

1 **Machine learning sequence prioritization for cell type-specific enhancer design**

2

3 Alyssa J Lawler^{1,2,3}, Easwaran Ramamurthy^{1,3}, Ashley R Brown^{1,3}, Naomi Shin^{1,3}, Yeonju Kim^{1,3}, Noelle

4 Toong^{1,3}, Irene M Kaplow^{1,3}, Morgan Wirthlin^{1,3}, Xiaoyu Zhang^{1,3}, Grant Fox^{1,3}, Andreas R Pfenning*^{1,2,3}

5 ¹Computational Biology Department, School of Computer Science, Carnegie Mellon University,

6 tPittsburgh, PA, USA

7 ²Biological Sciences Department, Mellon College of Science, Carnegie Mellon University, Pittsburgh,

8 PA, USA

9 ³Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA

10 *Corresponding author

11

12 **Abstract**

13 Recent discoveries of extreme cellular diversity in the brain warrant rapid development of
14 technologies to access specific cell populations, enabling characterization of their roles in behavior and in
15 disease states. Available approaches for engineering targeted technologies for new neuron subtypes are
16 low-yield, involving intensive transgenic strain or virus screening. Here, we introduce SNAIL (Specific
17 Nuclear-Anchored Independent Labeling), a new virus-based strategy for cell labeling and nuclear
18 isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other
19 computational approaches to identify DNA sequence features that confer cell type-specific gene
20 activation and using them to make a probe that drives an affinity purification-compatible reporter gene.

21 As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-
22 expressing (PV) neurons. Furthermore, we show that nuclear isolation using SNAIL in wild type mice is
23 sufficient to capture characteristic open chromatin features of PV neurons in the cortex, striatum, and
24 external globus pallidus. Expansion of this technology has broad applications in cell type-specific
25 observation, manipulation, and therapeutics across species and disease models.

26

27 **Introduction**

28 The biology of the brain is complicated by vast diversity in cell types, subtypes, and cell states.
29 Contemporary advancements in single cell sequencing have identified over a hundred molecularly distinct
30 neuron populations in the mammalian cortex (Hodge et al., 2019; Lake et al., 2016; Saunders et al., 2018;
31 Tasic et al., 2018; Zeisel et al., 2015) including several small subpopulations of Gamma aminobutyric
32 acid (GABA)ergic neurons whose specialized functions are critical for the control of neuronal inhibition
33 (Kepecs and Fishell, 2014; Lim et al., 2018). Understanding neurological function in health and disease
34 from a cell type-specific perspective is critical to the progress of neuroscience.

35 Such endeavors necessitate cell type-specific technologies for the identification, isolation, and
36 manipulation of discrete cell populations. Transgenic mouse strains targeting major inhibitory neuron
37 subclasses including Parvalbumin-expressing (PV), Somatostatin-expressing (SST), and serotonergic (5-
38 HT) neurons are widely used today and have been instrumental toward our understanding of these cell
39 types (Madisen et al., 2010; Taniguchi et al., 2011). Additional cell type-specific transgenic strains have
40 been created through strategies like enhancer trap (Shima et al., 2016) and EDGE (Nair et al., 2020),
41 which leverage the specificity of *cis* regulatory sequence activity and improve the throughput of
42 transgenic development. Yet even with these innovations, as the number of cell populations of interest
43 rapidly expands, new transgenic strains cannot scale accordingly.

44 More recently, many developers have turned toward virus-based cell type-specific tools
45 (Dimidschstein et al., 2016; Graybuck et al., 2021; Hrvatin et al., 2019; Mich et al., 2021; Nair et al.,
46 2020; Vormstein-Schneider et al., 2020). Adeno-associated virus (AAV) technologies became particularly
47 attractive with the invention of AAV variants that cross the blood-brain barrier to transduce the central
48 nervous system, AAV-PHP.B and AAV-PHP.eB (Chan et al., 2017; Deverman et al., 2016). In line with
49 certain transgenic engineering, an emerging AAV targeting strategy is to incorporate cell type-specific
50 enhancer elements into the viral genome to promote restricted expression. Enhancer activity can be
51 extremely selective, even more so than the activity of most genes and their associated promoters
52 (Hoffman et al., 2013; Kellis et al., 2014; Roadmap Epigenomics Consortium et al., 2015). Thus,

53 enhancers may be used to confer specificity even for neuron subtypes that cannot be resolved by the
54 expression of a single marker gene (Tasic et al., 2018) or where the marker gene promoter is not specific
55 on its own (Nathanson et al., 2009).

56 Despite the enthusiasm for enhancer sequences in cell type-specific AAV development, their
57 selection remains nontrivial. ATAC-seq (Buenrostro et al., 2013) has been a popular technique for
58 defining potential cell type-specific enhancer regions because of its high resolution and its compatibility
59 with small cell populations and even single cell technologies (Buenrostro et al., 2015b; Cusanovich et al.,
60 2015). The biggest outstanding barrier to sequence engineering for targeted technologies is the low
61 conversion rate from experimentally suggested cell type-specific open chromatin regions (OCRs) to
62 desired cell type-specific activity in the isolated viral context. Simple enhancer sequence prioritization
63 methods using ATAC-seq signal strength or sequence conservation have been insufficient. Recently, a
64 parallel screening approach involving single nucleus sequencing of barcoded enhancer libraries, PESCA,
65 was proposed to speed up the selection process toward a successful enhancer-driven virus (Hrvatin et al.,
66 2019). Another approach leveraged cell population marker gene proximity for enhancer prioritization
67 (Vormstein-Schneider et al., 2020). We hypothesized that there were additional *in silico* filters that could
68 be applied to reduce the burden of experimental screening in cell type-specific AAV development.

69 Toward this goal, we sought to leverage the complex combinatorial code linking transcription
70 factor binding site motifs and other DNA sequence features to cell type-specific regulatory activity (Jindal
71 and Farley, 2021). To learn that code, we turned to machine learning models, which have achieved state-
72 of-the-art performance on predicting regulatory activity from DNA sequence (Ghandi et al., 2014; Kelley
73 et al., 2016; Quang and Xie, 2016). Convolutional neural networks (CNNs) (Cun et al., 1989) and support
74 vector machines (SVMs), for example, have been applied to predict enhancer activity from sequence
75 across tissues and cell types (Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020). We reasoned that
76 machine learning classifiers could be applied to identify the most characteristic enhancer sequence
77 patterns within a given cell type, enabling us to prioritize and interpret sequences that are most likely to
78 drive selective expression.

79 We developed a framework for machine learning-assisted engineering of cell type-specific
80 AAVs, which we refer to as Specific Nuclear Anchored Independent Labeling (SNAIL). Building upon
81 our previously described Cre-activated AAV technology cSNAIL (Lawler et al., 2020), SNAIL probes
82 have the unique advantage of expressing an affinity purification-compatible fluorescent tag (Deal and
83 Henikoff, 2010; Mo et al., 2015). This protein, Sun1GFP, enables nuclei isolation that is particularly
84 advantageous for accessing rare cell populations that would otherwise have low representation in bulk
85 tissue or single nucleus sequencing. Unlike cSNAIL, SNAIL probes are not Cre-dependent, but are
86 instead driven by cell type-specific enhancer sequences selected through machine learning models.

87 Here, we describe two novel AAV probes for PV neurons. In the mouse cortex, PV SNAIL
88 probes labeled PV neurons with > 70% specificity to Pvalb antibody staining. Isolated populations of
89 tagged cells from the cortex, striatum, and external globus pallidus (GPe) were heavily enriched for
90 known PV open chromatin signatures. In the cortex, PV SNAIL probes were more specific to GABAergic
91 PV interneurons than the common Pvalb-2A-Cre mouse strain. Nucleotide-resolution model interpretation
92 highlighted a collection of 14 transcription factor binding motif families responsible for PV neuron-
93 specific enhancer activation. These results demonstrate concrete utility in sequence-level information for
94 AAV enhancer selection, setting the stage for efficient probe design for a wide range of cell types.

95

96 **Results**

97 *Support vector machines discriminate known cell type-specific regulatory sequences*

98 We sought to build machine learning classifiers that could discriminate sequences of differential
99 OCRs between two cell populations. We imposed upfront that training sequences have a minimum fold
100 difference in chromatin accessibility between the cell types to ensure that the model learned cell type-
101 specific features of enhancer activation and not general enhancer features. We chose this strategy because
102 it was most closely aligned with our goal of prioritizing sequences that would activate in one cell type and
103 not others.

104 To evaluate whether information from differential OCR sequences was sufficient to train accurate
105 classifiers, we first built SVMs comparing select broad classes of cell types in the brain. These were i) a
106 neuron vs. astrocyte classifier and ii) an excitatory neuron vs. inhibitory neuron classifier. The training
107 and validation sequences were based on differential OCRs between cell types, identified from single
108 nucleus (sn)ATAC-seq data from the mouse motor cortex (MOp) (Li et al., 2020) (Supplemental Fig. 1).
109 Both models performed well on held out data, achieving areas under receiver operating characteristic
110 curves (auROCs) of 0.95 and 0.93 (Supplemental Fig. 2).

111 Next, we verified that these models could recapitulate known cell type-specific activation patterns
112 of commonly used AAV promoter sequences Gfap, CamkII, and Dlx (Supplemental Fig. 2). The Gfap
113 promoter sequence, which empirically has a heavy astrocyte bias *in vivo*, scored highly astrocyte-specific
114 in the neuron vs. astrocyte model, achieving a threshold with less than a 2.1% false positive rate among
115 validation data. In the same neuron vs. astrocyte model, the CamkII promoter and Dlx promoter
116 sequences scored highly neuron-specific. Also consistent with empirical expectations, the excitatory vs.
117 inhibitory neuron model predicted the CamkII sequence to have excitatory neuron preference and the Dlx
118 sequence to have inhibitory neuron preference, while the Gfap promoter scored close to neutral
119 (Supplemental Fig. 2). Therefore, this classification strategy is capable of correctly predicting cell type-
120 specific regulatory sequence activity in the viral context, at least for very distinct cell classes.

121

122 *Machine learning models accurately predict PV neuron-specific open chromatin from sequence*

123 Next, we assessed whether the same principles could be applied to more narrowly defined neuron
124 subtypes, using PV neurons as a target. To define potential PV neuron and PV- cell enhancer candidates
125 in the mouse cortex in a data-driven manner, we conducted ATAC-seq on the PV and PV- nuclei
126 populations of Pvalb-2A-Cre mice. The nuclei populations were isolated using previously described Cre-
127 dependent AAV affinity purification technology, cSNAIL (Lawler et al., 2020). cSNAIL probes activate
128 an isolatable nuclear envelope tag in the presence of Cre recombinase protein. Therefore, purified
129 populations from these mice are a direct reflection of cells labeled by the Pvalb-2A-Cre mouse strain, a

130 current standard for PV neuron labeling. These cSNAIL PV and PV- ATAC-seq signatures ultimately
131 defined the training data for models for designing PV SNAIL probes, which are independently activated
132 by PV-specific regulatory elements.

133 Using merged reproducible ATAC-seq peaks in PV and PV- populations, here called OCRs, we
134 identified significantly differentially accessible OCRs between the two cell populations (DESeq2 padj <
135 0.01 & |Log2FoldChange| > 1) (Love et al., 2014). To refine these regions for model training, we
136 eliminated promoter-proximal OCRs within 2,000 base pairs (bp) of an annotated transcription start site
137 (TSS). This decision biased training examples toward OCRs of potential enhancer function, which are
138 most relevant for cell type-specific AAV design and may have different sequence composition than gene
139 promoters. This resulted in 14,059 PV OCRs and 4,935 PV- OCRs of interest genome-wide.

140 We developed two SVMs to distinguish between PV and PV- OCR classes based on nucleotide
141 sequence, one linear model and one nonlinear model. Both SVMs were based on gapped k-mer count
142 vectors, i.e. the number of occurrences of all short subsequences of length k, tolerating some gaps or
143 mismatches, as implemented by LS-GKM (Ghandi et al., 2014; Lee, 2016). The training data were 500 bp
144 sequences underlying PV or PV- OCRs of interest, with a 2.55:1 ratio of positives to negatives. The
145 sequences were centered on ATAC-seq peak summits, where functional transcription factor binding
146 motifs tend to be concentrated (Buenrostro et al., 2013). Taking advantage of this property, we used a
147 center-weighted kernel function for both SVMs, meaning gapped k-mers near the sequence center were
148 weighted more heavily than peripheral gapped k-mers. The two SVMs differed in that one was linear and
149 the other implemented a radial basis function (rbf) kernel, which permits the detection of interactions
150 between gapped k-mers. Both SVMs could predict the correct classification on held out data with high
151 accuracy (Fig. 1b,c), indicating that there were substantial sequence pattern differences between the PV
152 and PV- classes and that the models were able to learn these differences.

153 Next, because the PV- data contained a high proportion of glial cells, a developmental outgroup
154 to neurons, we considered the possibility that the PV vs. PV- models were learning features of general
155 neuron vs. glia enhancer sequence properties and not necessarily features that were specific to PV

156 neurons. To address this issue, we trained additional population-derived SVMs that directly discriminated
157 between enhancer sequences of PV neurons and other neuron subtypes, using publicly available ATAC-
158 seq data from INTACT-sorted excitatory (EXC) neurons and VIP neurons (Mo et al., 2015). The model
159 training data were defined with the same process described for the PV vs. PV- models. The PV vs. EXC
160 models were trained on 27,879 PV sequence examples and 30,728 EXC sequence examples. The PV vs.
161 VIP models were trained on 15,474 PV sequence examples and 28,683 VIP sequence examples. These
162 models performed well (Fig. 1b,c), indicating that even at the level of neuron subtypes, OCR sequence
163 information is rich enough to reliably distinguish cell type-specific activity.

164 To survey an additional machine learning strategy, we also built CNN classifiers from the same
165 underlying data, using a different approach (Supplemental Fig. 3). CNNs are best equipped to
166 automatically learn higher-order interactions between sequence features without explicit handcrafting of
167 features. To define the training data for the CNNs, we binned the genome into 200 bp bins and identified
168 bins with differential chromatin accessibility ($q < 0.01$) between cell types. These sequences were
169 extended bidirectionally to 1,000 bp and used for model training and evaluation. The PV vs. PV- CNN
170 was trained on 55,398 PV sequences and 37,919 PV- sequences, the PV vs. EXC CNN was trained on
171 3,212 PV sequences and 36,509 EXC sequences, and the PV vs. VIP CNN was trained on 22,416 PV
172 sequences and 96,609 VIP sequences. The CNNs were highly accurate (Fig. 1d), demonstrating an
173 additional approach to discriminate OCR sequence differences between purified neuron populations.

174 While ATAC-seq from purified cell populations is advantageous for its depth and recovers many
175 examples of differentially accessible reads between neuron subtypes, many neuron populations of interest
176 are not yet isolatable, even through transgenic means. Single nucleus sequencing technologies can be
177 applied to measure neuron subtype-resolution open chromatin without cell sorting by performing several
178 parallel micro-reactions that introduce unique cell barcodes into ATAC-seq sequencing reads. Therefore,
179 we explored whether cell type-specific enhancer sequences derived from mouse motor cortex snATAC-
180 seq (Li et al., 2020) were sufficient to produce neuron subtype-level classifiers. We trained several
181 pairwise linear center-weighted gapped k-mer SVMs to discriminate differential open chromatin

182 sequences from snATAC-seq clusters or groups of clusters. These included analogous models to the
183 population-derived models comparing PV vs. PV-, PV vs. EXC, and PV vs. VIP. In this case, the single
184 nucleus-derived PV vs. PV- model refers to a model trained on differential OCR sequences comparing PV
185 cluster nuclei to all other nuclei with a random sampling probability. The PV vs. k-nearest-neighbor
186 (KNN) model is an additional variation on the PV vs. PV- model where the PV- nuclei sampling for
187 differential OCR analysis was selected for similarity to the PV cluster as implemented in SnapATAC
188 (Fang et al., 2021). We also produced a model comparing PV vs. SST neurons, the most similar subtype
189 to PV. The number of training examples per class of these models ranged from 13,040 to 95,694 and the
190 positive (PV) to negative ratios per model ranged from 1:1.04 to 1:3.74 (further information available in
191 Supplemental Table 2). Single nucleus-derived SVMs were able to classify cell type-specific enhancer
192 sequences with high accuracy (Fig. 1e).

193 Moreover, models built independently from different data sources identified similar sequence
194 contributions for equivalent tasks. When scoring the population-derived sequences through both the
195 population-derived SVMs and the single nucleus-derived SVMs, individual sequences scored highly
196 similarly in both models (Fig. 1f). These findings highlight the prevalence of reliable cell type-specific
197 enhancer sequence signatures that can be defined by a variety of classifier types and sources of open
198 chromatin measurements. The parameter and performance details of all models can be found in Tables S2
199 (SVMs) and S3 (CNNs).

200

201 *Models learn biological signatures relevant for AAV probe design*

202 We have shown that multiple machine learning strategies are useful for discriminating between
203 regulatory sequences that are differentially active between neuron populations. Next, we asked whether
204 these models could be useful for prioritizing enhancer sequence candidates for cell type-specific enhancer
205 driven technologies. The strength of chromatin accessibility signal at an individual locus may be dynamic
206 and insufficient for cell type-specific enhancer prioritization on its own. Enhancer candidates with highly

207 specific chromatin accessibility and with high specificity scores in the models represent the most
208 characteristic cell type-specific sequence features and may be more effective than other OCRs.

209 First, we wanted to ensure that the success of the classifiers was rooted in biological sequence
210 signatures related to transcription factor binding motifs. We employed GkmExplain (Shrikumar et al.,
211 2019) and TF-MoDISco (Shrikumar et al., 2018) model interpretation methods to identify sequence
212 patterns with high contributions toward PV neuron-specific OCR predictions, focusing on the population-
213 derived linear SVMs. The models learned sequence patterns that matched known transcription factor
214 binding motifs (Gupta et al., 2007). These included critical developmental transcription factors (TFs) that
215 promote PV interneuron lineage specification *Lhx6*, *Maf*, and *Mef2c* (Liodis et al., 2007; Pai et al., 2020;
216 Vogt et al., 2014) (Fig. 1g). This was encouraging for biological relevance, especially given that the
217 models had no knowledge of known motifs or even the concept of transcription factor binding *a priori*.

218 To ensure that the neuron subtype-level models were identifying signatures that were relevant for
219 the specific purpose of creating selective PV neuron viruses, we evaluated model predictions on
220 externally validated successful and unsuccessful PV probe enhancer candidates from Vormstein-
221 Schneider et al., 2020, named E1 - E34. Importantly, the enhancer sequence from the probe with the
222 lowest PV specificity (E4; 14% specificity) received a negative score from every model, and two probe
223 enhancers with highest cortical PV specificity (E22 & E29; 94% specificity) received high positive scores
224 from every model.

225 The average score across all models was predictive of probe specificity (Pearson correlation
226 coefficient = 0.42, p = 0.016). Individual enhancer candidates tended to receive similar scores across the
227 SVMs comparing PV to highly abundant cell populations (PV vs. PV-, PV vs. EXC, PV vs. KNN), with
228 Pearson correlations between pairs of models ranging from 0.56 to 0.99 (Supplemental Fig. 4). Many of
229 these models were weakly significant predictors of empirical PV specificity in the AAV context on their
230 own, with the population-derived PV vs. EXC models reaching the highest significance (padj = 0.047)
231 (Supplemental Fig. 5). Some models, such as PV vs. KNN, were better predictors of PV probe specificity
232 than the log fold difference of chromatin accessibility for that cell comparison (Supplemental Fig. 5).

233 SVMs comparing PV against rarer subtypes (PV vs. VIP, PV vs. SST) were more unique and had less
234 correlation with other models. These models were not significant predictors of probe specificity overall,
235 but many of the highest performing probes had positive scores. Probe specificity was not associated with
236 PhyloP score, which has been considered in cell type-specific enhancer prioritization (Hrvatin et al.,
237 2019), but did show a trend with activity conservation at orthologous regions in the human genome
238 (Supplemental Fig. 5). Importantly, neither method of conservation was as predictive of AAV specificity
239 as the average model score.

240 This result emphasizes the benefit of enhancer pre-selection with machine learning, which could
241 drastically reduce *in vivo* screening efforts by signaling the best PV enhancer sequences before
242 experimentation. The models predicted which PV enhancer sequence candidates were likely to be cell
243 type-specific drivers and precisely which subsequences were responsible for PV neuron-specific
244 activation. Sequence E29, within the *Inpp5j* locus, was predicted to have PV neuron-specific activity due
245 to a central Mef2 motif site and nearby Err3 motif site, among others (Supplemental Fig. 6). Sequence
246 E22, within the *Tmem132c* locus, was predicted to have PV specificity in part due to Nkx28 and Lhx6
247 motif sites (Supplemental Fig. 6). Yet, none of these enhancers were our highest predicted PV neuron
248 sequences, so we continued to investigate additional enhancer candidates genome-wide for PV SNAIL
249 probe implementation.

250

251 *Two candidate PV SNAIL probes successfully target PV neurons in the mouse cortex*

252 Based on the predictions of all PV enhancer models on our candidates, we prioritized two highly
253 characteristic PV neuron enhancer sequences to test for their ability to drive targeted expression *in vivo*
254 (Fig. 2). We refer to these sequence candidates as SC1 and SC2. Among true PV neuron-specific
255 enhancer sequences that i) were differential OCRs in PV vs. PV-, PV vs. EXC, and PV vs. VIP sorted
256 population data and ii) scored PV positive across all SVM evaluations (1,755 sequences), SC1 was the
257 highest predicted sequence candidate, while SC2 was in the 90th percentile (Fig. 2b, Supplemental Table
258 4).

259 SC1 and SC2 sequences were cloned into separate vectors upstream of the cSNAIL reporter gene,
260 Sun1GFP. To minimize off-target effects, PV SNAIL probes directly rely on transcriptional activation
261 from SC1 or SC2, with no minimal promoter (see methods). We also prepared two control vectors: a
262 negative control that was the identical vector but with no inserted enhancer sequence and a nonspecific
263 control that was the identical vector but with a common Ef1a promoter sequence in place of the candidate
264 sequence. When packaged with AAV-PHP.eB and delivered to the mouse through systemic injection, the
265 SC1-Sun1GFP and SC2-Sun1GFP constructs promoted cortical fluorescence that was restricted to PV
266 neurons, while the Ef1a virus did not (Fig. 2c-e, Supplemental Table 5). Compared with
267 immunohistochemistry-label Pvalb protein, SC1 and SC2-mediated expression of Sun1GFP was restricted
268 to Pvalb+ neurons in ~70-74% of cases. This was an 11-fold enrichment in precision over the Ef1a
269 promoter and notably, an almost 2-fold enrichment over Cre reporter labeling in Pvalb-2A-Cre mice. We
270 expect these to be conservative estimates of PV targeting due to incomplete antibody capture. On average,
271 Sun1GFP expression from SC1 and SC2 SNAIL probes labeled ~71-73% of Pvalb+ neurons. The rate is
272 limited by the transduction properties of the AAV-PHP.eB capsid, which only transduces 55-70% of
273 neurons in the cortex (Chan et al., 2017). SC1 and SC2 expression in Pvalb+ neurons represents at least a
274 9-fold increase over the negative control virus.

275

276 *Isolation of PV SNAIL-labeled nuclei captures PV cortical interneurons*

277 Expression of the Sun1GFP gene differentiates SNAIL probes from other cell type-specific AAV
278 technology. The stable nuclear envelope association of this tag enables affinity purification using
279 magnetic beads coated with anti-GFP antibody, which is advantageous for rare population isolation and
280 downstream epigenetic assays. In many contexts, purification of a cell population is more efficient than
281 single nucleus sequencing technologies, especially if the population of interest is in low proportion or the
282 desired downstream applications are not available in single nucleus approaches. Taking advantage of this
283 property, we isolated Sun1GFP-expressing nuclei induced by SC1-Sun1GFP, SC2-Sun1GFP, or Ef1a-
284 Sun1GFP SNAIL virus from the mouse cortex and performed ATAC-seq. Through comparison with

285 known PV neuron ATAC-seq (via cSNAIL in the *Pvalb*-2A-Cre strain) and PV- or bulk ATAC-seq
286 including cSNAIL PV- cell fractions and Ef1a virus signatures, we determined that both SC1-Sun1GFP
287 and SC2-Sun1GFP cells are highly enriched for PV neurons.

288 The first principal component, accounting for 84% of the total variance, separated known PV
289 neuron samples from PV- and bulk tissue samples. Likewise, SC1-Sun1GFP and SC2-Sun1GFP samples
290 grouped with the PV samples while Ef1a-Sun1GFP samples grouped with the PV- and bulk sample
291 signatures (Fig. 3a). At the *Pvalb* locus, there were highly reproducible OCR signals between PV
292 cSNAIL, PV snATAC-seq, SC1-Sun1GFP, and SC2-Sun1GFP samples that did not appear in bulk tissue,
293 PV-, or Ef1a-Sun1GFP samples (Fig. 3b).

294 A major goal for PV SNAIL probes was that they may replace transgenic mouse strain
295 technologies in certain contexts. Ideally then, ATAC-seq from Sun1GFP-sorted cells from SNAIL probes
296 in wild type mice should provide similar information as ATAC-seq from Sun1GFP-sorted cells from
297 cSNAIL in *Pvalb*-2A-Cre transgenic mice. Therefore, we defined PV cSNAIL ATAC-seq
298 log2FoldDifference over bulk cortical tissue ATAC-seq as a gold standard for each OCR. For SC1 and
299 SC2, we computed the correlations between the log2FoldDifference of OCR signal relative to bulk tissue
300 and the log2FoldDifference of OCR signal in PV cSNAIL relative to bulk tissue. To establish an upper
301 limit for correlation, we compared two different batches of cortical PV cSNAIL samples, which had a
302 Pearson correlation of 0.86 and a Spearman correlation of 0.85. As a lower limit, we evaluated the non-
303 specific Ef1a control virus, which had a Pearson correlation of 0.38 and a Spearman correlation of 0.26.
304 Because the AAV-PHP.eB capsid has a neuron bias, these lowly-correlated signatures are likely to be
305 general neuron specifications shared among PV and other neurons. Within this range, SC1 and SC2 had
306 very high correlation with cSNAIL, with SC1 achieving almost equivalent correlation as the two cSNAIL
307 batches (SC1 Pearson = 0.85 and Spearman = 0.84; SC2 Pearson = 0.81 and Spearman = 0.79) (Fig. 3c).
308 The details for differential OCRs in each virus relative to bulk tissue can be found in Supplemental Table
309 6.

310 Finally, we compared SC1-Sun1GFP+ and SC2-Sun1GFP+ cell open chromatin signatures to
311 those of snATAC-seq clusters from the mouse motor cortex (Fig. 3d) (Li et al., 2020). We defined
312 cluster-specific OCRs for each snATAC-seq cluster and population-enriched OCRs for SNAIL-isolated
313 cells relative to bulk tissue (see methods) and assessed the overlaps. We found that cSNAIL-isolated PV
314 OCRs, SC1-isolated OCRs, and SC2-isolated OCRs were each significantly enriched for PV cluster-
315 specific markers (34% - 47% overlap, hypergeometric $p = 0$), while OCRs from Ef1a-isolated cells were
316 not enriched for PV cluster-specific markers (4% overlap, $p = 1$). Ef1a OCRs instead had the highest
317 enrichment for markers of a layer 4 excitatory neuron cluster (25% overlap, $p = 5.3 \times 10^{-5}$). We also note
318 that cSNAIL PV ATAC-seq had an additional 8% overlap with excitatory cluster L5 PT markers ($p = 2.5$
319 $\times 10^{-45}$), possibly reflective of Pvalb-2A-Cre line labeling in layer 5 Parvalbumin-expressing excitatory
320 neurons (Jinno and Kosaka, 2004; Roccaro-Waldmeyer et al., 2018; Tanahira et al., 2009). These OCRs
321 were absent in SC1- and SC2-isolated cells. In fact, SC1 and SC2 had no enrichment for cluster-specific
322 OCRs of any cluster other than PV ($\leq 2\%$ overlap, $p > 0.1$), including the closely related SST population.
323 This suggests that SC1 and SC2 SNAIL probes actually target a stricter subset of the cells than the Pvalb-
324 2A-Cre mouse strain, likely restricted to PV inhibitory interneurons.

325

326 *Chromatin accessibility differences between PV neurons in different brain regions*

327 SC1 and SC2 SNAIL probes were designed based on the sequence properties of cortical PV
328 neurons. Many PV neurons throughout the brain have a common developmental origin in the medial
329 ganglionic eminence (MGE), but there are substantial OCR differences between mature PV neuron
330 populations in different brain regions. From cSNAIL-isolated PV populations in Pvalb-2A-Cre mice
331 (Lawler et al., 2020), we characterized thousands of OCRs with differential accessibility between the
332 cortex, striatum, and GPe ($p_{adj} < 0.01$, $|\log_2\text{FoldDifference}| > 1$) (Fig. 4a, Supplemental Table 7). These
333 differences were associated with distinct TF binding motifs (Fig. 4b, Supplemental Table 8). For
334 example, OCRs that were more accessible in cortical PV neurons relative to striatal and GPe PV had
335 highest enrichment for Mef2a motifs, an activity-dependent transcription factor that is important in

336 plasticity and distinguishes subpopulations of PV neurons in the hippocampus (Donato et al., 2015).
337 Mef2c has a similar binding motif and is the second-highest enriched TF motif in cortex-specific PV
338 neuron OCRs. Mef2c is essential for specifying the MGE PV neuron lineage in mouse and human (Mayer
339 et al., 2018) and has been linked to Schizophrenia and other neurodevelopmental disorders (Mitchell et
340 al., 2018). TFs with motifs enriched in PV neuron OCRs that are more open in striatum relative to cortex
341 and GPe included Tgif1, a key homeodomain gene involved in holoprosencephaly (Taniguchi et al.,
342 2012). At 6,654 differential OCRs, GPe-specific PV OCRs were the most unique, and had TF motif
343 enrichments including the Lhx3, Pou5f1, Err3, and Pax3 motifs.

344 These molecular differences likely relate to functional differences, for example, the tendency of
345 PV cells in the GPe to project to other brain regions versus the local nature of PV cells in the cortex
346 (Hernández et al., 2015; Saunders et al., 2016). We assessed ontology enrichments in the brain region-
347 specific PV ATAC-seq OCR sets relative to all PV ATAC-seq OCRs using GREAT (McLean et al.,
348 2010) (Supplemental Table 9). The set of PV OCRs enriched in cortical PV neurons included 10 regions
349 associated with the Bdnf gene (Ensembl Genes; FDR Q = 0.0035). Among these was Bdnf promoter IV
350 which is known to be essential for PV neuron synaptic transmission in the prefrontal cortex (Sakata et al.,
351 2009). Other cortex-specific PV enrichments included terms related to sensory perception, especially
352 smell. Striatum-specific PV neuron OCRs were enriched for the adenylate cyclase-inhibiting dopamine
353 receptor signaling pathway (GO:BP; FDR Q = 0.010) and bradykinesia (Mouse Phenotype; FDR Q =
354 0.046). OCRs preferentially open in GPe PV neurons were enriched for neuropeptide signaling pathways,
355 for example acetylcholine receptor binding (GO:MF; FDR Q = 0.0044) and neuropeptide receptor activity
356 (GO:MF; FDR Q = 1.2×10^{-5}). This suggests unique epigenetic mechanisms for the regulation of
357 transcription related to receptor signaling in GPe PV neurons, but further work is needed to discern these
358 relationships.

359

360 *PV SNAIL probes generalize to subcortical brain regions in the mouse*

361 Given these complexities, we were interested in the extent to which PV enhancer probes chosen
362 from data in one tissue could generalize to other brain regions. Here, we assessed whether SC1 and SC2
363 SNAIL probes, designed in the cortex, were also selective for PV neurons in the striatum and GPe. First,
364 we used cSNAIL ATAC-seq data from the striatum and GPe to model the regulatory sequence properties
365 of PV neurons vs. PV- cells in these brain regions (Supplemental Fig. 7), and tested whether SC1 and
366 SC2 sequences were predicted to have PV-specific activation (Fig 4c,f). Indeed, SC1 and SC2 were
367 predicted to have PV neuron-specific activity in striatum and GPe PV vs. PV- SVMs. However, there
368 were 1-3,000 sequences with more confident scores toward PV specific activity in each case.

369 We proceeded to isolate SC1 and SC2-labeled cells from these tissues in wild type mice using
370 Sun1GFP affinity purification and performed ATAC-seq on the tagged populations. We have previously
371 shown high agreement between cSNAIL and Pvalb-2A-Cre labeling in the striatum and GPe (Lawler et
372 al., 2020), so we again used cSNAIL ATAC-seq samples from these regions as true PV neuron signals.
373 By principal component analysis (PCA), we recovered separation between PV samples, including SC1
374 and SC2-isolated populations, and PV- samples (Fig. 4d,g). We assessed the correlations between
375 log2FoldDifference in SNAIL and cSNAIL samples, each relative to bulk tissue (striatum) or, where there
376 were no bulk samples available, cSNAIL PV- cells (GPe) (Fig. 4e,h, Supplemental Table 10,
377 Supplemental Table 11). Pearson correlation coefficients were similar or slightly lower for SC1 and SC2
378 in the striatum and GPe than for equivalent comparisons in the cortex, indicating less conservation
379 between cSNAIL and SNAIL probe targets (SC1 cortex = 0.85 , striatum = 0.71, GPe = 0.68 ; SC2 cortex
380 = 0.81, striatum = 0.82, GPe = 0.73). Yet, these were substantially increased over Ef1a correlation with
381 cSNAIL in these tissues, especially for the striatum (Ef1a cortex = 0.38, striatum = 0.18, GPe = 0.51).

382 By comparing the overlaps of SC1 and SC2-enriched OCRs in striatum and GPe with cortical
383 snATAC-seq cluster-specific OCRs, we still identified the PV cluster as most similar to SC1 and SC2
384 cells. As expected, all overlaps in striatum-cortex and GPe-cortex comparisons were lower than those
385 from cortex-cortex comparisons, but the magnitudes of SC1 and SC2 overlap with the Pvalb cluster in
386 these brain regions were similar to the magnitudes of cSNAIL PV overlap with the Pvalb cluster in these

387 brain regions (Supplemental Fig. 8). In the striatum, the overlaps with the *Pvalb* cluster were 8% for SC1,
388 14% for SC2, and 14% for cSNAIL. In the GPe, the overlaps with the *Pvalb* cluster were 7% for SC1, 7%
389 for SC2, and 9% for cSNAIL. From these interpretations, SC1 and SC2 SNAIL viruses do generalize to
390 the striatum and GPe, though they may not be as robust as they are within the cortical context.

391

392 *Err3 and Mef2 motifs are important for the PV-specific activity of SC1 and SC2 sequences*

393 To interpret the specific sequence patterns within SC1 and SC2 that contribute to their PV
394 neuron-specific activity prediction, we assessed commonly used motifs for each model and identified
395 potential matches within the candidate sequences. For all SVMs, we calculated per-base importance
396 scores and hypothetical importance scores for the set of PV-specific OCRs that were true positives
397 according to all SVMs (score > 0; N = 1,755) (Shrikumar et al., 2019). Then, for each model, we used
398 TF-MoDISco (Shrikumar et al., 2018) to cluster commonly important subsequences called “seqlets”
399 within these PV-specific examples. The resulting clusters represent motifs that were high contributors to a
400 positive score in each model. Among the 11 SVMs comparing PV neuron open-chromatin against PV-
401 cells, EXC neurons, VIP neurons, or SST neurons, we recovered 124 well-supported motifs. Many motifs
402 appeared to be shared across multiple models. Thus, we performed UPGMA clustering on the 124 motifs
403 by sequence similarity using STAMP (Mahony and Benos, 2007) and identified 14 motif clusters (Fig.
404 5a).

405 The largest cluster, with 23 motif members, contained representation from all 11 models and had
406 matches to known motifs including the motifs for *Err3* and *Rora* (Supplemental Table 12). Consistent
407 with an important role for *Err3* in PV neurons, *Err3* (a.k.a. *Esrrg*) transcript levels were differentially
408 over-expressed in the PV neuron cluster relative the rest of the frontal cortex in snRNA-seq (DropViz
409 subcluster #2-7 Neuron.Gad1Gad2.Pvalb *Esrrg* fold ratio = 8.0, p = 1.14 x 10-198) (Saunders et al.,
410 2018). *Esrrg* and *Rora* are key TFs in the *Pgc1a* transcriptional program, which regulates *Pvalb*
411 expression, mitochondrial function, and transmitter release (Lin et al., 2005; Lucas et al., 2010). *Pgc1a*

412 signaling is restricted to PV neurons in the brain, and may mediate the unique energy demands of fast-
413 spiking neurons (Lucas et al., 2014; Paul et al., 2017).

414 The second largest motif cluster contained 16 motifs, also representing all 11 models, and the
415 motifs had best matches to motifs for Mef2a, Mef2c, and Mef2d. In finer subdivisions of this cluster, PV
416 vs. VIP model motifs had best matches to Mef2a, while all other models tended to have best matches for
417 Mef2c and Mef2d. A cluster of Lhx6-like motifs, a transcription factor necessary for MGE interneuron
418 differentiation from interneuron progenitors (Liodis et al., 2007; Vogt et al., 2014), was detected with
419 high support from PV vs. PV- models and PV vs. EXC models, low support from PV vs. VIP models, and
420 not detected between MGE neuron subtypes PV vs. SST. Interestingly, two clusters of motifs were
421 dominated by PV vs. VIP signal, including matches for Stat6, Nkx28, and Cux2 motifs. *Cux2* expression
422 is induced by Lhx6 in the MGE, supporting a role in specification of the MGE interneuron lineage
423 (including PV and SST neurons) from other interneuron lineages (Zhao et al., 2008). Overall, these
424 findings indicate both shared and unique sequence properties dictating PV-specific regulatory sequence
425 activity relative to other cell types.

426 SC1 and SC2 represent two experimentally validated PV-selective regulatory sequences. To
427 interpret the sequence determinants of their success, we mapped potential motif sites for the 124 TF-
428 MoDISco motifs (Supplemental Table 13) and overlaid these with per-base importance scores for each of
429 the SVMs (Supplemental Table 14). This strategy revealed multiple high importance subsequences with
430 potential transcription factor binding function. SC1 contained two Err3 motifs near the sequence center
431 which were high contributors to the PV-specific model predictions and matched TF-MoDISco motifs for
432 every model (Fig. 5b). An additional subsequence with contributions specific to PV vs. VIP models
433 matched motifs for Sp7. SC2 contained a highly important Mef2 sequence near the center (Fig. 5c). This
434 was a specific match for Mef2c and Mef2d motifs and excluded Mef2a motifs from PV vs. VIP models.
435 Additionally, SC2 contained an Err3 motif with shared importance across all models. Interestingly, the
436 most important features of the SC2 sequence closely resemble those of successful PV probe E29 from
437 Vormstein-Schneider et al., 2020 (Vormstein-Schneider et al., 2020) (Supplemental Fig. 6). The success

438 of SC1 and SC2 are both largely explainable by transcription factor binding motif properties and
439 represent two sequence pattern strategies toward PV-specific activation.

440

441 **Discussion**

442 OCR sequence features provide valuable, underutilized information for cell type-specific
443 enhancer design. Here, we showed that sequence alone was sufficient to discriminate between OCR
444 activity in different neuron subtypes. Interpretation of these models revealed rich diversity among the
445 biochemical underpinnings of these classification tasks, reflective of *cis-trans* interactions. The defining
446 sequence properties of cell type-specific OCR activation were robust throughout different data modalities,
447 including ATAC-seq from sorted populations and snATAC-seq, and different classifier types. Machine
448 learning and computational methods, broadly, can facilitate prioritization of AAV enhancer candidates by
449 quantifying sequence properties that are most characteristic and specific to a given cell type.

450 In SNAIL, our framework for cell type-specific AAV engineering, we incorporate machine
451 learning classifiers as an additional filter for improved enhancer selection. On a set of 33 externally tested
452 PV enhancer-driven AAVs (Vormstein-Schneider et al., 2020), the average PV-specificity score across 11
453 classifiers was more predictive of PV-specific AAV expression than the log2 fold difference of snATAC-
454 seq signal, sequence conservation, or activity conservation at these loci. With the SNAIL framework, we
455 identified and validated two novel enhancers that drive targeted expression in PV neurons in the mouse
456 cortex. While these do not represent enough trials to establish a new conversion rate from cell type-
457 specific OCRs to cell type-specific AAVs, we were encouraged by the immediate success of the first
458 probes we selected. We believe that incorporation of differential sequence property analyses like those
459 used here will continue to improve the throughput of targeted AAV development in new contexts.

460 An additional advantage of incorporating classifiers for cell type-specific enhancer selection is
461 increased interpretability of the factors that govern success. The sequence patterns learned by PV models
462 reflected known PV neuron biology. Common motifs contributing to successful PV probe enhancers
463 included Err3, Mef2, and Lhx6, important in the specification and maintenance of the cortical PV

464 interneuron lineage (Liodis et al., 2007; Mayer et al., 2018; Zhao et al., 2008). SC1 and SC2 depend
465 particularly on Mef2 and Err3 motifs for PV specificity.

466 We found that a combination of multiple direct comparisons between the target cell type and
467 other cell types made for particularly useful screening. Here, we used a tiered approach to ensure specific
468 activity at multiple levels of cellular relationships to PV neurons. At the broadest level, we modeled PV
469 neuron OCR sequences against PV- OCRs, a mixed signature from all other neuron and non-neuron cell
470 types in the mouse cortex. Within neurons, we modeled PV vs. EXC neurons, and then PV relative to
471 more specific subtypes of inhibitory neurons VIP and SST. Successful SC1 and SC2 sequences contained
472 attributes that made them highly PV specific across all of these comparisons.

473 SC1-Sun1GFP and SC2-Sun1GFP are new AAV technologies for PV neuron labeling and
474 isolation in diverse systems. A unique feature of these viruses is the modified Sun1GFP tag that enables
475 nuclei purification by magnetic beads coated with anti-GFP antibody. This process is advantageous for
476 isolating genomic and epigenomic signals from the population of interest with no dependence on
477 transgenic strains. In comparison to single nucleus sequencing technologies, affinity purification with
478 SNAIL is more efficient for addressing targeted hypotheses about a specific cell type. SNAIL may also be
479 paired with single nucleus sequencing technologies for unprecedented resolution of the substructures
480 within minority cell populations. We took advantage of SNAIL affinity purification to isolate SC1-
481 Sun1GFP and SC2-Sun1GFP nuclei for molecular assessment with ATAC-seq. This represents a novel
482 approach for validating new cell type-specific AAVs. We found that SC1 and SC2 PV SNAIL probes had
483 high molecular agreement with cells tagged in the Pvalb-2A-Cre mouse strain, making them a reasonable
484 alternative to transgenic strain technology. In addition to their success in the intended brain region
485 (cortex), these SC1 and SC2 PV SNAIL viruses also generalized to subcortical regions, the striatum and
486 GPe.

487 In general, pairing cell type-specific enhancers with AAVs provide much more flexibility and
488 scalability than transgenic technologies. However, there are drawbacks in certain applications. AAVs
489 require time to reach peak expression, usually 2-4 weeks, although some may be robust earlier. This

490 means they are not appropriate for developmental studies in very young animals. Additionally, there are
491 limitations to the transduction efficiency, so AAVs may not be ideal for studies where it is important to
492 label all cells of a certain type. Finally, enhancer activity in AAVs may fluctuate under different ages or
493 in response to different conditions, because enhancers are dynamic actors in the regulation of gene
494 expression. However, machine learning model-based prioritization of characteristic sequences may
495 minimize this risk.

496 Excitingly, there are many opportunities for extensions of the SNAIL framework that enable cell
497 type-specific interrogation in unprecedented settings. Machine learning model-selected enhancer
498 sequences may be used to drive the expression of a gene for cell type-specific circuit manipulation, as has
499 been achieved with channelrhodopsin and DREADDS (Lee et al., 2010; Vormstein-Schneider et al.,
500 2020). Other important advancements could overexpress a particular ion channel, neurotransmitter
501 receptor, gene variant, or guide RNA for a CRISPR-based gene manipulation strategy. More so than other
502 strategies for cell type-specific AAV design, the SNAIL framework can be tuned for cross-species probe
503 development. In fact, multiple machine learning models have successfully predicted enhancers across
504 mammals, demonstrating high evolutionary conservation in the rules for enhancer sequence activity
505 (Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020; Minnoye et al., 2020). Multispecies models could
506 further improve transferability of probes across species. A new approach that explicitly encourages the
507 model not to learn signatures of species-specific enhancer activity might be especially promising
508 (Cochran et al., 2021). Lastly, while most previous enhancer selection has relied on sorted populations of
509 nuclei from existing transgenic animals, the SNAIL framework provides the opportunity to develop viral
510 tools targeting previously unexplored cell types that are identifiable in snATAC-seq. There is potential to
511 divide subpopulations at multiple levels and design extremely specific technologies. Other applications
512 may exploit changes in enhancer sequence activity in disease and other contexts to target specific cell
513 states. Continued exploration at the intersection of machine learning and enhancer technology
514 development is sure to enhance the impending era of cell type-specific neuroscience and further our
515 general understanding of specific cell types throughout the body.

516

517 **Materials and Methods**

518 *Experimental design.* The initial cSNAIL experiments to define candidate PV enhancers were
519 performed on primary motor cortex and isocortex samples in triplicate on female mice aged 2-3 months
520 old. All subsequent cSNAIL and SNAIL molecular experiments for the validation of PV SNAIL probes
521 were performed in the cortex, striatum, and GPe with two or three biological replicates. Each of these
522 cohorts included at least one male and one female mouse, all 2-4 months old. Control samples for SNAIL
523 comparisons included cSNAIL PV, cSNAIL PV-, and cells labeled by the Ef1a-Sun1GFP virus. Details
524 for all experiment samples can be found in Supplemental Table 1. Data primary to this publication can be
525 accessed through the NCBI Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>), accession
526 number GSE171549.

527 *Nuclei isolation for ATAC-seq.* ATAC-seq data were generated using an affinity purification
528 approach with cSNAIL or SNAIL to isolate PV neurons from the mouse isocortex, as described in Lawler
529 et al., 2020. Briefly, mice were overdosed with isoflurane, decapitated, and rapidly dissected. Fresh brain
530 tissue was sectioned coronally on a vibratome for precision, and we dissected brain regions relevant to the
531 specific experiment to be processed as separate samples. All dissections took place in cold, oxygenated
532 artificial cerebrospinal fluid (aCSF). After dissection, we isolated nuclei from the samples by 30 strokes
533 of dounce homogenization with the loose pestle (0.005 in clearance) in lysis buffer as described in
534 Buenrostro et al., 2015 (Buenrostro et al., 2015a). The nuclei were filtered through a 70 μ m strainer and
535 pelleted with 10 minutes of centrifugation at 2,000 x g at 4 °C. We resuspended the nuclei pellets in wash
536 buffer (0.25 M Sucrose, 25 mM KCl, 5 mM MgCl₂, 20 mM Tricine with KOH to pH 7.8, and 0.4%
537 IGEPAL) for the affinity purification steps.

538 *Affinity purification of Sun1GFP+ and Sun1GFP- nuclei.* The nuclei suspension was incubated
539 with anti-GFP antibody (Invitrogen, Carlsbad, CA; #G10362) in wash buffer for 30 minutes at 4 °C with
540 end-to-end rotation. After this period, we added Protein G Dynabeads (Thermo Fisher Scientific,
541 Waltham, MA; cat. 10004D) to the reaction and incubated again for 20 minutes. We separated the

542 Sun1GFP+ fraction from the Sun1GFP- fraction on a magnetic bead rack. Sun1GFP- nuclei in the
543 supernatant were centrifuged at 2000 x g for 10 minutes to pellet nuclei, washed one time, and filtered
544 with a 40 μ m cell strainer. The Sun1GFP+ nuclei attached to the beads were washed 3-4 times with 800
545 μ L wash buffer by resuspending the sample, letting it settle onto the magnet, and removing the buffer.
546 Where cell yield was not a concern, we also performed a large volume wash with 10 mL wash buffer and
547 filtered through a 20 μ m cell strainer. All nuclei preparations were resuspended in water for the ATAC-
548 seq reaction.

549 *ATAC-seq library construction.* For each sample, a small aliquot was stained with DAPI (Thermo
550 Fisher Scientific; cat. 62248) and the concentration of nuclei was determined by counting DAPI+ nuclei
551 with a hemocytometer. Next, we combined 50,000 nuclei, 25 μ L Tagment DNA Buffer, and 2.5 μ L
552 Tagment DNA Enzyme I (Illumina, San Diego, CA; cat. 20034198) into 50 μ L total for the transposition
553 reaction. The reaction incubated at 37 °C for 30 minutes with 300 rpm mixing. Samples containing beads
554 were gently resuspended every 5-10 minutes throughout the incubation to prevent the beads from staying
555 settled at the bottom. Immediately following incubation, the DNA was column purified with the Qiagen
556 MinElute PCR Purification kit (Qiagen, Hilden Germany; cat. 28004). Libraries were amplified to $\frac{1}{3}$
557 saturation with dual-indexed Illumina primers (Preissl et al., 2018). We ensured that samples had the
558 characteristic periodic fragment length distribution of high quality ATAC-seq using TapeStation
559 assessment (Agilent Technologies, Santa Clara, CA). Successful samples were sequenced at low depth on
560 the Illumina Miseq system to determine appropriate library pooling and sequencing depth, then paired-
561 end sequenced for 2 x 150 cycles with the Illumina Novaseq 6000.

562 *Animal use.* All animals for ATAC-seq experiments were either wild type mice (C57BL/6J;
563 Jackson Laboratory, Bar Harbor, ME; Stock No: 000664) for SNAIL experiments or heterozygous Pvalb-
564 2A-Cre mice (B6.Cg-Pvalb^{tm1.1(cre)Ai14}/J; Jackson Laboratory Stock No: 012358) (Madisen et al., 2010) on
565 a C57BL/6J background for cSNAIL experiments. Imaging animals were either Pvalb-2A-Cre or double
566 transgenic Pvalb-2A-Cre/Ai14 (Ai14 strain; B6.Cg-Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze}/J; Jackson
567 Laboratory Stock No: 007914). All mice were 2-4 months old at the time of the tissue experiments. Initial

568 PV cSNAIL data for creating the sorted cell PV vs. PV- model was collected from female mice, but all
569 subsequent validation experiments included representation from both sexes. All animals were housed with
570 a 12 hour light cycle, and experiments were performed 2-3 hours after lights on. Animals for the data
571 primary to this study received no treatments other than the retro-orbital AAV injections. However,
572 previously published cSNAIL data used in analysis included healthy animals that received stereotaxic
573 saline injections to the medial forebrain bundle (Lawler et al., 2020).

574 *Molecular cloning.* To make the non-specific control viral vector pAAV-Ef1a-Sun1GFP, we
575 made modifications to pAAV-Ef1a-Cre with restriction enzyme cloning. pAAV-EF1a-Cre was a gift from
576 Karl Deisseroth (Addgene, Watertown, MA; plasmid #55636; <http://n2t.net/addgene:55636>;
577 RRID:Addgene_55636). First, we added a multiple cloning site before the Ef1a promoter to create easy
578 promoter swapping for later use. The multiple cloning site insert was synthesized as by Integrated DNA
579 Technologies, Coralville, IA and was inserted between BshTI and MluI sites upstream of the Ef1a
580 promoter. Next, we used BamHI and EcoRI sites to replace the Cre gene with a modified Sun1GFP gene
581 identical to the one in our cSNAIL technologies.

582 The resulting pAAV-Ef1a-Sun1GFP vector was then further modified to create the other
583 constructs. The PV SNAIL probes were designed to contain one PV-specific enhancer candidate
584 sequence, a synthetic intron for RNA stabilization, the Sun1GFP gene, a WPRE signal, and a polyA
585 signal. From pAAV-Ef1a-Sun1GFP, the Ef1a promoter and intron region was removed and replaced with
586 the sequence for a PV-specific enhancer candidate and the synthetic intron. Inserts for SC1 and SC2 were
587 synthesized by Integrated DNA technologies and cloned into the vector using restriction sites for NdeI
588 and BamHI. To ensure that no expression was being driven from the synthetic intron sequence itself, we
589 similarly cloned a negative control construct containing the synthetic intron, but no enhancer candidate
590 sequence. All transformations during cloning were performed in MegaX DH10B cells (Invitrogen,
591 #C640003) and confirmed with Sanger sequencing.

592 *AAV production.* AAV was produced in AAVpro(R) 293T cells (Takara, Kyoto, Japan; #632273)
593 by co-transfection of the genome pAAV, an AAV helper plasmid, and pUCmini-iCAP-PHP.eB.

594 pUCmini-iCAP-PHP.eB was a gift from Viviana Gradinaru (<http://n2t.net/addgene:103005>; RRID:
595 Addgene 103005) (Chan et al., 2017). The AAV particles were precipitated with Polyethylene Glycol
596 (PEG 8000, Sigma-Aldrich, St. Louis, MO; cat. P2139-500G) and purified on an iodixanol gradient
597 (OptiPrep, Sigma-Aldrich, cat. D1556-250ML) with ultracentrifugation for 2.5 hours at 350,000 x g at 18
598 °C. We filtered and concentrated the virus in PBS using Amicon Ultra-15 centrifugation filters (Millipore,
599 Burlington, MA; #UFC905024). The viral titer was measured with the AAVpro(R) Titration Kit (Takara,
600 #6233), diluted to a concentration of 8.0×10^9 vector genomes (vg) / μ L, and stored single-use aliquots at
601 -80 °C until injection.

602 *AAV delivery.* Animals were anesthetized with 2-3% isoflurane until no pedal withdrawal reflex
603 was observed. Then, we injected 4×10^{11} vg total (50 μ L) of virus into the retro-orbital cavity and treated
604 the eye with 0.5% Proparacaine Hydrochloride Ophthalmic Solution. The animals were monitored while
605 the virus incubated for 3-4 weeks until endpoint experiments.

606 *Imaging and analysis.* Tissues were fixed with whole body 4% paraformaldehyde (PFA)
607 perfusion and the brains were incubated in 4% PFA for an additional 12-24 hours after dissection.
608 Coronal slices 80 μ m thick were made with a vibratome. Free-floating sections were stained for
609 Parvalbumin with Pvalb (Swant, Marley, Switzerland; PV 27) primary antibody with AlexaFluor 405
610 (Invitrogen, #A-31556) or AlexaFluor 594 (Cell Signaling Technology, Danvers, MA; #8889) secondary
611 antibodies. Images were taken of the motor cortex with laser scanning confocal microscopy. Cells were
612 counted in each channel with Fiji (Schindelin et al., 2012) and assigned as double-labeled or single-
613 labeled manually. Individual images from 1-3 mice were treated as replicates to determine the mean and
614 standard error of the mean for specificity and efficiency quantifications.

615 *ATAC-seq data processing.* Samples were processed from the paired-end fastq files using the
616 ENCODE ATAC-seq pipeline (<https://github.com/ENCODE-DCC/atac-seq-pipeline>) with the following
617 changes from default behaviors: atac.cap_num_peak = 300000, atac.idr_thresh = 0.1. All samples had
618 high TSS enrichment (>15) and clear periodicity, indicative of good data quality. Optimal IDR peaks
619 were determined for biological replicates of the same cell type, brain region, and sequencing batch

620 (<https://github.com/kundajelab/idr>) (Li et al., 2011). IDR peaks were then merged to define the combined
621 peak regions (OCRs) for each analysis using bedtools (Quinlan and Hall, 2010). Specifically, we defined
622 sets of OCRs for i) cortex PV and PV- cSNAIL samples, ii) PV, EXC, and VIP INTACT samples (Mo et
623 al., 2015), and iii) cortex, striatum, and GPe bulk samples, PV and PV- cSNAIL samples, SC1-Sun1GFP
624 samples, SC2-Sun1GFP samples, and Ef1a-Sun1GFP samples. We constructed count tables including the
625 relevant samples on each of these OCR backgrounds using Rsubread featureCounts version 1.28.1 (Liao
626 et al., 2019). These three count tables were used to form the basis of i) the sorted population PV vs PV-
627 models, ii) the sorted population PV vs. EXC and PV vs. VIP models, and iii) analysis of SC1 and SC2
628 SNAIL PV probes in the cortex, striatum, and GPe.

629 The counts were modeled using the negative binomial distribution in DESeq2 (Love et al., 2014).
630 We assessed the coefficient of cell group, where cell groups were unique tissue, virus, cell type
631 combinations, and we controlled for sex differences where both were present: DESeq2 design ~ sex +
632 cellGroup. Differential peaks were defined strictly for applications i and ii related to building models
633 (padj < 0.01 and |Log2FoldDifference| > 1) and more loosely for application iii to compare across viruses
634 (padj < 0.05 and |Log2FoldDifference| > 0.5). Related to Fig. 3, only cortical samples from count matrix
635 iii were included in the DESeq2 model, while the Fig. 4 DESeq2 model included samples from all three
636 brain regions.

637 *snATAC-seq processing.* The following samples of snATAC-seq from the mouse MOp were
638 downloaded in Snap file format from <http://data.nemoarchive.org/biccn/>: CEMBA171206_3C,
639 CEMBA171207_3C, CEMBA171212_4B, CEMBA171213_4B, CEMBA180104_4B,
640 CEMBA180409_2C, CEMBA180410_2C, CEMBA180612_5D, and CEMBA180618_4D(Li et al.,
641 2020). These were processed using SnapATAC version 1.0.0 (Fang et al., 2021). We restricted the
642 analysis to nuclei that passed filtering as defined by the original authors (Li et al., 2020). This removed
643 nuclei that had at fewer than 1000 reads, TSS enrichment <10, or doublet signatures detected by Scrublet
644 (Wolock et al., 2019). Filtered samples contained 6,700-10,983 nuclei each, for a total of 78,525 nuclei.
645 We applied a bin matrix with a bin size of 5,000 and combined the snap objects. Then, we removed bins

646 overlapping with the ENCODE blacklist, mitochondrial regions, and the top 5% of bins that overlapped
647 with invariant features. We reduced dimensionality and selected 18 significant components, then
648 corrected for batch effects using Harmony (Korsunsky et al., 2019). We performed Louvain clustering
649 using runCluster() with the option louvain.lib="R-igraph".

650 Cell types were assigned to clusters by accessibility at promoters and gene bodies of marker
651 genes (Supplemental Fig. 1) and by comparison to the cell annotations from the original authors (Li et al.,
652 2020). Peaks were called for each cluster using MACS2 with the options --nomodel --shift 0 --ext 73 --
653 qval 1e-2 -B --SPMR --call-summits (Zhang et al., 2008). Overlapping peaks across all clusters were
654 merged, resulting in 415,813 OCR regions in total. Differential OCRs were defined using the findDAR()
655 function with test.method = "exactTest" and were required to meet padj < 0.01 (Benjamini-Hochberg
656 corrected) and |log2FoldDifference| > 1. For comparisons to groups of clusters, e.g. PV vs. EXC, separate
657 tests were performed for PV vs. each excitatory cluster, and the intersection of differential OCRs was
658 selected.

659 *SVM data preparation.* SVMs were developed to predict the direction of differential activity from
660 sequences underlying differential OCRs between two cell types or groups of cell types. Because ATAC-
661 seq summit regions are highly enriched for transcription factor binding motifs, we centered on the peak
662 summits within differential ATAC-seq OCRs and extended in both directions for a total fixed sequence
663 length of 500 bp, a convenient length for AAV cloning. Peak summits were defined by MACS2 (Zhang et
664 al., 2008), and only summit regions of peaks called within the cell type of interest were retained. For data
665 from sorted cells, we used optimal IDR peaks across biological replicates of the given cell type. For
666 example, in a PV vs. VIP model comparison, the positive model input examples were 500 bp summit-
667 centered regions of PV IDR peaks that overlapped PV-specific differential open chromatin regions and
668 the negative model input examples were 500 bp summit-centered regions of VIP IDR peaks that
669 overlapped VIP-specific differential open chromatin regions. For snATAC-seq data, we used peaks called
670 within a cluster to define the relevant summit regions. If multiple cell clusters were involved in the
671 comparison, e.g. the excitatory neuron vs. inhibitory neuron model, we used summits found in any peak

672 set from a cluster within that category. In cases where there were multiple summits within a differential
673 open chromatin region, all summits greater than 100 bp apart from each other were retained.

674 After defining the genomic locations of the summit-centered differential open chromatin regions
675 for model training, we used additional filtering to prepare the data for model training. First, we restricted
676 the models to enhancer regions because they have more specificity than promoters and may be governed
677 by different sequence properties. Therefore, we filtered out regions that were within 2,000 bp of a TSS,
678 using RefSeq annotations downloaded from the UCSC Table browser in July 2020 (Kuhn et al., 2013).
679 Next, we removed super-enhancers because they also may be governed by different sequence features and
680 are not useful for AAV probe design because they are too large. We downloaded mm9 coordinates of
681 mouse cortex super enhancers defined by H3K27ac from the dbSuper database (Khan and Zhang, 2016)
682 and converted these to mm10 coordinates using UCSC liftOver with minmatch = 0.95 (Kuhn et al., 2013).
683 Using bedtools intersect (Quinlan and Hall, 2010), we removed regions with any super enhancer overlap.
684 Finally, we used bedtools getfasta (Quinlan and Hall, 2010) to retrieve the sequences at these genomic
685 coordinates from the mm10 assembly, downloaded from UCSC genome browser in May 2018 (Kuhn et
686 al., 2013), and we removed any sequences that contained uncertain bases (Ns).

687 *SVM model construction.* Sequences were divided into separate partitions by chromosome for
688 model training, validation, and final testing. The training sets included chromosomes 3-7, 10-19, and X,
689 the validation sets included chromosomes 8 and 9, and the test sets included chromosomes 1 and 2. The
690 training data were input into LS-GKM's gkmtrain and evaluated with gkmpredict (Lee, 2016). Because
691 the input data was summit centered, all models used the center weighted gkm kernel, option -t 4, or the
692 center weighted gkm rbf kernel, option -t 5. The -l, -k, -d, -c, and -w parameters for word length, number
693 of informative columns, number of mismatches to consider, regularization, and class-weighted
694 regularization were tuned to maximize the validation set F1 scores through manual iterations. Other
695 parameters were left on default behavior. auROC and auPRC metrics were calculated and visualized on
696 training, validation, and test sets using the ROCR package in R (<http://ipa-tys.github.io/ROCR/>). All

697 paper figures reflect final test set performance. The details of all parameter settings and performance
698 metrics of the final models are reported in Supplemental Supplemental Table 2.

699 *CNN data preparation.* We conducted differential accessibility analysis using DESeq2 (Love et
700 al., 2014) to identify regulatory regions that display cell type-specific accessibility in ATAC-seq in PV
701 neurons relative to other background cell types (PV-, VIP, EXC). We used PV and PV- neuron ATAC-
702 seq samples generated in this study as well as PV, VIP, and EXC neuron ATAC-seq samples from Mo et
703 al., 2015. To conduct differential accessibility analysis, we obtained genomic coordinates of all 200 bp
704 bins in the mm10 reference genome, starting from the 200 bp bin at the beginning of each chromosome of
705 including all following contiguous non-overlapping 200 bp bins. We then filtered out any bin that
706 overlaps with an artifact region (Amemiya et al., 2019) or with regions that have unknown nucleotides
707 (obtained from the UCSC twoBitInfo utility using the -nBed option). During this step, regions near the
708 ends of chromosomes were filtered out. Then, using the featureCounts function in the subread package
709 (Liao et al., 2014), we counted the reads mapping to each of the 200 bp bins in the ATAC-seq samples
710 obtained from every included ATAC-seq sample. We then use the DESeq2 R package (Love et al., 2014)
711 to identify bins that were differentially accessible between i) PV and PV-, ii) PV and VIP, and iii) PV and
712 EXC neurons at a Benjamini-Hochberg FDR adjusted p-value cutoff of 0.01. For each of the three
713 comparisons, significant differential bins that displayed PV specificity ($\text{log2FoldDifference} > 0$) were
714 used as positive examples for CNN training and significant differential bins that displayed negative
715 $\text{log2FoldDifference}$ ($\text{log2FoldDifference} < 0$) were used as negative examples for CNN training.

716 *CNN model construction.* We trained three separate CNN models that relate sequence to
717 comparative regulatory activity (Kelley et al., 2016; Quang and Xie, 2016; Zhou and Troyanskaya, 2015).
718 For each significant differential 200 bp bin, we obtained the 1000 bp sequence surrounding the center of
719 the bin from the mm10 reference genome and trained the CNN to predict the positive or negative class
720 label. We held out sequence examples underlying all significant differential bins on chromosome 4 as a
721 validation set to evaluate hyperparameter settings and to choose the best performing final model. We also
722 held out sequence examples underlying all significant differential bins on chromosomes 8 and 9 as a test

723 set for final evaluation. Because we had different validation and test sets from those used for the SVM,
724 we did not use any results from the SVM to influence our approach to designing the CNN architecture or
725 any other aspects of CNN training. We implemented our CNN model in Keras 2.2.4 (<https://keras.io/>)
726 with a theano backend (The Theano Development Team et al., 2016). We created a one-hot encoded
727 representation of the sequence, a 4 x 1000 binary matrix representing positions and occurrences of the 4
728 nucleotide characters (A,T,G and C) on the sequence, which was propagated through the network. Our
729 CNN architecture consisted of multiple layers of convolution kernels stacked on top of each other
730 (Supplemental Fig. 3). The first such layer consisted of 1000 convolution kernels, each with a kernel
731 width of 8 and height of 4, which scan the input sequence in chunks of 8 nucleotides. We applied rectified
732 linear unit (ReLU) activations on the outputs of these convolution kernels. This initial layer is followed by
733 a variable number of convolution layers with the same number of kernels (100), each of width 8 and
734 height 1. We applied ReLU activations on these convolution outputs as well. These convolution layers are
735 then followed by a set of max pooling operations that selects the maximum value from a set of 13
736 adjacent units (pooling size = 13). We set the stride for the max pooling operation to 13 units, meaning
737 that it selected the maximum values from contiguous chunks of 13 adjacent outputs from the previous
738 layer. We applied dropout regularization (Srivastava et al., 2014) on the outputs of the max pooling
739 operation to prevent overfitting to the training set. We then flattened the outputs of the max pooling layer
740 into a single vector and passed them to a single output unit with a sigmoid activation function. We used
741 stochastic gradient descent (SGD) to minimize binary cross entropy loss (log loss) between the output of
742 this unit and the positive/negative class label to learn model parameters.

743 Each model was trained for 100 passes through the training set (or “epochs”). For the PV vs. PV-
744 and the PV vs. VIP tasks, we evaluated model performance and chose the best performing model based
745 on the value of the binary cross entropy loss on the validation set. For the PV vs. EXC task, we chose the
746 final model based on a combination of auROC and auPRC on the validation set. We ignored small
747 differences in validation auROC and auPRC (± 0.02) while selecting the final PV vs. EXC model. Tuning
748 only the number of variable convolution layers (0, 1, or 2), and the dropout probability for the max

749 pooling output (0.2, 0.4, or 0.5), we were able to achieve strong auROCs and auPRCs on the held out
750 validation sets. Therefore, we did not attempt to vary learning rate for SGD (0.01), momentum (0.0),
751 batch size (30), number of training epochs (100), number of filters in the first convolution layer (1000),
752 number of filters in subsequent convolution layers (100), kernel sizes (8), max pooling size (13) and stride
753 (13). A table of hyperparameter settings and associated performance metrics (loss value, auROC, auPRC)
754 on training, validation, and test sets is provided in Supplemental Table 3.

755 *Broad promoter sequences.* The sequences of Gfap, CamkII, and Dlx promoters (Supplemental
756 Fig. 2) were extracted from AAV plasmids with confirmed cell type-specific activity *in vivo*. The Gfap
757 promoter sequence (Gfa2) was from hGFAP-GFP (Addgene plasmid #40592;
758 <http://n2t.net/addgene:40592>; RRID:Addgene_40592). The CamkII promoter sequence was from
759 pENN-AAV.CamKII0.4.eGFP.WPRE.rBG (Addgene plasmid #105541; <http://n2t.net/addgene:105541>;
760 RRID:Addgene_105541). The Dlx promoter sequence was from pAAV-mDlx-GFP-Fishell-1 (Addgene
761 plasmid #83900; <http://n2t.net/addgene:83900>; RRID:Addgene_83900)(Dimidschstein et al., 2016).

762 *SVM score analysis for external PV AAV screen.* 33 externally tested PV AAV enhancer
763 sequences (Vormstein-Schneider et al., 2020) were scored through all cortical PV SVMs. To enable
764 comparison between models, scores were normalized to standard deviations from 0 using the standard
765 variation of the validation data set for each model. For each pair of models, the sequence scores were
766 assessed for correlation with cor() function from the R Stats package
767 (<https://www.rdocumentation.org/packages/stats/versions/3.6.2>) with the Pearson method and visualized
768 using the corrplot package in R (<https://github.com/taiyun/corrplot>) (Supplemental Fig. 4).

769 *Alternative prioritization explorations for external PV AAV screen.* Common alternative
770 approaches for prioritizing enhancer candidates for cell type-specific AAV design include
771 log2FoldDifference and conservation-based ranking. We show that machine learning models are more
772 predictive of success than these approaches by evaluating on the external PV enhancer AAV screen
773 (Vormstein-Schneider et al., 2020). The log2FoldDifference of ATAC-seq signal in different cell type
774 comparisons was evaluated from snATAC-seq data (Li et al., 2020). We added the exact genomic

775 locations of each test sequence to the genomic peak set for assessment and applied the findDAR()
776 function with test.method = “exactTest” in SnapATAC version 1.0.0 (Fang et al., 2021). The
777 log2FoldDifference was determined for i) the PV cluster relative to all PV- cells using cluster.neg =
778 “random”, ii) the PV cluster relative to closely related cells using cluster.neg = “knn”, iii) the PV cluster
779 relative to the pool of excitatory neuron clusters, iv) the PV cluster relative to the VIP cluster, and v) the
780 PV cluster relative to the SST cluster (Supplemental Fig. 5).

781 Euarchontoglires PhyloP scores were extracted for all bases within each PV enhancer candidate
782 using the UCSC Table Browser (phyloP60wayEuarchontoGlires track for the Grcm38/mm10 genome,
783 accessed March 2021) (Kuhn et al., 2013). Regions were mapped from mouse (mm10) to human (hg38)
784 using UCSC LiftOver, requiring a minimum ratio of bases that must remap of 0.1. All regions were
785 mappable between species. Finally, we assessed overlapping human PV neuron OCRs from motor cortex
786 snATAC-seq (Bakken et al., 2020) using bedtools intersect (Quinlan and Hall, 2010). Any peak overlap
787 of at least 1 bp was recorded as an overlapping peak.

788 *Evaluation of SC1 and SC2 ATAC-seq.* PCA was performed using plotPCA() on the
789 DESeqDataSet object with variance stabilizing transformation in DESeq2 version 1.26.0 (Love et al.,
790 2014). Using the DESeq2 models described above for cell groups, we extracted OCR statistics for
791 particular cell group comparisons by using the results contrasts. Correlations between
792 log2FoldDifferences for PV cSNAIL vs. bulk tissue and log2FoldDifferences for SNAIL probes vs. bulk
793 tissue were assessed using the R function cor.test() with both “spearman” and “pearson” methods.
794 Genome browser tracks were visualized in the mm10 genome using IGV (Robinson et al., 2011) and track
795 heights were normalized between samples of the same experimental ATAC-seq method (cSNAIL,
796 SNAIL, bulk tissue, or single nucleus). Comparisons to snATAC-seq cluster markers (Fig. 3d,
797 Supplemental Fig. 8) represent the percentage of cSNAIL/SNAIL ATAC-seq OCRs enriched relative to
798 bulk (padj < 0.05 & log2FoldDifference > 0.5) that overlap snATAC-seq cluster markers. snATAC-seq
799 cluster markers were defined as enriched OCRs for that cluster relative to its k-nearest neighbors (padj <
800 0.01 & log2FoldDifference > 1) that were not enriched OCRs for any other cluster. The significance of

801 the enrichments was assessed using the hypergeometric test with the phyper() function in R, setting
802 lower.tail = FALSE. Enrichments for cluster-specific OCRs were assessed using a background of all
803 snATAC-seq OCRs (N = 415,813) and p-values were corrected for 84 tests with Bonferroni correction.

804 *Assessment of PV neuron OCRs in different brain regions.* PV neuron cSNAIL ATAC-seq
805 samples from cortex, striatum, and GPe tissue of healthy control mice from Lawler et al., 2020 (1 male, 1
806 female) were assessed for differential open chromatin using DESeq2 as described above. OCRs that were
807 preferentially open in one brain region relative to each of the other brain regions (padj < 0.01 &
808 log2FoldDifference > 1) were evaluated for sequence motif and pathway enrichments. Motif enrichments
809 for tissue-specific PV OCRs were identified using AME version 5.3.3 (Mc Leay and Bailey, 2010)
810 against a background of PV OCRs from all three tissues. Similarly, pathway enrichments using GREAT
811 version 4.0.4 (McLean et al., 2010) were carried out for tissue-specific PV OCRs relative to a background
812 of PV OCRs from all three tissues.

813 *Model interpretation.* We used GkmExplain (Shrikumar et al., 2019) to calculate actual and
814 hypothetical importance scores per base for each of 11 SVMs among 1,755 true positive PV-specific
815 OCR sequences that also scored PV-specific across all SVMs. First, sequences were one-hot encoded.
816 The importance scores were normalized based on the hypothetical importance scores of all possibilities
817 per base, so that a base position decreased in importance if there were other nucleotide possibilities that
818 produced similar scores. We identified sequence motifs with high contributions to PV scores for each
819 SVM separately using TF-MoDISco version 0.4.2.3 (Shrikumar et al., 2018) with options chosen to align
820 with final SVM parameters: sliding_window_size = 7, flank_size = 3, min_seqllets_per_task=3000,
821 trim_to_window_size = 7, initial_flank_to_add = 3, final_flank_to_add = 4, kmer_len = 7, num_gaps = 1,
822 and num_mismatches = 1. The resulting sequence patterns, representing motifs generated from seqllet
823 clusters, were trimmed to the 13 central bases and patterns with support from more than 100 seqllets were
824 used in downstream analysis. The position weight matrices (PWMs) of these patterns were associated
825 with known motifs in the Human and Mouse HOCOMOCO v11 FULL database using Tomtom (Gupta et
826 al., 2007) with the Pearson correlation coefficient motif comparison function (Supplemental Table 12).

827 Motifs from all models were clustered based on PWM similarity using STAMP (Mahony and Benos,
828 2007); STAMP operations were performed after trimming motif edges with information content less than
829 0.4, using ungapped Smith-Waterman alignment, the iterative refinement multiple alignment strategy,
830 Pearson correlation coefficient comparison metrics, and UPGMA tree construction. Finally, individual
831 instances of motif sites were mapped in SC1 and SC2 sequences using FIMO with default parameters
832 (Grant et al., 2011).

833

834 **Acknowledgements**

835 This material is based upon work supported by NIH Grant DP1DA046585 and the National Science
836 Foundation Graduate Research Fellowship Grants DGE1252522 and DGE1745016.

837

838 **Competing Interests Statement**

839 AJL, ER, and ARP are inventors on US Patent Application 62/921,452, “Specific nuclear-anchored
840 independent labeling system”.

841

842 **Figure Legends**

843 **Figure 1: Classification of neuron subtype-specific enhancer activity from sequence.** a) Schematic
844 representation of the SNAIL workflow. b-e) Receiver operator characteristic and precision-recall
845 performance metrics for various cell type-specific enhancer sequence model strategies and data
846 modalities. The reported numbers are the areas under the curves for each model. f) Scatter plots for SVM
847 scores reported by equivalent population-derived models and single nucleus-derived models. *** p-value
848 of correlation < 0.001. g) Top five sequence pattern contributors to PV prediction in linear, population-
849 derived SVMs. The best matching known motif is listed (full results in Supplemental Table 12).

850

851 **Figure 2: Two sequences candidates selectively activate AAV expression in PV neurons.** a) Genome
852 browser visualization of PV specific ATAC-seq signal at sequence candidates SC1 and SC2. * cSNAIL

853 data, † INTACT data from Mo et al., 2015, ‡ snATAC-seq from Li et al., 2020. b) Percentile rank of
854 SVM scores among 1,755 true PV-specific enhancer sequence candidates that scored positively across all
855 models. Linear population-derived models are denoted with “pop”, nonlinear population-derived models
856 are denoted with “pop, rbf”, and linear single nucleus-derived models are denoted with “sn”. c) Example
857 images of AAV Sun1GFP expression against parvalbumin (Pvalb) antibody staining. d,e) Quantification
858 of AAV Sun1GFP or Cre reporter overlap with Pvalb+ cells. Bar heights represent the mean among
859 images and the error of the mean is shown. N cells = 1,322 (SC1), 2,570 (SC2), 1,340 (Cre), 2,013 (Ef1a),
860 and 504 (N.C.). N.C = negative control.

861

862 **Figure 3: Cortical SC1 and SC2 SNAIL-isolated nuclei recapitulate PV GABAergic interneuron**
863 **ATAC-seq signatures.** a) PCA of ATAC-seq counts across samples. b) Genome browser visualization of
864 ATAC-seq signal at the *Pvalb* gene locus. Tracks represent the pooled sample p-value signal. Each track
865 of similar data type is normalized to the same scale: **SNAIL** data range 0 - 335, *cSNAIL data range 0 -
866 93, †INTACT data range 0 - 200, ‡snATAC-seq data range 0 - 2. c) Scatter plots of ATAC-seq log2 fold
867 difference relative to bulk tissue ATAC-seq, comparing PV cSNAIL to other AAVs. The density of
868 overlapping points is shown by the plot color. d) snATAC-seq nuclei clusters as visualized by t-SNE. The
869 dendograms show hierarchical clustering of Euclidean sample distances by Ward’s minimum variance
870 method D2. The heatmap shows the percentage of population OCRs enriched relative to bulk that are also
871 cluster-specific marker OCRs. * Hypergeometric enrichment $p < 0.01$.

872

873 **Figure 4: SC1 and SC2 generalize to PV neurons in the striatum and GPe.** a) Numbers of differential
874 OCRs between PV neuron populations in three brain regions (DESeq2 $p_{adj} < 0.01$ & $|\log_2\text{FoldDifference}|$
875 > 1). Brain region-specific OCRs are those that were significantly enriched in that tissue relative to each
876 of the other two tissues. OCRs shared between two brain regions on the venn diagram are those that were
877 significantly enriched in each of those tissues relative to the excluded tissue. The shared center of the
878 venn diagram shows all remaining OCRs that have ambiguous or no tissue preference. b) Examples of

879 enriched motifs in brain region-specific PV open chromatin relative to all PV open chromatin. c,f)
880 Distributions of validation data SVM scores and SC1 and SC2 scores within striatum and GPe PV vs PV-
881 models. d,g) PCA visualization of ATAC-seq counts in each sample. e,h) Pearson correlation coefficients
882 when comparing the log2 fold difference of cSNAIL PV ATAC-seq relative to bulk tissue ATAC-seq and
883 the log2 fold difference of SNAIL ATAC-seq relative to bulk tissue ATAC-seq. Error bars show the 95%
884 confidence intervals.

885

886 **Figure 5: Motif interpretation of PV neuron-specific OCR activity.** a) Motifs with high contributions
887 to PV scores in each SVM, clustered by sequence similarity. The bubble color at each node shows the
888 model that motif was discovered in and the size of the bubble shows the number of seqlets supporting that
889 motif. Clusters are labeled by the clade majority best match for known transcription factor binding motifs.
890 The full list of matches can be found in Supplemental Table 12. b,c) Normalized importance of each base
891 in SC1 (b) and SC2 (c) sequences for their PV-specific scores in each SVM. Locations with sequence
892 matches for identified motifs in each SVM (from panel a) are shown at the bottom.

893

894 **References**

895 Amemiya HM, Kundaje A, Boyle AP. 2019. The ENCODE Blacklist: Identification of Problematic
896 Regions of the Genome. *Sci Rep* **9**:9354.
897 Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, Krienen FM,
898 Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, Bertagnoli D, Casper
899 T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, Dembrow N, Diep D, Ding S-L, Dong
900 W, Fang R, Fischer S, Goldman M, Goldy J, Graybuck LT, Herb BR, Hou X, Kancherla J, Kroll M,
901 Lathia K, van Lew B, Li YE, Liu CS, Liu H, Lucero JD, Mahurkar A, McMillen D, Miller JA,
902 Moussa M, Nery JR, Nicovich PR, Orvis J, Osteen JK, Owen S, Palmer CR, Pham T,
903 Plongthongkum N, Poirion O, Reed NM, Rimorin C, Rivkin A, Romanow WJ, Sedeño-Cortés AE,
904 Siletti K, Somasundaram S, Sulc J, Tieu M, Torkelson A, Tung H, Wang X, Xie F, Yanny AM,
905 Zhang R, Ament SA, Margarita Behrens M, Bravo HC, Chun J, Dobin A, Gillis J, Hertzano R, Hof
906 PR, Höllt T, Horwitz GD, Dirk Keene C, Kharchenko PV, Ko AL, Lelieveldt BP, Luo C, Mukamel
907 EA, Preissl S, Regev A, Ren B, Scheuermann RH, Smith K, Spain WJ, White OR, Koch C,
908 Hawrylycz M, Tasic B, Macosko EZ, McCarroll SA, Ting JT, Zeng H, Zhang K, Feng G, Ecker JR,
909 Linnarsson S, Lein ES. 2020. Evolution of cellular diversity in primary motor cortex of human,
910 marmoset monkey, and mouse. *bioRxiv*. doi:10.1101/2020.03.31.016972
911 Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin
912 for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and
913 nucleosome position. *Nat Methods* **10**:1213–1218.
914 Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. 2015a. ATAC-seq: A Method for Assaying Chromatin

915 Accessibility Genome-Wide. *Curr Protoc Mol Biol* **109**:21.29.1–21.29.9.

916 Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ.
917 2015b. Single-cell chromatin accessibility reveals principles of regulatory variation. *Nature*
918 **523**:486–490.

919 Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu W-L, Sánchez-Guardado L, Lois C, Mazmanian
920 SK, Deverman BE, Gradinaru V. 2017. Engineered AAVs for efficient noninvasive gene delivery to
921 the central and peripheral nervous systems. *Nat Neurosci* **20**:1172–1179.

922 Chen L, Fish AE, Capra JA. 2018. Prediction of gene regulatory enhancers across species reveals
923 evolutionarily conserved sequence properties. *PLoS Comput Biol* **14**:e1006484.

924 Cochran K, Srivastava D, Shrikumar A, Balsubramani A, Kundaje A, Mahony S. 2021. Domain adaptive
925 neural networks improve cross-species prediction of transcription factor binding. *bioRxiv*.
926 doi:10.1101/2021.02.13.431115

927 Cun YL, Jackel LD, Boser B, Denker JS, Graf HP, Guyon I, Henderson D, Howard RE, Hubbard W.
928 1989. Handwritten digit recognition: applications of neural network chips and automatic learning.
929 *IEEE Communications Magazine* **27**:41–46.

930 Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C,
931 Shendure J. 2015. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular
932 indexing. *Science* **348**:910–914.

933 Deal RB, Henikoff S. 2010. A simple method for gene expression and chromatin profiling of individual
934 cell types within a tissue. *Dev Cell* **18**:1030–1040.

935 Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY, Banerjee A, Wu W-L, Yang B, Huber N,
936 Pasca SP, Gradinaru V. 2016. Cre-dependent selection yields AAV variants for widespread gene
937 transfer to the adult brain. *Nat Biotechnol* **34**:204–209.

938 Dimidschstein J, Chen Q, Tremblay R, Rogers SL, Saldi G-A, Guo L, Xu Q, Liu R, Lu C, Chu J, Grimley
939 JS, Krostag A-R, Kaykas A, Avery MC, Rashid MS, Baek M, Jacob AL, Smith GB, Wilson DE,
940 Kosche G, Kruglikov I, Rusielewicz T, Kotak VC, Mowery TM, Anderson SA, Callaway EM,
941 Dasen JS, Fitzpatrick D, Fossati V, Long MA, Noggle S, Reynolds JH, Sanes DH, Rudy B, Feng G,
942 Fishell G. 2016. A viral strategy for targeting and manipulating interneurons across vertebrate
943 species. *Nat Neurosci* **19**:1743–1749.

944 Donato F, Chowdhury A, Lahr M, Caroni P. 2015. Early- and late-born parvalbumin basket cell
945 subpopulations exhibiting distinct regulation and roles in learning. *Neuron* **85**:770–786.

946 Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, Motamedi A, Shiau AK, Zhou X, Xie F, Mukamel
947 EA, Zhang K, Zhang Y, Behrens MM, Ecker JR, Ren B. 2021. Comprehensive analysis of single cell
948 ATAC-seq data with SnapATAC. *Nat Commun* **12**:1337.

949 Ghandi M, Lee D, Mohammad-Noori M, Beer MA. 2014. Enhanced regulatory sequence prediction using
950 gapped k-mer features. *PLoS Comput Biol* **10**:e1003711.

951 Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif. *Bioinformatics*
952 **27**:1017–1018.

953 Graybuck LT, Daigle TL, Sedeño-Cortés AE, Walker M, Kalmbach B, Lenz GH, Morin E, Nguyen TN,
954 Garren E, Bendrick JL, Kim TK, Zhou T, Mortrud M, Yao S, Siverts LA, Larsen R, Gore BB,
955 Szelenyi ER, Trader C, Balaram P, van Velthoven CTJ, Chiang M, Mich JK, Dee N, Goldy J, Cetin
956 AH, Smith K, Way SW, Esposito L, Yao Z, Gradinaru V, Sunkin SM, Lein E, Levi BP, Ting JT,
957 Zeng H, Tasic B. 2021. Enhancer viruses for combinatorial cell-subclass-specific labeling. *Neuron*.
958 doi:10.1016/j.neuron.2021.03.011

959 Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying similarity between motifs.
960 *Genome Biol* **8**:R24.

961 Hernández VM, Hegeman DJ, Cui Q, Kelver DA, Fiske MP, Glajch KE, Pitt JE, Huang TY, Justice NJ,
962 Savio Chan C. 2015. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in
963 the Mouse External Globus Pallidus. *J Neurosci* **35**:11830–11847.

964 Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, Close JL, Long B, Johansen N,
965 Penn O, Yao Z, Eggermont J, Höllt T, Levi BP, Shehata SI, Aevermann B, Beller A, Bertagnolli D,

966 Brouner K, Casper T, Cobbs C, Dalley R, Dee N, Ding S-L, Ellenbogen RG, Fong O, Garren E,
967 Goldy J, Gwinn RP, Hirschstein D, Keene CD, Keshk M, Ko AL, Lathia K, Mahfouz A, Maltzer Z,
968 McGraw M, Nguyen TN, Nyhus J, Ojemann JG, Oldre A, Parry S, Reynolds S, Rimorin C,
969 Shapovalova NV, Somasundaram S, Szafer A, Thomsen ER, Tieu M, Quon G, Scheuermann RH,
970 Yuste R, Sunkin SM, Lelieveldt B, Feng D, Ng L, Bernard A, Hawrylycz M, Phillips JW, Tasic B,
971 Zeng H, Jones AR, Koch C, Lein ES. 2019. Conserved cell types with divergent features in human
972 versus mouse cortex. *Nature* **573**:61–68.

973 Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M, Giardine B, Ellenbogen PM,
974 Bilmes JA, Birney E, Hardison RC, Dunham I, Kellis M, Noble WS. 2013. Integrative annotation of
975 chromatin elements from ENCODE data. *Nucleic Acids Res* **41**:827–841.

976 Hrvatin S, Tzeng CP, Nagy MA, Stroud H, Koutsoumpa C, Wilcox OF, Assad EG, Green J, Harvey CD,
977 Griffith EC, Greenberg ME. 2019. A scalable platform for the development of cell-type-specific
978 viral drivers. *eLife* **2019**:e48089.

979 Jindal GA, Farley EK. 2021. Enhancer grammar in development, evolution, and disease: dependencies
980 and interplay. *Dev Cell* **56**:575–587.

981 Jinno S, Kosaka T. 2004. Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal
982 pathway in mice. *J Comp Neurol* **477**:188–201.

983 Kaplow IM, Wirthlin ME, Lawler AJ, Brown AR, Kleyman M, Pfenning AR. 2020. Predicting lineage-
984 specific differences in open chromatin across dozens of mammalian genomes. *bioRxiv*.
985 doi:10.1101/2020.12.04.410795

986 Kelley DR. 2020. Cross-species regulatory sequence activity prediction. *PLoS Comput Biol* **16**:e1008050.

987 Kelley DR, Snoek J, Rinn JL. 2016. Bassett: learning the regulatory code of the accessible genome with
988 deep convolutional neural networks. *Genome Res* **26**:990–999.

989 Kellis M, Wold B, Snyder MP, Bernstein BE, Kundaje A, Marinov GK, Ward LD, Birney E, Crawford
990 GE, Dekker J, Dunham I, Elnitski LL, Farnham PJ, Feingold EA, Gerstein M, Giddings MC, Gilbert
991 DM, Gingeras TR, Green ED, Guigo R, Hubbard T, Kent J, Lieb JD, Myers RM, Pazin MJ, Ren B,
992 Stamatoyannopoulos JA, Weng Z, White KP, Hardison RC. 2014. Defining functional DNA
993 elements in the human genome. *Proc Natl Acad Sci U S A* **111**:6131–6138.

994 Kepcs A, Fishell G. 2014. Interneuron cell types are fit to function. *Nature* **505**:318–326.

995 Khan A, Zhang X. 2016. dbSUPER: a database of super-enhancers in mouse and human genome. *Nucleic
996 Acids Res* **44**:D164–71.

997 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P-R,
998 Raychaudhuri S. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. *Nat
999 Methods* **16**:1289–1296.

1000 Kuhn RM, Haussler D, Kent WJ. 2013. The UCSC genome browser and associated tools. *Brief Bioinform*
1001 **14**:144–161.

1002 Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung H-L, Chen S,
1003 Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan J-B, Wang W,
1004 Chun J, Zhang K. 2016. Neuronal subtypes and diversity revealed by single-nucleus RNA
1005 sequencing of the human brain. *Science* **352**:1586–1590.

1006 Lawler AJ, Brown AR, Bouchard RS, Toong N, Kim Y, Velraj N, Fox G, Kleyman M, Kang B, Gittis
1007 AH, Pfenning AR. 2020. Cell Type-Specific Oxidative Stress Genomic Signatures in the Globus
1008 Pallidus of Dopamine-Depleted Mice. *J Neurosci* **40**:9772–9783.

1009 Lee D. 2016. LS-GKM: a new gkm-SVM for large-scale datasets. *Bioinformatics* **32**:2196–2198.

1010 Lee JH, Durand R, Grdinaru V, Zhang F, Goshen I, Kim D-S, Fenno LE, Ramakrishnan C, Deisseroth
1011 K. 2010. Global and local fMRI signals driven by neurons defined optogenetically by type and
1012 wiring. *Nature* **465**:788–792.

1013 Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for
1014 alignment and quantification of RNA sequencing reads. *Nucleic Acids Res* **47**:e47.

1015 Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning
1016 sequence reads to genomic features. *Bioinformatics* **30**:923–930.

1017 Lim L, Mi D, Llorca A, Marín O. 2018. Development and Functional Diversification of Cortical
1018 Interneurons. *Neuron* **100**:294–313.

1019 Lin J, Handschin C, Spiegelman BM. 2005. Metabolic control through the PGC-1 family of transcription
1020 coactivators. *Cell Metab* **1**:361–370.

1021 Lioudis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V. 2007. Lhx6 activity is
1022 required for the normal migration and specification of cortical interneuron subtypes. *J Neurosci*
1023 **27**:3078–3089.

1024 Li Q, Brown JB, Huang H, Bickel PJ. 2011. Measuring reproducibility of high-throughput experiments.
1025 *aoas* **5**:1752–1779.

1026 Li YE, Preissl S, Hou X, Zhang Z, Zhang K, Fang R, Qiu Y, Poirion O, Li B, Liu H, Wang X, Han JY,
1027 Lucero J, Yan Y, Kuan S, Gorkin D, Nunn M, Mukamel EA, Margarita Behrens M, Ecker J, Ren B.
1028 2020. An Atlas of Gene Regulatory Elements in Adult Mouse Cerebrum. *bioRxiv*.
1029 doi:10.1101/2020.05.10.087585

1030 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
1031 data with DESeq2. *Genome Biol* **15**:550–550.

1032 Lucas EK, Dougherty SE, McMeekin LJ, Reid CS, Dobrunz LE, West AB, Hablitz JJ, Cowell RM. 2014.
1033 PGC-1 α provides a transcriptional framework for synchronous neurotransmitter release from
1034 parvalbumin-positive interneurons. *J Neurosci* **34**:14375–14387.

1035 Lucas EK, Markwardt SJ, Gupta S, Meador-Woodruff JH, Lin JD, Overstreet-Wadiche L, Cowell RM.
1036 2010. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1alpha. *J Neurosci*
1037 **30**:7227–7235.

1038 Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz
1039 MJ, Jones AR, Lein ES, Zeng H. 2010. A robust and high-throughput Cre reporting and
1040 characterization system for the whole mouse brain. *Nat Neurosci* **13**:133–140.

1041 Mahony S, Benos PV. 2007. STAMP: a web tool for exploring DNA-binding motif similarities. *Nucleic
1042 Acids Res* **35**:W253–8.

1043 Mayer C, Hafemeister C, Bandler RC, Machold R, Batista Brito R, Jaglin X, Allaway K, Butler A, Fishell
1044 G, Satija R. 2018. Developmental diversification of cortical inhibitory interneurons. *Nature*
1045 **555**:457–462.

1046 McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. 2010.
1047 GREAT improves functional interpretation of cis-regulatory regions. *Nat Biotechnol* **28**:495–501.

1048 Mc Leay RC, Bailey TL. 2010. and an evaluation on ChIP data. *McLeay and Bailey BMC Bioinformatics*
1049 **11**:165.

1050 Mich JK, Graybuck LT, Hess EE, Mahoney JT, Kojima Y, Ding Y, Somasundaram S, Miller JA,
1051 Kalmbach BE, Radaelli C, Gore BB, Weed N, Omstead V, Bishaw Y, Shapovalova NV, Martinez
1052 RA, Fong O, Yao S, Mortrud M, Chong P, Loftus L, Bertagnoli D, Goldy J, Casper T, Dee N,
1053 Opitz-Araya X, Cetin A, Smith KA, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Keene CD,
1054 Silbergeld DL, Sunkin SM, Gradinariu V, Horwitz GD, Zeng H, Tasic B, Lein ES, Ting JT, Levi BP.
1055 2021. Functional enhancer elements drive subclass-selective expression from mouse to primate
1056 neocortex. *Cell Rep* **34**:108754.

1057 Minnoye L, Taskiran II, Mauduit D, Fazio M, Van Aerschot L, Hulselmans G, Christiaens V, Makhzami
1058 S, Seltenhammer M, Karras P, Primot A, Cadieu E, van Rooijen E, Marine J-C, Egidy G, Ghanem
1059 GE, Zon L, Wouters J, Aerts S. 2020. Cross-species analysis of enhancer logic using deep learning.
1060 *Genome Res* **30**:1815–1834.

1061 Mitchell AC, Javidfar B, Pothula V, Ibi D, Shen EY, Peter CJ, Bicks LK, Fehr T, Jiang Y, Brennand KJ,
1062 Neve RL, Gonzalez-Maeso J, Akbarian S. 2018. MEF2C transcription factor is associated with the
1063 genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. *Mol
1064 Psychiatry* **23**:123–132.

1065 Mo A, Mukamel EA, Davis FP, Luo C, Henry GL, Picard S, Urich MA, Nery JR, Sejnowski TJ, Lister R,
1066 Eddy SR, Ecker JR, Nathans J. 2015. Epigenomic Signatures of Neuronal Diversity in the
1067 Mammalian Brain. *Neuron* **86**:1369–1384.

1068 Nair RR, Blankvoort S, Lagartos MJ, Kentros C. 2020. Enhancer-Driven Gene Expression (EDGE)
1069 Enables the Generation of Viral Vectors Specific to Neuronal Subtypes. *iScience* **23**:100888.

1070 Nathanson JL, Jappelli R, Scheeff ED, Manning G, Obata K, Brenner S, Callaway EM. 2009. Short
1071 Promoters in Viral Vectors Drive Selective Expression in Mammalian Inhibitory Neurons, but do not
1072 Restrict Activity to Specific Inhibitory Cell-Types. *Front Neural Circuits* **3**:19.

1073 Pai EL-L, Chen J, Fazel Darbandi S, Cho FS, Chen J, Lindtner S, Chu JS, Paz JT, Vogt D, Paredes MF,
1074 Rubenstein JL. 2020. Maf and Mafb control mouse pallial interneuron fate and maturation through
1075 neuropsychiatric disease gene regulation. *eLife* **2020**:e54903.

1076 Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ. 2017. Transcriptional Architecture of Synaptic
1077 Communication Delineates GABAergic Neuron Identity. *Cell* **171**:522–539.e20.

1078 Preissl S, Fang R, Huang H, Zhao Y, Raviram R, Gorkin DU, Zhang Y, Sos BC, Afzal V, Dickel DE,
1079 Kuan S, Visel A, Pennacchio LA, Zhang K, Ren B. 2018. Single-nucleus analysis of accessible
1080 chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. *Nat
1081 Neurosci* **21**:432–439.

1082 Quang D, Xie X. 2016. DanQ: a hybrid convolutional and recurrent deep neural network for quantifying
1083 the function of DNA sequences. *Nucleic Acids Res* **44**:e107–e107.

1084 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features.
1085 *Bioinformatics* **26**:841–842.

1086 Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-
1087 Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward
1088 LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu Y-C, Pfenning AR, Wang X, Claussnitzer M,
1089 Liu Y, Coarfa C, Harris RA, Shores N, Epstein CB, Gjoneska E, Leung D, Xie W, Hawkins RD,
1090 Lister R, Hong C, Gascard P, Mungall AJ, Moore R, Chuah E, Tam A, Canfield TK, Hansen RS,
1091 Kaul R, Sabo PJ, Bansal MS, Carles A, Dixon JR, Farh K-H, Feizi S, Karlic R, Kim A-R, Kulkarni
1092 A, Li D, Lowdon R, Elliott G, Mercer TR, Neph SJ, Onuchic V, Polak P, Rajagopal N, Ray P,
1093 Sallari RC, Siebenthal KT, Sinnott-Armstrong NA, Stevens M, Thurman RE, Wu J, Zhang B, Zhou
1094 X, Beaudet AE, Boyer LA, De Jager PL, Farnham PJ, Fisher SJ, Haussler D, Jones SJM, Li W,
1095 Marra MA, McManus MT, Sunyaev S, Thomson JA, Tlsty TD, Tsai L-H, Wang W, Waterland RA,
1096 Zhang MQ, Chadwick LH, Bernstein BE, Costello JF, Ecker JR, Hirst M, Meissner A, Milosavljevic
1097 A, Ren B, Stamatoyannopoulos JA, Wang T, Kellis M. 2015. Integrative analysis of 111 reference
1098 human epigenomes. *Nature* **518**:317–330.

1099 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011.
1100 Integrative genomics viewer. *Nat Biotechnol* **29**:24–26.

1101 Roccaro-Waldmeyer DM, Girard F, Milani D, Vannoni E, Prétôt L, Wolfer DP, Celio MR. 2018.
1102 Eliminating the VGlut2-dependent glutamatergic transmission of parvalbumin-expressing neurons
1103 leads to deficits in locomotion and vocalization, decreased pain sensitivity, and increased
1104 dominance. *Front Behav Neurosci* **12**:146.

1105 Sakata K, Woo NH, Martinowich K, Greene JS, Schloesser RJ, Shen L, Lu B. 2009. Critical role of
1106 promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the
1107 prefrontal cortex. *Proc Natl Acad Sci U S A* **106**:5942–5947.

1108 Saunders A, Huang KW, Sabatini BL. 2016. Globus Pallidus Externus Neurons Expressing parvalbumin
1109 Interconnect the Subthalamic Nucleus and Striatal Interneurons. *PLoS One* **11**:e0149798.

1110 Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M,
1111 Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA. 2018.
1112 Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain. *Cell* **174**:1015–
1113 1030.e16.

1114 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
1115 Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A.
1116 2012. Fiji: an open-source platform for biological-image analysis. *Nat Methods* **9**:676–682.

1117 Shima Y, Sugino K, Hempel CM, Shima M, Taneja P, Bullis JB, Mehta S, Lois C, Nelson SB. 2016. A
1118 Mammalian enhancer trap resource for discovering and manipulating neuronal cell types. *Elife*

1119 5:e13503.

1120 Shrikumar A, Prakash E, Kundaje A. 2019. GkmExplain: fast and accurate interpretation of nonlinear
1121 gapped k-mer SVMs. *Bioinformatics* **35**:i173–i182.

1122 Shrikumar A, Tian K, Shcherbina A. 2018. Technical Note on Transcription Factor Motif Discovery from
1123 Importance Scores (TF-MoDISco) version 0.4.2.2. *arXiv*.

1124 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. 2014. Dropout: a simple way to
1125 prevent neural networks from overfitting. *JMLR* **15**:1929–1958.

1126 Tanahira C, Higo S, Watanabe K, Tomioka R, Ebihara S, Kaneko T, Tamamaki N. 2009. Parvalbumin
1127 neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. *Neurosci Res* **63**:213–223.

1128 Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y, Lu J, Lin Y, Miyoshi G, Shima
1129 Y, Fishell G, Nelson SB, Huang ZJ. 2011. A resource of Cre driver lines for genetic targeting of
1130 GABAergic neurons in cerebral cortex. *Neuron* **71**:995–1013.

1131 Taniguchi K, Anderson AE, Sutherland AE, Wotton D. 2012. Loss of Tgif function causes
1132 holoprosencephaly by disrupting the SHH signaling pathway. *PLoS Genet* **8**:e1002524.

1133 Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, Goldy J, Garren E, Economo MN,
1134 Viswanathan S, Penn O, Bakken T, Menon V, Miller J, Fong O, Hirokawa KE, Lathia K, Rimorin C,
1135 Tieu M, Larsen R, Casper T, Barkan E, Kroll M, Parry S, Shapovalova NV, Hirschstein D,
1136 Pendergraft J, Sullivan HA, Kim TK, Szafer A, Dee N, Groblewski P, Wickersham I, Cetin A,
1137 Harris JA, Levi BP, Sunkin SM, Madisen L, Daigle TL, Looger L, Bernard A, Phillips J, Lein E,
1138 Hawrylycz M, Svoboda K, Jones AR, Koch C, Zeng H. 2018. Shared and distinct transcriptomic cell
1139 types across neocortical areas. *Nature* **563**:72–78.

1140 The Theano Development Team, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas
1141 N, Bastien F, Bayer J, Belikov A, Belopolsky A, Bengio Y, Bergeron A, Bergstra J, Bisson V,
1142 Snyder JB, Bouchard N, Boulanger-Lewandowski N, Bouthillier X, de Brébisson A, Breuleux O,
1143 Carrier P-L, Cho K, Chorowski J, Christiano P, Cooijmans T, Côté M-A, Côté M, Courville A,
1144 Dauphin YN, Delalleau O, Demouth J, Desjardins G, Dieleman S, Dinh L, Ducoffe M, Dumoulin V,
1145 Kahou SE, Erhan D, Fan Z, Firat O, Germain M, Glorot X, Goodfellow I, Graham M, Gulcehre C,
1146 Hamel P, Harlouchet I, Heng J-P, Hidasi B, Honari S, Jain A, Jean S, Jia K, Korobov M, Kulkarni V,
1147 Lamb A, Lamblin P, Larsen E, Laurent C, Lee S, Lefrancois S, Lemieux S, Léonard N, Lin Z,
1148 Livezey JA, Lorenz C, Lowin J, Ma Q, Manzagol P-A, Mastropietro O, McGibbon RT, Memisevic
1149 R, van Merriënboer B, Michalski V, Mirza M, Orlandi A, Pal C, Pascanu R, Pezeshki M, Raffel C,
1150 Renshaw D, Rocklin M, Romero A, Roth M, Sadowski P, Salvatier J, Savard F, Schlüter J,
1151 Schulman J, Schwartz G, Serban IV, Serdyuk D, Shabanian S, Simon É, Spieckermann S, Ramana
1152 Subramanyam S, Sygnowski J, Tanguay J, van Tulder G, Turian J, Urban S, Vincent P, Visin F, de
1153 Vries H, Warde-Farley D, Webb DJ, Willson M, Xu K, Xue L, Yao L, Zhang S, Zhang Y. 2016.
1154 Theano: A Python framework for fast computation of mathematical expressions. *arXiv*.

1155 Vogt D, Hunt RF, Mandal S, Sandberg M, Silberberg SN, Nagasawa T, Yang Z, Baraban SC, Rubenstein
1156 JLR. 2014. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and
1157 laminar position. *Neuron* **82**:350–364.

1158 Vormstein-Schneider D, Lin JD, Pelkey KA, Chittajallu R, Guo B, Arias-Garcia MA, Allaway K,
1159 Sakopoulos S, Schneider G, Stevenson O, Vergara J, Sharma J, Zhang Q, Franken TP, Smith J,
1160 Ibrahim LA, M Astro KJ, Sabri E, Huang S, Favuzzi E, Burbridge T, Xu Q, Guo L, Vogel I, Sanchez
1161 V, Saldi GA, Gorissen BL, Yuan X, Zaghloul KA, Devinsky O, Sabatini BL, Batista-Brito R,
1162 Reynolds J, Feng G, Fu Z, McBain CJ, Fishell G, Dimidschstein J. 2020. Viral manipulation of
1163 functionally distinct interneurons in mice, non-human primates and humans. *Nat Neurosci* **23**:1629–
1164 1636.

1165 Wolock SL, Lopez R, Klein AM. 2019. Scrublet: Computational Identification of Cell Doublets in
1166 Single-Cell Transcriptomic Data. *Cell Syst* **8**:281–291.e9.

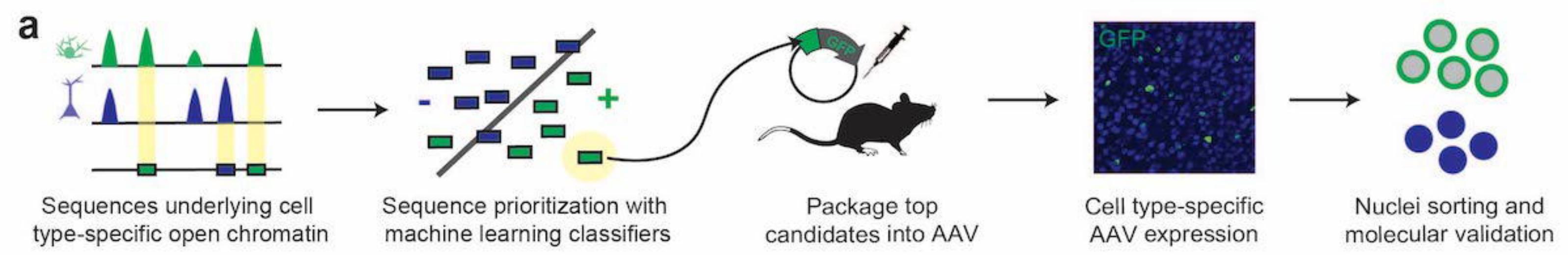
1167 Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnberg P, La Manno G, Juréus A, Marques S,
1168 Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S. 2015.
1169 Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.

1170 *Science* **347**:1138–1142.

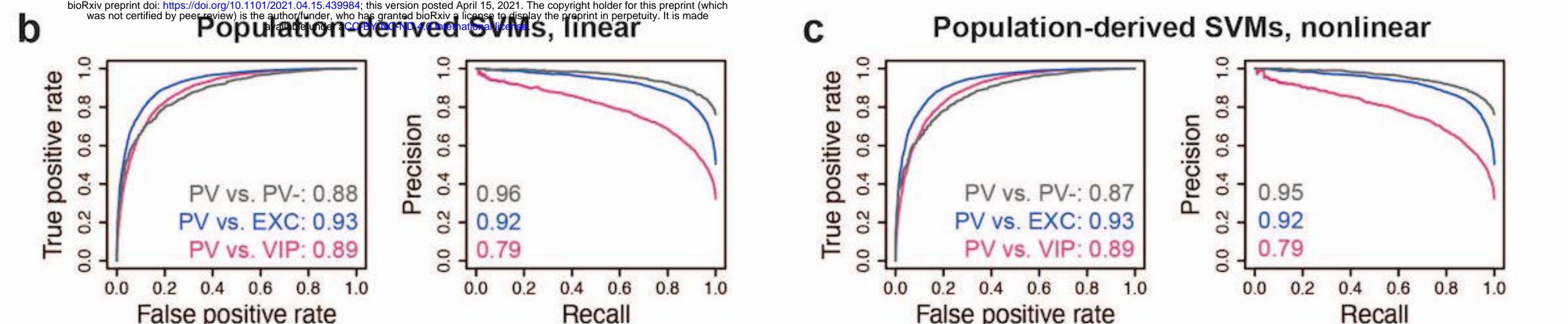
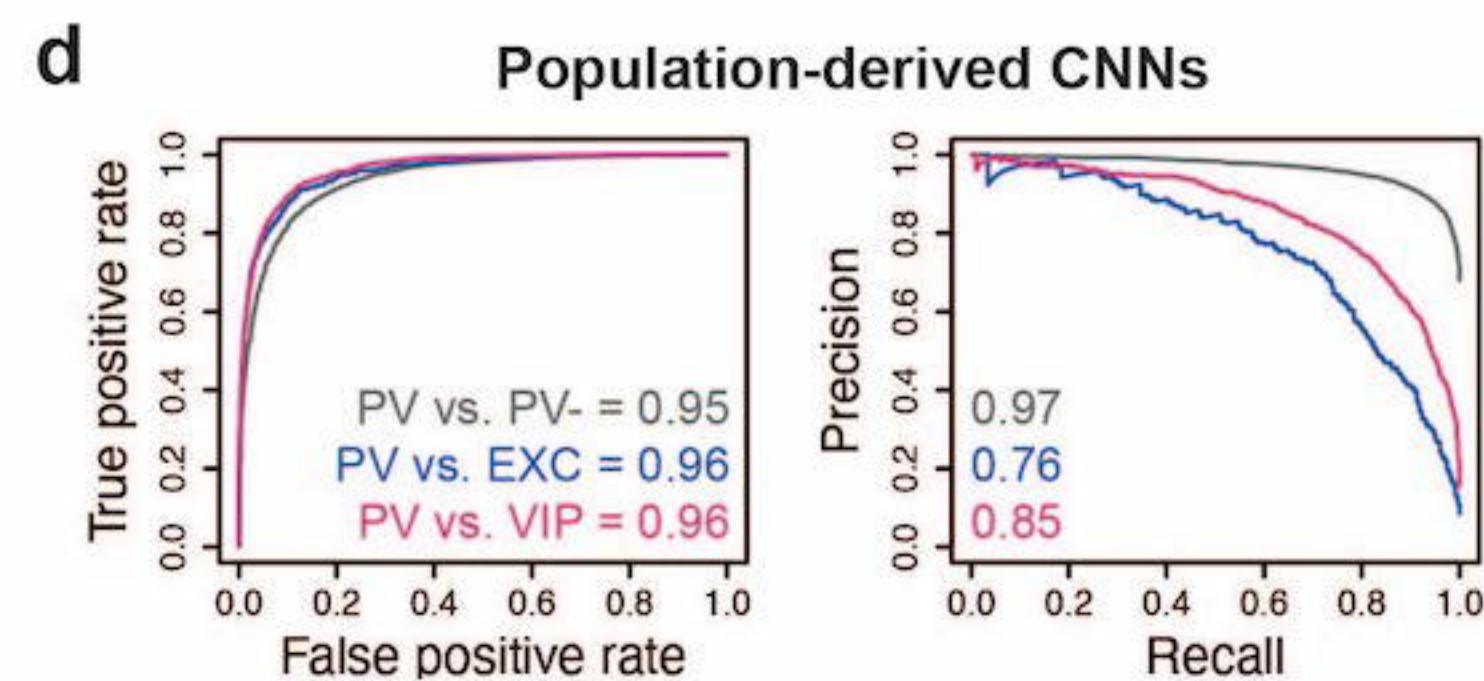
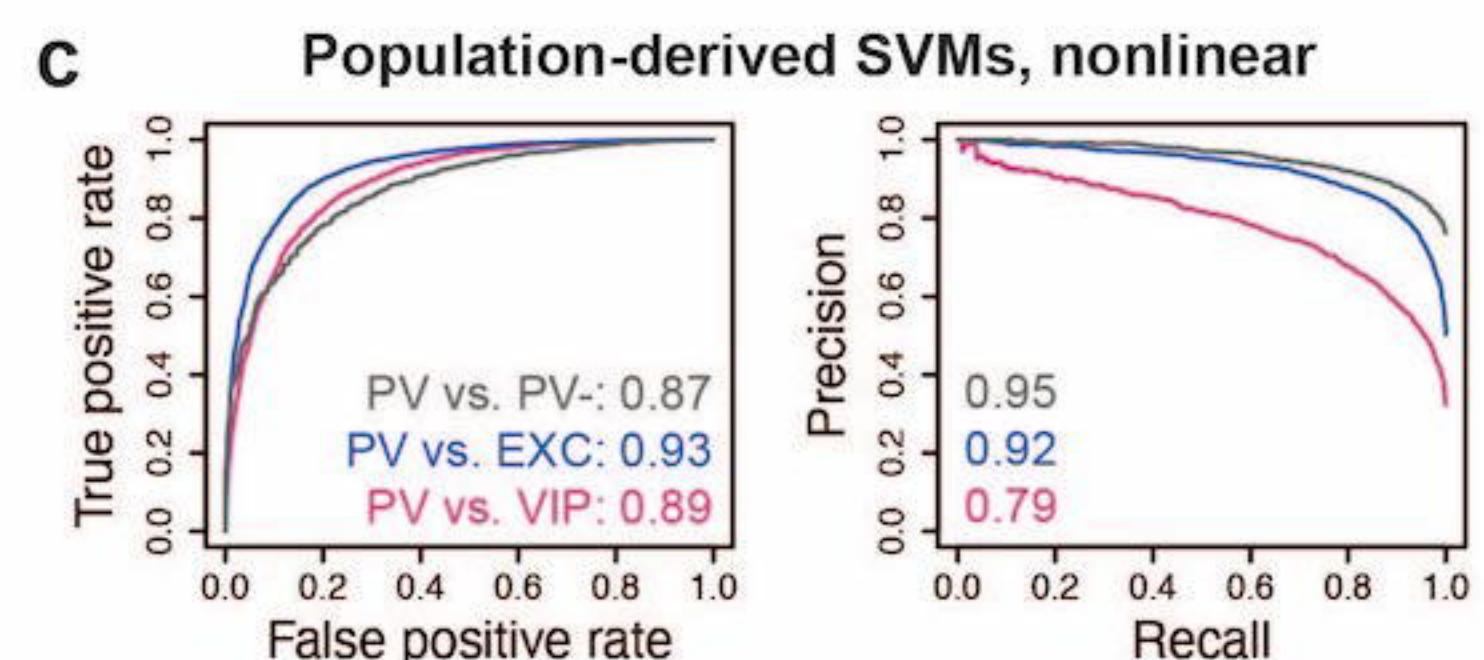
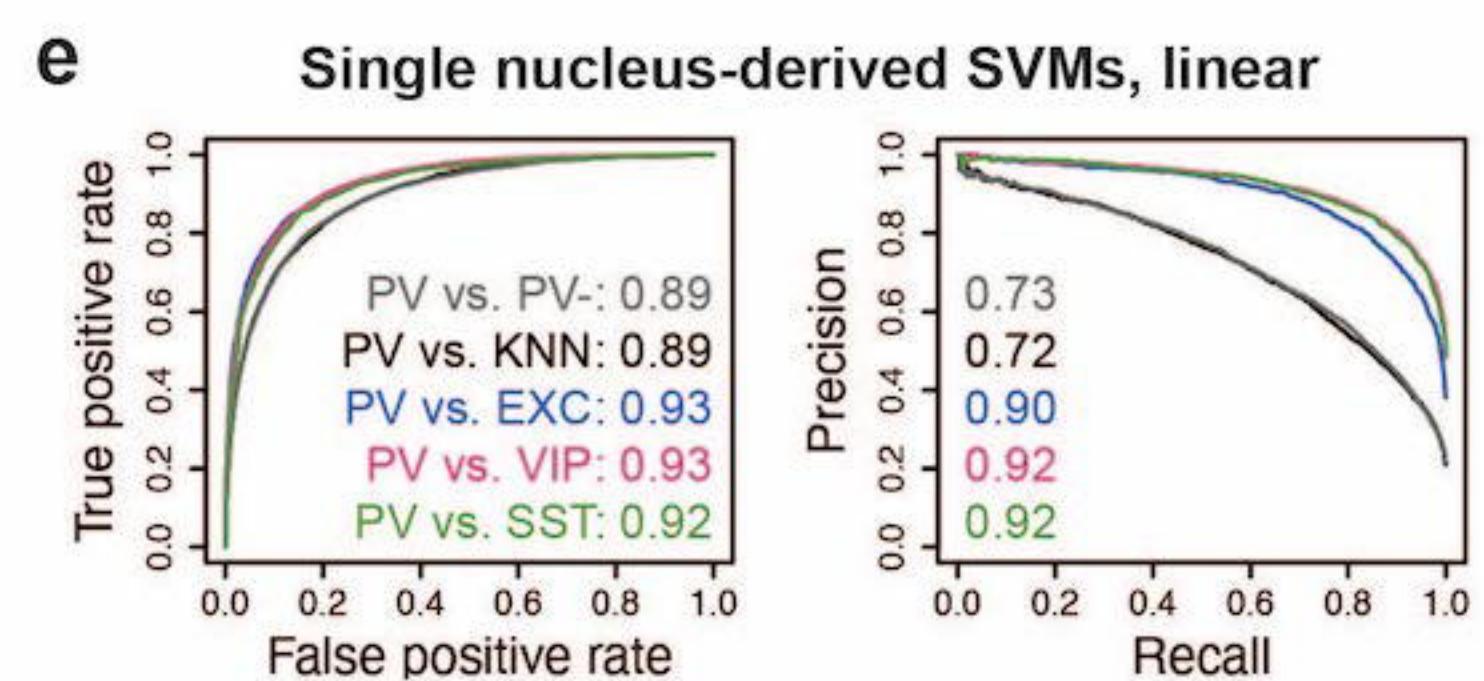
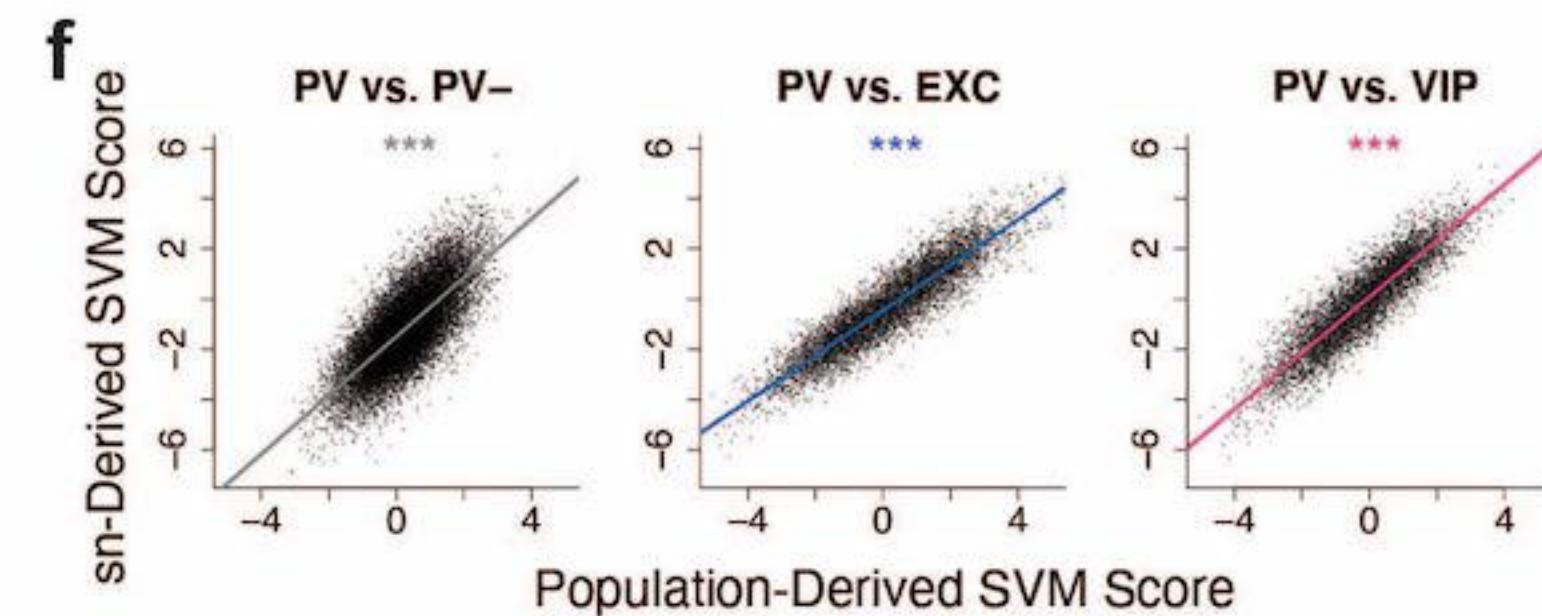
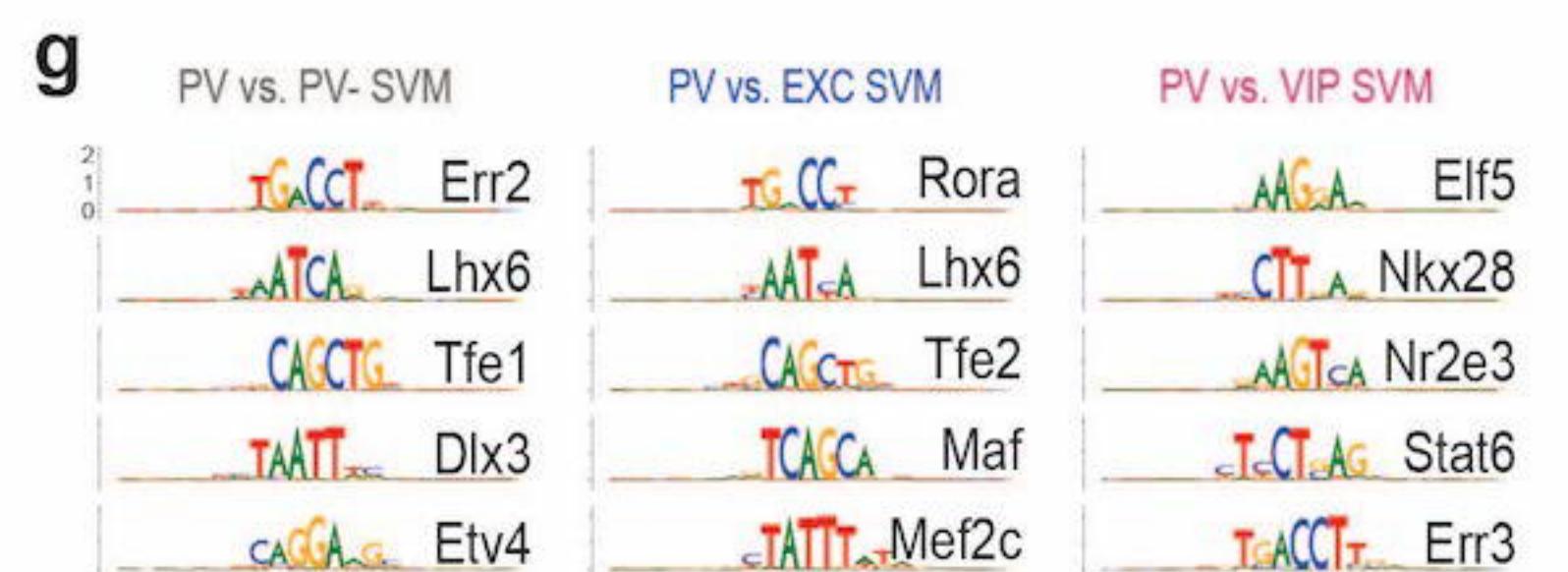
1171 Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M,
1172 Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**:R137.

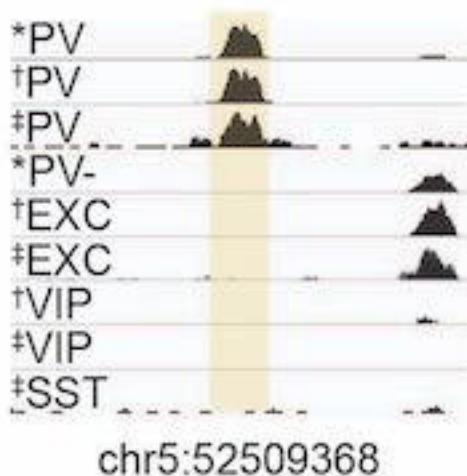
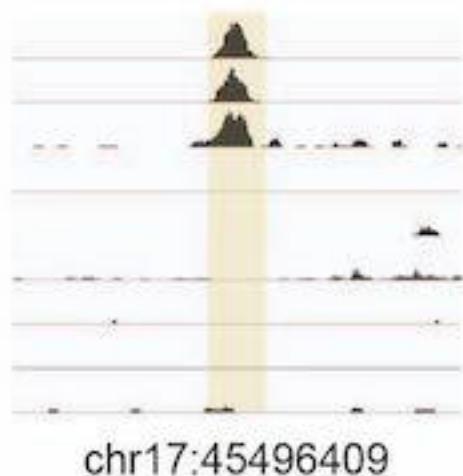
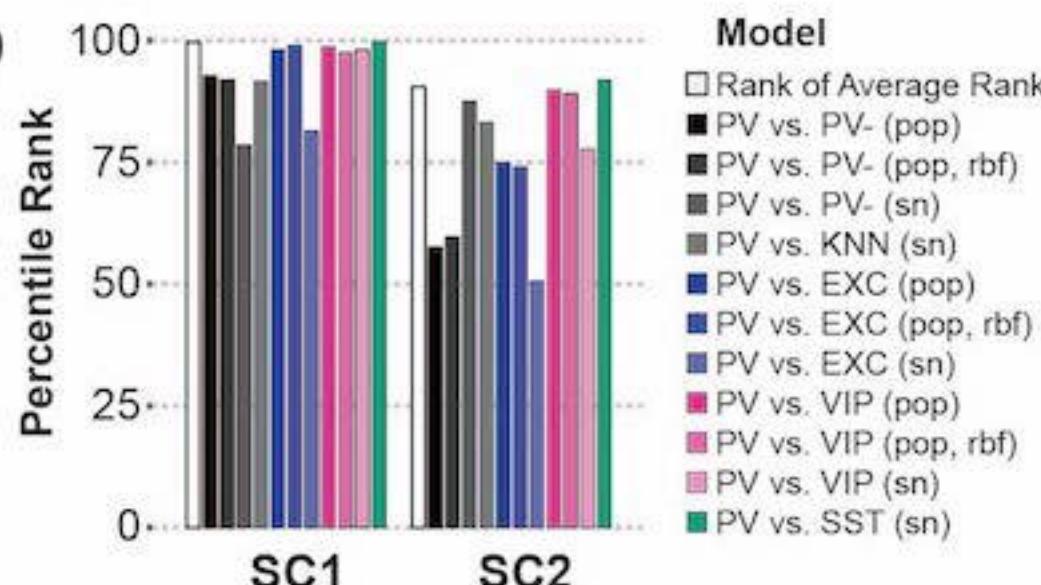
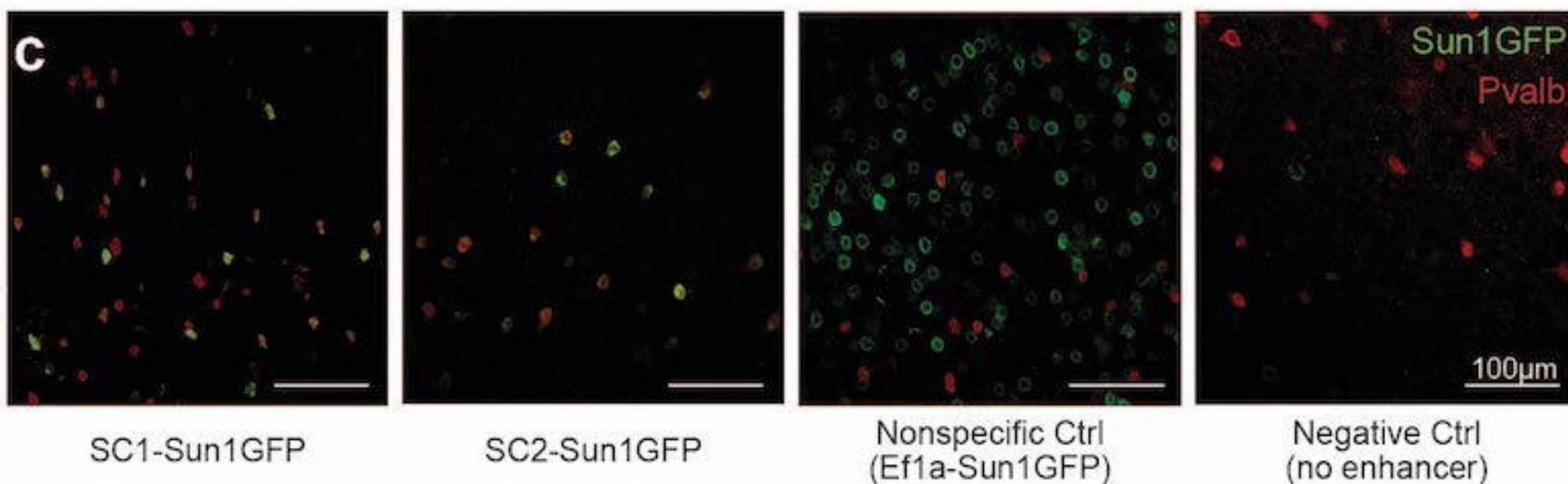
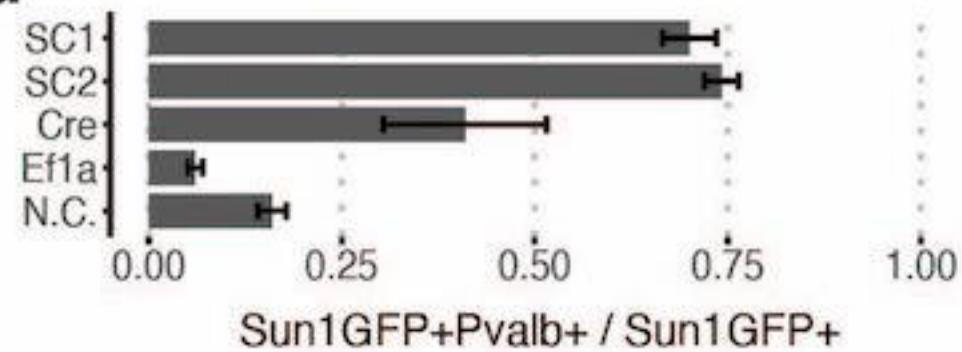
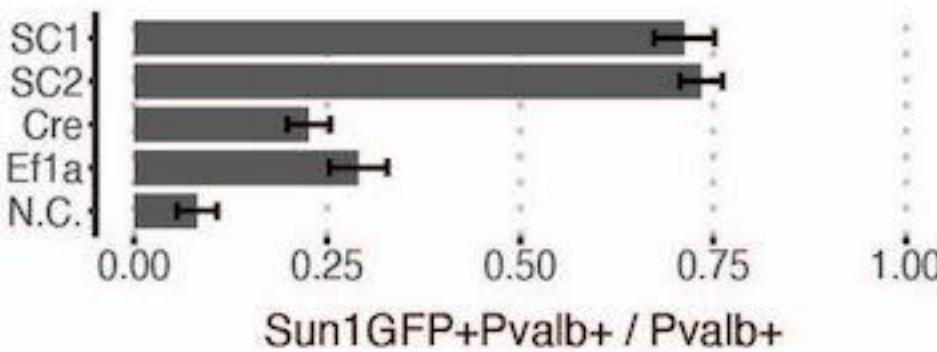
1173 Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JLR. 2008. Distinct molecular
1174 pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6
1175 mutants. *J Comp Neurol* **510**:79–99.

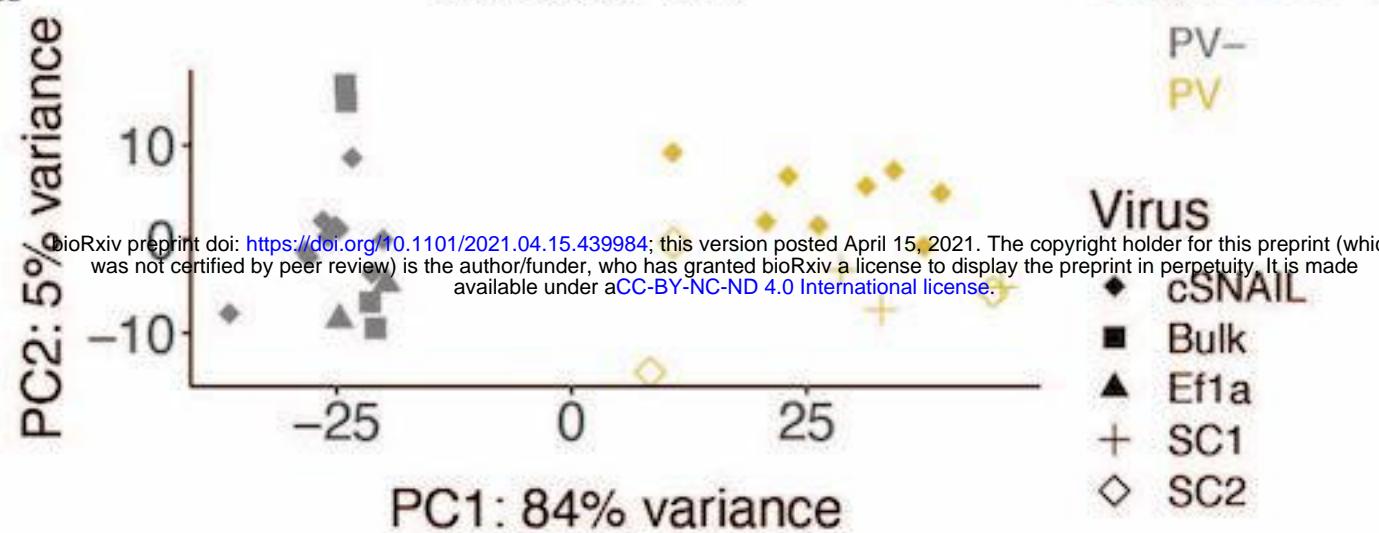
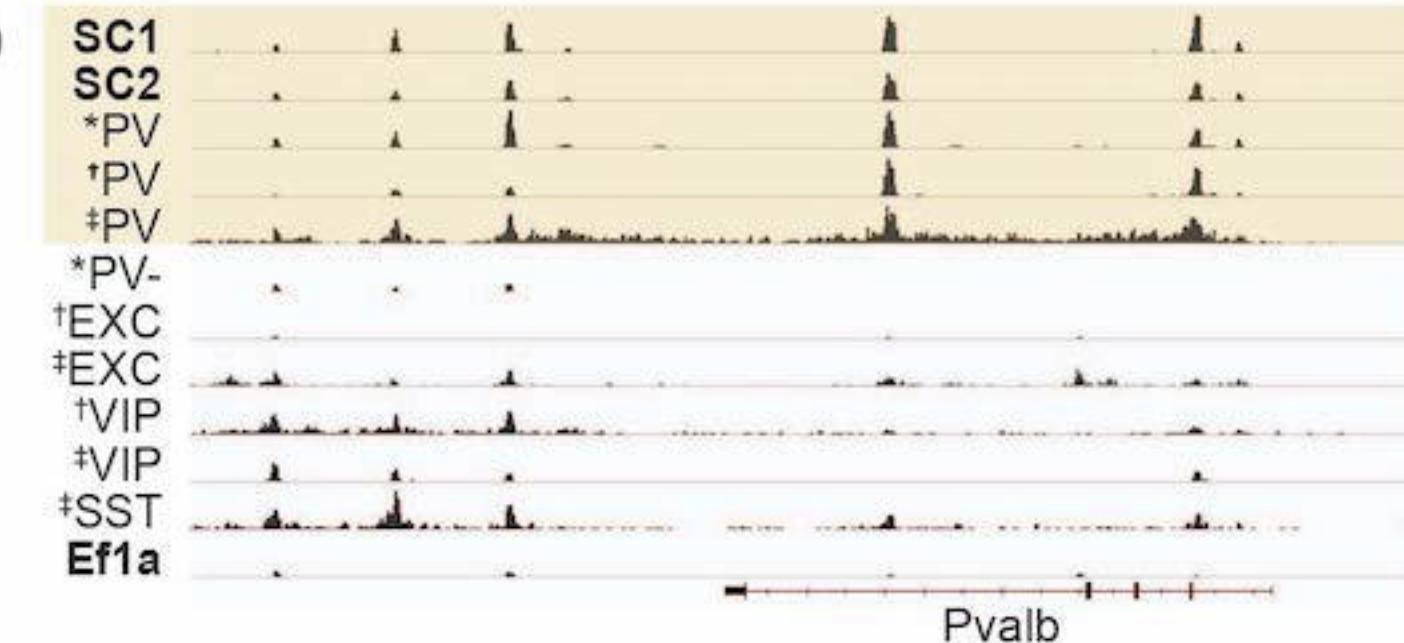
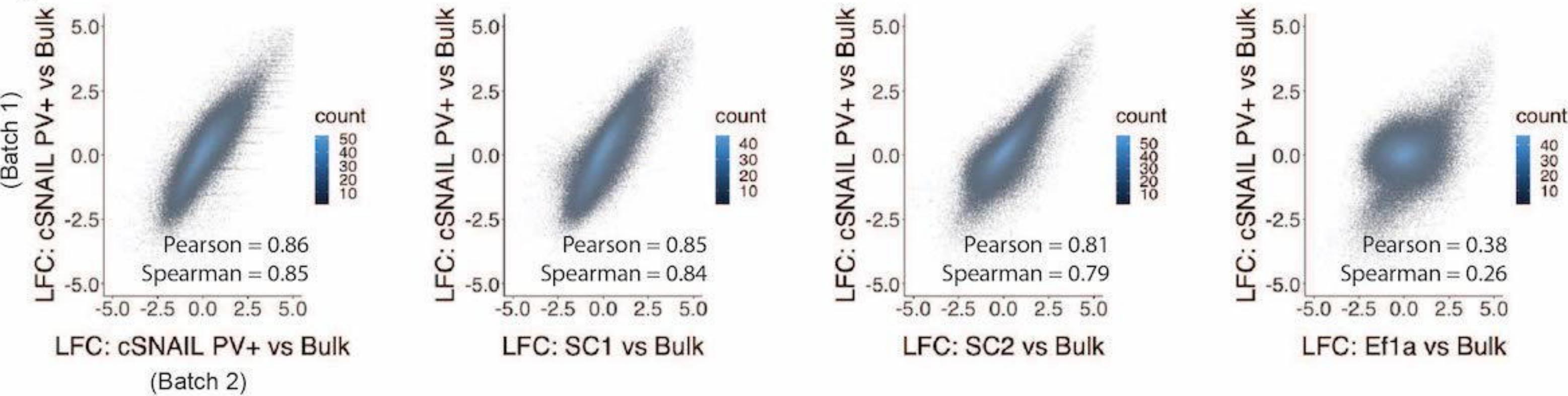
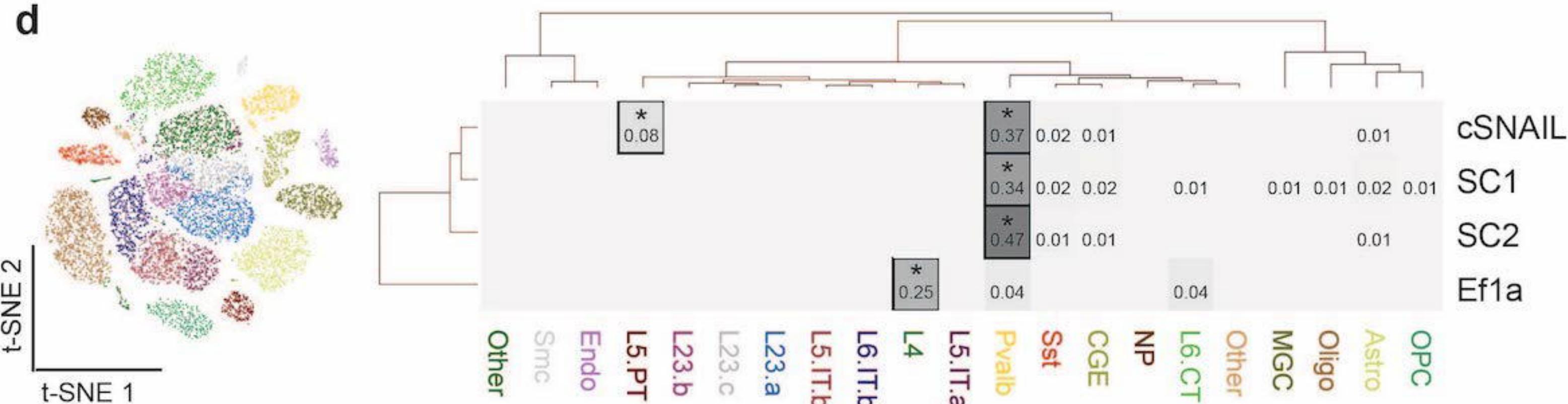
1176 Zhou J, Troyanskaya OG. 2015. Predicting effects of noncoding variants with deep learning–based
1177 sequence model. *Nat Methods* **12**:931–934.

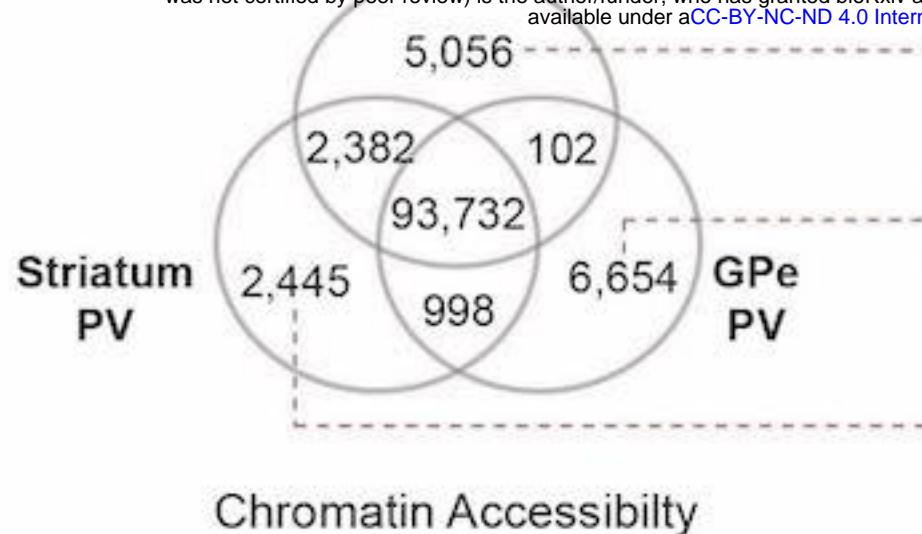
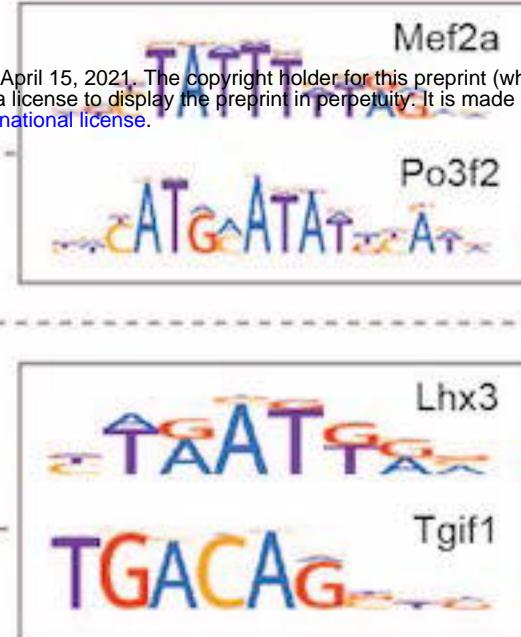
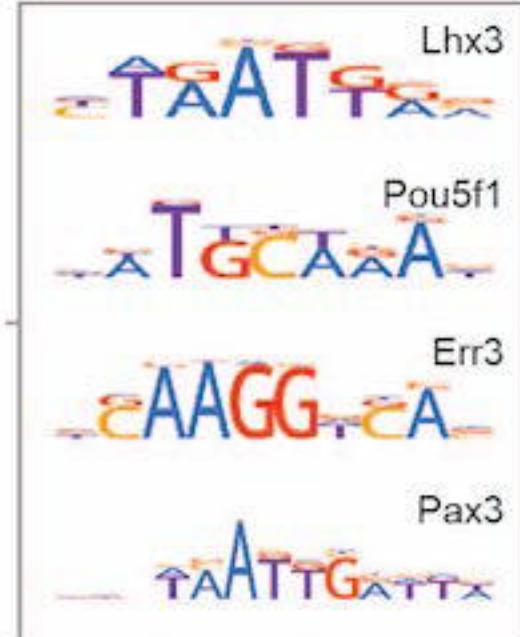
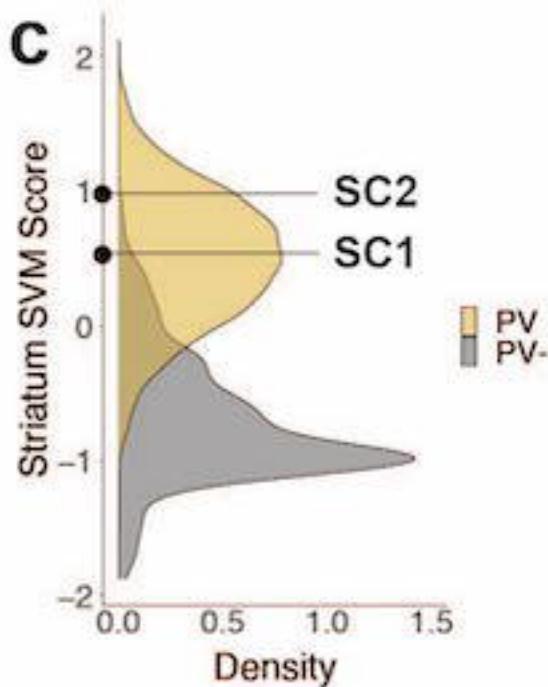
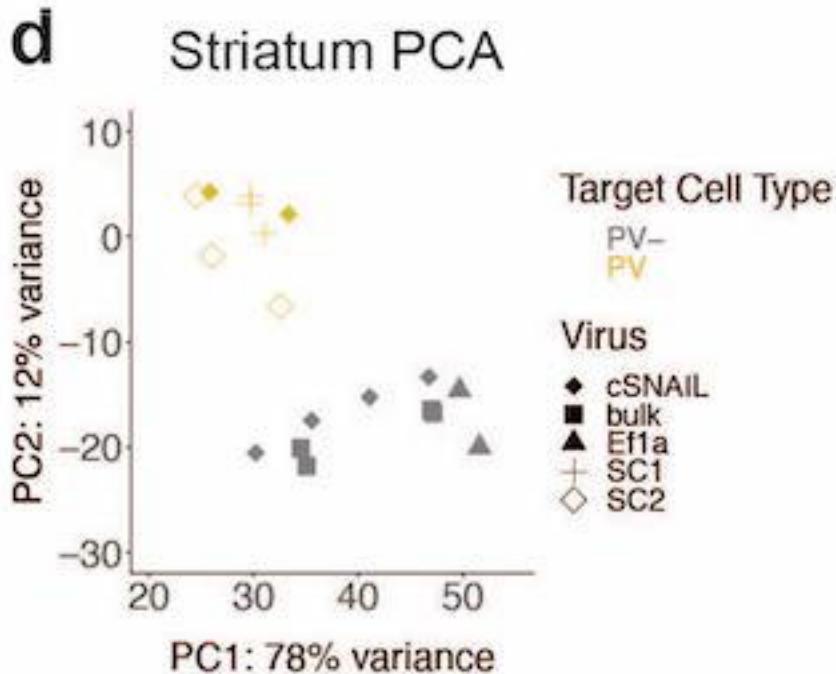
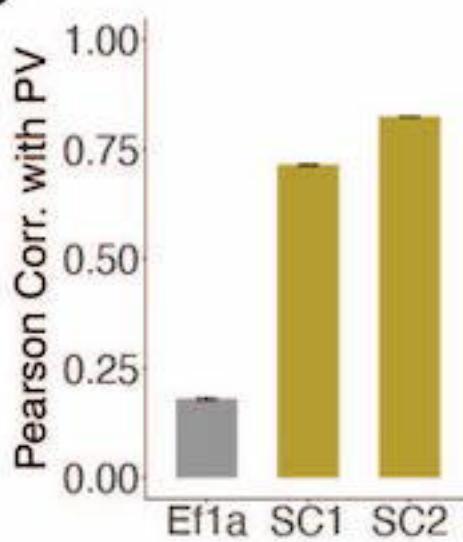
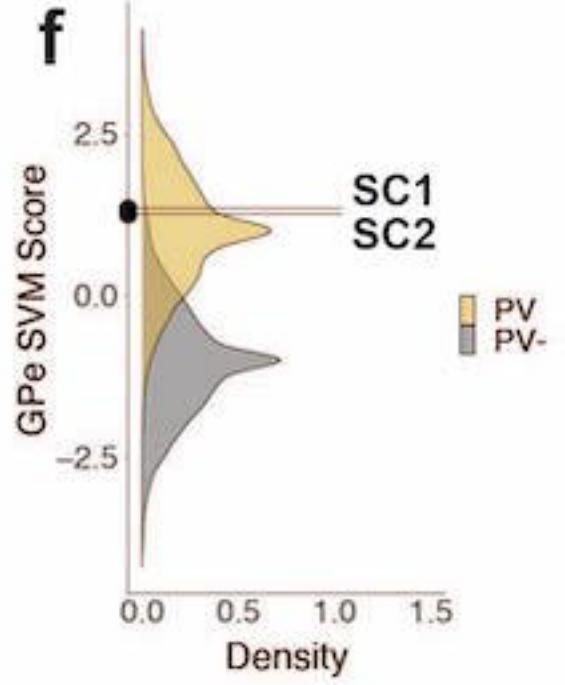
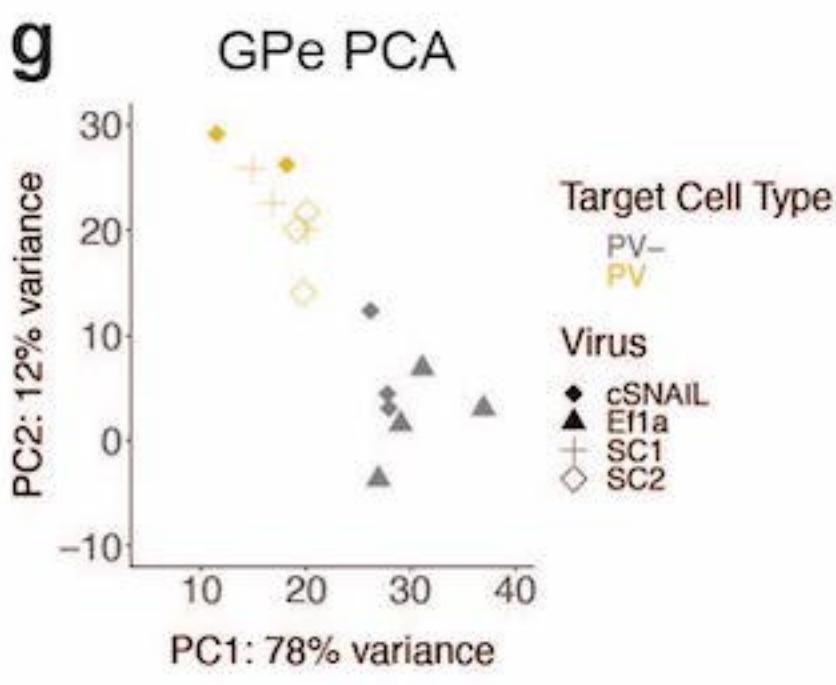
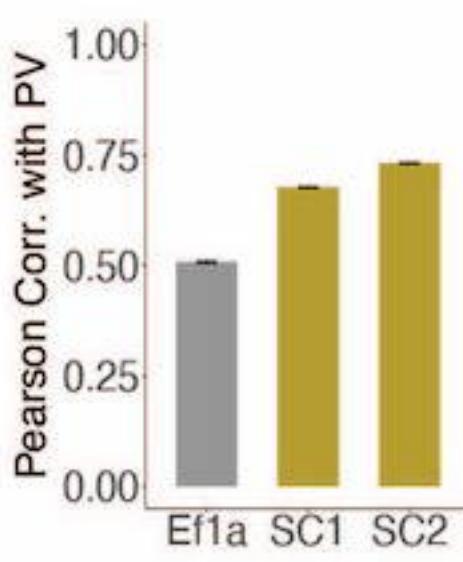


bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.15.439984>; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



a SC1**SC2****b****c****d****e**

a Cortex PCA**b****c****d**

a**Cortex PV****b****c****d****e****f****g****h**

a

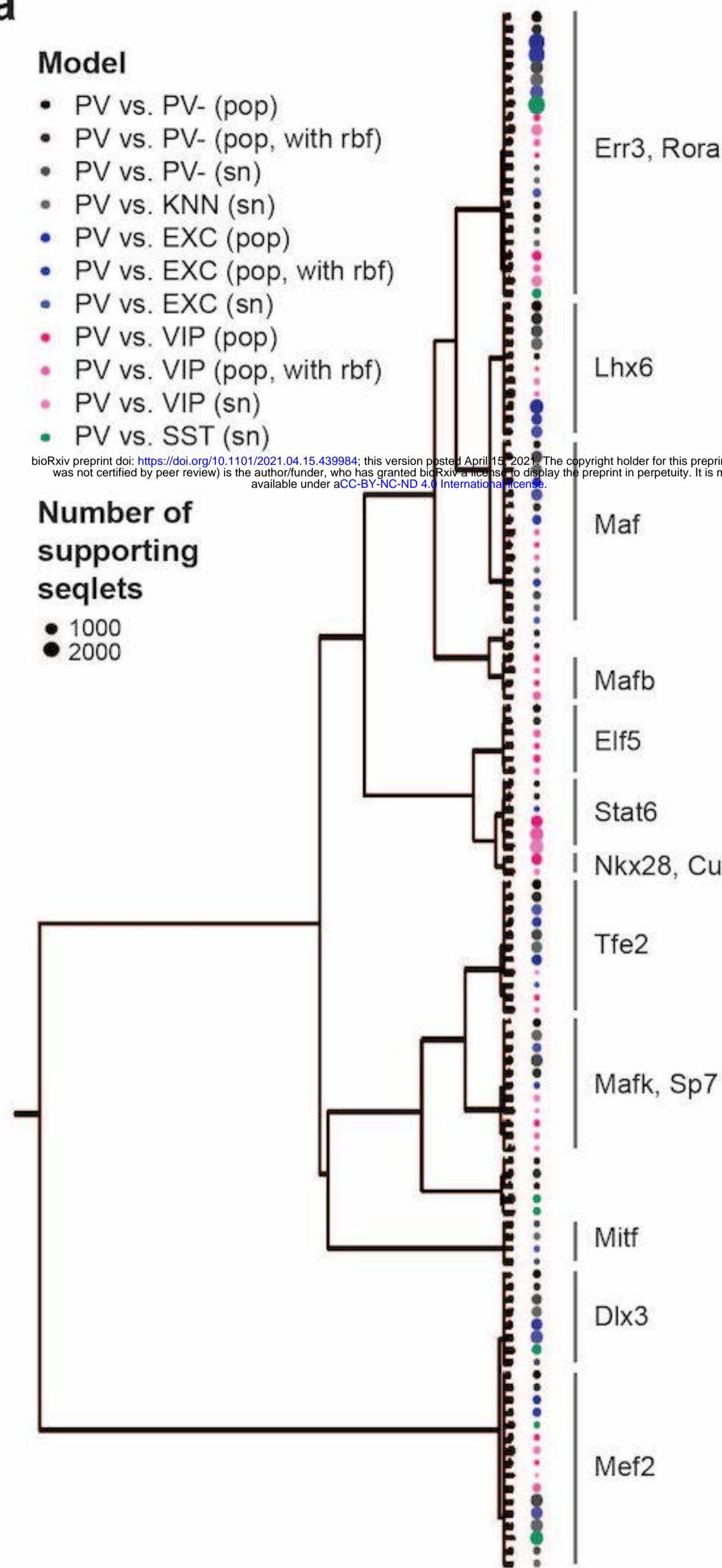
Model

- PV vs. PV- (pop)
- PV vs. PV- (pop, with rbf)
- PV vs. PV- (sn)
- PV vs. KNN (sn)
- PV vs. EXC (pop)
- PV vs. EXC (pop, with rbf)
- PV vs. EXC (sn)
- PV vs. VIP (pop)
- PV vs. VIP (pop, with rbf)
- PV vs. VIP (sn)
- PV vs. SST (sn)

bioRxiv preprint doi: <https://doi.org/10.1101/2021.04.15.439984>; this version posted April 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

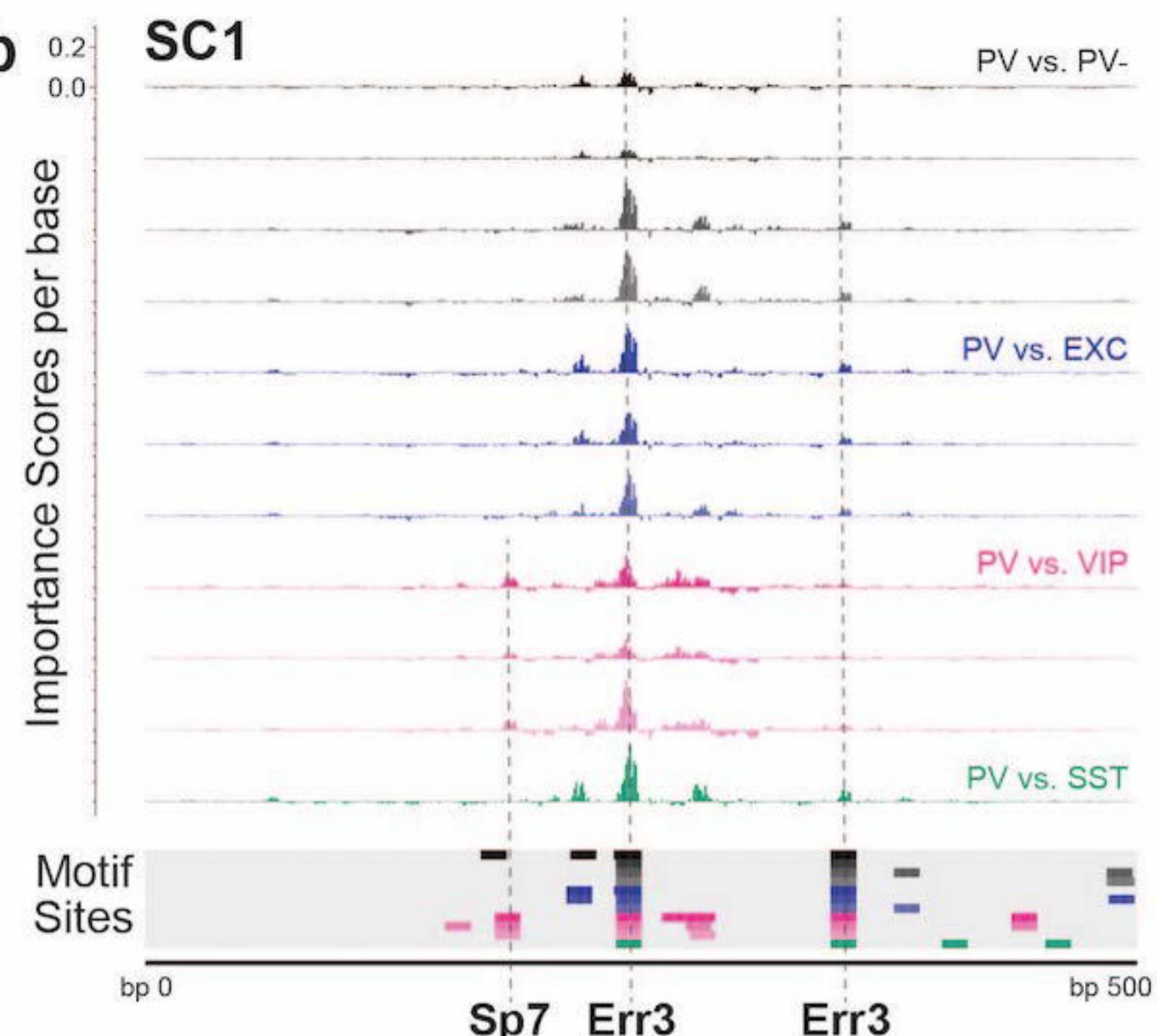
Number of supporting seqlets

- 1000
- 2000



b

SC1



6

SC2

