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The selection of new crops and the migration of crop areas are two key strategies for
agriculture to cope with climate change and ensure food security in the coming years.
However, both rely on the assumption that climate is a major factor determining crop
distributions worldwide. Here, we show that the current global distributions of nine of
twelve major crops strongly diverge from their modelled climatic suitability for yields,
after controlling for technology, agricultural management and soil conditions.
Comparing the climatic niches of crops and their wild progenitors reveals that climate
suitability is higher outside the native climatic range for six of these nine crops while all
of them are farmed predominantly in their native ranges. These results show that
agricultural strategies coping with climate change will be unsuccessful unless they fully

consider the social, cultural, and ecological factors underpinning crop distributions.

Ensuring food security while adapting to climate change, and preserving the environment, is a
central challenge for humanity™2. Many solutions have been proposed, including the migration
of crop areas®°and the cultivation of novel species and varieties® to identify the most promising
species and regions for food production under different scenarios of climate change. Most
studies on agricultural adaptation to climate change consider that climate is a major factor
determining the growth and productivity of crops, and that crop distributions can be optimized
for climate by human societies. However, such proposals often do not account for multiple
agricultural management (e.g. irrigation), cultural (e.g. preferences for certain crops from
farmers and consumers’), socio-economic (e.g. agricultural policies, subsidies, markets, and
international trade®®) and other ecological (e.g. pest pressure'®) factors, that jointly determine

the current biogeographic patterns of crops.

The extent to which non-climatic factors matter on a global level for climate adaptation in

agriculture can be assessed through identifying mismatches between current climate suitability
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and crop distributions. Analysing crop distribution-climate suitability (mis)match is thus
critically important for any discussion on global climate adaptation in agriculture and more

generally, for understanding how humans and crops have co-evolved with climates.

Here we investigate the relationship between the global distributions of twelve major food
crops (Extended Data Table 1) and their climate suitability, using a global database of crop
distributions!* and a crop-specific climatic niche model based on mean annual temperature
(MAT) and total annual precipitation (TAP). Both MAT and TAP are essential to the survival
and growth of domesticated and wild plant species and have recently been related to the global
distribution of croplands?. Within the two-dimensional climatic space of each crop, we
assessed climate suitability by predicting the effects of MAT and TAP on crop yield while
controlling for agricultural inputs (i.e. irrigation and fertilization) and socio-economic factors
(i.e. gross net product and human development index) to account for differences in terms of
technological inputs, as well as numerous biophysical factors, including soil conditions and
topography (see Methods). We then tested for a significant correlation between climate
suitability and the fraction of cropland allocated to each crop (hereafter crop area), and mapped
the global distribution of the (mis)match between crop area and climate suitability (see
Methods). Further, we investigated the role of crop origins and agricultural expansion in the
relationship between the global distribution of crops and climate suitability. We used native
occurrences of the wild progenitors of each crop (Extended Data Table 1) to define their native
versus expanded climatic ranges (i.e. portion of the crop climatic space occupied by its wild
progenitors and by the crop only, respectively) and we compared crop area and climate

suitability between the two ranges.

The optimal climatic conditions for yield (Figure 1) and the distribution of cultivated areas

within crop climatic spaces (Figure 2) vary widely from one crop to another. Overall, our
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analysis shows that the current global distributions of individual crops poorly match their
climatic potential. Among twelve major crops, the cultivation of only three - groundnut, maize
and soybean - predominates in climates that are predicted to be the most suitable for their yields
(blue in Figure 3). Conversely, cassava, rapeseed, rice and sunflower are mostly cultivated in
climates of low suitability for their yields (red in Figure 3). Moreover, the fraction of cropland
allocated to barley, potato, sorghum, sugarbeet and wheat is not significantly correlated with
their predicted climatic suitability (black in Figure 3). Adding the seasonality of temperature
and precipitation (i.e. two potentially important climatic factors for yields) to crops’ climate
suitability models (see Methods) confirms that climate suitability is generally a poor predictor
of realized crop distributions (Extended Data Figure 1). The main differences with the
calculation of climate suitability based on MAT and TAP only are observed for wheat, whose
distribution of cultivated areas becomes negatively correlated with the suitability of climate,
and maize and soybean, whose area-suitability correlations become non-significant (Extended

Data Figure 1).
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Figure 1: Climate suitability for the production of 12 major crops at the global scale.
Climate suitability is predicted for each crop by modelling the effects of mean annual
temperature (MAT) and total annual precipitation (TAP) on yield while controlling for the
effects of various agricultural, socio-economical soil and topographic factors (see Methods).
Red polygons delineate the climatic space occupied by crop wild progenitors (i.e. native

climatic range).
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Figure 2: Distribution of the areas of 12 major crops within their two-dimensional

climatic space. Crop area correspond to the fraction of total, available cropland devoted to

each crop. Red polygons delineate the climatic space occupied by crop wild progenitors.
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98  Figure 3: Correlation between the fraction of available cropland devoted to each crop
99 and climate suitability. Horizontal bars show confidence intervals (alpha = 0.05) computed
100  from 1000 random resamplings (see Methods). The correlation is considered significant if the
101  confidence interval does not include 0. Black: non significant correlation; Blue: positive

102  correlation; Red: negative correlation.

103

104  The strong mismatch between modelled climatically suitable cropland areas and current
105 cultivation can indicate local limits to crop production, including climate, but can also allude
106 to the importance of many other ecological or socio-cultural drivers (Figure 4). Geographic
107  zones where the allocation of land to a crop is lower than predicted by its climatic suitability
108  represent 78-98% of the global crop area (positive mismatch scores; blue areas in Figure 4).
109 Different causes can explain such a dominant pattern, including the fact that some crops share
110  similar climatic optima (e.g. maize and sorghum; wheat and potato; rapeseed and soybean,

111  Figure 1), leading to competition for space. In addition, local food systems, and especially
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112 smallholder ones, typically cultivate a diversity of crops to serve multiple purposes (livelihood,
113  subsistence, pest control**4). Similarly, management factors such as multiple cropping
114  systems'® and year-to-year crop rotations® can create patterns of crop distributions that deviate
115  from the modelled climate optima for single crops. The presence of natural enemies (pests and
116  pathogens) may be another important explanation for the apparent mismatch between crop
117  distributions and their climate optima for yield. Indeed, crop pests tend to share the same
118  climatic niche as their host'® and thus farmers may choose to reduce the area allocated to a crop
119 that is too intensely exposed to pests. We test this hypothesis for sunflower, using occurrence
120  records of Sclerotinia sclerotiorum (adapted from Mehrabi et al. 2019 *2), a major sunflower
121  pathogenic fungus worldwide. We find that the mismatch between climate suitability and the
122  fraction of cropland allocated to sunflower is lower in pest free areas than in areas where the
123  pest occurs (Extended Data Figure 2), suggesting a strong ecological anchoring of the

124  mismatches between climate suitability and current cultivation areas.

125  Our findings also highlight regions where the fraction of cropland devoted to a crop is large
126  relative to the suitability of climate for its yield (2-21% negative mismatch scores; red areas in
127  Figure 4). This is particularly true in (1) Eastern Europe and Central Asia for barley, sugarbeet
128 and sunflower; (2) Central and Eastern Africa as well as South America for cassava and maize;
129  (3) Eastern and South Africa, South India and Eastern Asia for groundnut and (4) Western and
130 Eastern Africa for sorghum (Figure 4). Deeper insights into the social systems in which these
131 crops are grown may explain these patterns. For example, cassava is a key crop for food
132  security across the African continent. It represents a lifeline when other crops fail due to
133  droughts, pest outbreaks, especially during the hunger season®’. Thus even if yields may be
134  comparatively low, they are reliable under marginal conditions'’. Other factors not related to

135 vyield or food security likely play out in other situations. For example, agricultural policies, and
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136  market distortions such as fixed prices and subsidies, can help explain why maize is cultivated

137  to a wider spatial-climatic extent than its climate optimum might predict®.
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138  Figure 4: Mismatches between the fraction of available cropland devoted to each crop
139 and climate suitability for their yield. Mismatch is computed as the log ratio of climate
140  suitability divided by the fraction of cropland each crop occupy (see Methods). Positive scores
141  (blue) are regions where crop areas are low relative to climate suitability. Negative values (red)
142  indicate regions where cultivated areas are large with respect to climate suitability. Yellow
143  designates regions where cultivated areas and climate suitability are in equilibrium. Red

144  polygons delineate the geographic space occupied by crop wild progenitors (i.e. native range).
145

146
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147  Major crops by definition have undergone substantial geographical expansion from their
148  respective regions of origin to the rest of the world'®, They have adapted to new climates
149  through historical globalization, including trade and innovations in agricultural practices,
150  especially irrigation®®. However, the resulting current distributions of crops in comparison to
151  the native distributions of their wild progenitors, with regard to climate suitability, remains
152  poorly quantified®. We find that the fraction of agricultural land allocated to a given crop is
153  higher in native than in expanded climatic ranges for all crops except barley and groundnut
154  (Figure 2 & Extended Data Figure 3). Since areas of early crop domestication likely occur in,
155  or nearby, the native distributions of their progenitors®®2t, our results reveal that major crops
156 are farmed predominantly in the same climates as their geographic origins, potentially
157 indicating the biological constraints of crop species to wide climate adaptation. Native climatic
158  ranges are also more associated with climatic suitability than expanded ones for cassava, maize,
159  potato, rapeseed, sorghum and wheat (Figure 1 & Extended Data Figure 3), suggesting that
160  these crops are still better adapted to the climates of their origins. Conversely, native climatic
161 ranges are less suitable for barley, groundnut, rice, soybean, sugarbeet and sunflower when
162  compared to climate suitability in crops’ expanded ranges (Figure 1 & Extended Data Figure
163  3). These results corroborate suggestions that humans have introduced crops into climatically
164  more suitable areas outside their native ranges?, although we cannot rule out the possibility that
165 climate might also have changed since domestication into less suitable conditions in native
166  ranges®?. Perhaps most importantly, varietal selection, mutations, and plant breeding has
167  modified the ecological requirements of crops so that they have become much more widely

168  adapted?®®.

169  The relationship between wild species distributions and performance (usually in some yield
170  equivalent, such as fitness) is a core issue in the ecological niche theory?*?>. Our investigation

171  of cultivated species shows that climate suitability is a poor predictor of the current distribution
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172  of crops, even after controlling for agricultural management, technology proxies and soil
173  conditions. Building crop climatic niches has previously been proposed as an approach to
174  ensure global food security by guiding species selection® and by identifying new potential areas
175  to cultivate®?®?’ under future climate scenarios. However, our work shows the importance of
176  other, non-climatic factors, in determining crop distributions today. The mismatches we found
177  between crop distribution and climate suitability could serve as a basis for further research to
178  better understand the determinants of the global distribution of crops, notably the role of
179  ecological factors such as the presence of pests and their predators, as well as key social factors,
180  such as nutrition, resilience and markets. In turn, greater insights into these multiple factors
181  could help to integrate the climatic requirements of crops into agricultural planning. Finally,
182  our study tells a remarkable story of how humans and crops have co-evolved with climates
183  over the course of agricultural history, well beyond climatic constraints generally considered
184  to be highly determinant of species distributions. Extending our approach to less studied
185  ‘orphan crops?®2° which haven't been moved around as much as major crops and which are less

186  heavily managed will help to extend the insights provided here further.
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254  Figure legends

255  Figure 1: Climate suitability for the production of 12 major crops at the global scale.
256  Climate suitability is predicted for each crop by modelling the effects of mean annual
257  temperature (MAT) and total annual precipitation (TAP) on yield while controlling for the
258  effects of various agricultural, socio-economical soil and topographic factors (see Methods).
259  Red polygons delineate the climatic space occupied by crop wild progenitors (i.e. native

260  climatic range).

261  Figure 2: Distribution of the areas of 12 major crops within their two-dimensional
262  climatic space. Crop area correspond to the fraction of total, available cropland devoted to

263  each crop. Red polygons delineate the climatic space occupied by crop wild progenitors.

264  Figure 3: Correlation between the fraction of available cropland devoted to each crop
265 and climate suitability. Horizontal bars show confidence intervals (alpha = 0.05) computed
266  from 1000 random resamplings (see Methods). The correlation is considered significant if the
267  confidence interval does not include 0. Black: non significant correlation; Blue: positive

268  correlation; Red: negative correlation.

269  Figure 4: Mismatches between the fraction of available cropland devoted to each crop
270  and climate suitability for their yield. Mismatch is computed as the log ratio of climate
271  suitability divided by the fraction of cropland each crop occupy (see Methods). Positive

272 scores (blue) are regions where crop areas are low relative to climate suitability. Negative
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273  values (red) indicate regions where cultivated areas are large with respect to climate
274  suitability. Yellow designates regions where cultivated areas and climate suitability are in
275  equilibrium. Red polygons delineate the geographic space occupied by crop wild progenitors

276  (i.e. native range).

277
278  Materials and Methods

279  Agricultural data set

280 We studied barley, cassava, groundnut, maize, potato, rapeseed, rice, sorghum, soybean,
281  sugarbeet, sunflower and wheat (Extended Data Table 1). The global distributions of harvested
282 areas and yields were extracted from public data sources! in the form of rasters of 5 arc-
283  minutes resolution (~10km). These 12 crops were chosen because (1) they are widely cultivated
284  worldwide and provided more than 70% of food globally; (2) data on the amount of fertilizers
285  —known as a major driver of crop yields globally - are available at a 5 arc-minutes resolution®
286  and (3) their wild progenitors can be identified in the literature?® and have at least 20 recorded
287  occurrences in the wild (Extended Data Table 1). We used the global distribution of cropland®!
288 to compute the fraction of available cropland allocated to each crop at a 5 arc-minutes
289  resolution. Nutrient application on major crops and the percentage of land area equipped for

290 irrigation®2 were downloaded as 5 arc-minutes rasters.

291  Crop progenitors

292  We identified 23 progenitors of the 12 crops using published literature?*. Wheat includes
293  Triticum aestivum and Triticum durum, which are the two main wheat species farmed
294  worldwide. Therefore, we considered the progenitors of both wheat species. Rice also includes

295  two different species, Oryza sativa (Asian rice) and Oryza glaberrima (African rice). However,
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296  because O. sativa is by far the principal cultivated rice species, we only considered the wild
297  progenitors of the Asian rice in our analysis. We extracted progenitor occurrence records from
298 five global and two regional databases. We used the BIEN and rgbif packages in R to download
299  global occurrence records from the Botanical Information and Ecology Network® and the
300 Global Biodiversity Information Facility®* databases, respectively. In addition, we extracted
301  global occurrences of crop wild progenitors from “A global database for the distributions of
302  crop wild relatives”®, the BioTIME database®® and GENESYS®. We downloaded further
303  regional occurrences using the RAINBIO database, which contains records for Sub-Saharan
304  African vascular plants® and speciesLink, a national database for plant and animal occurrences
305 in Brazil*®®. Because occurrence data are often inaccurate®®, we removed records with no
306  coordinates and that were documented before 1950. We used the CoordinateCleaner package
307 in R* to remove occurrence records found within a 1 km radius of country and capital
308  centroids, with equal longitude and latitude coordinates, or assigned to institutional locations
309 such as botanical gardens, herbaria or the GBIF Headquarters. We also removed records with
310 high coordinate uncertainty (over 10 km), cultivated records (e.g. breeding/research material,
311 advanced/ improved cultivar, GMO and those found in markets or shops, institutes/ research
312  stations and genebanks and from seed companies), and records located in the sea/oceans. For
313  progenitors with the same species name as their crop, we only extracted records confirmed as
314  wild and ignored any record with an unknown cultivation status. In addition, we removed
315 records outside of the species reported native range to ensure no introduced and cultivated
316 record was included. Native ranges were identified at administrative levels according to the
317 USDA Agricultural Research Service, Germplasm Resources Information Network*?., We
318 removed duplicates by keeping only one record for each species per 20 km grid cell. After
319 discarding the less accurate occurrence records, 4064 unique occurrence points remained for

320 23 wild progenitor species of the 12 crops (Extended Data Table 1).
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321 Climate data

322  We acquired mean annual temperature (MAT) and total annual precipitation (TAP) data at 30
323  arc-seconds (~1 km) for the years 1979-2013 from the CHELSA database*®. We also used

324  temperature and precipitation seasonality to account for their potential effects on crop yields.

325  Soil, topographic and socio-economic data

326  We integrated soil pH, soil organic content, soil water capacity, slope as well as the human
327  development index and gross net product, two proxies of technological inputs, to control for
328 their effects on crop yields. These layers are freely accessible at the URLSs provided in Extended

329 Data Table 2.

330 Climate suitability

331  For each crop, we estimated climate suitability by modelling the effects of MAT and TAP as
332  second order polynomials on crop yield while controlling for the effects of fertilisation and
333 irrigation (as second order polynomials) as well as all other soil, topographic and socio-
334  economic factors. We upscaled all the agricultural (i.e. crop yields and areas), climatic, soil,
335 topographic and socio-economic layers to 10 arc minutes resolution (~20 km). We worked at
336  such a resolution because climate is expected to be the main driver of species distribution at
337 large scales, whereas other factors might become more important with lower grain size**. In
338 doing so, we also minimized incorrect assignment of climatic variables to the occurrence
339 records for which precision is not always communicated by data sources. We used the
340 estimated coefficients of this model (Extended Data Table 3) to compute climate suitability as
341  theyields predicted only by MAT and TAP. Crop yields were square root-transformed to assure
342  linearity. We then tested the robustness of the climate suitability model on 1,000 data subsets,

343  each constructed by randomly sampling 1,000 points (without replacement and without
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344  stratification) from the data set (pixels) of each crop. We identified covariates that have a
345  significant effect on crop yields using the confidence intervals (alpha = 0.05) of the estimates
346  from these random re-samplings. In addition, we used the sums of squares to quantify the
347  amount of global variability in crop yields explained by the different factors (Extended Data
348 Table 3). Finally, we repeated this procedure by adding temperature and precipitation

349  seasonality to the climate suitability model (Extended Data Table 4).

350 Correlation between crop areas and climate suitability

351  We calculated the Spearman correlation index between the fraction of available cropland
352 allocated to each crop and climate suitability to test whether the global distribution of crops
353  matches their climate suitability. Because sample sizes were extremely large (i.e. between 52
354 011and 176 318 pixels; Extended Data Table 1), we randomly sampled 1000 pixels 1000 times
355 and computed the confidence interval of the Spearman correlation indices to test for their

356 significance (alpha = 0.05).

357  Mismatch index

358 To compare the spatial distribution of climate suitability (Extended data Figure 4) and crop
359 areas (Extended data Figure 5), we computed for each crop a mismatch index as the log-ratio
360 of climate suitability divided by the fraction of cropland covered by each crop in each 10 arc-
361  minutes pixel. We previously scaled both variables between 1 and 2 so that mismatch values
362  vary between - 2 (climate suitability is low with respect to cropland proportion) and +2 (climate

363  suitability is high relative to cropland proportion; Figure 4).

364  Native and expanded climatic ranges

365  We defined a crop’s native climatic range by drawing a convex polygon around the occurrence

366  points of the pool of its wild progenitors® within the two-dimensional climatic space of each
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367  crop. By contrast, crop expanded range refers to the part of this two-dimensional climatic space
368 that is not covered by the progenitors. Although several techniques can quantify species’
369 climatic range*, convex hull methods appear to be particularly relevant for large-scale
370 agricultural applications and its relatively simple concept makes it easily interpretable®.
371  Because the use of convex polygons is sensitive to outliers, we removed occurrence points with
372  Mahalanobis distance values > 10 from the wild progenitors’ niche space defined by MAT and

373  TAPS. This threshold was selected based on visual inspection of the data.

374  Difference in crop areas and climate suitability between current and native ranges

375  To compare crop climate suitability and crop area between the native and the expanded crop
376  climatic ranges, we calculated the difference in mean climate suitability (and area) between
377 native and current ranges. To aid in comparison between crops, we further divided this
378 difference by the mean climate suitability (or cropland fraction) in the current niche. We tested
379  for statistical significance of these standardized differences by randomly resampling 450 pixels
380 of the native and current range 1000 times and calculated confidence of interval (a = 0.05)
381 (Extended Data Figure 3). In doing so, we overcome the negative correlation between sample

382  size and value.

383  Pest data

384  We tested whether the presence of crop pests could explain the mismatches between crop area
385 and climate suitability. However, since this hypothesis was not the main research question of
386 this article, we restricted our analysis to the sunflower and its widespread pest Sclerotinia
387  sclerotiorm. We focused on these two species because they have recently been the subject of a
388  climatic niche study conducted at the global scale®®, so that occurrence data of S. sclerotiorm
389  weredirectly available. To test our hypothesis, we compared the mean of the mismatch between

390 crop area and climate suitability (in absolute value) between pest-free and pest-presence areas.
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391  All analysis were conducted using R version 4.0.3.

392 Data availability

393  The sources of all data used in this study are referenced in the Methods and all raw data are
394  freely accessible at the URLs provided in Extended Data Table 2. The dataset used for the

395 analyses is available from the corresponding author upon request (lucie.mahaut@cefe.cnrs.fr).

396 Code availability

397  The detailed script used for the analyses will be available online at the following URL: xxx
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461 Extended Data Table Legends

462  Extended Data Table 1. List of crop and associated wild progenitors. N gives the number
463  of occurrence (pixels) considered in the analysis.

464

465 Extended Data Table 2. Source of data supporting findings

466

467  Extended Data Table 3. Outputs from the climate suitability models.

468 MAT: mean annual temperature; TAP: total annual precipitation; %Var: Percentage of
469  explained variance by each predictor; r2: adjusted coefficient of determination. Grey values
470  show coefficients that are significant (see Methods)

471

472  Extended Data Table 4: Outputs from the climate suitability models when accounting for
473  climate seasonality. MAT: mean annual temperature; TAP: total annual precipitation; %Var:
474  Percentage of explained variance by each predictor; r2: adjusted coefficient. Grey values show
475  coefficients that are significant (see Methods)
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486  Extended Data Figure Legends

487

488 Extended Data Figure 1: Correlation between the fraction of available cropland devoted
489  to each crop and climate suitability when accounting for temperature and precipitation
490 seasonality. Horizontal bars show confidence intervals (alpha = 0.05) computed from a random
491  resampling procedure (see Methods). The correlation is considered significant if the confidence
492 interval does not include 0. Black: non significant correlation; Blue: positive correlation; Red:
493  negative correlation.

494

495 Extended Data Figure 2: Mismatch difference between Sclerotinia sclerotiorum free areas
496  and areas where the pest occurs. S. sclerotiorum is a main sunflower’s pest worldwide. A
497  positive mismatch score indicates that a low fraction of cultivated area is allocated to the crop
498  while climate suitability is high. This mismatch is significantly lower in pixels with no pest (N
499  =129126) than with pests (N=66) (Wilcoxon test, W = 3586862, p-val = 0.026). Center line,
500 median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
501  outliers.

502

503 Extended Data Figure 3: Standardized differences in the fraction of cropland allocated to a
504  crop (a) and climate suitability its yield (b) between native and current climatic ranges. Positive
505 values indicate higher mean in the native range while negative values correspond to higher
506  mean in the current range. Horizontal bars show confidence interval (alpha = 0.05) computed
507  from 1000 random resamplings (see Methods). The difference is considered significant if the
508 confidence interval does not include 0.
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Extended Data Figure 4: Maps of climate suitability for crop production. Climate suitability
is predicted for each crop by modelling the effects of mean annual temperature (MAT) and
total annual precipitation (TAP) on crop yield (see Methods). Yellow colors represent zones of
high climate suitability for crop production. Dark blue show zones of low climate suitability
for crop production. Red polygons delineate the climate space occupies by crop wild

progenitors.

Extended Data Figure 5: Maps of the fraction of available cropland allocated to each crop.
Yellow colors represent zones where the crop covers large proportion of available cropland.
Dark blue show zones where the crop occupies low fraction of available cropland. Red

polygons delineate the climate space occupies by crop wild progenitors.
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