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Highlights 

- We provide a scale-consistent solution of water flow equations across root tissues 

- Symplasmic osmotic potential gradients are missing in the current theory of root water uptake 

- The model solves the empirical enigma of root water uptake uphill of water potential gradients 

 

Abstract 

With global warming, climate zones are projected to shift poleward, and the frequency and 
intensity of droughts to increase, driving threats to crop production and ecosystems. Plant 
hydraulic traits play major roles in coping with such droughts, and process-based plant 
hydraulics (water flowing along decreasing pressure Ψp or total water potential Ψtot 
gradients) has newly been implemented in land surface models. 

An enigma reported for the past 35 years is the observation of water flowing along increasing 
water potential gradients across roots. By combining the most advanced modelling tool from 
the emerging field of plant micro-hydrology with pioneering cell solute mapping data, we found 
that the current paradigm of water flow across roots of all vascular plants is incomplete: 
it lacks the impact of solute concentration (and thus negative osmotic potential Ψo) 
gradients across living cells. This gradient acts as a water pump as it reduces water tension 
without loading solutes in plant vasculature (xylem). Importantly, water tension adjustments in 
roots may have large impacts in leaves due to the tension-cavitation feedback along stems. 

Here, we mathematically demonstrate the water pumping mechanism by solving water flow 
equations analytically on a triple-cell system. Then we show that the simplistic upscaled 
equations hold in 2- and 3-D maize, grapevine and Arabidopsis complex hydraulic anatomies, 
and that water may flow “uphill” of water potential gradients toward xylem as observed 
experimentally. 

Besides its contribution to the fundamental understanding of plant water relations, this study 
lays new foundations for future multidisciplinary research encompassing plant physiology and 
ecohydrology, and has the ambition to mathematically capture a keystone process for the 
accurate forecasting of plant water status in crop models and LSMs. 
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Introduction 

Water flow inside plant tissues is analogous to river streamflow. As rivers flow from high to low 
elevations, the plant transpiration stream flows along a cascade of water potentials – or free 
energy status – that are high (in soil) to low (in roots, then even lower in leaves); a theory 
untouched for more than seven decades (Van Den Honert, 1948). Metaphorically, water flows 
“downhill” of gradients of summed pressure and gravitational potentials across non-selective 
tissues, such as xylem vessels, the part of vascular tissues made of dead cells emptied from 
their protoplasts. That is why cohesive water columns in xylem passively flow against the 
gravitational pull, toward leaf mesophyll cell walls under extremely negative pressure relative 
to free water (Steudle, 2001). In contrast, cell cytosol pressure potential is generally positive, 
thereby allowing cell turgidity and expansion. Such adjustment of water pressure in plants 
would not be possible without one key component: the selective permeability of cell 
membranes for major solutes (Kramer and Boyer, 1995). The affinity of water for solutes 
favours its spontaneous movement across cell membranes toward the side with highest solute 
concentration. This process called osmosis adds a third component to the potential of water: 
the osmotic potential (more negative at higher solute concentration). Hence, water flows 
downhill of gradients of this “total” water potential Ψtot (sum of gravitational, pressure Ψp and 
osmotic potentials Ψo) across membranes decoupling the transport of water and solutes. 
Membranes thereby allow the coexistence of highly concentrated environments under high 
pressure (cell cytosols and organelles forming the “symplast”, white areas in Fig. 1) at the 
same total potential as more diluted environments under lower – often negative – pressure 
(cell walls and xylem, forming the “apoplast”, light grey and blue areas in Fig. 1, respectively).  

It took a masterpiece of natural 
engineering, the “Casparian strip”, for 
plant roots to elevate the relative 
pressure of an entire apoplastic 
compartment. Its principle: forming a 
tight scaffold limiting water and solute 
permeation across radial walls of the 
endodermal cell layer (Doblas et al., 
2017), making it possible to actively 
accumulate solutes on the xylem-side 
of the scaffold. With a higher solute 
concentration, this compartment’s 
total water potential is lowered (Fig. 
1A, right side), inducing water flow 
across endodermal membranes, into 
xylem vessels, downhill of the total 
potential gradient (thick green arrow). 
The newly found equilibrium with 
higher xylem pressure may possibly 
generate pressure-driven water back-
flow across cell walls if the Casparian 
strip is leaky (thin blue arrow 
bypassing membranes in Fig. 1A). 

Water as a solvent may theoretically drag solutes across a leaky fraction of a membrane. When 
that is the case, the osmotic potential difference across the membrane is not equally effective 
at moving water, and the driving force is corrected by a multiplicative factor σ called “reflection 
coefficient” (Katchalsky and Curran, 1967) (equal to one in case of fully selective path, down 
to zero for paths fully permeable to solutes, e.g. primary cell walls and membranous sleeves – 
called plasmodesmata – connecting neighbouring cells cytosols). The current paradigm of 
water flow from root surface to xylem in vascular plants simply conceptualizes root tissues as 
a “big-membrane” (Kramer and Boyer, 1995) characterised by (i) a radial hydraulic conductivity 

Figure 1. (A) Current paradigm of root radial water flow 
here in case of solute loading in xylem vessels, and (B) 
scheme of contradictory experimental results reported in 
the literature. 
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Lpr [L P-1 T-1] and (ii) a dimensionless reflection coefficient σr transposed to the root scale and 
typically close to unity (Knipfer and Fricke, 2010): 

   , p,s p,x o,s o,xψ ψ ψ ψw s r rJ Lp           (1)  

where Jw,s [L T-1] is water flux at root surface, Ψp,s and Ψp,x [P] are the water pressure potentials 
at root surface and in xylem, respectively, and Ψo,s and Ψo,x [P] the (negative) osmotic 
potentials at root surface and in xylem, respectively. 

As active transmembrane water pumps have not been discovered (water flows passively 
across channel proteins called aquaporins, AQP), the current paradigm of root radial water 
flow concludes that water only flows “downhill” of Ψ gradients between root surface and xylem. 
However, numerous studies have reported that plant roots may absorb water “uphill” of both 
Ψp and Ψtot gradients (Fig. 1B, e.g. (Miller, 1985; Enns et al., 2000; Rowan et al., 2000; Bai et 
al., 2007)). These paradoxical observations have remained a curiosity for the past 35 years, 
and suggest plants may take up more water from their environment than predicted by theory 
(Singh, 2016). Small steps toward solving this case have been taken in recent decades. Firstly, 
the passive water transport across transmembrane channel proteins (aquaporins) could be 
complemented with direct water pumping by a hypothetical water-ion cotransporter as found 
in animal epithelial cells (Wegner, 2014). Secondly, Pickard (2003) showed that a hypothetical 
plasmalemma supporting two parallel water fluxes (one driven by total potential gradient, and 
the other by pressure potential gradient) would do the trick. Finally, with a microscale 
computational model of root hydrodynamics, Couvreur et al. (2018a) demonstrated 
mathematically that radial flow rates deviate from the current radial water flow theory if 
symplasmic osmotic potentials are non-uniform. Strikingly, water flow “uphill” of gradients of all 
components of the water potential, from root surface to xylem, was predicted by the hydraulic 
anatomy model when using an osmotic potential distribution measured by EDX-microanalysis 
in maize roots (Enns et al., 2000), suggesting all elements needed to solve the “riddle of uphill 
water flow” were standing under our very eyes. 

The importance of this mechanism stands in the discovery of how plants may (i) regulate their 
root water transport in a way complementary to aquaporin regulation (Chaumont et al., 2005), 
(ii) increase their water extraction from soils, and (iii) reduce xylem water tension without 
relying on xylem solute loading (mostly limited to -0.3 MPa under water deficit (Enns et al., 
2000; Westhoff et al., 2008)) or stomatal closure (Gleason et al., 2019). Xylem water tension 
regulation is of particular importance as extreme values lead to catastrophic cavitation in crops 
(McCully, 1999) and trees, which operate with a narrow hydraulic safety margin (Choat et al., 
2012). Cavitation magnifies frictions, which intensify xylem water tension, provoking additional 
cavitation in a sensitive positive feedback loop compounded along stems (Couvreur et al., 
2018b). Thus, root symplasmic osmotic gradients reducing xylem water tension by a fraction 
of MPa may leverage relatively large effects on canopy water potential and supply, by limiting 
upstream cavitation in the plant hydraulic continuum. 

The objectives of this study are to (i) provide a multiscale solution of radial water flow in a 
simplistic root hydraulic network as a cell triplet, (ii) demonstrate that the solution applies to 
realistic root hydraulic anatomies, and (iii) quantify the impact of cell scale osmotic potential 
distributions observed experimentally on the driving force of water flow across roots. With these 
steps completed, a new scale-consistent paradigm of root radial water flow will be proposed, 
ready to be challenged against data from cutting-edge techniques of root osmotic mapping 
(Persson et al., 2016) and soil-plant water status monitoring (Jerszurki et al., 2017). 
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Results 

A multiscale solution of water flow equations across a simple root hydraulic network 

In order to produce an upscaled solution of water flow equations in root hydraulic anatomies, 
we first developed an analytical solution for a simplistic system of three cells. Figure 2 displays 
composite radial water pathways as hydraulic conductances connecting nodes spanning 
compartments from the root surface to the xylem. We call pathways associated to flow rates 
Q1 and Q4 [L3 T-1] “cell-to-cell” (i.e. through cell membranes and plasmo-desmata)(Steudle and 
Peterson, 1998), and those of Q2 and Q3 “apoplastic” (i.e. through cell walls, except across the 
endodermis, where membranes are crossed). For simplicity, here we assume no “purely 
apoplastic” radial water pathway through both primary cell walls and Casparian strip, as 
excluded by Knipfer and Fricke (2010). The state-of-the-art water flow equations through cell 
walls, membranes, and plasmodesmata from Kramer and Boyer (1995) for the triple cell 
system are solved in the methods 
section. In order to condense the 
writing of the analytical solution, 
clusters of cell-scale hydraulic 
parameters are given names and 
symbols at the root segment scale 
(detailed expressions of root segment-
scale parameters as functions of cell-
scale parameters in the methods 
section). The analytical solution of the 
microscale equations, hereafter 
referred to as “upscaled model”, then 
yield the following form of the net radial 
water flux at root surface, Jw,s [L T-1] 
(here ratio of Q1 + Q2 or of Q3 + Q4 to 
root surface area, As [L2]): 

 o,apo,cortex o,apo,stele o,sym ,cortex o,sym ,stele, p,s p,xψ ψ ψ ψ ψ ψr
w s

s

K
J

A
           (2) 

where Kr [L3 T-1 P-1] is the conductance of the hydraulic network (detailed expression in the 
methods section, Eq. (27)), Ψp,i [P] is the pressure potential at the i-th node (note that 
subscripts “s” and “x” replace the node number at root surface and xylem nodes), and the 
average osmotic potentials in the symplast and apoplast (subscripts “apo” and “sym”) on the 
cortex and stele sides originate from the following expressions: 

o,apo,cortex o,apo,j j
  cortex side

ψ ψ STFj
j

 


           (3) 

o,apo,stele o,apo,j j
  stele side

ψ ψ STFj
j

 


            (4) 

o,sym,cortex o,sym,j j
  cortex side

ψ ψ STFj
j

 


           (5) 

o,sym,stele o,sym,j j
  stele side

ψ ψ STFj
j

 


           (6) 

where j is the membrane number (note that opposed endodermal membranes have different 
numbers, hence the symbols Km2 and Km3, where the former belongs to the cortex side, while 
the latter belongs to the stele side), σj [dimensionless] is the solute reflection coefficient of the 
membrane, Ψo,apo,j and Ψo,sym,j [P] are the osmotic potentials on the apoplastic and symplasmic 

Figure 2. Scheme of the simplistic hydraulic network used 
to derive an analytical solution of water flow along root 
water paths. The three cells have dimensions modified to 
ease reading. Ψp and Ψtot gradients drive water flow along 
blue and green paths, respectively. 
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sides of the membrane, respectively, and STFj [dimensionless] is the membrane “Standard 
Transmembrane Fraction” (detailed expression in the methods section, Eqs. (24-25)) which 
equals the fraction of water flowing through membrane j in conditions of uniform osmotic 
potential (i.e. “standard” condition). The latter property implies that STFj values integrate to 1 
on both the cortex- and the stele-sides, so that the left-hand-sides of Eqs. (3-6) can be 
considered as weighted-average osmotic potentials (corrected by reflection coefficients), 
hence the “bar” symbol on top. 

The solution of Jw,s expressed in Eq. (2) is multiscale as it emerges from cell-scale water flow 
equations, while only properties and variables of the system as a whole eventually remain. The 
upscaled expression shares similarities and a couple striking differences with the independent 
mainstream model (Eq. 1) of radial water flow across roots segments (Kramer and Boyer, 
1995), which will be discussed further down. 

The multiscale solution of water flow holds in diverse complex root hydraulic anatomies 

A comparison of microscale simulations of water fluxes at root surface (Jw,s) with both 
mainstream and multiscale macroscopic models predictions is provided in Fig. 3, in Zea mays 
(maize), Vitis riparia (grapevine) and Arabidopsis thaliana primary roots. Maize and A. thaliana 
anatomies were digitised from microscopic images, using the software CellSet (Pound et al., 
2012), while the grapevine anatomy including clusters of aerenchyma was generated with the 
root cross-section simulator GRANAR (Heymans et al., 2020). Water fluxes were computed in 
networks of cell walls, membranes and plasmodesmata using the micro-hydrological model 
MECHA (Couvreur et al., 2018a). Axially, simulations cover the thickness of one cell length in 
maize and grapevine, so that the geometry is essentially two-dimensional, while it is three-
dimensional in A. thaliana, with 250 layers connected axially cell-to-cell and along cell walls 
(Fig. 3A-C, note that only a fraction of fluxes in cell walls is displayed to ease visualisation). 
Due to the dominant apoplastic water transport, water fluxes in cell wall tends to increase from 
the outer to the inner layers of the cortex, before passing through the symplast in the vicinity 
of the endodermis, and reaching early metaxylem vessels. Water fluxes in cell walls also 
increase substantially in areas of convergence, such as septa separating aerenchyma spaces 
(Fig. 3B). Higher water fluxes in A. thaliana distal cell walls (left side in Fig. 3C) are due to the 
suberisation of endodermal walls in the proximal region, limiting radial water flow, while the 
distal side only bears a Casparian strip.  

When setting uniform osmotic potentials (Ψo) within the symplast, as well as within the 
apoplastic compartments on the stele- and cortex-sides of the endodermis, Jw,s values 
simulated from the microscale (disks in Fig. 3D-F) align with the mainstream macroscopic 
model (grey line, Eq. 1). However, microscale predictions strongly deviate from the mainstream 
macroscale model when Ψo is non-uniform within the symplast (stars in Fig. 3D-F, using 
gradients reported in the literature in maize (Rygol et al., 1993; Enns et al., 2000)), or both 
within the symplast and apoplastic compartments (squares in Fig. 3D-F, microscale apoplastic 
Ψo gradients then being simulated with a model of solute convection-diffusion (Couvreur et al., 
2018a)). Note that each of the aforementioned osmotic scenarios is simulated with the 
microscale model under high, medium, and low xylem water pressure (Ψp,x of 0.02, -0.08, and 
-0.18 MPa, respectively), hence the tripling of each symbol. Based on these triplets, apparent 
root radial hydraulic conductivities (Lpr,app) in the scenario with both types of osmotic gradients 
(squares in Fig. 3) were calculated as the slope of the Jw,s response to variations of Ψp,x. Ratios 
of Lpr,app to Lpr differed across plants. In vine, Lpr,app was only 7% of Lpr, while it was 36% in 
maize, and was left almost unaltered in A. thaliana (99%). 

Overall the correlation coefficients R2 for the microscale Jw,s versus driving force of mainstream 
macroscopic model were 0.22, 0.13, and 0.98, in maize, vine, and A. thaliana, respectively in 
the selected scenarios. Strikingly, the upscaled macroscopic model derived from the simple 
hydraulic network (Fig. 2) remains a fully exact solution of microscale water flow equations for 
the complex hydraulic anatomies (R2 = 1.00, Fig. 3G-I), including a 3-D root. Importantly, the 
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upscaled parameters Kr and STF neither depend on pressure nor on osmotic potentials within 
the system or at its boundaries. Therefore, for each root type, parameter values were 
calculated by solving water flow equations in a single “homogeneous” scenario with null Ψo, 
null Ψp at root surface, and non-null Ψp on the proximal side of xylem vessels. This single 
parametrization was then used in all 9 scenarios per plant in Fig. 3G-I. 

 
Figure 3. Comparison of water fluxes in 3 models of root water uptake: microscale, mainstream 
macroscale, and upscaled macroscale. (A-C) Partial view of microscale water fluxes simulated with 
MECHA in maize, vine, and A. thaliana. (D-F) Water fluxes at root surface simulated with MECHA (Jw,s) 
are not proportional to driving forces of the mainstream macroscale radial water flow model, except in 
absence of osmotic gradients within the symplast and within the apoplast. (G-I) Driving forces of the 
proposed upscaled macroscale model of radial water flow align with Jw,s simulated from the microscale. 

Discussion 

Current and novel paradigms of radial water flow across roots 

In this study we present a novel equation of water flow across root segments (Eq. 2) based on 
an analytical solution of water flow in a simplistic root composite hydraulic network (Fig. 2). Its 
mathematical development was a twist in search for a general analytical solution of water flow 
equations in complex root hydraulic anatomies. This procedure mimics the one applied to 
produce a simple macroscopic root water uptake model based on the hydraulic architecture 
approach (Couvreur et al., 2012), in which a mathematical solution of xylem water potential at 
plant collar in a two-branch root was found to remain exactly valid in complex root systems. 
Here we demonstrate that the upscaled equation (from sub-cellular to root segment scale) 
holds in the complex root hydraulic anatomies of maize, grapevine, and A. thaliana (Fig. 3, 
accommodating 2-/3-D geometries, aerenchyma, and non-uniform osmotic potentials in cell 
walls and protoplasts). The proposed equation (Eq. 2) is in line with the original work of Van 
Den Honert (1948) on water flow in plants as a “catenary process” (i.e. limited by the most 
resistive path in series, like in a supply chain), further developed by Kramer and Boyer (1995) 
who presented the root segment as an “osmometer” (i.e. able to build up water pressure by 
osmosis after accumulating solutes in xylem vessels). While the current paradigms of water 
flow at the cell scale (e.g. Eqs. 8-10 in the methods section) and root segment scale (Eq. 1) 
are well accepted by the scientific community (Kramer and Boyer, 1995), our multiscale 
analysis shows that they do not necessarily comply with each other, and calls for a revision of 
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the model of the “root osmometer” (Eq. 1), which seems incomplete. In particular, it is neither 
sensitive to osmotic potential gradients within the apoplast, which may explain biased 
estimations of the apparent “osmotic” root Lpr (Knipfer and Steudle, 2008; Couvreur et al., 
2018a), nor to osmotic potential gradients within the symplast observed experimentally (Rygol 
et al., 1993; Enns et al., 2000), which may offer a solution to the riddle of the apparent “uphill” 
root water flow (Miller, 1985; Rowan et al., 2000; Pickard, 2003; Bai et al., 2007; Singh, 2016). 

As compared to our generalized upscaled model (Eq. 2), the current paradigm of root radial 
water flow (Eq. 1) appears to be a specific case, which assumes that (i) the average product 
of osmotic potentials by membrane reflection coefficient on both sides of the endodermis are 

equal ( o,sym,cortex o,sym,steleψ ψ  ), (ii) the average product of osmotic potentials by membrane 

reflection coefficient in cell walls on the cortex side equal the product of the osmotic potential 

at root surface by the root reflection coefficient ( o,apo,cortex o,sψ ψ r  ), and (iii) the average 

product of osmotic potentials by membrane reflection coefficient in cell walls on the stele side 
equal the product of the osmotic potential in xylem by the root reflection coefficient (

o,apo,stele o,xψ ψ r  ). Based on symplasmic osmotic potentials reported by Enns et al. (2000) 

in maize, the error margin due to the first assumption would be in the range of 0.15 to 0.3 MPa 
depending on the degree of suberisation of the root endodermis. The error margins of the 
second and third assumptions essentially depend on the magnitude of radial water fluxes (as 
diffusion tends to even out solutes when the water convective component is low), osmotic 
potentials at root surface and in xylem (e.g. there would be no substantial accumulation of 
solute in the vicinity of the endodermis if solute concentration at root surface was negligible), 
and the length of the path along which solutes may accumulate (e.g. particularly long in 
grapevine and short in A. thaliana). Our results suggest that this quantitative error margin may 
range between 0.0 MPa (here in A. thaliana) and 0.4 MPa (here in grapevine under root xylem 
water pressure of -0.18 MPa). Such errors may in part cancel out, or add up, depending on 
their respective signs. 

It is worth noting that Zhu and Steudle (1991) also proposed a multiscale solution of water flow 
between root segment and cell scales to estimate cell hydraulic properties from root scale 
measurements. Their top-down approach accounts for the areas, hydraulic conductivities, and 
reflection coefficients of cell walls and protoplasts. It also leaves the door open to bidirectional 
parallel water fluxes through the cell-to-cell and purely apoplastic pathways as our model does, 
while neglecting osmotic potential gradients within the root and pressure-driven flow through 
plasmodesmata. 

Deciphering the symplasmic mechanism of water pumping 

An illustration of the concept of radial water flow across roots emerging from multiscale 
hydraulic principles is summarized in Fig. 4B-C. The symplasmic Ψo gradient (yellow bars of 
decreasing size from the cortex to the pericycle, from about -0.8 to -0.5 MPa in Enns et al. 
(2000) control conditions), tend to generate a gradient of cell turgidity (i.e. water pressure). As 
plasmodesmata are not selective for major osmolites, water flow is essentially pressure-driven 
from the cortex under high pressure to the pericyle under lower pressure (blue arrows pointing 
to the right). Interestingly, on this symplasmic path, water flows uphill of the Ψtot gradient (which 
does not come into play as no selective membrane is crossed), so that Ψtot on the symplasmic 
side of the pericycle membrane may be larger than on the symplasmic side of the cortex 
membrane. Water naturally flows downhill of Ψtot gradients across these membranes, 
completing the pathway from root surface to xylem. Note that in Fig. 4, arrow thickness stands 
for flow rate, and that endodermis suberization prevents any backflow of water in the 3rd panel, 
making this version of the water pump more efficient. Besides, high solute concentration in 
phloem sieve tubes does not generate a substantial outward driving force for water, but only 
bi-directional water flow with its neighbouring cells, due to the absence of apoplastic barrier 
separating them. 
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Because Ψo gradients in the apoplast (as 
in Fig. 4A) and in the symplast (as in Fig. 
4B-C) may both contribute to indirect 
water pumping, we suggest to distinguish 
them as apoplastic and symplasmic 
water pumping mechanisms. They may 
be combined, and rely on the 
maintenance of Ψo gradients, which 
requires energy for transmembrane 
solute transfer or solute metabolism.   

Outlook  

Like in a magic trick orchestrated by 
vascular plants, the attention of the 
scientific community has been focalised 
on a part of the driving force of water 
uptake (water potentials at root surface 
and in xylem). When water kept flowing 
“uphill” of macro-scale water potential 
gradients, the fascinated researcher 
conjectured on the existence of an active 
transmembrane water pump (Wegner, 
2014), or even questioned the 
applicability of the second law of 
thermodynamics in plants (Bai et al., 
2007). Our mathematical results 
combined to experimental observations 
by Enns et al. (2000) support that the trick may lie in a “concealed” osmotic gradient along 
living cells, driving water flow in an impossible direction according to the current paradigm of 
water uptake by plant roots. It is particularly mind-bending that at the micro-scale water may 
systematically flow downhill of the relevant components of water potential (Ψp or Ψtot, 
depending on the local path) while simultaneously flowing uphill of both Ψp and Ψtot gradients 
at the root cylinder macro-scale. Such a tale is reminiscent of the universe of M.C. Escher, in 
which all may seem to flow downhill from close range, though the surprise comes as we take 
a step back (see Graphical Abstract). 

Beyond the proposition of a mathematical solution to the “uphill water flow enigma” reported 
experimentally, our work calls for an in-depth documentation of osmotic potential distribution 
in living root cells, now facilitated by the cutting-edge technology of LA-ICP-MS (Persson et 
al., 2016), in order to capture the dynamics of this concealed driving force of water uptake. In 
the meantime, simplifying assumptions need to be done, as it has always been the case in 
mainstream root water uptake models. The proposed emergent model allows dropping some 
of the most limiting assumptions of mainstream models, such as the absence of osmotic 
potentials in living cells, and absent plasmodesmatal pathway in equations of radial flow 
(virtually included in the cell-to-cell pathway, but actually neglected at the stage of translation 
into mathematical equations in Zhu and Steudle (1991)). 

The question remains open of how symplasmic osmotic gradients are formed and possibly 
maintained at a homeostatic state, despite symplasmic solute convection from cells under 
higher pressure toward their neighbours. Interestingly, Enns et al. (2000) showed that adding 
substantial amounts of KNO3 to the root bathing solution does alter absolute values of osmotic 
potential distribution in the symplast, but not their gradients across root tissues. Yet, the data 
available on such solute transfer and metabolism properties is currently insufficient for a 
complete detailed modelling. However, Couvreur et al. (2018a) (Supplemental Note S2) 
evaluated that maintaining osmotic potential gradients observed in the symplast of maize roots 
by Enns et al. (2000) would require solute transport rates lower than typically observed for 

Figure 4. Mainstream “apoplastic” (A) and emerging 
“symplasmic” (B, C) concepts of root water indirect 
pumping. 
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calcium and nitrate (2.8 10-7 mol m-2s-1 and 6 10-8 mol m-2s-1, respectively) (Cárdenas et al., 
1999; Pouliquin et al., 2000). Furthermore, several other processes may contribute to keep 
osmotic potentials stable, such as the metabolism of large molecules, and other ion 
transporters. At this stage though, we are left with the option of considering that snapshots of 
measured solute distributions can be used to simulate snapshots of water flow across roots. 

 
Methods 
 
In this section, we detail (i) the development of the analytical solution of water flow in the 
simple hydraulic network, (ii) how macroscopic parameters numerical values can be 
calculated, and (iii) how the multiscale model is validated against numerical solutions from 
the microscale hydraulics model MECHA.   

Development of the analytical solution of water flow equations in the simple root 
hydraulic network  

The simple root hydraulic network with associated symbols for components of water 
potentials “Ψ”, flow rates “Q”, and hydraulic conductances of membranes “Km”, cell walls “Kw” 
and plasmodesmata “Kp” numbered as in Fig. 2 translate into the following water flow 
equations: 

     1 m1 p,s p,1 o,s o,1ψ ψ ψ ψQ K        (7) 

 1 p1 p,1 p,3ψ ψQ K           (8) 

  2 m 2 p,2 p,3 o,2 o,3ψ ψ ψ ψQ K           (9) 

 2 w 1 p,s p,2ψ ψQ K           (10) 

  3 m 3 p,3 p,4 o,3 o,4ψ ψ ψ ψQ K           (11) 

 3 w 2 p,4 p,xψ ψQ K           (12) 

  4 m 4 p,5 p,x o,5 o,xψ ψ ψ ψQ K           (13) 

 4 p 2 p,3 p,5ψ ψQ K           (14) 

1 2 3 4Q Q Q Q             (15) 

where Ψp,i and Ψo,i are the pressure and osmotic potentials at the i-th node, respectively. 
Note that labels “s” and “x” replacing the node number apply to root surface and xylem 
boundary nodes, respectively. 

Under Dirichlet boundary conditions (prescribed Ψp,s and Ψp,x), the system has 9 unknowns 
(Q1-4, Ψp,1-5), while the following parameters are considered as “known” variables, which will 
however keep their non-numerical form in this exercise: Km1-4, Kp1-2, Kw1-2, Ψp,s, Ψo,s, Ψp,x, 
Ψo,x, Ψo,1-5, σ1-4. 

From the membrane numeration point of view in this simple scheme, we also name osmotic 
potentials on the apoplast and symplast sides of the j-th membrane Ψo,apo,j and Ψo,sym,j, 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 20, 2021. ; https://doi.org/10.1101/2021.04.19.439789doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.19.439789
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

respectively. Thus, for instance Ψo,apo,1 and Ψo,sym,1 correspond to Ψo,s and Ψo,1 in Fig. 2, 
respectively. 

In order to simplify the mathematical expression, the equivalent conductance of each path 
(made of two conductances in series) is referred to as KQj (with j the path number), so that: 

1 1
1

1 1

m p
Q

m p

K K
K

K K



,          (16) 

2 1
2

2 1

m w
Q

m w

K K
K

K K



,          (17) 

3 2
3

3 2

m w
Q

m w

K K
K

K K



,          (18) 

and 

4 2
4

4 2

m p
Q

m p

K K
K

K K



.            (19) 

The system of equations 7-15 has the following analytical solution of water flow rate on the 
cortical side (paths 1 and 2, with j the path number): 

     3 4
p,s p,x1;2 4

1

o,apo,j o,apo o,sym o,sym,j

ψ ψ

ψ ψ ψ ψ

Qj Q Q

j

Qkk

Qj j j

K K K
Q

K

K    






 

     

     (20) 

where 

4 o,sym,k
o,sym 41

1

ψ
ψ k Qk

k

Qmm

K

K











         (21) 

and  

4 o,apo,k
o,apo 41

1

ψ
ψ k Qk

k

Qmm

K

K











        (22) 

On the stele side (paths 3 and 4, with j the path number), the analytical solution of water flow 
rate is as follows: 

     1 2
p,s p,x3;4 4

1

o,apo o,symo,apo,j o,sym ,j

ψ ψ

ψ ψ ψ ψ

Qj Q Q

j

Qkk

Qj j j

K K K
Q

K

K    






 

     

     (23) 

Assuming uniform membrane reflection coefficients, in conditions of negligible gradients of 
osmotic potential within the apoplast and within the symplast and (as commonly assumed in 
root water uptake models (Doussan et al., 1998; Bouda et al., 2018)), the osmotic terms 
cancel out in Eqs. (20-23). Under such conditions, referred to as “standard” in the following, 
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the fraction of the total water flow passing through the transmembrane path “j” on the cortex 

side (i.e. 
 1 2

jQ

Q Q
) simply corresponds to the following “Standard Transmembrane 

Fraction” (STF, dimensionless): 

   1;2
1 2

Qj
j

Q Q

K
STF

K K 


         (24) 

In complement, we have:  

   3;4
3 4

Qj
j

Q Q

K
STF

K K 


         (25) 

It is then trivial that the integration of Standard Transmembrane Fractions on the cortex side, 
and on the stele side, both equal 1. 

In “standard” conditions (no osmotic gradients within the apoplast or the symplast), the total 
water flux at root surface (Jw,s [m s-1], ratio of Q1 + Q2 or of Q3 + Q4 to root surface area, As 
[m2]) simplifies down to:  

    1 2 3 4
, p,s p,x 4

1

ψ ψ Q Q Q Q
w s std

s Qkk

K K K K
J

A K


 
 


     (26) 

Where the equivalent conductance of the full hydraulic network (Kr [m3 MPa-1 s-1]) can be 
isolated: 

  1 2 3 4

4

1

Q Q Q Q
r

Qkk

K K K K
K

K


 



         (27) 

In the following, Kr and the STF vector are called “macroscopic parameters” as they 
aggregate multiple cell scale parameters. They can be used to simplify the writing of the 
general expression of Jw,s, this time accounting for osmotic gradients:  

, p,s p,x

o,apo,cortex o,apo,stele o,sym ,cortex o,sym ,ste le

(ψ ψ

ψ ψ ψ ψ )

r
w s

s

K
J

A

   

 

   

  (28) 

where separate weighted-average values of the osmotic potential are evaluated on the 
cortex and stele sides for both apoplastic and symplasmic compartments: 

2

o,apo,cortex o,apo,j j1
ψ ψ STFjj

 


         (29) 

4

o,apo,stele o,apo,j j3
ψ ψ STFjj

 


         (30) 

2

o,sym,cortex o,sym,j j1
ψ ψ STFjj

 


         (31) 

4

o,sym,stele o,sym,j j3
ψ ψ STFjj

 


         (32) 
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