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Abstract Task-based and resting-state represent the two most common experimental10

paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach11

for characterizing brain function, task-based techniques provide superior localization. In this12

paper, we build on recent deep learning methods to create a model that predicts task-based13

contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a14

surface-based fully-convolutional neural network model that works with a representation of the15

brain’s cortical sheet. Our model achieves state of the art predictive accuracy on independent16

test data from the Human Connectome Project and yields individual-level predicted maps that17

are on par with the target-repeat reliability of the measured contrast maps. We also demonstrate18

that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.19

20

Introduction21

Task-based functionalmagnetic resonance imaging (tfMRI) has been an indispensable tool for prob-22

ing neural correlates supporting cognitive, emotional and movement-related processes in the hu-23

man brain. Activation patterns extracted from tfMRI have been used to characterize the functional24

anatomy of the human brain (Besle et al., 2013; Barch et al., 2013; Gordon et al., 2017), or derive25

neural biomarkers for individual behavioral measures such as working memory capacity (McNab26

and Klingberg, 2008), visual attention (Mukai et al., 2007), loss aversion (Tom et al., 2007) or read-27

ing ability (Wang et al., 2019; Nijhof and Willems, 2015). However, tfMRI requires careful design28

and expensive subject training to elicit the appropriate cognitive components that the experiment29

intends to investigate (Church et al., 2010; Rosazza et al., 2018). On the other hand, resting-state30

fMRI (rsfMRI), which measures spontaneous, slow-changing fluctuations of brain activity in the ab-31

sence of external stimuli has become the workhorse in a growing number of neuroscience studies,32

in part due to its ease of acquisition and higher tolerance to confounds (Power et al., 2014b;Dubois33

and Adolphs, 2016). RsfMRI can reveal a wide range of large-scale brain networks and states associ-34

ated with heterogenous cognitive processes (Smith et al., 2009; Yeo et al., 2011; Power et al., 2011).35

Furthermore, resting-state functional connectivity has been demonstrated to yield distinct "finger-36

prints" unique to individuals (Finn et al., 2015; Amico and Goñi, 2018). Despite the differences in37

methodologies, signals captured by tfMRI and rsfMRI are likely to arise from similar anatomical38

connections and neural processes, as evidenced by significant overlaps between these two modal-39
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ities (Smith et al., 2009). This suggests that individual task-based brain activity may be predictable40

from resting-state functional connectivity; indeed, such predictive models based on linear regres-41

sion have previously been proposed (Tavor et al., 2016; Cole et al., 2016). In this work, we revisit42

this problem using the modern tools of deep learning.43

While recent advances in machine learning have enabled dramatic progress in a wide range of44

fields (LeCun et al., 2015), the functionalMRI community has beenmore reluctant to adopt and pro-45

mote deep learning (Bzdok and Yeo, 2017). Much of the hesitation in neuroimaging research can be46

attributed to lack of large-scale high-quality datasets. For example, in computer vision, datasets47

such as ImageNet (Russakovsky et al., 2015) with millions of samples have made training high-48

capacity neural networks possible. Neuroimaging datasets, today, typically consist of hundreds49

of subjects or fewer. Furthermore, fMRI data can be highly noisy due to motion or physiological50

artifacts (Power et al., 2015). The relatively low sample size and low SNR regime of neuroimag-51

ing makes training high-capacity neural networks exceedingly difficult. Thus, we believe that it is52

important to implement neural network architectures that take full advantage of the structure of53

neuroimaging data, while maximizing the available SNR.54

In this work, we propose a surface-based neural network called BrainSurfCNN to tackle the55

problem of predicting subject-specific task contrasts from resting-state functional connectivity.56

Most neural networks applied to brain imaging operate either in 3D volume, 2D slices, or with57

region-level vectorized data (e.g. Li et al. (2018); Kamnitsas et al. (2017)). In the specific con-58

text of functional connectivity, a way of representing similarity of regions’ (ROIs) fMRI time series,59

common approaches include working with 2D resting-state functional connectivity (rsFC) matri-60

ces (Kawahara et al., 2017), population-based graphs (Parisot et al., 2017), or multi-channel 3D61

volumes (Khosla et al., 2019a), which are treated as inputs for neural networks. Unlike rsFC matri-62

ces and population-level graphs, which make use of a low-dimensional representations (pairwise63

functional connectivity between regions of interest, or ROIs), we use a much richer representation64

of functional connectivity (vertex-to-ROI). While our method of constructing functional connectiv-65

ity is closely related to the multi-channel voxel-to-ROI 3D volumes in (Khosla et al., 2019a), we66

work with a surface representation that captures the cortical geometry and allows modeling of67

fMRI signals on the gray-matter cortical sheet. Furthermore, inter-subject alignment and spatial68

smoothing on the cortical surface have been shown to better preserve the signal and yield more69

statistical power for detecting functional activations (Anticevic et al., 2008; Klein et al., 2010; Frost70

and Goebel, 2012). The fMRI field is increasingly recognizing the benefits of surface-based analysis71

and there has been a substantial shift from volume-based neuroimaging analysis to surface-based72

ones (Coalson et al., 2018), spearheaded by large-scale projects such as the Human Connectome73

Project (HCP) (Glasser et al., 2013). Building on these developments, in this paper we show that74

the proposed BrainSurfCNN achieves state-of-the-art predictions of individual task contrasts from75

resting-state functional connectivity, which is on par with the repeat reliability of the contrast sig-76

nal. Figure 1 shows a representative example of the HCP’s “Social Cognition: Theory of Mind” task77

contrast for one subject. The first two rows are tfMRI derivedmaps (target and repeat) , followed by78

our BrainSurfCNN model’s prediction of the task contrast based on the resting functional connec-79

tivity fingerprint, presented in the third row. Dice scores, commonly used for evaluating accuracy80

of image segmentation, quantify the overlap with the target contrast map at different thresholds81

of activation. We observe that our model’s predictions are remarkably consistent with the tfMRI82

measurements.83

In our analyses, we further demonstrate that the BrainSurfCNNmodel generalizes well to novel84

tasks and new subjects using a transfer learning paradigm (Yosinski et al., 2014); we hypothesize85

this was possible due to the multi-task learning set-up used for training. Our results show that86

with the help of transfer and multi-task learning, neural networks applied to neuroimaging can be87

adapted beyond the original training dataset and generalize well to other contexts in which data88

might be lacking.89
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Figure 1. BrainSurfCNN model accurately predicts both coarse and fine-grained features of an individual subject’s task contrast in the HCP
dataset. The leftmost three columns show the extent of overlaps between the target thresholded (fMRI-derived) activation map and predicted
(from BrainSurfCNN and Linear regression) or reference maps (derived from repeat scan of the same individual performing the same task and
group average task contrast). Blue represents the target activation, red represents the prediction or reference, and yellow is the overlap. The
rightmost column shows the unthresholded activation maps, Dice overlap is indicated below the corresponding panel. "SOCIAL TOM" is short
for "Social Cognition: Theory of Mind".
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Figure 2. BrainSurfCNN model. BrainSurfCNN is a surface-based fully-convolutional neural network based on the U-Net
architecture (Ronneberger et al., 2015) with spherical convolutional kernels (Chiyu et al., 2019). BrainSurfCNN’s input and output are
multi-channel icosahedral fs_LR meshes (Van Essen et al., 2012). Each input channel is a functional connectivity feature, measured by Pearson’s
correlation between the vertices’ timeseries and the average timeseries of an ROI. Each output channel corresponds to a fMRI task contrast.
Details of the model and data formats are found in Section Methods and Materials.

Results90

Overview of the BrainSurfCNN model91

Figure 2 shows the proposed BrainSurfCNNmodel for predicting task contrasts from resting-state92

functional connectomes. BrainSurfCNN is based on the U-Net architecture (Ronneberger et al.,93

2015;Milletari et al., 2016) and uses the spherical convolutional kernel (Chiyu et al., 2019) to oper-94

ate on the spherical mesh. The most notable feature in the U-Net architecture is the skip connec-95

tions that copy features from the encoding arm (outputs from the downstream blocks in Figure 2)96

to the inputs of the decoding arm (inputs for the upstream blocks in Figure 2). The skip connec-97

tions were found to improve U-Net predictive accuracy of fine-grained details in U-Net’s original98

task of image segmentation (Ronneberger et al., 2015). Our ablation study (Supplemental Table 1)99

shows skip connections similarly improves predictive quality in our image generation task. Brain-100

SurfCNN’s input is the functional connectomes, represented as multi-channel data attached to the101

icosahedral mesh vertices. Each input channel is computed as the Pearson’s correlation between102

the vertex timeseries and the average timeseries within target ROIs. The ROIs were derived from103

group-level independent component analysis (ICA) (Smith et al., 2013). The input and output sur-104

faces are fs_LR templates (Van Essen et al., 2012) with 32,492 vertices (fs_LR 32k surface) per brain105

hemisphere. The left and right hemispheres are symmetric in the fs_LR atlases, i.e., the same vertex106

index in both hemispheres corresponds to contralateral analogues. Thus, each subject’s connec-107

tomes from the two hemispheres can be concatenated, resulting in a single input icosahedralmesh108

with the number of channels equalling twice the number of ROIs. BrainSurfCNN’s output is also109

a multi-channel icosahedral mesh, in which each channel corresponds to one fMRI task contrast.110

This multi-task prediction setting promotes weight sharing across contrast predictions.111
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Figure 3. BrainSufCNN prediction is better than the linear regression prediction and group-average contrast map while approaching the noise
ceiling (repeat task contrast map) across the most reliably predictable HCP task contrasts (whose target-repeat reliability AUC is higher than the
group-average). Quality of prediction is measured as the area under the curve (AUC) of Dice overlap between true and predicted thresholded
activation maps (Figure 4). "REL", "AVG are short for "Relational" and "Average", respectively. "WM" is short for "Working memory" task; "0BK"
and "2BK" are short for "0-back" and "2-back" contrasts of the working memory task, respectively. The list of all 47 HCP task contrasts are
availble in Supplemental Table 2.
Figure 3–Figure supplement 1. AUC scores for all 47 HCP task contrasts.

BrainSurfCNN’s predictive accuracy approaches reliability112

We applied BrainSurfCNN to the Human Connectome Project (HCP) dataset to assess the model’s113

predictive performance. We used Dice scores to evaluate the overlap between the most activated114

vertices in the target (measured) and predicted task contrasts (see Section Methods and Materi-115

als for details); we applied thresholds between 5% and 50% to identify the most highly activated116

vertices.117

At a lower threshold (e.g., when looking at 5%most activated vertices), the Dice scoremeasures118

the correspondence of the fine-grained details between the target and predicted contrasts. At119

higher thresholds (e.g. 50%most activated vertices), this metric quantifies the global agreement of120

the anatomical distributions. We also computed an approximate integration of Dice scores across121

all thresholds (between 5 and 50%), i.e. the area under the Dice curve (AUC), as a summarymeasure122

over all levels of activation and deactivation.123

Nine hundred and nineteen subjects were used for training and validation, while the 39 HCP124

subjects with a repeat scan were used for testing. Two formulations of BrainSurfCNN were eval-125

uated. The multi-contrast BrainSurfCNN was trained to make predictions for all 47 task contrasts126

simultaneously, while single-task BrainSurfCNNmodels were trained separately for each task con-127

trast. We compared BrainSurfCNN predictions against two baselines; the group-average task con-128

trasts and a linear regression model (Tavor et al., 2016) (details are in Section Methods and Ma-129

terials). In addition, we used the repeat tfMRI scans to assess the reliability of each subject’s task130

contrast, which was quantified as the Dice AUC between the maps derived from the target and131

repeat scans. Out of 47 HCP task contrasts, 24 had a target-repeat reliability AUC higher than the132

group-average and thus were considered reliably predictable contrasts. Across the 24 reliable task133

contrasts and test subjects, multi-contrast BrainSurfCNN’s average AUC (0.2834) is on par with the134
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Figure 4. BrainSurfCNN’s predicted task contrasts are comparable to contrasts from repeat task contrasts. For the three most reliable HCP task
contrasts (highest overlap with repeat scan), namely “SOCIAL TOM” (social cognition: theory of mind), “RELATIONAL REL” (relational processing),
“WM 2BK” (working memory: 2-back), BrainSurfCNN’s Dice overlap with the true activation maps is close to the reliability limit.
Figure 4–Figure supplement 1. Dice scores for all 47 HCP task contrasts (part 1).
Figure 4–Figure supplement 2. Dice scores for all 47 HCP task contrasts (part 2).
Figure 4–Figure supplement 3. Dice scores for all 47 HCP task contrasts (part 3).

single-contrast BrainSurfCNN models’ average AUC (0.2835), but is higher than the group-average135

contrasts (0.2693), and the linear model’s baseline predictions (0.2546). BrainSurfCNN also outper-136

forms the average AUC of repeat contrasts (0.2697). As shown in Figure 3, BrainSurfCNN exceeds137

the target-repeat reliability AUC score for 22 out of 24 reliably predictable task contrasts.138

The three contrasts (fromdifferent tasks)with the highest reliability AUCare “SOCIAL TOM” (AUC139

= 0.312), “RELATIONAL REL” (AUC = 0.310), and “WM 2BK” (AUC = 0.297). Figure 4 shows the Dice140

score curves for these contrasts. The Dice scores of BrainSurfCNN closely approach the reliability141

Dice scores across all thresholds, suggesting that the BrainSurfCNN prediction well captures the142

individual-level variation of task contrasts. Conversely, the agreement between the group-average143

and measured target task contrasts is lower than the repeat measurement, when only a small144

fraction of top activated or deactivated vertices are considered, but approaches the reliability score145

when computed over the majority of vertices. This suggests that the group-average map indeed146

captures large-scale patterns, but smooths over the individual-level fine details. Supplemental147

Figure 1 to 3 shows the Dice and AUC for all 47 HCP task contrasts.148

BrainSurfCNN predictions are highly subject-specific149

Figure 5 displays the agreement (AUC) across individual subjects’ predicted or repeat measured150

contrasts (columns) and their measured target contrasts (rows). A subject’s prediction is consid-151

ered identifiable if it achieves the highest AUC with the subject’s own target contrast, i.e. the di-152

agonal element has the highest value in the column. We compute the identification accuracy as153

the fraction of subjects that are identifiable. Across the three most reliable task contrasts (SOCIAL154

TOM, RELATIONAL REL, and WM 2BK), both the repeat scan and BrainSurfCNN predictions yield a155

100% identification accuracy, with the linear regression baseline having lower accuracy.156

Figure 6 shows the measured (target) and predicted task contrasts for 3 subjects, including157

both the unthresholded contrast maps (top rows) and the top 25%most activated vertices (bottom158

rows). The task contrast in consideration is “SOCIAL TOM”, which has the highest reliability. The159

three subjects, “662551”, “917255”, and “115320” have the 10th, 50th, and 90th percentile “target160

vs. group-average” AUC among the test subjects, respectively. Thus, these three subjects represent161

varying degrees of deviation from the typical (group-average) contrast. Focusing on the prefrontal162

cortex, there are subject-specific activation patterns that appear in the repeat scans. For instance,163

the replicable activation pattern of the prefrontal cortex in subject “115320” is more laterally dom-164
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Figure 5. AUC values of prediction versus target measured subject contrasts for 3 most reliable HCP task
contrasts, across 39 test subjects. Each row corresponds to a subject’s target task contrast and each column
corresponds to the subject’s prediction. The accuracy score below each matrix is the identification accuracy of
the model’s prediction for each task.
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inant, and subject “917255” has more activation in the inferior region of the prefrontal cortex. On165

the other hand, the activation pattern of subject “662551” is more sparsely distributed in the the166

prefrontal cortex. Such subject-specific characteristics are captured in the predictions computed167

by BrainSurfCNN, also reflected by a high Dice overlap between the predicted task contrast and168

the measured target contrasts for the top 25%most activated vertices.169

Transfer learning improves pretrained BrainSurfCNN’s predictive performance on170

smaller datasets171

We investigated BrainSurfCNN’s generalizability beyond the HCP dataset on which the model is172

originally trained. To do so, we explored model predictions on two Population Imaging of Psychol-173

ogy (PIOP) datasets under the the Amsterdam Open MRI Collection (AOMIC) (Snoek et al., 2021)s.174

Each dataset has both resting-state and task-based fMRI data of healthy participants; PIOP1 has175

216 subjects with 5 tasks each and PIOP2 has 226 subjects with 3 tasks each. All AMOIC data,176

including raw and derivatives, are publicly available (Snoek et al., 2021).177

There are significant differences between the HCP and AMOIC PIOP datasets, including differ-178

ences in the task paradigms and scanning procedures. In addition, while the resting-state and179

task-based fMRI in the HCP dataset was preprocessed directly on the fs_LR surface space (Van Es-180

sen et al., 2013), the resting-state and task-based fMRI in the PIOP datasets were preprocessed181

in the volumetric MNI space with fmriprep (Esteban et al., 2019). As an extra preprocessing step,182

resting-sate and task-based fMRI data (t-stats maps) from the PIOP datasets were projected to the183

fs_LR surface templates via the fsaverage space for all subsequent training and prediction (Wu184

et al., 2018). For both the PIOP1 and PIOP2 datasets, 50 subjects were held out for testing, leaving185

the rest for training and validation. The partitions were selected to ensure that all training and val-186

idation subjects has both resting-state and all task contrasts, but not all test subjects necessarily187

had all task contrasts.188

Two versions of BrainSurfCNNwere assessed, onewas trained denovo on the training subset of189

each PIOP dataset using a random intialization - BrainSurfCNN (random init) - while another was190

finetuned from the HCP-pretrained model using the same PIOP data (BrainSurfCNN finetuned).191

The group-average task contrasts and linear model predictions were used for comparison.192

Figure 7 shows the Dice scores across all activation thresholds and the overall AUC for the 5 task193

contrasts in the PIOP1 dataset. When training BrainSurfCNN from scratch - BrainSurfCNN (random194

init) - themodel’s prediction was poor; we hypothesize this is due to the relatively small sample size195

of the PIOP1. On the other hand, prediction quality was greatly improved by finetuning the model196

pretrained on the HCP dataset, i.e. BrainSurfCNN (finetuned). Figure 8 shows the predicted and197

measured contrast maps for an average subject and task. The task contrast, “EMOTION MATCH-198

ING: EMOTION > CONTROL” has the median target vs. group-average AUC among the 5 PIOP1199

task contrasts. For this contrast, subject 0011 has the median AUC with the group-average task200

contrast. Both Figure 8 and the Dice graphs in Figure 7 show that BrainSurfCNN (finetuned) yields201

significantly higher Dice scores than the group-average contrasts when the most activated or de-202

activated vertices are considered. This gap, however, shrinks with more liberal thresholds. Overall,203

the finetuned BrainSurfCNN model’s predictions are on par or better than the group-average con-204

trasts in terms of AUC, suggesting that the model can capture well the target task contrasts. In this205

transfer-learning setup, the multi-contrast and single-contrast BrainSurfCNNmodels adapted well206

to the new dataset, resulting in similar predictive performance. However, the multi-contrast setup207

is more computationally efficient (one model for all outputs) relative to maintaining a separate208

model for each predictive target.209

Amsterdam OpenfMRI PIOP2210

Figure 9 shows the Dice scores across all thresholds and the overall AUC for the 5 task contrasts211

in the PIOP1 dataset. Similar to our observations above, finetuning the HCP-pretrained BrainSur-212

fCNN model improves predictions over both the linear regression model and the group-average213
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Figure 6. Measured and predicted “SOCIAL TOM” (Social cognition, theory of mind) task contrast for three representative subjects in the HCP
dataset. Each row shows both the unthresholded activation maps (top) and thresholded maps of the top 50% most activated vertices (bottom).
Blue indicates activation in the measured contrast, red is the predicted or reference activation and yellow is the overlap. The circled areas show
activation patterns of the prefrontal cortex distinct to each subject that are replicable in both the repeat contrasts and BrainSurfCNN prediction.
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Figure 7. Quality of various model predictions (Dice and AUC) for the Amsterdam PIOP1 dataset. BrainSurfCNN cannot learn effectively if
trained from random intialization, resulting in low Dice scores across all thresholds and low overall Dice AUC. However, by finetuning a
pretrained model (on HCP data), BrainSurfCNN significantly improves its predictive accuracy and surpasses the linear regression baseline in
both the single-contrast and multi-contrast learning setting.
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Subject 0011 – EMOTION MATCHING: EMOTION > CONTROL

Target

OverlapTarget-only Prediction-only

Multi-contrast
BrainSurfCNN

(finetuned)

Linear
Regression

Group
Average

Multi-contrast
BrainSurfCNN

(random init)

Single-contrast
BrainSurfCNN

(finetuned)

Unthresholded

AUC = 0.204

AUC = 0.183

AUC = 0.203

AUC = 0.122

AUC = 0.197

Top 10%

Dice = 0.354

Dice = 0.286

Dice = 0.328

Dice = 0.089

Dice = 0.350

Top 25%

Dice = 0.438

Dice = 0.384

Dice = 0.440

Dice = 0.239

Dice = 0.414

Top 50%

Dice = 0.582

Dice = 0.574

Dice = 0.603

Dice = 0.524

Dice = 0.580

3

-3

1

-1

1

-1

500

-500
7

-7

0.05

-0.05

Figure 8. Example set of model predictions for the Emotion Matching: Emotion > Control task for a typical subject in Amsterdam PIOP1 dataset.
Without finetuning, BrainSurfCNN trained from random initialization failed to capture meaningful patterns of individual subject’s task contrasts.
By finetuning on a model pretrained with HCP data (on a different set of task contrasts), the BrainSurfCNN models were able to predict
individual task contrasts in the Amsterdam PIOP1 dataset.

Figure 9. Quality of model prediction (Dice and AUC) for Amsterdam PIOP2 dataset. There is a similar improvement in BrainSurfCNN predictive
accuracy via finetuning as for PIOP1 dataset. Compared to the baselines, the finetuned BrainSurfCNN model improves over the linear regression
baseline on Dice score across all thresholds, and improves over the group-average reference up to the top 25%most activated vertices.
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Subject 0014 – EMOTION MATCHING: EMOTION > CONTROL

Target

UnthresholdedTop 10% Top 50% Top 90%

OverlapTarget-only Prediction-only

3

-3
Multi-contrast

BrainSurfCNN
(finetuned)

AUC = 0.225Dice = 0.463 Dice = 0.474 Dice = 0.613

1

-1

Linear
Regression

AUC = 0.194Dice = 0.333 Dice = 0.415 Dice = 0.579

500

-500

Group
Average

AUC = 0.212Dice = 0.378 Dice = 0.456 Dice = 0.605

8

-8

Multi-contrast
BrainSurfCNN

(random init)
AUC = 0.134Dice = 0.109 Dice = 0.279 Dice = 0.529

0.05

-0.05

Single-contrast
BrainSurfCNN

(finetuned)
AUC = 0.223Dice = 0.434 Dice = 0.473 Dice = 0.609

1

-1

Figure 10. Example set of model predictions for the Emotion Matching: Emotion > Control of a typical subject in Amsterdam PIOP2 dataset. The
finetuned BrainSurfCNN could capture both the gross pattern of the task contrast, as well as the subject-specific details. For example, activation
in the posterior medial cortex (circled) was predicted correctly by BrainSurfCNN for the given subject that is not significant in the group-average
reference.
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task contrasts. However, in contrast to PIOP1, the BrainSurfCNN trained from random initialization214

have better predictive performance on PIOP2, possibly because given the same network architec-215

ture and roughly the same number of training samples, the model can better learn for a smaller216

number of predictive outputs (3 task contrasts in PIOP2 compared to 5 task contrasts in PIOP1).217

Figure 9 shows the predicted and measured contrast maps of the median subject (0014) and the218

median task contrast (“EMOTIONMATCHING: EMOTION > CONTROL”). Similar to the results on the219

PIOP1 dataset, BrainSurfCNN has the largest gains over the group-contrast for the most activated220

or deactivated vertices.221

The shared representation in multi-task learning enables flexible domain adapta-222

tion223

We want to investigate the representation shared across predicted task contrasts in the multi-task224

learning setup of BrainSurfCNN. As all predicted outputs of themulti-contrast BrainSurfCNNmodel225

share the same backbone network, which excludes the last deconvolutional layer (Figure 2), we226

hypothesize that one can achieve domain adaptation via fine-tuning the backbone model using227

different target contrasts.228

We explore this hypothesis by finetuning the backbone of the HCP-pretrained BrainSurfCNN229

model using a new dataset, the Individual Brain Charting (IBC) (Pinho et al., 2018, 2020). At the time230

of our analysis (October 2020), the IBC dataset has 12 subjects with both resting-state and task con-231

trast fMRI scans. As the IBC project aims to densely sample cognitive processes, the dataset covers232

awide range of task paradigms per subject, including some that are similar but not identical to HCP233

tasks (see Supplemental Table 2 for task contrasts that are similar between HCP and IBC datasets).234

For example, IBC "Language" task stimuli are the French translation of the English stimuli used in235

the original HCP tasks. Together with differences in scanning and preprocessing protocols, there236

are significant domain shifts between the HCP and IBC datasets even for the same task paradigms.237

The subjects perform each task in two sessions, one with anterior-posterior (AP) and the other with238

posterior-anterior (PA) phase encoding during acquisition (Pinho et al., 2018). In our experiments,239

the task contrasts derived from the AP sequence is the measured target, while the contrasts from240

the PA sequence is treated as the reliability reference (analogous to the repeat contrasts in the241

HCP dataset). We adapt the BrainSurfCNNmodel pretrained on the HCP data to the IBC dataset by242

only finetuning the backbone of the model in a leave-one-task-out procedure. Here the predicted243

IBC task (which itself consists of multiple contrasts) is treated as unseen data and the remain-244

ing HCP contrasts are used for finetuning the BrainSurfCNN backbone. The backbone-finetuned245

BrainSurfCNN is compared against themulti-contrast and single-contrast BrainSurfCNN, the linear246

regression models that were only trained on HCP dataset (no finetuning) and the group-average247

contrasts.248

Figure 11 shows the AUC scores across 19 reliable HCP task contrasts in the IBC dataset. Similar249

to the procedure on the original HCP dataset, reliable contrasts are defined as those whose Dice250

AUC between the maps derived from the target and repeat scans for HCP task contrasts in the IBC251

dataset to be higher than the average. The finetuned BrainSurfCNN predictions have better AUC252

scores than the the repeat contrasts across all but 2 task contrasts (“LANGUAGE STORY” and “SO-253

CIAL TOM”). They also perform better than the pretrained BrainSurfCNNmodels, linear regression254

and group-average baselines for all HCP task contrasts. To reemphasize, the finetuned BrainSur-255

fCNN is not trained on the predicted task contrast from the IBC dataset, but merely benefits from256

the improved backbone finetuned on the other task paradigms. Figure 3 shows that indeed the257

multi-task setup allows learning shared representation that are beneficial across predictive out-258

puts.259

Figure 12 shows the Dice scores of 3 contrasts with the highest average reliability AUC scores260

from 3 unique tasks. The finetuned BrainSufCNNmodels improve upon repeat contrasts across all261

thresholds of activation, except for the top most activated vertices in “RELATIONAL REL” contrast.262
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Figure 11. AUC of model predictions on reliable HCP task contrasts in the IBC dataset. By finetuning the multi-contrast BrainSurfCNN’s
backbone on other IBC task contrasts, the model improves its predictive accuracy for the test task contrast over the baselines, as well as the
non-finetuned models. Note that only the multi-task learning setting allows such leave-one-task-out training procedure without the model’s
access to any training samples of the contrast to be predicted in the IBC dataset.

Figure 12. Dice score of model predictions on 3 HCP task contrasts in the IBC dataset at 10th, 50th and 90th average percentile of average AUC
among reliable task contrasts. The BrainSurfCNN finetuned on IBC tasks other than the target task greatly improves the pretrained model’s
predictive accuracy (in terms of Dice) across all thresholds of activation.
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WORKING MEMORY 2BK TOOL
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AUC = .182

Dice = .368
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Figure 13. Example model predictions for the “Working memory 2-back tool” contrast of 3 IBC subjects. The
finetuned BrainSurfCNN approach the target-repeat reliability in both Dice score for top 50%most activated
vertices, and overall AUC across all thresholds.
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Discussion263

Contrasts derived from task-based fMRI have been instrumental for mapping brain responses264

across individuals and quantifying how they relate to individual behavioral traits (McNab and Kling-265

berg, 2008;Mukai et al., 2007; Tom et al., 2007;Wang et al., 2019; Nijhof and Willems, 2015). Task266

contrasts are also a useful imaging tool for clinical neurosurgeries (Matthews et al., 2006; Rosazza267

et al., 2018), such as for localizing functional regions, and mapping the impact of lesions. Nonethe-268

less, tfMRI involves meticulous planning and extensive training (Church et al., 2010; Rosazza et al.,269

2018), and can be prohibitive for several subject groups such as some patients or young children.270

On the other hand, resting-state fMRI is easier to acquirewhile retaining a rich fingerprint unique to271

individuals (Finn et al., 2015; Amico and Goñi, 2018; Tian et al., 2021) and overlap with task-based272

fMRI (Smith et al., 2009). Therefore, predictive models that can accurately estimate individual-273

specific task contrasts from the subjects’ resting-state functional connectivity might unlock new274

venues of research and applications where only rsfMRI is available.275

Surface-based preprocessing and analytical methods are increasingly popular in fMRI as they276

have shownpromising results in improving registration, smoothing and functional localization (Coal-277

son et al., 2018). In contrast, surfaced-based predictivemodels for neuroimaging data are relatively278

less explored. Previous works have used linear regression models to predict vertex-wise brain re-279

sponse for a given task contrast from resting-state functional connectomes (Tavor et al., 2016;280

Cole et al., 2016). In (Dohmatob et al., 2021), local gradients estimated from rs-fRMI were used281

as input features, but the model also made use of a parcel-wise linear regression to predict task282

activation. Other neural networks-based approaches have used heavily preprocessed inputs, such283

as low-dimensional ROI-based functional connectivity matrices (Kawahara et al., 2017) or popula-284

tion graphs (Parisot et al., 2017), which often reduce otherwise rich data into summary metrics285

and greatly reduce spatial resolution. In a different approach using graph neural networks, (Zhang286

et al., 2021) predicts brain states from fMRI timeseries mapped on to a brain graph. A notable ex-287

ception that is closely related to our approach is (Zhao et al., 2019), which is also a neural network288

operating on the spherical representation of brain images, but uses a different approximation for289

the convolutional operation by limiting the kernel to immediate neighbors of each vertex.290

In this paper, we present BrainSurfCNN, a neural network model that sets a new benchmark291

for predicting task activations in individual subjects in the HCP dataset. Furthermore, we demon-292

strate that using transfer learning, the pretrained BrainSurfCNN model can generalize well to new293

datasets or new task contrasts that otherwise have limited training samples available. By using a294

multi-task learning, the model was encouraged to pick out synergies and commonalities shared295

across tasks that are better learned in unison than isolation (Caruana, 1997; Baxter, 2000; Mau-296

rer et al., 2016; Mensch et al., 2017), which allows the model to make accurate prediction on task297

contrasts that were not yet seen during training.298

Despite these advances, predicting individual-specific task contrasts is certainly not a resolved299

challenge. Firstly, inductive bias relevant to characteristics of fMRI data can be introduced to the300

neural network architecture. For example, if the data is registered to a common brain template,301

which suggests that the same spherical coordinates correspond to the same anatomical or func-302

tional landmarks of the common template, translation-variance bias can be injected to the convolu-303

tional operation to improve predictive accuracy, similar to coordinate-aware convolutional kernels’304

operation on 2D grid (Liu et al., 2018). Secondly, capturing inter-individual variation in model pre-305

diction might require new approaches. Training on common loss between a subject’s predicted306

output and the corresponding measured contrast seems to push the model’s prediction toward307

the group-average, possibly because inter-subject variation is significantly smaller than the aver-308

age signal in magnitude, making predicting such small changes challenging. Curiously, learning on309

individual residuals from the group average, i.e. difference between a subject’s task contrast from310

the group average, is not effective (not reported). The group average signal seems to act like a311

regularizer that allows more efficient learning by the neural network. In our experiments with HCP312
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data, by introducing contrastive loss to maximize inter-subject differences of the model outputs,313

BrainSurfCNN could enhance features specific to each individual subject. Nonetheless, contrastive314

loss is not effective when finetuning on smaller datasets, possibly because either there are lower315

signal-to-noise ratios in lower-quality datasets and amore careful search for the right loss margins316

is needed, or simply because there are an insufficient number of samples for the model to distin-317

guish across samples. Last but not the least, more preprocessing procedures can be experimented318

with to explore their effect on the downstream predictive task. While we opted for minimally pre-319

processing all the fMRI data used in our experiments to keep the approach general as a whole,320

appropriate denoising procedures can change the quality of the input data and improve predictive321

quality. Furthermore, the limit of 50 ROIs used for computing the input functional connectivity322

was due to constraints on computing resources. We are working on improving BrainSurfCNN’s ef-323

ficiency, which can allow using input connectomes with more number of features that can better324

capture subject-specific variability. To facilitate future studies, the source code for our models and325

analysis are publicly available at [URL to be available upon publication].326

Methods and Materials327

BrainSurfCNN328

BrainSurfCNN’s architecture is based on U-Net (Ronneberger et al., 2015;Milletari et al., 2016), a329

fully convolutional neural network originally proposed for segmentation task, and made use of a330

spherical convolutional kernel (Chiyu et al., 2019). The input and output of the model are repre-331

sented bymulti-channel icosahedralmeshes of 32,492 vertices (fs_LR 32k surface) (Van Essen et al.,332

2012). Each channel of the multi-channel input mesh is a functional connectivity, measured by the333

Pearson’s correlation between each vertex’s timeseries and the average timeseries of a target ROI.334

In our experiments, the target ROIs are parcels derived from group-level 50-component spatial in-335

dependent component analysis (ICA)(Smith et al., 2013). The fs_LR atlases are symmetric between336

the left and right hemispheres with the same vertex index in both hemispheres correspond to337

contralateral analogues. Therefore, the two functional connectomes (corresponding to the two338

hemispheres) of each subject can be concatenated, resulting in a single input icosahedral mesh339

with twice the the number of channels as the number of ROIs. For BrainSurfCNN’s output, each340

channel of themulti-channel icosahedral output mesh corresponds to one fMRI task contrast map.341

By predicting multiple task contrasts simultaneously, weight sharing is promoted across model342

outputs.343

Reconstructive-contrastive loss344

In training BrainSurfCNN, we minimize a reconstructive-contrastive loss, which we describe here.
Given a mini batch ofN samples B = {xi}, in which xi is the target multi-channel contrast image of
subject i, let x̂i denote the corresponding prediction. The reconstructive-contrastive loss (R-C loss)
is given by:

R = 1
N

N
∑

i=1
d(x̂i, xi) ; C = 1

(N2 −N)∕2
∑

xj∈Bi
j≠i

d(x̂i, xj) (1)

RC =
[

R − �
]

+ +
[

R − C + �
]

+ (2)

where d(.) is a loss function (e.g. l2-norm). R, � are the same-subject (reconstructive) loss and345

margin, respectively. C , � are the across-subject (contrastive) loss and margin, respectively. The346

combined objectiveRC encourages the same-subject errorR to bewithin �margin, while pushing347

the across-subject difference C to be large such that
(

C − R
)

> �.348
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Data349

Human Connectome Project (HCP)350

For our benchmarking experiments with a large dataset, we used theminimally pre-processed, FIX-351

cleaned 3-Tesla resting-state fMRI (rsfMRI) and task fMRI (tfMRI) of 1,200 subjects from the Human352

Connectome Project (HCP). The dataset’s acquisition and preprocessing were described in (Glasser353

et al., 2013; Smith et al., 2013; Barch et al., 2013). rsfMRI data was acquired in four 15-minute runs,354

each with 1,200 time-points per subject. Group-level parcellations derived from spatial ICA were355

also released by HCP. We used ROIs from the 50-component parcellation for computing the func-356

tional connectomes. HCP’s tfMRI data comprises of 86 contrasts from 7 task domains (Barch et al.,357

2013), namely: WM (working memory), GAMBLING, MOTOR, LANGUAGE, SOCIAL RELATIONAL, and358

EMOTION. Following (Tavor et al., 2016), redundant negative contrasts were excluded, resulting359

in 47 unique contrasts. Out of 1,200 HCP subjects, 46 subjects also have repeat (second visit) 3T360

fMRI data. Including only subjects with all 4 rsfMRI runs and 47 tfMRI contrasts, our dataset com-361

prised of 919 subjects for training/validation, and 39 independent subjects (with repeat scans) for362

evaluation.363

Amsterdam Open MRI Collection (AOMIC)364

AOMIC is a collection ofmultimodal brain imaging datasets from a large number of subjects (Snoek365

et al., 2021). For our experiments with transfer learning, we used two AOMIC datasets: PIOP1366

and PIOP2 (PIOP stands for Population Imaging of Psychology). PIOP1 consists of 6 minutes of367

rsfMRI (480 timepoints at 0.75-second TR) and tfMRI measured from five tasks, namely "Emotion368

matching", "Gender Stroop", "Working memory", "Face perception", and "Anticipation", for 216369

subjects. PIOP2 consists of 8minutes of rsFMRI (240 timepoints at 2-second TR) and tfMRI collected370

from three tasks, namely "Emotinmatching", "Workingmemory" and "Stop signal", for 226 subjects.371

AOMIC data are organized according to the Brain Imaging Data Structure (BIDS) (Gorgolewski et al.,372

2016).373

Individual Brain Charting (IBC)374

To demonstrate the flexible domain adaptation multi-task learning affords, we used data from the375

Individual Brain Charting (IBC) project Pinho et al. (2020). IBC dataset includes fMRI data from 12376

subjects and 180 task contrasts, 43 of which are also studied in the HCP. IBC data is also organized377

according to BIDS (Gorgolewski et al., 2016).378

fMRI preprocessing and volume-to-surface projection379

Resting-state fMRI data fromPIOPand IBCdatasetswere preprocessedusing the FMRIPREP version380

stable (Esteban et al., 2019), a Nipype (Gorgolewski et al., 2011) based tool. Each T1w (T1-weighted)381

volume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tusti-382

son et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template).383

Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1 (Dale et al., 1999), and384

the brain mask estimated previously was refined with a custom variation of the method to recon-385

cile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle386

(Klein et al., 2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template ver-387

sion 2009c (Fonov et al., 2009) was performed through nonlinear registration with the antsRegis-388

tration tool of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of both T1w volume389

and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-390

matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2001) (FSL v5.0.9).391

Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 1996) and mo-392

tion corrected usingmcflirt (FSL v5.0.9 (Jenkinson et al., 2002)). This was followed by co-registration393

to the corresponding T1w using boundary-based registration (Greve and Fischl, 2009) with six de-394

grees of freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-395

to-T1w transformation and T1w-to-template (MNI) warp were concatenated and applied in a single396
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step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.397

Physiological noise regressors were extracted applying CompCor (Behzadi et al., 2007). Princi-398

pal components were estimated for the two CompCor variants: temporal (tCompCor) and anatom-399

ical (aCompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain400

mask, ensuring it only contained subcortical structures. Six tCompCor components were then cal-401

culated including only the top 5% variable voxels within that subcortical mask. For aCompCor, six402

components were calculated within the intersection of the subcortical mask and the union of CSF403

and WM masks calculated in T1w space, after their projection to the native space of each func-404

tional run. Frame-wise displacement (Power et al., 2011) was calculated for each functional run405

using the implementation of Nipype. Many internal operations of FMRIPREP use Nilearn (Abraham406

et al., 2014), principally within the BOLD-processing workflow. For more details of the pipeline see407

https://fmriprep.readthedocs.io/en/stable/workflows.html. Preprocessed volumetric PIOP and IBC408

daa were projected to the fs_LR surface template via fsaverage (Wu et al., 2018).409

Baseline410

Linear regression411

The linear regression baseline was implemented according to (Tavor et al., 2016), as given by:412

yki = Xk
i �

k
i , (3)

where yki , Xk
i , �ki are the vectorized activation pattern, input features, and regressor of the k-th par-413

cel in the i-th subject, respectively. The 50-component parcellation derived from ICA, provided by414

HCP was used to compute the linear regression model. yki is a vector of length nk - the number of415

vertices in the k’th parcel in both hemispheres. Xk
i is a nk ×M functional connectivity matrix, where416

each element was computed as the Pearson’s correlation between a vertex and the average time-417

series of each of theM ROIs (same timeseries used to compute BrainSurfCNN’s input). Following418

(Tavor et al., 2016), a linear model was fit for every parcel and every task of each training sample.419

These fitted linear models were averaged across all training samples to yield a single predictive420

model per parcel.421

Group-average contrasts422

Different degrees of inter-subject variability manifest in different task contrasts. Such variability423

in prediction was a subject of interest for our study. Therefore, we used the group averages as a424

naive baseline. The group-average task contrasts’ correspondence with individual contrasts would425

be low/high for tasks with high/low inter-subject variance.426

Repeat contrasts427

We used repeat tfMRI scans (when available) to quantify the reliability of the target contrast maps428

and evaluate the predictive performance of BrainSurfCNN and the baselines. The repeat contrasts429

were compared to the first contrasts both in terms of overall correspondence (measured with430

Dice) and in the subject identification task. We consider these reliability results as an effective431

upper-bound on performance.432

Experimental setup433

Data Augmentation and Test-time Ensembling:434

In the HCP dataset, each subject has 4 rsfMRI runs with 1200 time-points each. As stable functional435

connectomes can be estimated from fewer than 1200 time-points (Finn et al., 2015), we computed436

a functional connectome from each contiguous half (600 time-points) of every run, resulting in 8437

input samples per subject. During BrainSurfCNN training, one connectome was randomly sam-438

pled for each subject. Thus, the model was presented with 8 slightly different samples per subject.439

At test time, 8 predictions were made for each subject and then averaged for a final prediction.440
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For the AOMIC dataset, 4 functional connectomes were computed for each subject from 4 con-441

tiguous segments of 120 timepoints. For the IBC dataset, 2 connectomes were computed for each442

subject, each connectome was estimated from a randomly sampled contiguous segments of 600443

timepoints.444

Training schedule:445

On the HCP dataset, BrainSurfCNN was first trained for 50 epochs with a batch size of 2 with mean446

squared error (MSE), i.e. reconstructive loss LR in Eq.2, using Adam optimizer. Upon convergence,447

the average reconstructive loss LR and LC were estimated from all training subjects, and used as448

initial values for the margins � and � in Eq.2 respectively. The initialization procedure forces the449

model to not deviate from the existing reconstructive error while optimizing for the contrastive450

loss. Training then continued for another 50 epochs, with the same-subject margin � halved and451

across-subject margin � doubled every 20 epochs, which encourages the model to refine further452

over time. For transfer learning experiments with the AOMIC and IBC datasets, the best checkpoint453

of the model when training on HCP dataset with MSE was used as the initialization for finetuning.454

The finetuning was conducted with MSE as the objective function as the L-R loss did not seem to455

be sufficiently robust on smaller datasets.456

Evaluation Metrics457

Dice score (Dice, 1945) is used to measure the extent of overlap between a predicted contrast and458

the target contrast map for a given percentage of most activated vertices. At a given threshold of459

x%, Dice score is computed as:460

Dice(x) =
2|Prediction(x) ∩ T arget(x)|
|Prediction(x)| + |T arget(x)|

, (4)

where |Prediction(x)| denotes the number of top x% most activated vertices in the predicted con-461

trast map, |T arget(x)| denotes the number of top x% most activated vertices in the contrast, and462

|Prediction(x) ∩ T arget(x)| denotes the number of vertices that overlap between the predicted and463

target map at the given threshold. By integrating Dice scores over a range of thresholds (e.g. 5%464

to 50%most activated vertices), we produce a summary measure - area under the Dice curve (Dice465

AUC) - for the quality of a model prediction.466

Quantifying Identification Accuracy467

Dice AUCs were computed between the models’ predicted individual task contrast maps and the468

tfMRI-derived target contrast maps of all subjects. This results in a 39 by 39 AUC matrix for each469

contrast, where each entry is the Dice AUC between a subject’s predicted contrast (column) and470

a target contrast map (row), of same or another subject. The diagonal values (Dice AUC between471

the predicted and target contrast map of the same subject) therefore quantify the (within subject)472

predictive accuracy for a given contrast. The difference between diagonal and average off-diagonal473

values (Dice AUC between a subject’s predicted contrast map with the target contrast map derived474

from another subject’s tfMRI) indicates howmuch better one subject’s prediction corresponds with475

the subject’s own tfMRI-derived contrast compared to other subject contrasts. In other words, the476

i-th subject is identifiable among all test subjects using the predicted contrast if the i-th element477

of the i-th row has the highest value. For a given task contrast and prediction model, we compute478

subject identification accuracy as the fraction of subjects with a maximum at the diagonal.479
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Figure 3–Figure supplement 1. AUC scores for all 47 HCP task contrasts.
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Figure 4–Figure supplement 1. Dice scores for all 47 HCP task contrasts (part 1).
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Figure 4–Figure supplement 2. Dice scores for all 47 HCP task contrasts (part 2).
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Figure 4–Figure supplement 3. Dice scores for all 47 HCP task contrasts (part 3).
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