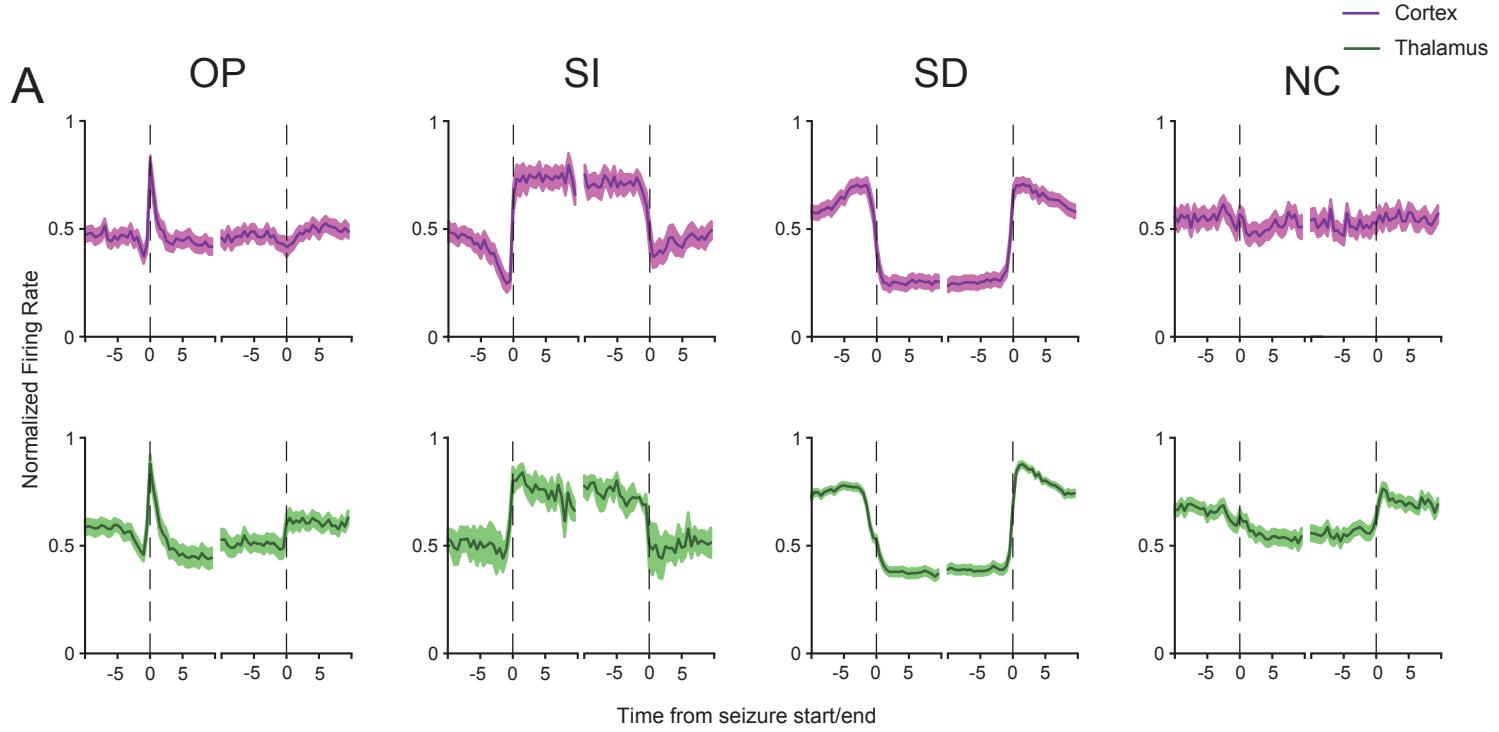

F

G


H

242 **Figure 1.** Behavior of GAERS around and during absence seizures. All measures of center are
243 mean and error bars/regions denote standard error of the mean. **A:** design of conditioned
244 auditory response task. Stimuli were presented at intervals of between 120 and 240 seconds
245 (or when seizures were detected). An 8 kHz tone (intensity 45 dB) was used to signify the
246 availability of a reward within a 10s window (n = 427 seizures from 14 animals for this task).
247 **B:** design of continuous motivated licking paradigm. Rewards became available for 10s
248 windows at intervals of between 120 and 240 seconds with no associated stimulus or signifier
249 to encourage regular licking (n = 3146 seizures from 27 animals for this paradigm). **C:** lick rate
250 following conditioned auditory stimuli delivered at baseline, during seizure, and in the 10
251 seconds immediately post-seizure. **D:** percent of conditioned stimuli responded to within the
252 reward window and within the specified state for baseline, seizure, and immediate post-
253 seizure periods for each animal showing decrease during seizure and recovery in post-seizure.
254 **E:** dynamics of lick rate in 0.5s bins around seizure start and end times in continuous
255 motivated licking paradigm. **F:** mean lick rates during baseline, seizure, and immediate post-
256 seizure periods in continuous motivated licking paradigm showing decrease during seizure
257 and recovery in post-seizure. **G:** dynamics of EEG power in the spike band (15-100 Hz)
258 surrounding seizure start and end times for seizures with continued licking (green) and no
259 licking (black). **H:** dynamics of EEG power in the wave band (5-9 Hz) around seizure start and
260 end, comparing continued licking and no-licking seizures.

261



262

263 **Figure 2.** Total firing of cortical (n=165) and thalamic (n=164) neurons during absence
264 seizures. All measures of center are mean and error bars/regions denote standard error of
265 the mean. **A:** principle component values of waveforms of sample simultaneously-recorded
266 cortical neurons. **B:** sample raw broadband (1.1 Hz to 7.6 kHz) voltage traces from which
267 neuron action potentials were extracted (channels of greatest action potential waveform
268 amplitude indicated with asterisks). **C:** sample of firing of neurons from A and B during
269 wakefulness without SWD. **D:** expanded view of mid-seizure section from B (dashed box in B)
270 showing channels of greatest amplitude for each individual neuron. **E:** mean firing dynamics
271 around seizure start and end of all cortical neurons in 0.5s bins, showing overall decrease in
272 firing associated with seizure. **F:** mean firing dynamics around seizure start and end of all
273 thalamic neurons (raw data from McCafferty et al., 2018) showing similar overall decrease.
274 **G:** distribution of action potentials around spike-and-wave complex peaks in 1 ms bins of all
275 cortical neurons, showing higher oscillation frequency of first second of seizure. **H:**
276 distribution of action potentials around spike-and-wave complex peaks in 1 ms bins of all
277 thalamic neurons, showing similar first second increased frequency.

278

279

280 **Figure 3.** Firing rates and patterns of firing of subgroups of cortical and thalamic neurons
281 during absence seizures. **A:** firing rate in 0.5 second bins (scaled relative to total range of firing
282 in visualized period) for each group of neurons showing the distinctive dynamics around
283 seizure onset/offset from which their names are derived: OP = onset peak, SI = sustained
284 increase, SD = sustained decrease, NC = no change. **B:** mean distribution of action potentials
285 in 1 ms bins around peaks of spike-wave cycles for the same groups. Inset values are measures
286 of rhythmicity: total firing in the 50ms surrounding SWC peak divided by total firing in two 50
287 ms bins either side of the peak (-100:-50 ms and +50: +100 ms). Values expressed as mean \pm
288 standard error.

289 References

290 Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, Desalvo M, Novotny EJ, Constable RT,
291 Blumenfeld H (2010) Dynamic Time Course of Typical Childhood Absence Seizures: EEG,
292 Behavior, and Functional Magnetic Resonance Imaging. *Journal of Neuroscience* 30:5884–5893.

293

294 Berman R, Negishi M, Vestal M, Spann M, Chung MH, Bai X, Purcaro M, Motelow JE, Danielson
295 N, Dix-Cooper L, Enev M, Novotny EJ, Constable RT, Blumenfeld H (2010) Simultaneous
296 EEG, fMRI, and behavior in typical childhood absence seizures. *Epilepsia* 51:2011–2022.

297 Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. *Epilepsia*
298 46:21–33.

299 Crunelli V, Lorincz ML, McCafferty C, Lambert RC, Leresche N, di Giovanni G, David F (2020)
300 Clinical and experimental insight into pathophysiology, comorbidity and therapy of
301 absence seizures. *Brain* 143:2341–2368.

302 David O, Guillemain I, Sait S, Reyt S, Deransart C, Segebarth C, Depaulis A (2008) Identifying
303 Neural Drivers with Functional MRI: An Electrophysiological Validation. *PLoS Biology*
304 6(12):e315.

305 Guo JN, Kim R, Chen Y, Negishi M, Jhun S, Weiss S, Ryu JH, Bai X, Xiao W, Feeney E, Rodriguez-
306 Fernandez J, Mistry H, Crunelli V, Crowley MJ, Mayes LC, Constable RT, Blumenfeld H
307 (2016) Impaired consciousness in patients with absence seizures investigated by
308 functional MRI, EEG, and behavioural measures: a cross-sectional study. *The Lancet
309 Neurology* 15:1336–1345.

310 Horita H, Uchida E, Maekawa K (1991) Circadian rhythm of regular spike-wave discharges in
311 childhood absence epilepsy. *Brain & development* 13:200–202.

312 McCafferty C, David F, Venzi M, Lorincz ML, Delicata F, Atherton Z, Recchia G, Orban G,
313 Lambert RC, di Giovanni G, Leresche N, Crunelli V (2018) Cortical drive and thalamic feed-
314 forward inhibition control thalamic output synchrony during absence seizures. *Nature
315 Neuroscience* 21(5):744–756.

316 McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures.
317 *Annual review of physiology* 63:815–846.

318 Meeren HKM, Pijn JPM, van Luijtelaar ELJM, Coenen AML, Lopes da Silva FH (2002) Cortical
319 focus drives widespread corticothalamic networks during spontaneous absence seizures
320 in rats. *The Journal of neuroscience : the official journal of the Society for Neuroscience*
321 22:1480–1495.

322 Meyer J, Maheshwari A, Noebels J, Smirnakis S (2018) Asynchronous suppression of visual
323 cortex during absence seizures in stargazer mice. *Nature Communications* 9(1):1938.

324 Mishra AM, Ellens DJ, Schridde U, Motelow JE, Purcaro MJ, DeSalvo MN, Enev M, Sanganahalli
325 BG, Hyder F, Blumenfeld H (2011) Where fMRI and electrophysiology agree to disagree:
326 corticothalamic and striatal activity patterns in the WAG/Rij rat. *Journal of Neuroscience*
327 31:15053–15064.

328 Nersesyan H, Hyder F, Rothman DL, Blumenfeld H (2004) Dynamic fMRI and EEG recordings
329 during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. *Journal
330 of Cerebral Blood Flow and Metabolism* 24:589–599.

331 Polack P-O, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep Layer
332 Somatosensory Cortical Neurons Initiate Spike-and-Wave Discharges in a Genetic Model
333 of Absence Seizures. *Journal of Neuroscience* 27:6590–6599.

334 Smyk MK, Coenen AML, Lewandowski MH, van Luijtelaar G (2011) Endogenous rhythm of
335 absence epilepsy: Relationship with general motor activity and sleep-wake states.
336 *Epilepsy Research* 93:120–127.

337 Taylor JA, Reuter JD, Kubiak RA, Mufford TT, Booth CJ, Dudek FE, Barth DS (2019) Spontaneous
338 recurrent absence seizure-like events in wild-caught Rats. *Journal of Neuroscience*
339 39(24):4829:4841.

340 Taylor JA, Rodgers KM, Bercum FM, Booth CJ, Dudek FE, Barth DS (2017) Voluntary Control of
341 Epileptiform Spike-Wave Discharges in Awake Rats. *The Journal of Neuroscience*
342 37:5861–5869.

343 Tenney JR, Duong TQ, King JA, Ferris CF (2004) fMRI of brain activation in a genetic rat model
344 of absence seizures. *Epilepsia* 45:576–582.

345 Tenney JR, Duong TQ, King JA, Ludwig R, Ferris CF (2003) Corticothalamic Modulation during
346 Absence Seizures in Rats : A Functional MRI Assessment. *Epilepsia* 44:1133–1140.

347 van Luijtelaar ELJM, van der Werf SJ, Vossen JMH, Coenen AML (1991) Arousal, performance
348 and absence seizures in rats. *Electroencephalography and Clinical Neurophysiology*
349 79:430–434.

350 Vergnes M, Marescaux C, Boehrer A, Depaulis A (1991) Are rats with genetic absence epilepsy
351 behaviorally impaired? *Epilepsy Research* 9:97–104.

352 Youngblood MW, Chen WC, Mishra AM, Enamandram S, Sanganahalli BG, Motelow JE, Bai HX,
353 Frohlich F, Gribizis A, Lighten A, Hyder F, Blumenfeld H (2015) Rhythmic 3-4Hz discharge
354 is insufficient to produce cortical BOLD fMRI decreases in generalized seizures.
355 *NeuroImage* 109:368–377.

356 Zarowski M, Loddenkemper T, Vendrame M, Alexopoulos A v., Wyllie E, Kothare S v. (2011)
357 Circadian distribution and sleep/wake patterns of generalized seizures in children.
358 *Epilepsia* 52:1076–1083.

359

360