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Abstract 12 

Recent discoveries of extreme cellular diversity in the brain warrant rapid development of 13 

technologies to access specific cell populations, enabling characterization of their roles in behavior and in 14 

disease states. Available approaches for engineering targeted technologies for new neuron subtypes are 15 

low-yield, involving intensive transgenic strain or virus screening. Here, we introduce SNAIL (Specific 16 

Nuclear-Anchored Independent Labeling), a new virus-based strategy for cell labeling and nuclear 17 

isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other 18 

computational approaches to identify DNA sequence features that confer cell type-specific gene 19 

activation and using them to make a probe that drives an affinity purification-compatible reporter gene. 20 

As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-21 

expressing (PV) neurons. Furthermore, we show that nuclear isolation using SNAIL in wild type mice is 22 

sufficient to capture characteristic open chromatin features of PV neurons in the cortex, striatum, and 23 

external globus pallidus. Expansion of this technology has broad applications in cell type-specific 24 

observation, manipulation, and therapeutics across species and disease models.  25 

 26 
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Introduction 27 

 The biology of the brain is complicated by vast diversity in cell types, subtypes, and cell states. 28 

Contemporary advancements in single cell sequencing have identified over a hundred molecularly distinct 29 

neuron populations in the mammalian cortex (Hodge et al., 2019; Lake et al., 2016; Saunders et al., 2018; 30 

Tasic et al., 2018; Zeisel et al., 2015) including several small subpopulations of Gamma aminobutyric 31 

acid (GABA)ergic neurons whose specialized functions are critical for the control of neuronal inhibition 32 

(Kepecs and Fishell, 2014; Lim et al., 2018). Understanding neurological function in health and disease 33 

from a cell type-specific perspective is critical to the progress of neuroscience.  34 

Such endeavors necessitate cell type-specific technologies for the identification, isolation, and 35 

manipulation of discrete cell populations. Transgenic mouse strains targeting major inhibitory neuron 36 

subclasses including Parvalbumin-expressing (PV), Somatostatin-expressing (SST), and serotonergic (5-37 

HT) neurons are widely used today and have been instrumental toward our understanding of these cell 38 

types (Madisen et al., 2010; Taniguchi et al., 2011). Additional cell type-specific transgenic strains have 39 

been created through strategies like enhancer trap (Shima et al., 2016) and EDGE (Nair et al., 2020), 40 

which leverage the specificity of cis regulatory sequence activity and improve the throughput of 41 

transgenic development. Yet even with these innovations, as the number of cell populations of interest 42 

rapidly expands, new transgenic strains cannot scale accordingly.  43 

 More recently, many developers have turned toward virus-based cell type-specific tools 44 

(Dimidschstein et al., 2016; Graybuck et al., 2021; Hrvatin et al., 2019; Mich et al., 2021; Nair et al., 45 

2020; Vormstein-Schneider et al., 2020). Adeno-associated virus (AAV) technologies became particularly 46 

attractive with the invention of AAV variants that cross the blood-brain barrier to transduce the central 47 

nervous system, AAV-PHP.B and AAV-PHP.eB (Chan et al., 2017; Deverman et al., 2016). In line with 48 

certain transgenic engineering, an emerging AAV targeting strategy is to incorporate cell type-specific 49 

enhancer elements into the viral genome to promote restricted expression. Enhancer activity can be 50 

extremely selective, even more so than the activity of most genes and their associated promoters 51 

(Hoffman et al., 2013; Kellis et al., 2014; Roadmap Epigenomics Consortium et al., 2015). Thus, 52 
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enhancers may be used to confer specificity even for neuron subtypes that cannot be resolved by the 53 

expression of a single marker gene (Tasic et al., 2018) or where the marker gene promoter is not specific 54 

on its own (Nathanson et al., 2009). 55 

Despite the enthusiasm for enhancer sequences in cell type-specific AAV development, their 56 

selection remains nontrivial. ATAC-seq (Buenrostro et al., 2013) has been a popular technique for 57 

defining potential cell type-specific enhancer regions because of its high resolution and its compatibility 58 

with small cell populations and even single cell technologies (Buenrostro et al., 2015b; Cusanovich et al., 59 

2015). The biggest outstanding barrier to sequence engineering for targeted technologies is the low 60 

conversion rate from experimentally suggested cell type-specific open chromatin regions (OCRs) to 61 

desired cell type-specific activity in the isolated viral context. Simple enhancer sequence prioritization 62 

methods using ATAC-seq signal strength or sequence conservation have been insufficient. Recently, a 63 

parallel screening approach involving single nucleus sequencing of barcoded enhancer libraries, PESCA, 64 

was proposed to speed up the selection process toward a successful enhancer-driven virus (Hrvatin et al., 65 

2019). Another approach leveraged cell population marker gene proximity for enhancer prioritization 66 

(Vormstein-Schneider et al., 2020). We hypothesized that there were additional in silico filters that could 67 

be applied to reduce the burden of experimental screening in cell type-specific AAV development.  68 

 Toward this goal, we sought to leverage the complex combinatorial code linking transcription 69 

factor binding site motifs and other DNA sequence features to cell type-specific regulatory activity (Jindal 70 

and Farley, 2021). To learn that code, we turned to machine learning models, which have achieved state-71 

of-the-art performance on predicting regulatory activity from DNA sequence (Ghandi et al., 2014; Kelley 72 

et al., 2016; Quang and Xie, 2016). Convolutional neural networks (CNNs) (Cun et al., 1989) and support 73 

vector machines (SVMs), for example, have been applied to predict enhancer activity from sequence 74 

across tissues and cell types (Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020). We reasoned that 75 

machine learning classifiers could be applied to identify the most characteristic enhancer sequence 76 

patterns within a given cell type, enabling us to prioritize and interpret sequences that are most likely to 77 

drive selective expression. 78 
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 We developed a framework for machine learning-assisted engineering of cell type-specific 79 

AAVs, which we refer to as Specific Nuclear Anchored Independent Labeling (SNAIL). Building upon 80 

our previously described Cre-activated AAV technology cSNAIL (Lawler et al., 2020), SNAIL probes 81 

have the unique advantage of expressing an affinity purification-compatible fluorescent tag (Deal and 82 

Henikoff, 2010; Mo et al., 2015). This protein, Sun1GFP, enables nuclei isolation that is particularly 83 

advantageous for accessing rare cell populations that would otherwise have low representation in bulk 84 

tissue or single nucleus sequencing. Unlike cSNAIL, SNAIL probes are not Cre-dependent, but are 85 

instead driven by cell type-specific enhancer sequences selected through machine learning models.  86 

Here, we describe two novel AAV probes for PV neurons. In the mouse cortex, PV SNAIL 87 

probes labeled PV neurons with > 70% specificity to Pvalb antibody staining. Isolated populations of 88 

tagged cells from the cortex, striatum, and external globus pallidus (GPe) were heavily enriched for 89 

known PV open chromatin signatures. In the cortex, PV SNAIL probes were more specific to GABAergic 90 

PV interneurons than the common Pvalb-2A-Cre mouse strain. Nucleotide-resolution model interpretation 91 

highlighted a collection of 14 transcription factor binding motif families responsible for PV neuron-92 

specific enhancer activation. These results demonstrate concrete utility in sequence-level information for 93 

AAV enhancer selection, setting the stage for efficient probe design for a wide range of cell types.  94 

 95 

Results 96 

Support vector machines discriminate known cell type-specific regulatory sequences 97 

 We sought to build machine learning classifiers that could discriminate sequences of differential 98 

OCRs between two cell populations. We imposed upfront that training sequences have a minimum fold 99 

difference in chromatin accessibility between the cell types to ensure that the model learned cell type-100 

specific features of enhancer activation and not general enhancer features. We chose this strategy because 101 

it was most closely aligned with our goal of prioritizing sequences that would activate in one cell type and 102 

not others.  103 
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To evaluate whether information from differential OCR sequences was sufficient to train accurate 104 

classifiers, we first built SVMs comparing select broad classes of cell types in the brain. These were i) a 105 

neuron vs. astrocyte classifier and ii) an excitatory neuron vs. inhibitory neuron classifier. The training 106 

and validation sequences were based on differential OCRs between cell types, identified from single 107 

nucleus (sn)ATAC-seq data from the mouse motor cortex (MOp) (Li et al., 2020) (Supplemental Fig. 1). 108 

Both models performed well on held out data, achieving areas under receiver operating characteristic 109 

curves (auROCs) of 0.95 and 0.93 (Supplemental Fig. 2).  110 

Next, we verified that these models could recapitulate known cell type-specific activation patterns 111 

of commonly used AAV promoter sequences Gfap, CamkII, and Dlx (Supplemental Fig. 2). The Gfap 112 

promoter sequence, which empirically has a heavy astrocyte bias in vivo, scored highly astrocyte-specific 113 

in the neuron vs. astrocyte model, achieving a threshold with less than a 2.1% false positive rate among 114 

validation data. In the same neuron vs. astrocyte model, the CamkII promoter and Dlx promoter 115 

sequences scored highly neuron-specific. Also consistent with empirical expectations, the excitatory vs. 116 

inhibitory neuron model predicted the CamkII sequence to have excitatory neuron preference and the Dlx 117 

sequence to have inhibitory neuron preference, while the Gfap promoter scored close to neutral 118 

(Supplemental Fig. 2). Therefore, this classification strategy is capable of correctly predicting cell type-119 

specific regulatory sequence activity in the viral context, at least for very distinct cell classes. 120 

 121 

Machine learning models accurately predict PV neuron-specific open chromatin from sequence 122 

 Next, we assessed whether the same principles could be applied to more narrowly defined neuron 123 

subtypes, using PV neurons as a target. To define potential PV neuron and PV- cell enhancer candidates 124 

in the mouse cortex in a data-driven manner, we conducted ATAC-seq on the PV and PV- nuclei 125 

populations of Pvalb-2A-Cre mice. The nuclei populations were isolated using previously described Cre-126 

dependent AAV affinity purification technology, cSNAIL (Lawler et al., 2020). cSNAIL probes activate 127 

an isolatable nuclear envelope tag in the presence of Cre recombinase protein. Therefore, purified 128 

populations from these mice are a direct reflection of cells labeled by the Pvalb-2A-Cre mouse strain, a 129 
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current standard for PV neuron labeling. These cSNAIL PV and PV- ATAC-seq signatures ultimately 130 

defined the training data for models for designing PV SNAIL probes, which are independently activated 131 

by PV-specific regulatory elements.  132 

 Using merged reproducible ATAC-seq peaks in PV and PV- populations, here called OCRs, we 133 

identified significantly differentially accessible OCRs between the two cell populations (DESeq2 padj < 134 

0.01 & |Log2FoldChange| > 1) (Love et al., 2014). To refine these regions for model training, we 135 

eliminated promoter-proximal OCRs within 2,000 base pairs (bp) of an annotated transcription start site 136 

(TSS). This decision biased training examples toward OCRs of potential enhancer function, which are 137 

most relevant for cell type-specific AAV design and may have different sequence composition than gene 138 

promoters. This resulted in 14,059 PV OCRs and 4,935 PV- OCRs of interest genome-wide.  139 

  We developed two SVMs to distinguish between PV and PV- OCR classes based on nucleotide 140 

sequence, one linear model and one nonlinear model. Both SVMs were based on gapped k-mer count 141 

vectors, i.e. the number of occurrences of all short subsequences of length k, tolerating some gaps or 142 

mismatches, as implemented by LS-GKM (Ghandi et al., 2014; Lee, 2016). The training data were 500 bp 143 

sequences underlying PV or PV- OCRs of interest, with a 2.55:1 ratio of positives to negatives. The 144 

sequences were centered on ATAC-seq peak summits, where functional transcription factor binding 145 

motifs tend to be concentrated (Buenrostro et al., 2013). Taking advantage of this property, we used a 146 

center-weighted kernel function for both SVMs, meaning gapped k-mers near the sequence center were 147 

weighted more heavily than peripheral gapped k-mers. The two SVMs differed in that one was linear and 148 

the other implemented a radial basis function (rbf) kernel, which permits the detection of interactions 149 

between gapped k-mers. Both SVMs could predict the correct classification on held out data with high 150 

accuracy (Fig. 1b,c), indicating that there were substantial sequence pattern differences between the PV 151 

and PV- classes and that the models were able to learn these differences.  152 

  Next, because the PV- data contained a high proportion of glial cells, a developmental outgroup 153 

to neurons, we considered the possibility that the PV vs. PV- models were learning features of general 154 

neuron vs. glia enhancer sequence properties and not necessarily features that were specific to PV 155 
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neurons. To address this issue, we trained additional population-derived SVMs that directly discriminated 156 

between enhancer sequences of PV neurons and other neuron subtypes, using publicly available ATAC-157 

seq data from INTACT-sorted excitatory (EXC) neurons and VIP neurons (Mo et al., 2015). The model 158 

training data were defined with the same process described for the PV vs. PV- models. The PV vs. EXC 159 

models were trained on 27,879 PV sequence examples and 30,728 EXC sequence examples. The PV vs. 160 

VIP models were trained on 15,474 PV sequence examples and 28,683 VIP sequence examples. These 161 

models performed well (Fig. 1b,c), indicating that even at the level of neuron subtypes, OCR sequence 162 

information is rich enough to reliably distinguish cell type-specific activity.  163 

 To survey an additional machine learning strategy, we also built CNN classifiers from the same 164 

underlying data, using a different approach (Supplemental Fig. 3). CNNs are best equipped to 165 

automatically learn higher-order interactions between sequence features without explicit handcrafting of 166 

features. To define the training data for the CNNs, we binned the genome into 200 bp bins and identified 167 

bins with differential chromatin accessibility (q < 0.01) between cell types. These sequences were 168 

extended bidirectionally to 1,000 bp and used for model training and evaluation. The PV vs. PV- CNN 169 

was trained on 55,398 PV sequences and 37,919 PV- sequences, the PV vs. EXC CNN was trained on 170 

3,212 PV sequences and 36,509 EXC sequences, and the PV vs. VIP CNN was trained on 22,416 PV 171 

sequences and 96,609 VIP sequences. The CNNs were highly accurate (Fig. 1d), demonstrating an 172 

additional approach to discriminate OCR sequence differences between purified neuron populations.  173 

While ATAC-seq from purified cell populations is advantageous for its depth and recovers many 174 

examples of differentially accessible reads between neuron subtypes, many neuron populations of interest 175 

are not yet isolatable, even through transgenic means. Single nucleus sequencing technologies can be 176 

applied to measure neuron subtype-resolution open chromatin without cell sorting by performing several 177 

parallel micro-reactions that introduce unique cell barcodes into ATAC-seq sequencing reads. Therefore, 178 

we explored whether cell type-specific enhancer sequences derived from mouse motor cortex snATAC-179 

seq (Li et al., 2020) were sufficient to produce neuron subtype-level classifiers. We trained several 180 

pairwise linear center-weighted gapped k-mer SVMs to discriminate differential open chromatin 181 
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sequences from snATAC-seq clusters or groups of clusters. These included analogous models to the 182 

population-derived models comparing PV vs. PV-, PV vs. EXC, and PV vs. VIP. In this case, the single 183 

nucleus-derived PV vs. PV- model refers to a model trained on differential OCR sequences comparing PV 184 

cluster nuclei to all other nuclei with a random sampling probability. The PV vs. k-nearest-neighbor 185 

(KNN) model is an additional variation on the PV vs. PV- model where the PV- nuclei sampling for 186 

differential OCR analysis was selected for similarity to the PV cluster as implemented in SnapATAC 187 

(Fang et al., 2021). We also produced a model comparing PV vs. SST neurons, the most similar subtype 188 

to PV. The number of training examples per class of these models ranged from 13,040 to 95,694 and the 189 

positive (PV) to negative ratios per model ranged from 1:1.04 to 1:3.74 (further information available in 190 

Supplemental Table 2). Single nucleus-derived SVMs were able to classify cell type-specific enhancer 191 

sequences with high accuracy (Fig. 1e).  192 

Moreover, models built independently from different data sources identified similar sequence 193 

contributions for equivalent tasks. When scoring the population-derived sequences through both the 194 

population-derived SVMs and the single nucleus-derived SVMs, individual sequences scored highly 195 

similarly in both models (Fig. 1f). These findings highlight the prevalence of reliable cell type-specific 196 

enhancer sequence signatures that can be defined by a variety of classifier types and sources of open 197 

chromatin measurements. The parameter and performance details of all models can be found in Tables S2 198 

(SVMs) and S3 (CNNs). 199 

 200 

Models learn biological signatures relevant for AAV probe design 201 

 We have shown that multiple machine learning strategies are useful for discriminating between 202 

regulatory sequences that are differentially active between neuron populations. Next, we asked whether 203 

these models could be useful for prioritizing enhancer sequence candidates for cell type-specific enhancer 204 

driven technologies. The strength of chromatin accessibility signal at an individual locus may be dynamic 205 

and insufficient for cell type-specific enhancer prioritization on its own. Enhancer candidates with highly 206 
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specific chromatin accessibility and with high specificity scores in the models represent the most 207 

characteristic cell type-specific sequence features and may be more effective than other OCRs. 208 

First, we wanted to ensure that the success of the classifiers was rooted in biological sequence 209 

signatures related to transcription factor binding motifs. We employed GkmExplain (Shrikumar et al., 210 

2019) and TF-MoDISco (Shrikumar et al., 2018) model interpretation methods to identify sequence 211 

patterns with high contributions toward PV neuron-specific OCR predictions, focusing on the population-212 

derived linear SVMs. The models learned sequence patterns that matched known transcription factor 213 

binding motifs (Gupta et al., 2007). These included critical developmental transcription factors (TFs) that 214 

promote PV interneuron lineage specification Lhx6, Maf, and Mef2c (Liodis et al., 2007; Pai et al., 2020; 215 

Vogt et al., 2014) (Fig. 1g). This was encouraging for biological relevance, especially given that the 216 

models had no knowledge of known motifs or even the concept of transcription factor binding a priori.  217 

 To ensure that the neuron subtype-level models were identifying signatures that were relevant for 218 

the specific purpose of creating selective PV neuron viruses, we evaluated model predictions on 219 

externally validated successful and unsuccessful PV probe enhancer candidates from Vormstein-220 

Schneider et al., 2020, named E1 - E34. Importantly, the enhancer sequence from the probe with the 221 

lowest PV specificity (E4; 14% specificity) received a negative score from every model, and two probe 222 

enhancers with highest cortical PV specificity (E22 & E29; 94% specificity) received high positive scores 223 

from every model.  224 

The average score across all models was predictive of probe specificity (Pearson correlation 225 

coefficient = 0.42, p = 0.016). Individual enhancer candidates tended to receive similar scores across the 226 

SVMs comparing PV to highly abundant cell populations (PV vs. PV-, PV vs. EXC, PV vs. KNN), with 227 

Pearson correlations between pairs of models ranging from 0.56 to 0.99 (Supplemental Fig. 4). Many of 228 

these models were weakly significant predictors of empirical PV specificity in the AAV context on their 229 

own, with the population-derived PV vs. EXC models reaching the highest significance (padj = 0.047) 230 

(Supplemental Fig. 5). Some models, such as PV vs. KNN, were better predictors of PV probe specificity 231 

than the log fold difference of chromatin accessibility for that cell comparison (Supplemental Fig. 5). 232 
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SVMs comparing PV against rarer subtypes (PV vs. VIP, PV vs. SST) were more unique and had less 233 

correlation with other models. These models were not significant predictors of probe specificity overall, 234 

but many of the highest performing probes had positive scores. Probe specificity was not associated with 235 

PhyloP score, which has been considered in cell type-specific enhancer prioritization (Hrvatin et al., 236 

2019), but did show a trend with activity conservation at orthologous regions in the human genome 237 

(Supplemental Fig. 5). Importantly, neither method of conservation was as predictive of AAV specificity 238 

as the average model score. 239 

This result emphasizes the benefit of enhancer pre-selection with machine learning, which could 240 

drastically reduce in vivo screening efforts by signaling the best PV enhancer sequences before 241 

experimentation. The models predicted which PV enhancer sequence candidates were likely to be cell 242 

type-specific drivers and precisely which subsequences were responsible for PV neuron-specific 243 

activation. Sequence E29, within the Inpp5j locus, was predicted to have PV neuron-specific activity due 244 

to a central Mef2 motif site and nearby Err3 motif site, among others (Supplemental Fig. 6). Sequence 245 

E22, within the Tmem132c locus, was predicted to have PV specificity in part due to Nkx28 and Lhx6 246 

motif sites (Supplemental Fig. 6). Yet, none of these enhancers were our highest predicted PV neuron 247 

sequences, so we continued to investigate additional enhancer candidates genome-wide for PV SNAIL 248 

probe implementation. 249 

  250 

Two candidate PV SNAIL probes successfully target PV neurons in the mouse cortex 251 

 Based on the predictions of all PV enhancer models on our candidates, we prioritized two highly 252 

characteristic PV neuron enhancer sequences to test for their ability to drive targeted expression in vivo 253 

(Fig. 2). We refer to these sequence candidates as SC1 and SC2. Among true PV neuron-specific 254 

enhancer sequences that i) were differential OCRs in PV vs. PV-, PV vs. EXC, and PV vs. VIP sorted 255 

population data and ii) scored PV positive across all SVM evaluations (1,755 sequences), SC1 was the 256 

highest predicted sequence candidate, while SC2 was in the 90th percentile (Fig. 2b, Supplemental Table 257 

4).  258 
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SC1 and SC2 sequences were cloned into separate vectors upstream of the cSNAIL reporter gene, 259 

Sun1GFP. To minimize off-target effects, PV SNAIL probes directly rely on transcriptional activation 260 

from SC1 or SC2, with no minimal promoter (see methods). We also prepared two control vectors: a 261 

negative control that was the identical vector but with no inserted enhancer sequence and a nonspecific 262 

control that was the identical vector but with a common Ef1a promoter sequence in place of the candidate 263 

sequence. When packaged with AAV-PHP.eB and delivered to the mouse through systemic injection, the 264 

SC1-Sun1GFP and SC2-Sun1GFP constructs promoted cortical fluorescence that was restricted to PV 265 

neurons, while the Ef1a virus did not (Fig. 2c-e, Supplemental Table 5). Compared with 266 

immunohistochemistry-label Pvalb protein, SC1 and SC2-mediated expression of Sun1GFP was restricted 267 

to Pvalb+ neurons in ~70-74% of cases. This was an 11-fold enrichment in precision over the Ef1a 268 

promoter and notably, an almost 2-fold enrichment over Cre reporter labeling in Pvalb-2A-Cre mice. We 269 

expect these to be conservative estimates of PV targeting due to incomplete antibody capture. On average, 270 

Sun1GFP expression from SC1 and SC2 SNAIL probes labeled ~71-73% of Pvalb+ neurons. The rate is 271 

limited by the transduction properties of the AAV-PHP.eB capsid, which only transduces 55-70% of 272 

neurons in the cortex (Chan et al., 2017). SC1 and SC2 expression in Pvalb+ neurons represents at least a 273 

9-fold increase over the negative control virus.  274 

 275 

Isolation of PV SNAIL-labeled nuclei captures PV cortical interneurons 276 

Expression of the Sun1GFP gene differentiates SNAIL probes from other cell type-specific AAV 277 

technology. The stable nuclear envelope association of this tag enables affinity purification using 278 

magnetic beads coated with anti-GFP antibody, which is advantageous for rare population isolation and 279 

downstream epigenetic assays. In many contexts, purification of a cell population is more efficient than 280 

single nucleus sequencing technologies, especially if the population of interest is in low proportion or the 281 

desired downstream applications are not available in single nucleus approaches. Taking advantage of this 282 

property, we isolated Sun1GFP-expressing nuclei induced by SC1-Sun1GFP, SC2-Sun1GFP, or Ef1a-283 

Sun1GFP SNAIL virus from the mouse cortex and performed ATAC-seq. Through comparison with 284 
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known PV neuron ATAC-seq (via cSNAIL in the Pvalb-2A-Cre strain) and PV- or bulk ATAC-seq 285 

including cSNAIL PV- cell fractions and Ef1a virus signatures, we determined that both SC1-Sun1GFP 286 

and SC2-Sun1GFP cells are highly enriched for PV neurons.  287 

 The first principal component, accounting for 84% of the total variance, separated known PV 288 

neuron samples from PV- and bulk tissue samples. Likewise, SC1-Sun1GFP and SC2-Sun1GFP samples 289 

grouped with the PV samples while Ef1a-Sun1GFP samples grouped with the PV- and bulk sample 290 

signatures (Fig. 3a). At the Pvalb locus, there were highly reproducible OCR signals between PV 291 

cSNAIL, PV snATAC-seq, SC1-Sun1GFP, and SC2-Sun1GFP samples that did not appear in bulk tissue, 292 

PV-, or Ef1a-Sun1GFP samples (Fig. 3b). 293 

A major goal for PV SNAIL probes was that they may replace transgenic mouse strain 294 

technologies in certain contexts. Ideally then, ATAC-seq from Sun1GFP-sorted cells from SNAIL probes 295 

in wild type mice should provide similar information as ATAC-seq from Sun1GFP-sorted cells from 296 

cSNAIL in Pvalb-2A-Cre transgenic mice. Therefore, we defined PV cSNAIL ATAC-seq 297 

log2FoldDifference over bulk cortical tissue ATAC-seq as a gold standard for each OCR. For SC1 and 298 

SC2, we computed the correlations between the log2FoldDifference of OCR signal relative to bulk tissue 299 

and the log2FoldDifference of OCR signal in PV cSNAIL relative to bulk tissue. To establish an upper 300 

limit for correlation, we compared two different batches of cortical PV cSNAIL samples, which had a 301 

Pearson correlation of 0.86 and a Spearman correlation of 0.85. As a lower limit, we evaluated the non-302 

specific Ef1a control virus, which had a Pearson correlation of 0.38 and a Spearman correlation of 0.26. 303 

Because the AAV-PHP.eB capsid has a neuron bias, these lowly-correlated signatures are likely to be 304 

general neuron specifications shared among PV and other neurons. Within this range, SC1 and SC2 had 305 

very high correlation with cSNAIL, with SC1 achieving almost equivalent correlation as the two cSNAIL 306 

batches (SC1 Pearson = 0.85 and Spearman = 0.84; SC2 Pearson = 0.81 and Spearman = 0.79) (Fig. 3c). 307 

The details for differential OCRs in each virus relative to bulk tissue can be found in Supplemental Table 308 

6. 309 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439984
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 
 

 Finally, we compared SC1-Sun1GFP+ and SC2-Sun1GFP+ cell open chromatin signatures to 310 

those of snATAC-seq clusters from the mouse motor cortex (Fig. 3d) (Li et al., 2020). We defined 311 

cluster-specific OCRs for each snATAC-seq cluster and population-enriched OCRs for SNAIL-isolated 312 

cells relative to bulk tissue (see methods) and assessed the overlaps. We found that cSNAIL-isolated PV 313 

OCRs, SC1-isolated OCRs, and SC2-isolated OCRs were each significantly enriched for PV cluster-314 

specific markers (34% - 47% overlap, hypergeometric p = 0), while OCRs from Ef1a-isolated cells were 315 

not enriched for PV cluster-specific markers (4% overlap, p = 1). Ef1a OCRs instead had the highest 316 

enrichment for markers of a layer 4 excitatory neuron cluster (25% overlap, p = 5.3 x 10-5). We also note 317 

that cSNAIL PV ATAC-seq had an additional 8% overlap with excitatory cluster L5 PT markers (p = 2.5 318 

x 10-45), possibly reflective of Pvalb-2A-Cre line labeling in layer 5 Parvalbumin-expressing excitatory 319 

neurons (Jinno and Kosaka, 2004; Roccaro-Waldmeyer et al., 2018; Tanahira et al., 2009). These OCRs 320 

were absent in SC1- and SC2-isolated cells. In fact, SC1 and SC2 had no enrichment for cluster-specific 321 

OCRs of any cluster other than PV (≤ 2% overlap, p > 0.1), including the closely related SST population. 322 

This suggests that SC1 and SC2 SNAIL probes actually target a stricter subset of the cells than the Pvalb-323 

2A-Cre mouse strain, likely restricted to PV inhibitory interneurons. 324 

 325 

Chromatin accessibility differences between PV neurons in different brain regions 326 

 SC1 and SC2 SNAIL probes were designed based on the sequence properties of cortical PV 327 

neurons. Many PV neurons throughout the brain have a common developmental origin in the medial 328 

ganglionic eminence (MGE), but there are substantial OCR differences between mature PV neuron 329 

populations in different brain regions. From cSNAIL-isolated PV populations in Pvalb-2A-Cre mice 330 

(Lawler et al., 2020), we characterized thousands of OCRs with differential accessibility between the 331 

cortex, striatum, and GPe (padj < 0.01, |log2FoldDifference| > 1) (Fig. 4a, Supplemental Table 7). These 332 

differences were associated with distinct TF binding motifs (Fig. 4b, Supplemental Table 8). For 333 

example, OCRs that were more accessible in cortical PV neurons relative to striatal and GPe PV had 334 

highest enrichment for Mef2a motifs, an activity-dependent transcription factor that is important in 335 
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plasticity and distinguishes subpopulations of PV neurons in the hippocampus (Donato et al., 2015). 336 

Mef2c has a similar binding motif and is the second-highest enriched TF motif in cortex-specific PV 337 

neuron OCRs. Mef2c is essential for specifying the MGE PV neuron lineage in mouse and human (Mayer 338 

et al., 2018) and has been linked to Schizophrenia and other neurodevelopmental disorders (Mitchell et 339 

al., 2018). TFs with motifs enriched in PV neuron OCRs that are more open in striatum relative to cortex 340 

and GPe included Tgif1, a key homeodomain gene involved in holoprosencephaly (Taniguchi et al., 341 

2012). At 6,654 differential OCRs, GPe-specific PV OCRs were the most unique, and had TF motif 342 

enrichments including the Lhx3, Pou5f1, Err3, and Pax3 motifs. 343 

These molecular differences likely relate to functional differences, for example, the tendency of 344 

PV cells in the GPe to project to other brain regions versus the local nature of PV cells in the cortex 345 

(Hernández et al., 2015; Saunders et al., 2016). We assessed ontology enrichments in the brain region-346 

specific PV ATAC-seq OCR sets relative to all PV ATAC-seq OCRs using GREAT (McLean et al., 347 

2010) (Supplemental Table 9). The set of PV OCRs enriched in cortical PV neurons included 10 regions 348 

associated with the Bdnf gene (Ensembl Genes; FDR Q = 0.0035). Among these was Bdnf promoter IV 349 

which is known to be essential for PV neuron synaptic transmission in the prefrontal cortex (Sakata et al., 350 

2009). Other cortex-specific PV enrichments included terms related to sensory perception, especially 351 

smell. Striatum-specific PV neuron OCRs were enriched for the adenylate cyclase-inhibiting dopamine 352 

receptor signaling pathway (GO:BP; FDR Q = 0.010) and bradykinesia (Mouse Phenotype; FDR Q = 353 

0.046). OCRs preferentially open in GPe PV neurons were enriched for neuropeptide signaling pathways, 354 

for example acetylcholine receptor binding (GO:MF; FDR Q = 0.0044) and neuropeptide receptor activity 355 

(GO:MF; FDR Q = 1.2 x 10-5). This suggests unique epigenetic mechanisms for the regulation of 356 

transcription related to receptor signaling in GPe PV neurons, but further work is needed to discern these 357 

relationships.  358 

 359 

PV SNAIL probes generalize to subcortical brain regions in the mouse 360 
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Given these complexities, we were interested in the extent to which PV enhancer probes chosen 361 

from data in one tissue could generalize to other brain regions. Here, we assessed whether SC1 and SC2 362 

SNAIL probes, designed in the cortex, were also selective for PV neurons in the striatum and GPe. First, 363 

we used cSNAIL ATAC-seq data from the striatum and GPe to model the regulatory sequence properties 364 

of PV neurons vs. PV- cells in these brain regions (Supplemental Fig. 7), and tested whether SC1 and 365 

SC2 sequences were predicted to have PV-specific activation (Fig 4c,f). Indeed, SC1 and SC2 were 366 

predicted to have PV neuron-specific activity in striatum and GPe PV vs. PV- SVMs. However, there 367 

were 1-3,000 sequences with more confident scores toward PV specific activity in each case.  368 

 We proceeded to isolate SC1 and SC2-labeled cells from these tissues in wild type mice using 369 

Sun1GFP affinity purification and performed ATAC-seq on the tagged populations. We have previously 370 

shown high agreement between cSNAIL and Pvalb-2A-Cre labeling in the striatum and GPe (Lawler et 371 

al., 2020), so we again used cSNAIL ATAC-seq samples from these regions as true PV neuron signals. 372 

By principal component analysis (PCA), we recovered separation between PV samples, including SC1 373 

and SC2-isolated populations, and PV- samples (Fig. 4d,g). We assessed the correlations between 374 

log2FoldDifference in SNAIL and cSNAIL samples, each relative to bulk tissue (striatum) or, where there 375 

were no bulk samples available, cSNAIL PV- cells (GPe) (Fig. 4e,h, Supplemental Table 10, 376 

Supplemental Table 11). Pearson correlation coefficients were similar or slightly lower for SC1 and SC2 377 

in the striatum and GPe than for equivalent comparisons in the cortex, indicating less conservation 378 

between cSNAIL and SNAIL probe targets (SC1 cortex = 0.85 , striatum = 0.71, GPe = 0.68 ; SC2 cortex 379 

= 0.81, striatum = 0.82, GPe = 0.73). Yet, these were substantially increased over Ef1a correlation with 380 

cSNAIL in these tissues, especially for the striatum (Ef1a cortex = 0.38, striatum = 0.18, GPe = 0.51).  381 

By comparing the overlaps of SC1 and SC2-enriched OCRs in striatum and GPe with cortical 382 

snATAC-seq cluster-specific OCRs, we still identified the PV cluster as most similar to SC1 and SC2 383 

cells. As expected, all overlaps in striatum-cortex and GPe-cortex comparisons were lower than those 384 

from cortex-cortex comparisons, but the magnitudes of SC1 and SC2 overlap with the Pvalb cluster in 385 

these brain regions were similar to the magnitudes of cSNAIL PV overlap with the Pvalb cluster in these 386 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439984doi: bioRxiv preprint 

https://paperpile.com/c/tIsplg/c2IB4
https://paperpile.com/c/tIsplg/c2IB4
https://doi.org/10.1101/2021.04.15.439984
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

brain regions (Supplemental Fig. 8). In the striatum, the overlaps with the Pvalb cluster were 8% for SC1, 387 

14% for SC2, and 14% for cSNAIL. In the GPe, the overlaps with the Pvalb cluster were 7% for SC1, 7% 388 

for SC2, and 9% for cSNAIL. From these interpretations, SC1 and SC2 SNAIL viruses do generalize to 389 

the striatum and GPe, though they may not be as robust as they are within the cortical context.  390 

 391 

Err3 and Mef2 motifs are important for the PV-specific activity of SC1 and SC2 sequences 392 

 To interpret the specific sequence patterns within SC1 and SC2 that contribute to their PV 393 

neuron-specific activity prediction, we assessed commonly used motifs for each model and identified 394 

potential matches within the candidate sequences. For all SVMs, we calculated per-base importance 395 

scores and hypothetical importance scores for the set of PV-specific OCRs that were true positives 396 

according to all SVMs (score > 0; N = 1,755) (Shrikumar et al., 2019). Then, for each model, we used 397 

TF-MoDISco (Shrikumar et al., 2018) to cluster commonly important subsequences called “seqlets” 398 

within these PV-specific examples. The resulting clusters represent motifs that were high contributors to a 399 

positive score in each model. Among the 11 SVMs comparing PV neuron open-chromatin against PV- 400 

cells, EXC neurons, VIP neurons, or SST neurons, we recovered 124 well-supported motifs. Many motifs 401 

appeared to be shared across multiple models. Thus, we performed UPGMA clustering on the 124 motifs 402 

by sequence similarity using STAMP (Mahony and Benos, 2007) and identified 14 motif clusters (Fig. 403 

5a).  404 

The largest cluster, with 23 motif members, contained representation from all 11 models and had 405 

matches to known motifs including the motifs for Err3 and Rora (Supplemental Table 12). Consistent 406 

with an important role for Err3 in PV neurons, Err3 (a.k.a. Esrrg) transcript levels were differentially 407 

over-expressed in the PV neuron cluster relative the rest of the frontal cortex in snRNA-seq (DropViz 408 

subcluster #2-7 Neuron.Gad1Gad2.Pvalb Esrrg fold ratio = 8.0, p = 1.14 x 10-198) (Saunders et al., 409 

2018). Esrrg and Rora are key TFs in the Pgc1a transcriptional program, which regulates Pvalb 410 

expression, mitochondrial function, and transmitter release (Lin et al., 2005; Lucas et al., 2010). Pgc1a 411 
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signaling is restricted to PV neurons in the brain, and may mediate the unique energy demands of fast-412 

spiking neurons (Lucas et al., 2014; Paul et al., 2017).  413 

The second largest motif cluster contained 16 motifs, also representing all 11 models, and the 414 

motifs had best matches to motifs for Mef2a, Mef2c, and Mef2d. In finer subdivisions of this cluster, PV 415 

vs. VIP model motifs had best matches to Mef2a, while all other models tended to have best matches for 416 

Mef2c and Mef2d. A cluster of Lhx6-like motifs, a transcription factor necessary for MGE interneuron 417 

differentiation from interneuron progenitors (Liodis et al., 2007; Vogt et al., 2014), was detected with 418 

high support from PV vs. PV- models and PV vs. EXC models, low support from PV vs. VIP models, and 419 

not detected between MGE neuron subtypes PV vs. SST. Interestingly, two clusters of motifs were 420 

dominated by PV vs. VIP signal, including matches for Stat6, Nkx28, and Cux2 motifs. Cux2 expression 421 

is induced by Lhx6 in the MGE, supporting a role in specification of the MGE interneuron lineage 422 

(including PV and SST neurons) from other interneuron lineages (Zhao et al., 2008). Overall, these 423 

findings indicate both shared and unique sequence properties dictating PV-specific regulatory sequence 424 

activity relative to other cell types.  425 

SC1 and SC2 represent two experimentally validated PV-selective regulatory sequences. To 426 

interpret the sequence determinants of their success, we mapped potential motif sites for the 124 TF-427 

MoDISco motifs (Supplemental Table 13) and overlaid these with per-base importance scores for each of 428 

the SVMs (Supplemental Table 14). This strategy revealed multiple high importance subsequences with 429 

potential transcription factor binding function. SC1 contained two Err3 motifs near the sequence center 430 

which were high contributors to the PV-specific model predictions and matched TF-MoDISco motifs for 431 

every model (Fig. 5b). An additional subsequence with contributions specific to PV vs. VIP models 432 

matched motifs for Sp7. SC2 contained a highly important Mef2 sequence near the center (Fig. 5c). This 433 

was a specific match for Mef2c and Mef2d motifs and excluded Mef2a motifs from PV vs. VIP models. 434 

Additionally, SC2 contained an Err3 motif with shared importance across all models. Interestingly, the 435 

most important features of the SC2 sequence closely resemble those of successful PV probe E29 from 436 

Vormstein-Schneider et al., 2020 (Vormstein-Schneider et al., 2020) (Supplemental Fig. 6). The success 437 
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of SC1 and SC2 are both largely explainable by transcription factor binding motif properties and 438 

represent two sequence pattern strategies toward PV-specific activation.  439 

 440 

Discussion 441 

 OCR sequence features provide valuable, underutilized information for cell type-specific 442 

enhancer design. Here, we showed that sequence alone was sufficient to discriminate between OCR 443 

activity in different neuron subtypes. Interpretation of these models revealed rich diversity among the 444 

biochemical underpinnings of these classification tasks, reflective of cis-trans interactions. The defining 445 

sequence properties of cell type-specific OCR activation were robust throughout different data modalities, 446 

including ATAC-seq from sorted populations and snATAC-seq, and different classifier types. Machine 447 

learning and computational methods, broadly, can facilitate prioritization of AAV enhancer candidates by 448 

quantifying sequence properties that are most characteristic and specific to a given cell type.  449 

 In SNAIL, our framework for cell type-specific AAV engineering, we incorporate machine 450 

learning classifiers as an additional filter for improved enhancer selection. On a set of 33 externally tested 451 

PV enhancer-driven AAVs (Vormstein-Schneider et al., 2020), the average PV-specificity score across 11 452 

classifiers was more predictive of PV-specific AAV expression than the log2 fold difference of snATAC-453 

seq signal, sequence conservation, or activity conservation at these loci. With the SNAIL framework, we 454 

identified and validated two novel enhancers that drive targeted expression in PV neurons in the mouse 455 

cortex. While these do not represent enough trials to establish a new conversion rate from cell type-456 

specific OCRs to cell type-specific AAVs, we were encouraged by the immediate success of the first 457 

probes we selected. We believe that incorporation of differential sequence property analyses like those 458 

used here will continue to improve the throughput of targeted AAV development in new contexts. 459 

 An additional advantage of incorporating classifiers for cell type-specific enhancer selection is 460 

increased interpretability of the factors that govern success. The sequence patterns learned by PV models 461 

reflected known PV neuron biology. Common motifs contributing to successful PV probe enhancers 462 

included Err3, Mef2, and Lhx6, important in the specification and maintenance of the cortical PV 463 
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interneuron lineage (Liodis et al., 2007; Mayer et al., 2018; Zhao et al., 2008). SC1 and SC2 depend 464 

particularly on Mef2 and Err3 motifs for PV specificity. 465 

 We found that a combination of multiple direct comparisons between the target cell type and 466 

other cell types made for particularly useful screening. Here, we used a tiered approach to ensure specific 467 

activity at multiple levels of cellular relationships to PV neurons. At the broadest level, we modeled PV 468 

neuron OCR sequences against PV- OCRs, a mixed signature from all other neuron and non-neuron cell 469 

types in the mouse cortex. Within neurons, we modeled PV vs. EXC neurons, and then PV relative to 470 

more specific subtypes of inhibitory neurons VIP and SST. Successful SC1 and SC2 sequences contained 471 

attributes that made them highly PV specific across all of these comparisons. 472 

 SC1-Sun1GFP and SC2-Sun1GFP are new AAV technologies for PV neuron labeling and 473 

isolation in diverse systems. A unique feature of these viruses is the modified Sun1GFP tag that enables 474 

nuclei purification by magnetic beads coated with anti-GFP antibody. This process is advantageous for 475 

isolating genomic and epigenomic signals from the population of interest with no dependence on 476 

transgenic strains. In comparison to single nucleus sequencing technologies, affinity purification with 477 

SNAIL is more efficient for addressing targeted hypotheses about a specific cell type. SNAIL may also be 478 

paired with single nucleus sequencing technologies for unprecedented resolution of the substructures 479 

within minority cell populations. We took advantage of SNAIL affinity purification to isolate SC1-480 

Sun1GFP and SC2-Sun1GFP nuclei for molecular assessment with ATAC-seq. This represents a novel 481 

approach for validating new cell type-specific AAVs. We found that SC1 and SC2 PV SNAIL probes had 482 

high molecular agreement with cells tagged in the Pvalb-2A-Cre mouse strain, making them a reasonable 483 

alternative to transgenic strain technology. In addition to their success in the intended brain region 484 

(cortex), these SC1 and SC2 PV SNAIL viruses also generalized to subcortical regions, the striatum and 485 

GPe.  486 

 In general, pairing cell type-specific enhancers with AAVs provide much more flexibility and 487 

scalability than transgenic technologies. However, there are drawbacks in certain applications. AAVs 488 

require time to reach peak expression, usually 2-4 weeks, although some may be robust earlier. This 489 
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means they are not appropriate for developmental studies in very young animals. Additionally, there are 490 

limitations to the transduction efficiency, so AAVs may not be ideal for studies where it is important to 491 

label all cells of a certain type. Finally, enhancer activity in AAVs may fluctuate under different ages or 492 

in response to different conditions, because enhancers are dynamic actors in the regulation of gene 493 

expression. However, machine learning model-based prioritization of characteristic sequences may 494 

minimize this risk.  495 

 Excitingly, there are many opportunities for extensions of the SNAIL framework that enable cell 496 

type-specific interrogation in unprecedented settings. Machine learning model-selected enhancer 497 

sequences may be used to drive the expression of a gene for cell type-specific circuit manipulation, as has 498 

been achieved with channelrhodopsin and DREADDS (Lee et al., 2010; Vormstein-Schneider et al., 499 

2020). Other important advancements could overexpress a particular ion channel, neurotransmitter 500 

receptor, gene variant, or guide RNA for a CRISPR-based gene manipulation strategy. More so than other 501 

strategies for cell type-specific AAV design, the SNAIL framework can be tuned for cross-species probe 502 

development. In fact, multiple machine learning models have successfully predicted enhancers across 503 

mammals, demonstrating high evolutionary conservation in the rules for enhancer sequence activity 504 

(Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020; Minnoye et al., 2020). Multispecies models could 505 

further improve transferability of probes across species. A new approach that explicitly encourages the 506 

model not to learn signatures of species-specific enhancer activity might be especially promising 507 

(Cochran et al., 2021). Lastly, while most previous enhancer selection has relied on sorted populations of 508 

nuclei from existing transgenic animals, the SNAIL framework provides the opportunity to develop viral 509 

tools targeting previously unexplored cell types that are identifiable in snATAC-seq. There is potential to 510 

divide subpopulations at multiple levels and design extremely specific technologies. Other applications 511 

may exploit changes in enhancer sequence activity in disease and other contexts to target specific cell 512 

states. Continued exploration at the intersection of machine learning and enhancer technology 513 

development is sure to enhance the impending era of cell type-specific neuroscience and further our 514 

general understanding of specific cell types throughout the body.  515 
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 516 

Materials and Methods 517 

Experimental design. The initial cSNAIL experiments to define candidate PV enhancers were 518 

performed on primary motor cortex and isocortex samples in triplicate on female mice aged 2-3 months 519 

old. All subsequent cSNAIL and SNAIL molecular experiments for the validation of PV SNAIL probes 520 

were performed in the cortex, striatum, and GPe with two or three biological replicates. Each of these 521 

cohorts included at least one male and one female mouse, all 2-4 months old. Control samples for SNAIL 522 

comparisons included cSNAIL PV, cSNAIL PV-, and cells labeled by the Ef1a-Sun1GFP virus. Details 523 

for all experiment samples can be found in Supplemental Table 1. Data primary to this publication can be 524 

accessed through the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), accession 525 

number GSE171549. 526 

Nuclei isolation for ATAC-seq. ATAC-seq data were generated using an affinity purification 527 

approach with cSNAIL or SNAIL to isolate PV neurons from the mouse isocortex, as described in Lawler 528 

et al., 2020. Briefly, mice were overdosed with isoflurane, decapitated, and rapidly dissected. Fresh brain 529 

tissue was sectioned coronally on a vibratome for precision, and we dissected brain regions relevant to the 530 

specific experiment to be processed as separate samples. All dissections took place in cold, oxygenated 531 

artificial cerebrospinal fluid (aCSF). After dissection, we isolated nuclei from the samples by 30 strokes 532 

of dounce homogenization with the loose pestle (0.005 in clearance) in lysis buffer as described in 533 

Buenrostro et al., 2015 (Buenrostro et al., 2015a). The nuclei were filtered through a 70µm strainer and 534 

pelleted with 10 minutes of centrifugation at 2,000 x g at 4 °C. We resuspended the nuclei pellets in wash 535 

buffer (0.25 M Sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM Tricine with KOH to pH 7.8, and 0.4% 536 

IGEPAL) for the affinity purification steps. 537 

Affinity purification of Sun1GFP+ and Sun1GFP- nuclei. The nuclei suspension was incubated 538 

with anti-GFP antibody (Invitrogen, Carlsbad, CA; #G10362) in wash buffer for 30 minutes at 4 °C with 539 

end-to-end rotation. After this period, we added Protein G Dynabeads (Thermo Fisher Scientific, 540 

Waltham, MA; cat. 10004D) to the reaction and incubated again for 20 minutes. We separated the 541 
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Sun1GFP+ fraction from the Sun1GFP- fraction on a magnetic bead rack. Sun1GFP- nuclei in the 542 

supernatant were centrifuged at 2000 x g for 10 minutes to pellet nuclei, washed one time, and filtered 543 

with a 40 µm cell strainer. The Sun1GFP+ nuclei attached to the beads were washed 3-4 times with 800 544 

µL wash buffer by resuspending the sample, letting it settle onto the magnet, and removing the buffer. 545 

Where cell yield was not a concern, we also performed a large volume wash with 10 mL wash buffer and 546 

filtered through a 20 µm cell strainer. All nuclei preparations were resuspended in water for the ATAC-547 

seq reaction. 548 

 ATAC-seq library construction. For each sample, a small aliquot was stained with DAPI (Thermo 549 

Fisher Scientific; cat. 62248) and the concentration of nuclei was determined by counting DAPI+ nuclei 550 

with a hemocytometer. Next, we combined 50,000 nuclei, 25 µL Tagment DNA Buffer, and 2.5 µL 551 

Tagment DNA Enzyme I (Illumina, San Diego, CA; cat. 20034198) into 50 µL total for the transposition 552 

reaction. The reaction incubated at 37 °C for 30 minutes with 300 rpm mixing. Samples containing beads 553 

were gently resuspended every 5-10 minutes throughout the incubation to prevent the beads from staying 554 

settled at the bottom. Immediately following incubation, the DNA was column purified with the Qiagen 555 

MinElute PCR Purification kit (Qiagen, Hilden Germany; cat. 28004). Libraries were amplified to ⅓ 556 

saturation with dual-indexed Illumina primers (Preissl et al., 2018). We ensured that samples had the 557 

characteristic periodic fragment length distribution of high quality ATAC-seq using TapeStation 558 

assessment (Agilent Technologies, Santa Clara, CA). Successful samples were sequenced at low depth on 559 

the Illumina Miseq system to determine appropriate library pooling and sequencing depth, then paired-560 

end sequenced for 2 x 150 cycles with the Illumina Novaseq 6000.  561 

Animal use. All animals for ATAC-seq experiments were either wild type mice (C57BL/6J; 562 

Jackson Laboratory, Bar Harbor, ME; Stock No: 000664) for SNAIL experiments or heterozygous Pvalb-563 

2A-Cre mice (B6.Cg-Pvalbtm1.1(cre)Aibs/J; Jackson Laboratory Stock No: 012358) (Madisen et al., 2010) on 564 

a C57BL/6J background for cSNAIL experiments. Imaging animals were either Pvalb-2A-Cre or double 565 

transgenic Pvalb-2A-Cre/Ai14 (Ai14 strain; B6.Cg-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J; Jackson 566 

Laboratory Stock No: 007914). All mice were 2-4 months old at the time of the tissue experiments. Initial 567 
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PV cSNAIL data for creating the sorted cell PV vs. PV- model was collected from female mice, but all 568 

subsequent validation experiments included representation from both sexes. All animals were housed with 569 

a 12 hour light cycle, and experiments were performed 2-3 hours after lights on. Animals for the data 570 

primary to this study received no treatments other than the retro-orbital AAV injections. However, 571 

previously published cSNAIL data used in analysis included healthy animals that received stereotaxic 572 

saline injections to the medial forebrain bundle (Lawler et al., 2020). 573 

Molecular cloning. To make the non-specific control viral vector pAAV-Ef1a-Sun1GFP, we 574 

made modifications to pAAV-Ef1a-Cre with restriction enzyme cloning. pAAV-EF1a-Cre was a gift from 575 

Karl Deisseroth (Addgene, Watertown, MA; plasmid #55636; http://n2t.net/addgene:55636; 576 

RRID:Addgene_55636). First, we added a multiple cloning site before the Ef1a promoter to create easy 577 

promoter swapping for later use. The multiple cloning site insert was synthesized as by Integrated DNA 578 

Technologies, Coralville, IA and was inserted between BshTI and MluI sites upstream of the Ef1a 579 

promoter. Next, we used BamHI and EcoRI sites to replace the Cre gene with a modified Sun1GFP gene 580 

identical to the one in our cSNAIL technologies.  581 

The resulting pAAV-Ef1a-Sun1GFP vector was then further modified to create the other 582 

constructs. The PV SNAIL probes were designed to contain one PV-specific enhancer candidate 583 

sequence, a synthetic intron for RNA stabilization, the Sun1GFP gene, a WPRE signal, and a polyA 584 

signal. From pAAV-Ef1a-Sun1GFP, the Ef1a promoter and intron region was removed and replaced with 585 

the sequence for a PV-specific enhancer candidate and the synthetic intron. Inserts for SC1 and SC2 were 586 

synthesized by Integrated DNA technologies and cloned into the vector using restriction sites for NdeI 587 

and BamHI. To ensure that no expression was being driven from the synthetic intron sequence itself, we 588 

similarly cloned a negative control construct containing the synthetic intron, but no enhancer candidate 589 

sequence. All transformations during cloning were performed in MegaX DH10B cells (Invitrogen, 590 

#C640003) and confirmed with Sanger sequencing.  591 

AAV production. AAV was produced in AAVpro(R) 293T cells (Takara, Kyoto, Japan; #632273) 592 

by co-transfection of the genome pAAV, an AAV helper plasmid, and pUCmini-iCAP-PHP.eB. 593 
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pUCmini-iCAP-PHP.eB was a gift from Viviana Gradinaru (http://n2t.net/addgene:103005; RRID: 594 

Addgene 103005) (Chan et al., 2017). The AAV particles were precipitated with Polyethylene Glycol 595 

(PEG 8000, Sigma-Aldrich, St. Louis, MO; cat. P2139-500G) and purified on an iodixanol gradient 596 

(OptiPrep, Sigma-Aldrich, cat. D1556-250ML) with ultracentrifugation for 2.5 hours at 350,000 x g at 18 597 

°C. We filtered and concentrated the virus in PBS using Amicon Ultra-15 centrifugation filters (Millipore, 598 

Burlington, MA; #UFC905024). The viral titer was measured with the AAVpro(R) Titration Kit (Takara, 599 

#6233), diluted to a concentration of 8.0 x 109 vector genomes (vg) / µL, and stored single-use aliquots at 600 

-80 °C until injection. 601 

AAV delivery. Animals were anesthetized with 2-3% isoflurane until no pedal withdrawal reflex 602 

was observed. Then, we injected 4 x 1011 vg total (50 µL) of virus into the retro-orbital cavity and treated 603 

the eye with 0.5% Proparacaine Hydrochloride Ophthalmic Solution. The animals were monitored while 604 

the virus incubated for 3-4 weeks until endpoint experiments. 605 

Imaging and analysis. Tissues were fixed with whole body 4% paraformaldehyde (PFA) 606 

perfusion and the brains were incubated in 4% PFA for an additional 12-24 hours after dissection. 607 

Coronal slices 80 µm thick were made with a vibratome. Free-floating sections were stained for 608 

Parvalbumin with Pvalb (Swant, Marley, Switzerland; PV 27) primary antibody with AlexaFluor 405 609 

(Invitrogen, #A-31556) or AlexaFluor 594 (Cell Signaling Technology, Danvers, MA; #8889) secondary 610 

antibodies. Images were taken of the motor cortex with laser scanning confocal microscopy. Cells were 611 

counted in each channel with Fiji (Schindelin et al., 2012) and assigned as double-labeled or single-612 

labeled manually. Individual images from 1-3 mice were treated as replicates to determine the mean and 613 

standard error of the mean for specificity and efficiency quantifications. 614 

ATAC-seq data processing. Samples were processed from the paired-end fastq files using the 615 

ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) with the following 616 

changes from default behaviors: atac.cap_num_peak = 300000, atac.idr_thresh = 0.1. All samples had 617 

high TSS enrichment (>15) and clear periodicity, indicative of good data quality. Optimal IDR peaks 618 

were determined for biological replicates of the same cell type, brain region, and sequencing batch 619 
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(https://github.com/kundajelab/idr) (Li et al., 2011). IDR peaks were then merged to define the combined 620 

peak regions (OCRs) for each analysis using bedtools (Quinlan and Hall, 2010). Specifically, we defined 621 

sets of OCRs for i) cortex PV and PV- cSNAIL samples, ii) PV, EXC, and VIP INTACT samples (Mo et 622 

al., 2015), and iii) cortex, striatum, and GPe bulk samples, PV and PV- cSNAIL samples, SC1-Sun1GFP 623 

samples, SC2-Sun1GFP samples, and Ef1a-Sun1GFP samples. We constructed count tables including the 624 

relevant samples on each of these OCR backgrounds using Rsubread featureCounts version 1.28.1 (Liao 625 

et al., 2019). These three count tables were used to form the basis of i) the sorted population PV vs PV- 626 

models, ii) the sorted population PV vs. EXC and PV vs. VIP models, and iii) analysis of SC1 and SC2 627 

SNAIL PV probes in the cortex, striatum, and GPe.  628 

The counts were modeled using the negative binomial distribution in DESeq2 (Love et al., 2014). 629 

We assessed the coefficient of cell group, where cell groups were unique tissue, virus, cell type 630 

combinations, and we controlled for sex differences where both were present: DESeq2 design ~ sex + 631 

cellGroup. Differential peaks were defined strictly for applications i and ii related to building models 632 

(padj < 0.01 and |Log2FoldDifference| > 1) and more loosely for application iii to compare across viruses 633 

(padj < 0.05 and |Log2FoldDifference| > 0.5). Related to Fig. 3, only cortical samples from count matrix 634 

iii were included in the DESeq2 model, while the Fig. 4 DESeq2 model included samples from all three 635 

brain regions.  636 

snATAC-seq processing. The following samples of snATAC-seq from the mouse MOp were 637 

downloaded in Snap file format from http://data.nemoarchive.org/biccn/: CEMBA171206_3C, 638 

CEMBA171207_3C, CEMBA171212_4B, CEMBA171213_4B, CEMBA180104_4B, 639 

CEMBA180409_2C, CEMBA180410_2C, CEMBA180612_5D, and CEMBA180618_4D(Li et al., 640 

2020). These were processed using SnapATAC version 1.0.0 (Fang et al., 2021). We restricted the 641 

analysis to nuclei that passed filtering as defined by the original authors (Li et al., 2020). This removed 642 

nuclei that had at fewer than 1000 reads, TSS enrichment <10, or doublet signatures detected by Scrublet 643 

(Wolock et al., 2019). Filtered samples contained 6,700-10,983 nuclei each, for a total of 78,525 nuclei. 644 

We applied a bin matrix with a bin size of 5,000 and combined the snap objects. Then, we removed bins 645 
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overlapping with the ENCODE blacklist, mitochondrial regions, and the top 5% of bins that overlapped 646 

with invariant features. We reduced dimensionality and selected 18 significant components, then 647 

corrected for batch effects using Harmony (Korsunsky et al., 2019). We performed Louvain clustering 648 

using runCluster() with the option louvain.lib=”R-igraph”.  649 

 Cell types were assigned to clusters by accessibility at promoters and gene bodies of marker 650 

genes (Supplemental Fig. 1) and by comparison to the cell annotations from the original authors (Li et al., 651 

2020). Peaks were called for each cluster using MACS2 with the options --nomodel --shift 0 --ext 73 --652 

qval 1e-2 -B --SPMR --call-summits (Zhang et al., 2008). Overlapping peaks across all clusters were 653 

merged, resulting in 415,813 OCR regions in total. Differential OCRs were defined using the findDAR() 654 

function with test.method = “exactTest” and were required to meet padj < 0.01 (Benjamini-Hochberg 655 

corrected) and |log2FoldDifference| > 1. For comparisons to groups of clusters, e.g. PV vs. EXC, separate 656 

tests were performed for PV vs. each excitatory cluster, and the intersection of differential OCRs was 657 

selected.  658 

SVM data preparation. SVMs were developed to predict the direction of differential activity from 659 

sequences underlying differential OCRs between two cell types or groups of cell types. Because ATAC-660 

seq summit regions are highly enriched for transcription factor binding motifs, we centered on the peak 661 

summits within differential ATAC-seq OCRs and extended in both directions for a total fixed sequence 662 

length of 500 bp, a convenient length for AAV cloning. Peak summits were defined by MACS2 (Zhang et 663 

al., 2008), and only summit regions of peaks called within the cell type of interest were retained. For data 664 

from sorted cells, we used optimal IDR peaks across biological replicates of the given cell type. For 665 

example, in a PV vs. VIP model comparison, the positive model input examples were 500 bp summit-666 

centered regions of PV IDR peaks that overlapped PV-specific differential open chromatin regions and 667 

the negative model input examples were 500 bp summit-centered regions of VIP IDR peaks that 668 

overlapped VIP-specific differential open chromatin regions. For snATAC-seq data, we used peaks called 669 

within a cluster to define the relevant summit regions. If multiple cell clusters were involved in the 670 

comparison, e.g. the excitatory neuron vs. inhibitory neuron model, we used summits found in any peak 671 
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set from a cluster within that category. In cases where there were multiple summits within a differential 672 

open chromatin region, all summits greater than 100 bp apart from each other were retained.  673 

After defining the genomic locations of the summit-centered differential open chromatin regions 674 

for model training, we used additional filtering to prepare the data for model training. First, we restricted 675 

the models to enhancer regions because they have more specificity than promoters and may be governed 676 

by different sequence properties. Therefore, we filtered out regions that were within 2,000 bp of a TSS, 677 

using RefSeq annotations downloaded from the UCSC Table browser in July 2020 (Kuhn et al., 2013). 678 

Next, we removed super-enhancers because they also may be governed by different sequence features and 679 

are not useful for AAV probe design because they are too large. We downloaded mm9 coordinates of 680 

mouse cortex super enhancers defined by H3K27ac from the dbSuper database (Khan and Zhang, 2016) 681 

and converted these to mm10 coordinates using UCSC liftOver with minmatch = 0.95 (Kuhn et al., 2013). 682 

Using bedtools intersect (Quinlan and Hall, 2010), we removed regions with any super enhancer overlap. 683 

Finally, we used bedtools getfasta (Quinlan and Hall, 2010) to retrieve the sequences at these genomic 684 

coordinates from the mm10 assembly, downloaded from UCSC genome browser in May 2018 (Kuhn et 685 

al., 2013), and we removed any sequences that contained uncertain bases (Ns).  686 

SVM model construction. Sequences were divided into separate partitions by chromosome for 687 

model training, validation, and final testing. The training sets included chromosomes 3-7, 10-19, and X, 688 

the validation sets included chromosomes 8 and 9, and the test sets included chromosomes 1 and 2. The 689 

training data were input into LS-GKM’s gkmtrain and evaluated with gkmpredict (Lee, 2016). Because 690 

the input data was summit centered, all models used the center weighted gkm kernel, option -t 4, or the 691 

center weighted gkm rbf kernel, option -t 5. The -l, -k, -d, -c, and -w parameters for word length, number 692 

of informative columns, number of mismatches to consider, regularization, and class-weighted 693 

regularization were tuned to maximize the validation set F1 scores through manual iterations. Other 694 

parameters were left on default behavior. auROC and auPRC metrics were calculated and visualized on 695 

training, validation, and test sets using the ROCR package in R (http://ipa-tys.github.io/ROCR/). All 696 
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paper figures reflect final test set performance. The details of all parameter settings and performance 697 

metrics of the final models are reported in Supplemental Supplemental Table 2. 698 

CNN data preparation. We conducted differential accessibility analysis using DESeq2 (Love et 699 

al., 2014) to identify regulatory regions that display cell type-specific accessibility in ATAC-seq in PV 700 

neurons relative to other background cell types (PV-, VIP, EXC). We used PV and PV- neuron ATAC-701 

seq samples generated in this study as well as PV, VIP, and EXC neuron ATAC-seq samples from Mo et 702 

al., 2015. To conduct differential accessibility analysis, we obtained genomic coordinates of all 200 bp 703 

bins in the mm10 reference genome, starting from the 200 bp bin at the beginning of each chromosome of 704 

including all following contiguous non-overlapping 200 bp bins. We then filtered out any bin that 705 

overlaps with an artifact region (Amemiya et al., 2019) or with regions that have unknown nucleotides 706 

(obtained from the UCSC twoBitInfo utility using the -nBed option). During this step, regions near the 707 

ends of chromosomes were filtered out. Then, using the featureCounts function in the subread package 708 

(Liao et al., 2014), we counted the reads mapping to each of the 200 bp bins in the ATAC-seq samples 709 

obtained from every included ATAC-seq sample. We then use the DESeq2 R package (Love et al., 2014) 710 

to identify bins that were differentially accessible between i) PV and PV-, ii) PV and VIP, and iii) PV and 711 

EXC neurons at a Benjamini-Hochberg FDR adjusted p-value cutoff of 0.01. For each of the three 712 

comparisons, significant differential bins that displayed PV specificity (log2FoldDifference > 0) were 713 

used as positive examples for CNN training and significant differential bins that displayed negative 714 

log2FoldDifference (log2FoldDifference < 0) were used as negative examples for CNN training.  715 

CNN model construction. We trained three separate CNN models that relate sequence to 716 

comparative regulatory activity (Kelley et al., 2016; Quang and Xie, 2016; Zhou and Troyanskaya, 2015). 717 

For each significant differential 200 bp bin, we obtained the 1000 bp sequence surrounding the center of 718 

the bin from the mm10 reference genome and trained the CNN to predict the positive or negative class 719 

label. We held out sequence examples underlying all significant differential bins on chromosome 4 as a 720 

validation set to evaluate hyperparameter settings and to choose the best performing final model. We also 721 

held out sequence examples underlying all significant differential bins on chromosomes 8 and 9 as a test 722 
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set for final evaluation. Because we had different validation and test sets from those used for the SVM, 723 

we did not use any results from the SVM to influence our approach to designing the CNN architecture or 724 

any other aspects of CNN training. We implemented our CNN model in Keras 2.2.4 (https://keras.io/) 725 

with a theano backend (The Theano Development Team et al., 2016). We created a one-hot encoded 726 

representation of the sequence, a 4 x 1000 binary matrix representing positions and occurrences of the 4 727 

nucleotide characters (A,T,G and C) on the sequence, which was propagated through the network. Our 728 

CNN architecture consisted of multiple layers of convolution kernels stacked on top of each other 729 

(Supplemental Fig. 3). The first such layer consisted of 1000 convolution kernels, each with a kernel 730 

width of 8 and height of 4, which scan the input sequence in chunks of 8 nucleotides. We applied rectified 731 

linear unit (ReLu) activations on the outputs of these convolution kernels. This initial layer is followed by 732 

a variable number of convolution layers with the same number of kernels (100), each of width 8 and 733 

height 1. We applied ReLu activations on these convolution outputs as well. These convolution layers are 734 

then followed by a set of max pooling operations that selects the maximum value from a set of 13 735 

adjacent units (pooling size = 13). We set the stride for the max pooling operation to 13 units, meaning 736 

that it selected the maximum values from contiguous chunks of 13 adjacent outputs from the previous 737 

layer. We applied dropout regularization (Srivastava et al., 2014) on the outputs of the max pooling 738 

operation to prevent overfitting to the training set. We then flattened the outputs of the max pooling layer 739 

into a single vector and passed them to a single output unit with a sigmoid activation function. We used 740 

stochastic gradient descent (SGD) to minimize binary cross entropy loss (log loss) between the output of 741 

this unit and the positive/negative class label to learn model parameters.  742 

Each model was trained for 100 passes through the training set (or “epochs”). For the PV vs. PV- 743 

and the PV vs. VIP tasks, we evaluated model performance and chose the best performing model based 744 

on the value of the binary cross entropy loss on the validation set. For the PV vs. EXC task, we chose the 745 

final model based on a combination of auROC and auPRC on the validation set. We ignored small 746 

differences in validation auROC and auPRC (± 0.02) while selecting the final PV vs. EXC model. Tuning 747 

only the number of variable convolution layers (0, 1, or 2), and the dropout probability for the max 748 
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pooling output (0.2, 0.4, or 0.5), we were able to achieve strong auROCs and auPRCs on the held out 749 

validation sets. Therefore, we did not attempt to vary learning rate for SGD (0.01), momentum (0.0), 750 

batch size (30), number of training epochs (100), number of filters in the first convolution layer (1000), 751 

number of filters in subsequent convolution layers (100), kernel sizes (8), max pooling size (13) and stride 752 

(13). A table of hyperparameter settings and associated performance metrics (loss value, auROC, auPRC) 753 

on training, validation, and test sets is provided in Supplemental Table 3.  754 

Broad promoter sequences. The sequences of Gfap, CamkII, and Dlx promoters (Supplemental 755 

Fig. 2) were extracted from AAV plasmids with confirmed cell type-specific activity in vivo. The Gfap 756 

promoter sequence (Gfa2) was from hGFAP-GFP (Addgene plasmid #40592; 757 

http://n2t.net/addgene:40592; RRID:Addgene_40592). The CamkII promoter sequence was from 758 

pENN.AAV.CamKII0.4.eGFP.WPRE.rBG (Addgene plasmid #105541; http://n2t.net/addgene:105541; 759 

RRID:Addgene_105541). The Dlx promoter sequence was from pAAV-mDlx-GFP-Fishell-1 (Addgene 760 

plasmid #83900; http://n2t.net/addgene:83900; RRID:Addgene_83900)(Dimidschstein et al., 2016).  761 

SVM score analysis for external PV AAV screen. 33 externally tested PV AAV enhancer 762 

sequences (Vormstein-Schneider et al., 2020) were scored through all cortical PV SVMs. To enable 763 

comparison between models, scores were normalized to standard deviations from 0 using the standard 764 

variation of the validation data set for each model. For each pair of models, the sequence scores were 765 

assessed for correlation with cor() function from the R Stats package 766 

(https://www.rdocumentation.org/packages/stats/versions/3.6.2) with the Pearson method and visualized 767 

using the corrplot package in R (https://github.com/taiyun/corrplot) (Supplemental Fig. 4).  768 

Alternative prioritization explorations for external PV AAV screen. Common alternative 769 

approaches for prioritizing enhancer candidates for cell type-specific AAV design include 770 

log2FoldDifference and conservation-based ranking. We show that machine learning models are more 771 

predictive of success than these approaches by evaluating on the external PV enhancer AAV screen 772 

(Vormstein-Schneider et al., 2020). The log2FoldDifference of ATAC-seq signal in different cell type 773 

comparisons was evaluated from snATAC-seq data (Li et al., 2020). We added the exact genomic 774 
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locations of each test sequence to the genomic peak set for assessment and applied the findDAR() 775 

function with test.method = “exactTest” in SnapATAC version 1.0.0 (Fang et al., 2021). The 776 

log2FoldDifference was determined for i) the PV cluster relative to all PV- cells using cluster.neg = 777 

“random”, ii) the PV cluster relative to closely related cells using cluster.neg = “knn”, iii) the PV cluster 778 

relative to the pool of excitatory neuron clusters, iv) the PV cluster relative to the VIP cluster, and v) the 779 

PV cluster relative to the SST cluster (Supplemental Fig. 5).  780 

 Euarchontoglires PhyloP scores were extracted for all bases within each PV enhancer candidate 781 

using the UCSC Table Browser (phyloP60wayEuarchontoGlires track for the Grcm38/mm10 genome, 782 

accessed March 2021) (Kuhn et al., 2013). Regions were mapped from mouse (mm10) to human (hg38) 783 

using UCSC LiftOver, requiring a minimum ratio of bases that must remap of 0.1. All regions were 784 

mappable between species. Finally, we assessed overlapping human PV neuron OCRs from motor cortex 785 

snATAC-seq (Bakken et al., 2020) using bedtools intersect (Quinlan and Hall, 2010). Any peak overlap 786 

of at least 1 bp was recorded as an overlapping peak.  787 

Evaluation of SC1 and SC2 ATAC-seq. PCA was performed using plotPCA() on the 788 

DESeqDataSet object with variance stabilizing transformation in DESeq2 version 1.26.0 (Love et al., 789 

2014). Using the DESeq2 models described above for cell groups, we extracted OCR statistics for 790 

particular cell group comparisons by using the results contrasts. Correlations between 791 

log2FoldDifferences for PV cSNAIL vs. bulk tissue and log2FoldDifferences for SNAIL probes vs. bulk 792 

tissue were assessed using the R function cor.test() with both “spearman” and “pearson” methods. 793 

Genome browser tracks were visualized in the mm10 genome using IGV (Robinson et al., 2011) and track 794 

heights were normalized between samples of the same experimental ATAC-seq method (cSNAIL, 795 

SNAIL, bulk tissue, or single nucleus). Comparisons to snATAC-seq cluster markers (Fig. 3d, 796 

Supplemental Fig. 8) represent the percentage of cSNAIL/SNAIL ATAC-seq OCRs enriched relative to 797 

bulk (padj < 0.05 & log2FoldDifference > 0.5) that overlap snATAC-seq cluster markers. snATAC-seq 798 

cluster markers were defined as enriched OCRs for that cluster relative to its k-nearest neighbors (padj < 799 

0.01 & log2FoldDifference > 1) that were not enriched OCRs for any other cluster. The significance of 800 
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the enrichments was assessed using the hypergeometric test with the phyper() function in R, setting 801 

lower.tail = FALSE. Enrichments for cluster-specific OCRs were assessed using a background of all 802 

snATAC-seq OCRs (N = 415,813) and p-values were corrected for 84 tests with Bonferroni correction. 803 

Assessment of PV neuron OCRs in different brain regions. PV neuron cSNAIL ATAC-seq 804 

samples from cortex, striatum, and GPe tissue of healthy control mice from Lawler et al., 2020 (1 male, 1 805 

female) were assessed for differential open chromatin using DESeq2 as described above. OCRs that were 806 

preferentially open in one brain region relative to each of the other brain regions (padj < 0.01 & 807 

log2FoldDifference > 1) were evaluated for sequence motif and pathway enrichments. Motif enrichments 808 

for tissue-specific PV OCRs were identified using AME version 5.3.3 (Mc Leay and Bailey, 2010) 809 

against a background of PV OCRs from all three tissues. Similarly, pathway enrichments using GREAT 810 

version 4.0.4 (McLean et al., 2010) were carried out for tissue-specific PV OCRs relative to a background 811 

of PV OCRs from all three tissues. 812 

Model interpretation. We used GkmExplain (Shrikumar et al., 2019) to calculate actual and 813 

hypothetical importance scores per base for each of 11 SVMs among 1,755 true positive PV-specific 814 

OCR sequences that also scored PV-specific across all SVMs. First, sequences were one-hot encoded. 815 

The importance scores were normalized based on the hypothetical importance scores of all possibilities 816 

per base, so that a base position decreased in importance if there were other nucleotide possibilities that 817 

produced similar scores. We identified sequence motifs with high contributions to PV scores for each 818 

SVM separately using TF-MoDISco version 0.4.2.3 (Shrikumar et al., 2018) with options chosen to align 819 

with final SVM parameters: sliding_window_size = 7, flank_size = 3, min_seqlets_per_task=3000, 820 

trim_to_window_size = 7, initial_flank_to_add = 3, final_flank_to_add = 4, kmer_len = 7, num_gaps = 1, 821 

and num_mismatches = 1. The resulting sequence patterns, representing motifs generated from seqlet 822 

clusters, were trimmed to the 13 central bases and patterns with support from more than 100 seqlets were 823 

used in downstream analysis. The position weight matrices (PWMs) of these patterns were associated 824 

with known motifs in the Human and Mouse HOCOMOCO v11 FULL database using Tomtom (Gupta et 825 

al., 2007) with the Pearson correlation coefficient motif comparison function (Supplemental Table 12). 826 
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Motifs from all models were clustered based on PWM similarity using STAMP (Mahony and Benos, 827 

2007); STAMP operations were performed after trimming motif edges with information content less than 828 

0.4, using ungapped Smith-Waterman alignment, the iterative refinement multiple alignment strategy, 829 

Pearson correlation coefficient comparison metrics, and UPGMA tree construction. Finally, individual 830 

instances of motif sites were mapped in SC1 and SC2 sequences using FIMO with default parameters 831 

(Grant et al., 2011). 832 
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 841 

Figure Legends 842 

Figure 1: Classification of neuron subtype-specific enhancer activity from sequence. a) Schematic 843 

representation of the SNAIL workflow. b-e) Receiver operator characteristic and precision-recall 844 

performance metrics for various cell type-specific enhancer sequence model strategies and data 845 

modalities. The reported numbers are the areas under the curves for each model. f) Scatter plots for SVM 846 

scores reported by equivalent population-derived models and single nucleus-derived models. *** p-value 847 

of correlation < 0.001. g) Top five sequence pattern contributors to PV prediction in linear, population-848 

derived SVMs. The best matching known motif is listed (full results in Supplemental Table 12). 849 

 850 

Figure 2: Two sequences candidates selectively activate AAV expression in PV neurons. a) Genome 851 

browser visualization of PV specific ATAC-seq signal at sequence candidates SC1 and SC2. * cSNAIL 852 
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data, † INTACT data from Mo et al., 2015, ‡ snATAC-seq from Li et al., 2020. b) Percentile rank of 853 

SVM scores among 1,755 true PV-specific enhancer sequence candidates that scored positively across all 854 

models. Linear population-derived models are denoted with “pop”, nonlinear population-derived models 855 

are denoted with “pop, rbf”, and linear single nucleus-derived models are denoted with “sn”. c) Example 856 

images of AAV Sun1GFP expression against parvalbumin (Pvalb) antibody staining. d,e) Quantification 857 

of AAV Sun1GFP or Cre reporter overlap with Pvalb+ cells. Bar heights represent the mean among 858 

images and the error of the mean is shown. N cells = 1,322 (SC1), 2,570 (SC2), 1,340 (Cre), 2,013 (Ef1a), 859 

and 504 (N.C.). N.C = negative control. 860 

 861 

Figure 3: Cortical SC1 and SC2 SNAIL-isolated nuclei recapitulate PV GABAergic interneuron 862 

ATAC-seq signatures. a) PCA of ATAC-seq counts across samples. b) Genome browser visualization of 863 

ATAC-seq signal at the Pvalb gene locus. Tracks represent the pooled sample p-value signal. Each track 864 

of similar data type is normalized to the same scale: SNAIL data range 0 - 335, *cSNAIL data range 0 - 865 

93, †INTACT data range 0 - 200, ‡snATAC-seq data range 0 - 2. c) Scatter plots of ATAC-seq log2 fold 866 

difference relative to bulk tissue ATAC-seq, comparing PV cSNAIL to other AAVs. The density of 867 

overlapping points is shown by the plot color. d) snATAC-seq nuclei clusters as visualized by t-SNE. The 868 

dendrograms show hierarchical clustering of Euclidean sample distances by Ward’s minimum variance 869 

method D2. The heatmap shows the percentage of population OCRs enriched relative to bulk that are also 870 

cluster-specific marker OCRs. * Hypergeometric enrichment p < 0.01. 871 

 872 

Figure 4: SC1 and SC2 generalize to PV neurons in the striatum and GPe. a) Numbers of differential 873 

OCRs between PV neuron populations in three brain regions (DESeq2 padj < 0.01 & |log2FoldDifference| 874 

> 1). Brain region-specific OCRs are those that were significantly enriched in that tissue relative to each 875 

of the other two tissues. OCRs shared between two brain regions on the venn diagram are those that were 876 

significantly enriched in each of those tissues relative to the excluded tissue. The shared center of the 877 

venn diagram shows all remaining OCRs that have ambiguous or no tissue preference. b) Examples of 878 
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enriched motifs in brain region-specific PV open chromatin relative to all PV open chromatin. c,f) 879 

Distributions of validation data SVM scores and SC1 and SC2 scores within striatum and GPe PV vs PV- 880 

models. d,g) PCA visualization of ATAC-seq counts in each sample. e,h) Pearson correlation coefficients 881 

when comparing the log2 fold difference of cSNAIL PV ATAC-seq relative to bulk tissue ATAC-seq and 882 

the log2 fold difference of SNAIL ATAC-seq relative to bulk tissue ATAC-seq. Error bars show the 95% 883 

confidence intervals.  884 

 885 

Figure 5: Motif interpretation of PV neuron-specific OCR activity. a) Motifs with high contributions 886 

to PV scores in each SVM, clustered by sequence similarity. The bubble color at each node shows the 887 

model that motif was discovered in and the size of the bubble shows the number of seqlets supporting that 888 

motif. Clusters are labeled by the clade majority best match for known transcription factor binding motifs. 889 

The full list of matches can be found in Supplemental Table 12. b,c) Normalized importance of each base 890 

in SC1 (b) and SC2 (c) sequences for their PV-specific scores in each SVM. Locations with sequence 891 

matches for identified motifs in each SVM (from panel a) are shown at the bottom.  892 
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