

1 **Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria**  
2 **vectors**

3 Kelsey L. Adams<sup>1</sup>, Simon P. Sawadogo<sup>2</sup>, Charles Nignan<sup>2</sup>, Abdoulaye Niang<sup>2</sup>, Douglas G. Paton<sup>1</sup>,  
4 W. Robert Shaw<sup>1</sup>, Adam South<sup>1,3</sup>, Jennifer Wang<sup>4</sup>, Maurice A. Itoe<sup>1</sup>, Kristine Werling<sup>1,5</sup>, Roch K.  
5 Dabiré<sup>2</sup>, Abdoulaye Diabaté<sup>2</sup>, Flaminia Catteruccia<sup>1\*</sup>

6 <sup>1</sup>Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health,  
7 Boston, MA 02115

8 <sup>2</sup>Department of Medical Biology and Public Health, Institut de Recherche en Science de la Santé  
9 (IRSS), Bobo-Dioulasso, Burkina Faso, BP 545

10 <sup>3</sup>Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536

11 <sup>4</sup>Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA, 02138

12 <sup>5</sup>Department of Entomology, Pennsylvania State University, State College, PA 16802

13 **Corresponding author:** Dr. Flaminia Catteruccia, Building 1 Rm. 103, 665 Huntington Ave,  
14 Boston 02115, 617-432-1773, [fcatter@hsph.harvard.edu](mailto:fcatter@hsph.harvard.edu)

15 **Author Contributions:** K.L.A. contributed to literature searches, study design, data collection,  
16 data analysis, data interpretation, figure creation, and writing; S.P.S., C.N., A.N., D.G.P., W.R.S.,  
17 and A.S. contributed to study design and data collection, M.I., K.W., J.W. contributed to data  
18 collection; R.K.D. and A.D. contributed to project supervision, and F.C. contributed to study  
19 design, data analysis, data interpretation, figure creation, writing, and project supervision. The  
20 corresponding authors had full access to all of the data in the study and final responsibility in  
21 the decision to submit for publication.

22 **Abstract**

23 *Anopheles coluzzii* females, important malaria vectors in Africa, mate only once in their lifetime.

24 Mating occurs in aerial swarms with a high male-to-female ratio, where the traits underlying male

25 mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons

26 (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are

27 widely used in this area for malaria control, we also determined whether CHCs affect insecticide

28 resistance levels. We find that mated males have higher CHC abundance than unmated controls,

29 suggesting CHCs could be a determinant of mating success. Additionally, mated males have

30 higher insecticide resistance under pyrethroid challenge, and we show a link between resistance

31 intensity and CHC abundance. Taken together, our results reveal overlapping roles played by

32 CHCs in mate choice and insecticide resistance, and point to sexual selection for insecticide

33 resistance traits that limit the efficacy of our best malaria control tools.

34

35 **Introduction**

36 Two of the major malaria vectors in sub-Saharan Africa, *Anopheles gambiae* and *Anopheles*

37 *coluzzii* of the *Anopheles gambiae* complex, are largely monandrous, which means the lifetime

38 reproductive fitness of females depends on a single mating event<sup>1</sup>. In these anopheline species,

39 mating occurs in aerial swarms where males heavily outnumber females, an indication of female-

40 driven mate selection and/or scramble mating competition among males<sup>2,3</sup>. Swarm initiation

41 remains poorly understood, but it is thought that these mosquitoes integrate visual signals from

42 geographic markers and lighting, circadian cues, acoustic signals and volatile pheromones to

43 identify the presence of conspecific individuals of the opposite sex<sup>4-7</sup>. When a swarming male

44 approaches a female, there is substantial contact between their legs and abdomens after which,  
45 in successful mating events, the male grasps the female and completes copulation<sup>8</sup>. It has been  
46 demonstrated that during these close-range interactions, females can exhibit rejection behavior  
47 before copulation starts<sup>4,9,10</sup>. Leading up to these close range interactions, harmonic  
48 convergence, the adjustment of wing beat frequencies between a male and female, is observed  
49 in *Anopheles* like in other mosquito species, but there is no evidence that it increases the  
50 likelihood of successful copulation in *An. gambiae*<sup>11-13</sup>. Other studies have striven to understand  
51 whether male fitness, reflected by body size, determines mating outcomes, with unclear and  
52 conflicting conclusions<sup>5,14-16</sup>. So, in spite of substantial efforts, close-range cues involved in mate  
53 choice remain largely unknown in *Anopheles*.

54 Contact pheromones, including cuticular hydrocarbons (CHCs), are widely used by insects during  
55 social or sexual communication<sup>17,18</sup>. CHCs are waxy molecules derived from fatty acids via a  
56 biosynthetic process that involves desaturases, elongases, fatty acid synthases, and cytochrome  
57 P450 enzymes<sup>19,20</sup>. Biosynthesis occurs in specific cells called oenocytes, from where they are  
58 transported to the surface of the cuticle by lipophorin proteins, where they can regulate  
59 permeability in addition to playing pheromonal roles<sup>21</sup>. These compounds are chemically diverse,  
60 and are thought to be highly tuned to environmental pressures such as aridity as well as subject  
61 to sexual selection, resulting in plasticity in their composition and levels<sup>22</sup>. In mosquitoes, the  
62 role of CHCs in communication has not been fully elucidated, although reports indicate that  
63 stripping the cuticle with solvent<sup>23-25</sup> or treating virgin females with CHC extracts from either  
64 males or females<sup>26</sup> can reduce insemination rates, suggesting that CHCs may alter mosquito  
65 attractiveness. Further, recent data in *Anopheles stephensi* mosquitoes shows that males treated

66 with the CHC heptacosane inseminate more females compared to untreated controls<sup>6</sup>, indicating  
67 a potential role for CHCs in mating success.

68 The possibility of sexual selection for CHCs in *Anopheles* is particularly interesting because it is  
69 already known that these traits are advantageous during selection by insecticide pressure.

70 Cuticular insecticide resistance, a thickening of the cuticle caused by increased deposition of  
71 CHCs, cuticular proteins and chitin, leads to reduced or slowed insecticide penetrance<sup>27-29</sup>. Higher  
72 CHC levels in resistant mosquito populations have been linked to overexpression of two  
73 cytochrome P450 enzymes, *CYP4G16* and *CYP4G17*, that act as decarbonylases in the last steps  
74 in the CHC biosynthesis pathway<sup>27,28</sup>. Therefore, if CHCs are implicated in female mate choice or  
75 male competition during swarming, cuticular thickening due to selective pressures imposed by  
76 insecticides may also affect male mating success. Understanding whether CHCs affect both  
77 mating biology and insecticide resistance is a fascinating biological question intersecting  
78 evolution, ecology, and reproductive biology. This question is particularly relevant in areas of  
79 Africa where widespread insecticide resistance is threatening the efficacy of our best malaria  
80 control tools, which are predominantly based on the use of insecticides against vector species.

81 Here we investigated whether CHCs are associated with male mating success and with insecticide  
82 resistance in field *An. coluzzii* populations from Burkina Faso. We show that males that  
83 successfully mate with females in natural mating swarms have higher total abundance of CHCs,  
84 and that these males survive longer during insecticide exposure. Moreover, we identify  
85 signatures of cuticular resistance in those populations and show their association with survival  
86 after insecticide exposure. Our data support a model by which CHCs play overlapping roles in  
87 mate choice and insecticide resistance and suggest that sexual selection for cuticular pheromone

88 abundance may aid mosquitoes to withstand insecticide pressure. These findings have important  
89 repercussions for insecticide-based malaria control programs as well as for currently proposed  
90 genetic control strategies.

91

## 92 **Results**

### 93 **Mated males have higher total CHC abundances in natural *An. coluzzii* swarms**

94 To investigate whether CHC levels affect male mating success we decided to study males from  
95 natural mating swarms. This way we avoided using colonized mosquitoes which have adapted to  
96 confined laboratory conditions, a process likely to affect mating behavior and select for traits that  
97 are not necessarily relevant in field conditions<sup>30</sup>. To this end, we collected mated and unmated  
98 control mosquitoes from natural *An. coluzzii* swarms in VK7, a village in the Vallée du Kou area  
99 near Bobo Dioulasso, Burkina Faso. Mated males were collected *in copula*, while the control  
100 unmated groups were collected at different time points during the swarming period (throughout  
101 peak swarming, or at late time points) in random sweeps. Although we could not prove that  
102 control males had not mated during that evening, we expect this to be the case for two reasons:  
103 (1) return to the swarm on the same evening is unlikely, given the steep energy demands  
104 associated with copulation<sup>14</sup>, and (2) the highly biased sex ratios and large numbers of males in  
105 these swarms (several thousands) make sampling of returned males improbable. We therefore  
106 refer to these males as unmated controls, which are likely a reflection of the average swarming  
107 male.

108 We extracted CHCs from multiple pools of 5 males from either mated or unmated groups (**Figure**  
109 **1A**), and extracts were submitted for gas chromatography mass spectrometry (GC-MS) analysis

110 to retrieve quantitative and qualitative information of the CHC profiles. While all groups of males  
111 showed the same diversity of 38 CHC compounds regardless of mated status (**Supplementary**  
112 **Table 1**), mated males captured *in copula* had higher (by 1.37-fold) levels of CHCs compared to  
113 unmated controls from either peak or late time points after normalizing for wing length, a proxy  
114 for adult size (**Figure 1B**). No difference was instead detected between peak and late control  
115 groups (**Figure 1B**). When the two unmated groups were pooled, the greater CHC abundance of  
116 mated males was maintained (**Supplementary Figure 1A**). Wing length was not significantly  
117 different between mated and unmated groups in all comparisons (**Supplementary Figure 1B, C**),  
118 and we further showed that when incorporated into a Generalized Linear Model, mating group  
119 has a greater impact on CHC abundance compared to wing length (**Supplementary Table 2A**).  
120 Among the 38 identified compounds, 15 had increased abundance in mated males compared to  
121 both peak and late unmated control groups (**Figure 1C**). The representation of each individual  
122 compound relative to the total abundance (proportional abundance) was similar between the  
123 three groups, indicating that the major differences between CHCs of these groups are  
124 quantitative and not qualitative (**Supplementary Figure 1D**). Although we cannot rule out the  
125 possibility that differences in age or life history could also be associated with mating success and  
126 CHC levels, these data suggest that CHC abundance may be a sexually selected trait.

127  
128 **Mated males from natural mating swarms survive longer under permethrin exposure**  
129 Based on these findings, and evidence that CHCs are linked with insecticide resistance<sup>27</sup>, we next  
130 directly investigated whether mated males also have higher resistance to permethrin, an  
131 insecticide widely used on Long Lasting Insecticide-treated Nets (LLINs) in this area<sup>31</sup>. We

132 collected mated and unmated (from the late time point) males from natural swarms as above  
133 (**Figure 1A**). Given that no difference appears between CHCs of peak versus late unmated  
134 controls we decided to compare only the late group in the remainder of the study. Our reasoning  
135 is that the late time point is the most relevant control as by then no more females join the swarm  
136 and therefore males in this group are highly unlikely to mate that same evening. The day  
137 following collection we exposed these two groups to a 3.75% (5X) continuous dose of permethrin  
138 using WHO bioassay cylinders and permethrin-impregnated papers<sup>32</sup>. Mosquitoes were  
139 monitored for knockdown (failure to fly) every 30 minutes, and their total time to knockdown  
140 (referred to here as “survival”) was recorded (**Figure 2A upper panel**). When exposed to this dose  
141 of permethrin, mated males were 1.65 times more likely to survive the exposure (log-rank test,  
142  $p=0.036$ ), with a median survival 30 minutes longer than unmated controls (**Figure 2B**).  
143 We reasoned that a lower permethrin dose may give us higher resolution on the differences  
144 between these mosquitoes, and so we next utilized an intermittent exposure regime using a  
145 1.875% (2.5X) dose of permethrin, and also included recovery periods between exposures (**Figure**  
146 **2A lower panel**). When exposed to this dose, mated males were again more likely to survive (by  
147 3.72 times) compared to unmated controls (log rank test,  $p<0.0001$ ) (**Figure 2C**). While control  
148 males had a median time to death of 90 minutes, in the mated group more than half of the males  
149 were still alive after 210 minutes of exposure, so their median time to death was undefined.  
150 Although we again observed no significant difference in wing length of mated compared to  
151 unmated males (**Supplementary Figure 2**), we nonetheless incorporated wing length into a  
152 proportional hazards model and determined that this was not a significant factor in predicting  
153 survival time in Figure 2B (**Supplementary Table 2B**). Wing lengths were not paired to survival

154 time in males from Figure 2C, so this analysis could not be performed. When combined, our  
155 results show that males that are successful at mating exhibit greater resistance to insecticides.

156

157 ***An. coluzzii* populations from Vallée du Kou show evidence of cuticular resistance**

158 The evidence of a relationship between CHC abundance, mating success and resistance to  
159 pyrethroids prompted us to determine whether cuticular resistance is a mechanism acting in  
160 these mosquito populations, as suggested by other studies<sup>28,33-35</sup>. We first confirmed high  
161 intensity of pyrethroid resistance in this region by exposing adult *An. coluzzii* mosquitoes to  
162 permethrin, after collecting them as larvae from natural breeding sites in the Vallée du Kou.

163 These tests detected nearly 100% survival at the standard 0.75% (1X) permethrin dose, and >70%  
164 survival at both 2.5X and 5X doses (**Figure 3A**), in agreement with previous reports<sup>31</sup>.

165 We next tested whether CHC abundance is correlated with insecticide resistance intensity in the  
166 same population using age-matched *An. coluzzii* mosquitoes collected from larval breeding sites.

167 We first separated mosquitoes according to their insecticide resistance intensity (Low or High  
168 insecticide resistance (IR)) based on their survival to two consecutive permethrin exposures. We

169 classified as Low IR mosquitoes those who died after a single exposure to permethrin, while High  
170 IR mosquitoes were those who also survived a second exposure (**Figure 3B**). Permethrin doses

171 used were different in males and females, as females survived longer to the same doses  
172 (**Supplementary Figure 3A**). Data from males and females were pooled to increase sample size

173 as we saw no difference in total CHC abundances between sexes (**Supplementary Figure 3B**),  
174 though some qualitative differences were observed (**Supplementary Table 3**). We detected a

175 1.33-fold increase in the total abundance of CHCs in High IR mosquitoes compared to the Low IR

176 groups from the same population (Generalized Linear Model,  $p=0.0083$ ) (**Figure 3C**). High IR  
177 mosquitoes were larger (**Supplementary Figure 3C**), however neither wing length nor sex  
178 significantly explained variance in total CHC abundance when factored into a Generalized Linear  
179 Model as independent variables (**Supplementary Table 2C**). Further, we accounted for size  
180 differences by normalizing CHCs to wing length (**Figure 3C**).  
181 To gain further evidence of cuticular resistance in those populations, we also investigated  
182 transcript levels for the cuticular resistance genes *CYP4G16* and *CYP4G17* among High and Low  
183 IR females. Sample collection and quality was not sufficient for data collection from males.  
184 *CYP4G17* expression was significantly higher in the High IR group (unpaired t-test,  $p=0.0346$ ),  
185 while differences in *CYP4G16* expression trended in the same direction but were not significant  
186 (**Figure 3D**). All together, these data provide evidence for cuticular resistance in this mosquito  
187 population, confirming published studies<sup>28,33</sup>, and show a direct association between CHC  
188 abundance and insecticide resistance intensity in age-matched mosquitoes.

189

## 190 **Discussion**

191 In *Anopheles* mosquitoes, the traits defining male attractiveness and competitiveness during  
192 mating are not well understood. Here we show that males that are successful in mating swarms  
193 have higher abundances of CHCs, which could act as contact pheromones during interactions  
194 with females. Our data indicate that though relative abundances of different CHCs are similar  
195 among *An. coluzzii* males, greater total abundance is associated with mating success (**Figure 1B**).  
196 While CHC quantity could reflect increased male fitness involved in male-male competition, it is  
197 perhaps more plausible that this is a trait associated with female mate choice because CHCs are

198 commonly used as contact pheromones in other insects<sup>18</sup>, and because of documented female  
199 rejection behavior during close range interactions<sup>4,9,10</sup>. This is supported by recent findings that  
200 show *An. stephensi* males treated with heptacosane, an abundant CHC also detected in our  
201 analyses, have higher insemination rates compared to control treated males<sup>6</sup>, suggesting that  
202 CHCs render males more attractive to females rather than reflecting increased male-male  
203 competitiveness (which is unlikely to be conveyed by exogenous addition of CHCs). *An. coluzzii*  
204 females may only assess the abundance of one or a few important compounds when evaluating  
205 male fitness, but there is precedent for association of total CHC abundance with mating  
206 outcomes. In *Drosophila serrata*, for example, overall CHC levels increase under conditions of  
207 sexual selection<sup>36</sup>, while in *Gnatocerus* flour beetles and *Cyphoderris* sagebrush crickets, total  
208 abundance is thought to play a role in mate choice, though CHC composition is also involved<sup>36-38</sup>.  
209 Notably, the upregulation of the CHC biosynthetic pathway has advantages beyond mating  
210 success. These compounds form a waxy seal on the exterior epicuticle that regulates permeability  
211 to water, insecticides, and other chemicals, and may therefore provide benefits in conditions of  
212 environmental stress. Indeed, in a region of Burkina Faso where high pressure from LLINs and  
213 indoor residual spraying have caused the emergence and spread of a number of insecticide  
214 resistance mechanisms, including cuticular thickening<sup>27,28</sup>, we found that males that were  
215 successful in mating were more resistant to pyrethroid insecticides (**Figure 2**). Consistent with  
216 previous studies, we also detected the upregulation of an important marker (*CYP4G17*) of  
217 cuticular resistance<sup>27</sup> in mosquitoes that are more resistant to pyrethroids (**Figure 3D**).  
218 Combined, this evidence points to the possibility that CHC abundance may be not only be  
219 selected for by insecticide pressure, but also propagated by the increased mating success of

220 individuals that possess cuticular resistance traits, unveiling an unexpected link between sexual  
221 selection and the failure of our best malaria control tools. Although most insecticide-based  
222 interventions are mainly targeted at adult females, adult males also rest indoors<sup>39</sup> besides being  
223 exposed to insecticides during larval development, so increased CHC abundance is likely to be  
224 directly beneficial by increasing both the likelihood that males will survive long enough to mate  
225 and their chances of being successful during swarming events.

226 Our finding that CHCs act as dual traits in *An. coluzzii*, with roles in both mating behavior and in  
227 withstanding environmental pressures, is consistent with reports in *Drosophila* where  
228 hydrocarbons involved in mate choice are thought to have evolved differentially in different  
229 species based on environmental conditions like aridity of their ecological niches<sup>19</sup>. Similarly,  
230 different environments may explain why cuticular resistance has not been detected in all  
231 *Anopheles* populations, although it is also possible that the presence of this mechanism may be  
232 under-reported due to the lack of simple and reliable molecular diagnostic tools. Increased CHC  
233 production is likely to impose fitness costs that can only be offset in specific environmental  
234 conditions such as insecticide usage or aridity, and indeed there is evidence that CHCs also  
235 contribute to desiccation tolerance in *An. gambiae*<sup>40-42</sup>. Fitness costs of CHC production have  
236 been reported in *Drosophila*, where there appears to be a trade-off between CHC abundance and  
237 oogenesis, to the point that in the absence of sexual selection total CHC content is reduced in  
238 both male and female flies<sup>36,43</sup>. In the Vallée du Kou area where we conducted our studies, in  
239 addition to heavy insecticide usage mosquitoes are exposed to other significant environmental  
240 factors like a dry season that subjects mosquitoes to desiccation stress. Both these conditions

241 are likely to promote increased CHC production even when a balance must be struck between  
242 abundance of these cuticular pheromones and their presumed fitness costs.

243 It is important to note that additional insecticide resistance mechanisms exist in this mosquito  
244 population including metabolic and target site resistance<sup>33,34</sup>. We cannot exclude that they  
245 contributed to the survival differences in our experiments, nor do we argue that cuticular  
246 resistance is necessarily equally or more dominant as a mechanism. However, the fact that we  
247 detected CHC differences between mosquitoes with low and high insecticide resistance (**Figure**  
248 **3C**), despite the potential contributions of other mechanisms, suggests cuticular resistance is  
249 important. In future studies, it will be critical to explore how different ecological factors shape  
250 mating success and sexual selection in *Anopheles* vectors from other malaria-endemic regions.

251 Using wild-caught mosquitoes from natural swarms in our study has some inevitable limitations.  
252 We cannot be certain that males in our unmated group had not mated on previous nights, and  
253 we assume that mating does not change the CHC profile of males, an assumption supported by  
254 previous evidence<sup>26</sup>. Relatedly, due to the lack of appropriate high resolution age-grading  
255 technology, we cannot control for the age of males caught from natural swarms. Although we  
256 cannot rule out age as a confounding factor entirely, this parameter is not likely to critically  
257 influence our results due to the following arguments. Firstly, it has been shown that age is not  
258 associated with mating in natural swarms<sup>15</sup>. Moreover, the same study showed that 80-90% of  
259 *An. gambiae* swarming males are >4 days old and insemination rates are highest using males  
260 between 4 and 8 days of age<sup>15</sup>. Based on estimates of daily survival, as few as 5% of males may  
261 live longer than 8 days<sup>44</sup>, and we therefore expect that the vast majority of our cohort of  
262 swarming males are between 4 and 8 days old. Secondly, insecticide resistance does wane with

263 age, but in the range of 4-8 days of age these effects are subtle, at least in females<sup>45</sup>. Lastly,  
264 though the impact of age on the total CHC abundance in males is not fully understood, a previous  
265 study observed an increase in CHCs with age in *An. gambiae* females<sup>40</sup>. Together these studies  
266 show that effects of age on CHC abundance and insecticide resistance may act in opposing  
267 directions, making it highly unlikely that age explains our findings here. Importantly, when age  
268 was controlled by using mosquitoes from larval collections from breeding sites in the same  
269 region, we still observed increased CHC abundance in mosquitoes that were more resistant to  
270 permethrin (**Figure 3B**).

271 Finally, our findings that males with reduced CHC levels are less competitive in mating swarms  
272 also have repercussions for vector control strategies currently in the design stage that propose  
273 to release sterile or genetically modified males for malaria control. Given our results, laboratory-  
274 derived males lacking insecticide resistance mechanisms such as cuticular resistance would likely  
275 be less successful when mating in swarms alongside wild males, whether at the level of female  
276 mate choice or male competition. This reinforces the need to backcross laboratory mosquitoes  
277 sufficiently into the local genetic background before release, and to take into consideration the  
278 presence and mechanisms of insecticide resistance in the field population when planning the  
279 release of modified males.

280

## 281 **Materials and Methods**

282 *Mating captures from natural swarms:* Using small nets, mating couples of *An. coluzzii*, a subset  
283 of which were genotyped using primers from Santolamazza et al. 2008<sup>46</sup>, were manually caught  
284 from swarms in Vallée du Kou village 7 by trained personnel<sup>47,48</sup>. Samples collected for analysis

285 of CHCs in swarming males (Figure 1) were obtained during September 2017, while samples  
286 collected in September 2018 were used to determine insecticide resistance intensities in  
287 swarming males (Figure 2). During collections, the nets were verified to contain one male and  
288 one female prior to being mouth-aspirated from the net into a small cup covered with netting.  
289 Nets that contained more than one male were discarded. For the unmated control groups, males  
290 were collected by one or several sweeps of a net through the swarm between 3 and 15 minutes  
291 into the swarm for the peak swarm time point, or 17-20 minutes into the swarm for the late  
292 swarm time point. Males from these sweeps were aspirated from nets into cups. Mosquitoes  
293 were given cotton soaked with 10% sugar solution and transported from field sites to an insectary  
294 in a vehicle. There they were additionally given cotton soaked in water overnight. CHCs were  
295 collected from these males 24 hours later.

296 *GC-M samples:* For all GC-MS samples, pools of five mosquitoes were submerged in 200 $\mu$ L hexane  
297 for 30 min. Hexane was evaporated and samples were stored at room temperature. Just prior to  
298 GC-MS, samples were resuspended in 200 $\mu$ L hexane containing pentadecane as an internal  
299 standard of known quantity (1.53 $\mu$ g/sample). 3 $\mu$ L sample was injected into an Agilent fused-silica  
300 capillary column of cross-linked DB-5MS (30m x 0.25mm x 0.25 $\mu$ m). The GC conditions were as  
301 follows: inlet and transfer line temperatures, 290°C; oven temperature program, 50°C for 0.6  
302 min, 50°C/min to 80°C for 2 min, 30°C/min to 120°C, 5°C/min to 310°C for 20 min, 50°C/min to  
303 325°C for 10 min; inlet helium carrier gas flow rate, 1mL/min; split mode, splitless. These  
304 conditions are optimized for detection and resolution of lower chain length molecules.

305 *GC-MS analysis:* A CHC accurate-mass target database was built based on the retention time  
306 comparison method and on the characterized ions reported by Caputo *et al.* 2005 to identify the

307 compounds from the GC-MS run<sup>49</sup>. The relative response of the peak area of the extracted ion  
308 chromatogram of a target relative to the pentadecane internal standard was used to generate a  
309 quantitative value for each compound, called the response ratio.

310 *Absolute abundance*: We compared this value between samples to look at the differences in  
311 absolute quantity of each CHC, after accounting for wing length of the mosquitoes in each  
312 sample. The sum of response ratios for all CHC compounds identified in a sample was used to  
313 compare total abundance of CHCs. We only included in our analyses compounds that were  
314 identified in at least 80% of all samples for each run. Data from one day of sample collection from  
315 swarms was excluded because all samples failed to detect 8 compounds that were detected in  
316 samples from all other collection days, and also expressed less than 25% of the total CHC  
317 abundance compared to the average. Statistics were performed as follows: For mated versus  
318 unmated comparisons, data were checked for normality prior to running One-Way ANOVA with  
319 Tukey's multiple comparisons for mated versus peak unmated versus late unmated comparisons.  
320 These data were also incorporated into a Generalized Linear Model to determine whether there  
321 were significant differences between males captured from different swarms or on different  
322 nights (no significant effects were determined) as well as to account for wing length (prior to  
323 normalization). For Low IR versus High IR comparisons: data were checked for normality prior to  
324 running a Generalized Linear Model for Low IR versus High IR comparisons accounting for sex  
325 within the model. A Generalized Linear Model was also run to account for wing length prior to  
326 normalization, in addition to sex. For mosquitoes binned according to insecticide resistance  
327 intensity, animals in the Low IR groups tended to have fewer legs remaining post-exposure to

328 permethrin, so the number of legs was normalized by removing the appropriate number of legs  
329 from High IR mosquitoes prior to hexane extraction to mirror the Low IR group.

330 *Proportional abundance*: We calculated and compared the relative abundance of each compound  
331 in all samples to determine whether the proportional representation of each compound was  
332 different between groups. To compare abundance of individual compounds, data was not  
333 distributed normally for all compounds so Mann-Whitney tests were used to determine statistical  
334 differences between groups, and a Benjamini-Hochberg correction for multiple comparisons was  
335 subsequently performed with Q=0.2.

336 *Wing length measurement*: Wings were imaged and measured from the proximal wing notch to  
337 the distal tip of the third cross vein using ImageJ<sup>50,51</sup>. All measurements were taken by the same  
338 person for consistency. The response ratio (relative to pentadecane standard) of total CHCs was  
339 divided by wing length (mm) to give normalized values. After testing to verify that the data falls  
340 into a normal distribution, wing lengths were compared using unpaired t-tests or One-Way  
341 ANOVA with Tukey's multiple comparisons in GraphPad Prism 8.4.3 (GraphPad Software Inc.  
342 USA).

343 *Insecticide resistance bioassays*: Permethrin-impregnated papers were prepared at 0.75% (1X),  
344 1.875% (2.5X), or 3.75% (5X) permethrin (Sigma-Aldrich PESTANAL® analytical standard)  
345 concentrations, weight/volume. Standard WHO bioassay tubes were used to expose mosquitoes  
346 to permethrin-impregnated papers for a given period. For standard WHO bioassays<sup>32</sup>,  
347 mosquitoes were exposed to permethrin for one hour, and 24h recovery time was allowed before  
348 assessing mortality. For non-standard time-to-death assays, mosquitoes were exposed for either  
349 30- or 60-min periods and monitored for survival after a given recovery time, as shown in Figure

350 2A. To compare survival duration, log-rank tests were performed in JMP Pro 13 (SAS Corp. US).  
351 Proportional Hazards models were also performed in JMP to rule out replicate differences driving  
352 significance and also to account for the contributions of wing length to differences in survival.  
353 For non-standard assays binning mosquitoes as Low IR or High IR, mosquitoes were exposed to  
354 permethrin in two subsequent intervals as follows: for females, 60 min 5X permethrin followed  
355 by 120 min rest, followed by 30 min 5X permethrin and another 120 min rest (Supplementary  
356 Figure 3A, upper panel). For males: 30 min 2.5X permethrin exposure followed by 120 min rest,  
357 30 min 2.5X permethrin, 120 min rest (Supplementary Figure 3A. lower panel.). Survival was  
358 assessed after each rest period. Pilot experiments were used to determine permethrin doses that  
359 yielded approximately equal numbers of High and Low IR mosquitoes.

360 *Transcriptional analysis of insecticide resistance genes:* After insecticide resistance bioassays  
361 were performed and categorized females as Low IR or High IR, whole bodies were placed in  
362 RNAlater™ (Thermo Fisher Scientific) in pools of three. A 2-hour post-exposure time point was  
363 used to reduce degradation of mosquitoes that had died during exposure, while allowing some  
364 recovery time for those that were only knocked down. After 24h at 4°C, excess RNAlater was  
365 removed, and samples were frozen at -20°C. Samples were later homogenized in 600µL TRI  
366 reagent® (Thermo Fisher Scientific). RNA was then extracted according to modified manufacturer  
367 instructions, including three washes of the RNA pellet with 75% ethanol. Samples were treated  
368 with TURBO™ DNase (Thermo Fisher Scientific) prior to quantification with a NanoDrop  
369 Spectrophotometer 2000c (Thermo Fisher Scientific). At this stage, we determined that male  
370 samples yielded poor quantity and quality RNA, while female samples were adequate for cDNA  
371 synthesis and qRT-PCR. Briefly, cDNA synthesis was performed using approximately 2µg RNA per

372 sample in a reaction volume of 100 $\mu$ L. Published primer sequences for *CYP4G16* and *CYP4G17*  
373 were obtained as previously described<sup>27</sup>. qRT-PCR reactions were run on a StepOnePlus  
374 thermocycler using SYBR-Green Master Mix (Thermo Fisher Scientific), with 300nM primers and  
375 1:3 dilutions of cDNA in a 15 $\mu$ L reaction. *RPL19* was used as a house-keeping gene to normalize  
376 Ct values obtained for each sample. Expression values were then compared using unpaired t-  
377 tests using GraphPad Prism after verifying that data was distributed normally.

378 *Mosquito larval collections and rearing:* Larval breeding sites in Vallée du Kou village 5 were  
379 surveilled daily during September 2018, and larvae were collected between the L3 and pupal  
380 stage. Predators and competing mosquito species were removed, and mosquitoes were reared  
381 from these stages in natural spring water with TetraMin® powder (Tetra) fed daily. Mosquitoes  
382 were sex-separated as pupae under a light microscope and given *ad libitum* access to cotton  
383 soaked with water and a 10% sugar solution throughout adulthood with a 12h light 12h dark  
384 cycle.

385 *Statistics and reproducibility:* Detailed statistical methods are described within the relevant  
386 methods sections. CHC data was collected from swarming males on three separate nights to  
387 ensure reproducibility, and survival of swarming males to insecticide exposure was evaluated a  
388 total of six times. CHC data was collected from Low and High IR from only one of three  
389 experiments, but RNA was collected from females from all three replicates.

390

391 **Data availability:** All pertinent data is available within the manuscript or upon request.

392

393 **Acknowledgments:** We thank the villagers of VK5 and VK7 for their assistance in capturing  
394 mosquitoes from within swarms, and members of the Catteruccia laboratory for comments on  
395 the manuscript. Funding for this study was provided by a joint Howard Hughes Medical Institute  
396 and Bill and Melinda Gates Foundation Faculty Scholars Award to FC (Grant ID: OPP1158190),  
397 by the National Institutes of Health (NIH) (award number: R01 AI104956) to FC and by a  
398 fellowship of the National Sciences and Engineering and Research Council of Canada to KA. The  
399 findings and conclusions within this publication are those of the authors and do not  
400 necessarily reflect positions or policies of the HHMI, the BMGF, the NIH or the NSERC.

401

402 **Competing Interests:** The authors declare no competing interests

403

404 **References**

405  
406 1 Triplet, F., Toure, Y. T., Dolo, G. & Lanzaro, G. C. Frequency of multiple inseminations in field-  
407 collected *Anopheles gambiae* females revealed by DNA analysis of transferred sperm. *The American journal of tropical medicine and hygiene* **68**, 1-5 (2003).  
408  
409 2 Beehler, B. M. & Foster, M. S. Hotshots, Hotspots, and Female Preference in the Organization of  
410 Lek Mating Systems. *The American Naturalist* **131**, 203-219 (1988).  
411 3 Cator, L. J., Wyer, C. A. S. & Harrington, L. C. Mosquito Sexual Selection and Reproductive Control  
412 Programs. *Trends Parasitol* **37**, 330-339, doi:10.1016/j.pt.2020.11.009 (2021).  
413 4 Charlwood, J. D. & Jones, M. D. R. Mating behaviour in the mosquito, *Anopheles gambiae* s.l. save.  
414 *Physiological Entomology* **4**, 111-120, doi:10.1111/j.1365-3032.1979.tb00185.x (1979).  
415 5 Charlwood, J. D. *et al.* The swarming and mating behaviour of *Anopheles gambiae* s.s. (Diptera:  
416 Culicidae) from São Tomé Island. *Journal of vector ecology : journal of the Society for Vector  
417 Ecology* **27**, 178-183 (2002).  
418 6 Wang, G. *et al.* Clock genes and environmental cues coordinate <em>Anopheles</em>  
419 pheromone synthesis, swarming, and mating. *Science (New York, N.Y.)* **371**, 411-415,  
420 doi:10.1126/science.abd4359 (2021).  
421 7 Mozūraitis, R. *et al.* Male swarming aggregation pheromones increase female attraction and  
422 mating success among multiple African malaria vector mosquito species. *Nature Ecology &  
423 Evolution*, doi:10.1038/s41559-020-1264-9 (2020).  
424 8 Howell, P. I. & Knols, B. G. J. Male mating biology. *Malar J* **8 Suppl 2**, S8-S8, doi:10.1186/1475-  
425 2875-8-S2-S8 (2009).

426 9 Aldersley, A. & Cator, L. J. Female resistance and harmonic convergence influence male mating  
427 success in *Aedes aegypti*. *Scientific reports* **9**, 2145, doi:10.1038/s41598-019-38599-3 (2019).

428 10 Pantoja-Sánchez, H., Gomez, S., Velez, V., Avila, F. W. & Alfonso-Parra, C. Precopulatory acoustic  
429 interactions of the New World malaria vector *Anopheles albimanus* (Diptera: Culicidae). *Parasit  
430 Vectors* **12**, 386-386, doi:10.1186/s13071-019-3648-8 (2019).

431 11 Cator, L. J., Ng'Habi, K. R., Hoy, R. R. & Harrington, L. C. Sizing up a mate: variation in production  
432 and response to acoustic signals in *Anopheles gambiae*. *Behavioral Ecology* **21**, 1033-1039,  
433 doi:10.1093/beheco/arr087 (2010).

434 12 Pennetier, C., Warren, B., Dabiré, K. R., Russell, I. J. & Gibson, G. "Singing on the wing" as a  
435 mechanism for species recognition in the malarial mosquito *Anopheles gambiae*. *Current biology  
436 : CB* **20**, 131-136, doi:10.1016/j.cub.2009.11.040 (2010).

437 13 Simões, P. M., Gibson, G. & Russell, I. J. Pre-copula acoustic behaviour of males in the malarial  
438 mosquitoes *Anopheles coluzzii* and *Anopheles gambiae* s.s. does not contribute to reproductive  
439 isolation. *The Journal of experimental biology* **220**, 379-385, doi:10.1242/jeb.149757 (2017).

440 14 Maïga, H., Dabiré, R. K., Lehmann, T., Tripet, F. & Diabaté, A. Variation in energy reserves and role  
441 of body size in the mating system of *Anopheles gambiae*. *Journal of Vector Ecology* **37**, 289-297,  
442 doi:<https://doi.org/10.1111/j.1948-7134.2012.00230.x> (2012).

443 15 Sawadogo, S. P. *et al.* Effects of age and size on *Anopheles gambiae* s.s. male mosquito mating  
444 success. *Journal of medical entomology* **50**, 285-293, doi:10.1603/me12041 (2013).

445 16 Ng'habi, K. R. *et al.* Sexual selection in mosquito swarms: may the best man lose? *Animal  
446 Behaviour* **76**, 105-112 (2008).

447 17 Ferveur, J.-F. & Cobb, M. in *Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology*  
448 (eds Anne-Geneviève Bagnères & Gary J. Blomquist) 325-343 (Cambridge University Press, 2010).

449 18 Theresa, L. S. Roles of Hydrocarbons in the Recognition Systems of Insects. *American Zoologist* **38**,  
450 394-405 (1998).

451 19 Chung, H. *et al.* A single gene affects both ecological divergence and mate choice in *Drosophila*.  
452 *Science (New York, N.Y.)* **343**, 1148-1151, doi:10.1126/science.1249998 (2014).

453 20 Grigoraki, L., Grau-Bové, X., Carrington Yates, H., Lycett, G. J. & Ranson, H. Isolation and  
454 transcriptomic analysis of *Anopheles gambiae* oenocytes enables the delineation of hydrocarbon  
455 biosynthesis. *eLife* **9**, e58019, doi:10.7554/eLife.58019 (2020).

456 21 Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect  
457 hydrocarbons. *Annual review of entomology* **50**, 371-393,  
458 doi:10.1146/annurev.ento.50.071803.130359 (2005).

459 22 Ingleby, F. C. Insect Cuticular Hydrocarbons as Dynamic Traits in Sexual Communication. *Insects*  
460 **6**, 732-742, doi:10.3390/insects6030732 (2015).

461 23 Lang, J. T. & Foster, W. A. Is There a Female Sex Pheromone in the Mosquito *Culiseta inornata*?  
462 *Environmental Entomology* **5**, 1109-1115, doi:10.1093/ee/5.6.1109 (1976).

463 24 Nijout, H. F. C. J., George B. Reproductive isolation in *Stepgomyia* mosquitoes. III Evidence for a  
464 sexual pheromone. *Entomologia Experimentalis et Applicata* **14**, 399-412, doi:10.1111/j.1570-  
465 7458.1971.tb00178.x (1971).

466 25 Lang, J. T. Contact sex pheromone in the mosquito *Culiseta inornata* (Diptera: Culicidae). *Journal  
467 of medical entomology* **14**, 448-454, doi:10.1093/jmedent/14.4.448 (1977).

468 26 Polerstock, A. R., Eigenbrode, S. D. & Klowden, M. J. Mating alters the cuticular hydrocarbons of  
469 female *Anopheles gambiae* sensu stricto and *aedes Aegypti* (Diptera: Culicidae). *Journal of  
470 medical entomology* **39**, 545-552, doi:10.1603/0022-2585-39.3.545 (2002).

471 27 Balabanidou, V. *et al.* Cytochrome P450 associated with insecticide resistance catalyzes cuticular  
472 hydrocarbon production in *Anopheles gambiae*. *Proceedings of the National Academy of Sciences  
473 of the United States of America* **113**, 9268-9273, doi:10.1073/pnas.1608295113 (2016).

474 28 Balabanidou, V. *et al.* Mosquitoes cloak their legs to resist insecticides. *Proceedings. Biological*  
475 *sciences* **286**, 20191091, doi:10.1098/rspb.2019.1091 (2019).

476 29 Yahouedo, G. A. *et al.* Contributions of cuticle permeability and enzyme detoxification to  
477 pyrethroid resistance in the major malaria vector *Anopheles gambiae*. *Scientific reports* **7**, 11091,  
478 doi:10.1038/s41598-017-11357-z (2017).

479 30 Baeshen, R. *et al.* Differential effects of inbreeding and selection on male reproductive phenotype  
480 associated with the colonization and laboratory maintenance of *Anopheles gambiae*. *Malar J* **13**,  
481 19, doi:10.1186/1475-2875-13-19 (2014).

482 31 Toe, K. H. *et al.* Increased pyrethroid resistance in malaria vectors and decreased bed net  
483 effectiveness, Burkina Faso. *Emerging infectious diseases* **20**, 1691-1696,  
484 doi:10.3201/eid2010.140619 (2014).

485 32 Organization., W. H. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector  
486 Mosquitoes. *WHO* (2013).

487 33 Toe, K. H., N'Fale, S., Dabire, R. K., Ranson, H. & Jones, C. M. The recent escalation in strength of  
488 pyrethroid resistance in *Anopheles coluzzi* in West Africa is linked to increased expression of  
489 multiple gene families. *BMC Genomics* **16**, 146, doi:10.1186/s12864-015-1342-6 (2015).

490 34 Kwiatkowska, R. M. *et al.* Dissecting the mechanisms responsible for the multiple insecticide  
491 resistance phenotype in *Anopheles gambiae* s.s., M form, from Vallee du Kou, Burkina Faso. *Gene*  
492 **519**, 98-106, doi:10.1016/j.gene.2013.01.036 (2013).

493 35 Ingham, V. A. *et al.* Dissecting the organ specificity of insecticide resistance candidate genes in  
494 *Anopheles gambiae*: known and novel candidate genes. *BMC Genomics* **15**, 1018,  
495 doi:10.1186/1471-2164-15-1018 (2014).

496 36 Blows, M. W. Interaction between natural and sexual selection during the evolution of mate  
497 recognition. *Proceedings. Biological sciences* **269**, 1113-1118, doi:10.1098/rspb.2002.2002  
498 (2002).

499 37 Lane, S. M., Dickinson, A. W., Tregenza, T. & House, C. M. Sexual Selection on male cuticular  
500 hydrocarbons via male-male competition and female choice. *J Evol Biol* **29**, 1346-1355,  
501 doi:10.1111/jeb.12875 (2016).

502 38 Steiger, S. *et al.* Sexual selection on cuticular hydrocarbons of male sagebrush crickets in the wild.  
503 *Proc Biol Sci* **280**, 20132353-20132353, doi:10.1098/rspb.2013.2353 (2013).

504 39 Sawadogo, S. P. *et al.* Differences in timing of mating swarms in sympatric populations of  
505 *Anopheles coluzzii* and *Anopheles gambiae* s.s. (formerly *An. gambiae* M and S molecular forms)  
506 in Burkina Faso, West Africa. *Parasit Vectors* **6**, 275, doi:10.1186/1756-3305-6-275 (2013).

507 40 Arcaz, A. C. *et al.* Desiccation tolerance in *Anopheles coluzzii*: the effects of spiracle size and  
508 cuticular hydrocarbons. *The Journal of experimental biology* **219**, 1675-1688,  
509 doi:10.1242/jeb.135665 (2016).

510 41 Hidalgo, K. *et al.* Distinct physiological, biochemical and morphometric adjustments in the malaria  
511 vectors *Anopheles gambiae* and *A. coluzzii* as means to survive dry season conditions in Burkina  
512 Faso. *The Journal of experimental biology* **221**, doi:10.1242/jeb.174433 (2018).

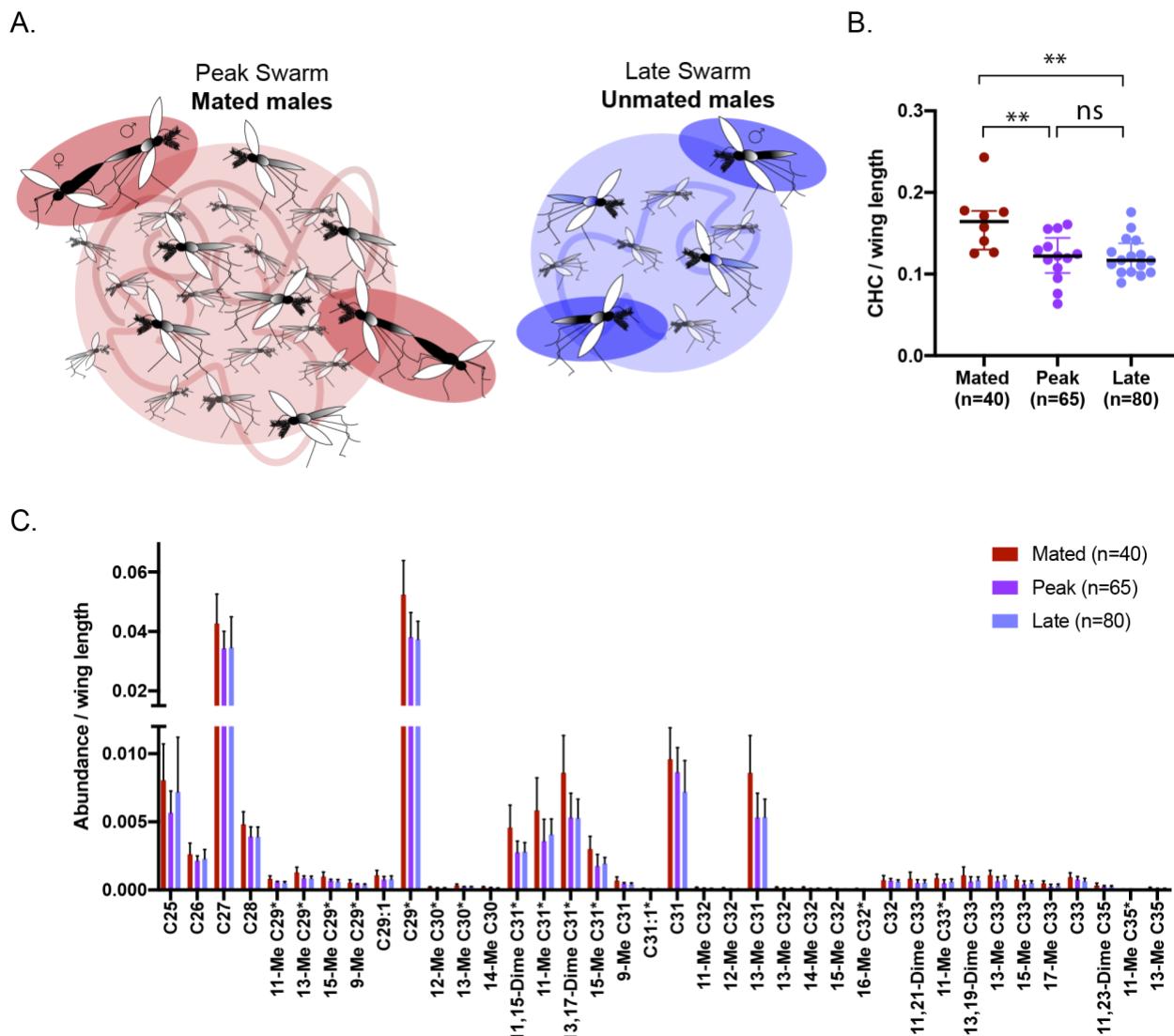
513 42 Wagoner, K. M. *et al.* Identification of morphological and chemical markers of dry- and wet-season  
514 conditions in female *Anopheles gambiae* mosquitoes. *Parasit Vectors* **7**, 294, doi:10.1186/1756-  
515 3305-7-294 (2014).

516 43 Wicker C. & Jallon, J. M. Influence of ovary and ecdysteroids on pheromone biosynthesis in  
517 *Drosophila melanogaster* (Diptera: Drosophilidae). *EJE* **92**, 197-202 (1995).

518 44 Charlwood, J. D. Studies on the bionomics of male *Anopheles gambiae* Giles and male *Anopheles*  
519 *funestus* Giles from southern Mozambique. *Journal of vector ecology : journal of the Society for*  
520 *Vector Ecology* **36**, 382-394, doi:10.1111/j.1948-7134.2011.00179.x (2011).

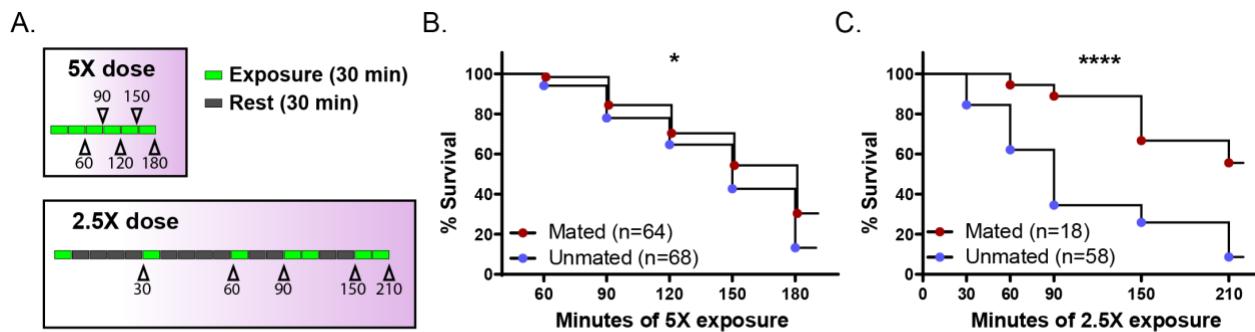
521 45 Glunt, K. D., Thomas, M. B. & Read, A. F. The effects of age, exposure history and malaria infection  
522 on the susceptibility of *Anopheles* mosquitoes to low concentrations of pyrethroid. *PLoS one* **6**,  
523 e24968-e24968, doi:10.1371/journal.pone.0024968 (2011).

524 46 Santolamazza, F. *et al.* Insertion polymorphisms of SINE200 retrotransposons within speciation  
525 islands of *Anopheles gambiae* molecular forms. *Malar J* **7**, 163, doi:10.1186/1475-2875-7-163  
526 (2008).


527 47 Diabaté, A. *et al.* Spatial distribution and male mating success of *Anopheles gambiae* swarms. *BMC*  
528 *Evol Biol* **11**, 184-184, doi:10.1186/1471-2148-11-184 (2011).

529 48 Niang, A. *et al.* Does extreme asymmetric dominance promote hybridization between *Anopheles*  
530 *coluzzii* and *Anopheles gambiae* s.s. in seasonal malaria mosquito communities of West Africa?  
531 *Parasit Vectors* **8**, 586-586, doi:10.1186/s13071-015-1190-x (2015).

532 49 Caputo, B. *et al.* Identification and composition of cuticular hydrocarbons of the major  
533 Afro-tropical malaria vector *Anopheles gambiae* s.s. (Diptera: Culicidae): analysis of sexual  
534 dimorphism and age-related changes. *Journal of mass spectrometry : JMS* **40**, 1595-1604,  
535 doi:10.1002/jms.961 (2005).


536 50 Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**, 676-  
537 682, doi:10.1038/nmeth.2019 (2012).

538 51 Charlwood, J. Biological variation in *Anopheles darlingi* root. *Memórias do Instituto Oswaldo Cruz*  
539 **91**, 391-398 (1996).



540  
541 **Figure 1. Successful *An. coluzzii* males in natural swarms have higher abundance of CHCs. (A)**  
542 Scheme of captures of male groups from mating swarms, showing mated males (left image, red)  
543 and unmated controls collected late in the swarm (right image, blue). (B) Total abundance of  
544 CHCs is higher in mated compared to unmated males when captured at either peak or late time  
545 points during the swarm (Tukey's multiple comparisons,  $p=0.0045$  (mated vs peak unmated),  
546  $p=0.0041$  (mated vs late unmated)). The mean sum of response ratios for all CHCs divided by the  
547 mean wing length for each sample is shown. Error bars represent SD, and  $n$  describes total  
548 number of mosquitoes. (C) Mated males have higher abundance of 15 of 38 CHCs compared to

549 both unmated males captured at the peak or late time point detected by GC-MS, shown here as  
550 the median response ratio to a pentadecane internal standard and normalized to wing length.  
551 Nomenclature for each compound indicates position of methyl (Me) or Dimethyl (Dime) groups  
552 on the carbon chain. Error bars represent interquartile ranges; Benjamini-Hochberg corrected *p*  
553 values from Mann-Whitney tests are displayed in full in Supplementary Table 1. Asterisks are  
554 indicated next to names of compounds with statistically significant differences in both peak and  
555 late unmated groups compared to the mated group.



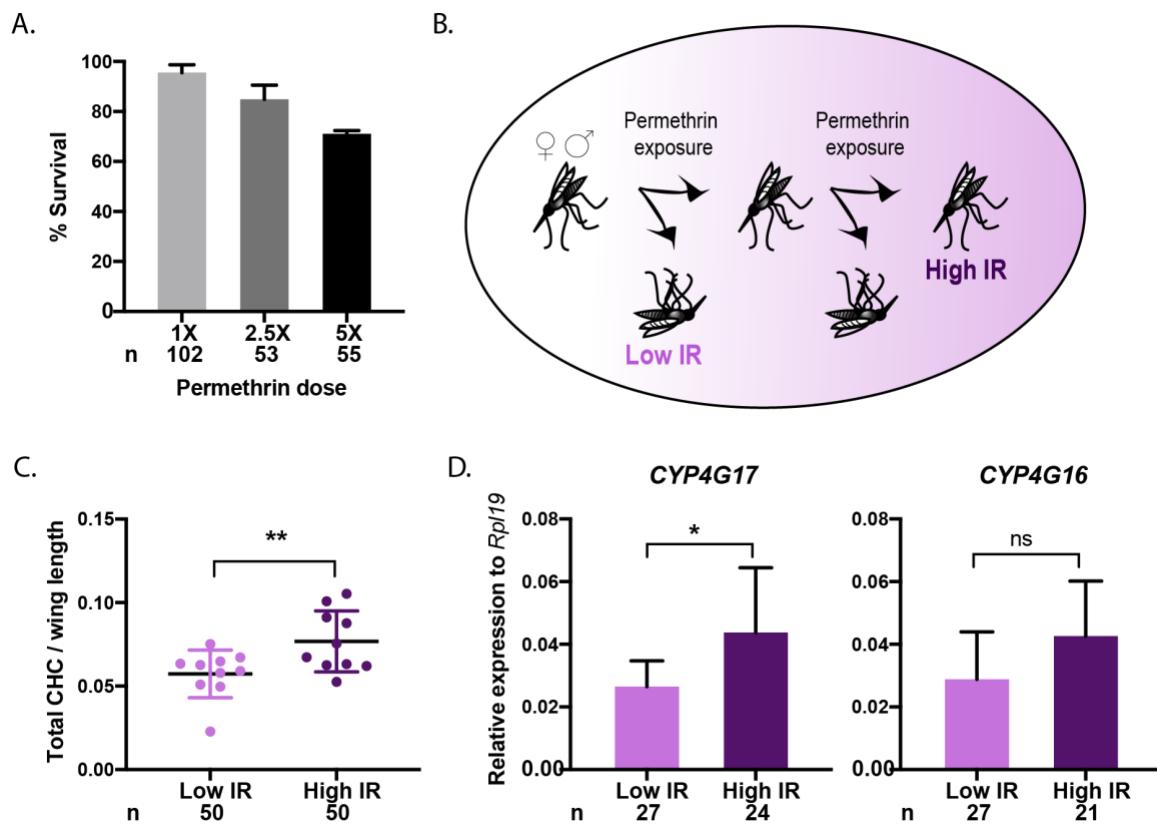
556

557 **Figure 2. Successful males have higher permethrin resistance.** Mated and control unmated

558 males were captured from natural swarms as in Figure 1A. (A) These males were exposed to

559 either a continuous 5X dose of permethrin (upper panel) or a series of 30 or 60 minute 2.5X

560 permethrin exposures (lower panel) and monitored for knockdown after each exposure.


561 Schematics represent 30-minute time intervals as either exposure periods (green) or rest periods

562 (grey). Arrowheads denote time points for survival monitoring, labeled according to the

563 cumulative minutes of permethrin exposure. Mated males survived longer on average to these

564 permethrin exposures compared to unmated males for both the (B) 5X ( $p=0.036$ ) and (C) 2.5X

565 ( $p<0.0001$ ) doses (log-rank tests). n represents total number of mosquitoes.



566 **Figure 3. CHC levels are correlated with insecticide resistance intensity in field-derived *An. coluzzii*.** (A) Insecticide resistance bioassays using 1X, 2.5X, or 5X permethrin-impregnated papers  
567 show high insecticide resistance in *An. coluzzii* adults collected as larvae from VK5 breeding sites.  
568 (B) Scheme of experimental design showing how mosquitoes from larval collections were  
569 categorized as Low IR or High IR based on their survival to two sequential permethrin exposures.  
570 (C) High IR mosquitoes show higher abundance of CHCs compared to Low IR mosquitoes  
571 (Generalized Linear Model,  $p=0.0083$ ) after normalizing for wing length and accounting for sex  
572 within the model ( $p=0.2651$ ). Mean and SD are shown. (D) High IR females also show higher  
573 transcript abundance of *CYP4G17* (unpaired t-test,  $p=0.0346$ ), but not *CYP4G16* (unpaired t-test,  
574  $p>0.05$ ) by qRT-PCR. Bars represent mean and SD;  $n$  represents total number of mosquitoes.