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The selection of new crops and the migration of crop areas are two key strategies for 20 

agriculture to cope with climate change and ensure food security in the coming years. 21 

However, both rely on the assumption that climate is a major factor determining crop 22 

distributions worldwide. Here, we show that the current global distributions of nine of 23 

twelve major crops strongly diverge from their modelled climatic suitability for yields, 24 

after controlling for technology, agricultural management and soil conditions. 25 

Comparing the climatic niches of crops and their wild progenitors reveals that climate 26 

suitability is higher outside the native climatic range for six of these nine crops while all 27 

of them are farmed predominantly in their native ranges. These results show that 28 

agricultural strategies coping with climate change will be unsuccessful unless they fully 29 

consider the social, cultural, and ecological factors underpinning crop distributions. 30 

Ensuring food security while adapting to climate change, and preserving the environment, is a 31 

central challenge for humanity1,2. Many solutions have been proposed, including the migration 32 

of crop areas3–5 and the cultivation of novel species and varieties6 to identify the most promising 33 

species and regions for food production under different scenarios of climate change. Most 34 

studies on agricultural adaptation to climate change consider that climate is a major factor 35 

determining the growth and productivity of crops, and that crop distributions can be optimized 36 

for climate by human societies. However, such proposals often do not account for multiple 37 

agricultural management (e.g. irrigation), cultural (e.g. preferences for certain crops from 38 

farmers and consumers7), socio-economic (e.g. agricultural policies, subsidies, markets, and 39 

international trade8,9) and other ecological (e.g. pest pressure10) factors, that jointly determine 40 

the current biogeographic patterns of crops.  41 

The extent to which non-climatic factors matter on a global level for climate adaptation in 42 

agriculture can be assessed through identifying mismatches between current climate suitability 43 
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and crop distributions. Analysing crop distribution-climate suitability (mis)match is thus 44 

critically important for any discussion on global climate adaptation in agriculture and more 45 

generally, for understanding how humans and crops have co-evolved with climates. 46 

Here we investigate the relationship between the global distributions of twelve major food 47 

crops (Extended Data Table 1) and their climate suitability, using a global database of crop 48 

distributions11 and a crop-specific climatic niche model based on mean annual temperature 49 

(MAT) and total annual precipitation (TAP). Both MAT and TAP are essential to the survival 50 

and growth of domesticated and wild plant species and have recently been related to the global 51 

distribution of croplands12. Within the two-dimensional climatic space of each crop, we 52 

assessed climate suitability by predicting the effects of MAT and TAP on crop yield while 53 

controlling for agricultural inputs (i.e. irrigation and fertilization) and socio-economic factors 54 

(i.e. gross net product and human development index) to account for differences in terms of 55 

technological inputs, as well as numerous biophysical factors, including soil conditions and 56 

topography (see Methods). We then tested for a significant correlation between climate 57 

suitability and the fraction of cropland allocated to each crop (hereafter crop area), and mapped 58 

the global distribution of the (mis)match between crop area and climate suitability (see 59 

Methods). Further, we investigated the role of crop origins and agricultural expansion in the 60 

relationship between the global distribution of crops and climate suitability. We used native 61 

occurrences of the wild progenitors of each crop (Extended Data Table 1) to define their native 62 

versus expanded climatic ranges (i.e. portion of the crop climatic space occupied by its wild 63 

progenitors and by the crop only, respectively) and we compared crop area and climate 64 

suitability between the two ranges. 65 

The optimal climatic conditions for yield (Figure 1) and the distribution of cultivated areas 66 

within crop climatic spaces (Figure 2) vary widely from one crop to another. Overall, our 67 
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analysis shows that the current global distributions of individual crops poorly match their 68 

climatic potential. Among twelve major crops, the cultivation of only three - groundnut, maize 69 

and soybean - predominates in climates that are predicted to be the most suitable for their yields 70 

(blue in Figure 3). Conversely, cassava, rapeseed, rice and sunflower are mostly cultivated in 71 

climates of low suitability for their yields (red in Figure 3). Moreover, the fraction of cropland 72 

allocated to barley, potato, sorghum, sugarbeet and wheat is not significantly correlated with 73 

their predicted climatic suitability (black in Figure 3). Adding the seasonality of temperature 74 

and precipitation (i.e. two potentially important climatic factors for yields) to crops’ climate 75 

suitability models (see Methods) confirms that climate suitability is generally a poor predictor 76 

of realized crop distributions (Extended Data Figure 1). The main differences with the 77 

calculation of climate suitability based on MAT and TAP only are observed for wheat, whose 78 

distribution of cultivated areas becomes negatively correlated with the suitability of climate, 79 

and maize and soybean, whose area-suitability correlations become non-significant (Extended 80 

Data Figure 1). 81 

 82 
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 83 

Figure 1: Climate suitability for the production of 12 major crops at the global scale. 84 

Climate suitability is predicted for each crop by modelling the effects of mean annual 85 

temperature (MAT) and total annual precipitation (TAP) on yield while controlling for the 86 

effects of various agricultural, socio-economical soil and topographic factors (see Methods). 87 

Red polygons delineate the climatic space occupied by crop wild progenitors (i.e. native 88 

climatic range). 89 

 90 

 91 
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92 

Figure 2: Distribution of the areas of 12 major crops within their two-dimensional 93 

climatic space. Crop area correspond to the fraction of total, available cropland devoted to 94 

each crop. Red polygons delineate the climatic space occupied by crop wild progenitors. 95 

 96 
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 97 

Figure 3: Correlation between the fraction of available cropland devoted to each crop 98 

and climate suitability. Horizontal bars show confidence intervals (alpha = 0.05) computed 99 

from 1000 random resamplings (see Methods). The correlation is considered significant if the 100 

confidence interval does not include 0. Black: non significant correlation; Blue: positive 101 

correlation; Red: negative correlation. 102 

 103 

The strong mismatch between modelled climatically suitable cropland areas and current 104 

cultivation can indicate local limits to crop production, including climate, but can also allude 105 

to the importance of many other ecological or socio-cultural drivers (Figure 4). Geographic 106 

zones where the allocation of land to a crop is lower than predicted by its climatic suitability 107 

represent 78-98% of the global crop area (positive mismatch scores; blue areas in Figure 4). 108 

Different causes can explain such a dominant pattern, including the fact that some crops share 109 

similar climatic optima (e.g. maize and sorghum; wheat and potato; rapeseed and soybean, 110 

Figure 1), leading to competition for space. In addition, local food systems, and especially 111 
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smallholder ones, typically cultivate a diversity of crops to serve multiple purposes (livelihood, 112 

subsistence, pest control13,14). Similarly, management factors such as multiple cropping 113 

systems15 and year-to-year crop rotations16 can create patterns of crop distributions that deviate 114 

from the modelled climate optima for single crops. The presence of natural enemies (pests and 115 

pathogens) may be another important explanation for the apparent mismatch between crop 116 

distributions and their climate optima for yield. Indeed, crop pests tend to share the same 117 

climatic niche as their host10 and thus farmers may choose to reduce the area allocated to a crop 118 

that is too intensely exposed to pests. We test this hypothesis for sunflower, using occurrence 119 

records of Sclerotinia sclerotiorum (adapted from Mehrabi et al. 2019 12), a major sunflower 120 

pathogenic fungus worldwide. We find that the mismatch between climate suitability and the 121 

fraction of cropland allocated to sunflower is lower in pest free areas than in areas where the 122 

pest occurs (Extended Data Figure 2), suggesting a strong ecological anchoring of the 123 

mismatches between climate suitability and current cultivation areas. 124 

Our findings also highlight regions where the fraction of cropland devoted to a crop is large 125 

relative to the suitability of climate for its yield (2-21% negative mismatch scores; red areas in 126 

Figure 4). This is particularly true in (1) Eastern Europe and Central Asia for barley, sugarbeet 127 

and sunflower; (2) Central and Eastern Africa as well as South America for cassava and maize; 128 

(3) Eastern and South Africa, South India and Eastern Asia for groundnut and (4) Western and 129 

Eastern Africa for sorghum (Figure 4).  Deeper insights into the social systems in which these 130 

crops are grown may explain these patterns. For example, cassava is a key crop for food 131 

security across the African continent. It represents a lifeline when other crops fail due to 132 

droughts, pest outbreaks, especially during the hunger season17. Thus even if yields may be 133 

comparatively low, they are reliable under marginal conditions17. Other factors not related to 134 

yield or food security likely play out in other situations. For example, agricultural policies, and 135 
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market distortions such as fixed prices and subsidies, can help explain why maize is cultivated 136 

to a wider spatial-climatic extent than its climate optimum might predict9.  137 

Figure 4: Mismatches between the fraction of available cropland devoted to each crop 138 

and climate suitability for their yield. Mismatch is computed as the log ratio of climate 139 

suitability divided by the fraction of cropland each crop occupy (see Methods). Positive scores 140 

(blue) are regions where crop areas are low relative to climate suitability. Negative values (red) 141 

indicate regions where cultivated areas are large with respect to climate suitability. Yellow 142 

designates regions where cultivated areas and climate suitability are in equilibrium. Red 143 

polygons delineate the geographic space occupied by crop wild progenitors (i.e. native range). 144 

 145 

 146 
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Major crops by definition have undergone substantial geographical expansion from their 147 

respective regions of origin to the rest of the world18. They have adapted to new climates 148 

through historical globalization, including trade and innovations in agricultural practices, 149 

especially irrigation19. However, the resulting current distributions of crops in comparison to 150 

the native distributions of their wild progenitors, with regard to climate suitability, remains 151 

poorly quantified18. We find that the fraction of agricultural land allocated to a given crop is 152 

higher in native than in expanded climatic ranges for all crops except barley and groundnut 153 

(Figure 2 & Extended Data Figure 3). Since areas of early crop domestication likely occur in, 154 

or nearby, the native distributions of their progenitors20,21, our results reveal that major crops 155 

are farmed predominantly in the same climates as their geographic origins, potentially 156 

indicating the biological constraints of crop species to wide climate adaptation. Native climatic 157 

ranges are also more associated with climatic suitability than expanded ones for cassava, maize, 158 

potato, rapeseed, sorghum and wheat (Figure 1 & Extended Data Figure 3), suggesting that 159 

these crops are still better adapted to the climates of their origins. Conversely, native climatic 160 

ranges are less suitable for barley, groundnut, rice, soybean, sugarbeet and sunflower when 161 

compared to climate suitability in crops’ expanded ranges (Figure 1 & Extended Data Figure 162 

3). These results corroborate suggestions that humans have introduced crops into climatically 163 

more suitable areas outside their native ranges1, although we cannot rule out the possibility that 164 

climate might also have changed since domestication into less suitable conditions in native 165 

ranges22. Perhaps most importantly, varietal selection, mutations, and plant breeding has 166 

modified the ecological requirements of crops so that they have become much more widely 167 

adapted23.  168 

The relationship between wild species distributions and performance (usually in some yield 169 

equivalent, such as fitness) is a core issue in the ecological niche theory24,25. Our investigation 170 

of cultivated species shows that climate suitability is a poor predictor of the current distribution 171 
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of crops, even after controlling for agricultural management, technology proxies and soil 172 

conditions. Building crop climatic niches has previously been proposed as an approach to 173 

ensure global food security by guiding species selection6 and by identifying new potential areas 174 

to cultivate5,26,27 under future climate scenarios. However, our work shows the importance of 175 

other, non-climatic factors, in determining crop distributions today. The mismatches we found 176 

between crop distribution and climate suitability could serve as a basis for further research to 177 

better understand the determinants of the global distribution of crops, notably the role of 178 

ecological factors such as the presence of pests and their predators, as well as key social factors, 179 

such as nutrition, resilience and markets. In turn, greater insights into these multiple factors 180 

could help to integrate the climatic requirements of crops into agricultural planning. Finally, 181 

our study tells a remarkable story of how humans and crops have co-evolved with climates 182 

over the course of agricultural history, well beyond climatic constraints generally considered 183 

to be highly determinant of species distributions. Extending our approach to less studied 184 

'orphan crops'28,29 which haven't been moved around as much as major crops and which are less 185 

heavily managed will help to extend the insights provided here further. 186 
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Figure legends 254 

Figure 1: Climate suitability for the production of 12 major crops at the global scale. 255 

Climate suitability is predicted for each crop by modelling the effects of mean annual 256 

temperature (MAT) and total annual precipitation (TAP) on yield while controlling for the 257 

effects of various agricultural, socio-economical soil and topographic factors (see Methods). 258 

Red polygons delineate the climatic space occupied by crop wild progenitors (i.e. native 259 

climatic range). 260 

Figure 2: Distribution of the areas of 12 major crops within their two-dimensional 261 

climatic space. Crop area correspond to the fraction of total, available cropland devoted to 262 

each crop. Red polygons delineate the climatic space occupied by crop wild progenitors. 263 

Figure 3: Correlation between the fraction of available cropland devoted to each crop 264 

and climate suitability. Horizontal bars show confidence intervals (alpha = 0.05) computed 265 

from 1000 random resamplings (see Methods). The correlation is considered significant if the 266 

confidence interval does not include 0. Black: non significant correlation; Blue: positive 267 

correlation; Red: negative correlation. 268 

Figure 4: Mismatches between the fraction of available cropland devoted to each crop 269 

and climate suitability for their yield. Mismatch is computed as the log ratio of climate 270 

suitability divided by the fraction of cropland each crop occupy (see Methods). Positive 271 

scores (blue) are regions where crop areas are low relative to climate suitability. Negative 272 
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values (red) indicate regions where cultivated areas are large with respect to climate 273 

suitability. Yellow designates regions where cultivated areas and climate suitability are in 274 

equilibrium. Red polygons delineate the geographic space occupied by crop wild progenitors 275 

(i.e. native range). 276 

 277 

Materials and Methods 278 

Agricultural data set 279 

We studied barley, cassava, groundnut, maize, potato, rapeseed, rice, sorghum, soybean, 280 

sugarbeet, sunflower and wheat (Extended Data Table 1). The global distributions of harvested 281 

areas and yields were extracted from public data sources11 in the form of rasters of 5 arc-282 

minutes resolution (~10km). These 12 crops were chosen because (1) they are widely cultivated 283 

worldwide and provided more than 70% of food globally; (2) data on the amount of fertilizers 284 

– known as a major driver of crop yields globally - are available at a 5 arc-minutes resolution30 285 

and (3) their wild progenitors can be identified in the literature20 and have at least 20 recorded 286 

occurrences in the wild (Extended Data Table 1). We used the global distribution of cropland31 287 

to compute the fraction of available cropland allocated to each crop at a 5 arc-minutes 288 

resolution. Nutrient application on major crops and the percentage of land area equipped for 289 

irrigation32 were downloaded as 5 arc-minutes rasters.  290 

Crop progenitors 291 

We identified 23 progenitors of the 12 crops using published literature21. Wheat includes 292 

Triticum aestivum and Triticum durum, which are the two main wheat species farmed 293 

worldwide. Therefore, we considered the progenitors of both wheat species. Rice also includes 294 

two different species, Oryza sativa (Asian rice) and Oryza glaberrima (African rice). However, 295 
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because O. sativa is by far the principal cultivated rice species, we only considered the wild 296 

progenitors of the Asian rice in our analysis. We extracted progenitor occurrence records from 297 

five global and two regional databases. We used the BIEN and rgbif packages in R to download 298 

global occurrence records from the Botanical Information and Ecology Network33 and the 299 

Global Biodiversity Information Facility34 databases, respectively. In addition, we extracted 300 

global occurrences of crop wild progenitors from “A global database for the distributions of 301 

crop wild relatives”35, the BioTIME database36 and GENESYS37. We downloaded further 302 

regional occurrences using the RAINBIO database, which contains records for Sub-Saharan 303 

African vascular plants38 and speciesLink, a national database for plant and animal occurrences 304 

in Brazil39. Because occurrence data are often inaccurate40, we removed records with no 305 

coordinates and that were documented before 1950. We used the CoordinateCleaner package 306 

in R41 to remove occurrence records found within a 1 km radius of country and capital 307 

centroids, with equal longitude and latitude coordinates, or assigned to institutional locations 308 

such as botanical gardens, herbaria or the GBIF Headquarters. We also removed records with 309 

high coordinate uncertainty (over 10 km), cultivated records (e.g. breeding/research material, 310 

advanced/ improved cultivar, GMO and those found in markets or shops, institutes/ research 311 

stations and genebanks and from seed companies), and records located in the sea/oceans. For 312 

progenitors with the same species name as their crop, we only extracted records confirmed as 313 

wild and ignored any record with an unknown cultivation status. In addition, we removed 314 

records outside of the species reported native range to ensure no introduced and cultivated 315 

record was included. Native ranges were identified at administrative levels according to the 316 

USDA Agricultural Research Service, Germplasm Resources Information Network42.  We 317 

removed duplicates by keeping only one record for each species per 20 km grid cell. After 318 

discarding the less accurate occurrence records, 4064 unique occurrence points remained for 319 

23 wild progenitor species of the 12 crops (Extended Data Table 1). 320 
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Climate data 321 

We acquired mean annual temperature (MAT) and total annual precipitation (TAP) data at 30 322 

arc-seconds (~1 km) for the years 1979–2013 from the CHELSA database43. We also used 323 

temperature and precipitation seasonality to account for their potential effects on crop yields.  324 

Soil, topographic and socio-economic data 325 

We integrated soil pH, soil organic content, soil water capacity, slope as well as the human 326 

development index and gross net product, two proxies of technological inputs, to control for 327 

their effects on crop yields. These layers are freely accessible at the URLs provided in Extended 328 

Data Table 2.  329 

Climate suitability 330 

For each crop, we estimated climate suitability by modelling the effects of MAT and TAP as 331 

second order polynomials on crop yield while controlling for the effects of fertilisation and 332 

irrigation (as second order polynomials) as well as all other soil, topographic and socio-333 

economic factors. We upscaled all the agricultural (i.e. crop yields and areas), climatic, soil, 334 

topographic and socio-economic layers to 10 arc minutes resolution (~20 km). We worked at 335 

such a resolution because climate is expected to be the main driver of species distribution at 336 

large scales, whereas other factors might become more important with lower grain size44. In 337 

doing so, we also minimized incorrect assignment of climatic variables to the occurrence 338 

records for which precision is not always communicated by data sources. We used the 339 

estimated coefficients of this model (Extended Data Table 3) to compute climate suitability as 340 

the yields predicted only by MAT and TAP. Crop yields were square root-transformed to assure 341 

linearity. We then tested the robustness of the climate suitability model on 1,000 data subsets, 342 

each constructed by randomly sampling 1,000 points (without replacement and without 343 
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stratification) from the data set (pixels) of each crop. We identified covariates that have a 344 

significant effect on crop yields using the confidence intervals (alpha = 0.05) of the estimates 345 

from these random re-samplings. In addition, we used the sums of squares to quantify the 346 

amount of global variability in crop yields explained by the different factors (Extended Data 347 

Table 3). Finally, we repeated this procedure by adding temperature and precipitation 348 

seasonality to the climate suitability model (Extended Data Table 4). 349 

Correlation between crop areas and climate suitability 350 

We calculated the Spearman correlation index between the fraction of available cropland 351 

allocated to each crop and climate suitability to test whether the global distribution of crops 352 

matches their climate suitability. Because sample sizes were extremely large (i.e. between 52 353 

011 and 176 318 pixels; Extended Data Table 1), we randomly sampled 1000 pixels 1000 times 354 

and computed the confidence interval of the Spearman correlation indices to test for their 355 

significance (alpha = 0.05). 356 

Mismatch index 357 

To compare the spatial distribution of climate suitability (Extended data Figure 4) and crop 358 

areas (Extended data Figure 5), we computed for each crop a mismatch index as the log-ratio 359 

of climate suitability divided by the fraction of cropland covered by each crop in each 10 arc-360 

minutes pixel. We previously scaled both variables between 1 and 2 so that mismatch values 361 

vary between - 2 (climate suitability is low with respect to cropland proportion) and +2 (climate 362 

suitability is high relative to cropland proportion; Figure 4). 363 

Native and expanded climatic ranges 364 

We defined a crop’s native climatic range by drawing a convex polygon around the occurrence 365 

points of the pool of its wild progenitors6 within the two-dimensional climatic space of each 366 
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crop. By contrast, crop expanded range refers to the part of this two-dimensional climatic space 367 

that is not covered by the progenitors. Although several techniques can quantify species’ 368 

climatic range45, convex hull methods appear to be particularly relevant for large-scale 369 

agricultural applications and its relatively simple concept makes it easily interpretable6. 370 

Because the use of convex polygons is sensitive to outliers, we removed occurrence points with 371 

Mahalanobis distance values ≥ 10 from the wild progenitors’ niche space defined by MAT and 372 

TAP6. This threshold was selected based on visual inspection of the data. 373 

Difference in crop areas and climate suitability between current and native ranges 374 

To compare crop climate suitability and crop area between the native and the expanded crop 375 

climatic ranges, we calculated the difference in mean climate suitability (and area) between 376 

native and current ranges. To aid in comparison between crops, we further divided this 377 

difference by the mean climate suitability (or cropland fraction) in the current niche. We tested 378 

for statistical significance of these standardized differences by randomly resampling 450 pixels 379 

of the native and current range 1000 times and calculated confidence of interval (α = 0.05) 380 

(Extended Data Figure 3). In doing so, we overcome the negative correlation between sample 381 

size and value. 382 

Pest data 383 

We tested whether the presence of crop pests could explain the mismatches between crop area 384 

and climate suitability. However, since this hypothesis was not the main research question of 385 

this article, we restricted our analysis to the sunflower and its widespread pest Sclerotinia 386 

sclerotiorm. We focused on these two species because they have recently been the subject of a 387 

climatic niche study conducted at the global scale10, so that occurrence data of S. sclerotiorm 388 

were directly available. To test our hypothesis, we compared the mean of the mismatch between 389 

crop area and climate suitability (in absolute value) between pest-free and pest-presence areas. 390 
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All analysis were conducted using R version 4.0.3. 391 

Data availability  392 

The sources of all data used in this study are referenced in the Methods and all raw data are 393 

freely accessible at the URLs provided in Extended Data Table 2. The dataset used for the 394 

analyses is available from the corresponding author upon request (lucie.mahaut@cefe.cnrs.fr).  395 

Code availability 396 

The detailed script used for the analyses will be available online at the following URL: xxx 397 

Methods references 398 

30. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 399 

490, 254–257 (2012). 400 

31. Ramankutty, N., Foley, J. A., Norman, J. & McSweeney, K. The global distribution of 401 

cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. 402 

Biogeogr. 11, 377–392 (2002). 403 

32. FAO Aquastat. 404 

33. Maitner, B. S. et al. The bien r package: A tool to access the Botanical Information and 405 

Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018). 406 

34. GBIF. https://www.gbif.org/. 407 

35. Resources - Overview. Crop Wild Relatives https://www.cwrdiversity.org/resources/. 408 

36. Dornelas, M. et al. BioTIME: A database of biodiversity time series for the 409 

Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018). 410 

37. Genesys PGR. https://www.genesys-pgr.org/. 411 

38. Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants 412 

distributions. PhytoKeys 74, 1–18 (2016). 413 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439966doi: bioRxiv preprint 

mailto:lucie.mahaut@cefe.cnrs.fr
https://doi.org/10.1101/2021.04.15.439966
http://creativecommons.org/licenses/by-nc-nd/4.0/


39. speciesLink: Sistema de Informação Distribuído para Coleções Biológicas. 414 

http://splink.cria.org.br/. 415 

40. Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in 416 

global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016). 417 

41. Zizka, A. et al. CoordinateCleaner: Standardized cleaning of occurrence records from 418 

biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019). 419 

42. National Germplasm Resources Laboratory : USDA ARS. 420 

https://www.ars.usda.gov/northeast-area/beltsville-md-barc/beltsville-agricultural-research-421 

center/national-germplasm-resources-laboratory/. 422 

43. Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. 423 

Sci. Data 4, 170122 (2017). 424 

44. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the 425 

distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–426 

371 (2003). 427 

45. Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 428 

1441–1455 (2018). 429 

Acknowledgements 430 

LM’s work was funded by the French National Research Agency under the Programme 431 

“Investissements d’Avenir” under the reference ANR 17 MPGA 0004. LHR's research on 432 

sunflower climate adaptation is funded by Genome Canada, Genome BC, and The Natural 433 

Sciences and Engineering Research Council of Canada. The Ministry of Economy and 434 

Competitivy of Spain (Grants CGL2014-56567-R and CGL2017-83855-R; Ministerio de 435 

Economía y Competitividad, Spain) fund RM research on crop’s wild progenitors. SP thanks 436 

the Bentham-Moxon Trust for funding a short stay at the University of British Columbia 437 

(BMT35-2017). C.K.K. was supported by grant no. 2019-67012-29733/project accession no. 438 

1019405 from the USDA National Institute of Food and Agriculture. C.V. was supported by 439 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439966
http://creativecommons.org/licenses/by-nc-nd/4.0/


the European Research Council (ERC) Starting Grant Project "Ecophysiological and 440 

biophysical constraints on domestication in crop plants" (Grant ERC-StG-2014-639706-441 

CONSTRAINTS). We thank Ian Ondo for his help with soil data, Emily Warschefsky and 442 

Navin Ramankutty for feedback on the manuscript. We thank Gilles Dauby and Thomas 443 

Couvreur for providing unpublished data from the Rainbio database. We also thank Nora 444 

Castañeda-Álvarez and Matija Obreza for extracting occurrence records from GENESYS and 445 

Dora A. L. Canhos and Sidnei De Souza for obtaining records from SpeciesLink database. 446 

Author contributions 447 

L.M. led the data analysis and writing. L.M., S.P., D.R. and C.V. designed the experiment. 448 

F.B., C.K.K., R.M and C.P. contributed substantially to the crop wild progenitors’ analysis and 449 

writing.  J.Y.B., S.P., D.R. and C.V. assisted with data analysis and writing. Z.M. and L.H.R. 450 

assisted with study design and writing.  451 

Competing interests 452 

The authors declare no competing financial interests. 453 

Additional information 454 

Supplementary information, including Extended Data Tables and Extended Data Figures are 455 

available online.  456 

 457 

 458 

 459 

 460 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 15, 2021. ; https://doi.org/10.1101/2021.04.15.439966doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.15.439966
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Table Legends 461 

Extended Data Table 1. List of crop and associated wild progenitors. N gives the number 462 

of occurrence (pixels) considered in the analysis. 463 

 464 

Extended Data Table 2. Source of data supporting findings 465 

 466 

Extended Data Table 3. Outputs from the climate suitability models.  467 

MAT: mean annual temperature; TAP: total annual precipitation; %Var: Percentage of 468 

explained variance by each predictor; r²: adjusted coefficient of determination. Grey values 469 

show coefficients that are significant (see Methods) 470 

 471 

Extended Data Table 4: Outputs from the climate suitability models when accounting for 472 

climate seasonality. MAT: mean annual temperature; TAP: total annual precipitation; %Var: 473 

Percentage of explained variance by each predictor; r²: adjusted coefficient. Grey values show 474 

coefficients that are significant (see Methods) 475 

 476 

 477 

 478 

 479 

 480 
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 483 

 484 

 485 
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Extended Data Figure Legends 486 

 487 

Extended Data Figure 1: Correlation between the fraction of available cropland devoted 488 

to each crop and climate suitability when accounting for temperature and precipitation 489 

seasonality. Horizontal bars show confidence intervals (alpha = 0.05) computed from a random 490 

resampling procedure (see Methods). The correlation is considered significant if the confidence 491 

interval does not include 0. Black: non significant correlation; Blue: positive correlation; Red: 492 

negative correlation. 493 

 494 

Extended Data Figure 2: Mismatch difference between Sclerotinia sclerotiorum free areas 495 

and areas where the pest occurs. S. sclerotiorum is a main sunflower’s pest worldwide. A 496 

positive mismatch score indicates that a low fraction of cultivated area is allocated to the crop 497 

while climate suitability is high. This mismatch is significantly lower in pixels with no pest (N 498 

= 129126) than with pests (N=66) (Wilcoxon test, W = 3586862, p-val = 0.026). Center line, 499 

median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 500 

outliers. 501 

 502 

Extended Data Figure 3: Standardized differences in the fraction of cropland allocated to a 503 

crop (a) and climate suitability its yield (b) between native and current climatic ranges. Positive 504 

values indicate higher mean in the native range while negative values correspond to higher 505 

mean in the current range. Horizontal bars show confidence interval (alpha = 0.05) computed 506 

from 1000 random resamplings (see Methods). The difference is considered significant if the 507 

confidence interval does not include 0. 508 

 509 
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Extended Data Figure 4: Maps of climate suitability for crop production. Climate suitability 510 

is predicted for each crop by modelling the effects of mean annual temperature (MAT) and 511 

total annual precipitation (TAP) on crop yield (see Methods). Yellow colors represent zones of 512 

high climate suitability for crop production. Dark blue show zones of low climate suitability 513 

for crop production. Red polygons delineate the climate space occupies by crop wild 514 

progenitors.  515 

 516 

Extended Data Figure 5: Maps of the fraction of available cropland allocated to each crop. 517 

Yellow colors represent zones where the crop covers large proportion of available cropland. 518 

Dark blue show zones where the crop occupies low fraction of available cropland. Red 519 

polygons delineate the climate space occupies by crop wild progenitors.  520 

 521 
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