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Abstract

Detecting genetic variants associated with the variance of complex traits, i.e. variance
quantitative trait loci (vQTL), can provide crucial insights into the interplay between
genes and environments and how they jointly shape human phenotypes in the
population. We propose a quantile integral linear model (QUAIL) to estimate genetic
effects on trait variability. Through extensive simulations and analyses of real data, we
demonstrate that QUAIL provides computationally efficient and statistically powerful
vQTL mapping that is robust to non-Gaussian phenotypes and confounding effects on
phenotypic variability. Applied to UK Biobank (N=375,791), QUAIL identified 11 novel
vQTL for body mass index (BMI). Top vQTL findings showed substantial enrichment
for interactions with physical activities and sedentary behavior. Further, variance
polygenic scores (VPGS) based on QUAIL effect estimates showed superior predictive
performance on both population-level and within-individual BMI variability compared
to existing approaches. Overall, QUAIL is a unified framework to quantify genetic
effects on the phenotypic variability at both single-variant and vPGS levels. It
addresses critical limitations in existing approaches and may have broad applications
in future gene-environment interaction studies.
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Introduction

Human complex phenotypes are shaped by numerous genetic and environmental
factors as well as their interactions’. Genome-wide association studies (GWAS) have
identified tens of thousands of reproducible genetic associations?. However, there has
been limited success in detecting interactions between human genetic variants and
environmental factors (GxE)3, in part due to the polygenic nature of human traits, small
effect sizes of GxE interactions, and a high multiple testing burden®. An alternative
approach is to first quantify the overall genetic propensity in the form of polygenic
scores (PGS) for each individual, and then test the interactions between PGS and
environmental risk factors®®°. Here, PGS is a sum of trait-associated alleles across
many genetic loci, typically weighted by marginal effect sizes estimated from a GWAS.

However, genetic variants affect not only the level of traits, but also the variability0-12.
Since the variance of a quantitative phenotype differs across genotype groups of
variants involved in GxE interactions, one can use genetic variants associated with
the trait variability (vQTL) to screen for candidate GxE interactions'3-'6. The concept
of PGS, which estimates the conditional mean of the phenotype'’, has also been
extended into genome-wide summaries of genetic effects on phenotypic variability
(vPGS)'819, These scores, which reflect the genetic contribution to outcome plasticity,
have suggested unique genetic contributions orthogonal to that of traditional PGS and
have achieved some recent successes in GxE studies'®20.

Robust vQTL findings can be used to prioritize candidate variants in GXE analysis.
vPGS also has the potential to aggregate information across numerous genetic loci
and improve both statistical power and biological interpretability of GxE studies.
However, existing statistical methods for vQTL and vPGS have limitations?!.22,
Levene’s test (LT)?® and deviation regression model (DRM)'® are robust to model
misspecification but do not adjust for confounding effects on trait variance®*2°.
Additionally, these methods cannot be applied to continuous predictors (e.g., VPGS)
because they require the phenotypic mean or median within each category of the
predictor (e.g., genotype groups) as input. Heteroskedastic linear mixed models
(HLMM) can adjust for covariates but are sensitive to model misspecification and have
type-I1 error inflation when applied to non-normal phenotypes'#+16.26, Further, although
it is straightforward to calculate vPGS using vQTL effects as variant weights, predictive
performance of vPGS has not been properly benchmarked due to a lack of statistical
metrics for variance prediction. There is a need for a unified framework that can
accurately and robustly quantify the genetic effects on phenotypic variability at the
single variant as well as the vPGS level.

In this work, we introduce QUAIL (quantile integral linear model), a quantile
regression-based framework to estimate genetic effects on the variance of quantitative
traits. Our approach can adjust for confounding effects on both the level and the
variance of phenotypic outcomes, can be applied to both categorical and continuous
predictors, and does not impose strong assumptions on the distribution of phenotypes.
We demonstrate the performance of QUAIL through extensive simulations, vQTL
mapping for body mass index (BMI) in UK Biobank, GXE enrichment analysis, and
vPGS benchmarking and application.
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Figure 1. Workflow of QUAIL. (A) The phenotypic variance varies across genotype groups in the
presence of vQTL and GxE effects. The data points are colored based on the level of the environmental
variable. The lines represent genetic effects on the phenotype conditioning on the environmental
variable. (B) Quantile regression can be used to detect vQTL. The quantile regression slopes will be
different across quantile levels if a genetic effect on trait variability exists. (C) Workflow of the QUAIL
estimation procedure. 7 indicates a specific quantile level. §,_, — 3, indicates the difference between
the regression coefficients of the upper and lower quantile levels. g,,r, denotes the aggregated genetic
effect on trait variability across quantile levels.
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Results
Method overview

The goal of vQTL mapping is to identify single nucleotide polymorphisms (SNPs)
showing differential variability of a quantitative trait across genotype groups. If a SNP
has substantially different effects on trait values given different environmental
exposures, it will be a vQTL without conditioning on the environment (Figure 1A).
Quantile regression estimates the conditional quantile function of a response variable
given predictors?’. If a SNP G is a vQTL for trait Y, the conditional quantile function will
have different regression slopes (i.e., 5;) for different quantile levels t (Figure 1B,
Supplementary Note)22.
Qr(t|G =9g) = 9B:

For a pair of quantile levels (1 — 1, 7),7 € (0,0.5), vQTL effect of a SNP can be
quantified using the difference between the regression coefficients of the upper and
lower quantile levels, i.e., f;_; — -

To aggregate information across all quantile levels and better quantify the vQTL effect
on trait Y, we introduce a quantile-integrated effect?°:

0.5
Bor = f Bioe — Bo)dr

Note that when the SNP is not associated with trait variability, we have g, = B,_, for
any t € (0,0.5). Therefore, testing the vQTL effect of a SNP is equivalent to testing
the null Hy: B, = 0. However, approximating f3,, using a standard quantile regression
fitting procedure involves iterative optimization for numerous quantile levels and thus
is computationally challenging in genome-wide analysis. We apply several
computational techniques to ensure that QUAIL can efficiently identify vQTL at the
genome-wide scale. We first transform the phenotype into an integrated quantile rank
score using only trait values and covariates. Next, we regress the transformed
phenotype on covariate-adjusted SNP residuals. To estimate integral §,,, QUAIL
avoids fitting regressions for a grid of quantile levels. Instead, it only requires fitting
two linear regressions per SNP in genome-wide analysis (Figure 1C). We present
detailed derivations and technical discussions of the QUAIL framework in Methods
and Supplementary Note.

Simulation results

We performed simulations to compare the empirical performance of QUAIL with four
other vQTL methods: DRM3, LT23, and HLMM with and without inverse normal
transformation’®. We compared the statistical power, false-positive rate (FPR), and
ability to adjust for confounding effects for these methods.

We evaluated the FPR and power of all approaches under several simulation
scenarios, including 1) three different distributions of the error term to represent
various degrees of skewness and kurtosis in the phenotype, and 2) two types of SNP
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effects on the level and the variance of the phenotype (Methods). For FPR simulations,
we used a model where the SNP only has effects on the level but not the variance of
the phenotype. We used the phenotypic variance explained (PVE) by the SNP to
control the magnitude of effects. For power simulations, we simulated quantitative trait
values using a GxE interaction model without genetic main effects (Methods), where
the SNP only has effects on the variance but not the mean of the phenotype. We used
PVE by the GxE interaction to control the magnitude of variance effects.

Throughout all simulations, QUAIL maintained well-controlled type-I error regardless
of the phenotypic distribution and showed superior power when the phenotype is not
normally distributed. When the phenotype follows a normal distribution, all methods
control the type-l error well and HLMM is more powerful than other approaches
(Figures 2A and 2D). When the phenotype is kurtotic (Figures 2B and 2E) or skewed
(Figures 2C and 2F), HLMM shows inflated type-I error. QUAIL, DRM, and LT are
robust to the skewness and kurtosis of the phenotype. QUAIL is the most powerful
method when the phenotype is kurtotic and shows similar power to DRM and LT when
the phenotype is skewed.
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Figure 2. Simulation results. Panels A-C compare the false positive rate (FPR), and panels D-F
compare the statistical power of QUAIL and other vQTL methods under three different phenotypic
distributions. (A, D) The phenotype follows a normal distribution. (B, E) The phenotype follows a t
distribution. (C, F) The phenotype follows a y? distribution. (G) FPR of vQTL methods when
confounding effect on trait variability is present.

To examine the ability to adjust for confounding effects on phenotypic variance
(Supplementary Figure 1), we first simulated a SNP and a correlated covariate. Next,
we simulated the phenotype using a covariate x E interaction model (Methods). We
did not include the SNP in the data-generating model, so the SNP has no causal effect
on the phenotype. We also did not include a main effect of the covariate to ensure that
the covariate does not affect trait levels. We applied all vQTL methods to test whether
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the SNP is associated with the variance of the phenotype (Figure 2G). QUAIL and
HLMM maintained a well-controlled type-| error rate and successfully adjusted for the
covariate’s effect on variance. DRM and LT showed inflated FPR, suggesting a lack
of robustness to confounding. We summarize the properties of these vQTL methods
in Table 1.

Adjust for covariates’ effects Robust to non- Continuous
on trait level and variability normal phenotype predictor
QUAIL Both Yes Yes
DRM Only on trait level Yes No
Levene’s test Only on trait level Yes No
HLMM Both No Yes
HLMM_INT Both No Yes

Table 1. A summary of key properties of vQTL methods.

Identifying vQTL for BMI in UK Biobank

We applied QUAIL to perform genome-wide vQTL analysis on unrelated samples of
European descent in the UK Biobank. After sample quality control (QC), 375,791
individuals with genotype data and BMI measurements were included in the analysis
(Methods). We adjusted for sex, age, genotyping array, and genetic principal
components (PCs) in the analysis. For comparison, we also applied DRM and HLMM
to the same dataset. Both variance effect (HLMM_Var) and dispersion effect
(HLMM_Disp) estimates were obtained from HLMM. We applied the inverse normal
transformation to BMI before fitting HLMM. LT was omitted in this analysis due to its
near identical performance compared to DRM.

Figure 3A shows the Manhattan plot for QUAIL vQTL. We identified 49 significant (P
< 5.0e-8), approximately independent (pairwise r? < 0.01) loci (Supplementary
Table 1). QUAIL identified more loci than other approaches (Figure 3B). Among these
49 loci, 11 are novel vQTL not identified by other approaches. The quantile-quantile
plot of QUAIL vQTL hints at inflation (1;. = 1.339; Supplementary Figure 2), but the
intercept of linkage disequilibrium (LD) score regression is 1.003, which suggests
polygenic vVQTL associations rather than unadjusted confounding. Furthermore, we
applied ashR?° to estimate the fraction of non-null associations in genome-wide vQTL
statistics. We estimated that 85% of all common SNPs have non-zero effects on the
variability of BMI, which is consistent with an “omnigenic” model for BMI® and suggests
that more loci with small variance effects are yet to be identified.

Previous studies have shown that heritability of BMI is mostly enriched in active
genomic regions of the central nervous system (CNS)3'32, A recent study showed that
vQTL of BMI are significantly enriched in the gastrointestinal tract’s. We applied
stratified LD score regression33 to summary statistics of QUAIL vQTL and GWAS of
BMI. We partitioned the vQTL and GWAS associations by 205 cell-type-specific
annotations3+435, Overall, we observed similar cell type enrichment patterns between
GWAS and vQTL associations (Pearson’s correlation of LD score regression
coefficient across 205 annotations = 0.78, P = 2.1e-71; Supplementary Table 2).
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Both vQTL and GWAS signals showed strong enrichment in CNS. The stomach cell
type was specifically enriched for BMI vQTL (Figure 3C, P = 6.9e-4) but not GWAS
heritability (P = 0.22), suggesting different biological mechanisms underlying the level
and variability of BMI.
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Figure 3. vQTL mapping of BMI in UK Biobank. (A) Manhattan plot of genome-wide vQTL analysis
for BMI in UK Biobank using QUAIL. The dashed red line indicates P = 5.0e-8. (B) Number of
independent significant loci (P < 5.0e-8) identified by four vQTL methods. This plot uses bars to break
down the Venn diagram of overlapped loci in different vQTL methods. (C) Cell-type enrichment results
for BMI vQTL (upper) and GWAS associations (lower). Each data point represents a tissue or cell type.
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FDR = 0.05.

GXE enrichment in vQTL

To investigate whether BMI vQTL are enriched for GxE interactions, we performed
GXxE interaction tests using genome-wide SNP data and two BMI-related behavioral
traits in UK Biobank: physical activity (PA)33637 and sedentary behavior (SB)'5:38, We
assessed enrichment for nominally significant GxE interactions (P < 0.05) in top vQTL
and GWAS associations for BMI (Supplementary Table 3; Methods). We observed
consistently and substantially stronger enrichment for GxPA and GxSB interactions in
top vQTL than in top GWAS associations for BMI (Figure 4). These results show that
vQTL mapping may be a more effective strategy to screen for GXE candidates than
GWAS. In addition, although the fold enrichment has a decreasing trend as we
consider more vQTL in the analysis, we still observed substantial and highly significant
GxE enrichment even in top 15% of vQTL for both PA (fold enrichment = 1.66, P =
4.0e-109) and SB (fold enrichment = 1.51, P = 1.5e-87), suggesting pervasive GxE
interactions among SNPs associated with BMI variability.
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VPGS predicts population-level and within-individual variability of BMI

Next, we explore if genome-wide vVQTL associations can be aggregated into concise,
effective metrics to better quantify genetic effects on trait variability. Although it is
straightforward to generate vPGS using VQTL effect sizes as SNP weights, it is a non-
trivial task to evaluate the predictive performance of vPGS. Common metrics that are
used to assess PGS performance (e.g., R?) quantify association between PGS and
trait levels and do not reflect the effect of vPGS on trait variability. Here, we extend
our quantile regression framework to continuous predictors (Methods) and use it to
benchmark the performance of different vPGS models.

We first investigated if vPGS can predict the population-level BMI variability
(Supplementary Figure 3) using three independent longitudinal datasets, i.e., Health
and Retirement Study (HRS), Wisconsin Longitudinal Study (WLS), and National
Longitudinal Study of Adolescent to Adult Health (Add Health). We describe details of
sample QC procedures in Methods. We used a multi-level linear growth curve model
to adjust for age effects on longitudinal measurements of BMI. In each longitudinal
cohort, we estimated the expected BMI of each individual across waves after removing
age effects (Methods). We generated vPGS in each cohort using vQTL effects
estimated in UK Biobank by QUAIL, HLMM_Var, HLMM_Disp, and DRM. vPGS based
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on QUAIL vQTL consistently showed the largest effect sizes and the most significant
associations with BMI variability in three independent cohorts (Table 2), followed by
DRM. Compared with individuals in the lowest vPGS quintile, individuals in the highest
quintile showed 61%, 52%, and 73% increase in BMI variance in HRS, Add Health,
and WLS, respectively (Figure 5A). We also obtained similar results using double
generalized linear model (DGLM) as an alternative approach to evaluate vPGS
performance (Methods; Supplementary Table 4), with vPGS based on QUAIL
consistently showing the strongest associations with BMI variability.
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Figure 5. vPGS performance and application in GXE interaction. Panels A-B illustrate the prediction
accuracy of vPGS on population-level and within-individual BMI variability, respectively, in three
external cohorts. (A) Each bar shows the variance of BMI within each vPGS quintile in a given cohort.
(B) Each bar shows the average within-individual BMI variability quantified by the 100xCoefficient of
Variation (CV) within each vPGS quintile. Panels C-D illustrate the vPGS-PA and vPGS-SB interactions
in UK Biobank holdout samples. (C) The effect size of PA on BMI by vPGS deciles. (D) The effect size
of SB on BMI by vPGS deciles.
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We continued to investigate if vPGS estimated from cross-sectional data is also
predictive of within-individual variability which quantifies the change in a dynamic
outcome (e.g., BMI) as individuals progress through the life course (Supplementary
Figure 3). Although within-individual trait variability is a better way to quantify outcome
plasticity in response to environmental changes, direct estimation of genetic
associations with within-individual variability remains challenging, mostly due to limited
samples in existing cohorts with genotype data and longitudinal phenotypic
measurements. We leveraged the longitudinal nature of the three datasets described
above and used the wave-to-wave variability to quantify the within-individual variability.
More specifically, we estimated the wave-to-wave BMI variability using the coefficient
of variation (CV; Methods). To benchmark the performance of vPGS, we used linear
regressions to quantify vPGS associations with CV in each cohort. vPGS based on
QUAIL again showed the best predictive performance among all methods, followed by
DRM (Table 2). vPGS based on HLMM showed substantially weaker associations with
CV in all cohorts. Figure 5B shows the average within-individual CV for samples in
each vPGS quintile. We observed 17%, 14%, and 25% increase in within-individual
BMI variability in the highest vPGS quintile than in the lowest quintile for HRS, Add
Health, and WLS, respectively.

Population-level variability

HRS(N=10,550) Add Health (N=6,717) WLS (N=4,694)
Methods Beta SE P-value Beta SE P-value Beta SE P-value
QUAIL 0.520 0.055 3.07E-21 0.716 0.090 1.89E-15 0.610 0.077 2.16E-15
HLMM_Var 0.260 0.058 7.08E-6 0.268 0.094 0.106 0.292 0.084 4.93E-4
HLMM_Disp 0.098 0.058 0.094 -0.020 0.094 0.833 0.156 0.086 0.068
DRM 0.507 0.059 9.97E-18 0.644 0.093 3.66E-12 0.521 0.082 2.33E-10

Within-individual variability

HRS (N=10,502) Add Health (N= 6,706) WLS (N= 4,471)
Methods Beta SE P-value Beta SE P-value Beta SE P-value
QUAIL 0.097 0.010 9.31E-24  0.092  0.012 260E-14 0.088 0.015  2.28E-9
HLMM_Var 0.048  0.010  4.26E-7 0.048 0.012  870E-5 0.048 0.015 0.012
HLMM_Disp 0020  0.010 0.035 0.014 0.012 0.236 0.034  0.015 0.021
DRM 0.086 0.010 6.47E-17 0.087 0012 207E-12 0082 0.015  8.47E-8

Table 2. Benchmarking the prediction accuracy of vPGS for population-level and within-
individual BMI variability. The upper and lower tables show the results of population-level and within-
individual variability, respectively. Each row represents a different vPGS approach. In the upper table,
Beta denotes the estimated effect size of vPGS on the population-level BMI variability using an
evaluation method based on our quantile regression approach. In the lower table, Beta denotes the
estimated effect of vPGS on the coefficient of variation (CV). SE is the standard error of estimated
effects. The most predictive vPGS is highlighted in boldface.

GXxE interaction analysis using vPGS
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To further investigate the possibility of using vPGS in GXE interaction studies, we
randomly apportioned unrelated UKB participants of European descent into training
and testing sets with an 80-20 split. We first applied QUAIL to estimate vQTL effects
of all SNPs on BMI using samples in the training set, and then used QUAIL summary
statistics to generate vPGS for samples in the testing set. We tested vPGS-PA and
vPGS-SB interactions for BMI in the testing samples (Methods).

We identified significant interactions between BMI vPGS and both PA (P =1.1e-8) and
SB (P = 1.6e-5) (Supplementary Table 5). Both interactions remained significant after
adjusting for vPGS-covariate interaction terms in the model®® (P = 1.7e-8 and 1.1e-7
for PA and SB, respectively; Supplementary Table 6). We partitioned the testing
sample into 10 deciles based on vPGS values and observed clear, linearly decreasing
trajectories of PA effects and increasing SB effects on BMI as vPGS increases
(Figures 5C and 5D).

Discussion

In this paper, we introduced QUAIL, a novel, unified statistical framework for
estimating genetic effects on the variability of quantitative traits. QUAIL constructs a
quantile integral phenotype which aggregates information from all quantile levels, and
only requires fitting two linear regressions per SNP in genome-wide analysis. Our
approach directly addresses some limitations of current vQTL methods, including a
lack of robustness to non-Gaussian phenotypes and confounding effects on both trait
levels and trait variability. We also demonstrated that QUAIL can be extended to
continuous predictors such as vPGS. Applied to 375,791 samples in UK Biobank,
QUAIL identified 49 significant vQTL for BMI, including 11 novel loci that have not
been previously identified. These vQTL were significantly enriched in functional
genomic regions in CNS and gastrointestinal tract, were substantially enriched for GxXE
interactions with BMI-related behavioral traits, and produce vPGS that can effectively
predict both population-level and within-individual BMI variability. Overall, these
results hinted at distinct genetic mechanisms underlying the level and variability of
BMI.

Evidence suggests that genetics, environments, and their ubiquitous interactions
jointly shape human phenotypes'. However, there has only been limited success in
identifying robust GxE interactions in complex trait research. This is because detecting
GxE interactions at the SNP level requires a hypothesis-free genome-wide scan which
introduces an extreme burden of multiple testing and severely reduces statistical
power. Alternatively, people constructed PGS which are genome-wide summaries of
numerous SNPs’ aggregated effects on trait levels and used these scores as the G
component in GxE studies®®. However, these scores do not directly quantify the
susceptibility of each individual to environmental exposures and could only partially
characterize the interplay between genes and environments. Our study advances the
field on multiple fronts. First, our approach produces statistically robust and powerful
vQTL results. These loci associated with phenotypic variability may be used as
candidate SNPs in GxE research, thereby reducing the search space for possible
interactions. Second, we demonstrated that vPGS based on QUAIL effect estimates
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show superior predictive performance compared to existing approaches. The
improved vQTL and vPGS, coupled with large population cohorts with deep
phenotyping and sophisticated measurements on the environments, have the potential
to improve prioritization and aggregation of genetic effects on both trait levels and
plasticity and accelerate findings in GXE research.

Our study has some limitations. First, our method cannot be applied to binary
phenotypes. Second, it is unclear if a linear mixed model accounting for sample
relatedness will be compatible with the quantile integral phenotype produced by
QUAIL. Third, the use of vPGS to predict the within-individual phenotypic variability
requires some attention. In the paper, we generated vPGS using the vQTL effects
obtained from a genome-wide analysis of population-level BMI variability and
demonstrated its significant association with the longitudinal, wave-to-wave BMI
variability. However, for certain traits, it is possible that within-individual and
population-level variability are controlled by distinct biological processes and have
different genetic architecture. An ultimate solution to studying the genetic basis of
within-individual variability requires large GWAS samples with repeated
measurements of the same outcome for each individual across time. Finally, it is
known that genetic effects on the level and the variability of BMI can be
correlated'?13.16, We also made similar observations in our analysis (Supplementary
Figure 4). Young et al.'® previously introduced dispersion effect which quantifies the
residual genetic effect on trait variance after de-correlating association with trait levels.
But this approach may be overly conservative especially when SNP-trait associations
are heteroskedastic. It also requires an inverse-normal transformation to the
phenotype which has been suggested to reduce GxE signals’3. In the Supplementary
Note, we show that dispersion effect can also be estimated in our framework. It
substantially reduces the mean-variance relationship (Supplementary Figure 4) but
identifies fewer loci for BMI (Supplementary Figures 5-6 and Supplementary Table
7). When and how to use these dispersion effect estimates in GxE applications
remains to be explored in the future.

Taken together, QUAIL addresses several critical limitations in existing vQTL and
vPGS methods and provides robust, powerful, and computationally efficient estimates
for genetic effects on phenotypic variability. These methodological advances, in
conjunction with increasing sample size in population cohorts with longitudinal
measures of phenotypic outcomes and environments, promise exciting new
developments in the near future. We believe our approach complements existing
analytical strategies and will have broad applications in future studies of complex trait
genetics and GxE interactions.

Methods

Statistical model

If a SNP G is a vQTL for trait Y, the slopes (i.e., 5;) will differ in quantile regressions
based on different quantile levels t (Figure 1).
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QY(T|G =9 C) = U + gﬁ‘[ + Car
Here, C is a n X m matrix for covariates in the model, a, denotes the regression
coefficients for covariates, and p, is the intercept. For a pair of quantile levels
(1—-1, 1),7€(0,0.5), the difference between regression coefficients (i.e., f;1_; — B:)
quantifies the effect of SNP on the variability of Y. Instead of choosing arbitrary
quantile levels to define the effect size, we aggregate information across all quantile
levels to define the vQTL effect:

0.5
Bor = f Broe — Bo)dr

Note that more generally we can use [ w,f3; dt to quantify the effect. In this study, we
set w, =1 when t > 0.5 and w, = —1 when 7 < 0.5. Testing if a SNP is associated
with the variability of Y is equivalent to testing the null Hy: By, = 0. In practice, f,, can
be approximated using a linear spline expansion from K quantile levels:

~ Zlk{=1([§1—rk - E‘L’k)

IBQI = K
There are two key inference problems in this framework. First, to obtain parameter
estimates 8 which include Az [?’,k, and &,, (k =1, ...,K), we can use a standard fitting

approach for quantile regression4°:

A~

ka = argmine zprk(yl - M‘L’k - giﬁ‘tk - Cia‘fk

L

where p;, (u) = uf[r, —I(u <0)] and i is the index for the i-th individual in the
analysis. However, to make the linear spline approximation accurate for g,,, K needs
to be big. This will lead to fitting K quantile regressions for each SNP which is
computationally challenging in genome-wide analysis. Second, the standard error for
quantile integrated effect ,[?Q, involves estimation of the variance-covariance matrix
for B, and is difficult to obtain. We propose a two-step procedure in QUAIL to obtain
statistically justified estimates for quantile integral effect while bypassing these
computational challenges.

Step 1: Transform the phenotype into a quantile integrated rank score.

First, we estimate the intercept i, and covariate effects @, under the null model (i.e.,
B = 0) for 2K quantile levels
n

@, = argming,_ sz(Yi —Cia; — Uy), T=1Ty,..Tg, 1 — 74, .., 1 — Tk,

i=1
where p,(u) = u[t — I(u < 0)] is the loss function for quantile regression. Importantly,
this step is done on the null model, so it does not need to be repeated for different
SNPs in genome-wide analysis. Then, for each individual i, we construct 2K quantile
rank scores:

ai(t) =t—-I1(Y; < C;a, + i), T=1T4,..Tg, 1 — 74, ..., 1 — 7,

where I(Y; < C;&,) is a binary indicator for whether Y; is smaller than the estimated "
conditional quantile for Y;.

Then, we construct a quantile rank score for each individual:
_ Vnxa;(t) x SE(¥;)

Vi —
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where n is the sample size, SE(¥;) is the standard error of the regression coefficient
estimate 7, in quantile regression Qy(z|d,C) = b, + dy, + Ca, and d is a random
variable sampled from N(0,1). Here, we create the random variable d and calculate
SE(¥,) as described above to approximate ,[?Q, using estimated quantile regression
coefficients ﬁ,k while bypassing the fitting of K quantile regressions for each SNP. We
show the details and rationale of this approximation in Supplementary Note and
Supplementary Figure 7-8.

Finally, we construct the quantile integrated rank score for each individual i by
combining Y;, across quantile levels:

Y _ Ik{=1[Yi(1—‘L’k) - Yi‘rk]
Qr; — . K
We then center the Y,, = [YQI1' ...,YQ,n] to have a mean 0.

Step 2: Estimate the quantile integral effect.

We estimate the quantile integral effect as
BQI = argming||Yy, — G*T,B 1%,

where G* is the n X 1 vector of genotype residuals after regressing out covariates.
More specifically, G* = (I — P;)G, where G is the original n x 1 standardized genotype
vector with mean 0 and variance 1, C is the n X m matrix for covariates, and P, =
C(CTC)~1CT is the projection onto the linear space spanned by C. Since we adjusted
for covariates when obtaining the Y,,; and ¢*, the quantile integral effect is account for
the covariates’ effects on traits level and variance. We provide detailed derivations of
this procedure in the Supplementary Note.

Under the null hypothesis that the slopes (i.e., B;) are identical in quantile regressions
based on different quantile levels t, [?Q, follows a normal asymptotic distribution

B~ (0,(676") ),
where 0% =Var(e) and € is the residual in linear regression Y, = G*B +¢€. We
provide the derivation for the null distribution of test statistics in the Supplementary

Note. In our implementation, we use a linear regression Yy, = G*f + € to obtain the
QUAIL test statistics and p-values.

Simulation settings

We performed extensive simulations to evaluate the type-| error, statistical power, and
the ability to correct for confounding effect on trait variability for five vQTL methods
including QUAIL, LT, DRM, and HLMM with and without inverse normal transformation.
We used 100 quantile levels (i.e., K = 100) for QUAIL. We generated a SNP variable
G coded as 0, 1, 2 from Binomial(2, ), where f is the minor allele frequency (MAF)
generated from a uniform distribution on [0.05, 0.5]. Environmental exposure E was
generated from a standard normal distribution N(0,1). We repeated the simulation
1000 times and calculated FPR and power as the proportion of simulations where the
null hypothesis was rejected at P < 0.05.
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For FPR simulations, we used a model where the SNP only has effects on the level
but not the variance of the phenotype. We simulated phenotype for 10,000 individuals
according to the model y; = B,G; + €;,i = 1,...,10000, where y; is the simulated
phenotype, ¢; is an error term with mean 0 and variance o2 for the i-th individual. To
simulate the error term with different levels of skewness and kurtosis, we sampled ¢;
from three different distributions: standard normal distribution N(0,1), t distribution
with df = 3, and x? distribution with df = 6. Regression coefficients were selected such
that the proportion of total PVE by genotype, defined as Var(B,G;)/Var(y;) ranged
between 0.5% to 5%. o was set to be 1 — Var(B,G;)/Var(y;) so that Var(y;) = 1.

For power simulation, we simulated the phenotype such that the SNP only has a
variance effect on the phenotype. This variance effect is reflected in the interaction
term for the SNP and environmental exposures. We simulated phenotype for 10,000
individuals according to the model y; = f;5G,E; + €;,i = 1,...,10000, where y; is the
simulated phenotype, ¢; is an error term with mean 0 and variance o2 for the i-th
individual. We also simulated error terms from three different distributions as
described above. We selected the regression coefficients such that the proportion of
total PVE by the GxE interaction, i.e., Var(B¢rG;E;)/Var(y;), ranged between 0.5% to
5%. We set 6 =1 —Var(BssG;E;)/Var(y;).

To assess different methods’ robustness to confounding effect on trait variability, we
simulated the phenotype such that the SNP has no effect and a covariate has variance
effect on the phenotype. This covariate was generated from Bernoulli(p) where p
varies with each individual’s genotype value (i.e., p = 0.2 for individuals with G = 0,
p=0.5 when G =1, and p = 0.8 when G = 2). The covariate’s variance effect is
reflected in the interaction term for the covariate and environmental exposures. We
simulated phenotype for 10,000 individuals according to the model y; = B¢ CE; +
€,1=1,..,10000, where y; is the simulated phenotype, C; is the covariate, €; is an
error term that follows N(0,02)for the i-th individual. We selected the regression
coefficients such that the proportion of total PVE by the covariate x E interaction, i.e.,
Var(BcgCE)/Var(y;) , ranged between 2.5% to 20% . We also set ¢2=1-—
Var(BcsCiE;)/Var(y;) to rescale the variance of y; to be 1.

UK Biobank data processing

QC procedure of genetic data in the UK Biobank has been described elsewhere*'. We
analyzed UK Biobank samples with European ancestry inferred from genetic PCs
(data field 22006). Participants that are recommended by UK Biobank to be excluded
(data field 22010), those with conflicting genetically inferred (data field 22001) and
self-reported sex (data field 31), and those who withdrew from the study were excluded
from the analyses. We also removed related individuals identified by KING*? and
retained 377,509 unrelated individuals with European descent.

Genome-wide vQTL mapping for BMI
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Following previous work on genome-wide analysis in UK Biobank#*3, we used year of
birth (data field 34), sex (data field 31), genotyping array, and top 12 PCs computed
using flashPCA24 on the analytical sample as covariates for both trait level and
variability. We only included SNPs with a MAF > 1% and missingness < 1% in the
analysis.

We conducted genome-wide vQTL analysis using four methods: QUAIL, DRM, and
HLMM_Var, and HLMM_Disp. For QUAIL, we transformed the BMI into a quantile
integrated rank score, obtained SNP residual values by regressing each SNP on
covariates, and estimated the vQTL effect by regressing the quantile integrated rank
score on SNP residuals. For DRM, we first fit a linear model between BMI and
covariates and calculated the BMI residual. Then, we applied DRM to quantify the
effect of each SNP on BMI residual. For HLMM, we first applied an inverse normal
transformation to BMI. Then, we fit HLMM to obtain the additive and log-linear variance
effects (i.e., HLMM_Var). Next, we estimated the HLMM dispersion effect (i.e.,
HLMM_Disp) by using the additive and log-linear variance effects as described
previously6.

We set the genome-wide significance threshold as 5.0e-8. To determine the number
of independent significant vQTL, we clumped the summary statistics for each method
in PLINK24® (--clump option with parameters --clump-p1 5.0e-8 --clump-p2 5.0e-8 --
clump-r2 0.01 and --clump-kb 5000) using the analytic sample in UK Biobank as the
LD reference panel. To visualize the results, we generated the Manhattan plot and
guantile-quantile plot using the ramwas“® package in R.

We also conducted a GWAS for BMI using Hail*” on the same data used in the vQTL
analysis. We included year of birth, sex, genotyping array, and top 12 PCs computed
using flashPCA244 on the analytical sample as covariates. LD clumping and
visualization were performed similarly as described above.

Additionally, we used the estimated intercept from LD score regression*® to quantify
the level of unadjusted confounding in genome-wide vQTL analysis. We used ashR3°
on the full set of SNPs to estimate the proportion of non-null vQTL associations.

Cell-type heritability enrichment analysis

We used stratified LD score regression33 to perform cell-type enrichment analyses with
gene expression data using the “Multi_tissue_gene_expr” (including data from GTEx
and Franke lab) flag and default settings. We only included non-MHC HapMap3 SNPs
for LD score regression analysis. Cell-type enrichment p-values across 205 functional
annotations were adjusted using the Benjamini-Hochberg method for false discovery
rate®d.

Gene-environment interaction enrichment analysis
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We performed GxE interaction tests using genome-wide SNP data and two BMI-
related behavioral traits (i.e., PA and SB) in UK Biobank. Details about the construction
of PA and SB variables can be found elsewhere'315. For PA, we assigned a three-
level categorical score (low, medium, and high) based on the short form of the
International Physical Activity Questionnaire (IPAQ) guideline for each individual. We
defined SB as an integer using the combined time (hours) spent driving, using
computer, and watching television.

To assess the enrichment for GXE effects in top vQTL, we first clumped the QUAIL
summary statistics in PLINK2 (--clump option with parameters --clump-p1 1 --clump-
p2 1 --clump-r2 0.1 and --clump-kb 1000) using the CEU samples in 1000 Genome
Project Phase Il cohort as the LD reference panel. Next, we performed a GxXE analysis
to test the interaction between each SNP in the clumped summary statistics and PA
and SB based on the model:
Y, =u+pByG; + PeE; + BiGiE; +€, i=1,...,n,

where Y; is BMI, G; is the SNP genotype, and E; is the environmental factor for the i-th
individual. We defined nominally significant GXE using a p-value cutoff of 0.05. We
also defined vQTL as the top 0.1, 0.5, 1, 5, 10, and 15 percent of SNPs ordered by
their QUAIL p-values in the clumped summary statistics. The fold enrichment is
calculated as the actual count of significant GXE among vQTL divided by the expected
count. We used Fisher’s exact test to test the enrichment.

For comparison, we also performed enrichment analysis for GXE interaction in top
GWAS associations using the same analytical procedure described above.

Predicting population-level trait variability

To benchmark the predictive power of vPGS, we used data from three independent
cohorts: HRS, Add Health, and WLS. We only included individuals of European
ancestry in the analysis. The sample size is 10,550, 6,717, and 4,694 for HRS, Add
Health, and WLS respectively.

To compute VPGS, we first clumped each set of summary statistics in PLINK2 (--clump
option with parameters --clump-p1 1 --clump-p2 1 --clump-r2 0.1 and --clump-kb 1000)
using the CEU samples in 1000 Genome Project Phase Il cohort as the LD reference
panel. Then, we computed VPGS using PRSice-2%° without p-value filtering. We
calculated four vPGS based on different vQTL methods: QUAIL, DRM, HLMM_Var,
and HLMM_Disp.

To quantify the performance of vPGS in predicting the population-level variability, we
first fit a multi-level linear growth curve model on BMI and age in each cohort:

Yie = Boi + BriAgen + BaiAgef: + ey,
where Y;; and Age;; denote the BMI and age of respondent i at time point t,
respectively (i =1,..,nand t =1,...,T;), By; is assumed to be normally distributed.
We included linear and quadratic terms for age to reflect the non-linear age-dependent
trajectory of BMI. The estimated individual intercept (i.e., f,;) represents the expected
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BMI after removing age effect. We denote it as BMI-adj and use it as the trait value for
the further analysis described below.

We extended our quantile regression framework to assess VPGS performance with
two modifications due to the eased computational burden. First, we regress the
phenotype on the vPGS and use the residual to construct the rank score @;(t) as
described before. Second, we perform a standard quantile regression and use the
kernel-based sandwich approach®' to obtain the standard error of the estimated
quantile regression coefficient for vPGS, i.e., SE(S,). We use the same approach to
construct the quantile integrated rank score Y, for each individual. The effect size of
vPGS can be quantified as

BQ, = argminB”YQ, — vPGS*T,8| (1D
where vPGS* is the n dimensional vPGS residual vector after regressing out
covariates. Here, original vPGS is standardized to have mean 0 and variance 1. We
use this quantile integral effect to quantify the predictive performance of vPGS on the
population-level variability. We adjusted sex and top 10 PCs in the analysis of each
cohort.

2
)

We also extend the DGLM'426, the method implemented in HLMM, as an alternative
approach to evaluate vPGS performance. The DGLM takes the form of

BMI; = yy +v,G; + C;0 + &, & ~N(0,exp (ay + a1 G; + X; D)),
where BMI; denotes the inverse normal-transformed BMI-adj of individual i, G; is the
vPGS of individual i, C; is the vector of covariates including sex and top 10 PCs. Here,
a, quantifies the effect of vPGS on the variability of BMI and is the parameter of
interest in this analysis. We fitted DGLM using the dglm®%2 packages in R.

To visualize the predictive performance of vPGS in predicting the population-level
variability, we divided samples into 5 quintiles according to their vPGS values and
compared the variance of BMI-adj across quintiles in each cohort.

Predicting within-individual trait variability

We used the same three external datasets (i.e., WLS, HRS, and Add Health) to
benchmark the performance in predicting within-individual BMI variability. We applied
the same QC procedure described above except that we only included individuals with
reported BMI in at least two waves.

We quantified the wave-to-wave BMI variability using CV®3 defined as:
SD;
CVi ==

l
where SD; is the BMI standard deviation of the i-th individual across waves and y; is
the individual mean of BMI across waves. We calculated CV for each individual based
on all of the participant's BMI measurements across waves. Then, we used linear
regression to quantify the predictive performance of vPGS on the within-individual
variability. We regressed CV on vPGS in each cohort and included sex, mean age
across waves, and top 10 PCs as covariates. To visualize the results, we divided
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samples from each cohort into 5 quintiles according to their vPGS values and
compared the average CV across quintiles.

Gene-environment interaction analysis using vPGS

To test GxE interactions using vPGS, we randomly apportioned unrelated UKB
participants of European descent (N=375,791) into training (N=300,633) and testing
sets (N=75,158), with an 80-20 split. We applied QUAIL to estimate the effect of each
SNP on BMI variability using samples in the training set, while controlling for year of
birth, sex, genotyping array, and top 12 PCs computed using flashPCA244 on the
analytical sample as covariates.

Next, we used weights obtained in the training set to construct vPGS for samples in
the testing set. To compute vPGS, we first clumped the summary statistics in PLINK2
(--clump option with parameters --clump-p1 1 --clump-p2 1 --clump-r2 0.1 and --clump-
kb 1000) using the CEU samples in 1000 Genome Project Phase Ill cohort as the LD
reference panel. Then, we computed vPGS using PRSice-2 without p-value filtering.

We tested vVPGSXE effects on BMI by fitting the following model:

Yi =u + ﬂGUPGSi + ﬁEEl' + ﬁI'UPGSiEi + €,
where Y; is BMI, vPGS; is the standardized vPGS with mean 0 and variance 1, and E;
is the environmental factor (i.e., PA or SB) for the i-th individual. We adjusted for year
of birth, sex, genotyping array, and top 12 PCs. To check the robustness of our results,
we repeated our vVPGSXE analysis on BMI using the model above with vPGS-Sex and
vPGS-Year of birth interaction terms as additional covariates.

To visualize the interaction, we divided samples into 10 deciles based on their vPGS
values and compared estimates of the environmental factor on BMI across vPGS
deciles.

URL

UK Biobank (http://www.ukbiobank.ac.uk/);
HRS (https://hrs.isr.umich.edu/about);

Add Health (https://addhealth.cpc.unc.edu/);
WLS(https://www.ssc.wisc.edu/wlsresearch/);
HLMM (https://himm.readthedocs.io/en/latest/);
DRM (https://github.com/drewmard/DRM);
ashR (https://github.com/stephens999/ashr).

Data and code availability

QUAIL software package is publicly available at (https://github.com/glu-lab/QUAIL).
Summary statistics of QUAIL vQTL analysis for BMI are available at (http://glu-
lab.org/data.html).
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