

1 **Endothelial SIRP α signaling controls thymic progenitor homing for T cell
2 regeneration and antitumor immunity**

3

4 Boyang Ren^{1,2}, Huan Xia^{1,2}, Yijun Liao^{1,2}, Hang Zhou^{1,2}, Zhongnan Wang¹, Yaoyao
5 Shi¹ & Mingzhao Zhu^{1,2}*

6

7 ¹ Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese
8 Academy of Sciences, Beijing 100101, China.

9 ² College of Life Sciences, University of the Chinese Academy of Sciences, Beijing
10 100049, China.

11

12 * Correspondence author: Mingzhao Zhu

13 Tel: 86-10-64888775; Fax: 86-10-64884618; Email: zhumz@ibp.ac.cn

14

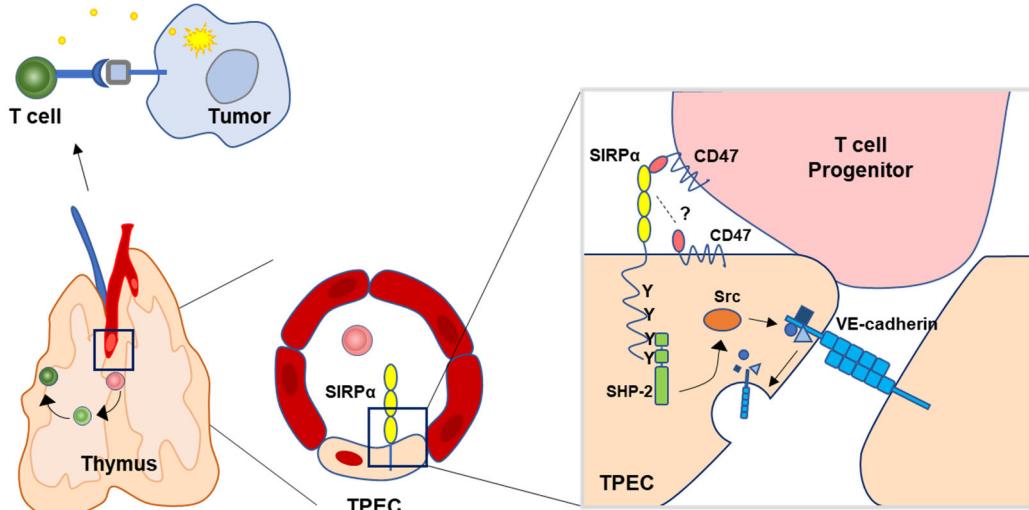
15

16

17

18

19


20

21 **Graphic abstract**

22

23

24

25

26

27

28

29

30

31

32

33 Thymic homing of hematopoietic progenitor cells is fundamental to the T cell-based
34 adaptive immunity, yet the molecular basis of this process is less clear. We discovered
35 that endothelial SIRP α signaling, engaged by migrating cell derived CD47 ligand,
36 regulates thymic homing of hematopoietic progenitor cells for T cell regeneration and
37 antitumor immunity.

38

- 39 ● SIRP α is preferentially expressed on thymic portal endothelial cells.
40 ● Endothelial SIRP α regulates thymic homing of hematopoietic progenitor cells.
41 ● CD47-SIRP α downstream signaling induces VE-cadherin endocytosis.
42 ● CD47-SIRP α signaling blockade impairs thymic T cell regeneration and
43 antitumor immunity.

44

45

46

47 **Abstract**

48 Thymic homing of hematopoietic progenitor cells (HPCs) is an essential step for the
49 subsequent T cell development. Previously we have identified a subset of specialized
50 thymic portal endothelial cells (TPECs), which is important for thymic HPC homing.
51 However, the underlying molecular mechanism remains still unknown. Here we found
52 that signal regulatory protein alpha (SIRP α) is preferentially expressed on TPECs.
53 Disruption of CD47-SIRP α signaling in mice resulted in reduced number of thymic
54 early T cell progenitors (ETPs) and impaired thymic HPC homing. Mechanistically,
55 SIRP α -deficient ECs and CD47-deficient lymphocytes demonstrated impaired
56 transendothelial migration (TEM). Specifically, SIRP α intracellular ITIM motif-
57 initiated downstream signaling in ECs was found to be required for TEM in a SHP2-
58 and Src-dependent manner. Furthermore, CD47-signaling from migrating cells and
59 SIRP α intracellular signaling were found to be required for VE-cadherin endocytosis in
60 ECs. Functionally, SIRP α signaling is required for T cell regeneration upon sub-lethal
61 total body irradiation (SL-TBI); CD47-SIRP α signaling blockade post SL-TBI
62 diminishes antitumor immunity. Thus, our study reveals a novel role of endothelial
63 SIRP α signaling for thymic HPC homing for T cell regeneration and antitumor
64 immunity.

65

66

67 **Keywords:** T cell regeneration; Hematopoietic progenitor cell; Endothelial cell; SIRP α ;
68 Tumor immunotherapy

69

70 **Introduction**

71 Different from most other hematopoietic cells, T cells develop in the thymus. Thymic
72 homing of bone marrow derived hematopoietic progenitor cells (HPCs) is therefore a
73 critical step. It was reported that HPCs enter the thymus via unique blood vessels that
74 are surrounded by perivascular spaces (PVS)(Lind et al., 2001; Mori et al., 2007)
75 primarily in the corticomedullary junction (CMJ) of the thymus. To understand how the
76 unique blood vascular endothelial cells (ECs) are involved in thymic homing of HPCs
77 is an important question in the field. Previously, we identified a specialized subset of
78 P-selectin⁺ Ly6C⁻ thymic portal endothelial cells (TPECs) located in the CMJ region
79 and associated with PVS structure, providing the cellular basis for thymic homing of
80 HPCs(Shi et al., 2016). Short-term HPC thymic homing assay confirmed that TPECs is
81 highly associated with settling HPCs and lack of TPECs in lymphotoxin beta receptor
82 deficient mice resulted in dramatically impaired HPC thymic homing and reduced
83 number of thymic early T cell progenitors (ETPs). Transcriptome analysis revealed that
84 TPECs are enriched with transcripts related to cell adhesion and trafficking, supporting
85 its critical role for thymic homing. However, the molecular basis of TPEC function and
86 its underlying mechanism have not been experimentally determined.

87 Several molecules have been found to play important roles for thymic homing of
88 HPCs. P-selectin and adhesion molecule VCAM-1 and ICAM-1, highly expressed on
89 ECs, as also confirmed in our previous study, have been suggested to mediate adhesion
90 of HPCs on ECs(Lind et al., 2001; Mori et al., 2007; Rossi et al., 2005; Scimone et al.,
91 2006). In addition, chemokines such as CCL19 and CCL25 expressed by thymic ECs
92 as well as thymic epithelial cells (TECs) are also involved in thymic homing of HPCs,
93 probably via integrin activation(Krueger et al., 2010; Misslitz et al., 2004; Parmo-
94 Cabañas et al., 2007; Zhang et al., 2014; Zlotoff et al., 2010). All the above-mentioned
95 mechanisms regulate the multistep HPC homing at early invertible process(Zlotoff and
96 Bhandoola, 2011). Transendothelial migration (TEM) is the decisive step for migration
97 of progenitors from blood into the thymus(Zlotoff and Bhandoola, 2011). To
98 accomplish the homing process, the barrier of endothelial junction must be diminished

99 during migration. How this step is regulated in TPECs remains still unknown.

100 Signal regulatory protein alpha (SIRP α) is a transmembrane protein that contains
101 three Ig-like domains, a single transmembrane region, and a cytoplasmic region.
102 Ligation of SIRP α by its ligand CD47 transmits intracellular signal through its ITIM
103 motifs. SIRP α is mainly expressed by myeloid cells such as monocytes, granulocytes,
104 most tissue macrophages and subsets of dendritic cells(Barclay and Van den Berg,
105 2014). On the other hand, CD47 is ubiquitously expressed but show fluctuating
106 expression levels on different cell states or cell types. Elevated CD47 expression is
107 detected on bone marrow cells and some of lymphoid subsets(Jaiswal et al., 2009; Van
108 et al., 2012).

109 SIRP α plays various roles in immune system. SIRP α on conventional dendritic cells
110 (cDCs) maintains their survival and proper function via intracellular SHP2
111 signaling(Iwamura et al., 2011; Saito et al., 2010). On macrophages, upon CD47
112 ligation, SIRP α signaling activates intracellular SHP1 to inhibit Fc γ receptor-mediated
113 phagocytosis towards target cells(Blazar et al., 2001; Ishikawa-Sekigami et al., 2006;
114 Tsai and Discher, 2008). Elevated expression of CD47 on platelets, lymphocyte subsets
115 and hematopoietic cell subsets shows ‘self’ identity and protects them from being
116 cleared by macrophages(Blazar et al., 2001; Jaiswal et al., 2009; Olsson et al., 2005;
117 Yamao et al., 2002). Tumor cells express high level of CD47 to escape immune
118 surveillance initiated by macrophages(Chao et al., 2010; Majeti et al., 2009;
119 Willingham et al., 2012), which leads to the development of CD47-SIRP α blockade as
120 a promising approach for cancer therapy.

121 CD47-SIRP α has also been reported to play important roles in cell adhesion and
122 migration. SIRP α expressed on cDCs, neutrophils, melanoma cells and CHO cells has
123 been reported to promote cell motility(Fukunaga et al., 2004; Liu et al., 2002; Motegi
124 et al., 2003) through SHP2-dependent activation of Rho GTPase and cytoskeleton
125 reorganization(Wollenberg et al., 1996)(Inagaki et al., 2000). On the other hand, SIRP α
126 expressed on neutrophils and monocytes has been shown to be the ligand for endothelial
127 or epithelial CD47 and promotes junction opening through activating Rho family

128 GTPase therefore permitting transmigration of the SIRP α -expressing cells(de Vries et
129 al., 2002; Liu et al., 2002; Stefanidakis et al., 2008). However, the expression and
130 function of SIRP α on ECs remain unknown.

131 In the present study, we uncovered the novel role of TPEC signature molecule SIRP α
132 in thymic homing of progenitor cells, revealed that migrating cell-derived CD47 and
133 EC-SIRP α intracellular signal induce junctional VE-cadherin endocytosis and promote
134 TEM. In addition, we showed that CD47-SIRP α signaling blockade upon thymic injury
135 resulted in impaired T cell regeneration and antitumor immunity.

136

137 **Results**

138 **Thymic portal endothelial cells preferentially express SIRP α .**

139 To explore the molecular mechanisms for thymic homing of the progenitors through
140 TPECs, we started with signature genes of TPECs based on previously published RNA-
141 seq data and focused on the genes related to cell adhesion and migration by intersecting
142 with related gene sets(Shi et al., 2016)(**Supplementary File1**). Among those signature
143 genes of TPECs, SIRP α (**Figure 1A,B**) is of particular interest since its involvement in
144 cell migration on leukocytes but undiscovered role on non-immune cells.

145 To further assess the expression of SIRP α on thymic endothelial subsets, CD31 $^+$
146 thymic ECs were further separated by Ly6C and P-Selectin (**Figure 1C**) as previously
147 reported(Shi et al., 2016), and analyzed by quantitative RT-PCR and flow cytometry.
148 SIRP α was barely detectable on Ly6C $^+$ P-Selectin $^-$ ECs, the dominant population of
149 thymic ECs. On Ly6C $^+$ P-Selectin $^+$ ECs, the suggested precursor of TPECs, there was a
150 substantial level of SIRP α expression. Among all three EC subsets, Ly6C $^-$ P-Selectin $^+$
151 TPECs, express the highest level of SIRP α at both mRNA level (**Figure 1D**) and protein
152 level (**Figure 1E,F**). Thus, SIRP α appears to be closely and positively related to thymic
153 EC portal function.

154

155 **Endothelial SIRP α is essential for ETP population maintenance and thymic
156 progenitor homing.**

157 ETPs are the very first subset of bone marrow-derived progenitor cells that settle the
158 thymus and are committed to T cell lineage. Studies have suggested ETP population
159 size a direct indicator of thymic HPC homing(Krueger et al., 2010; Shi et al., 2016;
160 Zlotoff et al., 2010). Therefore, to test the requirement of SIRP α for thymic progenitor
161 homing, we first analyzed ETP population in *Sirpa* $^{-/-}$ mice. *Sirpa* $^{-/-}$ mice appeared
162 normal regarding to the total cellularity in thymus (**Figure 2—figure supplement 1A**)
163 and peripheral lymphoid organs (**Figure 2—figure supplement 1B,C**). The
164 frequencies and numbers of major subsets of thymocytes remain unaltered except for
165 DN1 subset which mainly consists of ETPs (**Figure 2—figure supplement 1D-G**). A

166 substantial reduction in ETP population was confirmed in *Sirpa*^{-/-} mice (**Figure 2A,B**).
167 Bone marrow multipotent progenitors including lineage⁻Sca-1⁺c-Kit^{high} (LSK) and
168 common lymphoid progenitors (CLPs) remained unchanged in these mice (**Figure**
169 **2C,D**), suggesting the reduced population size of thymic ETP is unlikely due to
170 impaired generation/homeostasis of bone marrow progenitors.

171 Previous studies suggested that thymic entry of the progenitor cells and ETP
172 population maintenance is guided by multiple cues derived from thymic endothelial
173 cells as well as thymic epithelial cells. To specifically test the role of endothelial SIRP α ,
174 we generated *Sirpa*^{ΔTie2-Cre} (*Sirpa*^{flox/flox} × Tie2-cre) mice. Significant decrease of
175 thymic ETP population was found in *Sirpa*^{ΔTie2-Cre} mice in a degree similar to that in
176 *Sirpa*^{-/-} mice (**Figure 2E,F**), suggesting the role of SIRP α is probably mainly derived
177 from ECs. In supporting this, much lower expression level of SIRP α was found on
178 either medullary or cortical thymic epithelial cells (**Figure 2—figure supplement 2A-**
179 **C**).

180 Previous studies have reported SIRP α as a phagocytic checkpoint on tissue
181 macrophages and CD47-null cells are rapidly cleared in congenic wild type (WT)
182 mice(Bian et al., 2016). Possibility exists that phagocytic activity may elevate towards
183 circulating progenitor cells in *Sirpa*^{-/-} or *Sirpa*^{ΔTie2-Cre} mice before they reach the thymus,
184 since SIRP α is deficient in hematopoietic cells of both mouse lines. To distinguish the
185 role of hematopoietic cell-derived versus non-hematopoietic radioresistant stromal cell-
186 derived SIRP α in the regulation of thymic ETPs, bone marrow chimeric mice were
187 generated (**Figure 2—figure supplement 2D**). Mice lacking SIRP α on radioresistant
188 stromal cells demonstrated significantly reduced ETP population (**Figure 2G,H**),
189 whereas in mice lacking SIRP α on hematopoietic cells, ETP population remained
190 unchanged (**Figure 2—figure supplement 2E,F**). Thus, together with previous data,
191 reduced thymic ETP population in *Sirpa*^{-/-} or *Sirpa*^{ΔTie2-Cre} mice is unlikely due to
192 increased clearance of HPCs in the absence of hematopoietic SIRP α .

193 To directly test the role of SIRP α on HPC thymic homing, a short-term thymic
194 homing assay was adopted(Shi et al., 2016), in which massive amount of progenitor-

195 containing bone marrow cells were intravenously transferred and thymic settling
196 progenitor cells were determined two days later. To separate the hematopoietic versus
197 non-hematopoietic role of SIRP α , bone marrow chimeric mice was used for short-term
198 homing assay (**Figure 2—figure supplement 2D**). SIRP α deficiency on hematopoietic
199 cells did not result in impaired thymic settling of bone marrow progenitors (**Figure 2—**
200 **figure supplement 2G**), nor did the number of progenitors retained in the periphery as
201 represented by the number of progenitor cells in the spleen (**Figure 2—figure**
202 **supplement 2H**). On the contrary, loss of SIRP α on radioresistant cells significantly
203 impeded thymic entry of progenitor cells (**Figure 2I,J**). Nevertheless, unaltered number
204 of donor bone marrow cells retained in the periphery (**Figure 2—figure supplement**
205 **2I,J**), further confirming the role of endothelial SIRP α in controlling thymic entry of
206 the progenitors. Together, these data suggest that myeloid-SIRP α mediated phagocytic
207 activity does not affect thymic progenitor homing in the current system; endothelial
208 SIRP α plays an important role on thymic homing of progenitor cells and ETP
209 population maintenance.

210

211 **EC-SIRP α controls lymphocyte TEM.**

212 Since TPECs is the portal of thymic progenitor entry, we asked whether SIRP α
213 signaling may regulate TPEC development. *Sirpa*^{-/-} mice did not show altered thymic
214 endothelial development in regard to the percentage and number of total ECs (**Figure**
215 **3—figure supplement 1A-C**) and specifically TPECs (**Figure 3A-C**). Adhesion of
216 progenitor cells to the wall of blood vessel is an early step for successful transmigration
217 towards thymic parenchyma. Since SIRP α has been reported for its role in cellular
218 adhesion (Seiffert et al., 1999), we next tested the key adhesion molecules involved in
219 leukocyte-EC adhesion and found them largely unchanged on TPECs of *Sirpa*^{-/-} mice
220 (**Figure 3D,E**). Concerning other potential effect of SIRP α on leukocyte-EC adhesion,
221 we directly tested this *in vitro*. *Sirpa*^{-/-} MS1 endothelial cell line was constructed by
222 CRISPR-Cas9 and the deletion of SIRP α was confirmed by flow cytometry (**Figure**
223 **3—figure supplement 1D**). Compared to WT ECs, *Sirpa*^{-/-} EC monolayer mediates

224 comparable adhesion of lymphocytes (**Figure 3F**).

225 Next, we examined the role of SIRP α in TEM by transwell assay. Monolayers of both
226 WT and *Sirp α ^{-/-}* ECs were equally formed at the time of transmigration assay (**Figure**
227 **3—figure supplement 1E,F**). In the presence of CCL19 in the lower chambers, T
228 lymphocytes were measured for their transmigration across endothelial barrier.
229 Remarkably, SIRP α deficiency in ECs resulted in about 45% reduction of transmigrated
230 cell numbers (**Figure 3G**), suggesting a direct role of SIRP α in controlling the behavior
231 of ECs in the process of lymphocyte TEM.

232

233 **Migrating cell-derived CD47 guides their TEM.**

234 CD47, the cellular ligand of SIRP α , is ubiquitously expressed on almost all types of
235 cells. Interestingly, we found among developmental subsets of T cell lineage, ETPs
236 exhibited the highest level of CD47 expression (**Figure 4A**), suggesting preferential
237 interaction may exist between ETPs and TPECs controlling thymic progenitor homing
238 and ETP population. Indeed, *Cd47^{-/-}* mice showed significant reduced ETP population
239 (**Figure 4B-D**) and unaffected ancestral progenitor subsets (**Figure 4—figure**
240 **supplement 1A-C**), similar to that of *Sirp α ^{-/-}* mice. To directly test the role of CD47 on
241 migrating cells in TEM, the transwell assay was applied as described above.
242 Significantly elevated CD47 expression was found on immortalized cells, herein MS1
243 (**Figure 4—figure supplement 1D**), which was not found in the physiological situation,
244 wherein EC-CD47 expression level is much lower than that on migrating cells (ETP)
245 (**Figure 4—figure supplement 1E,F**). To exclude the potential influence of this
246 artificial CD47 expression on ECs and to determine the sole role of migrating cell-
247 derived CD47, *Cd47^{-/-}* MS1 cell line was generated (**Figure 4—figure supplement 1G**).
248 Either genetic deficiency of CD47 or blockade of CD47 signal on lymphocytes via
249 SIRP α -hIg (CV-1) resulted in significantly fewer TEM through *Cd47^{-/-}* MS1 cells
250 (**Figure 4E,F**). Thus, CD47 expression on lymphocyte correlated with enhanced
251 transmigration. These data suggest that elevated CD47 on migrating progenitors could
252 engage SIRP α on specialized TPECs to promote their thymic entry.

253

254 **SIRP α intracellular signal controls TEM via SHP2 and Src.**

255 CD47-SIRP α interaction could transduce signaling bidirectionally. We next examined
256 whether SIRP α signals through ECs for TEM regulation. To do this, an endothelial cell
257 line lacking intracellular domain of SIRP α was constructed(Inagaki et al., 2000)
258 (SIRP α -ΔICD MS1) (**Figure 5—figure supplement 1A**). SIRP α -ΔICD MS1 cells did
259 not abolish surface display of the molecule and considerable expression of extracellular
260 region of SIRP α is detected (**Figure 5—figure supplement 1B**), which would retain
261 its ability to engage CD47 for potential signaling downstream of CD47 in interacting
262 cells. However, lymphocyte transmigration across SIRP α -ΔICD MS1 cells reduced to
263 the level similar to that on *Sirp α ^{-/-}* MS1 cells (-33% of WT, comparing -42% in *Sirp α ^{-/-}*)
264 (**Figure 5A**), suggesting SIRP α regulates TEM mainly through ECs. Furthermore,
265 lentiviral transduction with WT *Sirp α* coding sequence (*Sirp α -WT*) in *Sirp α ^{-/-}* MS1
266 cells largely recovered TEM (78% of WT level, comparing 32% of WT in *Sirp α ^{-/-}* MS1)
267 (**Figure 5B**), whereas transduction with loss-of-function mutant *Sirp α -Y4F*, in which
268 all four functional tyrosine residues in the cytoplasmic ITIM motifs were substituted
269 with inactive phenylalanine, failed in TEM rescue (23% of WT) (**Figure 5B**), even with
270 restored surface expression (**Figure 5—figure supplement 1C**). Thus, SIRP α
271 intracellular ITIMs-mediated downstream signaling in ECs is required for TEM.

272 Phosphorylation of ITIMs of SIRP α cytoplasmic tail may recruit and activate
273 ubiquitously expressed tyrosine phosphatase SHP2 in ECs(Takada et al., 1998). To
274 investigate whether SHP2 is sufficient to enable TEM in the absence of SIRP α signaling,
275 *Sirp α ^{-/-}* MS1 cells were transduced with a lentiviral vector to express constitutively
276 active SHP2 (E76K(Bentires-Alj et al., 2004), hereafter called SHP2-CA). SHP2-CA
277 MS1 cells permitted significantly more (+57% of empty vector control) TEM of
278 lymphocytes (**Figure 5C**), demonstrating that SHP2 activation can rescue the defective
279 effect of SIRP α deficiency.

280 Several studies have illustrated that SHP2 activity could cooperate activation of Src
281 kinase in ECs(Liu et al., 2012; Zhang et al., 2004), we next investigated whether Src

282 participates TEM regulation in the context of SIRP α signaling. In *Sirp α ^{-/-}* MS1 cells,
283 active Src (pTyr-416) was significantly deficient compared to WT (**Figure 5D,E**)
284 without affecting the pool of autoinhibitory inactive form of Src (**Figure 5D,F**).
285 Furthermore, plate-bound CD47 significantly promoted Src activation (pTyr-416,) but
286 not pYyr-529 in *Cd47^{-/-}* MS1 cells (**Figure 5G-I**). These data suggest the ability of
287 SIRP α downstream signaling in activating Src kinase.

288 To directly assess the role of Src in leukocyte transmigration, a specific inhibitor of
289 Src family kinases, PP2, was applied to the WT MS1 cells during transwell assay.
290 Significantly inhibited lymphocyte transmigration was observed (**Figure 5J**). Thus,
291 these data suggest that SIRP α downstream signaling activates SHP2 and Src kinase for
292 the control of TEM.

293

294 **CD47-SIRP α signaling promotes VE-cadherin endocytosis.**

295 VE-cadherin is the dominant gate-keeping molecule controlling leukocyte
296 transmigrating through endothelial barrier(Corada et al., 1999; Vestweber, 2007;
297 Vestweber et al., 2009; Wessel et al., 2014). VE-cadherin controls junction opening by
298 regulated destabilization and endocytosis from junctional area of cell
299 surface(Allingham et al., 2007; Benn et al., 2016; Wessel et al., 2014). In addition,
300 phosphatase SHP2 and kinase Src have been both reported to destabilize adherens
301 junction during transmigration by promoting endocytosis of VE-cadherin(Allingham et
302 al., 2007; Wessel et al., 2014). To test the role of endothelial SIRP α signal on VE-
303 cadherin endocytosis, we adopted an *in vitro* VE-cadherin endocytosis assay as
304 previously described(Wessel et al., 2014). The surface expression of VE-cadherin is not
305 altered in *Sirp α ^{-/-}* ECs (**Figure 6—figure supplement 1A,B**). Upon lymphocyte
306 engagement, *Sirp α ^{-/-}* MS1 showed significantly lower T-cell induced VE-cadherin
307 endocytosis (**Figure 6A,B**). SIRP α -ΔICD MS1 cells showed similar unresponsiveness
308 of VE-cadherin endocytosis to lymphocyte engagement (**Figure 6C,D**), demonstrating
309 requirement of SIRP α intracellular signaling in facilitating VE-cadherin endocytosis.
310 Furthermore, inhibition of SIRP α downstream molecule Src by PP2 significantly

311 inhibited endocytosis of VE-cadherin in WT MS1 cells but not in *Sirpa*^{-/-} MS1 cells
312 (**Figure 6E**), suggesting an important role of Src activity downstream of SIRP α
313 intracellular signaling in controlling VE-cadherin endocytosis.

314 VE-cadherin endocytosis is a quite dynamic process induced upon cellular contact.
315 In an effort to analyze the effect of CD47-SIRP α signaling on this process, we set up
316 an *in vitro* live imaging procedure to analyze VE-cadherin endocytosis at sites of
317 migrating cell contact(Kroon et al., 2014). CD47-blocked (CV1) or control (hIg
318 treatment) T lymphocytes with different fluorescent labels were mixed equally and then
319 infused into flow chamber mimicking physiological blood flow. The junctional
320 retainment of VE-cadherin was measured by its colocalization with adhesion molecule
321 CD31 (**Figure 6—figure supplement 1C**). VE-cadherin colocalization with CD31
322 under area of migrating cells was calculated and grouped by their different fluorescent
323 labels. The higher colocalization indicates less VE-cadherin endocytosis. The test was
324 performed on *Cd47*^{-/-} MS1 cells to exclude potential influence of CD47 on ECs.
325 Significantly higher degree of VE-cadherin/CD31 colocalization was found under
326 migrating cells with CD47-SIRP α blockade pretreatment compared to that under
327 control treated migrating cells (**Figure 6F,G**), suggesting the requirement of CD47
328 signal derived from migrating cells for induction of VE-cadherin endocytosis.
329 Reciprocal fluorescence labeling of CV1- and hIg-treated migrating cells showed
330 similar results (**Figure 6—figure supplement 1D,E**). Together, these data suggest that
331 upon migrating cell contacts, CD47-SIRP α signal regulates VE-cadherin endocytosis
332 via activation of SHP2 and Src kinase, at sites of contact, to control TEM.

333

334 **SIRP α is required for thymic regeneration and T cell immune regeneration.**

335 Thymic injury occurred in cancer chemoradiotherapy (CRT). Efficient thymic
336 regeneration is in part constrained by the number of progenitors entering
337 thymus(Zlotoff et al., 2011). Given the role of CD47-SIRP α signaling in thymic
338 progenitor homing, we tested whether CD47-SIRP α signal blockade might accidentally
339 impair thymic regeneration. Mice received sub-lethal total-body irradiation (SL-TBI)

340 were intravenously injected with CV1 or control hIg during the period of immune
341 regeneration (**Figure 7A**). SL-TBI caused a dramatic drop of lymphocyte cell numbers
342 in the peripheral blood on day 9 post irradiation(Shi et al., 2016). Thymic progenitors
343 travel the thymus in around 2 weeks, differentiating along their journey, and become
344 mature to be ready to replenish the peripheral T cell pool(Hale and Fink, 2009). T cell
345 regeneration was examined at day 21 post irradiation. CV1-blockade group showed a
346 significant reduction in thymic total cellularity (**Figure 7B**). Flow cytometry analysis
347 showed significantly decreased number of ETP and DP cells in the thymus of CV1-
348 treated mice (**Figure 7C,D**), indicating an insufficient supplement of progenitors and
349 retard repopulation in the thymus. In line with decreased ETP and DP cells, the number
350 of single positive CD4⁺ and CD8⁺ T cells also decreased in these mice (**Figure 7E,F**).
351 Furthermore, the naïve T cells in the spleen also showed significant defect in CV1
352 blockade group (**Figure 7G,H**), while B cell population was normal (**Figure 7I**). Thus,
353 these data suggest that CD47-SIRP α signaling blockade impedes thymic regeneration
354 of T cells.

355 As CD47-SIRP α blockade is currently a promising therapeutic antitumor strategy,
356 impaired peripheral T cell regeneration after CV1 treatment led us to concern that
357 SIRP α blockade might dampen T cell-mediated antitumor response during CRT. We
358 therefore challenged the mice experienced SL-TBI plus CV1 treatment with an
359 immunoresponsive murine colon tumor model MC38 (**Figure 7A**). In stark contrast to
360 the fact that CV-1 treatment inhibits established tumor growth in non-SL-TBI mice
361 (**Figure 7J**), a significant faster tumor growth rate was observed in mice experienced
362 SL-TBI and CV1-treatment (**Figure 7K**). These data call attention to the use of CD47-
363 SIRP α blockade reagent for tumor therapy, especially together with CRT.

364

365

366 **Discussion**

367 Homing of bone marrow-derived progenitors to the thymus is the prerequisite of
368 continuous T cell development. In our previous study, Ly6C⁺P-selectin⁺ portal
369 endothelial cells, TPECs(Shi et al., 2016), were found to be the entry gate of HPCs to
370 the thymus. In current study, we have further extended the knowledge about how
371 TPECs interact with progenitors and regulate their thymic entry.

372 SIRP α has been well recognized as a “don’t eat me” receptor on myeloid cells.
373 Interestingly, our current study reveals a previously totally unrecognized function of
374 SIRP α on ECs for TEM regulation. SIRP α -CD47 interaction has been reported to
375 regulate TEM of neutrophils and monocytes(de Vries et al., 2002; Liu et al., 2002;
376 Stefanidakis et al., 2008). In these studies, CD47, but not SIRP α , is considered as the
377 receptor mediating signal transduction, while SIRP α expressed on neutrophils or
378 monocytes is the ligand. SIRP α engagement of CD47 on epithelial or endothelial cells
379 activates Gi-protein dependent pathway to facilitate transmigration or Rho family
380 GTPase dependent pathway to reorganize EC cytoskeleton. However, in our current
381 work, we clearly showed that SIRP α downstream signal in ECs is required for VE-
382 cadherin endocytosis and TEM. First, in bone marrow chimeric mice that were deficient
383 in hematopoietic SIRP α , thymic ETP is normally maintained (**Figure 2—figure**
384 **supplement 2E,F**), while non-hematopoietic deficiency of SIRP α resulted in impaired
385 thymic ETPs and thymic progenitor homing (**Figure 2G,H and Figure 2I,J**). These
386 results exclude the possibility in the conventional view that SIRP α is derived from the
387 migrating cells while CD47 is from endothelial compartment. Second, in the absence
388 of functional intracellular region of SIRP α , while keeping extracellular region intact,
389 *Sirpa*-ΔICD or *Sirpa*-Y4F EC monolayer showed deficiency of TEM comparable to
390 that of *Sirpa*^{-/-} ECs (**Figure 5A,B**), underlying the importance of EC-SIRP α
391 downstream signal in controlling TEM. This was further confirmed by the fact that
392 replenishment of WT *Sirpa* but not mutant *Sirpa*-Y4F can rescue TEM reduction in
393 *Sirpa*^{-/-} ECs (**Figure 5B**). Third, *Sirpa*-ΔICD ECs also had impaired endocytosis of VE-
394 cadherin similar to that of *Sirpa*^{-/-} ECs (**Figure 6D**), further supporting the role of EC-

395 SIRP α downstream signaling in TEM.

396 The role of CD47 in this scenario might be complicated. CD47 is ubiquitously
397 expressed in almost all cells, including immune cells and endothelial cells both of which
398 are involved in this trafficking process. Our data demonstrated that ETP expressed the
399 highest level of CD47 than other subsets of hematopoietic cells during T cell
400 development (**Figure 4A**). The expression level of CD47 on ETPs is also significantly
401 higher than that on TPECs (**Figure 4—figure supplement 1E,F**). These data suggest
402 that migrating cell-derived CD47 might play a major and active role activating SIRP α
403 on ECs for TEM. In fact, CD47 deficient or blocked lymphocytes transmigrate across
404 ECs less efficiently compared to WT control cells when endothelial CD47 is absent
405 (**Figure 4E,F**). Whether physiologically low level of endothelial CD47 constantly work
406 for TEM remains intriguing. Although lymphocyte transmigrate through WT
407 endothelial monolayer more efficiently than CD47 deficient endothelial monolayer
408 (**Figure 4—figure supplement 1H**), given the artificially hyperexpression of CD47 on
409 immortalized WT MS1 cells, this does not necessarily reflect the physiological role of
410 endothelial CD47 on thymic homing. More physiological experimental model is
411 required for further elucidation.

412 Our study reveals a novel mechanism of adherens junction VE-cadherin endocytosis.
413 Both SHP2 and Src kinase have been reported to regulate VE-cadherin endocytosis, via
414 modification of VE-cadherin in different manners (Allingham et al., 2007; Wessel et al.,
415 2014). However, how they are activated remains unclear. Here, our data suggest that
416 CD47-SIRP α might be one of the upstream signals. In our study, deletion of SIRP α or
417 its cytoplasmic domain results in significant deficiency of TEM and VE-cadherin
418 endocytosis (**Figure 5A and Figure 6A-D**). Regeneration of constitutively activated
419 SHP2 largely rescues TEM in *Sirpa*^{-/-} ECs (**Figure 5C**), while regeneration of ITIM
420 motif mutant SIRP α fails to do so (**Figure 5B**). Together with the fact that ITIM motif
421 activates cytosolic SHP2 phosphatase (Motegi et al., 2003; Tsuda et al., 1998), these
422 data suggest SIRP α signal induced VE-cadherin endocytosis is at least in part through
423 ITIM-SHP2 pathway. In addition, we have also found CD47 engagement induces Src

424 activation in ECs (**Figure 5G,H**). Inhibition of Src kinase via PP2 results in
425 significantly impaired TEM and VE-cadherin endocytosis in WT ECs, but not in *Sirpa*^{-/-}
426 ECs (**Figure 5J and Figure 6E**). Therefore, Src kinase is also involved in SIRP α
427 signal induced VE-cadherin endocytosis. How SIRP α coordinates both SHP2 and Src
428 pathways remains to be investigated in future.

429 The novel role of SIRP α on TEM regulation might not be limited to TPECs. It is
430 interesting to find that elevated expression level of SIRP α is also found on high
431 endothelial cells (HECs) (data not shown). HECs are specialized blood vascular cells
432 in lymph nodes (LNs). HECs play an important role for LN homing of several immune
433 cell subsets, including naïve T and B cells, plasmacytoid DCs (pDCs) and the
434 precursors of conventional DCs. Examination of peripheral lymph nodes of *Sirpa*^{-/-}
435 mice at resting state revealed no significant change in the percentage/number of these
436 subsets of immune cells (data not shown). Whether SIRP α , expressed on HECs, might
437 regulate immune cell trafficking during certain immune responses remains an intriguing
438 question for future study.

439 CRT has been commonly used either alone or in combination with immunotherapy
440 for cancer patients(Manukian et al., 2019; Teng et al., 2015). Thymic injury is often
441 observed during CRT(Penit and Ezine, 1989; Zlotoff et al., 2011). Thymic dependent
442 T-lineage regeneration might be important for successful tumor therapy(Joao et al.,
443 2006; Parkman et al., 2006; Politikos and Boussiotis, 2014; Savani et al., 2006). CD47-
444 SIRP α signaling blockade is a promising strategy for tumor immunotherapy and is also
445 combined with CRT(Feng et al., 2019). In our study, we specifically tested the impact
446 of CD47-SIRP α blockade post thymic injury on thymic and peripheral T cell
447 regeneration. Indeed, post SL-TBI induced thymic injury, significantly impaired thymic
448 ETP population and T cell regeneration, both in thymus and at periphery, were found
449 upon CD47-SIRP α blockade. This is also associated with faster growth of MC38
450 tumors. Whether thymic HPC homing and T cell regeneration is the sole mechanism of
451 CD47-SIRP α blockade for increased tumor growth is still unclear. Nevertheless, our
452 current data provide compelling evidence that post-SL-TBI CD47-SIRP α blockade

453 results in impaired thymic HPC homing and T cell regeneration, and raise a concern
454 about the side effect of CD47-SIRP α blockade on antitumor immunity, especially in
455 combination with CRT.

456 In summary, we have discovered a novel function of thymic endothelial SIRP α in
457 controlling thymic progenitor homing, revealed its underlying molecular mechanism in
458 regulating adherens junctional VE-cadherin endocytosis. In addition, our data suggest
459 the importance of SIRP α -mediated thymic and peripheral T cell regeneration in the
460 context of tumor therapy.

461

462 **Materials and Methods**

463 **Mice**

464 WT C57BL/6 mice were purchased from Vital River, a Charles River company in China;
465 Tie2-Cre mice were purchased from Nanjing Biomedical Research Institute (Nanjing,
466 China). *Sirpa*^{fl/fl} mice were kindly provided by Dr. Hisashi Umemori (Children's
467 Hospital, Harvard Medical School, Boston, MA); *Sirpa*^{-/-} mice were kindly provided
468 by Dr. Hongliang Li (Wuhan University, China); *Cd47*^{-/-} mice were gift from Dr. Yong-
469 guang Yang (The First Bethune Hospital of Jilin University, China). All mice are on
470 C57BL/6 background and were maintained under specific pathogen-free (SPF)
471 condition. Mice for experiments are four to eight weeks old and sex-matched unless
472 otherwise specified. Animal experiments were performed according to approved
473 protocols of the institutional committee of the Institute of Biophysics, Chinese
474 Academy of Sciences.

475

476 **Cell lines**

477 Mouse pancreatic islet endothelial cell line MS1 were passaged in DMEM (Hyclone)
478 supplemented with 10% FBS (BI) and 1% penicillin-streptomycin (Gibco).

479 (1) *Sirpa*^{-/-} and *Cd47*^{-/-} MS1 were constructed by transfecting pLentiCRISPR v2
480 (addgene, Feng Zhang, #52961) cloned with oligos for desired single guide RNA.
481 Two pairs of oligos for Sirpa targeting were designed for in case one of them fails
482 to work.

483 Sirpa-1-F: caccGCAGCGGCCCTAGGCGGCCA,
484 Sirpa-1-R: aaacTGGCCGCCCTAGGGCCGCTGC;
485 Sirpa-2-F: caccGCCCGGCCCTGGCCGCCCTA
486 Sirpa-2-R: aaacTAGGCGGCCAGGGGCCGGC;

487 (2) MS1 cell line with truncated *Sirpa* lacking intracellular domain (*Sirpa*-ΔICD) was
488 constructed by transfecting pLentiCRISPR v2 cloned with oligos targeting exon 6
489 of the first cytoplasmic region from N-terminus. The resulting clones were
490 sequenced for +/- 1 frameshift, which created frame shift and advanced stop codon

491 within exon 7. Sirp α ITIM motifs are within exon 8.

492 Sirp α - Δ ICD-E6-1-F: caccGAGGGTCAACATCTTCCACA,

493 Sirp α - Δ ICD-E6-1-R: aaacTGTGGAAGATGTTGACCCCTC;

494 (3) Sirp α -4F and Sirp α -WT overexpressing lines were constructed based on *Sirp α* ^{-/-}
495 MS1. Full-length Sirp α coding sequence was cloned from WT MS1 cells, and point
496 mutated at all four tyrosine (Y) position from TAC or TAT to TTC or TTT
497 respectively, thus become non-functional phenylalanine (F). Cloning primers for
498 Sirp α CDS:

499 XbaI_Sirp α -F: ATATTCTAGACC ACCATGGAGCCCGCCGGCCCG,

500 Sirp α _BamHI-R: TATGGATCCTCACTTCCTCTGGACCTGGA.

501 Wild type or mutated (4F) form of Sirp α were ligated to pTK643-GFP with
502 multiple cloning site (MCS) and packaged for lentivirus. MS1 cells were infected
503 for 24 hours with polybrene before seeded for monoclonal selection. FACS
504 analysis of GFP and SIRP α surface staining was used to identify overexpressed
505 clones.

506 (4) Shp2-E76K overexpressing line was constructed based on *Sirp α* ^{-/-} MS1. Full-length
507 Shp2 coding sequence was cloned from mouse genome and point mutated at
508 Glutamic Acid 76 (E76) to constitutively active Lysine (K). Shp2-E76K was then
509 ligated to pTK643-GFP and *Sirp α* ^{-/-} MS1 was infected as above described. Cloning
510 primer for Shp2 CDS:

511 XbaI-Shp2-F: ATTtctagaGCCACCatgACATCGCGGAGATGG,

512 XbaI-Shp2-R: cgtctagaaTCATCTGAAACTCCTC TGCT

513

514 Isolation of thymic ECs

515 Thymus was collected, digested and Percoll enriched as previously described (Shi et al.,
516 2016). Briefly, thymus was digested in RPMI 1640 medium with 2% fetal bovine serum,
517 0.2 mg/ml collagenase I, 1U/ml dispase and 62.5 μ g/ml DNase for four rounds of 20-
518 minute digestion on a 37°C, 120rpm shaker. Dissociated cells after each round and the
519 final digest were washed and applied for discontinuous Percoll gradient enrichment.

520 Cells were resuspended with 1.115 g/ml Percoll at the bottom, and 1.065 g/ml Percoll
521 and PBS were laid on the middle and top layer, respectively. After being centrifuged at
522 2700rpm (872g) at 4°C for 30 minutes, EC-containing cells from the upper interface
523 were collected and subjected to subsequent analysis.

524

525 **Cell preparation**

526 Bone marrow cells were isolated from mouse femurs and tibias. In brief, soft tissues
527 were cleared off and the ends of the bones were cut, bone marrow was then flushed out
528 using a 23-gauge needle containing ice-cold PBS. Whole-tissue suspensions of thymus,
529 lymph node and spleen were generated by gently forcing the tissue through a 70 μ m cell
530 strainer. Red blood cells were lysed with ACK in samples of bone marrow and spleen.

531

532 **Flow cytometry and cell sorting**

533 Flow cytometry data were acquired with a LSRII Fortessa cell analyzer (BD Biosciences)
534 and analyzed using FlowJo software (BD Biosciences). Cell sorting was performed
535 on a FACSAria III cell sorter (BD Biosciences). The following fluorescent dye-
536 conjugated antibodies against cellular antigens were used for: 1) analysis of the thymic
537 portal endothelia cells (TPECs): CD45 (30-F11), CD31 (MEC13.3), P-selectin
538 (RB40.34) and Ly-6C (HK1.4); SIRP α (P84) 2) analysis of the lineage negative
539 progenitor cells: CD45.1 (A20), CD45.2 (104), Lineage cocktail: CD11b (M1/70),
540 CD11c (N418), NK1.1 (PK136), Gr-1 (RB6-8C5), B220 (RA3-6B2) and TER-119
541 (Ter-119); 3) analysis of the early t cell progenitors (ETPs): Lineage cocktail (see
542 above), CD4 (GK1.5), CD8 (53-6.7), CD25 (PC61), CD44 (IM7) and c-Kit (2B8); 4)
543 analysis of Lin $^-$ Sca-1 $^+$ c-Kit $^+$ (LSK) and Common lymphoid progenitors (CLPs):
544 Lineage cocktail (see above), c-Kit (2B8), Sca-1 (D7), IL7R α (A7R34) and Flt3
545 (A2F10); 5) analysis of peripheral lymphoid subsets: CD4 (GK1.5), CD8 (53-6.7),
546 B220 (RA3-6B2), CD62L (MEL-14), CD44 (IM7). 6) Other antibodies used: CD47
547 (miap301), VE-cadherin (BV13), VCAM-1 (429). 7) Corresponding isotypes: Rat IgG1
548 κ iso (RTK2071), Rat IgG2a κ iso (eBR2a). Dead cells were excluded through DAPI

549 (Sigma-Aldrich) or LIVE/DEAD (ThermoFisher) positive staining.

550

551 **Quantitative real-time PCR**

552 Thymic endothelial cells were gated as subset I (P-selectin⁻Ly-6C⁺), subset II (P-
553 selectin⁺Ly-6C⁺) and subset III, which is TPEC (P-selectin⁺Ly-6C⁻). These three subsets
554 were FACS sorted and RNA was extracted using RNeasy Micro Kit (Qiagen). The
555 quality and quantity of total RNA was assessed using a Nanodrop 2000c spectrometer
556 (Thermo Scientific). cDNA was synthesized using RevertAid First Stand cDNA
557 Synthesis Kit (Thermo) and Oligo (dT)₁₈ primer. Gene expression was quantified using
558 the following primers. Quantitative real-time PCR was performed using SYMBR
559 Premix Ex Taq (Takara) and run on Applied Biosystems 7500 Real-Time PCR System.
560 Relative mRNA expression was calculated with a standard curve and C_T value of target
561 gene and *β-actin* or *Gapdh* control.

562 Sirp α -F: TGCTACCCACAAC TGGAATG,

563 Sirp α -R: CCCTTGGCTTCTTCTGT TT,

564 mActb-F: ACACCCGCCACCAGTCGC,

565 mActb-R: ATGGGGTACTTCAGGGTCAGG;

566 mGapdh-F: AACCACGAGAAATATGACAAC TCACT,

567 mGapdh-R: GGCATGGACTGTGGTCATGA.

568

569 **SIRP α -hIg (CV1) production and SIRP α signal blockade**

570 SIRP α -hIg was produced as previously described(Liu et al., 2015). Briefly, pEE12.4-
571 CV1, kindly provided by Dr. Yang-Xin Fu (University of Texas Southwestern Medical
572 Center, Dallas, USA), was transiently expressed in FreeStyle 293 expression system
573 (Thermo Fisher). SIRP α -hIg was then purified with Sepharose Protein A/G beads. In
574 progenitor short-term homing assay, a single dose of 200 μ g (2 μ g/ml) CV1 or control
575 hIgG (Sigma) was administrated intraperitoneally (i.p.) 2 days before congenic bone
576 marrow adoptive transfer. In thymic regeneration assay, 200 μ g CV1 or control hIgG
577 was administrated i.p. every five days since day 9 after SL-TBI.

578

579 **Bone marrow chimeras and short-term homing assay**

580 6 weeks old recipient mice received 10 Gy γ radiation once. 5×10^6 donor bone marrow
581 cells were injected intravenously into the recipients on the day or the next day of
582 irradiation. 8 weeks later, mice are ready for subsequent studies. Short-term homing
583 assay: donor bone marrows were taken from femurs and tibias from WT mice, red blood
584 cells were lysed and labeled by 2 μ M CFSE, and 5×10^7 bone marrow cells were
585 transferred intravenously to the recipients. The recipients were sacrificed 2 days later
586 and detected for donor derived progenitors in the thymus and spleen.

587

588 **Thymic regeneration and blood sampling**

589 Wild type mice were exposed to 5.5 Gy γ radiation once (sub-lethal total body
590 irradiation, SL-TBI) with no exogenous hematopoietic cell infusion. Mice were then
591 maintained in SPF facility for up to 35 days. Recovery of thymic regenerated T-
592 lymphocytes were monitored by blood sampling from orbital sinus every five days
593 since day 9 after SL-TBI. The volume of collected blood was recorded and lymphocyte
594 cell number was counted by FACS.

595

596 **Lymphocyte adhesion assay**

597 The adhesion assay was performed mainly as previously described(Au - Lowe and Au
598 - Raj, 2015). 1×10^5 /mL MS1 cells were plated on coverslip (NEST, $\phi=15$ mm), growing
599 for 24 hours and then stimulated with 10ng/mL TNF α for additional 24 hours. 1×10^6
600 total lymphocytes from axillary and inguinal lymph nodes were added to the top of
601 coverslip and incubated for 3 hours. Dunk in and out the coverslip vertically of the PBS
602 five times before trypsinized and collect total cells for lymphocyte counting by FACS.

603

604 **Transmigration assay**

605 2.5×10^4 MS1 cells were initially plated on Transwell filter (Corning, $\phi=6.5$ mm, with
606 5.0 μ m pore), allowed growing for 24 hours and then stimulated with 10ng/mL TNF α

607 for additional 24 hours before transmigration assay. 1×10^6 total lymphocytes were
608 added per Transwell. Chemoattraction was achieved by adding 10ng/mL CCL19
609 (PeproTech) in the bottom chamber. Four hours later, migrated lymphocytes were
610 collected for cell counting and subset analysis by FACS.

611

612 **VE-cadherin endocytosis assay**

613 The endocytosis assay was performed mainly as previously described(Wessel et al.,
614 2014). In this assay, 1×10^5 /mL MS1 cells were plated on coverslip, allowed growing
615 for 24 hours and then preactivated with 10ng/mL TNF α for additional 24 hours. Cells
616 grown to confluence were treated for 1 hour with 150 μ M chloroquine prior to the
617 endocytosis assay. Cell were then incubated for 30 minutes at 37 °C with anti-VE-
618 cadherin-biotin (BV13) in culture medium. Antibody was then washed and 1×10^6 total
619 lymphocytes were added to the top of coverslip. After 1 hour incubation at 37 °C,
620 lymphocytes were removed by quickly rinsing wells with prewarmed culture medium.
621 And surface-bound antibodies were removed by washed for 3 times, 20 seconds each
622 time, with acidic PBS (pH 2.7 PBS with 25mM glycine and 2% FBS). Cells were then
623 fixed with 1% paraformaldehyde in PBS for 5 minutes followed by permeabilization
624 with 0.5% Triton-x-100 for 10 minutes at room temperature. Internalized primary
625 antibodies were then detected by fluorescence conjugated Streptavidin (Biolegend).
626 DNA was stained with DAPI. Five or more fields were observed in each sample on a
627 Zeiss LSM 700 confocal system (63 \times /1.4 Oil) with locked parameters. Endocytosed
628 VE-cadherin was quantified via home-made script running under ImageJ batch mode
629 with fixed signal threshold for each experiment. Threshold value was adjusted
630 according to signal background from isotype control sample.

631

632 **Western blotting**

633 MS1 cells were lysed with lysis buffer containing 20mM Tris·HCl, 2mM EDTA, 0.5%
634 NP-40, 1mM NaF and 1mM Na₃VO₄ and protease inhibitor cocktail. The samples were
635 heated to 95°C for 5 minutes with loading buffer containing 0.5% 2-Mercaptoethanol.

636 Equal amount of samples was loaded and resolved on a 10% SDS-PAGE gel. Proteins
637 were then transferred to PVDF membrane (Millipore, 0.45μm). The membranes were
638 first incubated with anti-phospho-Src (Tyr416) antibody (CST) or anti-phospho-Src
639 (Tyr529) antibody (Abcam) followed by Goat anti-Rabbit HRP (CWBIO, China). The
640 blot was developed by chemiluminescent HRP substrate (ECL, Millipore). The blot was
641 then stripped and reblotted with anti-β-actin antibody (Zsbio, China) subsequently. The
642 images were captured on a Tanon 5200 chemi-image system (Tanon, China). Gel
643 images were quantified with Lane 1D analysis software (SageCreation, China).

644

645 **VE-cadherin real-time imaging**

646 Flow chamber was designed and made by Center for Biological Imaging (CBI),
647 Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS). Briefly, a coverslip
648 (NEST, φ=25mm) with endothelial monolayer can be inserted into the thermostatic
649 (37°C) flow chamber and supplied with pre-warmed flow medium (DMEM). Flow
650 medium was controlled by a pump (adjusted by frequency and voltage). The flow
651 chamber was then fixed to an adaptor which allowed the bottom side of the coverslip
652 fit into observation range of the 60× immersion oil lens of an Olympus FV1200 spectral
653 inverted laser scanning confocal microscopy. MS1 endothelial cells were plated on the
654 coverslip sited in 6-well plate at a density of 1.2×10^5 /mL and activated by 10ng/mL of
655 TNFα 24 hours later. After additional 24 hours, MS1 endothelial cells were sequentially
656 labeled with rat-anti-mouse VE-cadherin, anti-Rat-Alexa Fluor 488 and anti-CD31-
657 Alexa Fluor 647. CD4⁺ T cells were prepared from mouse inguinal and axillary lymph
658 nodes, and divided into two parts: one part blocked by CD47 antagonist CV1 at
659 10ug/mL and labeled by anti-CD4-V450, another part controlled by hIg and labeled by
660 anti-CD4-PE. Two parts of CD4⁺ T cells were equally mixed and resuspend to
661 1×10^6 /mL in flow medium. Focus was limited to the layer that maximized junctional
662 CD31 signal, and Z-axis drift compensation (ZDC) was activated to lock focus.
663 Continuous multi-channel imaging on AF488, PE, AF647 and V450 was conducted and
664 concatenated. Colocalization of VE-cadherin with CD31 at sites of differentially treated

665 T cells was measured and calculated by Imaris 9 software. In reciprocally labeling tests
666 (**Figure 6—figure supplement 1d,e**), CV1-treated T cells were labeled with anti-CD4-
667 PE, and hIg-treated T cells were labeled with anti-CD4-V450.

668

669 **RNA-Seq and microarray data analysis**

670 The RNA-Seq data of thymic ECs was previously published and available as
671 GSE_83114(Shi et al., 2016). Differentially expressed genes of TPECs (fold change>2
672 and p value of pairwise t-test <0.01 in either the contrast of TPECs versus subset II or
673 subset I EC subset) were filtered for their function by gene ontology term cell migration
674 (GO_0016477). The hints were candidates for further analysis. Microarray data from
675 previously published work(Lee et al., 2014) were analyzed by Affymetrix Expression
676 Console (1.4.1) and Transcriptome Analysis Console (3.0) software following
677 manufacturer's instruction. Z-score normalized heatmap was generated by gplots
678 package in R (3.6).

679

680 **Statistical analysis**

681 Statistical analyses were performed using GraphPad 6.0 (Prism). Two-tailed unpaired
682 Student's t-test was used for significance test, unless otherwise specified. All
683 experiments with significant differences were performed independently three times.
684 Experiments with no significant differences were performed at least two times. The
685 results were expressed as the mean \pm s.e.m. (n.s., not significant; *P < 0.05; **P < 0.01;
686 ***P < 0.001; and****P < 0.0001).

687 **Acknowledgements**

688 We would like to thank Dr. Hisashi Umemori (Children's Hospital, Harvard Medical
689 School, USA) for providing *Sirpa*^{fl/fl} mice, Dr. Hongliang Li (Wuhan University,
690 China) for *Sirpa*^{-/-} mice, Dr. Yong-guang Yang (The First Bethune Hospital of Jilin
691 University, China) for *Cd47*^{-/-} mice and Dr. Yang-Xin Fu (University of Texas
692 Southwestern Medical Center, USA) for pEE12.4-CV1 expression plasmid. We would
693 like to thank Xiaoyan Wang, and Yihui Xu in the Key Laboratory of Infection and
694 Immunity, Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS) for
695 providing instrumental support on flow cytometry and confocal imaging; Yan Teng,
696 Yun Fen in the Center for Biological Imaging, IBP, CAS for their innovative
697 instrument for real-time confocal imaging in flow chamber. This work was supported
698 by grants from National Natural Science Foundation of China (31770959 and
699 82025015 to M.Z.).

700

701 **Author contributions**

702 B.R. and M.Z. designed the experiments and analyzed the data; B.R. conducted most
703 experiments with some help from H.X., Y.L., Z.W., and Y.S. B.R. and M.Z. wrote the
704 manuscript; M.Z. supervised the study.

705

706 **Competing interests**

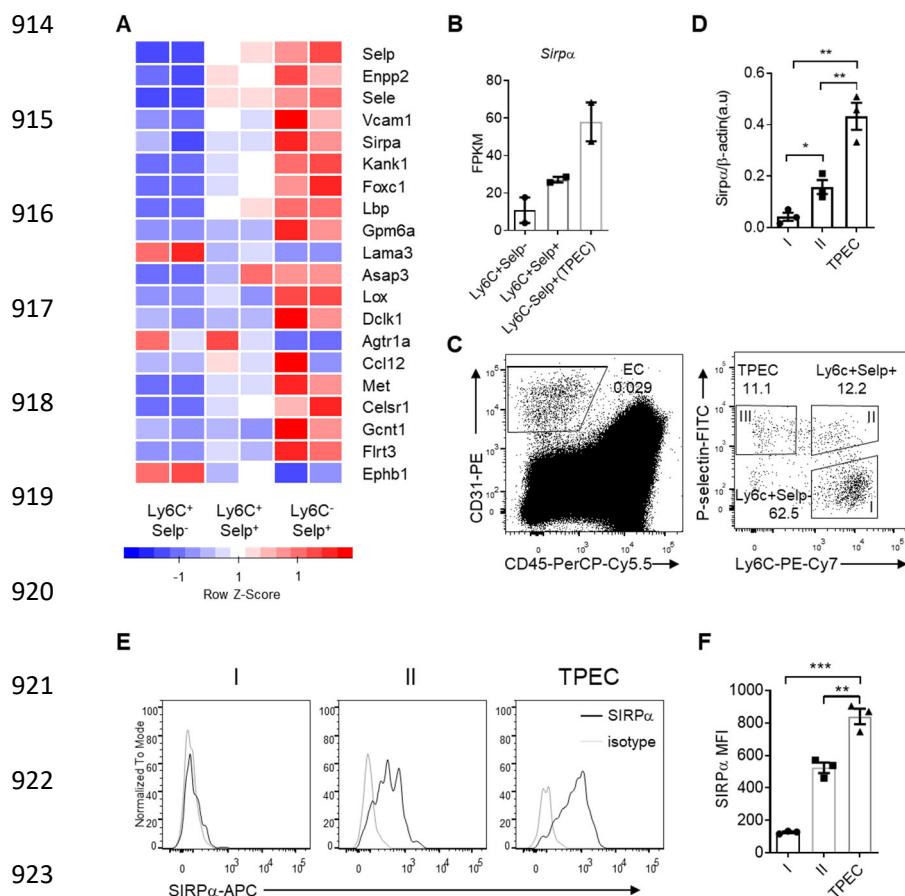
707 The authors declare no competing interests.

708

709 **References**

- 710 Allingham, M.J., van Buul, J.D., and Burridge, K. (2007). ICAM-1-mediated, Src- and
711 Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for
712 leukocyte transendothelial migration. *Journal of immunology* (Baltimore, Md. : 1950)
713 179, 4053-4064.
- 714 Au - Lowe, D.J., and Au - Raj, K. (2015). Quantitation of Endothelial Cell
715 Adhesiveness In Vitro. *JoVE*, e52924.
- 716 Barclay, A.N., and Van den Berg, T.K. (2014). The interaction between signal
717 regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic
718 target. *Annual review of immunology* 32, 25-50.
- 719 Benn, A., Bredow, C., Casanova, I., Vukicevic, S., and Knaus, P. (2016). VE-cadherin
720 facilitates BMP-induced endothelial cell permeability and signaling. *Journal of cell
721 science* 129, 206-218.
- 722 Bentires-Alj, M., Paez, J.G., David, F.S., Keilhack, H., Halmos, B., Naoki, K., Maris,
723 J.M., Richardson, A., Bardelli, A., Sugarbaker, D.J., *et al.* (2004). Activating mutations
724 of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and
725 adult acute myelogenous leukemia. *Cancer Res* 64, 8816-8820.
- 726 Bian, Z., Shi, L., Guo, Y.L., Lv, Z., Tang, C., Niu, S., Tremblay, A., Venkataramani, M.,
727 Culpepper, C., Li, L., *et al.* (2016). Cd47-Sirpalpha interaction and IL-10 constrain
728 inflammation-induced macrophage phagocytosis of healthy self-cells. *Proceedings of
729 the National Academy of Sciences of the United States of America* 113, E5434-5443.
- 730 Blazar, B.R., Lindberg, F.P., Ingulli, E., Panoskaltsis-Mortari, A., Oldenborg, P.A.,
731 Iizuka, K., Yokoyama, W.M., and Taylor, P.A. (2001). CD47 (integrin-associated
732 protein) engagement of dendritic cell and macrophage counterreceptors is required to
733 prevent the clearance of donor lymphohematopoietic cells. *The Journal of experimental
734 medicine* 194, 541-549.
- 735 Chao, M.P., Alizadeh, A.A., Tang, C., Myklebust, J.H., Varghese, B., Gill, S., Jan, M.,
736 Cha, A.C., Chan, C.K., Tan, B.T., *et al.* (2010). Anti-CD47 antibody synergizes with
737 rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. *Cell* 142,
738 699-713.
- 739 Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M.,
740 Lampugnani, M.G., Martin-Padura, I., Stoppacciaro, A., Ruco, L., *et al.* (1999).
741 Vascular endothelial–cadherin is an important determinant of microvascular integrity
742 in vivo. *Proceedings of the National Academy of Sciences* 96,
743 9815-9820.
- 744 de Vries, H.E., Hendriks, J.J., Honing, H., De Lavalette, C.R., van der Pol, S.M.,
745 Hooijberg, E., Dijkstra, C.D., and van den Berg, T.K. (2002). Signal-regulatory protein

- 746 alpha-CD47 interactions are required for the transmigration of monocytes across
747 cerebral endothelium. *Journal of immunology* (Baltimore, Md. : 1950) *168*, 5832-5839.
- 748 Feng, M., Jiang, W., Kim, B.Y.S., Zhang, C.C., Fu, Y.-X., and Weissman, I.L. (2019).
749 Phagocytosis checkpoints as new targets for cancer immunotherapy. *Nature Reviews*
750 *Cancer* *19*, 568-586.
- 751 Fukunaga, A., Nagai, H., Noguchi, T., Okazawa, H., Matozaki, T., Yu, X., Lagenaar,
752 C.F., Honma, N., Ichihashi, M., Kasuga, M., *et al.* (2004). Src homology 2 domain-
753 containing protein tyrosine phosphatase substrate 1 regulates the migration of
754 Langerhans cells from the epidermis to draining lymph nodes. *Journal of immunology*
755 (Baltimore, Md. : 1950) *172*, 4091-4099.
- 756 Hale, J.S., and Fink, P.J. (2009). Back to the thymus: peripheral T cells come home.
757 *Immunol Cell Biol* *87*, 58-64.
- 758 Inagaki, K., Yamao, T., Noguchi, T., Matozaki, T., Fukunaga, K., Takada, T., Hosooka,
759 T., Akira, S., and Kasuga, M. (2000). SHPS-1 regulates integrin-mediated cytoskeletal
760 reorganization and cell motility. *The EMBO journal* *19*, 6721-6731.
- 761 Ishikawa-Sekigami, T., Kaneko, Y., Okazawa, H., Tomizawa, T., Okajo, J., Saito, Y.,
762 Okuzawa, C., Sugawara-Yokoo, M., Nishiyama, U., Ohnishi, H., *et al.* (2006). SHPS-
763 1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis
764 by splenic macrophages. *Blood* *107*, 341-348.
- 765 Iwamura, H., Saito, Y., Sato-Hashimoto, M., Ohnishi, H., Murata, Y., Okazawa, H.,
766 Kanazawa, Y., Kaneko, T., Kusakari, S., Kotani, T., *et al.* (2011). Essential roles of
767 SIRP α in homeostatic regulation of skin dendritic cells. *Immunology letters* *135*, 100-
768 107.
- 769 Jaiswal, S., Jamieson, C.H., Pang, W.W., Park, C.Y., Chao, M.P., Majeti, R., Traver, D.,
770 van Rooijen, N., and Weissman, I.L. (2009). CD47 is upregulated on circulating
771 hematopoietic stem cells and leukemia cells to avoid phagocytosis. *Cell* *138*, 271-285.
- 772 Joao, C., Porrata, L.F., Inwards, D.J., Ansell, S.M., Micallef, I.N., Johnston, P.B.,
773 Gastineau, D.A., and Markovic, S.N. (2006). Early lymphocyte recovery after
774 autologous stem cell transplantation predicts superior survival in mantle-cell lymphoma.
775 *Bone Marrow Transplant* *37*, 865-871.
- 776 Kroon, J., Daniel, A.E., Hoogenboezem, M., and van Buul, J.D. (2014). Real-time
777 imaging of endothelial cell-cell junctions during neutrophil transmigration under
778 physiological flow. *J Vis Exp*, e51766.
- 779 Krueger, A., Willenzon, S., Łyszkiewicz, M., Kremmer, E., and Förster, R. (2010). CC
780 chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely
781 impaired in seeding the adult thymus. *Blood* *115*, 1906-1912.

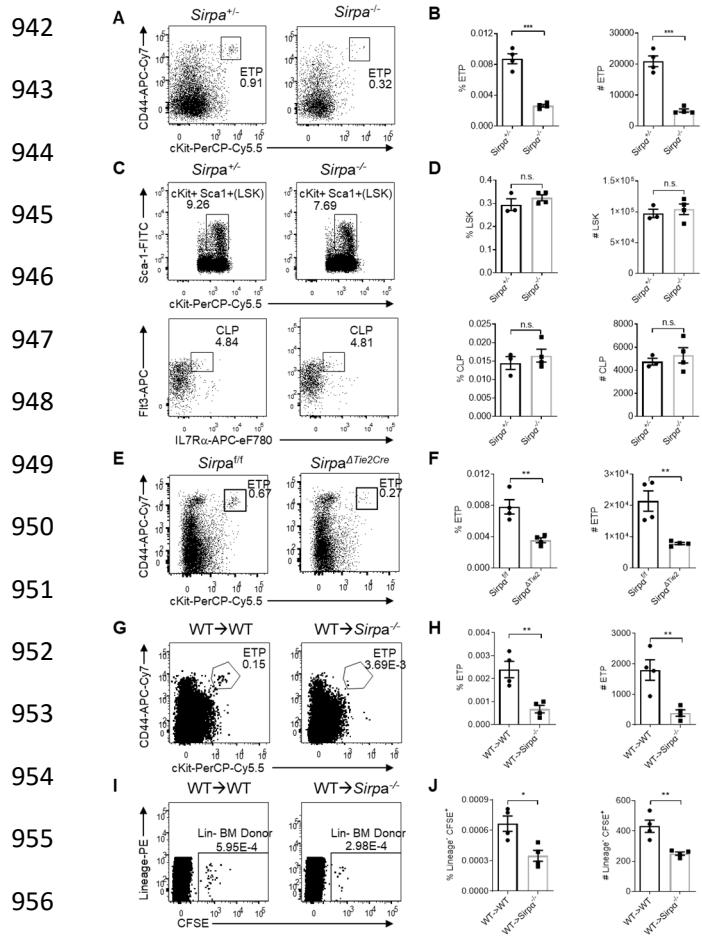

- 782 Lee, M., Kiefel, H., LaJevic, M.D., Macauley, M.S., Kawashima, H., O'Hara, E., Pan,
783 J., Paulson, J.C., and Butcher, E.C. (2014). Transcriptional programs of lymphoid tissue
784 capillary and high endothelium reveal control mechanisms for lymphocyte homing.
785 *Nature immunology* *15*, 982-995.
- 786 Lind, E.F., Prockop, S.E., Porritt, H.E., and Petrie, H.T. (2001). Mapping precursor
787 movement through the postnatal thymus reveals specific microenvironments supporting
788 defined stages of early lymphoid development. *The Journal of experimental medicine*
789 *194*, 127-134.
- 790 Liu, G., Place, A.T., Chen, Z., Brovkovich, V.M., Vogel, S.M., Muller, W.A., Skidgel,
791 R.A., Malik, A.B., and Minshall, R.D. (2012). ICAM-1-activated Src and eNOS
792 signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil
793 transmigration. *Blood* *120*, 1942-1952.
- 794 Liu, X., Pu, Y., Cron, K., Deng, L., Kline, J., Frazier, W.A., Xu, H., Peng, H., Fu, Y.-X.,
795 and Xu, M.M. (2015). CD47 blockade triggers T cell-mediated destruction of
796 immunogenic tumors. *Nat Med* *21*, 1209-1215.
- 797 Liu, Y., Bühring, H.-J., Zen, K., Burst, S.L., Schnell, F.J., Williams, I.R., and Parkos,
798 C.A. (2002). Signal Regulatory Protein (SIRP α), a Cellular Ligand for CD47, Regulates
799 Neutrophil Transmigration. *Journal of Biological Chemistry* *277*, 10028-10036.
- 800 Majeti, R., Chao, M.P., Alizadeh, A.A., Pang, W.W., Jaiswal, S., Gibbs, K.D., Jr., van
801 Rooijen, N., and Weissman, I.L. (2009). CD47 is an adverse prognostic factor and
802 therapeutic antibody target on human acute myeloid leukemia stem cells. *Cell* *138*, 286-
803 299.
- 804 Manukian, G., Bar-Ad, V., Lu, B., Argiris, A., and Johnson, J.M. (2019). Combining
805 Radiation and Immune Checkpoint Blockade in the Treatment of Head and Neck
806 Squamous Cell Carcinoma. *Front Oncol* *9*, 122-122.
- 807 Misslitz, A., Pabst, O., Hintzen, G., Ohl, L., Kremmer, E., Petrie, H.T., and Förster, R.
808 (2004). Thymic T cell development and progenitor localization depend on CCR7. *The*
809 *Journal of experimental medicine* *200*, 481-491.
- 810 Mori, K., Itoi, M., Tsukamoto, N., Kubo, H., and Amagai, T. (2007). The perivascular
811 space as a path of hematopoietic progenitor cells and mature T cells between the blood
812 circulation and the thymic parenchyma. *International immunology* *19*, 745-753.
- 813 Motegi, S., Okazawa, H., Ohnishi, H., Sato, R., Kaneko, Y., Kobayashi, H., Tomizawa,
814 K., Ito, T., Honma, N., Bühring, H.J., *et al.* (2003). Role of the CD47-SHPS-1 system
815 in regulation of cell migration. *The EMBO journal* *22*, 2634-2644.
- 816 Olsson, M., Bruhns, P., Frazier, W.A., Ravetch, J.V., and Oldenborg, P.A. (2005).
817 Platelet homeostasis is regulated by platelet expression of CD47 under normal
818 conditions and in passive immune thrombocytopenia. *Blood* *105*, 3577-3582.

- 819 Parkman, R., Cohen, G., Carter, S.L., Weinberg, K.I., Masinsin, B., Guinan, E.,
820 Kurtzberg, J., Wagner, J.E., and Kernan, N.A. (2006). Successful immune
821 reconstitution decreases leukemic relapse and improves survival in recipients of
822 unrelated cord blood transplantation. *Biol Blood Marrow Transplant* *12*, 919-927.
- 823 Parmo-Cabañas, M., García-Bernal, D., García-Verdugo, R., Kremer, L., Márquez, G.,
824 and Teixidó, J. (2007). Intracellular signaling required for CCL25-stimulated T cell
825 adhesion mediated by the integrin alpha4beta1. *Journal of leukocyte biology* *82*, 380-
826 391.
- 827 Penit, C., and Ezine, S. (1989). Cell proliferation and thymocyte subset reconstitution
828 in sublethally irradiated mice: compared kinetics of endogenous and intrathymically
829 transferred progenitors. *Proceedings of the National Academy of Sciences of the United
830 States of America* *86*, 5547-5551.
- 831 Politikos, I., and Boussiotis, V.A. (2014). The role of the thymus in T-cell immune
832 reconstitution after umbilical cord blood transplantation. *Blood* *124*, 3201-3211.
- 833 Rossi, F.M., Corbel, S.Y., Merzaban, J.S., Carlow, D.A., Gossens, K., Duenas, J., So,
834 L., Yi, L., and Ziltener, H.J. (2005). Recruitment of adult thymic progenitors is
835 regulated by P-selectin and its ligand PSGL-1. *Nature immunology* *6*, 626-634.
- 836 Saito, Y., Iwamura, H., Kaneko, T., Ohnishi, H., Murata, Y., Okazawa, H., Kanazawa,
837 Y., Sato-Hashimoto, M., Kobayashi, H., Oldenborg, P.A., *et al.* (2010). Regulation by
838 SIRP α of dendritic cell homeostasis in lymphoid tissues. *Blood* *116*, 3517-3525.
- 839 Savani, B.N., Rezvani, K., Mielke, S., Montero, A., Kurlander, R., Carter, C.S., Leitman,
840 S., Read, E.J., Childs, R., and Barrett, A.J. (2006). Factors associated with early
841 molecular remission after T cell-depleted allogeneic stem cell transplantation for
842 chronic myelogenous leukemia. *Blood* *107*, 1688-1695.
- 843 Scimone, M.L., Aifantis, I., Apostolou, I., von Boehmer, H., and von Andrian, U.H.
844 (2006). A multistep adhesion cascade for lymphoid progenitor cell homing to the
845 thymus. *Proceedings of the National Academy of Sciences of the United States of
846 America* *103*, 7006-7011.
- 847 Seiffert, M., Cant, C., Chen, Z., Rappold, I., Brugger, W., Kanz, L., Brown, E.J., Ullrich,
848 A., and Buhring, H.J. (1999). Human signal-regulatory protein is expressed on normal,
849 but not on subsets of leukemic myeloid cells and mediates cellular adhesion involving
850 its counterreceptor CD47. *Blood* *94*, 3633-3643.
- 851 Shi, Y., Wu, W., Chai, Q., Li, Q., Hou, Y., Xia, H., Ren, B., Xu, H., Guo, X., Jin, C., *et
852 al.* (2016). LT β R controls thymic portal endothelial cells for haematopoietic progenitor
853 cell homing and T-cell regeneration. *Nat Commun* *7*, 12369-12369.
- 854 Stefanidakis, M., Newton, G., Lee, W.Y., Parkos, C.A., and Luscinskas, F.W. (2008).
855 Endothelial CD47 interaction with SIRPgamma is required for human T-cell

- 856 transendothelial migration under shear flow conditions in vitro. *Blood* 112, 1280-1289.
- 857 Takada, T., Matozaki, T., Takeda, H., Fukunaga, K., Noguchi, T., Fujioka, Y., Okazaki,
858 I., Tsuda, M., Yamao, T., Ochi, F., and Kasuga, M. (1998). Roles of the complex
859 formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein
860 kinase activation. *The Journal of biological chemistry* 273, 9234-9242.
- 861 Teng, F., Kong, L., Meng, X., Yang, J., and Yu, J. (2015). Radiotherapy combined with
862 immune checkpoint blockade immunotherapy: Achievements and challenges. *Cancer
863 letters* 365, 23-29.
- 864 Tsai, R.K., and Discher, D.E. (2008). Inhibition of "self" engulfment through
865 deactivation of myosin-II at the phagocytic synapse between human cells. *The Journal
866 of cell biology* 180, 989-1003.
- 867 Tsuda, M., Matozaki, T., Fukunaga, K., Fujioka, Y., Imamoto, A., Noguchi, T., Takada,
868 T., Yamao, T., Takeda, H., Ochi, F., *et al.* (1998). Integrin-mediated tyrosine
869 phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family
870 kinases. *The Journal of biological chemistry* 273, 13223-13229.
- 871 Van, V.Q., Raymond, M., Baba, N., Rubio, M., Wakahara, K., Susin, S.A., and Sarfati,
872 M. (2012). CD47(high) expression on CD4 effectors identifies functional long-lived
873 memory T cell progenitors. *Journal of immunology (Baltimore, Md. : 1950)* 188, 4249-
874 4255.
- 875 Vestweber, D. (2007). Adhesion and signaling molecules controlling the transmigration
876 of leukocytes through endothelium. *Immunological Reviews* 218, 178-196.
- 877 Vestweber, D., Winderlich, M., Cagna, G., and Nottebaum, A.F. (2009). Cell adhesion
878 dynamics at endothelial junctions: VE-cadherin as a major player. *Trends in cell biology*
879 19, 8-15.
- 880 Wessel, F., Winderlich, M., Holm, M., Frye, M., Rivera-Galdos, R., Vockel, M.,
881 Linnepe, R., Ipe, U., Stadtmann, A., Zarbock, A., *et al.* (2014). Leukocyte extravasation
882 and vascular permeability are each controlled in vivo by different tyrosine residues of
883 VE-cadherin. *Nature immunology* 15, 223-230.
- 884 Willingham, S.B., Volkmer, J.P., Gentles, A.J., Sahoo, D., Dalerba, P., Mitra, S.S., Wang,
885 J., Contreras-Trujillo, H., Martin, R., Cohen, J.D., *et al.* (2012). The CD47-signal
886 regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid
887 tumors. *Proceedings of the National Academy of Sciences of the United States of
888 America* 109, 6662-6667.
- 889 Wollenberg, A., Kraft, S., Hanau, D., and Bieber, T. (1996). Immunomorphological and
890 ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic
891 epidermal cell (IDEC) population in lesional skin of atopic eczema. *The Journal of
892 investigative dermatology* 106, 446-453.

- 893 Yamao, T., Noguchi, T., Takeuchi, O., Nishiyama, U., Morita, H., Hagiwara, T., Akahori,
894 H., Kato, T., Inagaki, K., Okazawa, H., *et al.* (2002). Negative regulation of platelet
895 clearance and of the macrophage phagocytic response by the transmembrane
896 glycoprotein SHPS-1. *The Journal of biological chemistry* 277, 39833-39839.
- 897 Zhang, S.L., Wang, X., Manna, S., Zlotoff, D.A., Bryson, J.L., Blazar, B.R., and
898 Bhandoola, A. (2014). Chemokine treatment rescues profound T-lineage progenitor
899 homing defect after bone marrow transplant conditioning in mice. *Blood* 124, 296-304.
- 900 Zhang, S.Q., Yang, W., Kontaridis, M.I., Bivona, T.G., Wen, G., Araki, T., Luo, J.,
901 Thompson, J.A., Schraven, B.L., Philips, M.R., and Neel, B.G. (2004). Shp2 Regulates
902 Src Family Kinase Activity and Ras/Erk Activation by Controlling Csk Recruitment.
903 *Molecular Cell* 13, 341-355.
- 904 Zlotoff, D.A., and Bhandoola, A. (2011). Hematopoietic progenitor migration to the
905 adult thymus. *Annals of the New York Academy of Sciences* 1217, 122-138.
- 906 Zlotoff, D.A., Sambandam, A., Logan, T.D., Bell, J.J., Schwarz, B.A., and Bhandoola,
907 A. (2010). CCR7 and CCR9 together recruit hematopoietic progenitors to the adult
908 thymus. *Blood* 115, 1897-1905.
- 909 Zlotoff, D.A., Zhang, S.L., De Obaldia, M.E., Hess, P.R., Todd, S.P., Logan, T.D., and
910 Bhandoola, A. (2011). Delivery of progenitors to the thymus limits T-lineage
911 reconstitution after bone marrow transplantation. *Blood* 118, 1962-1970.
- 912

913 **Figures and Figure Legends**

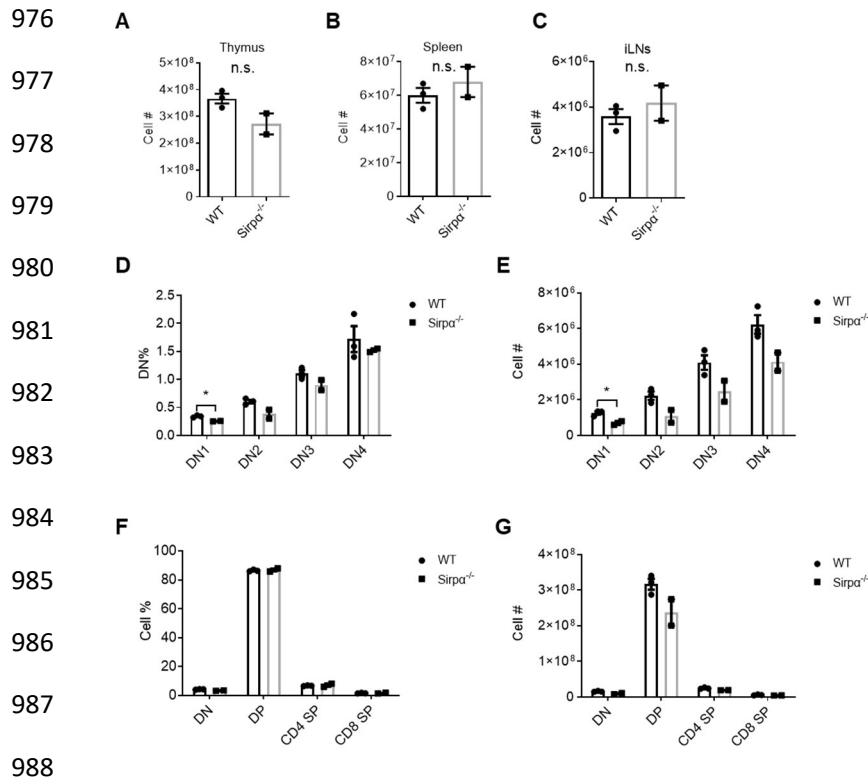


921 **Figure 1. SIRP α is preferentially expressed on TPECs.**

922 **(A)** Expression profile of top 20 signature genes of Ly6C-Selp⁺ ECs (TPEC), which
923 have absolute FC>2 and p<0.01 in TPECs versus either Ly6C⁺Selp⁻ or Ly6C⁺Selp⁺
924 thymic EC subsets, and are in GO term GO_0016477 (cell migration). Relative
925 expression of each gene among EC subsets are presented as mean-centered z-score
926 distribution. **(B)** Expression level of *Sirp α* among the three thymic EC subsets. FPKM:
927 fragments per kilobase per million mapped reads. **(C)** Flow cytometric analysis of
928 thymic ECs (CD31⁺CD45⁻) and subset I (Ly6C⁺Selp⁻), subset II (Ly6C⁺Selp⁺) and
929 subset III (TPEC, Ly6C⁺Selp⁺). **(D)** Real-time PCR analysis of *Sirp α* mRNA expression
930 in thymic EC subsets. **(E-F)** Flow cytometry analysis of SIRP α expression on the three
931 thymic EC subsets **(E)** and quantification of measuring mean fluorescence intensity of
932 SIRP α **(F)**, data are representative of three independent experiments with three mice in
933 each experiment. Error bars represent s.e.m. Asterisks mark statistically significant
934 difference, *P<0.05, **P<0.01 and ***P<0.001 determined by two-tailed unpaired
935 Student's *t*-test. Source data and detailed method for generating heatmap in A. are
936 available in SupplementaryFile1.

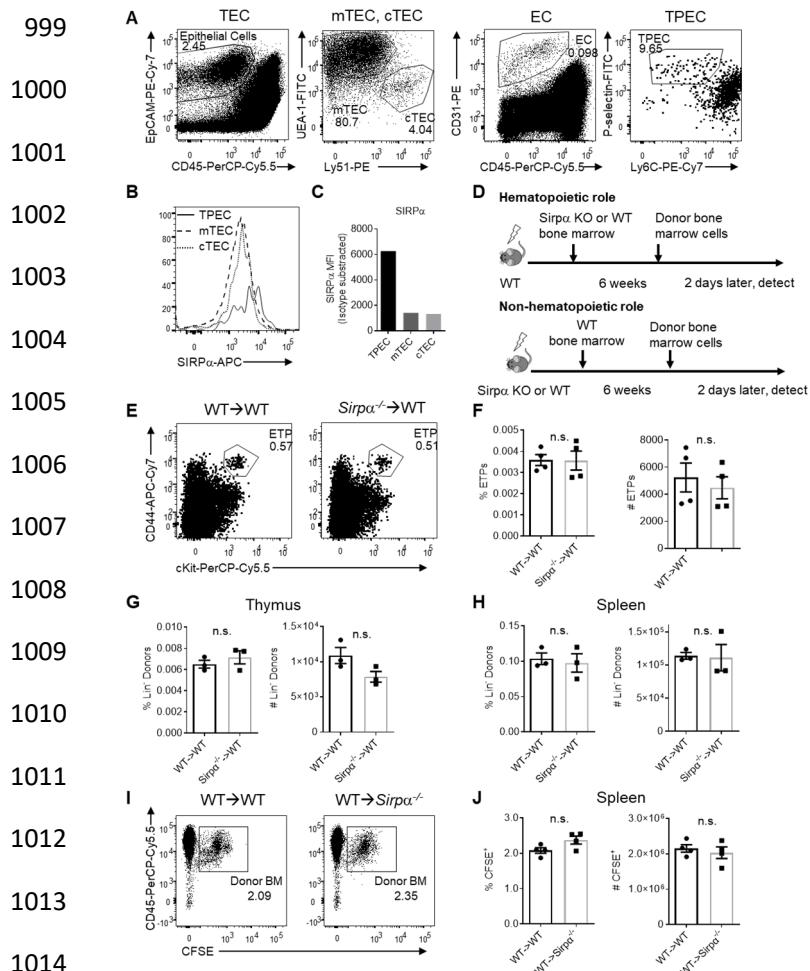
940

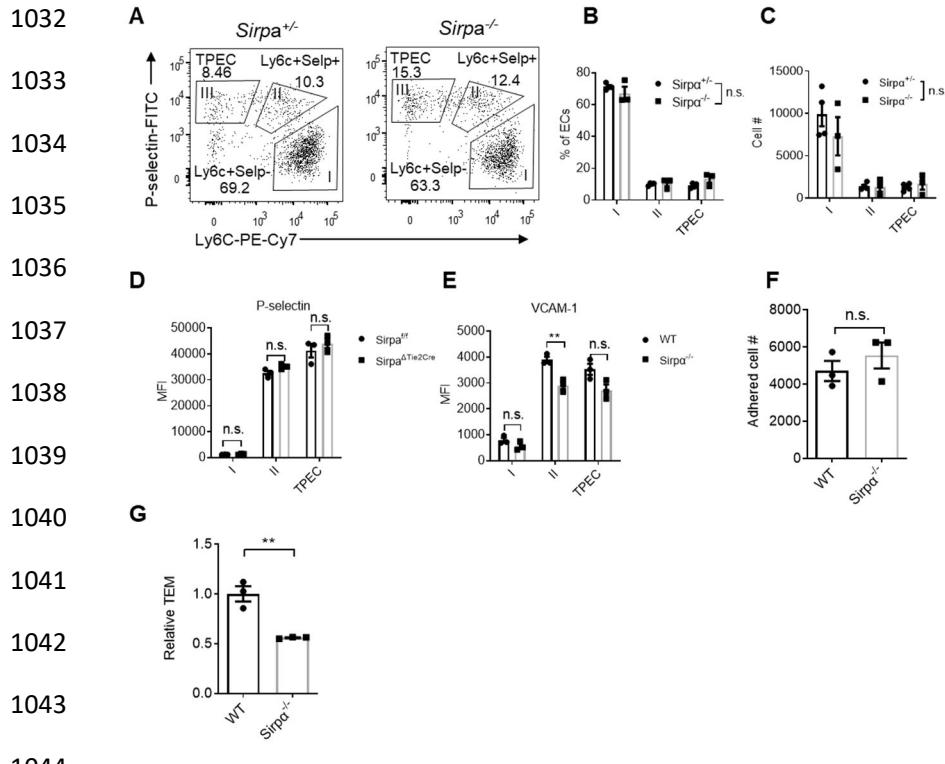
941



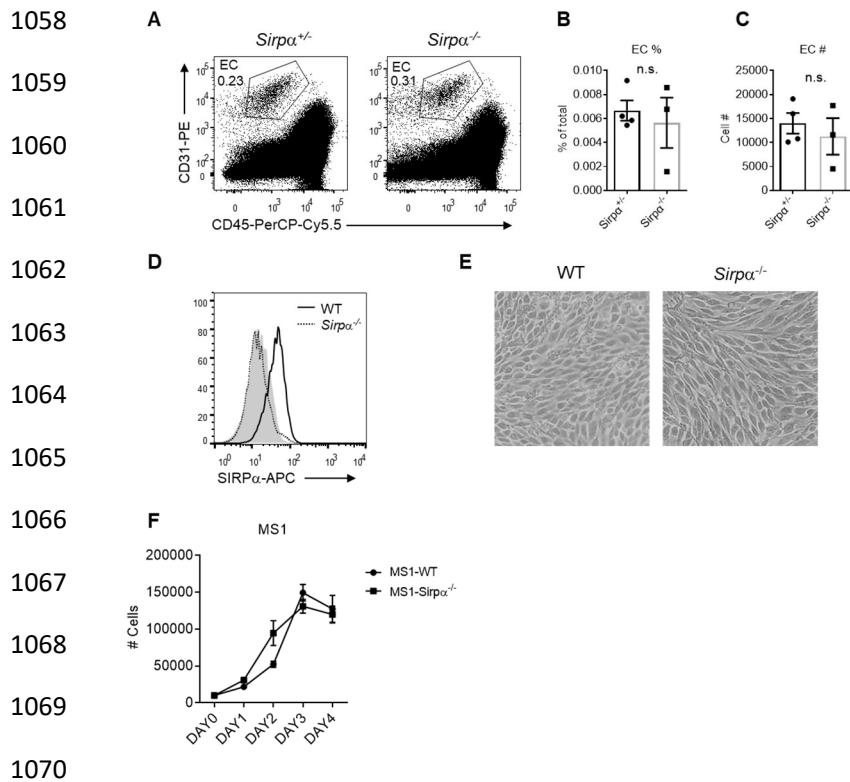
952

953 **Figure 2. Endothelial SIRP α is essential for ETP population maintenance and** 954 **thymic progenitor homing.**

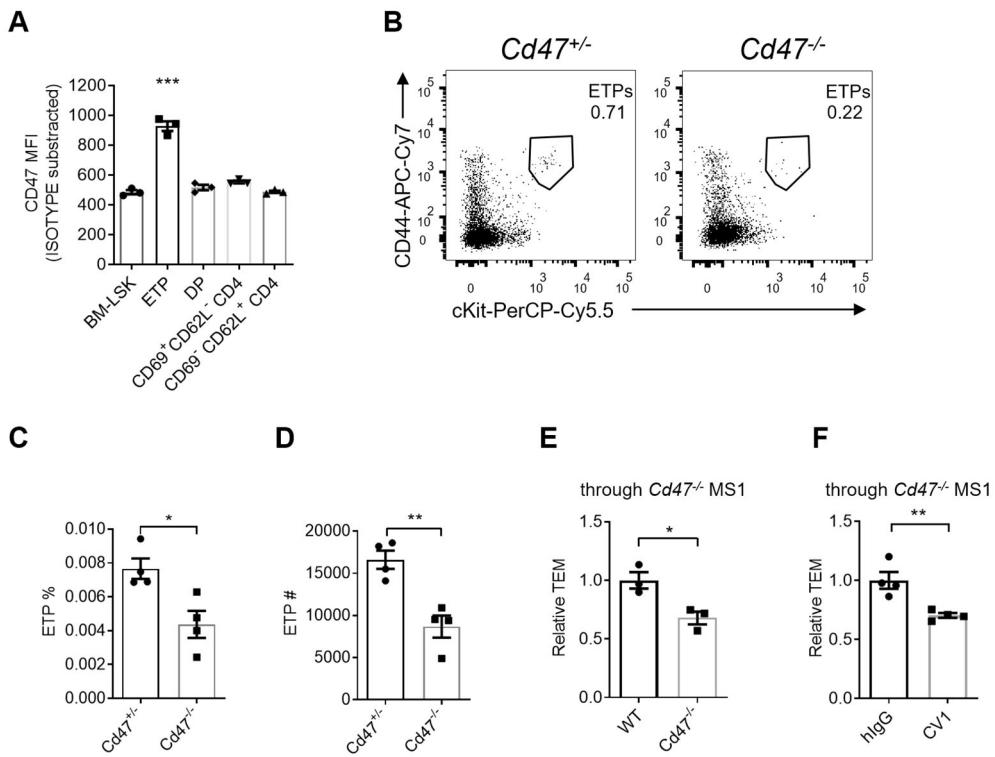

955 (A) Representative flow cytometric analysis of ETPs (Lineage $^-$ CD25 $^-$ CD44 $^+$ cKit $^+$) in
956 the thymus of *Sirpa* $^{-/-}$ and control mice. (B) Proportion of ETP population of total
957 thymocytes and corresponding cell number in a thymus. (C) Analysis of LSKs
958 (Lineage $^-$ Sca1 $^+$ cKit $^+$) and CLPs (Lineage $^-$ Sca1 lo cKit lo Flt3 $^+$ IL7Ra $^+$) in the bone marrow.
959 (D) Proportion and total cell number of LSK and CLP in a pair of femurs and tibias. (E)
960 Flow cytometric analysis of ETPs in *Sirpa* $^{\Delta Tie2Cre}$ conditional knock out mice. (F)
961 Statistics of ETPs in the thymus. (G) Representative flow cytometric analysis of ETPs
962 (Lineage $^-$ CD25 $^-$ CD44 $^+$ cKit $^+$) in WT bone marrow reconstituted WT or *Sirpa* $^{-/-}$ mice.
963 (H) Statistics of ETPs in the thymus. (I,J) Short-term homing assay in WT bone marrow
964 reconstituted WT or *Sirpa* $^{-/-}$ mice. (I) Analysis of lineage-negative donor cells (Lineage $^-$
965 CFSE $^+$) cells among total thymocytes. (J) Statistics of lineage-negative donor cells in
966 the thymus. Data are representative of three independent experiments with three mice
967 in each experiment. Error bars represent s.e.m. Asterisks mark statistically significant
968 difference, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$, n.s. not significant, determined by
969 two-tailed unpaired Student's *t*-test.


970

989 **Figure 2—figure supplement 1. SIRP α deficiency does not alter major T cell**
990 **development in resting state.**


991 (A-E) Cellularity of the thymus (A), spleen (B) and bilateral inguinal lymph nodes (C),
992 proportion (D) and total cell number (E) of double negative thymocyte subsets (DN1,
993 DN2, DN3 and DN4). (F,G) proportion (F) and total cell number (G) of major
994 thymocytes subsets (DN, double negative, DP, double positive, CD4 SP, CD4 single
995 positive and CD8 SP, CD8 single positive) among total thymocytes in *Sirpa*^{-/-} and
996 control mice. Error bars represent s.e.m. Asterisks mark statistically significant
997 difference, * $P<0.05$, n.s. not significant, determined by two-tailed unpaired Student's *t*-
998 test.

1040 **Figure 3. EC-SIRP α controls lymphocyte TEM.**


1041 (A) Representative flow cytometric analysis of thymic EC composition in *Sirpa*^{−/−} and
1042 control mice. (B,C) Proportion of thymic EC subsets (B) and corresponding cell
1043 numbers (C) in the thymus. (D,E) Expression level of adhesion molecules on thymic
1044 EC subsets. (D) P-selectin in *Sirpa*^{ΔTie2Cre} or control mice. (E) VCAM-1 in *Sirpa*^{−/−} or
1045 control mice. (F) Adhered lymphocyte cell number in a well in the cell adhesion assay
1046 on *Sirpa*^{−/−} or WT MS1 endothelial cells. (G) Lymphocyte transmigration in the
1047 presence of CCL-19 (10ng/ml) in the lower chamber of transwell, quantified by flow
1048 cytometry. Transmigrated cell number in the lower chamber in WT group was
1049 normalized to 1. Data information: Error bars represent s.e.m. Asterisks mark
1050 statistically significant difference, ** $P<0.01$, n.s. not significant, determined by two-
1051 tailed unpaired Student's t -test. Raw data of transmigration assay in G are available in
1052 SupplementaryFile1.

1071 **Figure 3—figure supplement 1. SIRP α does not control EC development and**

1072 growth.

1073 (A) Representative flow cytometric analysis of thymic endothelial cells (EC,
1074 CD31⁺CD45[−]) in the thymus of *Sirpa*^{−/−} and control mice. (B,C) Proportion (B) and
1075 corresponding cell number (C) of ECs in total thymocytes in a thymus. (D) SIRP α
1076 detection by flow cytometry in CRISPR/Cas-9 mediated *Sirpa*^{−/−} MS1 cells, shadow
1077 indicates isotype level. (E) Microscopic observation (4 \times) of MS1 cells. (F) FACS
1078 analysis of MS1 cell number in the transwell chamber at indicated time points. Error
1079 bars represent s.e.m. n.s. means not significant, determined by two-tailed unpaired
1080 Student's *t*-test.

1082

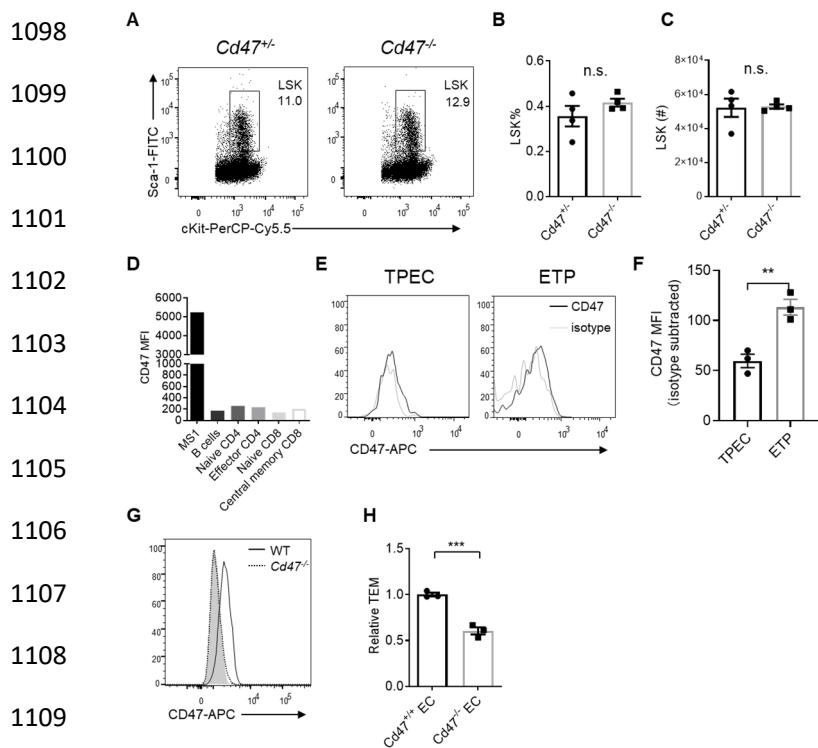
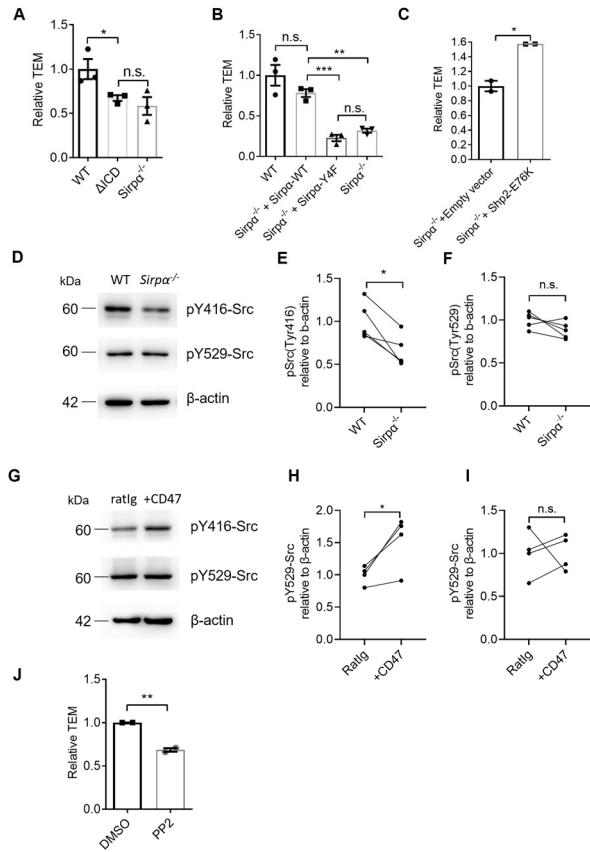

1083

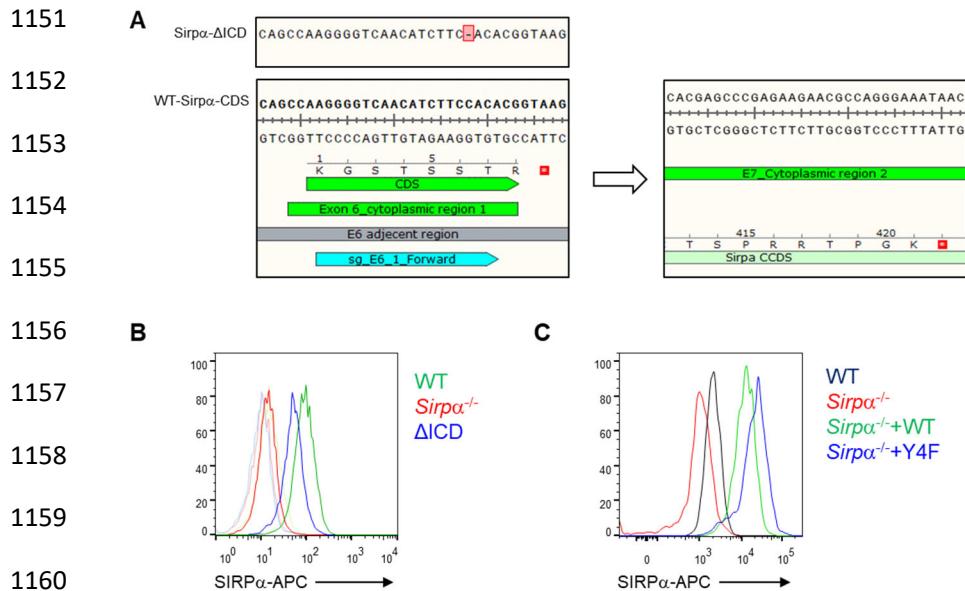
Figure 4. Migrating cell-derived CD47 guides their TEM.

1084


(A) CD47 expression measured by flow cytometry in various subsets of T cell lineage. BM-LSK: Lineage⁻Sca1⁺cKit⁺ lymphoid progenitor cells in bone marrows; ETP: early T-cell progenitors in the thymus; DP: double positive (CD4⁺CD8⁺) thymocytes; CD69⁺CD62L⁺CD4⁺ and CD69⁺CD62L⁺CD4⁺: immature and mature CD4 single positive thymocytes, respectively. (B) Flow cytometric analysis of ETPs. (C,D) Proportion (C) and corresponding cell numbers (D) of ETP population in a thymus in *Cd47^{-/-}* or control mice. (E) Transmigrated *Cd47^{-/-}* or WT lymphocytes through *Cd47^{-/-}* MS1 endothelial monolayer. (F) Transmigrated CV1-incubated or control lymphocytes through *Cd47^{-/-}* MS1 endothelial monolayer. Lymphocytes were incubated with CV1 (10^μg/ml) or control hIg (10^μg/ml) for 30 minutes at 4°C before applied to the transwell. Error bars represent s.e.m. Asterisks mark statistically significant difference, **P*<0.05, ***P*<0.01, ****P*<0.001, determined by two-tailed unpaired Student's *t*-test. Raw data of transmigration assay in E and F are available in SupplementaryFile1.

1097

Figure 4—figure supplement 1. Migrating cell-derived CD47 guides their TEM.


(A) Flow cytometric analysis of LSK progenitor cells (Lineage[−]cKit⁺Sca-1⁺) in the bone marrow of *Cd47^{−/−}* and control mice. (B,C) Proportion (B) and corresponding cell number (C) of LSKs of total bone marrow cells in a pair of femurs and tibias. (D) CD47 expression on MS1 endothelial cells and primary lymphocyte subsets from inguinal lymph nodes. B cells (B220⁺), naïve CD4 (CD4⁺CD62L⁺CD44[−]), effector CD4 (CD4⁺CD62L[−]CD44⁺), naïve CD8 (CD8⁺CD62L⁺CD44[−]) and central memory CD8 (CD8⁺CD62L⁺CD44⁺) T cells. (E) CD47 expression on TPEC and ETP subsets (Lineage[−]CD25[−]CD44⁺cKit⁺). (F) Statistics of CD47 expression on TPECs and ETPs. (G) CD47 detection by flow cytometry in CRISPR/Cas-9 mediated *Cd47^{−/−}* MS1 cells, shadow indicates isotype level. (H) Lymphocyte transmigration through *Cd47^{−/−}* or WT (*Cd47^{+/−}*) MS1 endothelial monolayer. Error bars represent s.e.m. Asterisks mark statistically significant difference, **P*<0.05, ***P*<0.01, ****P*<0.001, n.s. not significant, determined by two-tailed unpaired Student's *t*-test. Raw data of transmigration assay in H are available in SupplementaryFile1.

1127

1128 **Figure 5. SIRP α intracellular signal controls TEM via SHP2 and Src.**

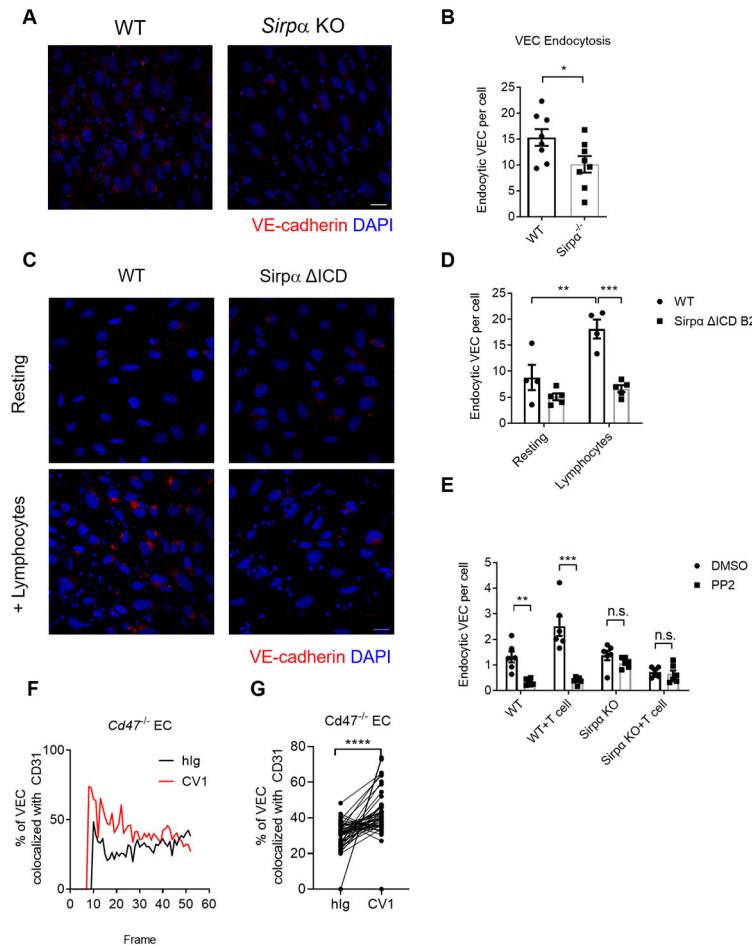
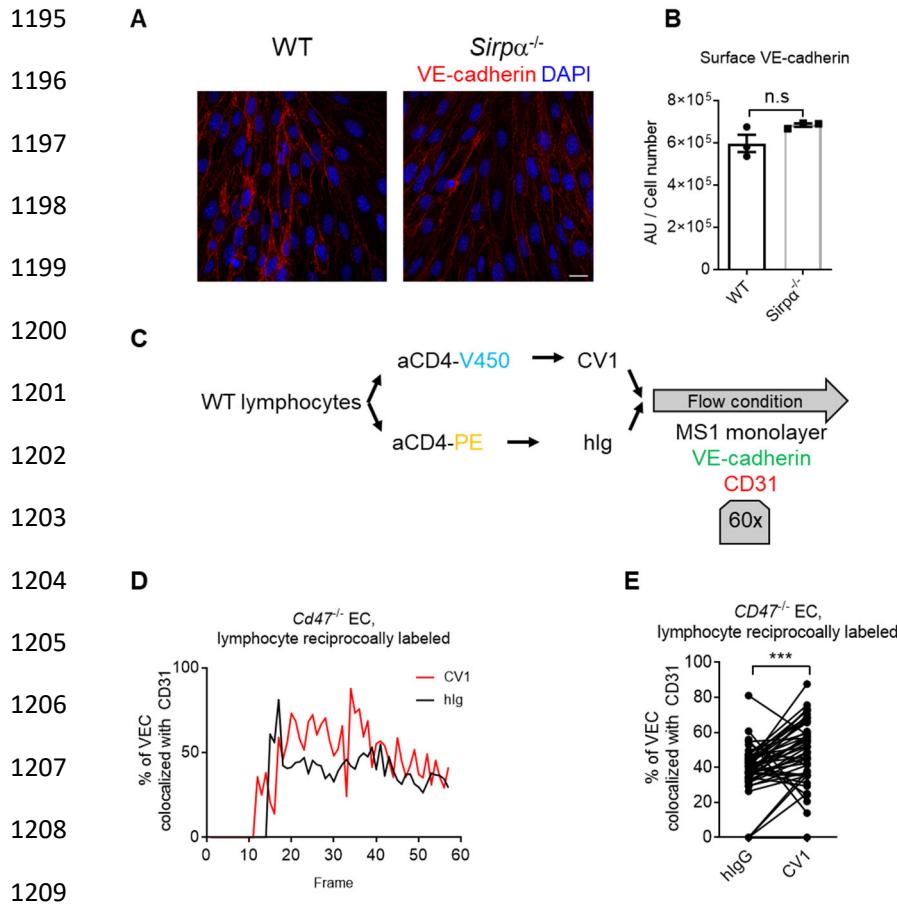

1129 (A) Relative TEM efficiency of lymphocytes through WT, intracellular-truncated
1130 SIRP α -ΔICD, and *Sirp α* ^{-/-} (KO) MS1 endothelial monolayer. (B) Relative TEM
1131 efficiency of lymphocytes through *Sirp α* overexpressing (*Sirp α* ^{-/-}+*Sirp α* -WT) or *Sirp α* -
1132 tyrosine-to-phenylalanine mutant overexpressing (*Sirp α* ^{-/-}+*Sirp α* -4F) MS1 endothelial
1133 monolayer. (C) Relative TEM efficiency of lymphocytes through *Sirp α* ^{-/-} MS1
1134 endothelial monolayer overexpressing constitutively active form of SHP2 (+*Shp2*-CA)
1135 or control empty vector (+ Empty vector). (D) Detection of Src activity in *Sirp α* ^{-/-} and
1136 WT MS1 endothelial cell lines, as measured by western blot with anti-pY416-Src
1137 (active form Src antibody), anti-pY529-Src (inactive form Src antibody) and anti- β -
1138 actin control antibody. The plot is representative of five independent experiments. (E,F)
1139 Relative quantification of the active Src (pY416-Src) (E) and inactive Src (pY529-Src)
1140 (F) to β -actin in five tests, the relative expression in each sample is normalized to WT
1141 average. (G) Detection of Src activity in *Cd47*^{-/-} MS1 cells upon mCD47-Ig or control
1142 Ig stimulation, as measured by western blot. The plot is representative of four
1143 independent experiments. (H,I) Relative quantification of the active Src (pY416-Src)
1144 (H) and inactive Src (pY529-Src) (I) to β -actin in four tests, and the relative expression
1145 in each sample is normalized to WT average. (J) Lymphocyte transmigration, in the
1146 absence or presence of Src inhibitor PP2 (5 μ M, 12 hours)) through WT MS1 endothelial
1147 monolayer. Error bars represent s.e.m. Asterisks mark statistically significant difference,
1148 * P <0.05, ** P <0.01, *** P <0.001, n.s. not significant. Raw data of transmigration assay
1149 in A, B, C, J and raw image and data of western blotting in D-I are available in
1150 SupplementaryFile1.

Figure 5—figure supplement 1. Construction of SIRP α mutant MS1 cell lines.

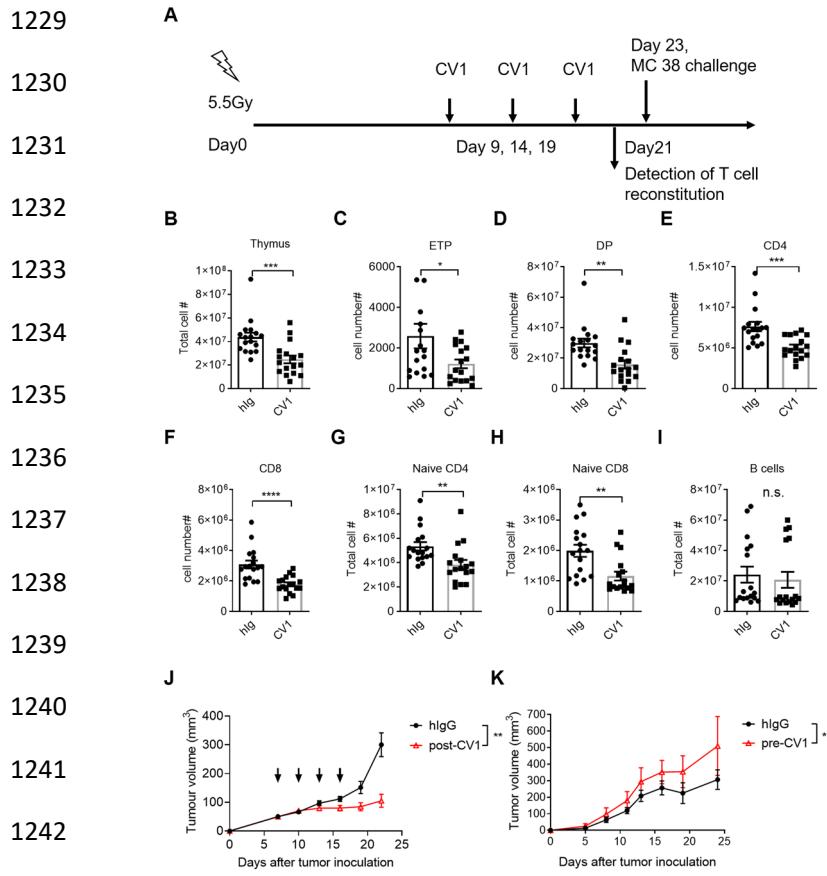
(A) Schematic view of Cas9 mediated truncation of *Sirp α* intracellular region. sgRNA targeting Exon 6 of *Sirp α* , the first exon encoding for the cytoplasmic region, was designed to create frame-shift mutation at the exon which generated stop codon TAA (■) at the following exon 7, which terminates SIRP α translation before intracellular signal region within exon 8 to form a presumably truncated form of intracellular region of SIRP α (SIRP α -ΔICD). (B) FACS analysis of surface expression of SIRP α on WT, intracellular domain truncated (ΔICD) and *Sirp α ^{-/-}* MS1 cell lines, tint lines indicate corresponding isotype level. (C) FACS analysis of SIRP α expression after lentiviral-mediated overexpression of WT coding sequence of *Sirp α* (+*Sirp α* WT) or *Sirp α* with intracellular tyrosine residues mutated to phenylalanine (+*Sirp α* -4F) which inactivated intracellular signal of SIRP α , on the basis of *Sirp α ^{-/-}* MS1.

1173



1174

1175


Figure 6. CD47-SIRP α signaling promotes VE-cadherin endocytosis.

1176 (A) Representative imaging of endocytosed VE-cadherin in the presence of
 1177 lymphocytes, scale bars represent 20 μ m. (B) Statistical analysis of VE-cadherin
 1178 endocytosis in MS1 endothelial cells. VE-cadherin fluorescence signal was quantified
 1179 by ImageJ with same threshold for each slide. MS1 cell number was quantified by DAPI,
 1180 the final results were presents as arbitrary intracellular VE-cadherin signal per MS1 cell,
 1181 average signal of all cells was calculated for each filed. Data are representative of three
 1182 independent experiments with at least five fields (dots on the graph) in each group
 1183 (captured filed). (C,D) VE-cadherin endocytosis in intracellular-truncated SIRP α -
 1184 ΔICD or WT MS1 cells, with (+Lymphocytes) or without lymphocyte incubation
 1185 (Resting). Representative confocal imaging of endocytosed VE-cadherin is shown (C)
 1186 with statistical analysis of VE-cadherin endocytosis (D). (E) VE-cadherin endocytosis
 1187 in the presence of lymphocytes (+ T cell) and inhibitor of Src activation (+PP2, 5 μ M, 2
 1188 hours). (F,G) Real-time analysis of adherens junctional VE-cadherin in the presence of
 1189 migrating lymphocytes pretreated with CV1 or control hIg. Dynamic measurement (F)
 1190 and statistical analysis of VE-cadherin colocalization with CD31 (G) after CD4 $^+$ T cell
 1191 injection to the flow. Error bars represent s.e.m. Asterisks mark statistically significant
 1192 difference, *P<0.05, **P<0.01, ***P<0.001, n.s. not significant. Raw data and analysis
 1193 method of endocytosis assay in A-E and real-time image statistics in F and G are
 1194 available in SupplementaryFile1.

Figure 6—figure supplement 1. CD47-SIRP α signaling promotes VE-cadherin endocytosis.

(A) Confocal microscopy of distribution of VE-cadherin on WT and *Sirpa* KO MS1 monolayers, bar represents 20 μ m. (B) VE-cadherin signal per cell calculated by total VE-cadherin signal intensity divided by cell number counted by DAPI highlighted nucleus. Significance determined by two-tailed unpaired Student's *t*-test. (C) Schematic view of real-time analysis of adherens junctional VE-cadherin in the presence of migrating lymphocytes. (D,E) Measurement (D) and statistical analysis (E) of VE-cadherin colocalization with CD31 after CD4 $^{+}$ T cell injection, CV1- and control hIg-treated CD4 $^{+}$ T cells are reciprocally labeled by fluorescent dyes as used in Figure 6F,G. Significance determined by two-tailed paired Student's *t*-test. Error bars represent s.e.m. Asterisks mark statistically significant difference, *** P <0.001, n.s. not significant. Statistics of real time imaging in D and E are available in SupplementaryFile1.

1244 **Figure 7. SIRP α signal blockade impairs T cell regeneration and antitumor
1245 response upon CRT.**

1246 (A) CV1 or control hIg (200 μ g/mouse) was injected intraperitoneally into C57BL/6
1247 mice every five days starting from day 9 after sublethal total body irradiation (SL-TBI).
1248 In tests related to (B-I), mice were sacrificed at day 21 after SL-TBI, in test of (K),
1249 mice were challenged with 5×10^5 MC38 tumors subcutaneously at day 21 after SL-TBI.
1250 (B-F) The number of total thymocytes (B) and indicated subset of ETP (C), double
1251 positive thymocytes (D), CD4 $^+$ thymocytes (E) and CD8 $^+$ thymocytes (F) were
1252 analyzed at day 21 as described in (A). (G-I) The number of CD62L $^+$ CD44 $^-$ naïve
1253 CD4 $^+$ T cells (G), CD62L $^+$ CD44 $^-$ naïve CD8 $^+$ T cells (H) and B cells (I) in the spleen
1254 were analyzed at day 21 as described in (A). (J) Anti-tumor effect of CV1: C57BL/6
1255 mice were subcutaneously injected with 5×10^5 MC38 tumors, 7 days after tumor
1256 inoculation, mice were treated with CV1 or hIgG (50 μ g/mouse, intra-tumor
1257 administration) every 3 days for 4 times (indicated by arrowheads). Tumor growth were
1258 monitored and plotted. (K) MC38 tumor growth in mice pre-treated with CV1 or
1259 control hIgG in the phase of T cell reconstitution, as described in (A). Error bars
1260 represent s.e.m. Asterisks mark statistically significant difference, * $P < 0.05$, ** $P < 0.01$,
1261 *** $P < 0.001$, **** $P < 0.0001$, determined by two-tailed unpaired Student's *t*-test.

1262