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Abstract

Recent discoveries of extreme cellular diversity in the brain warrant rapid development of
technologies to access specific cell populations, enabling characterization of their roles in behavior and in
disease states. Available approaches for engineering targeted technologies for new neuron subtypes are
low-yield, involving intensive transgenic strain or virus screening. Here, we introduce SNAIL (Specific
Nuclear-Anchored Independent Labeling), a new virus-based strategy for cell labeling and nuclear
isolation from heterogeneous tissue. SNAIL works by leveraging machine learning and other
computational approaches to identify DNA sequence features that confer cell type-specific gene
activation and using them to make a probe that drives an affinity purification-compatible reporter gene.
As a proof of concept, we designed and validated two novel SNAIL probes that target parvalbumin-
expressing (PV) neurons. Furthermore, we show that nuclear isolation using SNAIL in wild type mice is
sufficient to capture characteristic open chromatin features of PV neurons in the cortex, striatum, and
external globus pallidus. Expansion of this technology has broad applications in cell type-specific

observation, manipulation, and therapeutics across species and disease models.
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Introduction

The biology of the brain is complicated by vast diversity in cell types, subtypes, and cell states.
Contemporary advancements in single cell sequencing have identified over a hundred molecularly distinct
neuron populations in the mammalian cortex (Hodge et al., 2019; Lake et al., 2016; Saunders et al., 2018;
Tasic et al., 2018; Zeisel et al., 2015) including several small subpopulations of Gamma aminobutyric
acid (GABA)ergic neurons whose specialized functions are critical for the control of neuronal inhibition
(Kepecs and Fishell, 2014; Lim et al., 2018). Understanding neurological function in health and disease
from a cell type-specific perspective is critical to the progress of neuroscience.

Such endeavors necessitate cell type-specific technologies for the identification, isolation, and
manipulation of discrete cell populations. Transgenic mouse strains targeting major inhibitory neuron
subclasses including Parvalbumin-expressing (PV), Somatostatin-expressing (SST), and serotonergic (5-
HT) neurons are widely used today and have been instrumental toward our understanding of these cell
types (Madisen et al., 2010; Taniguchi et al., 2011). Additional cell type-specific transgenic strains have
been created through strategies like enhancer trap (Shima et al., 2016) and EDGE (Nair et al., 2020),
which leverage the specificity of cis regulatory sequence activity and improve the throughput of
transgenic development. Yet even with these innovations, as the number of cell populations of interest
rapidly expands, new transgenic strains cannot scale accordingly.

More recently, many developers have turned toward virus-based cell type-specific tools
(Dimidschstein et al., 2016; Graybuck et al., 2021; Hrvatin et al., 2019; Mich et al., 2021; Nair et al.,
2020; Vormstein-Schneider et al., 2020). Adeno-associated virus (AAV) technologies became particularly
attractive with the invention of AAV variants that cross the blood-brain barrier to transduce the central
nervous system, AAV-PHP.B and AAV-PHP.eB (Chan et al., 2017; Deverman et al., 2016). In line with
certain transgenic engineering, an emerging AAV targeting strategy is to incorporate cell type-specific
enhancer elements into the viral genome to promote restricted expression. Enhancer activity can be
extremely selective, even more so than the activity of most genes and their associated promoters

(Hoffman et al., 2013; Kellis et al., 2014; Roadmap Epigenomics Consortium et al., 2015). Thus,
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enhancers may be used to confer specificity even for neuron subtypes that cannot be resolved by the
expression of a single marker gene (Tasic et al., 2018) or where the marker gene promoter is not specific
on its own (Nathanson et al., 2009).

Despite the enthusiasm for enhancer sequences in cell type-specific AAV development, their
selection remains nontrivial. ATAC-seq (Buenrostro et al., 2013) has been a popular technique for
defining potential cell type-specific enhancer regions because of its high resolution and its compatibility
with small cell populations and even single cell technologies (Buenrostro et al., 2015b; Cusanovich et al.,
2015). The biggest outstanding barrier to sequence engineering for targeted technologies is the low
conversion rate from experimentally suggested cell type-specific open chromatin regions (OCRs) to
desired cell type-specific activity in the isolated viral context. Simple enhancer sequence prioritization
methods using ATAC-seq signal strength or sequence conservation have been insufficient. Recently, a
parallel screening approach involving single nucleus sequencing of barcoded enhancer libraries, PESCA,
was proposed to speed up the selection process toward a successful enhancer-driven virus (Hrvatin et al.,
2019). Another approach leveraged cell population marker gene proximity for enhancer prioritization
(Vormstein-Schneider et al., 2020). We hypothesized that there were additional in silico filters that could
be applied to reduce the burden of experimental screening in cell type-specific AAV development.

Toward this goal, we sought to leverage the complex combinatorial code linking transcription
factor binding site motifs and other DNA sequence features to cell type-specific regulatory activity (Jindal
and Farley, 2021). To learn that code, we turned to machine learning models, which have achieved state-
of-the-art performance on predicting regulatory activity from DNA sequence (Ghandi et al., 2014; Kelley
et al., 2016; Quang and Xie, 2016). Convolutional neural networks (CNNs) (Cun et al., 1989) and support
vector machines (SVMs), for example, have been applied to predict enhancer activity from sequence
across tissues and cell types (Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020). We reasoned that
machine learning classifiers could be applied to identify the most characteristic enhancer sequence
patterns within a given cell type, enabling us to prioritize and interpret sequences that are most likely to

drive selective expression.
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We developed a framework for machine learning-assisted engineering of cell type-specific
AAVs, which we refer to as Specific Nuclear Anchored Independent Labeling (SNAIL). Building upon
our previously described Cre-activated AAV technology cSNAIL (Lawler et al., 2020), SNAIL probes
have the unique advantage of expressing an affinity purification-compatible fluorescent tag (Deal and
Henikoff, 2010; Mo et al., 2015). This protein, Sun1GFP, enables nuclei isolation that is particularly
advantageous for accessing rare cell populations that would otherwise have low representation in bulk
tissue or single nucleus sequencing. Unlike cSNAIL, SNAIL probes are not Cre-dependent, but are
instead driven by cell type-specific enhancer sequences selected through machine learning models.

Here, we describe two novel AAV probes for PV neurons. In the mouse cortex, PV SNAIL
probes labeled PV neurons with > 70% specificity to Pvalb antibody staining. Isolated populations of
tagged cells from the cortex, striatum, and external globus pallidus (GPe) were heavily enriched for
known PV open chromatin signatures. In the cortex, PV SNAIL probes were more specific to GABAergic
PV interneurons than the common Pvalb-2A-Cre mouse strain. Nucleotide-resolution model interpretation
highlighted a collection of 14 transcription factor binding motif families responsible for PV neuron-
specific enhancer activation. These results demonstrate concrete utility in sequence-level information for

AAV enhancer selection, setting the stage for efficient probe design for a wide range of cell types.

Results
Support vector machines discriminate known cell type-specific regulatory sequences

We sought to build machine learning classifiers that could discriminate sequences of differential
OCRs between two cell populations. We imposed upfront that training sequences have a minimum fold
difference in chromatin accessibility between the cell types to ensure that the model learned cell type-
specific features of enhancer activation and not general enhancer features. We chose this strategy because
it was most closely aligned with our goal of prioritizing sequences that would activate in one cell type and

not others.
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To evaluate whether information from differential OCR sequences was sufficient to train accurate
classifiers, we first built SVMs comparing select broad classes of cell types in the brain. These were i) a
neuron vs. astrocyte classifier and ii) an excitatory neuron vs. inhibitory neuron classifier. The training
and validation sequences were based on differential OCRs between cell types, identified from single
nucleus (sn)ATAC-seq data from the mouse motor cortex (MOp) (Li et al., 2020) (Supplemental Fig. 1).
Both models performed well on held out data, achieving areas under receiver operating characteristic
curves (auROCs) of 0.95 and 0.93 (Supplemental Fig. 2).

Next, we verified that these models could recapitulate known cell type-specific activation patterns
of commonly used AAV promoter sequences Gfap, Camkll, and DIx (Supplemental Fig. 2). The Gfap
promoter sequence, which empirically has a heavy astrocyte bias in vivo, scored highly astrocyte-specific
in the neuron vs. astrocyte model, achieving a threshold with less than a 2.1% false positive rate among
validation data. In the same neuron vs. astrocyte model, the Camkll promoter and DIx promoter
sequences scored highly neuron-specific. Also consistent with empirical expectations, the excitatory vs.
inhibitory neuron model predicted the Camkll sequence to have excitatory neuron preference and the DIx
sequence to have inhibitory neuron preference, while the Gfap promoter scored close to neutral
(Supplemental Fig. 2). Therefore, this classification strategy is capable of correctly predicting cell type-

specific regulatory sequence activity in the viral context, at least for very distinct cell classes.

Machine learning models accurately predict PV neuron-specific open chromatin from sequence

Next, we assessed whether the same principles could be applied to more narrowly defined neuron
subtypes, using PV neurons as a target. To define potential PV neuron and PV- cell enhancer candidates
in the mouse cortex in a data-driven manner, we conducted ATAC-seq on the PV and PV- nuclei
populations of Pvalb-2A-Cre mice. The nuclei populations were isolated using previously described Cre-
dependent AAV affinity purification technology, cSNAIL (Lawler et al., 2020). cSNAIL probes activate
an isolatable nuclear envelope tag in the presence of Cre recombinase protein. Therefore, purified

populations from these mice are a direct reflection of cells labeled by the Pvalb-2A-Cre mouse strain, a
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130  current standard for PV neuron labeling. These cSNAIL PV and PV- ATAC-seq signatures ultimately
131  defined the training data for models for designing PV SNAIL probes, which are independently activated
132 by PV-specific regulatory elements.

133 Using merged reproducible ATAC-seq peaks in PV and PV- populations, here called OCRs, we
134  identified significantly differentially accessible OCRs between the two cell populations (DESeg2 padj <
135 0.01 & |Log2FoldChange| > 1) (Love et al., 2014). To refine these regions for model training, we

136  eliminated promoter-proximal OCRs within 2,000 base pairs (bp) of an annotated transcription start site
137  (TSS). This decision biased training examples toward OCRs of potential enhancer function, which are
138  most relevant for cell type-specific AAV design and may have different sequence composition than gene
139  promoters. This resulted in 14,059 PV OCRs and 4,935 PV- OCRs of interest genome-wide.

140 We developed two SVMs to distinguish between PV and PV- OCR classes based on nucleotide
141  sequence, one linear model and one nonlinear model. Both SVMs were based on gapped k-mer count
142  vectors, i.e. the number of occurrences of all short subsequences of length k, tolerating some gaps or
143 mismatches, as implemented by LS-GKM (Ghandi et al., 2014; Lee, 2016). The training data were 500 bp
144  sequences underlying PV or PV- OCRs of interest, with a 2.55:1 ratio of positives to negatives. The

145  sequences were centered on ATAC-seq peak summits, where functional transcription factor binding

146  motifs tend to be concentrated (Buenrostro et al., 2013). Taking advantage of this property, we used a
147  center-weighted kernel function for both SVMs, meaning gapped k-mers near the sequence center were
148  weighted more heavily than peripheral gapped k-mers. The two SVMs differed in that one was linear and
149  the other implemented a radial basis function (rbf) kernel, which permits the detection of interactions
150  between gapped k-mers. Both SVMs could predict the correct classification on held out data with high
151  accuracy (Fig. 1b,c), indicating that there were substantial sequence pattern differences between the PV
152  and PV- classes and that the models were able to learn these differences.

153 Next, because the PV- data contained a high proportion of glial cells, a developmental outgroup
154  to neurons, we considered the possibility that the PV vs. PV- models were learning features of general

155  neuron vs. glia enhancer sequence properties and not necessarily features that were specific to PV
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neurons. To address this issue, we trained additional population-derived SVMs that directly discriminated
between enhancer sequences of PV neurons and other neuron subtypes, using publicly available ATAC-
seq data from INTACT-sorted excitatory (EXC) neurons and VIP neurons (Mo et al., 2015). The model
training data were defined with the same process described for the PV vs. PV- models. The PV vs. EXC
models were trained on 27,879 PV sequence examples and 30,728 EXC sequence examples. The PV vs.
VIP models were trained on 15,474 PV sequence examples and 28,683 VIP sequence examples. These
models performed well (Fig. 1b,c), indicating that even at the level of neuron subtypes, OCR sequence
information is rich enough to reliably distinguish cell type-specific activity.

To survey an additional machine learning strategy, we also built CNN classifiers from the same
underlying data, using a different approach (Supplemental Fig. 3). CNNs are best equipped to
automatically learn higher-order interactions between sequence features without explicit handcrafting of
features. To define the training data for the CNNSs, we binned the genome into 200 bp bins and identified
bins with differential chromatin accessibility (g < 0.01) between cell types. These sequences were
extended bidirectionally to 1,000 bp and used for model training and evaluation. The PV vs. PV- CNN
was trained on 55,398 PV sequences and 37,919 PV- sequences, the PV vs. EXC CNN was trained on
3,212 PV sequences and 36,509 EXC sequences, and the PV vs. VIP CNN was trained on 22,416 PV
sequences and 96,609 VIP sequences. The CNNs were highly accurate (Fig. 1d), demonstrating an
additional approach to discriminate OCR sequence differences between purified neuron populations.

While ATAC-seq from purified cell populations is advantageous for its depth and recovers many
examples of differentially accessible reads between neuron subtypes, many neuron populations of interest
are not yet isolatable, even through transgenic means. Single nucleus sequencing technologies can be
applied to measure neuron subtype-resolution open chromatin without cell sorting by performing several
parallel micro-reactions that introduce unique cell barcodes into ATAC-seq sequencing reads. Therefore,
we explored whether cell type-specific enhancer sequences derived from mouse motor cortex SNATAC-
seq (Li et al., 2020) were sufficient to produce neuron subtype-level classifiers. We trained several

pairwise linear center-weighted gapped k-mer SVMs to discriminate differential open chromatin
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sequences from snATAC-seq clusters or groups of clusters. These included analogous models to the
population-derived models comparing PV vs. PV-, PV vs. EXC, and PV vs. VIP. In this case, the single
nucleus-derived PV vs. PV- model refers to a model trained on differential OCR sequences comparing PV
cluster nuclei to all other nuclei with a random sampling probability. The PV vs. k-nearest-neighbor
(KNN) model is an additional variation on the PV vs. PV- model where the PV- nuclei sampling for
differential OCR analysis was selected for similarity to the PV cluster as implemented in SnapATAC
(Fang et al., 2021). We also produced a model comparing PV vs. SST neurons, the most similar subtype
to PV. The number of training examples per class of these models ranged from 13,040 to 95,694 and the
positive (PV) to negative ratios per model ranged from 1:1.04 to 1:3.74 (further information available in
Supplemental Table 2). Single nucleus-derived SVMs were able to classify cell type-specific enhancer
sequences with high accuracy (Fig. le).

Moreover, models built independently from different data sources identified similar sequence
contributions for equivalent tasks. When scoring the population-derived sequences through both the
population-derived SVMs and the single nucleus-derived SVVMs, individual sequences scored highly
similarly in both models (Fig. 1f). These findings highlight the prevalence of reliable cell type-specific
enhancer sequence signatures that can be defined by a variety of classifier types and sources of open
chromatin measurements. The parameter and performance details of all models can be found in Tables S2

(SVMs) and S3 (CNNs).

Models learn biological signatures relevant for AAV probe design

We have shown that multiple machine learning strategies are useful for discriminating between
regulatory sequences that are differentially active between neuron populations. Next, we asked whether
these models could be useful for prioritizing enhancer sequence candidates for cell type-specific enhancer
driven technologies. The strength of chromatin accessibility signal at an individual locus may be dynamic

and insufficient for cell type-specific enhancer prioritization on its own. Enhancer candidates with highly
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207  specific chromatin accessibility and with high specificity scores in the models represent the most

208  characteristic cell type-specific sequence features and may be more effective than other OCRs.

209 First, we wanted to ensure that the success of the classifiers was rooted in biological sequence
210  signatures related to transcription factor binding motifs. We employed GkmExplain (Shrikumar et al.,
211  2019) and TF-MoDISco (Shrikumar et al., 2018) model interpretation methods to identify sequence

212 patterns with high contributions toward PV neuron-specific OCR predictions, focusing on the population-
213 derived linear SVMs. The models learned sequence patterns that matched known transcription factor

214 binding motifs (Gupta et al., 2007). These included critical developmental transcription factors (TFs) that
215 promote PV interneuron lineage specification Lhx6, Maf, and Mef2c (Liodis et al., 2007; Pai et al., 2020;
216  Vogtetal., 2014) (Fig. 1g). This was encouraging for biological relevance, especially given that the

217  models had no knowledge of known motifs or even the concept of transcription factor binding a priori.
218 To ensure that the neuron subtype-level models were identifying signatures that were relevant for
219  the specific purpose of creating selective PV neuron viruses, we evaluated model predictions on

220  externally validated successful and unsuccessful PV probe enhancer candidates from VVormstein-

221  Schneider et al., 2020, named E1 - E34. Importantly, the enhancer sequence from the probe with the

222 lowest PV specificity (E4; 14% specificity) received a negative score from every model, and two probe
223 enhancers with highest cortical PV specificity (E22 & E29; 94% specificity) received high positive scores
224 from every model.

225 The average score across all models was predictive of probe specificity (Pearson correlation

226  coefficient = 0.42, p = 0.016). Individual enhancer candidates tended to receive similar scores across the
227  SVMs comparing PV to highly abundant cell populations (PV vs. PV-, PV vs. EXC, PV vs. KNN), with
228  Pearson correlations between pairs of models ranging from 0.56 to 0.99 (Supplemental Fig. 4). Many of
229  these models were weakly significant predictors of empirical PV specificity in the AAV context on their
230  own, with the population-derived PV vs. EXC models reaching the highest significance (padj = 0.047)
231  (Supplemental Fig. 5). Some models, such as PV vs. KNN, were better predictors of PV probe specificity

232 than the log fold difference of chromatin accessibility for that cell comparison (Supplemental Fig. 5).
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SVMs comparing PV against rarer subtypes (PV vs. VIP, PV vs. SST) were more unique and had less
correlation with other models. These models were not significant predictors of probe specificity overall,
but many of the highest performing probes had positive scores. Probe specificity was not associated with
PhyloP score, which has been considered in cell type-specific enhancer prioritization (Hrvatin et al.,
2019), but did show a trend with activity conservation at orthologous regions in the human genome
(Supplemental Fig. 5). Importantly, neither method of conservation was as predictive of AAV specificity
as the average model score.

This result emphasizes the benefit of enhancer pre-selection with machine learning, which could
drastically reduce in vivo screening efforts by signaling the best PV enhancer sequences before
experimentation. The models predicted which PV enhancer sequence candidates were likely to be cell
type-specific drivers and precisely which subsequences were responsible for PV neuron-specific
activation. Sequence E29, within the Inpp5j locus, was predicted to have PV neuron-specific activity due
to a central Mef2 motif site and nearby Err3 motif site, among others (Supplemental Fig. 6). Sequence
E22, within the Tmem132c locus, was predicted to have PV specificity in part due to Nkx28 and Lhx6
motif sites (Supplemental Fig. 6). Yet, none of these enhancers were our highest predicted PV neuron
sequences, so we continued to investigate additional enhancer candidates genome-wide for PV SNAIL

probe implementation.

Two candidate PV SNAIL probes successfully target PV neurons in the mouse cortex

Based on the predictions of all PV enhancer models on our candidates, we prioritized two highly
characteristic PV neuron enhancer sequences to test for their ability to drive targeted expression in vivo
(Fig. 2). We refer to these sequence candidates as SC1 and SC2. Among true PV neuron-specific
enhancer sequences that i) were differential OCRs in PV vs. PV-, PV vs. EXC, and PV vs. VIP sorted
population data and ii) scored PV positive across all SVM evaluations (1,755 sequences), SC1 was the
highest predicted sequence candidate, while SC2 was in the 90th percentile (Fig. 2b, Supplemental Table
4).
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SC1 and SC2 sequences were cloned into separate vectors upstream of the cSNAIL reporter gene,
Sunl1GFP. To minimize off-target effects, PV SNAIL probes directly rely on transcriptional activation
from SC1 or SC2, with no minimal promoter (see methods). We also prepared two control vectors: a
negative control that was the identical vector but with no inserted enhancer sequence and a nonspecific
control that was the identical vector but with a common Efla promoter sequence in place of the candidate
sequence. When packaged with AAV-PHP.eB and delivered to the mouse through systemic injection, the
SC1-Sunl1GFP and SC2-Sunl1GFP constructs promoted cortical fluorescence that was restricted to PV
neurons, while the Efla virus did not (Fig. 2c-e, Supplemental Table 5). Compared with
immunohistochemistry-label Pvalb protein, SC1 and SC2-mediated expression of Sun1GFP was restricted
to Pvalb+ neurons in ~70-74% of cases. This was an 11-fold enrichment in precision over the Efla
promoter and notably, an almost 2-fold enrichment over Cre reporter labeling in Pvalb-2A-Cre mice. We
expect these to be conservative estimates of PV targeting due to incomplete antibody capture. On average,
Sun1GFP expression from SC1 and SC2 SNAIL probes labeled ~71-73% of Pvalb+ neurons. The rate is
limited by the transduction properties of the AAV-PHP.eB capsid, which only transduces 55-70% of
neurons in the cortex (Chan et al., 2017). SC1 and SC2 expression in Pvalb+ neurons represents at least a

9-fold increase over the negative control virus.

Isolation of PV SNAIL-labeled nuclei captures PV cortical interneurons

Expression of the Sun1GFP gene differentiates SNAIL probes from other cell type-specific AAV
technology. The stable nuclear envelope association of this tag enables affinity purification using
magnetic beads coated with anti-GFP antibody, which is advantageous for rare population isolation and
downstream epigenetic assays. In many contexts, purification of a cell population is more efficient than
single nucleus sequencing technologies, especially if the population of interest is in low proportion or the
desired downstream applications are not available in single nucleus approaches. Taking advantage of this
property, we isolated Sun1GFP-expressing nuclei induced by SC1-Sun1GFP, SC2-Sunl1GFP, or Efla-

Sunl1GFP SNAIL virus from the mouse cortex and performed ATAC-seq. Through comparison with
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known PV neuron ATAC-seq (via cSNAIL in the Pvalb-2A-Cre strain) and PV- or bulk ATAC-seq
including cSNAIL PV- cell fractions and Efla virus signatures, we determined that both SC1-Sun1GFP
and SC2-Sun1GFP cells are highly enriched for PV neurons.

The first principal component, accounting for 84% of the total variance, separated known PV
neuron samples from PV- and bulk tissue samples. Likewise, SC1-Sun1GFP and SC2-Sun1GFP samples
grouped with the PV samples while Ef1a-Sun1GFP samples grouped with the PV- and bulk sample
signatures (Fig. 3a). At the Pvalb locus, there were highly reproducible OCR signals between PV
cSNAIL, PV snATAC-seq, SC1-Sun1GFP, and SC2-Sun1GFP samples that did not appear in bulk tissue,
PV-, or Efla-Sun1GFP samples (Fig. 3b).

A major goal for PV SNAIL probes was that they may replace transgenic mouse strain
technologies in certain contexts. Ideally then, ATAC-seq from Sun1GFP-sorted cells from SNAIL probes
in wild type mice should provide similar information as ATAC-seq from Sun1GFP-sorted cells from
cSNAIL in Pvalb-2A-Cre transgenic mice. Therefore, we defined PV ¢cSNAIL ATAC-seq
log2FoldDifference over bulk cortical tissue ATAC-seq as a gold standard for each OCR. For SC1 and
SC2, we computed the correlations between the log2FoldDifference of OCR signal relative to bulk tissue
and the log2FoldDifference of OCR signal in PV ¢SNAIL relative to bulk tissue. To establish an upper
limit for correlation, we compared two different batches of cortical PV cSNAIL samples, which had a
Pearson correlation of 0.86 and a Spearman correlation of 0.85. As a lower limit, we evaluated the non-
specific Efla control virus, which had a Pearson correlation of 0.38 and a Spearman correlation of 0.26.
Because the AAV-PHP.eB capsid has a neuron bias, these lowly-correlated signatures are likely to be
general neuron specifications shared among PV and other neurons. Within this range, SC1 and SC2 had
very high correlation with cSNAIL, with SC1 achieving almost equivalent correlation as the two cSNAIL
batches (SC1 Pearson = 0.85 and Spearman = 0.84; SC2 Pearson = 0.81 and Spearman = 0.79) (Fig. 3c).
The details for differential OCRs in each virus relative to bulk tissue can be found in Supplemental Table

6.
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Finally, we compared SC1-Sun1GFP+ and SC2-Sun1GFP+ cell open chromatin signatures to
those of snATAC-seq clusters from the mouse motor cortex (Fig. 3d) (Li et al., 2020). We defined
cluster-specific OCRs for each snATAC-seq cluster and population-enriched OCRs for SNAIL-isolated
cells relative to bulk tissue (see methods) and assessed the overlaps. We found that cSNAIL-isolated PV
OCRs, SC1-isolated OCRs, and SC2-isolated OCRs were each significantly enriched for PV cluster-
specific markers (34% - 47% overlap, hypergeometric p = 0), while OCRs from Efla-isolated cells were
not enriched for PV cluster-specific markers (4% overlap, p = 1). Efla OCRs instead had the highest
enrichment for markers of a layer 4 excitatory neuron cluster (25% overlap, p = 5.3 x 107°). We also note
that cSNAIL PV ATAC-seq had an additional 8% overlap with excitatory cluster L5 PT markers (p = 2.5
x 109), possibly reflective of Pvalb-2A-Cre line labeling in layer 5 Parvalbumin-expressing excitatory
neurons (Jinno and Kosaka, 2004; Roccaro-Waldmeyer et al., 2018; Tanahira et al., 2009). These OCRs
were absent in SC1- and SC2-isolated cells. In fact, SC1 and SC2 had no enrichment for cluster-specific
OCRs of any cluster other than PV (< 2% overlap, p > 0.1), including the closely related SST population.
This suggests that SC1 and SC2 SNAIL probes actually target a stricter subset of the cells than the Pvalb-

2A-Cre mouse strain, likely restricted to PV inhibitory interneurons.

Chromatin accessibility differences between PV neurons in different brain regions

SC1 and SC2 SNAIL probes were designed based on the sequence properties of cortical PV
neurons. Many PV neurons throughout the brain have a common developmental origin in the medial
ganglionic eminence (MGE), but there are substantial OCR differences between mature PV neuron
populations in different brain regions. From cSNAIL-isolated PV populations in Pvalb-2A-Cre mice
(Lawler et al., 2020), we characterized thousands of OCRs with differential accessibility between the
cortex, striatum, and GPe (pagj < 0.01, |log2FoldDifference| > 1) (Fig. 4a, Supplemental Table 7). These
differences were associated with distinct TF binding motifs (Fig. 4b, Supplemental Table 8). For
example, OCRs that were more accessible in cortical PV neurons relative to striatal and GPe PV had

highest enrichment for Mef2a motifs, an activity-dependent transcription factor that is important in
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plasticity and distinguishes subpopulations of PV neurons in the hippocampus (Donato et al., 2015).
Mef2c has a similar binding motif and is the second-highest enriched TF motif in cortex-specific PV
neuron OCRs. Mef2c is essential for specifying the MGE PV neuron lineage in mouse and human (Mayer
et al., 2018) and has been linked to Schizophrenia and other neurodevelopmental disorders (Mitchell et
al., 2018). TFs with motifs enriched in PV neuron OCRs that are more open in striatum relative to cortex
and GPe included Tgifl, a key homeodomain gene involved in holoprosencephaly (Taniguchi et al.,
2012). At 6,654 differential OCRs, GPe-specific PV OCRs were the most unique, and had TF motif
enrichments including the Lhx3, Pou5f1, Err3, and Pax3 motifs.

These molecular differences likely relate to functional differences, for example, the tendency of
PV cells in the GPe to project to other brain regions versus the local nature of PV cells in the cortex
(Hernandez et al., 2015; Saunders et al., 2016). We assessed ontology enrichments in the brain region-
specific PV ATAC-seq OCR sets relative to all PV ATAC-seq OCRs using GREAT (McLean et al.,
2010) (Supplemental Table 9). The set of PV OCRs enriched in cortical PV neurons included 10 regions
associated with the Bdnf gene (Ensembl Genes; FDR Q = 0.0035). Among these was Bdnf promoter IV
which is known to be essential for PV neuron synaptic transmission in the prefrontal cortex (Sakata et al.,
2009). Other cortex-specific PV enrichments included terms related to sensory perception, especially
smell. Striatum-specific PV neuron OCRs were enriched for the adenylate cyclase-inhibiting dopamine
receptor signaling pathway (GO:BP; FDR Q = 0.010) and bradykinesia (Mouse Phenotype; FDR Q =
0.046). OCRs preferentially open in GPe PV neurons were enriched for neuropeptide signaling pathways,
for example acetylcholine receptor binding (GO:MF; FDR Q = 0.0044) and neuropeptide receptor activity
(GO:MF; FDR Q = 1.2 x 10). This suggests unique epigenetic mechanisms for the regulation of
transcription related to receptor signaling in GPe PV neurons, but further work is needed to discern these

relationships.

PV SNAIL probes generalize to subcortical brain regions in the mouse
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Given these complexities, we were interested in the extent to which PV enhancer probes chosen
from data in one tissue could generalize to other brain regions. Here, we assessed whether SC1 and SC2
SNAIL probes, designed in the cortex, were also selective for PV neurons in the striatum and GPe. First,
we used cSNAIL ATAC-seq data from the striatum and GPe to model the regulatory sequence properties
of PV neurons vs. PV- cells in these brain regions (Supplemental Fig. 7), and tested whether SC1 and
SC2 sequences were predicted to have PV-specific activation (Fig 4c,f). Indeed, SC1 and SC2 were
predicted to have PV neuron-specific activity in striatum and GPe PV vs. PV- SVMs. However, there
were 1-3,000 sequences with more confident scores toward PV specific activity in each case.

We proceeded to isolate SC1 and SC2-labeled cells from these tissues in wild type mice using
Sunl1GFP affinity purification and performed ATAC-seq on the tagged populations. We have previously
shown high agreement between cSNAIL and Pvalb-2A-Cre labeling in the striatum and GPe (Lawler et
al., 2020), so we again used cSNAIL ATAC-seq samples from these regions as true PV neuron signals.
By principal component analysis (PCA), we recovered separation between PV samples, including SC1
and SC2-isolated populations, and PV- samples (Fig. 4d,g). We assessed the correlations between
log2FoldDifference in SNAIL and cSNAIL samples, each relative to bulk tissue (striatum) or, where there
were no bulk samples available, cSNAIL PV- cells (GPe) (Fig. 4e,h, Supplemental Table 10,
Supplemental Table 11). Pearson correlation coefficients were similar or slightly lower for SC1 and SC2
in the striatum and GPe than for equivalent comparisons in the cortex, indicating less conservation
between cSNAIL and SNAIL probe targets (SC1 cortex = 0.85, striatum = 0.71, GPe = 0.68 ; SC2 cortex
=0.81, striatum = 0.82, GPe = 0.73). Yet, these were substantially increased over Efla correlation with
cSNAIL in these tissues, especially for the striatum (Efla cortex = 0.38, striatum = 0.18, GPe = 0.51).

By comparing the overlaps of SC1 and SC2-enriched OCRs in striatum and GPe with cortical
SnATAC-seq cluster-specific OCRs, we still identified the PV cluster as most similar to SC1 and SC2
cells. As expected, all overlaps in striatum-cortex and GPe-cortex comparisons were lower than those
from cortex-cortex comparisons, but the magnitudes of SC1 and SC2 overlap with the Pvalb cluster in

these brain regions were similar to the magnitudes of cSNAIL PV overlap with the Pvalb cluster in these
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brain regions (Supplemental Fig. 8). In the striatum, the overlaps with the Pvalb cluster were 8% for SC1,
14% for SC2, and 14% for cSNAIL. In the GPe, the overlaps with the Pvalb cluster were 7% for SC1, 7%
for SC2, and 9% for cSNAIL. From these interpretations, SC1 and SC2 SNAIL viruses do generalize to

the striatum and GPe, though they may not be as robust as they are within the cortical context.

Err3 and Mef2 motifs are important for the PV-specific activity of SC1 and SC2 sequences

To interpret the specific sequence patterns within SC1 and SC2 that contribute to their PV
neuron-specific activity prediction, we assessed commonly used motifs for each model and identified
potential matches within the candidate sequences. For all SVMs, we calculated per-base importance
scores and hypothetical importance scores for the set of PV-specific OCRs that were true positives
according to all SVMs (score > 0; N = 1,755) (Shrikumar et al., 2019). Then, for each model, we used
TF-MoDISco (Shrikumar et al., 2018) to cluster commonly important subsequences called “seqlets”
within these PV-specific examples. The resulting clusters represent motifs that were high contributors to a
positive score in each model. Among the 11 SVMs comparing PV neuron open-chromatin against PV-
cells, EXC neurons, VIP neurons, or SST neurons, we recovered 124 well-supported motifs. Many motifs
appeared to be shared across multiple models. Thus, we performed UPGMA clustering on the 124 motifs
by sequence similarity using STAMP (Mahony and Benos, 2007) and identified 14 motif clusters (Fig.
5a).

The largest cluster, with 23 motif members, contained representation from all 11 models and had
matches to known motifs including the motifs for Err3 and Rora (Supplemental Table 12). Consistent
with an important role for Err3 in PV neurons, Err3 (a.k.a. Esrrg) transcript levels were differentially
over-expressed in the PV neuron cluster relative the rest of the frontal cortex in SnARNA-seq (DropViz
subcluster #2-7 Neuron.Gad1Gad2.Pvalb Esrrg fold ratio = 8.0, p = 1.14 x 10-198) (Saunders et al.,
2018). Esrrg and Rora are key TFs in the Pgcla transcriptional program, which regulates Pvalb

expression, mitochondrial function, and transmitter release (Lin et al., 2005; Lucas et al., 2010). Pgcla
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signaling is restricted to PV neurons in the brain, and may mediate the unique energy demands of fast-
spiking neurons (Lucas et al., 2014; Paul et al., 2017).

The second largest motif cluster contained 16 motifs, also representing all 11 models, and the
motifs had best matches to motifs for Mef2a, Mef2c, and Mef2d. In finer subdivisions of this cluster, PV
vs. VIP model motifs had best matches to Mef2a, while all other models tended to have best matches for
Mef2c and Mef2d. A cluster of Lhx6-like motifs, a transcription factor necessary for MGE interneuron
differentiation from interneuron progenitors (Liodis et al., 2007; Vogt et al., 2014), was detected with
high support from PV vs. PV- models and PV vs. EXC models, low support from PV vs. VIP models, and
not detected between MGE neuron subtypes PV vs. SST. Interestingly, two clusters of motifs were
dominated by PV vs. VIP signal, including matches for Stat6, Nkx28, and Cux2 motifs. Cux2 expression
is induced by Lhx6 in the MGE, supporting a role in specification of the MGE interneuron lineage
(including PV and SST neurons) from other interneuron lineages (Zhao et al., 2008). Overall, these
findings indicate both shared and unique sequence properties dictating PV-specific regulatory sequence
activity relative to other cell types.

SC1 and SC2 represent two experimentally validated PV-selective regulatory sequences. To
interpret the sequence determinants of their success, we mapped potential motif sites for the 124 TF-
MoDISco motifs (Supplemental Table 13) and overlaid these with per-base importance scores for each of
the SVMs (Supplemental Table 14). This strategy revealed multiple high importance subsequences with
potential transcription factor binding function. SC1 contained two Err3 motifs near the sequence center
which were high contributors to the PV-specific model predictions and matched TF-MoDISco motifs for
every model (Fig. 5b). An additional subsequence with contributions specific to PV vs. VIP models
matched motifs for Sp7. SC2 contained a highly important Mef2 sequence near the center (Fig. 5¢). This
was a specific match for Mef2c and Mef2d motifs and excluded Mef2a motifs from PV vs. VIP models.
Additionally, SC2 contained an Err3 motif with shared importance across all models. Interestingly, the
most important features of the SC2 sequence closely resemble those of successful PV probe E29 from

Vormstein-Schneider et al., 2020 (Vormstein-Schneider et al., 2020) (Supplemental Fig. 6). The success
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of SC1 and SC2 are both largely explainable by transcription factor binding motif properties and

represent two sequence pattern strategies toward PV-specific activation.

Discussion

OCR sequence features provide valuable, underutilized information for cell type-specific
enhancer design. Here, we showed that sequence alone was sufficient to discriminate between OCR
activity in different neuron subtypes. Interpretation of these models revealed rich diversity among the
biochemical underpinnings of these classification tasks, reflective of cis-trans interactions. The defining
sequence properties of cell type-specific OCR activation were robust throughout different data modalities,
including ATAC-seq from sorted populations and SnATAC-seq, and different classifier types. Machine
learning and computational methods, broadly, can facilitate prioritization of AAV enhancer candidates by
guantifying sequence properties that are most characteristic and specific to a given cell type.

In SNAIL, our framework for cell type-specific AAV engineering, we incorporate machine
learning classifiers as an additional filter for improved enhancer selection. On a set of 33 externally tested
PV enhancer-driven AAVs (Vormstein-Schneider et al., 2020), the average PV-specificity score across 11
classifiers was more predictive of PV-specific AAV expression than the log2 fold difference of SnATAC-
seq signal, sequence conservation, or activity conservation at these loci. With the SNAIL framework, we
identified and validated two novel enhancers that drive targeted expression in PV neurons in the mouse
cortex. While these do not represent enough trials to establish a new conversion rate from cell type-
specific OCRs to cell type-specific AAVs, we were encouraged by the immediate success of the first
probes we selected. We believe that incorporation of differential sequence property analyses like those
used here will continue to improve the throughput of targeted AAV development in new contexts.

An additional advantage of incorporating classifiers for cell type-specific enhancer selection is
increased interpretability of the factors that govern success. The sequence patterns learned by PV models
reflected known PV neuron biology. Common motifs contributing to successful PV probe enhancers

included Err3, Mef2, and Lhx6, important in the specification and maintenance of the cortical PV
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interneuron lineage (Liodis et al., 2007; Mayer et al., 2018; Zhao et al., 2008). SC1 and SC2 depend
particularly on Mef2 and Err3 motifs for PV specificity.

We found that a combination of multiple direct comparisons between the target cell type and
other cell types made for particularly useful screening. Here, we used a tiered approach to ensure specific
activity at multiple levels of cellular relationships to PV neurons. At the broadest level, we modeled PV
neuron OCR sequences against PV- OCRs, a mixed signature from all other neuron and non-neuron cell
types in the mouse cortex. Within neurons, we modeled PV vs. EXC neurons, and then PV relative to
more specific subtypes of inhibitory neurons VIP and SST. Successful SC1 and SC2 sequences contained
attributes that made them highly PV specific across all of these comparisons.

SC1-Sunl1GFP and SC2-Sun1GFP are new AAV technologies for PV neuron labeling and
isolation in diverse systems. A unique feature of these viruses is the modified Sun1GFP tag that enables
nuclei purification by magnetic beads coated with anti-GFP antibody. This process is advantageous for
isolating genomic and epigenomic signals from the population of interest with no dependence on
transgenic strains. In comparison to single nucleus sequencing technologies, affinity purification with
SNALIL is more efficient for addressing targeted hypotheses about a specific cell type. SNAIL may also be
paired with single nucleus sequencing technologies for unprecedented resolution of the substructures
within minority cell populations. We took advantage of SNAIL affinity purification to isolate SC1-
Sunl1GFP and SC2-Sun1GFP nuclei for molecular assessment with ATAC-seq. This represents a novel
approach for validating new cell type-specific AAVs. We found that SC1 and SC2 PV SNAIL probes had
high molecular agreement with cells tagged in the Pvalb-2A-Cre mouse strain, making them a reasonable
alternative to transgenic strain technology. In addition to their success in the intended brain region
(cortex), these SC1 and SC2 PV SNALIL viruses also generalized to subcortical regions, the striatum and
GPe.

In general, pairing cell type-specific enhancers with AAVs provide much more flexibility and
scalability than transgenic technologies. However, there are drawbacks in certain applications. AAVs

require time to reach peak expression, usually 2-4 weeks, although some may be robust earlier. This
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means they are not appropriate for developmental studies in very young animals. Additionally, there are
limitations to the transduction efficiency, so AAVs may not be ideal for studies where it is important to
label all cells of a certain type. Finally, enhancer activity in AAVs may fluctuate under different ages or
in response to different conditions, because enhancers are dynamic actors in the regulation of gene
expression. However, machine learning model-based prioritization of characteristic sequences may
minimize this risk.

Excitingly, there are many opportunities for extensions of the SNAIL framework that enable cell
type-specific interrogation in unprecedented settings. Machine learning model-selected enhancer
sequences may be used to drive the expression of a gene for cell type-specific circuit manipulation, as has
been achieved with channelrhodopsin and DREADDS (Lee et al., 2010; Vormstein-Schneider et al.,
2020). Other important advancements could overexpress a particular ion channel, neurotransmitter
receptor, gene variant, or guide RNA for a CRISPR-based gene manipulation strategy. More so than other
strategies for cell type-specific AAV design, the SNAIL framework can be tuned for cross-species probe
development. In fact, multiple machine learning models have successfully predicted enhancers across
mammals, demonstrating high evolutionary conservation in the rules for enhancer sequence activity
(Chen et al., 2018; Kaplow et al., 2020; Kelley, 2020; Minnoye et al., 2020). Multispecies models could
further improve transferability of probes across species. A new approach that explicitly encourages the
model not to learn signatures of species-specific enhancer activity might be especially promising
(Cochran et al., 2021). Lastly, while most previous enhancer selection has relied on sorted populations of
nuclei from existing transgenic animals, the SNAIL framework provides the opportunity to develop viral
tools targeting previously unexplored cell types that are identifiable in SnATAC-seq. There is potential to
divide subpopulations at multiple levels and design extremely specific technologies. Other applications
may exploit changes in enhancer sequence activity in disease and other contexts to target specific cell
states. Continued exploration at the intersection of machine learning and enhancer technology
development is sure to enhance the impending era of cell type-specific neuroscience and further our

general understanding of specific cell types throughout the body.
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Materials and Methods

Experimental design. The initial cSNAIL experiments to define candidate PV enhancers were
performed on primary motor cortex and isocortex samples in triplicate on female mice aged 2-3 months
old. All subsequent cSNAIL and SNAIL molecular experiments for the validation of PV SNAIL probes
were performed in the cortex, striatum, and GPe with two or three biological replicates. Each of these
cohorts included at least one male and one female mouse, all 2-4 months old. Control samples for SNAIL
comparisons included cSNAIL PV, cSNAIL PV-, and cells labeled by the Efla-Sun1GFP virus. Details

for all experiment samples can be found in Supplemental Table 1. Data primary to this publication can be

accessed through the NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), accession
number GSE171549.

Nuclei isolation for ATAC-seq. ATAC-seq data were generated using an affinity purification
approach with cSNAIL or SNAIL to isolate PV neurons from the mouse isocortex, as described in Lawler
et al., 2020. Briefly, mice were overdosed with isoflurane, decapitated, and rapidly dissected. Fresh brain
tissue was sectioned coronally on a vibratome for precision, and we dissected brain regions relevant to the
specific experiment to be processed as separate samples. All dissections took place in cold, oxygenated
artificial cerebrospinal fluid (aCSF). After dissection, we isolated nuclei from the samples by 30 strokes
of dounce homogenization with the loose pestle (0.005 in clearance) in lysis buffer as described in
Buenrostro et al., 2015 (Buenrostro et al., 2015a). The nuclei were filtered through a 70um strainer and
pelleted with 10 minutes of centrifugation at 2,000 x g at 4 °C. We resuspended the nuclei pellets in wash
buffer (0.25 M Sucrose, 25 mM KCI, 5 mM MgCl;, 20 mM Tricine with KOH to pH 7.8, and 0.4%
IGEPAL) for the affinity purification steps.

Affinity purification of Sun1GFP+ and Sun1GFP- nuclei. The nuclei suspension was incubated
with anti-GFP antibody (Invitrogen, Carlsbad, CA; #G10362) in wash buffer for 30 minutes at 4 °C with
end-to-end rotation. After this period, we added Protein G Dynabeads (Thermo Fisher Scientific,

Waltham, MA; cat. 10004D) to the reaction and incubated again for 20 minutes. We separated the
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Sun1GFP+ fraction from the Sun1GFP- fraction on a magnetic bead rack. Sun1GFP- nuclei in the
supernatant were centrifuged at 2000 x g for 10 minutes to pellet nuclei, washed one time, and filtered
with a 40 um cell strainer. The Sun1GFP+ nuclei attached to the beads were washed 3-4 times with 800
pL wash buffer by resuspending the sample, letting it settle onto the magnet, and removing the buffer.
Where cell yield was not a concern, we also performed a large volume wash with 10 mL wash buffer and
filtered through a 20 um cell strainer. All nuclei preparations were resuspended in water for the ATAC-
seq reaction.

ATAC-seq library construction. For each sample, a small aliquot was stained with DAPI (Thermo
Fisher Scientific; cat. 62248) and the concentration of nuclei was determined by counting DAPI+ nuclei
with a hemocytometer. Next, we combined 50,000 nuclei, 25 pL Tagment DNA Buffer, and 2.5 pL
Tagment DNA Enzyme | (Illumina, San Diego, CA,; cat. 20034198) into 50 pL total for the transposition
reaction. The reaction incubated at 37 °C for 30 minutes with 300 rpm mixing. Samples containing beads
were gently resuspended every 5-10 minutes throughout the incubation to prevent the beads from staying
settled at the bottom. Immediately following incubation, the DNA was column purified with the Qiagen
MinElute PCR Purification kit (Qiagen, Hilden Germany; cat. 28004). Libraries were amplified to ¥4
saturation with dual-indexed lllumina primers (Preissl et al., 2018). We ensured that samples had the
characteristic periodic fragment length distribution of high quality ATAC-seq using TapeStation
assessment (Agilent Technologies, Santa Clara, CA). Successful samples were sequenced at low depth on
the Illumina Miseq system to determine appropriate library pooling and sequencing depth, then paired-
end sequenced for 2 x 150 cycles with the lllumina Novaseq 6000.

Animal use. All animals for ATAC-seq experiments were either wild type mice (C57BL/6J;
Jackson Laboratory, Bar Harbor, ME; Stock No: 000664) for SNAIL experiments or heterozygous Pvalb-
2A-Cre mice (B6.Cg-Pvalb™-C)Aibs/ 3. Jackson Laboratory Stock No: 012358) (Madisen et al., 2010) on
a C57BL/6J background for cSNAIL experiments. Imaging animals were either Pvalb-2A-Cre or double
transgenic Pvalb-2A-Cre/Ail4 (Ail4 strain; B6.Cg-Gt(ROSA)26Sorm4(CAC-tdTomato)Hze/ 3. Jackson

Laboratory Stock No: 007914). All mice were 2-4 months old at the time of the tissue experiments. Initial
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PV cSNAIL data for creating the sorted cell PV vs. PV- model was collected from female mice, but all
subsequent validation experiments included representation from both sexes. All animals were housed with
a 12 hour light cycle, and experiments were performed 2-3 hours after lights on. Animals for the data
primary to this study received no treatments other than the retro-orbital AAV injections. However,
previously published cSNAIL data used in analysis included healthy animals that received stereotaxic
saline injections to the medial forebrain bundle (Lawler et al., 2020).

Molecular cloning. To make the non-specific control viral vector pAAV-Efla-Sun1GFP, we
made modifications to pAAV-Efla-Cre with restriction enzyme cloning. pAAV-EFla-Cre was a gift from
Karl Deisseroth (Addgene, Watertown, MA; plasmid #55636; http://n2t.net/addgene:55636;
RRID:Addgene_55636). First, we added a multiple cloning site before the Efla promoter to create easy
promoter swapping for later use. The multiple cloning site insert was synthesized as by Integrated DNA
Technologies, Coralville, 1A and was inserted between BshTI and Mlul sites upstream of the Efla
promoter. Next, we used BamHI and EcoRI sites to replace the Cre gene with a modified Sun1GFP gene
identical to the one in our cSNAIL technologies.

The resulting pAAV-Efla-Sun1GFP vector was then further modified to create the other
constructs. The PV SNAIL probes were designed to contain one PV-specific enhancer candidate
sequence, a synthetic intron for RNA stabilization, the Sun1GFP gene, a WPRE signal, and a polyA
signal. From pAAV-Efla-Sun1GFP, the Efla promoter and intron region was removed and replaced with
the sequence for a PV-specific enhancer candidate and the synthetic intron. Inserts for SC1 and SC2 were
synthesized by Integrated DNA technologies and cloned into the vector using restriction sites for Ndel
and BamHI. To ensure that no expression was being driven from the synthetic intron sequence itself, we
similarly cloned a negative control construct containing the synthetic intron, but no enhancer candidate
sequence. All transformations during cloning were performed in MegaX DH10B cells (Invitrogen,
#C640003) and confirmed with Sanger sequencing.

AAV production. AAV was produced in AAVpro(R) 293T cells (Takara, Kyoto, Japan; #632273)

by co-transfection of the genome pAAV, an AAV helper plasmid, and pUCmini-iCAP-PHP.eB.
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pUCMmIni-iCAP-PHP.eB was a gift from Viviana Gradinaru (http://n2t.net/addgene:103005; RRID:
Addgene 103005) (Chan etal., 2017). The AAV particles were precipitated with Polyethylene Glycol
(PEG 8000, Sigma-Aldrich, St. Louis, MO; cat. P2139-500G) and purified on an iodixanol gradient
(OptiPrep, Sigma-Aldrich, cat. D1556-250ML) with ultracentrifugation for 2.5 hours at 350,000 x g at 18
°C. We filtered and concentrated the virus in PBS using Amicon Ultra-15 centrifugation filters (Millipore,
Burlington, MA; #UFC905024). The viral titer was measured with the AAVpro(R) Titration Kit (Takara,
#6233), diluted to a concentration of 8.0 x 10° vector genomes (vg) / UL, and stored single-use aliquots at
-80 °C until injection.

AAYV delivery. Animals were anesthetized with 2-3% isoflurane until no pedal withdrawal reflex
was observed. Then, we injected 4 x 10! vg total (50 L) of virus into the retro-orbital cavity and treated
the eye with 0.5% Proparacaine Hydrochloride Ophthalmic Solution. The animals were monitored while
the virus incubated for 3-4 weeks until endpoint experiments.

Imaging and analysis. Tissues were fixed with whole body 4% paraformaldehyde (PFA)
perfusion and the brains were incubated in 4% PFA for an additional 12-24 hours after dissection.
Coronal slices 80 um thick were made with a vibratome. Free-floating sections were stained for
Parvalbumin with Pvalb (Swant, Marley, Switzerland; PV 27) primary antibody with AlexaFluor 405
(Invitrogen, #A-31556) or AlexaFluor 594 (Cell Signaling Technology, Danvers, MA; #8889) secondary
antibodies. Images were taken of the motor cortex with laser scanning confocal microscopy. Cells were
counted in each channel with Fiji (Schindelin et al., 2012) and assigned as double-labeled or single-
labeled manually. Individual images from 1-3 mice were treated as replicates to determine the mean and
standard error of the mean for specificity and efficiency quantifications.

ATAC-seq data processing. Samples were processed from the paired-end fastq files using the

ENCODE ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seg-pipeline) with the following

changes from default behaviors: atac.cap_num_peak = 300000, atac.idr_thresh = 0.1. All samples had
high TSS enrichment (>15) and clear periodicity, indicative of good data quality. Optimal IDR peaks

were determined for biological replicates of the same cell type, brain region, and sequencing batch
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(https://github.com/kundajelab/idr) (Li et al., 2011). IDR peaks were then merged to define the combined

peak regions (OCRs) for each analysis using bedtools (Quinlan and Hall, 2010). Specifically, we defined
sets of OCRs for i) cortex PV and PV- cSNAIL samples, ii) PV, EXC, and VIP INTACT samples (Mo et
al., 2015), and iii) cortex, striatum, and GPe bulk samples, PV and PV- cSNAIL samples, SC1-Sun1GFP
samples, SC2-Sun1GFP samples, and Efla-Sun1GFP samples. We constructed count tables including the
relevant samples on each of these OCR backgrounds using Rsubread featureCounts version 1.28.1 (Liao
et al., 2019). These three count tables were used to form the basis of i) the sorted population PV vs PV-
models, ii) the sorted population PV vs. EXC and PV vs. VIP models, and iii) analysis of SC1 and SC2
SNAIL PV probes in the cortex, striatum, and GPe.

The counts were modeled using the negative binomial distribution in DESeq2 (Love et al., 2014).
We assessed the coefficient of cell group, where cell groups were unique tissue, virus, cell type
combinations, and we controlled for sex differences where both were present: DESeq2 design ~ sex +
cellGroup. Differential peaks were defined strictly for applications i and ii related to building models
(padj < 0.01 and |Log2FoldDifference| > 1) and more loosely for application iii to compare across viruses
(padj < 0.05 and |Log2FoldDifference| > 0.5). Related to Fig. 3, only cortical samples from count matrix
iii were included in the DESeq2 model, while the Fig. 4 DESeg2 model included samples from all three
brain regions.

SnATAC-seq processing. The following samples of SnATAC-seq from the mouse MOp were

downloaded in Snap file format from http://data.nemoarchive.org/biccn/: CEMBA171206_3C,

CEMBA171207_3C, CEMBA171212_4B, CEMBA171213 4B, CEMBA180104_4B,

CEMBA180409 _2C, CEMBA180410_2C, CEMBA180612_5D, and CEMBA180618_4D(Li et al.,
2020). These were processed using SnapATAC version 1.0.0 (Fang et al., 2021). We restricted the
analysis to nuclei that passed filtering as defined by the original authors (Li et al., 2020). This removed
nuclei that had at fewer than 1000 reads, TSS enrichment <10, or doublet signatures detected by Scrublet
(Wolock et al., 2019). Filtered samples contained 6,700-10,983 nuclei each, for a total of 78,525 nuclei.

We applied a bin matrix with a bin size of 5,000 and combined the snap objects. Then, we removed bins
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overlapping with the ENCODE blacklist, mitochondrial regions, and the top 5% of bins that overlapped
with invariant features. We reduced dimensionality and selected 18 significant components, then
corrected for batch effects using Harmony (Korsunsky et al., 2019). We performed Louvain clustering
using runCluster() with the option louvain.lib="R-igraph”.

Cell types were assigned to clusters by accessibility at promoters and gene bodies of marker
genes (Supplemental Fig. 1) and by comparison to the cell annotations from the original authors (Li et al.,
2020). Peaks were called for each cluster using MACS2 with the options --nomodel --shift 0 --ext 73 --
gval 1e-2 -B --SPMR --call-summits (Zhang et al., 2008). Overlapping peaks across all clusters were
merged, resulting in 415,813 OCR regions in total. Differential OCRs were defined using the findDAR()
function with test.method = “exactTest” and were required to meet padj < 0.01 (Benjamini-Hochberg
corrected) and |log2FoldDifference| > 1. For comparisons to groups of clusters, e.g. PV vs. EXC, separate
tests were performed for PV vs. each excitatory cluster, and the intersection of differential OCRs was
selected.

SVM data preparation. SVMs were developed to predict the direction of differential activity from
sequences underlying differential OCRs between two cell types or groups of cell types. Because ATAC-
seq summit regions are highly enriched for transcription factor binding motifs, we centered on the peak
summits within differential ATAC-seq OCRs and extended in both directions for a total fixed sequence
length of 500 bp, a convenient length for AAV cloning. Peak summits were defined by MACS2 (Zhang et
al., 2008), and only summit regions of peaks called within the cell type of interest were retained. For data
from sorted cells, we used optimal IDR peaks across biological replicates of the given cell type. For
example, in a PV vs. VIP model comparison, the positive model input examples were 500 bp summit-
centered regions of PV IDR peaks that overlapped PV-specific differential open chromatin regions and
the negative model input examples were 500 bp summit-centered regions of VIP IDR peaks that
overlapped VIP-specific differential open chromatin regions. For snATAC-seq data, we used peaks called
within a cluster to define the relevant summit regions. If multiple cell clusters were involved in the

comparison, e.g. the excitatory neuron vs. inhibitory neuron model, we used summits found in any peak
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set from a cluster within that category. In cases where there were multiple summits within a differential
open chromatin region, all summits greater than 100 bp apart from each other were retained.

After defining the genomic locations of the summit-centered differential open chromatin regions
for model training, we used additional filtering to prepare the data for model training. First, we restricted
the models to enhancer regions because they have more specificity than promoters and may be governed
by different sequence properties. Therefore, we filtered out regions that were within 2,000 bp of a TSS,
using RefSeq annotations downloaded from the UCSC Table browser in July 2020 (Kuhn et al., 2013).
Next, we removed super-enhancers because they also may be governed by different sequence features and
are not useful for AAV probe design because they are too large. We downloaded mm9 coordinates of
mouse cortex super enhancers defined by H3K27ac from the dbSuper database (Khan and Zhang, 2016)
and converted these to mm10 coordinates using UCSC liftOver with minmatch = 0.95 (Kuhn et al., 2013).
Using bedtools intersect (Quinlan and Hall, 2010), we removed regions with any super enhancer overlap.
Finally, we used bedtools getfasta (Quinlan and Hall, 2010) to retrieve the sequences at these genomic
coordinates from the mm210 assembly, downloaded from UCSC genome browser in May 2018 (Kuhn et
al., 2013), and we removed any sequences that contained uncertain bases (Ns).

SVM model construction. Sequences were divided into separate partitions by chromosome for
model training, validation, and final testing. The training sets included chromosomes 3-7, 10-19, and X,
the validation sets included chromosomes 8 and 9, and the test sets included chromosomes 1 and 2. The
training data were input into LS-GKM’s gkmtrain and evaluated with gkmpredict (Lee, 2016). Because
the input data was summit centered, all models used the center weighted gkm kernel, option -t 4, or the
center weighted gkm rbf kernel, option -t 5. The -I, -k, -d, -c, and -w parameters for word length, number
of informative columns, number of mismatches to consider, regularization, and class-weighted
regularization were tuned to maximize the validation set F1 scores through manual iterations. Other
parameters were left on default behavior. auROC and auPRC metrics were calculated and visualized on

training, validation, and test sets using the ROCR package in R (http://ipa-tys.github.io/ROCRY/). All
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paper figures reflect final test set performance. The details of all parameter settings and performance
metrics of the final models are reported in Supplemental Supplemental Table 2.

CNN data preparation. We conducted differential accessibility analysis using DESeq2 (Love et
al., 2014) to identify regulatory regions that display cell type-specific accessibility in ATAC-seq in PV
neurons relative to other background cell types (PV-, VIP, EXC). We used PV and PV- neuron ATAC-
seq samples generated in this study as well as PV, VIP, and EXC neuron ATAC-seq samples from Mo et
al., 2015. To conduct differential accessibility analysis, we obtained genomic coordinates of all 200 bp
bins in the mm10 reference genome, starting from the 200 bp bin at the beginning of each chromosome of
including all following contiguous non-overlapping 200 bp bins. We then filtered out any bin that
overlaps with an artifact region (Amemiya et al., 2019) or with regions that have unknown nucleotides
(obtained from the UCSC twoBitInfo utility using the -nBed option). During this step, regions near the
ends of chromosomes were filtered out. Then, using the featureCounts function in the subread package
(Liao et al., 2014), we counted the reads mapping to each of the 200 bp bins in the ATAC-seq samples
obtained from every included ATAC-seq sample. We then use the DESeq2 R package (Love et al., 2014)
to identify bins that were differentially accessible between i) PV and PV-, ii) PV and VIP, and iii) PV and
EXC neurons at a Benjamini-Hochberg FDR adjusted p-value cutoff of 0.01. For each of the three
comparisons, significant differential bins that displayed PV specificity (log2FoldDifference > 0) were
used as positive examples for CNN training and significant differential bins that displayed negative
log2FoldDifference (log2FoldDifference < 0) were used as negative examples for CNN training.

CNN model construction. We trained three separate CNN models that relate sequence to
comparative regulatory activity (Kelley et al., 2016; Quang and Xie, 2016; Zhou and Troyanskaya, 2015).
For each significant differential 200 bp bin, we obtained the 1000 bp sequence surrounding the center of
the bin from the mmZ10 reference genome and trained the CNN to predict the positive or negative class
label. We held out sequence examples underlying all significant differential bins on chromosome 4 as a
validation set to evaluate hyperparameter settings and to choose the best performing final model. We also

held out sequence examples underlying all significant differential bins on chromosomes 8 and 9 as a test
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set for final evaluation. Because we had different validation and test sets from those used for the SVM,
we did not use any results from the SVM to influence our approach to designing the CNN architecture or
any other aspects of CNN training. We implemented our CNN model in Keras 2.2.4 (https://keras.io/)
with a theano backend (The Theano Development Team et al., 2016). We created a one-hot encoded
representation of the sequence, a 4 x 1000 binary matrix representing positions and occurrences of the 4
nucleotide characters (A, T,G and C) on the sequence, which was propagated through the network. Our
CNN architecture consisted of multiple layers of convolution kernels stacked on top of each other
(Supplemental Fig. 3). The first such layer consisted of 1000 convolution kernels, each with a kernel
width of 8 and height of 4, which scan the input sequence in chunks of 8 nucleotides. We applied rectified
linear unit (ReLu) activations on the outputs of these convolution kernels. This initial layer is followed by
a variable number of convolution layers with the same number of kernels (100), each of width 8 and
height 1. We applied ReLu activations on these convolution outputs as well. These convolution layers are
then followed by a set of max pooling operations that selects the maximum value from a set of 13
adjacent units (pooling size = 13). We set the stride for the max pooling operation to 13 units, meaning
that it selected the maximum values from contiguous chunks of 13 adjacent outputs from the previous
layer. We applied dropout regularization (Srivastava et al., 2014) on the outputs of the max pooling
operation to prevent overfitting to the training set. We then flattened the outputs of the max pooling layer
into a single vector and passed them to a single output unit with a sigmoid activation function. We used
stochastic gradient descent (SGD) to minimize binary cross entropy loss (log loss) between the output of
this unit and the positive/negative class label to learn model parameters.

Each model was trained for 100 passes through the training set (or “epochs”). For the PV vs. PV-
and the PV vs. VIP tasks, we evaluated model performance and chose the best performing model based
on the value of the binary cross entropy loss on the validation set. For the PV vs. EXC task, we chose the
final model based on a combination of auROC and auPRC on the validation set. We ignored small
differences in validation auROC and auPRC (z 0.02) while selecting the final PV vs. EXC model. Tuning

only the number of variable convolution layers (0, 1, or 2), and the dropout probability for the max
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pooling output (0.2, 0.4, or 0.5), we were able to achieve strong auROCs and auPRCs on the held out
validation sets. Therefore, we did not attempt to vary learning rate for SGD (0.01), momentum (0.0),
batch size (30), number of training epochs (100), number of filters in the first convolution layer (1000),
number of filters in subsequent convolution layers (100), kernel sizes (8), max pooling size (13) and stride
(13). A table of hyperparameter settings and associated performance metrics (loss value, auROC, auPRC)
on training, validation, and test sets is provided in Supplemental Table 3.

Broad promoter sequences. The sequences of Gfap, Camkll, and DIx promoters (Supplemental
Fig. 2) were extracted from AAV plasmids with confirmed cell type-specific activity in vivo. The Gfap
promoter sequence (Gfa2) was from hGFAP-GFP (Addgene plasmid #40592;
http://n2t.net/addgene:40592; RRID:Addgene_40592). The Camkll promoter sequence was from
PENN.AAV.CamKI110.4.eGFP.WPRE.rBG (Addgene plasmid #105541; http://n2t.net/addgene:105541;
RRID:Addgene_105541). The DIx promoter sequence was from pAAV-mDIx-GFP-Fishell-1 (Addgene
plasmid #83900; http://n2t.net/addgene:83900; RRID:Addgene_83900)(Dimidschstein et al., 2016).

SVM score analysis for external PV AAV screen. 33 externally tested PV AAV enhancer
sequences (Vormstein-Schneider et al., 2020) were scored through all cortical PV SVMs. To enable
comparison between models, scores were normalized to standard deviations from 0 using the standard
variation of the validation data set for each model. For each pair of models, the sequence scores were
assessed for correlation with cor() function from the R Stats package

(https://www.rdocumentation.org/packages/stats/versions/3.6.2) with the Pearson method and visualized

using the corrplot package in R (https://github.com/taiyun/corrplot) (Supplemental Fig. 4).

Alternative prioritization explorations for external PV AAV screen. Common alternative
approaches for prioritizing enhancer candidates for cell type-specific AAV design include
log2FoldDifference and conservation-based ranking. We show that machine learning models are more
predictive of success than these approaches by evaluating on the external PV enhancer AAV screen
(Vormstein-Schneider et al., 2020). The log2FoldDifference of ATAC-seq signal in different cell type

comparisons was evaluated from snATAC-seq data (Li et al., 2020). We added the exact genomic
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locations of each test sequence to the genomic peak set for assessment and applied the findDAR()
function with test.method = “exactTest” in SnapATAC version 1.0.0 (Fang et al., 2021). The
log2FoldDifference was determined for i) the PV cluster relative to all PV- cells using cluster.neg =
“random”, ii) the PV cluster relative to closely related cells using cluster.neg = “knn”, iii) the PV cluster
relative to the pool of excitatory neuron clusters, iv) the PV cluster relative to the VIP cluster, and v) the
PV cluster relative to the SST cluster (Supplemental Fig. 5).

Euarchontoglires PhyloP scores were extracted for all bases within each PV enhancer candidate
using the UCSC Table Browser (phyloP60wayEuarchontoGlires track for the Grem38/mm10 genome,
accessed March 2021) (Kuhn et al., 2013). Regions were mapped from mouse (mmZ10) to human (hg38)
using UCSC LiftOver, requiring a minimum ratio of bases that must remap of 0.1. All regions were
mappable between species. Finally, we assessed overlapping human PV neuron OCRs from motor cortex
SnATAC-seq (Bakken et al., 2020) using bedtools intersect (Quinlan and Hall, 2010). Any peak overlap
of at least 1 bp was recorded as an overlapping peak.

Evaluation of SC1 and SC2 ATAC-seq. PCA was performed using plotPCA() on the
DESeqDataSet object with variance stabilizing transformation in DESeg?2 version 1.26.0 (Love et al.,
2014). Using the DESeqg2 models described above for cell groups, we extracted OCR statistics for
particular cell group comparisons by using the results contrasts. Correlations between
log2FoldDifferences for PV cSNAIL vs. bulk tissue and log2FoldDifferences for SNAIL probes vs. bulk
tissue were assessed using the R function cor.test() with both “spearman” and “pearson” methods.
Genome browser tracks were visualized in the mmZ10 genome using IGV (Robinson et al., 2011) and track
heights were normalized between samples of the same experimental ATAC-seq method (cSNAIL,
SNAIL, bulk tissue, or single nucleus). Comparisons to snATAC-seq cluster markers (Fig. 3d,
Supplemental Fig. 8) represent the percentage of cSNAIL/SNAIL ATAC-seq OCRs enriched relative to
bulk (padj < 0.05 & log2FoldDifference > 0.5) that overlap sSnATAC-seq cluster markers. snATAC-seq
cluster markers were defined as enriched OCRs for that cluster relative to its k-nearest neighbors (padj <

0.01 & log2FoldDifference > 1) that were not enriched OCRs for any other cluster. The significance of

31


https://paperpile.com/c/tIsplg/MYPVB
https://paperpile.com/c/tIsplg/N6Htd
https://paperpile.com/c/tIsplg/4UGiJ
https://paperpile.com/c/tIsplg/aa1ca
https://paperpile.com/c/tIsplg/D03yq
https://paperpile.com/c/tIsplg/D03yq
https://paperpile.com/c/tIsplg/voEvn
https://doi.org/10.1101/2021.04.15.439984
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.439984; this version posted April 15, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

801 the enrichments was assessed using the hypergeometric test with the phyper() function in R, setting

802  lower.tail = FALSE. Enrichments for cluster-specific OCRs were assessed using a background of all

803  snATAC-seq OCRs (N =415,813) and p-values were corrected for 84 tests with Bonferroni correction.
804 Assessment of PV neuron OCRs in different brain regions. PV neuron cSNAIL ATAC-seq

805  samples from cortex, striatum, and GPe tissue of healthy control mice from Lawler et al., 2020 (1 male, 1
806  female) were assessed for differential open chromatin using DESeq?2 as described above. OCRs that were
807  preferentially open in one brain region relative to each of the other brain regions (padj < 0.01 &

808 log2FoldDifference > 1) were evaluated for sequence motif and pathway enrichments. Motif enrichments
809  for tissue-specific PV OCRs were identified using AME version 5.3.3 (Mc Leay and Bailey, 2010)

810  against a background of PV OCRs from all three tissues. Similarly, pathway enrichments using GREAT
811  version 4.0.4 (McLean et al., 2010) were carried out for tissue-specific PV OCRs relative to a background
812  of PV OCRs from all three tissues.

813 Model interpretation. We used GkmExplain (Shrikumar et al., 2019) to calculate actual and

814  hypothetical importance scores per base for each of 11 SVMs among 1,755 true positive PV-specific

815  OCR sequences that also scored PV-specific across all SVMs. First, sequences were one-hot encoded.
816  The importance scores were normalized based on the hypothetical importance scores of all possibilities
817  per base, so that a base position decreased in importance if there were other nucleotide possibilities that
818  produced similar scores. We identified sequence motifs with high contributions to PV scores for each
819  SVM separately using TF-MoDISco version 0.4.2.3 (Shrikumar et al., 2018) with options chosen to align
820  with final SVM parameters: sliding_window_size = 7, flank_size = 3, min_seqlets_per_task=3000,

821  trim_to_window_size = 7, initial_flank to_add = 3, final_flank_to_add = 4, kmer_len =7, num_gaps = 1,
822  and num_mismatches = 1. The resulting sequence patterns, representing motifs generated from seglet
823  clusters, were trimmed to the 13 central bases and patterns with support from more than 100 seglets were
824  used in downstream analysis. The position weight matrices (PWMs) of these patterns were associated
825  with known motifs in the Human and Mouse HOCOMOCO v11 FULL database using Tomtom (Gupta et

826  al., 2007) with the Pearson correlation coefficient motif comparison function (Supplemental Table 12).
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Motifs from all models were clustered based on PWM similarity using STAMP (Mahony and Benos,
2007); STAMP operations were performed after trimming motif edges with information content less than
0.4, using ungapped Smith-Waterman alignment, the iterative refinement multiple alignment strategy,
Pearson correlation coefficient comparison metrics, and UPGMA tree construction. Finally, individual
instances of motif sites were mapped in SC1 and SC2 sequences using FIMO with default parameters

(Grantetal., 2011).
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Figure Legends

Figure 1: Classification of neuron subtype-specific enhancer activity from sequence. a) Schematic
representation of the SNAIL workflow. b-e) Receiver operator characteristic and precision-recall
performance metrics for various cell type-specific enhancer sequence model strategies and data
modalities. The reported numbers are the areas under the curves for each model. f) Scatter plots for SVM
scores reported by equivalent population-derived models and single nucleus-derived models. *** p-value
of correlation < 0.001. g) Top five sequence pattern contributors to PV prediction in linear, population-

derived SVMs. The best matching known motif is listed (full results in Supplemental Table 12).

Figure 2: Two sequences candidates selectively activate AAV expression in PV neurons. a) Genome

browser visualization of PV specific ATAC-seq signal at sequence candidates SC1 and SC2. * cSNAIL
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853  data, ¥ INTACT data from Mo et al., 2015, I snATAC-seq from Li et al., 2020. b) Percentile rank of

854  SVM scores among 1,755 true PV-specific enhancer sequence candidates that scored positively across all
855  models. Linear population-derived models are denoted with “pop”, nonlinear population-derived models
856  are denoted with “pop, rbf”, and linear single nucleus-derived models are denoted with “sn”. ¢) Example
857  images of AAV SunlGFP expression against parvalbumin (Pvalb) antibody staining. d,e) Quantification
858  of AAV SunlGFP or Cre reporter overlap with Pvalb+ cells. Bar heights represent the mean among

859  images and the error of the mean is shown. N cells = 1,322 (SC1), 2,570 (SC2), 1,340 (Cre), 2,013 (Efla),
860  and 504 (N.C.). N.C = negative control.

861

862  Figure 3: Cortical SC1 and SC2 SNAIL-isolated nuclei recapitulate PV GABAergic interneuron
863  ATAC-seq signatures. a) PCA of ATAC-seq counts across samples. b) Genome browser visualization of
864  ATAC-seq signal at the Pvalb gene locus. Tracks represent the pooled sample p-value signal. Each track
865  of similar data type is normalized to the same scale: SNAIL data range 0 - 335, *cSNAIL data range 0 -
866 93, TINTACT data range 0 - 200, 1snATAC-seq data range 0 - 2. c) Scatter plots of ATAC-seq log2 fold
867  difference relative to bulk tissue ATAC-seq, comparing PV cSNAIL to other AAVs. The density of

868  overlapping points is shown by the plot color. d) snATAC-seq nuclei clusters as visualized by t-SNE. The
869  dendrograms show hierarchical clustering of Euclidean sample distances by Ward’s minimum variance
870  method D2. The heatmap shows the percentage of population OCRs enriched relative to bulk that are also
871  cluster-specific marker OCRs. * Hypergeometric enrichment p < 0.01.

872

873  Figure 4: SC1 and SC2 generalize to PV neurons in the striatum and GPe. a) Numbers of differential
874  OCRs between PV neuron populations in three brain regions (DESeq2 padj < 0.01 & |log2FoldDifference|
875  >1). Brain region-specific OCRs are those that were significantly enriched in that tissue relative to each
876  of the other two tissues. OCRs shared between two brain regions on the venn diagram are those that were
877  significantly enriched in each of those tissues relative to the excluded tissue. The shared center of the

878  venn diagram shows all remaining OCRs that have ambiguous or no tissue preference. b) Examples of
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enriched motifs in brain region-specific PV open chromatin relative to all PV open chromatin. c,f)

Distributions of validation data SVM scores and SC1 and SC2 scores within striatum and GPe PV vs PV-
models. d,g) PCA visualization of ATAC-seq counts in each sample. e,h) Pearson correlation coefficients
when comparing the log2 fold difference of cSNAIL PV ATAC-seq relative to bulk tissue ATAC-seq and
the log2 fold difference of SNAIL ATAC-seq relative to bulk tissue ATAC-seq. Error bars show the 95%

confidence intervals.

Figure 5: Motif interpretation of PV neuron-specific OCR activity. a) Motifs with high contributions
to PV scores in each SVM, clustered by sequence similarity. The bubble color at each node shows the
model that motif was discovered in and the size of the bubble shows the number of seqlets supporting that
motif. Clusters are labeled by the clade majority best match for known transcription factor binding motifs.
The full list of matches can be found in Supplemental Table 12. b,c) Normalized importance of each base
in SC1 (b) and SC2 (c) sequences for their PV-specific scores in each SVM. Locations with sequence

matches for identified motifs in each SVM (from panel a) are shown at the bottom.
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