

1 **Title: An infectious Rous Sarcoma Virus Gag mutant that is defective in nuclear cycling**

2 Running Title: Infectious nuclear cycling defective RSV Gag mutant

3

4 Authors: Clifton L Ricaña and Marc C Johnson[#]

5 Affiliation: Department of Molecular Microbiology and Immunology, Bond Life Sciences

6 Center, University of Missouri-Columbia, Missouri, USA

7

8 # Corresponding Author:

9 471C Bond Life Sciences Center

10 1201 Rollins Rd.

11 Columbia, MO 65211

12 marcjohnson@missouri.edu

13 (573) 882-1519

14

15 Word Count (Abstract): 196/250

16 Word Count (Importance): 71/150

17

18 **Abstract**

19 During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the
20 nucleus for translation into viral proteins and packaging into virions. “Complex” retroviruses
21 such as Human Immunodeficiency Virus (HIV) use cis-acting elements on the unspliced gRNA
22 in conjunction with trans-acting viral proteins to facilitate this escape. “Simple” retroviruses
23 such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV) exclusively
24 use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear
25 escape. Uniquely, the simple retrovirus Rous Sarcoma Virus (RSV) has a Gag structural protein
26 that cycles through the nucleus prior to plasma membrane binding. This trafficking has been
27 implicated in facilitating gRNA nuclear export and is thought to be a required mechanism.
28 Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane
29 binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss
30 of infectivity. Here, we describe a nuclear cycling deficient RSV Gag mutant that has similar
31 plasma membrane binding and genome incorporation to WT virus and surprisingly, is replication
32 competent albeit with a slower rate of spread compared to WT. This mutant suggests that RSV
33 Gag nuclear cycling is not strictly required for RSV replication.

34

35 **Importance**

36 While mechanisms for retroviral Gag assembly at the plasma membrane are beginning to
37 be characterized, characterization of intermediate trafficking locales remain elusive. This is in
38 part due to the difficulty of tracking individual proteins from translation to plasma membrane
39 binding. RSV Gag nuclear cycling is a unique phenotype that may provide comparative insight

40 to viral trafficking evolution and may present a model intermediate to cis- and trans-acting
41 mechanisms for gRNA export.

42

43 **Introduction**

44 Retroviruses hijack a multitude of host processes to overcome barriers throughout the
45 viral lifecycle. One such barrier is the nuclear membrane, which protects host genetic data and
46 allows for regulation of genes by keeping unspliced RNA transcripts from exiting the nucleus.
47 Retroviral genomic RNA (gRNA) consists of a long unspliced transcript that must escape the
48 nucleus and traffic to the plasma membrane for virion packaging. Retroviruses, such as HIV,
49 have evolved trans-acting viral proteins to facilitate the active transport of unspliced gRNA out
50 of the nucleus via interaction with cis-acting elements on the gRNA. An Arg-rich nuclear
51 localization signal (NLS) on the Rev protein of HIV allows nuclear entry of non-gRNA-bound
52 Rev via importin- β (1, 2). A nuclear export signal (NES) on Rev allows nuclear export of
53 gRNA-bound Rev via the exportin Chromosomal Maintenance 1 (CRM1) (1, 3, 4). “Simpler”
54 retroviruses such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV)
55 exclusively use gRNA cis-acting elements in conjunction with host cell export factors (5–8). In
56 the case of the alpharetrovirus, Rous Sarcoma Virus (RSV), evidence has implicated the Gag
57 structural protein nuclear cycling as a trans-acting mechanism for exporting gRNA (reviewed in
58 (9–11)).

59 Initial gross truncation of RSV to study plasma membrane binding unexpectedly found
60 that a Matrix (MA)-GFP fusion protein was enriched in the nucleus (12). Since RSV-Gag-GFP
61 with Protease (PR) deleted (hereafter referred to as RSV-Gag^{WT}) expresses in the
62 cytoplasm/plasma membrane at steady state, this pointed toward the full Gag protein potentially

63 trafficking to intermediate subcellular locales (12). To determine whether the non-nuclear
64 phenotype of Gag was due to size exclusion or nuclear export, Leptomycin B (LMB) was used to
65 block the CRM1 export pathway of cells transfected with RSV-Gag^{WT} (12). With LMB
66 treatment, RSV-Gag^{WT} was shown to rapidly shift to an almost exclusive nuclear expression
67 (12). Truncation of RSV-Gag^{WT} and amino acid manipulation demonstrated that the NES was
68 located in the p10 domain and that a single (L219A) point mutation blocked nuclear export
69 resulting in only nuclear expression (12, 13). Further characterization verified NLSs consisting
70 of a non-canonical importin-11 and transportin-3 (TNPO3) dependent NLS in the tertiary
71 structure of MA and a canonical four basic amino acid importin- α/β dependent NLS motif in
72 nucleocapsid (NC, K₃₆KRK₃₉) (12, 14–17).

73 Interestingly, a non-infectious mutant Myr1E that did not accumulate in the nucleus with
74 LMB treatment exhibited strong plasma membrane binding, increased virion release (1.4xWild
75 Type, WT), and had a defect in genome packaging (0.4xWT) (12). This suggested a Gag nuclear
76 localization requirement for genome packaging (12, 18). Myr1E consists of the myristoylated
77 10-amino acid Src plasma membrane binding domain added to the N-terminal end of RSV-Gag
78 (12, 19). Another non-infectious mutant, SuperM, consists of RSV-Gag with two Glu swapped
79 with Lys (E25K and E70K) (20). SuperM also displayed strong plasma membrane binding that
80 did not accumulate in the nucleus with LMB treatment, increased viral release (3xWT), and had
81 a severe defect in genome packaging (0.1xWT) (20). To characterize the role of Gag nuclear
82 localization in genome packaging, a canonical NLS was engineered into Myr1E.NLS (17, 18).
83 Though both viruses were not infectious; nuclear cycling was enhanced with Myr1E.NLS as
84 compared to Myr1E, viral release remained the same (1.4xWT), and corresponded to recovered
85 genome packaging at nearly WT levels (18). To complement this finding, a different study

86 showed that Gag exhibited reduced binding to nuclear import factors importin- α and -11 when
87 bound to viral RNA containing the ψ packaging signal (21). In conjunction, Gag bound to
88 ψ RNA promoted binding to CRM1 (21). Together, these data suggest that RSV requires Gag
89 nuclear cycling to export unspliced gRNA for subsequent packaging and infectivity.

90 While the previously summarized data suggests Gag involvement with gRNA nuclear
91 export and packaging, there is also evidence against this argument. There is a gRNA cis-acting
92 element found in the direct repeats (DR) flanking the *Src* gene of RSV (22, 23). DR deletion and
93 various DR mutants severely decreased the amount of unspliced RNA transcripts and Gag
94 protein levels in the cytoplasm of chicken embryo fibroblasts (22, 23). In a gain of function
95 assay, expression of HIV-1 Gag protein, a proxy for unspliced HIV-1 gRNA translocation into
96 the cytoplasm, was recovered when RSV DRs were engineered into HIV-1 constructs devoid of
97 functional Rev protein and Rev response element on the gRNA (22). To parse the mechanism of
98 nuclear export, the investigators used a three-part assay consisting of RSV constructs encoding
99 chloramphenicol acetyl transferase (CAT) to report unspliced RNA in the cytoplasm of
100 transfected cells, fluorescent in situ hybridization (FISH) of reporter viral RNA (vRNA)
101 containing DR, and dominant-negative mutants of host cellular nuclear export factors Tap and
102 Dbp5. With this assay, the DR were shown to use and require Tap and Dbp5 to translocate the
103 viral RNA to the cytoplasm (24). Furthermore, addition of increasing amounts of transfected
104 RSV Gag did not increase cytoplasmic levels of DR containing CAT reporter vRNA nor did it
105 increase cytoplasmic levels of ψ containing CAT reporter vRNA (24). This line of evidence is
106 corroborated by other studies and mutational analyses which point toward both DR playing a role
107 in Gag assembly and DR2 as the major cis-acting element for unspliced RNA transport (25–27).

108 These pieces of evidence suggest that RSV Gag nuclear cycling is not involved with or plays a
109 minor role in gRNA translocation to the cytoplasm.

110 In a survey of various retroviral Gag proteins, our laboratory described a non-nuclear
111 cycling HIV-MA/RSV-Gag-GFP^{ΔPR} (H/RSV-Gag) chimera. Cloning this chimera into a single-
112 cycle H/RSV^{ΔEnv} provirus demonstrated that it produced about half as many infectious particles
113 as WT virus (28). HIV-MA is myristoylated like the non-infectious Myr1E RSV mutant and
114 presumably would cause similar genome packaging defects that result in severe infectivity
115 defects, but this is not the case and suggests additional mechanisms are involved. Alteration of
116 plasma membrane trafficking and membrane binding has consequences not limited to genome
117 packaging (29–32). Briefly, non-myristoylated Gag-membrane interactions are mainly due to
118 electrostatic interactions and altered hydrophobic interactions with acyl chains such as
119 phosphatidylinositol-4,5-bisphosphate (PI(4,5)P₂) or cholesterol depletion can reduce plasma
120 membrane binding (29–32). Separating the effects of plasma membrane binding and/or
121 trafficking alterations from nuclear cycling would provide fewer confounding interpretations of
122 nuclear cycling effects on viral assembly. In addition, the separation of the functions in a
123 replication competent context would provide insight into overall effects of nuclear cycling during
124 the viral lifecycle. Replication competency of our infectious, non-nuclear cycling H/RSV
125 chimera, however, could not be tested due to the major splice donor for Env located in the N-
126 terminus of MA (28, 33). Here, we characterize a replication competent mutant that contains a
127 minimal amino acid substitution from a polymorphism found in the NC-NLS of RSV strain
128 JS11C1, is defective in nuclear cycling, and incorporates gRNA at similar levels to WT.

129

130 **Results**

131 *Validation of NLS's and NES in RSV-Gag and determination of the H/RSV-Gag^{WT} nuclear*
132 *cycling block.*

133 We demonstrated previously that replacement of the RSV MA domain with HIV-1 MA
134 prevents nuclear cycling of RSV Gag. To probe how HIV-MA blocks nuclear cycling in the
135 H/RSV-Gag^{WT} construct, we tested various RSV deletion and HIV-MA mutation/truncation
136 constructs in the RSV-Gag^{WT} and H/RSV-Gag^{WT} backbone respectively (Fig 1A). Plasmid
137 constructs were transfected in parallel into DF1 cells (chicken embryonic fibroblast) and imaged
138 16-18 hrs post transfection followed by LMB (10 ng/mL) treatment for 1 hr and further imaging.
139 At steady state, RSV-Gag^{WT} and H/RSV-Gag^{WT} displayed diffuse and in many instances both
140 diffuse and punctate cytoplasmic expression of GFP in contrast to the nearly exclusive nuclear
141 expression of the previously described RSV-Gag^{L219A} mutant (Fig 1B) (13, 28). Recapitulating
142 previous findings, CRM1 inhibition with LMB resulted in accumulation of RSV-Gag^{WT} to the
143 nucleus but not H/RSV-Gag^{WT} (Fig 1C) (13, 28). To further validate our system, previously
144 described mutants, RSV-Gag^{ΔMA} and RSV-Gag^{ΔNC} (14), in addition to RSV-CANC were tested
145 for nuclear accumulation (Fig 1B and C). As expected, RSV-Gag^{ΔMA} displayed nuclear
146 accumulation with LMB treatment indicating strong nuclear import via the NC-NLS, followed
147 by strong export of the Gag protein via the p10-NES. Recapitulating previous findings, RSV-
148 Gag^{ΔNC} expressed in relatively equal amounts in the cytoplasm and nucleus with LMB treatment
149 (14). This suggests that the NC-NLS is the dominant NLS in RSV Gag. RSV-CANC, lacking
150 the NES in p10, displayed nearly exclusive nuclear expression with and without LMB (Fig 1B
151 and C). This indicates the NC-NLS is sufficient to drive nuclear import and that HIV-MA is
152 somehow able to inhibit nuclear import in H/RSV-Gag^{WT}.

153 HIV Gag, unlike RSV, is myristoylated and this modification is required for proper HIV
154 Gag trafficking and binding to the plasma membrane (30, 34). To probe whether myristylation
155 and plasma membrane trafficking potentially counteract the NLS signal, a known myristylation
156 defective G2A mutation was tested in the H/RSV-Gag^{WT} construct (35). H/RSV-Gag^{G2A}
157 expressed primarily in the cytoplasm with little to no plasma membrane accumulation and no
158 residual puncta on the cell culture dish that would presumably be budded H/RSV-Gag^{G2A} virus
159 like particles (VLPs) (Fig 1B). Additionally, no change in phenotype was seen with LMB
160 treatment (Fig 1C). This suggests that membrane binding via PI(4,5)P₂ interaction with
161 myristoylated Gag is not the determining factor for the blocked nuclear import of H/RSV-Gag^{WT}.
162 A possible explanation is that HIV-MA sterically hinders the NC-NLS, or alternatively, HIV-
163 MA counteracts the NC-NLS by anchoring the polyprotein to some feature in the cytoplasm
164 (30).

165 To locate HIV-MA residues important for the cytoplasmic retention of H/RSV-Gag^{WT},
166 we used previously characterized secondary structural domains to sequentially truncate α -helices
167 from the N-terminus of the H/RSV-Gag^{WT} backbone, leaving the starting Met followed by the α -
168 helix of interest (36). H/RSV-Gag^{H2} truncates helix-1 through the first four amino acids of helix-
169 2 (K30-H33) and contains the remainder of helix-2 through the end of HIV-MA (I34-Y132) (Fig
170 1A). H/RSV-Gag^{H3} truncates helix-1, helix-2, helix-2', and begins at the N-terminus of helix-3
171 (T55-Y132) (Fig 1A). H/RSV-Gag^{H5} truncates helix-1 through -4 and begins at the N-terminus
172 of helix-5 (D96-Y132) (Fig 1A). All three of the truncations of HIV-1 MA restored nuclear
173 cycling of H/RSV-Gag^{WT} (Fig 1B-C). Interestingly, H/RSV-Gag^{H2} and H/RSV-Gag^{H3} displayed
174 varying degrees of nuclear expression even in the absence of LMB (Fig 1B). These data

175 demonstrate that the nuclear retention H/RSV-Gag^{WT} requires the presence of helix-1 of HIV-1
176 MA.

177

178 *An alternative Gag mutant separating plasma membrane trafficking and nuclear cycling.*

179 Non-nuclear cycling H/RSV^{ΔEnv} pseudotypes were infectious, causing us to question the
180 importance and requirement of nuclear cycling during the RSV lifecycle. Previously described
181 mutants Myr1E and SuperM were presumed to overcome nuclear trafficking by enhancing
182 targeting to the plasma membrane resulting in the loss of genome incorporation (12, 18, 20).

183 However, the loss may also result from too rapid of virion escape excluding genome
184 incorporation. Parsing the mechanism requires separation of plasma membrane trafficking from
185 nuclear localization. To further probe the dominant NC-NLS, we performed a BLAST database
186 search for known polymorphisms at the characterized NC-NLS (15). We found one
187 polymorphism, NC-K36E, in the infectious clone (JS11C1) that was constructed from the
188 genomic viral sequence isolated from a chicken breed in a study by Cui and colleagues (37).

189 In the previous study by Lochmann and colleagues, the NC-NLS was removed by
190 changing all four positive charges to Ala (15). This Ala mutant represents a fairly significant
191 change in peptide composition and may have had unintended phenotypic consequences. Since
192 the study that identified JS11C1 was focused on general characterization and comparison of
193 avian leukosis viruses prevalent in indigenous agricultural chickens, specific amino acid
194 polymorphisms were probably not as carefully scrutinized and single, isolated divergent amino
195 acids may have arisen from sequencing artifacts. To test the phenotype of the polymorphism in
196 JS11C1, the NC-K36E mutation was engineered into RSV-Gag^{K36E} (Fig 2A). Because NC-
197 K36E is an opposite charge change, we also engineered the more neutral and more structurally

198 similar NC-K36M into RSV-Gag^{K36M}. At steady state, RSV-Gag^{WT}, RSV-Gag^{K36E}, and RSV-
199 Gag^{K36M} displayed diffuse and in many instances both diffuse and punctate cytoplasmic
200 expression of GFP (Fig 2B). LMB treatment resulted in nuclear accumulation of RSV-Gag^{WT},
201 but both RSV-Gag^{K36E} and RSV-Gag^{K36M} remained cytoplasmic even after one hour of treatment
202 (Fig 2C). These data demonstrated that the single point mutation found in JS11C1 NC was
203 sufficient to abolish the nuclear cycling of RSV Gag.

204

205 *RSV^{K36M} is replication competent but has a reduced rate of spread compared to RSV^{WT}.*

206 Compared to the RSV-Gag^{WT}, NC-K36E/M mutations were deficient in nuclear cycling.
207 To test whether these mutations were tolerated in infectious virus, we engineered NC-K36E/M
208 into an RSV^{ΔEnv} single-cycle construct with two fluorescence reporters (Fig 3A). Briefly,
209 crimson fluorescence protein is encoded outside of the viral genome, while EGFP is incorporated
210 into the viral genome. This construct is pseudotyped with Vesicular Stomatitis Virus
211 glycoprotein (VSV-g) upon transfection. Transfected cells fluoresce both crimson and green;
212 however, subsequently infected, un-transfected target cells fluoresce only green since virions
213 from the producer cell only encode for EGFP (Fig 3B). Distribution of fluorescent DF1 cells, as
214 measured by the ratio of infected to transfected cells, was then determined via flow cytometry
215 five days post transfection. RSV^{ΔEnv,K36M} and RSV^{ΔEnv,K36M} were able to infect target cells at
216 about 50% and 10% the rate of RSV^{ΔEnv}, respectively (N=6, p<0.01, pairwise Wilcoxon rank
217 sum test, Fig 3C).

218 To address the possibility of transfection or pseudotyping artifacts contributing to the
219 apparent infectiousness of the mutants, NC-K36E/M were engineered into replication competent
220 RCAS-GFP (RSV^{WT}, Fig 4A). RSV^{WT}, RSV^{K36E}, and RSV^{K36M} were then transfected into

221 separate dishes of DF1s. Both RSV^{K36E} and RSV^{K36M} were able to infect 75% or more cells
222 within two weeks. To compare kinetics, the virus producing cell-line was co-cultured with
223 uninfected target cells, starting at 1% of the total cell population, and a portion collected every
224 other day for flow cytometry. Since RSV^{ΔEnv,K36E} displayed more severe defects in the single-
225 cycle assay and RSV^{K36E} spread through tissue culture at a markedly slower rate than RSV^{K36M}
226 in preliminary testing (data not shown), RSV^{K36E} was not further tested. RSV^{K36M} spread
227 through tissue culture at a reduced rate compared to RSV^{WT}. RSV^{WT} spread to 93% of the
228 culture on day six, while RSV^{K36M} only spread to 72% on day six (N=5, p<0.01, pairwise
229 Wilcoxon rank sum test, Fig 4B). Together, the slowed kinetics of replication competent
230 RSV^{K36M} recapitulates the dysfunction seen in RSV^{ΔEnv,K36M}.

231 Lys and other positively charged amino acids in NC contribute to nucleic acid binding,
232 Gag multimerization, and binding dynamics at the plasma membrane (34, 38–44). To address if
233 the loss of the Lys in RSV^{K36E/M} contributes to dysfunction because of the lost NLS and not
234 simply to a lost basic residue (42–44), we engineered three other point mutations in NC where an
235 amino acid with a basic charge was changed to Met (NC-R18M, -R44M, and -K62M) and tested
236 function as described above. All three mutants displayed reduced spread through tissue culture
237 compared to RSV^{WT} on day six with RSV^{R18M} spreading to 60%, RSV^{R44M} to 72%, and RSV^{K62M}
238 to 65% (N=4-5, p<0.05, pairwise Wilcoxon rank sum test, Fig 4B). The reduction in spread
239 with these three mutants was as severe as with RSV^{K36M} (N=4-5, NS, pairwise Wilcoxon rank
240 sum test, Fig 4B) and is consistent with a deficiency in nucleic acid binding in contrast to the
241 inability to cycle through the nucleus.

242

243 *Replication competent RSV^{K36M} virus does not regain the ability to cycle.*

244 Multiple passages through tissue culture inherently increase the potential for rescue
245 mutants to arise. Mutant phenotypes, such as deficient nuclear cycling, can be rescued through
246 reversion of the mutation, which in the case of a single point mutation in RSV^{K36M} is likely and
247 could potentially explain the ability of the mutant to infect cells. Additionally, secondary
248 mutations may arise to counter the phenotype produced from the original mutation.
249 Furthermore, RSV^{K36M} may localize Gag differently in the context of full-length virus since
250 cellular localization of the RSV-Gag^{K36M} mutation was tested in a limited construct consisting of
251 a truncated Gag-GFP fusion protein. To address the discussed possibilities and address the
252 overall phenotype of full-length RSV^{K36M}, we performed immuno-fluorescence staining against
253 RSV-CA to visualize Gag localization. Briefly, DF1 cells infected with replication competent
254 virus from Fig 4 were plated on glass coverslips, treated with or without LMB (10 ng/mL) for 1
255 hr, and fixed in 5% PFA. Samples were blocked, probed with RbaRSV-CA, probed with
256 fluorescently labeled GtaRb, and nuclei stained with Hoechst. RSV-CA localization in relation
257 to Hoechst-stained nuclei was then visualized under confocal-microscopy. At steady state
258 without LMB treatment, both RSV^{WT} and RSV^{K36M} was expressed in the cytoplasm with no
259 Hoechst co-localization (Fig 5A, WT-left and K36M-left columns). After LMB (10 ng/mL)
260 treatment for 1 hr, RSV^{WT} was expressed in the nucleus with Hoechst co-localization and
261 noticeably less expression in the cytoplasm (Fig 5A, WT-right column). In contrast, close
262 inspection of LMB treated RSV^{K36M} infected cells showed a small amount of Gag nuclear
263 localization compared to untreated cells; however, the majority of the stain remained
264 cytoplasmic with no Hoechst co-localization (Fig 5A, K36M-right column). Localization of Gag
265 in RSV^{R18M}, RSV^{R44M}, and RSV^{K62M} infected cells displayed primarily nuclear accumulation
266 with a minor deficiency compared to RSV^{WT} (Fig 5B). Together, these data point to a lack of a

267 rescued nuclear cycling phenotype in RSV^{K36M} and suggest that nuclear cycling is not required
268 for RSV infectivity.

269

270 *Genomic RNA incorporation in RSV^{K36M} virus does not statistically differ from RSV^{WT}.*

271 As discussed in the introduction, Gag nuclear cycling was speculated to be the trans-
272 acting mechanism for guiding unspliced gRNA out of the nucleus for subsequent packaging into
273 virions (18–21). Infectivity loss of the previously described mutants was attributed to a loss in
274 gRNA virion incorporation (18, 20, 21). To address whether loss in gRNA virion incorporation
275 contributed to the decreased rate of spread of RSV^{K36M}, we quantified gRNA in virions from four
276 independent experiments. Briefly, RSV^{WT}, RSV^{K36M}, RSV^{R18M}, RSV^{R44M}, and RSV^{K62M} infected
277 as well as uninfected DF1s at the endpoint of the replication competent experiment (Fig 4) were
278 plated equally and equal amounts of media were collected and concentrated over a 20% sucrose
279 gradient. Equivalent volumes of concentrated media from the four samples were used in parallel
280 for immuno-blot against RSV-CA and qPCR.

281 Western blots show that relatively equal amounts of virus were produced from the
282 infected cells and were collected for each of the mutants compared to WT. Quantified RSV-CA
283 levels were not statistically different except between RSV^{WT} and RSV^{K62M} (N=4, p<0.05,
284 pairwise Wilcoxon rank sum test, Fig 6A). To quantify genome incorporation, we amplified a
285 172-base pair segment flanking the NC-NLS region in triplicate for each of four of the five
286 independent samples from Fig 4B. To address potential effects of improper endogenous reverse
287 transcriptase (RT) extension of genome in the RSV mutants due to improper gRNA binding by
288 NC, we performed the reverse transcription with exogenous Moloney MLV in addition to the
289 endogenous RT. We observed a small non-statistically significant decrease in RSV^{K36M},

290 RSV^{R18M}, RSV^{R44M}, and RSV^{K62M} gRNA incorporation compared to RSV^{WT} (N=3-4, * p<0.05,
291 pairwise Wilcoxon rank sum test, Fig. 6B). The observe non-significant trend may likely need
292 more sensitive assays to parse. Overall, these data suggest that per mL of media relatively equal
293 amounts of virus were produced with relatively equal amounts of genome incorporated in them.
294 Furthermore, these data point toward RSV^{K36M} playing a dysfunctional role in a different portion
295 of the viral life cycle and Gag nuclear cycling serving to enhance efficiency of viral spread.

296

297 **Discussion**

298 While the underlying mechanisms of Gag protein membrane binding and subsequent
299 escape of virions are being established and further refined, intermediate trafficking of Gag
300 proteins and association with gRNA remains elusive and difficult to test. This, in part, is due to
301 the difficulty of tracking individual proteins and other viral components from production to
302 incorporation into virions. When coupled with the multifunctional nature of viral proteins where
303 the same domain can be involved with many aspects across the whole viral lifecycle, this
304 problem is compounded (45, 46). For example, retroviral NC is involved with nucleic acid
305 binding during the late phase by binding and ensuring gRNA incorporation which also results in
306 boosting Gag multimerization (42, 47, 48). During the early phase, NC binds the tRNA^{Lys}
307 necessary for reverse transcription and aids in protecting gRNA/DNA in transit to the nucleus
308 (49). In the case of RSV, the Gag protein rapidly cycles into and out of the nucleus via NLSs in
309 MA and NC and an NES in p10 (9–16). While trafficking of gRNA out of the nucleus for
310 subsequent virion packaging has been implicated as the function of Gag nuclear cycling (9, 10,
311 18, 21), additional functions and requirement remained to be determined.

312

313 *Identifying how HIV-MA blocks nuclear cycling of H/RSV-Gag^{WT}.*

314 The role of RSV-Gag^{WT} nuclear cycling was first questioned upon observation that an
315 H/RSV-Gag^{WT} chimera where RSV-MA is replaced with HIV-MA did not cycle through the
316 nucleus but remained infectious (28). Previously described RSV non-nuclear cycling mutants
317 attributed the phenotype to strong plasma membrane targeting overcoming the NLS (12, 20).
318 The resulting non-infectious mutants had severe reductions in genome incorporation and both the
319 lack of infectivity and genome was attributed to the lack of nuclear cycling. However, plasma
320 membrane targeting resulted in increased budding efficiency and may have packaging
321 consequences for the virus separate from abolished nuclear cycling. By strongly targeting to the
322 plasma membrane, the virion likely assembles too quickly for proper incorporation of necessary
323 viral components like genome.

324 We hypothesized that HIV-MA myristoylation provided the more moderate plasma
325 membrane targeting resulting in the abolished nuclear cycling of H/RSV-Gag^{WT}. However,
326 introducing a known mutation (G2A) that abolishes myristoylation did not recover nuclear
327 cycling (35). Truncation of HIV-MA in an attempt to identify the reason for abolished nuclear
328 cycling revealed the first α -helix and basic residues from the N-terminal end of the second α -
329 helix to be important for blocking nuclear cycling. Close examination of the crystal structure of
330 HIV-MA shows that the first and second α -helices form a protrusion of basic residues (36).
331 Charged residues play many roles in cellular and viral functions. The truncation of the basic
332 residue protrusion likely causes a conformational change that masks the NC-NLS or removes a
333 strong targeting motif counteracting the NC-NLS of RSV-Gag^{WT} (Fig 1B), though more
334 experiments would be needed to probe the mechanism. H/RSV-Gag^{H3} likely displays
335 cytoplasmic steady state expression without LMB addition due to the removal of acidic residues

336 in helix-2 that mask the basic residues of helix-5 (Fig 1B). Further removal of helix-3 acidic
337 residues in H/RSV-Gag^{H5} likely fully un-masks the basic residues of helix-5, allowing for
338 stronger steady state cytoplasmic retention without LMB addition (Fig 1B).

339

340 *Separating plasma membrane trafficking from nuclear cycling with a minimal mutation.*

341 A single-cycle chimera is not representative of WT virus, so we sought a minimal RSV
342 mutant that separated plasma membrane targeting from nuclear cycling. We, thus, redirected our
343 efforts to the more centrally located NC-NLS, which would theoretically separate plasma
344 membrane binding from nuclear cycling. A polymorphism at position 36 of NC of RSV strain
345 JS11C1, is defective in Gag nuclear cycling. Distribution of the polymorphism reconstituted in
346 RSV-Gag^{K36E} as well as the less drastic RSV-Gag^{K36M} mutation is diffuse throughout the
347 cytoplasm, similar to WT virus and in contrast to the strong plasma membrane bound phenotype
348 of previously described non-nuclear cycling mutants. Furthermore, RSV^{K36M} remains replication
349 competent, albeit with modestly reduced rate of viral spread. Together, these data suggest that
350 plasma membrane trafficking and binding of RSV^{K36M} is similar to RSV^{WT}, albeit the defective
351 nuclear cycling.

352 The reduced rate of spread does not appear to be due to reduced genome incorporation
353 between RSV^{WT} and RSV^{K36M}. Basic amino acid residues are important for nucleic acid binding
354 (42–44). However, single basic amino acid to Met substitutions at other positions of NC neither
355 affected nuclear cycling nor reduced genome incorporation compared to WT, but reduced overall
356 rate of spread to the same level as RSV^{K36M}. This points toward an undetectable (with the assays
357 used here) gRNA binding deficiency from the lack of Gag nuclear cycling rather than overall
358 loss of gRNA packaging.

359 While it could be argued that even small amounts of Gag nuclear localization (as seen in
360 Fig 5A) is enough to traffic gRNA out of the nucleus, one would also expect a more severe loss
361 in rate of spread with a mutation in the NLS as compared to basic residue to Met mutations not
362 in the NLS. The rate of spread is similarly reduced in all NC mutants tested compared to RSV^{WT}
363 (Fig 4B), nuclear localization was not abolished in RSV^{R18M}, RSV^{R44M}, or RSV^{K62M} (Fig 5B),
364 and genome was incorporated similarly between all mutants (Fig 6B). Together, these pieces of
365 evidence suggest that the dysfunction in replication lies in nucleic acid binding and not the
366 ability to cycle through the nucleus.

367

368 *Conclusions.*

369 Here, we show that the distinct nuclear cycling that is characteristic of RSV Gag is not
370 required for viral infectivity. However, RSV Gag nuclear cycling is an intriguing phenotype
371 whose function remains elusive. In contrast to “complex” retroviruses like HIV, RSV seems to
372 rely on cis-acting elements on the genome in conjunction with host cellular components to export
373 the genome out of the nucleus similar to other “simple” retroviruses. Gag nuclear cycling,
374 however, boosts rate of viral spread and may be a result of more effective gRNA-virion
375 assembly. Further investigation to identify function may reveal insights to viral protein
376 trafficking and host-virus interactions such as the evolution of trans-acting elements for genome
377 export.

378

379 **Materials and Methods**

380 *Plasmid constructs*

381 RSV Gag.3h-GFP (John Wills, Pennsylvania State University) contains full length Gag
382 with PR removed and fused to GFP and will be referred to as RSV-Gag^{WT}. Gag.3h-GFP^{L219A}
383 was previously described and will be referred to as RSV-Gag^{L219A} (13). RSV-Gag^{ΔMA} was
384 generated first by PCR amplification of RSV-Gag^{WT} between the start of p10 and the p10 FseI
385 site to engineer an Xhol I site and start codon directly upstream of p10. Secondly, we used
386 restriction digest (NEB restriction enzymes) to remove the region between XhoI upstream of MA
387 and FseI. Products from these two reactions were ligated via In-Fusion HD Cloning Kit
388 (Clontech®, 639650). RSV-Gag^{ΔNC} (Volker Vogt, Cornell University) is Gag with NC and PR
389 removed and fused to GFP. RSV-CANC was engineered by PCR amplification of the CA region
390 of RCAS-GFP (Stephen Hughes, NCI-Frederick) to introduce a SacI site followed by a start
391 codon at the 5' end leading to the SbfI site in the middle of CA. RSV-Gag^{WT} was then digested
392 with SacI and SbfI and ligated to the amplified piece. RSV-Gag^{K36E/M} was engineered into RSV-
393 Gag^{WT} and RSV-Gag^{L219A} by restriction digest to remove the region between SbfI at CA and
394 PspOMI at EGFP with subsequent ligation of PCR products via In-Fusion HD Cloning.

395 H/RSV-Gag^{WT} has been previously described (28). Truncation mutants were generated
396 by PCR amplification of H/RSV-Gag^{WT} with a forward primer that started at the SacI restriction
397 site, spanned the start Met, and bridged to the helix of interest with a reverse primer from the
398 FseI restriction site. H/RSV-Gag^{WT} was then digested with SacI and FseI and products were
399 ligated via In-Fusion HD Cloning. The resulting construct thus contained the starting Met
400 followed by the helices of interest.

401 RCAS-GFP was used for replication competent RSV^{WT}. RSV^{K36E/M} was engineered by
402 two-step PCR amplification between SbfI at CA and SnaBI at RT with site-directed mutagenesis
403 of K36, restriction digest to remove the region between the two sites, and ligation of products via

404 In-Fusion HD Cloning. NC-R18M, -R44M, and -K62M mutations were engineered into RSV^{WT}
405 by two-step PCR amplification between SacII in CA and SnaBI in RT with site directed
406 mutagenesis at the referenced amino acid positions, restriction digest to remove the region
407 between the two restriction sites, and ligation of products via In-Fusion HD Cloning. RSV^{ΔEnv} in
408 the two-color single-cycle provirus system has been previously described (50). Briefly, Env was
409 removed from RSV^{WT} and was further modified to contain a second reporter—in this case
410 Crimson—outside of the downstream LTR. RSV^{ΔEnv,K36E/M} was generated by restriction digest
411 of RSV^{ΔEnv} and RSV^{K36E/M} at SacII at CA and AgeI at IN, and ligation of products. The two-
412 color reporter system is pseudotyped with VSV-g (NIH AIDS Reagent Program) on a separate
413 plasmid (51).

414

415 *Cells*

416 The DF1 cell line was obtained (ATCC, CRL-12203) and maintained in Dulbecco's
417 modified Eagle's medium (DMEM, Sigma, D6429-500ML) supplemented with 7.5% fetal
418 bovine serum (FBS, Gibco, 10437-028), 1% chicken serum (Sigma, C5405), 2 mM L-glutamine
419 (Sigma, G7513-100ML), 1 mM sodium pyruvate (Sigma, S8636-100ML), 10 mM minimal
420 essential medium nonessential amino acids (Sigma, M7145-100ML), and 1% minimal essential
421 medium vitamins (Sigma, M6895-100ML). DF1s stably infected with RSV^{WT} and derived
422 mutants were similarly maintained.

423

424 *Virus production*

425 RSV VLPs were produced by FuGENE® 6 Transfection Reagent (Promega, E2691)
426 transfection of DF1s at 50% confluence with 1 μg of viral plasmid. For single-cycle virus, VSV-

427 g was added in a 1:9 ratio. Media containing virus (Viral Media) was collected two days post
428 transfection by aspiration. Viral media was then frozen at -80°C for a minimum of 1 hr to lyse
429 cells, thawed in a 37°C water bath, precleared by centrifugation at 3000 x g for 5 min, and
430 supernatant collected by aspiration. Aliquots were stored at -80°C and subsequently used for
431 assays. For assays requiring viral concentration, supernatant collected after preclearing was
432 pelleted through a 100 µL 20% sucrose cushion (20% sucrose, PBS) for 2 h at 30000 x g at 4°C.
433 Supernatant and sucrose buffer was aspirated off leaving a small amount (~10 µL) of sucrose
434 buffer so as not to aspirate the viral pellet. Viral pellets were stored at -80°C.

435

436 *Infectivity assays and flow cytometry*

437 For single-cycle infectivity assays, DF1 cells were transfected at 50% confluence in 6-
438 well format. Five days post transfection, all cells were collected for flow cytometry. For
439 replication competent infectivity assays, DF1 cells at 50% confluence were transfected in 6-well
440 format. To remove the variable of both transfected and infected cells in transfected culture, viral
441 media was collected five days post transfection. Fresh cells were then plated in separate 60 mm
442 dishes and transduced with 500uL of viral media. Cells were then passaged till the population of
443 GFP (+) cells approached 100% as determined by flow cytometry. Infected and non-infected
444 cells were then co-cultured starting at 1% infected. Half of the cell population was collected
445 every two days for flow cytometry.

446 Cells were collected by washing with PBS and treated with 10 mM TrypLE™ Express
447 Enzyme (Gibco; Cat. No. 12605028). Lifted cells were then collected with PBS and added to
448 10% PFA to a final concentration of 5%. After 10–20 min incubation at room temperature, the

449 cells were centrifuged at 300 x g for 5 min, supernatant removed, and 300 μ L of PBS added.

450 Cells were analyzed for fluorescence using a BD Accuri C6 flow cytometer.

451

452 *Microscopy*

453 Fluorescence microscopy was performed on an Olympus IX70 inverted microscope using

454 a Qimaging Rolera Fast camera and Qimaging software. Cells were first plated on glass bottom

455 dishes (MatTek, P35G-1.5-14-C) and transfected with the afore mentioned plasmids. 16-18 hrs

456 post transfection cells were imaged followed by LMB treatment and subsequent imaging.

457 Images were captured using a 100x oil immersion objective. Gain was adjusted so as not to

458 over-expose cells in focus. Confocal fluorescence microscopy was performed on a Leica TCS

459 SP8 inverted spectral confocal microscope. Cells from the replication competent assay were first

460 plated on glass coverslips in 6-well format. 24 hrs post plating, cells were fixed with 5% PFA.

461 Cells were blocked in 5% goat serum in PBST (10% Tween-20) for 1 hr at room temperature,

462 followed by incubation in RSV-CA antibody raised in rabbit (NCI-Frederick, NCI 8/96) at a

463 1:1000 dilution in blocking buffer. Cells were then washed with PBST (10% Tween-20) 3 x

464 5min, followed by incubation with G α Rabbit AlexaFluor 555 at a 1:10000 dilution in blocking

465 buffer. Cells were washed once with PBST and 1uL of Hoechst, followed by 3 x 5 min washes

466 with PBST. Cover slips were then mounted on microscope slides, sealed with clear nail polish,

467 and stored at 4°C. Images were captured using a 100x oil immersion objective and z-stacks were

468 captured as optimized by Leica LASX software.

469

470 *Western Blot*

471 One mL of supernatant collected after preclearing thawed media containing virus was
472 pelleted via centrifugation through a 20% sucrose cushion (20% sucrose, PBS) for 2 h at 30000 x
473 g at 4°C. Supernatant and sucrose buffer were aspirated off, leaving a small amount of sucrose
474 buffer so as not to aspirate the viral pellet (~10 µL). Ten µL of 2x sample buffer (50 mM Tris,
475 2% sodium dodecyl sulfate [SDS], 20% glycerol, 5% β-mercaptoethanol) was added to pelleted
476 virus and heated to 95°C for 5 min before loading.

477 Cell samples were washed with PBS and trypsinized with 10 mM EDTA. Cells were
478 then collected with PBS, centrifuged at 300 x g for 5 min, and supernatant removed. Twenty µL
479 of RIPA extraction buffer with protease inhibitor was then added to each sample (52). The
480 samples were then kept on ice and vortexed every 5 min for 20 min, followed by centrifugation
481 at 10000 rpm for 10 min at 4 °C. Supernatant was then transferred to a new tube, 20 µL of 2x
482 sample buffer added, and heated to 95 °C for 5 min before loading.

483 Samples were separated on a 10% SDS-PAGE gel and transferred onto a 0.22 µm pore
484 size polyvinylidene difluoride (PVDF) membrane. Membranes were blocked for 1 hr at room
485 temperature with 4% nonfat dry milk in PBST (10% Tween-20). Membranes were then
486 incubated with anti-RSV-CA antibody raised in rabbit (NCI-Frederick, NCI 8/96) at a 1:500
487 dilution in blocking solution for 1 hr at room temperature. After blots were washed with PBST
488 (3 x for 5 min), a goat anti-rabbit peroxidase (HRP)-conjugated secondary antibody (Sigma,
489 A0545) was applied at 1:10,000 dilution in blocking solution. After 1 hr, blots were again
490 washed 3x with PBST and imaged. Immobilon Classico Western HRP substrate (Millipore) was
491 used for visualization of the membranes with a chemiluminescence image analyzer (UVP
492 BioSpectrum 815 Imaging System).

493

494 *Genome incorporation via qPCR*

495 One mL of supernatant collected after preclearing thawed media containing virus was
496 pelleted via centrifugation through a 100 μ L 20% sucrose cushion (20% sucrose, PBS) for 2 h at
497 30000 x g at 4°C. Supernatant and sucrose buffer were aspirated off, leaving a small amount of
498 sucrose buffer so as not to aspirate the viral pellet (~10 μ L). Sample (~5 μ L) was reverse
499 transcribed with added Moloney MLV. Virus with 0.5 μ L each of 100 μ M Oligo-dT and 100
500 μ M random hexamers suspended to 6.5 μ L dH₂O was incubated at 65°C for five min followed by
501 ice bath. Clonetech SMART MMLV RT 5xFirst Strand buffer, 10 mM dNTP mix 100 mM
502 DTT, and SMART MMLV RT was then added as per the manufacturer's protocol. Samples
503 were then incubated at 42°C for 2 hrs followed by 85°C for five min to heat kill the RT.

504 Reverse transcribed cDNA was then carried forward for qPCR via a BioRad CFX-
505 Connect Real-Time PCR thermal-cycler. 3 μ L of cDNA was used in conjunction with the
506 BioRad iTaq Universal SYBR Green Supermix as per the manufacturer's protocol for 10 μ L
507 reactions in a semi-hard qPCR 96-well plate. Each sample was plated in triplicate on the 96-well
508 plate. Known dilutions of RSV^{WT} plasmid were used for standard curve calculation. Using the
509 CFX Maestro software, data was exported as an Excel spreadsheet.

510

511 *Data analysis*

512 Flow cytometry data was analyzed using FlowJoTM software (53). Values for
513 fluorescence were exported to Excel spreadsheet. Images were analyzed using Fiji (ImageJ)
514 (54). Western blot images were converted to 8-bit, Fiji's gel analysis tools used to calculate
515 density, and values exported to an Excel spreadsheet. qPCR data was outputted into Excel
516 spreadsheets. Excel spreadsheets were formatted for statistical analysis via R (55) and exported

517 to CSV format. RStudio was used to analyze data and create figures (56). UGene was used for
518 plasmid cloning, sequence analysis, and multiple sequence alignment image generation (57).
519 Final figures were prepared using Inkscape (58).

520

521 **Acknowledgments**

522 We thank the University of Missouri DNA Core Facility for sequencing support. We
523 also thank the University of Missouri Molecular Cytology Core facility for confocal microscopy
524 support. This work was supported by the National Institute of Allergy and Infectious Diseases
525 (NIAID; <https://www.niaid.nih.gov>) under award R21AI143363 to MCJ.

526

527 **References**

528 1. Henderson BR, Percipalle P. 1997. Interactions between HIV Rev and nuclear import and
529 export factors: the Rev nuclear localisation signal mediates specific binding to human
530 importin-beta. *J Mol Biol* 274:693–707.

531 2. Truant R, Cullen BR. 1999. The arginine-rich domains present in human immunodeficiency
532 virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization
533 signals. *Mol Cell Biol* 19:1210–1217.

534 3. Neville M, Stutz F, Lee L, Davis LI, Rosbash M. 1997. The importin-beta family member
535 Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear
536 export. *Curr Biol* 7:767–775.

537 4. Wolff B, Sanglier JJ, Wang Y. 1997. Leptomycin B is an inhibitor of nuclear export:
538 inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1
539 (HIV-1) Rev protein and Rev-dependent mRNA. *Chem Biol* 4:139–147.

540 5. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, Hammarskjöld ML. 1994. A
541 small element from the Mason-Pfizer monkey virus genome makes human
542 immunodeficiency virus type 1 expression and replication Rev-independent. *Proc Natl
543 Acad Sci U S A* 91:1256–1260.

544 6. Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK. 1994. Continuous propagation of
545 RRE(-) and Rev(-)RRE(-) human immunodeficiency virus type 1 molecular clones
546 containing a cis-acting element of simian retrovirus type 1 in human peripheral blood
547 lymphocytes. *J Virol* 68:7944–7952.

548 7. Ernst RK, Bray M, Rekosh D, Hammarskjöld ML. 1997. A structured retroviral RNA
549 element that mediates nucleocytoplasmic export of intron-containing RNA. *Mol Cell Biol*
550 17:135–144.

551 8. Sakuma T, Davila JI, Malcolm JA, Kocher J-PA, Tonne JM, Ikeda Y. 2014. Murine
552 leukemia virus uses NXF1 for nuclear export of spliced and unspliced viral transcripts. *J*
553 *Virol* 88:4069–4082.

554 9. Parent LJ. 2011. New insights into the nuclear localization of retroviral Gag proteins.
555 *Nucleus* 2:92–97.

556 10. Kaddis Maldonado RJ, Parent LJ. 2016. Orchestrating the Selection and Packaging of
557 Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors. *Viruses* 8.

558 11. Stake MS, Bann DV, Kaddis RJ, Parent LJ. 2013. Nuclear trafficking of retroviral RNAs
559 and Gag proteins during late steps of replication. *Viruses* 5:2767–2795.

560 12. Scheifele LZ, Garbitt RA, Rhoads JD, Parent LJ. 2002. Nuclear entry and CRM1-dependent
561 nuclear export of the Rous sarcoma virus Gag polyprotein. *Proc Natl Acad Sci U S A*
562 99:3944–3949.

563 13. Scheifele LZ, Ryan EP, Parent LJ. 2005. Detailed mapping of the nuclear export signal in
564 the Rous sarcoma virus Gag protein. *J Virol* 79:8732–8741.

565 14. Butterfield-Gerson KL, Scheifele LZ, Ryan EP, Hopper AK, Parent LJ. 2006. Importin-beta
566 family members mediate alpharetrovirus gag nuclear entry via interactions with matrix and
567 nucleocapsid. *J Virol* 80:1798–1806.

568 15. Lochmann TL, Bann DV, Ryan EP, Beyer AR, Mao A, Cochrane A, Parent LJ. 2013. NC-
569 mediated nucleolar localization of retroviral gag proteins. *Virus Res* 171:304–318.

570 16. Rice BL, Stake MS, Parent LJ. 2020. TNPO3-Mediated Nuclear Entry of the Rous Sarcoma
571 Virus Gag Protein Is Independent of the Cargo-Binding Domain. *Journal of Virology* 94.

572 17. Garbitt RA, Bone KR, Parent LJ. 2004. Insertion of a classical nuclear import signal into
573 the matrix domain of the Rous sarcoma virus Gag protein interferes with virus replication. *J
574 Virol* 78:13534–13542.

575 18. Garbitt-Hirst R, Kenney SP, Parent LJ. 2009. Genetic evidence for a connection between
576 Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. *J Virol* 83:6790–
577 6797.

578 19. Garbitt RA, Albert JA, Kessler MD, Parent LJ. 2001. trans-acting inhibition of genomic
579 RNA dimerization by Rous sarcoma virus matrix mutants. *J Virol* 75:260–268.

580 20. Callahan EM, Wills JW. 2003. Link between genome packaging and rate of budding for
581 Rous sarcoma virus. *J Virol* 77:9388–9398.

582 21. Gudleski N, Flanagan JM, Ryan EP, Bewley MC, Parent LJ. 2010. Directionality of
583 nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of
584 karyopherins and viral RNA. *Proc Natl Acad Sci U S A* 107:9358–9363.

585 22. Ogert RA, Lee LH, Beemon KL. 1996. Avian retroviral RNA element promotes unspliced
586 RNA accumulation in the cytoplasm. *J Virol* 70:3834–3843.

587 23. Ogert RA, Beemon KL. 1998. Mutational analysis of the rous sarcoma virus DR
588 posttranscriptional control element. *J Virol* 72:3407–3411.

589 24. LeBlanc JJ, Uddowla S, Abraham B, Clatterbuck S, Beemon KL. 2007. Tap and Dbp5, but
590 not Gag, are involved in DR-mediated nuclear export of unspliced Rous sarcoma virus
591 RNA. *Virology* 363:376–386.

592 25. Simpson SB, Zhang L, Craven RC, Stoltzfus CM. 1997. Rous sarcoma virus direct repeat
593 cis elements exert effects at several points in the virus life cycle. *J Virol* 71:9150–9156.

594 26. Simpson SB, Guo W, Winistorfer SC, Craven RC, Stoltzfus CM. 1998. The upstream,
595 direct repeat sequence of Prague A Rous sarcoma virus is deficient in mediating efficient
596 Gag assembly and particle release. *Virology* 247:86–96.

597 27. Aschoff JM, Foster D, Coffin JM. 1999. Point mutations in the avian sarcoma/leukosis
598 virus 3' untranslated region result in a packaging defect. *J Virol* 73:7421–7429.

599 28. Baluyot MF, Grosse SA, Lyddon TD, Janaka SK, Johnson MC. 2012. CRM1-dependent
600 trafficking of retroviral Gag proteins revisited. *J Virol* 86:4696–4700.

601 29. Vlach J, Saad JS. 2015. Structural and molecular determinants of HIV-1 Gag binding to the
602 plasma membrane. *Front Microbiol* 6:232.

603 30. Dick RA, Vogt VM. 2014. Membrane interaction of retroviral Gag proteins. *Front*
604 *Microbiol* 5:187.

605 31. Nadaraia-Hoke S, Bann DV, Lochmann TL, Gudleski-O'Regan N, Parent LJ. 2013.
606 Alterations in the MA and NC domains modulate phosphoinositide-dependent plasma
607 membrane localization of the Rous sarcoma virus Gag protein. *J Virol* 87:3609–3615.

608 32. Doktorova M, Heberle FA, Kingston RL, Khelashvili G, Cuendet MA, Wen Y, Katsaras J,
609 Feigenson GW, Vogt VM, Dick RA. 2017. Cholesterol Promotes Protein Binding by
610 Affecting Membrane Electrostatics and Solvation Properties. *Biophys J* 113:2004–2015.

611 33. Chang LJ, Stoltzfus CM. 1985. Cloning and nucleotide sequences of cDNAs spanning the
612 splice junctions of Rous sarcoma virus mRNAs. *J Virol* 53:969–972.

613 34. Mercredi PY, Bucca N, Loeliger B, Gaines CR, Mehta M, Bhargava P, Tedbury PR,
614 Charlier L, Floquet N, Muriaux D, Favard C, Sanders CR, Freed EO, Marchant J, Summers
615 MF. 2016. Structural and Molecular Determinants of Membrane Binding by the HIV-1
616 Matrix Protein. *J Mol Biol* 428:1637–1655.

617 35. Göttlinger HG, Sodroski JG, Haseltine WA. 1989. Role of capsid precursor processing and
618 myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1.
619 *Proc Natl Acad Sci U S A* 86:5781–5785.

620 36. Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI. 1996. Crystal
621 structures of the trimeric human immunodeficiency virus type 1 matrix protein:
622 implications for membrane association and assembly. *Proc Natl Acad Sci USA* 93:3099–
623 3104.

624 37. Cui N, Su S, Chen Z, Zhao X, Cui Z. 2014. Genomic sequence analysis and biological
625 characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from
626 indigenous chickens. *J Gen Virol* 95:2512–2522.

627 38. Kempf N, Postupalenko V, Bora S, Didier P, Arntz Y, de Rocquigny H, Mély Y. 2015. The
628 HIV-1 nucleocapsid protein recruits negatively charged lipids to ensure its optimal binding
629 to lipid membranes. *J Virol* 89:1756–1767.

630 39. Dick RA, Datta SAK, Nanda H, Fang X, Wen Y, Barros M, Wang Y-X, Rein A, Vogt VM.
631 2015. Hydrodynamic and Membrane Binding Properties of Purified Rous Sarcoma Virus
632 Gag Protein. *J Virol* 89:10371–10382.

633 40. Dick RA, Barros M, Jin D, Lösche M, Vogt VM. 2015. Membrane Binding of the Rous
634 Sarcoma Virus Gag Protein Is Cooperative and Dependent on the Spacer Peptide Assembly
635 Domain. *J Virol* 90:2473–2485.

636 41. Jin J, Sturgeon T, Weisz OA, Mothes W, Montelaro RC. 2009. HIV-1 matrix dependent
637 membrane targeting is regulated by Gag mRNA trafficking. *PLoS One* 4:e6551.

638 42. Sun M, Grigsby IF, Gorelick RJ, Mansky LM, Musier-Forsyth K. 2014. Retrovirus-specific
639 differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for
640 genomic RNA packaging. *J Virol* 88:1271–1280.

641 43. Lee E, Alidina A, May C, Linial ML. 2003. Importance of basic residues in binding of rous
642 sarcoma virus nucleocapsid to the RNA packaging signal. *J Virol* 77:2010–2020.

643 44. Lee E-G, Linial ML. 2004. Basic residues of the retroviral nucleocapsid play different roles
644 in gag-gag and Gag-Psi RNA interactions. *J Virol* 78:8486–8495.

645 45. Engelman A, Cherepanov P. 2012. The structural biology of HIV-1: mechanistic and
646 therapeutic insights. *Nat Rev Microbiol* 10:279–290.

647 46. Freed EO. 2015. HIV-1 assembly, release and maturation. *Nat Rev Microbiol* 13:484–496.

648 47. El Meshri SE, Dujardin D, Godet J, Richert L, Boudier C, Darlix JL, Didier P, Mély Y, de
649 Rocquigny H. 2015. Role of the nucleocapsid domain in HIV-1 Gag oligomerization and
650 trafficking to the plasma membrane: a fluorescence lifetime imaging microscopy
651 investigation. *J Mol Biol* 427:1480–1494.

652 48. Stewart-Maynard KM, Cruceanu M, Wang F, Vo M-N, Gorelick RJ, Williams MC,
653 Rouzina I, Musier-Forsyth K. 2008. Retroviral nucleocapsid proteins display nonequivalent
654 levels of nucleic acid chaperone activity. *J Virol* 82:10129–10142.

655 49. Lyonnais S, Gorelick RJ, Heniche-Boukhalfa F, Bouaziz S, Parissi V, Mouscadet J-F,
656 Restle T, Gatell JM, Le Cam E, Mirambeau G. 2013. A protein ballet around the viral
657 genome orchestrated by HIV-1 reverse transcriptase leads to an architectural switch: from
658 nucleocapsid-condensed RNA to Vpr-bridged DNA. *Virus Res* 171:287–303.

659 50. Jorgenson RL, Vogt VM, Johnson MC. 2009. Foreign glycoproteins can be actively
660 recruited to virus assembly sites during pseudotyping. *J Virol* 83:4060–4067.

661 51. Chang L-J, Urlacher V, Iwakuma T, Cui Y, Zucali J. 1999. Efficacy and safety analyses of
662 a recombinant human immunodeficiency virus type 1 derived vector system. *Gene Ther*
663 6:715–728.

664 52. 2006. RIPA buffer. *Cold Spring Harb Protoc* 2006:pdb.rec10035.

665 53. 2021. FlowJoTM software for Mac. Becton, Dickinson and Company, Ashland, OR.

666 54. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
667 Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K,
668 Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis.
669 *Nat Methods* 9:676–682.

670 55. R Core Team. 2021. R: A Language and Environment for Statistical Computing. R
671 Foundation for Statistical Computing, Vienna, Austria.

672 56. RStudio Team. 2015. RStudio: Integrated Development Environment for R. RStudio, Inc.,
673 Boston, MA.

674 57. Okonechnikov K, Golosova O, Fursov M, UGENE team. 2012. Unipro UGENE: a unified
675 bioinformatics toolkit. *Bioinformatics* 28:1166–1167.

676 58. 2021. Inkscape.

677

678 **Figure Legends**

679

680 **Figure 1. Subcellular expression of various Gag-GFP fusion proteins.**

681 (A) Schematic of Gag-GFP fusion proteins tested. RSV^{WT}, RSV^{L219A} (lacks a functional NES),
682 RSV^{ΔMA} (removes one NLS), RSV^{ΔNC} (removes another NLS), and RSV-CANC were tested in
683 parallel. H/RSV-Gag^{WT} was further probed with the G2A mutation (blocks myristylation thus
684 plasma membrane targeting) and α -helix truncations from HIV-MA. α -Helices are labeled in red
685 and linking peptides, consisting of strands and loops, are in grey. For α -helix truncations, the
686 starting Met was kept followed by the α -helix of interest. H/RSV-Gag^{H2} truncates helix-1
687 through the first four amino acids of helix-2 (K30-H33) and contains the remainder of helix-2
688 through the end of HIV-MA (I34-Y132). H/RSV-Gag^{H3} truncates helix-1, helix-2, helix-2', and
689 begins at the N-terminus of helix-3 (T55-Y132). H/RSV-Gag^{H5} truncates helix-1 through -4 and
690 begins at the N-terminus of helix-5 (D96-Y132). (B-C) Representative images of steady state
691 expression of Gag-GFP fusion proteins in DF1 cells. (B) Cells were imaged starting 16-18 hrs
692 post transfection and (C) imaged after LMB (10 ng/mL) treatment for 1 hr.

693

694 **Figure 2. RSV-Gag^{K36E/M} mutants are defective in nuclear cycling.**

695 (A) Multiple sequence alignment of RSV-NC between the WT consensus and strain JS11C1.
696 There is a K36E polymorphism in the NC-NLS. Since Glu is the opposite charge from Lys, both
697 Glu and Met mutations were tested for nuclear import activity. Mutations were made in the WT
698 backbone (panel A). (B) Representative images of steady state expression of RSV-Gag^{WT} and
699 RSV-Gag^{K36E/M} EGFP fusion proteins in DF1 cells. Cells were imaged starting 16-18 hrs post

700 transfection. (C) Representative images of expression of fusion proteins in cells from the
701 previous panel after LMB (10 ng/mL) treatment for 1 hr.

702

703 **Figure 3. Gag NLS mutants are infectious in single-cycle virus.**

704 (A) Schematic of the single-cycle provirus tested (NC-K36E/M mutations not shown). Since the
705 Crimson fluorescence gene is located outside of the viral genome (indicated by the LTRs),
706 transfected cells are indicated by both GFP (+) and Crimson (+) cells, while subsequent
707 infections are indicated by only GFP (+) cells. (B) Representative flow plots for single-cycle
708 infection assays using a 2-color reporter system with and without VSV-g. Samples were
709 collected five days post transfection for flow cytometry. (C) Ratio of infected to transfected cells
710 normalized to WT. Statistics: N=6, ** p<0.01, pairwise Wilcoxon rank sum test.

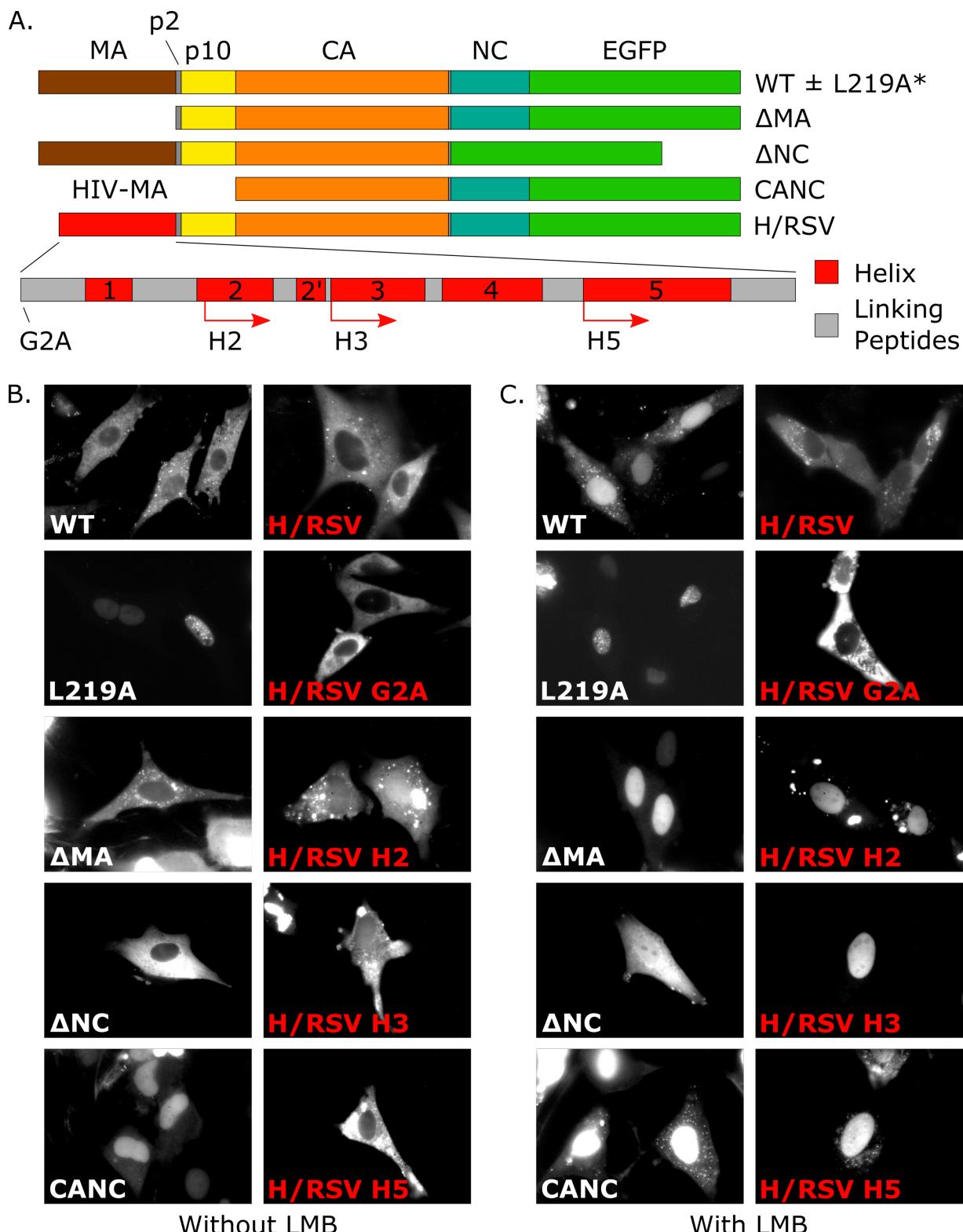
711

712 **Figure 4. Replication competent RSV^{K36M} virus spreads albeit at a slower rate than WT.**

713 Since RSV^{ΔEnv/K36M} displayed near RSV^{ΔEnv} levels of spread compared to RSV^{ΔEnv/K36E} in Fig 3,
714 experiments carried forward used RSV^{K36M} to reduce assay times. (A) Schematic of replication
715 competent virus with an EGFP reporter in place of Src (K36M mutation not shown). (B)
716 Replication competent virus spread through cell culture as measured by percent GFP (+) cells.
717 Briefly, uninfected target DF1 cells were co-cultured with 1% fully infected cells. Samples were
718 collected every other day for EGFP quantification via flow cytometry. Since positive amino
719 acids in NC are important for nucleic acid binding, three other positive residues in NC were
720 separately mutated to Met (RSV^{R18M}, RSV^{R44M}, and RSV^{K62M}) to test decreased nucleic acid
721 binding contributing to infectivity loss in RSV^{K36M}. Statistics: N=4-5; NS Not Significant, *
722 p<0.05, ** p<0.01; pairwise Wilcoxon rank sum test.

723

724 **Figure 5. Replication competent RSV^{K36M} is defective in nuclear cycling.**

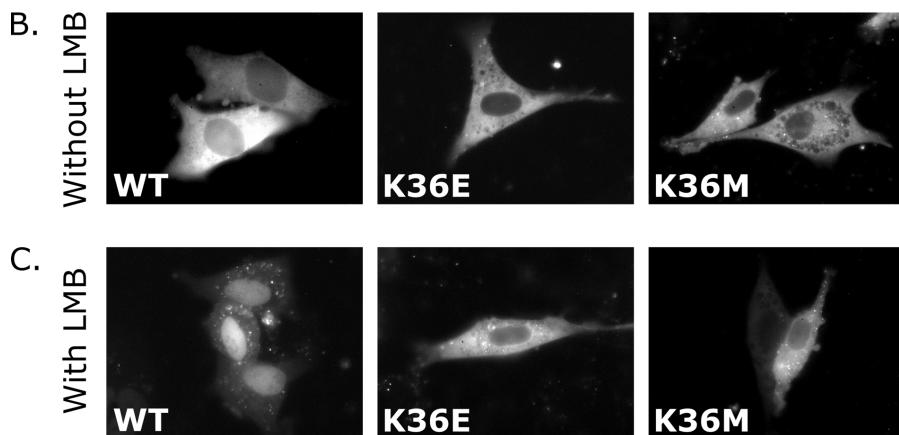
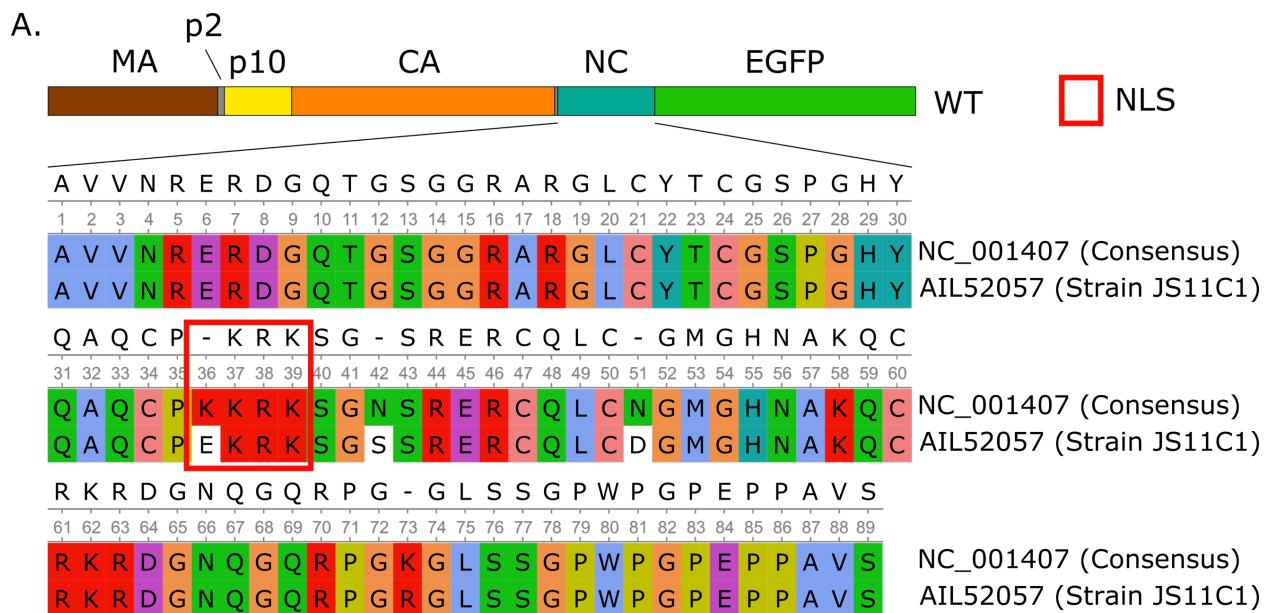

725 Immunofluorescence stains against RSV-CA at steady state. Briefly, DF1 cells infected with
726 replication competent virus from Fig 4 were plated on glass coverslips, treated with or without
727 LMB (10 ng/mL) for 1 hr, and fixed in 5% PFA. Samples were blocked, probed with Rb α RSV-
728 CA, probed with fluorescently labeled G α Rb, and nuclei stained with Hoechst. After mounting
729 on slides, cells were imaged with a confocal microscope. (A-B) Representative images and z-
730 stacks of (A) RSV^{WT} and RSV^{K36M} virus as well as (B) RSV^{R18M}, RSV^{R44M}, and RSV^{K62M} virus
731 with and without LMB treatment. Scale Bar: 20 μ m.

732

733 **Figure 6. Genomic RNA incorporation in viral particles does not differ between WT and**
734 **mutants**

735 Infected cells at the end of the replication competent experiment (Fig 4) were plated equally and
736 equal amounts of media were collected and concentrated over a 20% sucrose gradient.
737 Equivalent volumes of concentrated media from the four samples were used in parallel for
738 immuno-blot against RSV-CA and qPCR. (A) Quantification and representative western blot
739 against RSV-CA. (B) Copy number per mL of pre-cleared media normalized to ratios of RSV-
740 CA from western quantification (panel A). After reverse transcription, viral cDNA was
741 amplified flanking NC and mutations were confirmed via sequencing (data not shown).
742 Statistics: N=3-4; NS Not Significant, * p<0.05; pairwise Wilcoxon rank sum test.

743 **Figures**



744

Without LMB

With LMB

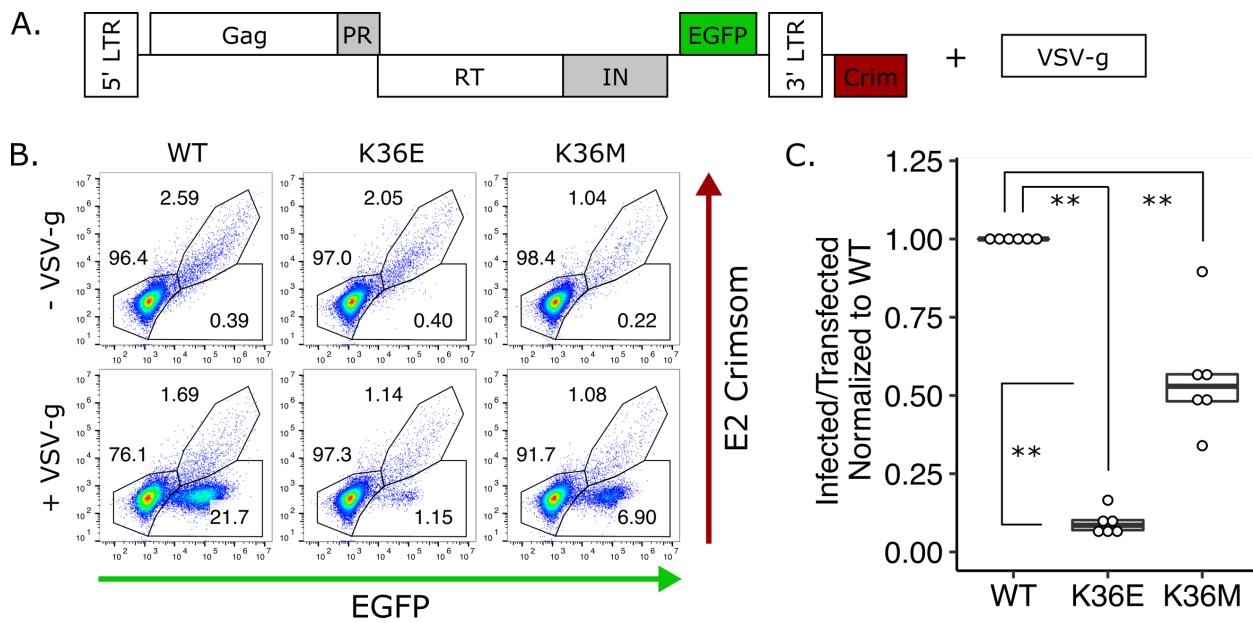
745 **Figure 1. Subcellular expression of various Gag-GFP fusion proteins.**

746 (A) Schematic of Gag-GFP fusion proteins tested. RSV^{WT}, RSV^{L219A} (lacks a functional NES),
747 RSV^{ΔMA} (removes one NLS), RSV^{ΔNC} (removes another NLS), and RSV-CANC were tested in
748 parallel. H/RSV-Gag^{WT} was further probed with the G2A mutation (blocks myristoylation thus
749 plasma membrane targeting) and α -helix truncations from HIV-MA. α -Helices are labeled in red
750 and linking peptides, consisting of strands and loops, are in grey. For α -helix truncations, the
751 starting Met was kept followed by the α -helix of interest. H/RSV-Gag^{H2} truncates helix-1
752 through the first four amino acids of helix-2 (K30-H33) and contains the remainder of helix-2
753 through the end of HIV-MA (I34-Y132). H/RSV^{H3} truncates helix-1, helix-2, helix-2', and
754 begins at the N-terminus of helix-3 (T55-Y132). H/RSV-Gag^{H5} truncates helix-1 through -4 and
755 begins at the N-terminus of helix-5 (D96-Y132). (B-C) Representative images of steady state
756 expression of Gag-GFP fusion proteins in DF1 cells. (B) Cells were imaged starting 16-18 hrs
757 post transfection and (C) imaged after LMB (10 ng/mL) treatment for 1 hr.

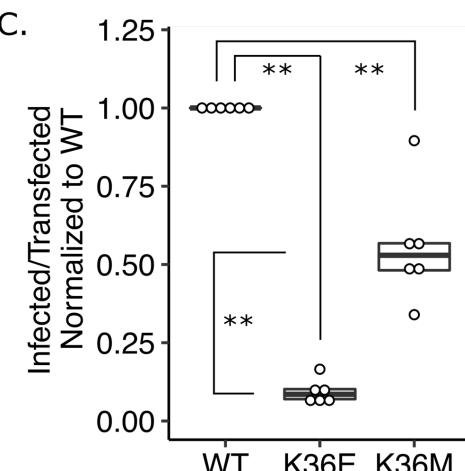
758 **Figure 2. RSV-Gag^{K36E/M} mutants are defective in nuclear cycling.**

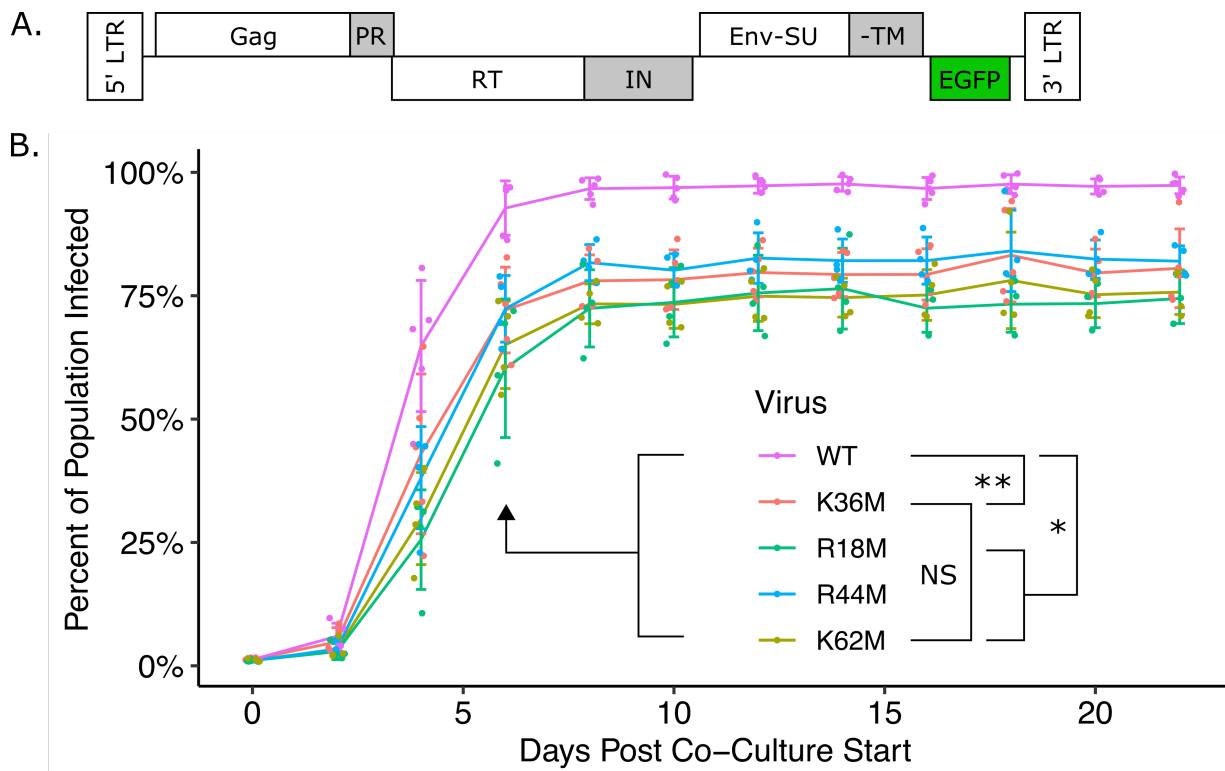
759 (A) Multiple sequence alignment of RSV-NC between the WT consensus and strain JS11C1.

760 There is a K36E polymorphism in the NC-NLS. Since Glu is the opposite charge from Lys, both


761 Glu and Met mutations were tested for nuclear import activity. Mutations were made in the WT

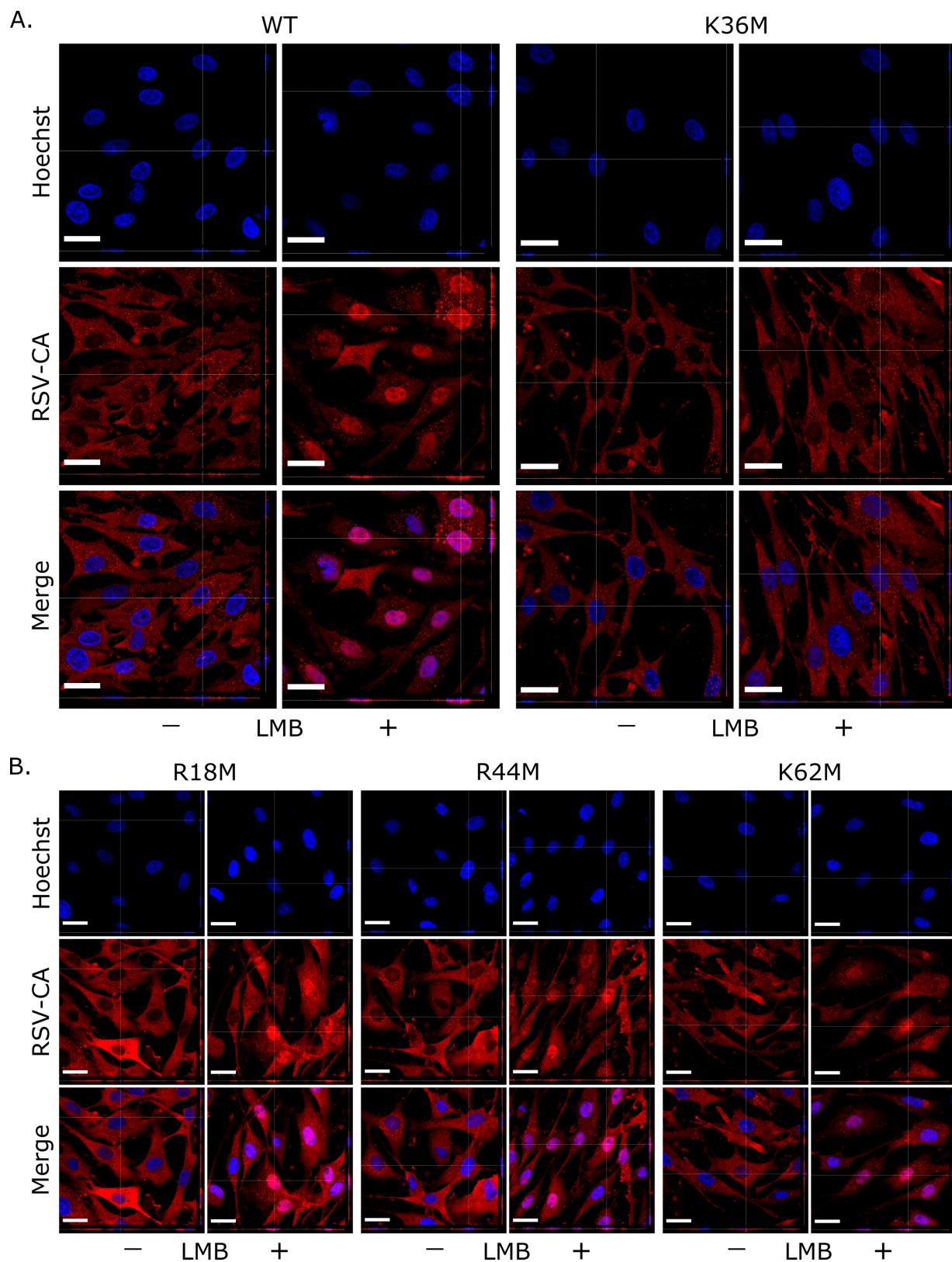
762 backbone (panel A). (B) Representative images of steady state expression of RSV-Gag^{WT} and


763 RSV-Gag^{K36E/M} EGFP fusion proteins in DF1 cells. Cells were imaged starting 16-18 hrs post


764 transfaction. (C) Representative images of expression of fusion proteins in cells from the

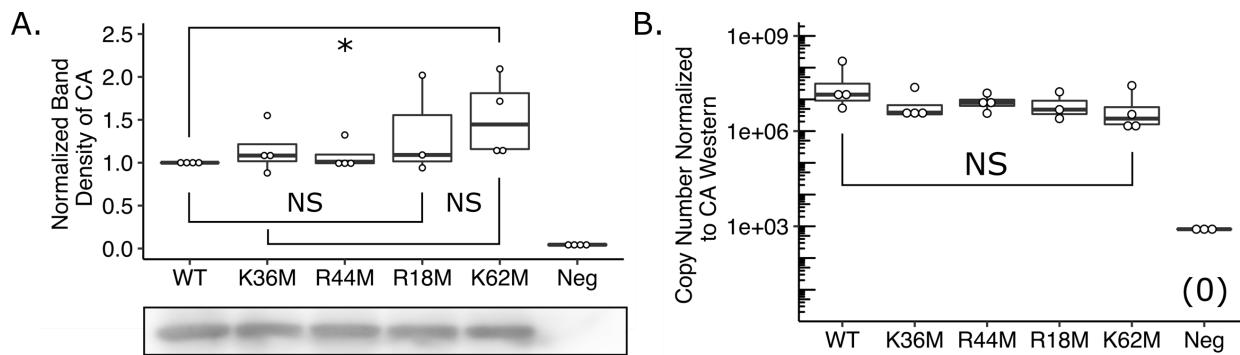
765 previous panel after LMB (10 ng/mL) treatment for 1 hr.

769 (A) Schematic of the single-cycle provirus tested (NC-K36E/M mutations not shown). Since the
770 Crimson fluorescence gene is located outside of the viral genome (indicated by the LTRs),
771 transfected cells are indicated by both GFP (+) and Crimson (+) cells, while subsequent
772 infections are indicated by only GFP (+) cells. (B) Representative flow plots for single-cycle
773 infection assays using a 2-color reporter system with and without VSV-g. Samples were
774 collected five days post transfection for flow cytometry. (C) Ratio of infected to transfected cells
775 normalized to WT. Statistics: N=6, ** p<0.01, pairwise Wilcoxon rank sum test.



776

777 **Figure 4. Replication competent RSV^{K36M} virus spreads albeit at a slower rate than WT.**


778 Since RSV^{ΔEnv/K36M} displayed near RSV^{ΔEnv} levels of spread compared to RSV^{ΔEnv/K36E} in Fig 3,
779 experiments carried forward used RSV^{K36M} to reduce assay times. (A) Schematic of replication
780 competent virus with an EGFP reporter in place of Src (K36M mutation not shown). (B)
781 Replication competent virus spread through cell culture as measured by percent GFP (+) cells.
782 Briefly, uninfected target DF1 cells were co-cultured with 1% fully infected cells. Samples were
783 collected every other day for EGFP quantification via flow cytometry. Since positive amino
784 acids in NC are important for nucleic acid binding, three other positive residues in NC were
785 separately mutated to Met (RSV^{R18M}, RSV^{R44M}, and RSV^{K62M}) to test decreased nucleic acid
786 binding contributing to infectivity loss in RSV^{K36M}. Statistics: N=4-5; NS Not Significant, *
787 p<0.05, ** p<0.01; pairwise Wilcoxon rank sum test.

788

789 **Figure 5. Replication competent RSV^{K36M} is defective in nuclear cycling.**

790 Immunofluorescence stains against RSV-CA at steady state. Briefly, DF1 cells infected with
791 replication competent virus from Fig 4 were plated on glass coverslips, treated with or without
792 LMB (10 ng/mL) for 1 hr, and fixed in 5% PFA. Samples were blocked, probed with RbaRSV-
793 CA, probed with fluorescently labeled Gt α Rb, and nuclei stained with Hoechst. After mounting
794 on slides, cells were imaged with a confocal microscope. (A-B) Representative images and z-
795 stacks of (A) RSV^{WT} and RSV^{K36M} virus as well as (B) RSV^{R18M}, RSV^{R44M}, and RSV^{K62M} virus
796 with and without LMB treatment. Scale Bar: 20 μ m.

797

798 **Figure 6. Genomic RNA incorporation in viral particles does not differ between WT and**
799 **mutants**

800 Infected cells at the end of the replication competent experiment (Fig 4) were plated equally and
801 equal amounts of media were collected and concentrated over a 20% sucrose gradient.
802 Equivalent volumes of concentrated media from the four samples were used in parallel for
803 immuno-blot against RSV-CA and qPCR. (A) Quantification and representative western blot
804 against RSV-CA. (B) Copy number per mL of pre-cleared media normalized to ratios of RSV-
805 CA from western quantification (panel A). After reverse transcription, viral cDNA was
806 amplified flanking NC and mutations were confirmed via sequencing (data not shown).
807 Statistics: N=3-4; NS Not Significant, * p<0.05; pairwise Wilcoxon rank sum test.