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1School of Electrical & Computer Engineering, Cornell University; 2Radiology, Weill
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Abstract Task-based and resting-state represent the two most common experimental
paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach
for characterizing brain function, task-based techniques provide superior localization. In this
paper, we build on recent deep learning methods to create a model that predicts task-based
contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a
surface-based fully-convolutional neural network model that works with a representation of the
brain’s cortical sheet. Our model achieves state of the art predictive accuracy on independent
test data from the Human Connectome Project and yields individual-level predicted maps that
are on par with the target-repeat reliability of the measured contrast maps. We also demonstrate
that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.

Introduction

Task-based functional magnetic resonance imaging (tfMRI) has been an indispensable tool for prob-
ing neural correlates supporting cognitive, emotional and movement-related processes in the hu-
man brain. Activation patterns extracted from tfMRI have been used to characterize the functional
anatomy of the human brain (Besle et al., 2013; Barch et al., 2013; Gordon et al., 2017), or derive
neural biomarkers for individual behavioral measures such as working memory capacity (McNab
and Klingberg, 2008), visual attention (Mukai et al., 2007), loss aversion (Tom et al., 2007) or read-
ing ability (Wang et al., 2019; Nijhof and Willems, 2015). However, tfMRI requires careful design
and expensive subject training to elicit the appropriate cognitive components that the experiment
intends to investigate (Church et al., 2010; Rosazza et al., 2018). On the other hand, resting-state
fMRI (rsfMRI), which measures spontaneous, slow-changing fluctuations of brain activity in the ab-
sence of external stimuli has become the workhorse in a growing number of neuroscience studies,
in part due to its ease of acquisition and higher tolerance to confounds (Power et al., 2014b; Dubois
and Adolphs, 2016). RsfMRI can reveal a wide range of large-scale brain networks and states associ-
ated with heterogenous cognitive processes (Smith et al., 2009; Yeo et al., 2011; Power et al., 20117).
Furthermore, resting-state functional connectivity has been demonstrated to yield distinct "finger-
prints" unique to individuals (Finn et al., 2015; Amico and Goiii, 2018). Despite the differences in
methodologies, signals captured by tfMRI and rsfMRI are likely to arise from similar anatomical
connections and neural processes, as evidenced by significant overlaps between these two modal-
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ities (Smith et al., 2009). This suggests that individual task-based brain activity may be predictable
from resting-state functional connectivity; indeed, such predictive models based on linear regres-
sion have previously been proposed (Tavor et al., 2016; Cole et al., 2016). In this work, we revisit
this problem using the modern tools of deep learning.

While recent advances in machine learning have enabled dramatic progress in a wide range of
fields (LeCun et al., 2015), the functional MRl community has been more reluctant to adopt and pro-
mote deep learning (Bzdok and Yeo, 2017). Much of the hesitation in neuroimaging research can be
attributed to lack of large-scale high-quality datasets. For example, in computer vision, datasets
such as ImageNet (Russakovsky et al., 2015) with millions of samples have made training high-
capacity neural networks possible. Neuroimaging datasets, today, typically consist of hundreds
of subjects or fewer. Furthermore, fMRI data can be highly noisy due to motion or physiological
artifacts (Power et al., 2015). The relatively low sample size and low SNR regime of neuroimag-
ing makes training high-capacity neural networks exceedingly difficult. Thus, we believe that it is
important to implement neural network architectures that take full advantage of the structure of
neuroimaging data, while maximizing the available SNR.

In this work, we propose a surface-based neural network called BrainSurfCNN to tackle the
problem of predicting subject-specific task contrasts from resting-state functional connectivity.
Most neural networks applied to brain imaging operate either in 3D volume, 2D slices, or with
region-level vectorized data (e.g. Li et al. (2018); Kamnitsas et al. (20717)). In the specific con-
text of functional connectivity, a way of representing similarity of regions’ (ROls) fMRI time series,
common approaches include working with 2D resting-state functional connectivity (rsFC) matri-
ces (Kawahara et al., 2017), population-based graphs (Parisot et al., 2017), or multi-channel 3D
volumes (Khosla et al., 2019a), which are treated as inputs for neural networks. Unlike rsFC matri-
ces and population-level graphs, which make use of a low-dimensional representations (pairwise
functional connectivity between regions of interest, or ROIs), we use a much richer representation
of functional connectivity (vertex-to-ROI). While our method of constructing functional connectiv-
ity is closely related to the multi-channel voxel-to-ROI 3D volumes in (Khosla et al., 20719a), we
work with a surface representation that captures the cortical geometry and allows modeling of
fMRI signals on the gray-matter cortical sheet. Furthermore, inter-subject alignment and spatial
smoothing on the cortical surface have been shown to better preserve the signal and yield more
statistical power for detecting functional activations (Anticevic et al., 2008; Klein et al., 2010; Frost
and Goebel, 2012). The fMRI field is increasingly recognizing the benefits of surface-based analysis
and there has been a substantial shift from volume-based neuroimaging analysis to surface-based
ones (Coalson et al., 2018), spearheaded by large-scale projects such as the Human Connectome
Project (HCP) (Glasser et al., 2013). Building on these developments, in this paper we show that
the proposed BrainSurfCNN achieves state-of-the-art predictions of individual task contrasts from
resting-state functional connectivity, which is on par with the repeat reliability of the contrast sig-
nal. Figure 1 shows a representative example of the HCP's “Social Cognition: Theory of Mind” task
contrast for one subject. The first two rows are tfMRI derived maps (target and repeat), followed by
our BrainSurfCNN model's prediction of the task contrast based on the resting functional connec-
tivity fingerprint, presented in the third row. Dice scores, commonly used for evaluating accuracy
of image segmentation, quantify the overlap with the target contrast map at different thresholds
of activation. We observe that our model's predictions are remarkably consistent with the tfMRI
measurements.

In our analyses, we further demonstrate that the BrainSurfCNN model generalizes well to novel
tasks and new subjects using a transfer learning paradigm (Yosinski et al., 2014); we hypothesize
this was possible due to the multi-task learning set-up used for training. Our results show that
with the help of transfer and multi-task learning, neural networks applied to neuroimaging can be
adapted beyond the original training dataset and generalize well to other contexts in which data
might be lacking.
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Figure 1. BrainSurfCNN model accurately predicts both coarse and fine-grained features of an individual subject’s task contrast in the HCP
dataset. The leftmost three columns show the extent of overlaps between the target thresholded (fMRI-derived) activation map and predicted
(from BrainSurfCNN and Linear regression) or reference maps (derived from repeat scan of the same individual performing the same task and
group average task contrast). Blue represents the target activation, red represents the prediction or reference, and yellow is the overlap. The
rightmost column shows the unthresholded activation maps, Dice overlap is indicated below the corresponding panel. "SOCIAL TOM" is short

for "Social Cognition: Theory of Mind".
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Figure 2. BrainSurfCNN model. BrainSurfCNN is a surface-based fully-convolutional neural network based on the U-Net

architecture (Ronneberger et al., 2015) with spherical convolutional kernels (Chiyu et al., 20719). BrainSurfCNN's input and output are
multi-channel icosahedral fs_LR meshes (Van Essen et al., 2012). Each input channel is a functional connectivity feature, measured by Pearson’s
correlation between the vertices' timeseries and the average timeseries of an ROI. Each output channel corresponds to a fMRI task contrast.
Details of the model and data formats are found in Section Methods and Materials.

o Results

o1 Overview of the BrainSurfCNN model

o2 Figure 2 shows the proposed BrainSurfCNN model for predicting task contrasts from resting-state
o3 functional connectomes. BrainSurfCNN is based on the U-Net architecture (Ronneberger et al.,
oa 2015; Milletari et al., 2016) and uses the spherical convolutional kernel (Chiyu et al., 2019) to oper-
os ate on the spherical mesh. The most notable feature in the U-Net architecture is the skip connec-
o6 tions that copy features from the encoding arm (outputs from the downstream blocks in Figure 2)
oz to the inputs of the decoding arm (inputs for the upstream blocks in Figure 2). The skip connec-
os tions were found to improve U-Net predictive accuracy of fine-grained details in U-Net's original
oo task of image segmentation (Ronneberger et al., 2015). Our ablation study (Supplemental Table 1)
100 shows skip connections similarly improves predictive quality in our image generation task. Brain-
11 SUrfCNN's input is the functional connectomes, represented as multi-channel data attached to the
102 icosahedral mesh vertices. Each input channel is computed as the Pearson’s correlation between
103 the vertex timeseries and the average timeseries within target ROIs. The ROIs were derived from
10a  group-level independent component analysis (ICA) (Smith et al., 2013). The input and output sur-
105 faces are fs_LR templates (Van Essen et al., 20712) with 32,492 vertices (fs_LR 32k surface) per brain
106 hemisphere. The left and right hemispheres are symmetricin the fs_LR atlases, i.e., the same vertex
107 index in both hemispheres corresponds to contralateral analogues. Thus, each subject’'s connec-
1 tomes from the two hemispheres can be concatenated, resulting in a single inputicosahedral mesh
100 With the number of channels equalling twice the number of ROIs. BrainSurfCNN's output is also
10 @ multi-channel icosahedral mesh, in which each channel corresponds to one fMRI task contrast.
11 This multi-task prediction setting promotes weight sharing across contrast predictions.
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Figure 3. BrainSufCNN prediction is better than the linear regression prediction and group-average contrast map while approaching the noise
ceiling (repeat task contrast map) across the most reliably predictable HCP task contrasts (whose target-repeat reliability AUC is higher than the
group-average). Quality of prediction is measured as the area under the curve (AUC) of Dice overlap between true and predicted thresholded
activation maps (Figure 4). "REL", "AVG are short for "Relational" and "Average", respectively. "WM" is short for "Working memory" task; "OBK"
and "2BK" are short for "0-back" and "2-back" contrasts of the working memory task, respectively. The list of all 47 HCP task contrasts are
availble in Supplemental Table 2.

Figure 3-Figure supplement 1. AUC scores for all 47 HCP task contrasts.

12 BrainSurfCNN's predictive accuracy approaches reliability

113 We applied BrainSurfCNN to the Human Connectome Project (HCP) dataset to assess the model's
s predictive performance. We used Dice scores to evaluate the overlap between the most activated
s vertices in the target (measured) and predicted task contrasts (see Section Methods and Materi-
ue als for details); we applied thresholds between 5% and 50% to identify the most highly activated
17 vertices.

118 At a lower threshold (e.g., when looking at 5% most activated vertices), the Dice score measures
10 the correspondence of the fine-grained details between the target and predicted contrasts. At
120 higher thresholds (e.g. 50% most activated vertices), this metric quantifies the global agreement of
121 the anatomical distributions. We also computed an approximate integration of Dice scores across
122 all thresholds (between 5 and 50%), i.e. the area under the Dice curve (AUC), as a summary measure
123 over all levels of activation and deactivation.

124 Nine hundred and nineteen subjects were used for training and validation, while the 39 HCP
125 Subjects with a repeat scan were used for testing. Two formulations of BrainSurfCNN were eval-
126 Uated. The multi-contrast BrainSurfCNN was trained to make predictions for all 47 task contrasts
12z simultaneously, while single-task BrainSurfCNN models were trained separately for each task con-
128 trast. We compared BrainSurfCNN predictions against two baselines; the group-average task con-
120 trasts and a linear regression model (Tavor et al., 2016) (details are in Section Methods and Ma-
130 terials). In addition, we used the repeat tfMRI scans to assess the reliability of each subject’s task
131 contrast, which was quantified as the Dice AUC between the maps derived from the target and
132 repeat scans. Out of 47 HCP task contrasts, 24 had a target-repeat reliability AUC higher than the
133 group-average and thus were considered reliably predictable contrasts. Across the 24 reliable task
132 contrasts and test subjects, multi-contrast BrainSurfCNN's average AUC (0.2834) is on par with the
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Figure 4. BrainSurfCNN's predicted task contrasts are comparable to contrasts from repeat task contrasts. For the three most reliable HCP task
contrasts (highest overlap with repeat scan), namely “SOCIAL TOM" (social cognition: theory of mind), “RELATIONAL REL” (relational processing),
“WM 2BK” (working memory: 2-back), BrainSurfCNN's Dice overlap with the true activation maps is close to the reliability limit.

Figure 4-Figure supplement 1. Dice scores for all 47 HCP task contrasts (part 1).
Figure 4-Figure supplement 2. Dice scores for all 47 HCP task contrasts (part 2).
Figure 4-Figure supplement 3. Dice scores for all 47 HCP task contrasts (part 3).

135 single-contrast BrainSurfCNN models’ average AUC (0.2835), but is higher than the group-average
136 contrasts (0.2693), and the linear model's baseline predictions (0.2546). BrainSurfCNN also outper-
13z forms the average AUC of repeat contrasts (0.2697). As shown in Figure 3, BrainSurfCNN exceeds
13s  the target-repeat reliability AUC score for 22 out of 24 reliably predictable task contrasts.

130 The three contrasts (from different tasks) with the highest reliability AUC are “SOCIAL TOM” (AUC
140 = 0.312), “RELATIONAL REL" (AUC = 0.310), and “WM 2BK" (AUC = 0.297). Figure 4 shows the Dice
11 Score curves for these contrasts. The Dice scores of BrainSurfCNN closely approach the reliability
112 Dice scores across all thresholds, suggesting that the BrainSurfCNN prediction well captures the
13 individual-level variation of task contrasts. Conversely, the agreement between the group-average
s and measured target task contrasts is lower than the repeat measurement, when only a small
s fraction of top activated or deactivated vertices are considered, but approaches the reliability score
s  When computed over the majority of vertices. This suggests that the group-average map indeed
147 Captures large-scale patterns, but smooths over the individual-level fine details. Supplemental
s Figure 1 to 3 shows the Dice and AUC for all 47 HCP task contrasts.

10 BrainSurfCNN predictions are highly subject-specific

150 Figure 5 displays the agreement (AUC) across individual subjects’ predicted or repeat measured
151 contrasts (columns) and their measured target contrasts (rows). A subject’s prediction is consid-
12 ered identifiable if it achieves the highest AUC with the subject’s own target contrast, i.e. the di-
153 agonal element has the highest value in the column. We compute the identification accuracy as
152 the fraction of subjects that are identifiable. Across the three most reliable task contrasts (SOCIAL
155 TOM, RELATIONAL REL, and WM 2BK), both the repeat scan and BrainSurfCNN predictions yield a
156 100% identification accuracy, with the linear regression baseline having lower accuracy.

157 Figure 6 shows the measured (target) and predicted task contrasts for 3 subjects, including
152 both the unthresholded contrast maps (top rows) and the top 25% most activated vertices (bottom
150 rows). The task contrast in consideration is “SOCIAL TOM", which has the highest reliability. The
10 three subjects, “662551", “917255", and “115320" have the 10th, 50th, and 90th percentile “target
161 VS. group-average” AUC among the test subjects, respectively. Thus, these three subjects represent
162 varying degrees of deviation from the typical (group-average) contrast. Focusing on the prefrontal
163 cortex, there are subject-specific activation patterns that appear in the repeat scans. For instance,
1ea thereplicable activation pattern of the prefrontal cortex in subject “115320" is more laterally dom-
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Figure 5. AUC values of prediction versus target measured subject contrasts for 3 most reliable HCP task
contrasts, across 39 test subjects. Each row corresponds to a subject’s target task contrast and each column
corresponds to the subject’s prediction. The accuracy score below each matrix is the identification accuracy of

the model's prediction for each task.
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inant, and subject “917255" has more activation in the inferior region of the prefrontal cortex. On
the other hand, the activation pattern of subject “662551" is more sparsely distributed in the the
prefrontal cortex. Such subject-specific characteristics are captured in the predictions computed
by BrainSurfCNN, also reflected by a high Dice overlap between the predicted task contrast and
the measured target contrasts for the top 25% most activated vertices.

Transfer learning improves pretrained BrainSurfCNN's predictive performance on
smaller datasets

We investigated BrainSurfCNN's generalizability beyond the HCP dataset on which the model is
originally trained. To do so, we explored model predictions on two Population Imaging of Psychol-
ogy (PIOP) datasets under the the Amsterdam Open MRI Collection (AOMIC) (Snoek et al., 2021)s.
Each dataset has both resting-state and task-based fMRI data of healthy participants; PIOP1 has
216 subjects with 5 tasks each and PIOP2 has 226 subjects with 3 tasks each. All AMOIC data,
including raw and derivatives, are publicly available (Snoek et al., 20217).

There are significant differences between the HCP and AMOIC PIOP datasets, including differ-
ences in the task paradigms and scanning procedures. In addition, while the resting-state and
task-based fMRI in the HCP dataset was preprocessed directly on the fs_LR surface space (Van Es-
sen et al., 2013), the resting-state and task-based fMRI in the PIOP datasets were preprocessed
in the volumetric MNI space with fmriprep (Esteban et al., 20719). As an extra preprocessing step,
resting-sate and task-based fMRI data (t-stats maps) from the PIOP datasets were projected to the
fs_LR surface templates via the fsaverage space for all subsequent training and prediction (Wu
et al., 2018). For both the PIOP1 and PIOP2 datasets, 50 subjects were held out for testing, leaving
the rest for training and validation. The partitions were selected to ensure that all training and val-
idation subjects has both resting-state and all task contrasts, but not all test subjects necessarily
had all task contrasts.

Two versions of BrainSurfCNN were assessed, one was trained denovo on the training subset of
each PIOP dataset using a random intialization - BrainSurfCNN (random init) - while another was
finetuned from the HCP-pretrained model using the same PIOP data (BrainSurfCNN finetuned).
The group-average task contrasts and linear model predictions were used for comparison.

Figure 7 shows the Dice scores across all activation thresholds and the overall AUC for the 5 task
contrasts in the PIOP1 dataset. When training BrainSurfCNN from scratch - BrainSurfCNN (random
init) - the model's prediction was poor; we hypothesize this is due to the relatively small sample size
of the PIOP1. On the other hand, prediction quality was greatly improved by finetuning the model
pretrained on the HCP dataset, i.e. BrainSurfCNN (finetuned). Figure 8 shows the predicted and
measured contrast maps for an average subject and task. The task contrast, “EMOTION MATCH-
ING: EMOTION > CONTROL" has the median target vs. group-average AUC among the 5 PIOP1
task contrasts. For this contrast, subject 0011 has the median AUC with the group-average task
contrast. Both Figure 8 and the Dice graphs in Figure 7 show that BrainSurfCNN (finetuned) yields
significantly higher Dice scores than the group-average contrasts when the most activated or de-
activated vertices are considered. This gap, however, shrinks with more liberal thresholds. Overall,
the finetuned BrainSurfCNN model’s predictions are on par or better than the group-average con-
trasts in terms of AUC, suggesting that the model can capture well the target task contrasts. In this
transfer-learning setup, the multi-contrast and single-contrast BrainSurfCNN models adapted well
to the new dataset, resulting in similar predictive performance. However, the multi-contrast setup
is more computationally efficient (one model for all outputs) relative to maintaining a separate
model for each predictive target.

Amsterdam OpenfMRI PIOP2

Figure 9 shows the Dice scores across all thresholds and the overall AUC for the 5 task contrasts
in the PIOP1 dataset. Similar to our observations above, finetuning the HCP-pretrained BrainSur-
fCNN model improves predictions over both the linear regression model and the group-average
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Figure 6. Measured and predicted “SOCIAL TOM” (Social cognition, theory of mind) task contrast for three representative subjects in the HCP
dataset. Each row shows both the unthresholded activation maps (top) and thresholded maps of the top 50% most activated vertices (bottom).
Blue indicates activation in the measured contrast, red is the predicted or reference activation and yellow is the overlap. The circled areas show
activation patterns of the prefrontal cortex distinct to each subject that are replicable in both the repeat contrasts and BrainSurfCNN prediction.
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Figure 7. Quality of various model predictions (Dice and AUC) for the Amsterdam PIOP1 dataset. BrainSurfCNN cannot learn effectively if
trained from random intialization, resulting in low Dice scores across all thresholds and low overall Dice AUC. However, by finetuning a
pretrained model (on HCP data), BrainSurfCNN significantly improves its predictive accuracy and surpasses the linear regression baseline in
both the single-contrast and multi-contrast learning setting.
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Figure 8. Example set of model predictions for the Emotion Matching: Emotion > Control task for a typical subject in Amsterdam PIOP1 dataset.
Without finetuning, BrainSurfCNN trained from random initialization failed to capture meaningful patterns of individual subject’s task contrasts.
By finetuning on a model pretrained with HCP data (on a different set of task contrasts), the BrainSurfCNN models were able to predict
individual task contrasts in the Amsterdam PIOP1 dataset.
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Figure 9. Quality of model prediction (Dice and AUC) for Amsterdam PIOP2 dataset. There is a similar improvement in BrainSurfCNN predictive
accuracy via finetuning as for PIOP1 dataset. Compared to the baselines, the finetuned BrainSurfCNN model improves over the linear regression
baseline on Dice score across all thresholds, and improves over the group-average reference up to the top 25% most activated vertices.
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Figure 10. Example set of model predictions for the Emotion Matching: Emotion > Control of a typical subject in Amsterdam PIOP2 dataset. The
finetuned BrainSurfCNN could capture both the gross pattern of the task contrast, as well as the subject-specific details. For example, activation

in the posterior medial cortex (circled) was predicted correctly by BrainSurfCNN for the given subject that is not significant in the group-average
reference.
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task contrasts. However, in contrast to PIOP1, the BrainSurfCNN trained from random initialization
have better predictive performance on PIOP2, possibly because given the same network architec-
ture and roughly the same number of training samples, the model can better learn for a smaller
number of predictive outputs (3 task contrasts in PIOP2 compared to 5 task contrasts in PIOP1).
Figure 9 shows the predicted and measured contrast maps of the median subject (0014) and the
median task contrast (“EMOTION MATCHING: EMOTION > CONTROL"). Similar to the results on the
PIOP1 dataset, BrainSurfCNN has the largest gains over the group-contrast for the most activated
or deactivated vertices.

The shared representation in multi-task learning enables flexible domain adapta-
tion

We want to investigate the representation shared across predicted task contrasts in the multi-task
learning setup of BrainSurfCNN. As all predicted outputs of the multi-contrast BrainSurfCNN model
share the same backbone network, which excludes the last deconvolutional layer (Figure 2), we
hypothesize that one can achieve domain adaptation via fine-tuning the backbone model using
different target contrasts.

We explore this hypothesis by finetuning the backbone of the HCP-pretrained BrainSurfCNN
model using a new dataset, the Individual Brain Charting (IBC) (Pinho et al., 2018, 2020). At the time
of our analysis (October 2020), the IBC dataset has 12 subjects with both resting-state and task con-
trast fMRI scans. As the IBC project aims to densely sample cognitive processes, the dataset covers
awide range of task paradigms per subject, including some that are similar but not identical to HCP
tasks (see Supplemental Table 2 for task contrasts that are similar between HCP and IBC datasets).
For example, IBC "Language" task stimuli are the French translation of the English stimuli used in
the original HCP tasks. Together with differences in scanning and preprocessing protocols, there
are significant domain shifts between the HCP and IBC datasets even for the same task paradigms.
The subjects perform each task in two sessions, one with anterior-posterior (AP) and the other with
posterior-anterior (PA) phase encoding during acquisition (Pinho et al., 2018). In our experiments,
the task contrasts derived from the AP sequence is the measured target, while the contrasts from
the PA sequence is treated as the reliability reference (analogous to the repeat contrasts in the
HCP dataset). We adapt the BrainSurfCNN model pretrained on the HCP data to the IBC dataset by
only finetuning the backbone of the model in a leave-one-task-out procedure. Here the predicted
IBC task (which itself consists of multiple contrasts) is treated as unseen data and the remain-
ing HCP contrasts are used for finetuning the BrainSurfCNN backbone. The backbone-finetuned
BrainSurfCNN is compared against the multi-contrast and single-contrast BrainSurfCNN, the linear
regression models that were only trained on HCP dataset (no finetuning) and the group-average
contrasts.

Figure 11 shows the AUC scores across 19 reliable HCP task contrasts in the IBC dataset. Similar
to the procedure on the original HCP dataset, reliable contrasts are defined as those whose Dice
AUC between the maps derived from the target and repeat scans for HCP task contrasts in the IBC
dataset to be higher than the average. The finetuned BrainSurfCNN predictions have better AUC
scores than the the repeat contrasts across all but 2 task contrasts (‘LANGUAGE STORY” and “SO-
CIAL TOM"). They also perform better than the pretrained BrainSurfCNN models, linear regression
and group-average baselines for all HCP task contrasts. To reemphasize, the finetuned BrainSur-
fCNN is not trained on the predicted task contrast from the IBC dataset, but merely benefits from
the improved backbone finetuned on the other task paradigms. Figure 3 shows that indeed the
multi-task setup allows learning shared representation that are beneficial across predictive out-
puts.

Figure 12 shows the Dice scores of 3 contrasts with the highest average reliability AUC scores
from 3 unique tasks. The finetuned BrainSufCNN models improve upon repeat contrasts across all
thresholds of activation, except for the top most activated vertices in “RELATIONAL REL" contrast.
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Figure 11. AUC of model predictions on reliable HCP task contrasts in the IBC dataset. By finetuning the multi-contrast BrainSurfCNN'’s
backbone on other IBC task contrasts, the model improves its predictive accuracy for the test task contrast over the baselines, as well as the
non-finetuned models. Note that only the multi-task learning setting allows such leave-one-task-out training procedure without the model's
access to any training samples of the contrast to be predicted in the IBC dataset.
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Figure 12. Dice score of model predictions on 3 HCP task contrasts in the IBC dataset at 10th, 50th and 90th average percentile of average AUC
among reliable task contrasts. The BrainSurfCNN finetuned on IBC tasks other than the target task greatly improves the pretrained model's
predictive accuracy (in terms of Dice) across all thresholds of activation.
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Figure 13. Example model predictions for the “Working memory 2-back tool” contrast of 3 IBC subjects. The

finetuned BrainSurfCNN approach the target-repeat reliability in both Dice score for top 50% most activated
vertices, and overall AUC across all thresholds.
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s Discussion

2a Contrasts derived from task-based fMRI have been instrumental for mapping brain responses
26s  across individuals and quantifying how they relate to individual behavioral traits (McNab and Kling-
206 berg, 2008; Mukai et al., 2007; Tom et al., 2007; Wang et al., 2019; Nijhof and Willems, 2015). Task
267 Ccontrasts are also a useful imaging tool for clinical neurosurgeries (Matthews et al., 2006; Rosazza
26s et al., 2018), such as for localizing functional regions, and mapping the impact of lesions. Nonethe-
260 less, tfMRI involves meticulous planning and extensive training (Church et al., 2010; Rosazza et al.,
270 2018), and can be prohibitive for several subject groups such as some patients or young children.
272 Onthe other hand, resting-state fMRI is easier to acquire while retaining a rich fingerprint unique to
272 individuals (Finn et al., 2015; Amico and Goiii, 2018; Tian et al., 2021) and overlap with task-based
2723 fMRI (Smith et al., 2009). Therefore, predictive models that can accurately estimate individual-
272 specific task contrasts from the subjects’ resting-state functional connectivity might unlock new
275 venues of research and applications where only rsfMRI is available.

276 Surface-based preprocessing and analytical methods are increasingly popular in fMRI as they
27z have shown promising results inimproving registration, smoothing and functional localization (Coal-
27s Ssonetal., 2018). In contrast, surfaced-based predictive models for neuroimaging data are relatively
270 less explored. Previous works have used linear regression models to predict vertex-wise brain re-
280 Sponse for a given task contrast from resting-state functional connectomes (Tavor et al., 2016;
2s1 Cole et al., 2016). In (Dohmatob et al., 2021), local gradients estimated from rs-fRMI were used
282 as input features, but the model also made use of a parcel-wise linear regression to predict task
2s3  activation. Other neural networks-based approaches have used heavily preprocessed inputs, such
2sa  as low-dimensional ROI-based functional connectivity matrices (Kawahara et al., 2017) or popula-
2ss  tion graphs (Parisot et al., 2017), which often reduce otherwise rich data into summary metrics
286 and greatly reduce spatial resolution. In a different approach using graph neural networks, (Zhang
2e7 et al., 2021) predicts brain states from fMRI timeseries mapped on to a brain graph. A notable ex-
288 Ception thatis closely related to our approach is (Zhao et al., 2019), which is also a neural network
280 Operating on the spherical representation of brain images, but uses a different approximation for
200 the convolutional operation by limiting the kernel to immediate neighbors of each vertex.

201 In this paper, we present BrainSurfCNN, a neural network model that sets a new benchmark
202 for predicting task activations in individual subjects in the HCP dataset. Furthermore, we demon-
203 Strate that using transfer learning, the pretrained BrainSurfCNN model can generalize well to new
20 datasets or new task contrasts that otherwise have limited training samples available. By using a
206 Multi-task learning, the model was encouraged to pick out synergies and commonalities shared
206 ACross tasks that are better learned in unison than isolation (Caruana, 1997; Baxter, 2000; Mau-
207 reretal., 2016; Mensch et al., 2017), which allows the model to make accurate prediction on task
208 CONtrasts that were not yet seen during training.

200 Despite these advances, predicting individual-specific task contrasts is certainly not a resolved
300 Challenge. Firstly, inductive bias relevant to characteristics of fMRI data can be introduced to the
301 neural network architecture. For example, if the data is registered to a common brain template,
302 Which suggests that the same spherical coordinates correspond to the same anatomical or func-
303 tional landmarks of the common template, translation-variance bias can be injected to the convolu-
304 tional operation to improve predictive accuracy, similar to coordinate-aware convolutional kernels’
305 Operation on 2D grid (Liu et al., 2018). Secondly, capturing inter-individual variation in model pre-
306 diction might require new approaches. Training on common loss between a subject’s predicted
307 output and the corresponding measured contrast seems to push the model's prediction toward
s0s the group-average, possibly because inter-subject variation is significantly smaller than the aver-
300 age signal in magnitude, making predicting such small changes challenging. Curiously, learning on
s10  individual residuals from the group average, i.e. difference between a subject’s task contrast from
s the group average, is not effective (not reported). The group average signal seems to act like a
312 regularizer that allows more efficient learning by the neural network. In our experiments with HCP
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data, by introducing contrastive loss to maximize inter-subject differences of the model outputs,
BrainSurfCNN could enhance features specific to each individual subject. Nonetheless, contrastive
loss is not effective when finetuning on smaller datasets, possibly because either there are lower
signal-to-noise ratios in lower-quality datasets and a more careful search for the right loss margins
is needed, or simply because there are an insufficient number of samples for the model to distin-
guish across samples. Last but not the least, more preprocessing procedures can be experimented
with to explore their effect on the downstream predictive task. While we opted for minimally pre-
processing all the fMRI data used in our experiments to keep the approach general as a whole,
appropriate denoising procedures can change the quality of the input data and improve predictive
quality. Furthermore, the limit of 50 ROIs used for computing the input functional connectivity
was due to constraints on computing resources. We are working on improving BrainSurfCNN's ef-
ficiency, which can allow using input connectomes with more number of features that can better
capture subject-specific variability. To facilitate future studies, the source code for our models and
analysis are publicly available at [URL to be available upon publication].

Methods and Materials

BrainSurfCNN

BrainSurfCNN's architecture is based on U-Net (Ronneberger et al., 2015; Milletari et al., 2016), a
fully convolutional neural network originally proposed for segmentation task, and made use of a
spherical convolutional kernel (Chiyu et al., 2079). The input and output of the model are repre-
sented by multi-channel icosahedral meshes of 32,492 vertices (fs_LR 32k surface) (Van Essen et al.,
2012). Each channel of the multi-channel input mesh is a functional connectivity, measured by the
Pearson’s correlation between each vertex's timeseries and the average timeseries of a target ROI.
In our experiments, the target ROIs are parcels derived from group-level 50-component spatial in-
dependent component analysis (ICA)(Smith et al., 2013). The fs_LR atlases are symmetric between
the left and right hemispheres with the same vertex index in both hemispheres correspond to
contralateral analogues. Therefore, the two functional connectomes (corresponding to the two
hemispheres) of each subject can be concatenated, resulting in a single input icosahedral mesh
with twice the the number of channels as the number of ROIs. For BrainSurfCNN's output, each
channel of the multi-channel icosahedral output mesh corresponds to one fMRI task contrast map.
By predicting multiple task contrasts simultaneously, weight sharing is promoted across model
outputs.

Reconstructive-contrastive loss

In training BrainSurfCNN, we minimize a reconstructive-contrastive loss, which we describe here.
Given a mini batch of N samples B = {x,}, in which x; is the target multi-channel contrast image of
subject i, let %, denote the corresponding prediction. The reconstructive-contrastive loss (R-C loss)
is given by:

N
Lp= % Zd(x,, X) 3 Lc= N)/2 Y dR;.x;) Q)
i=1 X;EB;
J#I
£RC=[£R_a]++[£R_£C+ﬂ]+ (2)

where d(.) is a loss function (e.g. /2-norm). L, « are the same-subject (reconstructive) loss and
margin, respectively. L., p are the across-subject (contrastive) loss and margin, respectively. The
combined objective L. encourages the same-subject error L to be within « margin, while pushing
the across-subject difference £ to be large such that (£, — £) > .
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Data

Human Connectome Project (HCP)

For our benchmarking experiments with a large dataset, we used the minimally pre-processed, FIX-
cleaned 3-Tesla resting-state fMRI (rsfMRI) and task fMRI (tfMRI) of 1,200 subjects from the Human
Connectome Project (HCP). The dataset's acquisition and preprocessing were described in (Glasser
et al., 2013; Smith et al., 2013; Barch et al., 2013). rsfMRI data was acquired in four 15-minute runs,
each with 1,200 time-points per subject. Group-level parcellations derived from spatial ICA were
also released by HCP. We used ROIs from the 50-component parcellation for computing the func-
tional connectomes. HCP's tfMRI data comprises of 86 contrasts from 7 task domains (Barch et al.,
2013), namely: WM (working memory), GAMBLING, MOTOR, LANGUAGE, SOCIAL RELATIONAL, and
EMOTION. Following (Tavor et al., 2016), redundant negative contrasts were excluded, resulting
in 47 unique contrasts. Out of 1,200 HCP subjects, 46 subjects also have repeat (second visit) 3T
fMRI data. Including only subjects with all 4 rsfMRI runs and 47 tfMRI contrasts, our dataset com-
prised of 919 subjects for training/validation, and 39 independent subjects (with repeat scans) for
evaluation.

Amsterdam Open MRI Collection (AOMIC)

AOMIC s a collection of multimodal brain imaging datasets from a large number of subjects (Snoek
et al., 2021). For our experiments with transfer learning, we used two AOMIC datasets: PIOP1
and PIOP2 (PIOP stands for Population Imaging of Psychology). PIOP1 consists of 6 minutes of
rsfMRI (480 timepoints at 0.75-second TR) and tfMRI measured from five tasks, namely "Emotion
matching", "Gender Stroop", "Working memory", "Face perception", and "Anticipation", for 216
subjects. PIOP2 consists of 8 minutes of rsFMRI (240 timepoints at 2-second TR) and tfMRI collected
from three tasks, namely "Emotin matching", "Working memory" and "Stop signal", for 226 subjects.
AOMIC data are organized according to the Brain Imaging Data Structure (BIDS) (Gorgolewski et al.,
2016).

Individual Brain Charting (IBC)

To demonstrate the flexible domain adaptation multi-task learning affords, we used data from the
Individual Brain Charting (IBC) project Pinho et al. (2020). |BC dataset includes fMRI data from 12
subjects and 180 task contrasts, 43 of which are also studied in the HCP. IBC data is also organized
according to BIDS (Gorgolewski et al., 2016).

fMRI preprocessing and volume-to-surface projection
Resting-state fMRI data from PIOP and IBC datasets were preprocessed using the FMRIPREP version
stable (Esteban et al., 2019), a Nipype (Gorgolewski et al., 2017) based tool. Each T1w (T1-weighted)
volume was corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 (Tusti-
son et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template).
Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1 (Dale et al., 1999), and
the brain mask estimated previously was refined with a custom variation of the method to recon-
cile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle
(Klein et al., 2017). Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template ver-
sion 2009c (Fonov et al., 2009) was performed through nonlinear registration with the antsRegis-
tration tool of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of both T1w volume
and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-
matter (GM) was performed on the brain-extracted T1w using fast (Zhang et al., 2007) (FSL v5.0.9).
Functional data was slice time corrected using 3dTshift from AFNI v16.2.07 (Cox, 71996) and mo-
tion corrected using mcflirt (FSLv5.0.9 (Jenkinson et al., 2002)). This was followed by co-registration
to the corresponding T1w using boundary-based registration (Greve and Fischl, 2009) with six de-
grees of freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting transformations, BOLD-
to-T1w transformation and T1w-to-template (MNI) warp were concatenated and applied in a single
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step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor (Behzadi et al., 2007). Princi-
pal components were estimated for the two CompCor variants: temporal (tCompCor) and anatom-
ical (@CompCor). A mask to exclude signal with cortical origin was obtained by eroding the brain
mask, ensuring it only contained subcortical structures. Six tCompCor components were then cal-
culated including only the top 5% variable voxels within that subcortical mask. For aCompCor, six
components were calculated within the intersection of the subcortical mask and the union of CSF
and WM masks calculated in T1w space, after their projection to the native space of each func-
tional run. Frame-wise displacement (Power et al., 2011) was calculated for each functional run
using the implementation of Nipype. Many internal operations of FMRIPREP use Nilearn (Abraham
et al., 2014), principally within the BOLD-processing workflow. For more details of the pipeline see
https://fmriprep.readthedocs.io/en/stable/workflows.html. Preprocessed volumetric PIOP and IBC
daa were projected to the fs_LR surface template via fsaverage (Wu et al., 2018).

Baseline

Linear regression
The linear regression baseline was implemented according to (Tavor et al., 2016), as given by:

yi = X8, 3)

where yf, Xf‘ ﬁ',-k are the vectorized activation pattern, input features, and regressor of the k-th par-
cel in the i-th subject, respectively. The 50-component parcellation derived from ICA, provided by
HCP was used to compute the linear regression model. y* is a vector of length n, - the number of
vertices in the k'th parcel in both hemispheres. X¥ is a n, x M functional connectivity matrix, where
each element was computed as the Pearson’s correlation between a vertex and the average time-
series of each of the M ROIs (same timeseries used to compute BrainSurfCNN’s input). Following
(Tavor et al., 2016), a linear model was fit for every parcel and every task of each training sample.
These fitted linear models were averaged across all training samples to yield a single predictive
model per parcel.

Group-average contrasts

Different degrees of inter-subject variability manifest in different task contrasts. Such variability
in prediction was a subject of interest for our study. Therefore, we used the group averages as a
naive baseline. The group-average task contrasts’ correspondence with individual contrasts would
be low/high for tasks with high/low inter-subject variance.

Repeat contrasts

We used repeat tfMRI scans (when available) to quantify the reliability of the target contrast maps
and evaluate the predictive performance of BrainSurfCNN and the baselines. The repeat contrasts
were compared to the first contrasts both in terms of overall correspondence (measured with
Dice) and in the subject identification task. We consider these reliability results as an effective
upper-bound on performance.

Experimental setup

Data Augmentation and Test-time Ensembling:

In the HCP dataset, each subject has 4 rsfMRI runs with 1200 time-points each. As stable functional
connectomes can be estimated from fewer than 1200 time-points (Finn et al., 2015), we computed
a functional connectome from each contiguous half (600 time-points) of every run, resulting in 8
input samples per subject. During BrainSurfCNN training, one connectome was randomly sam-
pled for each subject. Thus, the model was presented with 8 slightly different samples per subject.
At test time, 8 predictions were made for each subject and then averaged for a final prediction.
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For the AOMIC dataset, 4 functional connectomes were computed for each subject from 4 con-
tiguous segments of 120 timepoints. For the IBC dataset, 2 connectomes were computed for each
subject, each connectome was estimated from a randomly sampled contiguous segments of 600
timepoints.

Training schedule:

On the HCP dataset, BrainSurfCNN was first trained for 50 epochs with a batch size of 2 with mean
squared error (MSE), i.e. reconstructive loss L, in Eq.2, using Adam optimizer. Upon convergence,
the average reconstructive loss L, and L. were estimated from all training subjects, and used as
initial values for the margins « and g in Eq.2 respectively. The initialization procedure forces the
model to not deviate from the existing reconstructive error while optimizing for the contrastive
loss. Training then continued for another 50 epochs, with the same-subject margin « halved and
across-subject margin g doubled every 20 epochs, which encourages the model to refine further
over time. For transfer learning experiments with the AOMIC and IBC datasets, the best checkpoint
of the model when training on HCP dataset with MSE was used as the initialization for finetuning.
The finetuning was conducted with MSE as the objective function as the L-R loss did not seem to
be sufficiently robust on smaller datasets.

Evaluation Metrics
Dice score (Dice, 1945) is used to measure the extent of overlap between a predicted contrast and
the target contrast map for a given percentage of most activated vertices. At a given threshold of
x%, Dice score is computed as:

2| Prediction(x) N Target(x)|

Dice(x) = — s (4)
| Prediction(x)| + | T arget(x)|

where | Prediction(x)| denotes the number of top x% most activated vertices in the predicted con-
trast map, |Target(x)| denotes the number of top x% most activated vertices in the contrast, and
| Prediction(x) N Target(x)| denotes the number of vertices that overlap between the predicted and
target map at the given threshold. By integrating Dice scores over a range of thresholds (e.g. 5%
to 50% most activated vertices), we produce a summary measure - area under the Dice curve (Dice
AUC) - for the quality of a model prediction.

Quantifying Identification Accuracy

Dice AUCs were computed between the models’ predicted individual task contrast maps and the
tfMRI-derived target contrast maps of all subjects. This results in a 39 by 39 AUC matrix for each
contrast, where each entry is the Dice AUC between a subject's predicted contrast (column) and
a target contrast map (row), of same or another subject. The diagonal values (Dice AUC between
the predicted and target contrast map of the same subject) therefore quantify the (within subject)
predictive accuracy for a given contrast. The difference between diagonal and average off-diagonal
values (Dice AUC between a subject’s predicted contrast map with the target contrast map derived
from another subject’s tfMRI) indicates how much better one subject's prediction corresponds with
the subject’s own tfMRI-derived contrast compared to other subject contrasts. In other words, the
i-th subject is identifiable among all test subjects using the predicted contrast if the i-th element
of the i-th row has the highest value. For a given task contrast and prediction model, we compute
subject identification accuracy as the fraction of subjects with a maximum at the diagonal.
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Figure 3-Figure supplement 1. AUC scores for all 47 HCP task contrasts.
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Figure 4-Figure supplement 1. Dice scores for all 47 HCP task contrasts (part 1).
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Figure 4-Figure supplement 2. Dice scores for all 47 HCP task contrasts (part 2).
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Figure 4-Figure supplement 3. Dice scores for all 47 HCP task contrasts (part 3).
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