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Abstract 
 
Detecting genetic variants associated with the variance of complex traits, i.e. variance 
quantitative trait loci (vQTL), can provide crucial insights into the interplay between 
genes and environments and how they jointly shape human phenotypes in the 
population. We propose a quantile integral linear model (QUAIL) to estimate genetic 
effects on trait variability. Through extensive simulations and analyses of real data, we 
demonstrate that QUAIL provides computationally efficient and statistically powerful 
vQTL mapping that is robust to non-Gaussian phenotypes and confounding effects on 
phenotypic variability. Applied to UK Biobank (N=375,791), QUAIL identified 11 novel 
vQTL for body mass index (BMI). Top vQTL findings showed substantial enrichment 
for interactions with physical activities and sedentary behavior. Further, variance 
polygenic scores (vPGS) based on QUAIL effect estimates showed superior predictive 
performance on both population-level and within-individual BMI variability compared 
to existing approaches. Overall, QUAIL is a unified framework to quantify genetic 
effects on the phenotypic variability at both single-variant and vPGS levels. It 
addresses critical limitations in existing approaches and may have broad applications 
in future gene-environment interaction studies.  
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Introduction 
 
Human complex phenotypes are shaped by numerous genetic and environmental 
factors as well as their interactions1. Genome-wide association studies (GWAS) have 
identified tens of thousands of reproducible genetic associations2. However, there has 
been limited success in detecting interactions between human genetic variants and 
environmental factors (GxE)3, in part due to the polygenic nature of human traits, small 
effect sizes of GxE interactions, and a high multiple testing burden4. An alternative 
approach is to first quantify the overall genetic propensity in the form of polygenic 
scores (PGS) for each individual, and then test the interactions between PGS and 
environmental risk factors5-9. Here, PGS is a sum of trait-associated alleles across 
many genetic loci, typically weighted by marginal effect sizes estimated from a GWAS.  
 
However, genetic variants affect not only the level of traits, but also the variability10-12. 
Since the variance of a quantitative phenotype differs across genotype groups of 
variants involved in GxE interactions, one can use genetic variants associated with 
the trait variability (vQTL) to screen for candidate GxE interactions13-16. The concept 
of PGS, which estimates the conditional mean of the phenotype17, has also been 
extended into genome-wide summaries of genetic effects on phenotypic variability 
(vPGS)18,19. These scores, which reflect the genetic contribution to outcome plasticity, 
have suggested unique genetic contributions orthogonal to that of traditional PGS and 
have achieved some recent successes in GxE studies18,20.  
 
Robust vQTL findings can be used to prioritize candidate variants in GxE analysis. 
vPGS also has the potential to aggregate information across numerous genetic loci 
and improve both statistical power and biological interpretability of GxE studies. 
However, existing statistical methods for vQTL and vPGS have limitations21,22. 
Levene’s test (LT)23 and deviation regression model (DRM)13 are robust to model 
misspecification but do not adjust for confounding effects on trait variance24,25. 
Additionally, these methods cannot be applied to continuous predictors (e.g., vPGS) 
because they require the phenotypic mean or median within each category of the 
predictor (e.g., genotype groups) as input. Heteroskedastic linear mixed models 
(HLMM) can adjust for covariates but are sensitive to model misspecification and have 
type-I error inflation when applied to non-normal phenotypes14,16,26. Further, although 
it is straightforward to calculate vPGS using vQTL effects as variant weights, predictive 
performance of vPGS has not been properly benchmarked due to a lack of statistical 
metrics for variance prediction. There is a need for a unified framework that can 
accurately and robustly quantify the genetic effects on phenotypic variability at the 
single variant as well as the vPGS level. 
 
In this work, we introduce QUAIL (quantile integral linear model), a quantile 
regression-based framework to estimate genetic effects on the variance of quantitative 
traits. Our approach can adjust for confounding effects on both the level and the 
variance of phenotypic outcomes, can be applied to both categorical and continuous 
predictors, and does not impose strong assumptions on the distribution of phenotypes. 
We demonstrate the performance of QUAIL through extensive simulations, vQTL 
mapping for body mass index (BMI) in UK Biobank, GxE enrichment analysis, and 
vPGS benchmarking and application. 
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Figure 1. Workflow of QUAIL.  (A) The phenotypic variance varies across genotype groups in the 
presence of vQTL and GxE effects. The data points are colored based on the level of the environmental 
variable. The lines represent genetic effects on the phenotype conditioning on the environmental 
variable. (B) Quantile regression can be used to detect vQTL. The quantile regression slopes will be 
different across quantile levels if a genetic effect on trait variability exists. (C) Workflow of the QUAIL 
estimation procedure. 𝜏 indicates a specific quantile level. 𝛽!"# − 𝛽#	indicates the difference between 
the regression coefficients of the upper and lower quantile levels. 𝛽$%&'  denotes the aggregated genetic 
effect on trait variability across quantile levels. 
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Results 
 
Method overview 
 
The goal of vQTL mapping is to identify single nucleotide polymorphisms (SNPs) 
showing differential variability of a quantitative trait across genotype groups. If a SNP 
has substantially different effects on trait values given different environmental 
exposures, it will be a vQTL without conditioning on the environment (Figure 1A). 
Quantile regression estimates the conditional quantile function of a response variable 
given predictors27. If a SNP 𝐺 is a vQTL for trait 𝑌, the conditional quantile function will 
have different regression slopes (i.e., 𝛽!) for different quantile levels 𝜏 (Figure 1B, 
Supplementary Note)28.  

𝑄"(𝜏|𝐺 = 𝑔) = 	𝑔𝛽! 
For a pair of quantile levels (1 − 𝜏, 𝜏), 𝜏 ∈ (0, 0.5) , vQTL effect of a SNP can be 
quantified using the difference between the regression coefficients of the upper and 
lower quantile levels, i.e., 𝛽#$! − 𝛽!.  
 
To aggregate information across all quantile levels and better quantify the vQTL effect 
on trait 𝑌, we introduce a quantile-integrated effect29: 

𝛽%& =	3 (𝛽#$! − 𝛽!)𝑑𝜏
'.)

'
 

Note that when the SNP is not associated with trait variability, we have 𝛽! = 𝛽#$!	for 
any 𝜏 ∈ (0, 0.5). Therefore, testing the vQTL effect of a SNP is equivalent to testing 
the null 𝐻':	𝛽%& = 0. However, approximating 𝛽%& using a standard quantile regression 
fitting procedure involves iterative optimization for numerous quantile levels and thus 
is computationally challenging in genome-wide analysis. We apply several 
computational techniques to ensure that QUAIL can efficiently identify vQTL at the 
genome-wide scale. We first transform the phenotype into an integrated quantile rank 
score using only trait values and covariates. Next, we regress the transformed 
phenotype on covariate-adjusted SNP residuals. To estimate integral 𝛽%& , QUAIL 
avoids fitting regressions for a grid of quantile levels. Instead, it only requires fitting 
two linear regressions per SNP in genome-wide analysis (Figure 1C). We present 
detailed derivations and technical discussions of the QUAIL framework in Methods 
and Supplementary Note. 
 
 
Simulation results 
 
We performed simulations to compare the empirical performance of QUAIL with four 
other vQTL methods: DRM13, LT23, and HLMM with and without inverse normal 
transformation16. We compared the statistical power, false-positive rate (FPR), and 
ability to adjust for confounding effects for these methods.  
 
We evaluated the FPR and power of all approaches under several simulation 
scenarios, including 1) three different distributions of the error term to represent 
various degrees of skewness and kurtosis in the phenotype, and 2) two types of SNP 
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effects on the level and the variance of the phenotype (Methods). For FPR simulations, 
we used a model where the SNP only has effects on the level but not the variance of 
the phenotype. We used the phenotypic variance explained (PVE) by the SNP to 
control the magnitude of effects. For power simulations, we simulated quantitative trait 
values using a GxE interaction model without genetic main effects (Methods), where 
the SNP only has effects on the variance but not the mean of the phenotype. We used 
PVE by the GxE interaction to control the magnitude of variance effects.   
 
Throughout all simulations, QUAIL maintained well-controlled type-I error regardless 
of the phenotypic distribution and showed superior power when the phenotype is not 
normally distributed. When the phenotype follows a normal distribution, all methods 
control the type-I error well and HLMM is more powerful than other approaches 
(Figures 2A and 2D). When the phenotype is kurtotic (Figures 2B and 2E) or skewed 
(Figures 2C and 2F), HLMM shows inflated type-I error. QUAIL, DRM, and LT are 
robust to the skewness and kurtosis of the phenotype. QUAIL is the most powerful 
method when the phenotype is kurtotic and shows similar power to DRM and LT when 
the phenotype is skewed.  
 

 
Figure 2. Simulation results.  Panels A-C compare the false positive rate (FPR), and panels D-F 
compare the statistical power of QUAIL and other vQTL methods under three different phenotypic 
distributions. (A, D) The phenotype follows a normal distribution. (B, E) The phenotype follows a t 
distribution. (C, F) The phenotype follows a 𝜒(  distribution. (G) FPR of vQTL methods when 
confounding effect on trait variability is present. 
 
To examine the ability to adjust for confounding effects on phenotypic variance 
(Supplementary Figure 1), we first simulated a SNP and a correlated covariate. Next, 
we simulated the phenotype using a covariate x E interaction model (Methods). We 
did not include the SNP in the data-generating model, so the SNP has no causal effect 
on the phenotype. We also did not include a main effect of the covariate to ensure that 
the covariate does not affect trait levels. We applied all vQTL methods to test whether 
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the SNP is associated with the variance of the phenotype (Figure 2G). QUAIL and 
HLMM maintained a well-controlled type-I error rate and successfully adjusted for the 
covariate’s effect on variance. DRM and LT showed inflated FPR, suggesting a lack 
of robustness to confounding. We summarize the properties of these vQTL methods 
in Table 1. 
 

 Adjust for covariates’ effects 
on trait level and variability 

Robust to non-
normal phenotype 

Continuous 
predictor 

QUAIL Both Yes Yes 
DRM Only on trait level Yes No 

Levene’s test Only on trait level Yes No 
HLMM Both No Yes 

HLMM_INT Both No Yes 
Table 1. A summary of key properties of vQTL methods. 
 
 
Identifying vQTL for BMI in UK Biobank 
 
We applied QUAIL to perform genome-wide vQTL analysis on unrelated samples of 
European descent in the UK Biobank. After sample quality control (QC), 375,791 
individuals with genotype data and BMI measurements were included in the analysis 
(Methods). We adjusted for sex, age, genotyping array, and genetic principal 
components (PCs) in the analysis. For comparison, we also applied DRM and HLMM 
to the same dataset. Both variance effect (HLMM_Var) and dispersion effect 
(HLMM_Disp) estimates were obtained from HLMM. We applied the inverse normal 
transformation to BMI before fitting HLMM. LT was omitted in this analysis due to its 
near identical performance compared to DRM. 
 
Figure 3A shows the Manhattan plot for QUAIL vQTL. We identified 49 significant (P 
< 5.0e-8), approximately independent (pairwise 𝑟* < 0.01)	 loci (Supplementary 
Table 1). QUAIL identified more loci than other approaches (Figure 3B). Among these 
49 loci, 11 are novel vQTL not identified by other approaches. The quantile-quantile 
plot of QUAIL vQTL hints at inflation (𝜆+, = 1.339; Supplementary Figure 2), but the 
intercept of linkage disequilibrium (LD) score regression is 1.003, which suggests 
polygenic vQTL associations rather than unadjusted confounding. Furthermore, we 
applied ashR30 to estimate the fraction of non-null associations in genome-wide vQTL 
statistics. We estimated that 85% of all common SNPs have non-zero effects on the 
variability of BMI, which is consistent with an “omnigenic” model for BMI6 and suggests 
that more loci with small variance effects are yet to be identified. 
                                                                                                                                                                                                                   
Previous studies have shown that heritability of BMI is mostly enriched in active 
genomic regions of the central nervous system (CNS)31,32. A recent study showed that 
vQTL of BMI are significantly enriched in the gastrointestinal tract13. We applied 
stratified LD score regression33 to summary statistics of QUAIL vQTL and GWAS of 
BMI. We partitioned the vQTL and GWAS associations by 205 cell-type-specific 
annotations34,35. Overall, we observed similar cell type enrichment patterns between 
GWAS and vQTL associations (Pearson’s correlation of LD score regression 
coefficient across 205 annotations = 0.78, P = 2.1e-71; Supplementary Table 2). 
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Both vQTL and GWAS signals showed strong enrichment in CNS. The stomach cell 
type was specifically enriched for BMI vQTL (Figure 3C, P = 6.9e-4) but not GWAS 
heritability (P = 0.22), suggesting different biological mechanisms underlying the level 
and variability of BMI. 

 
Figure 3. vQTL mapping of BMI in UK Biobank. (A) Manhattan plot of genome-wide vQTL analysis 
for BMI in UK Biobank using QUAIL. The dashed red line indicates P = 5.0e-8. (B) Number of 
independent significant loci (P < 5.0e-8) identified by four vQTL methods. This plot uses bars to break 
down the Venn diagram of overlapped loci in different vQTL methods. (C) Cell-type enrichment results 
for BMI vQTL (upper) and GWAS associations (lower). Each data point represents a tissue or cell type. 
Different colors represent tissue categories based on Finucane et al31. Dashed red lines are drawn at 
FDR = 0.05.  
 
 
GxE enrichment in vQTL 
 
To investigate whether BMI vQTL are enriched for GxE interactions, we performed 
GxE interaction tests using genome-wide SNP data and two BMI-related behavioral 
traits in UK Biobank: physical activity (PA)3,36,37 and sedentary behavior (SB)15,38. We 
assessed enrichment for nominally significant GxE interactions (P < 0.05) in top vQTL 
and GWAS associations for BMI (Supplementary Table 3; Methods). We observed 
consistently and substantially stronger enrichment for GxPA and GxSB interactions in 
top vQTL than in top GWAS associations for BMI (Figure 4). These results show that 
vQTL mapping may be a more effective strategy to screen for GxE candidates than 
GWAS. In addition, although the fold enrichment has a decreasing trend as we 
consider more vQTL in the analysis, we still observed substantial and highly significant 
GxE enrichment even in top 15% of vQTL for both PA (fold enrichment = 1.66, P = 
4.0e-109) and SB (fold enrichment = 1.51, P = 1.5e-87), suggesting pervasive GxE 
interactions among SNPs associated with BMI variability.  
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Figure 4. Enrichment for GxE interactions in top BMI vQTL and GWAS associations. Panels A 
and C illustrate the fold enrichment for GxE interactions in top vQTL (pink) and GWAS associations 
(blue). Fold enrichment ratio is defined as the actual count of significant GxE among top SNPs divided 
by the expected count. Panels B and D illustrate the p-values for enrichment calculated from Fisher’s 
exact test. The environmental factors are physical activity (PA) for Panels A-B, and sedentary behavior 
(SB) for C-D. 
 
 
vPGS predicts population-level and within-individual variability of BMI 
 
Next, we explore if genome-wide vQTL associations can be aggregated into concise, 
effective metrics to better quantify genetic effects on trait variability. Although it is 
straightforward to generate vPGS using vQTL effect sizes as SNP weights, it is a non-
trivial task to evaluate the predictive performance of vPGS. Common metrics that are 
used to assess PGS performance (e.g., R2) quantify association between PGS and 
trait levels and do not reflect the effect of vPGS on trait variability. Here, we extend 
our quantile regression framework to continuous predictors (Methods) and use it to 
benchmark the performance of different vPGS models. 
 
We first investigated if vPGS can predict the population-level BMI variability 
(Supplementary Figure 3) using three independent longitudinal datasets, i.e., Health 
and Retirement Study (HRS), Wisconsin Longitudinal Study (WLS), and National 
Longitudinal Study of Adolescent to Adult Health (Add Health). We describe details of 
sample QC procedures in Methods. We used a multi-level linear growth curve model 
to adjust for age effects on longitudinal measurements of BMI. In each longitudinal 
cohort, we estimated the expected BMI of each individual across waves after removing 
age effects (Methods). We generated vPGS in each cohort using vQTL effects 
estimated in UK Biobank by QUAIL, HLMM_Var, HLMM_Disp, and DRM. vPGS based 
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on QUAIL vQTL consistently showed the largest effect sizes and the most significant 
associations with BMI variability in three independent cohorts (Table 2), followed by 
DRM. Compared with individuals in the lowest vPGS quintile, individuals in the highest 
quintile showed 61%, 52%, and 73% increase in BMI variance in HRS, Add Health, 
and WLS, respectively (Figure 5A). We also obtained similar results using double 
generalized linear model (DGLM) as an alternative approach to evaluate vPGS 
performance (Methods; Supplementary Table 4), with vPGS based on QUAIL 
consistently showing the strongest associations with BMI variability. 
 

 
Figure 5. vPGS performance and application in GxE interaction. Panels A-B illustrate the prediction 
accuracy of vPGS on population-level and within-individual BMI variability, respectively, in three 
external cohorts. (A) Each bar shows the variance of BMI within each vPGS quintile in a given cohort. 
(B) Each bar shows the average within-individual BMI variability quantified by the 100×Coefficient of 
Variation (CV) within each vPGS quintile. Panels C-D illustrate the vPGS-PA and vPGS-SB interactions 
in UK Biobank holdout samples. (C) The effect size of PA on BMI by vPGS deciles. (D) The effect size 
of SB on BMI by vPGS deciles. 
 

0

5

10

15

20

25

30

35

40

1
Lowest

2 3 4 5
Highest

vPGS Quintiles

Va
ria

nc
e 

W
ith

in
 E

ac
h 

Su
bg

ro
up

WLS
HRS
Add Health

Population−Level VariabilityA

0

2

4

6

8

10

12

14

16

1
Lowest

2 3 4 5
Highest

vPGS Quintiles

10
0
×

C
V

WLS
HRS
Add Health

Within−Individual VariabilityB

●

●

●

●

●
●

●

● ●

●

−1.0

−0.8

−0.6

1
Lowest

2 3 4 5 6 7 8 9 10
Highest

vPGS Deciles

Ef
fe

ct
 S

ize

PAC

●

●

●

●

●

●

●

●
●

●

0.35

0.40

0.45

0.50

1
Lowest

2 3 4 5 6 7 8 9 10
Highest

vPGS Deciles

Ef
fe

ct
 S

ize

SBD

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439847doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439847
http://creativecommons.org/licenses/by-nc-nd/4.0/


We continued to investigate if vPGS estimated from cross-sectional data is also 
predictive of within-individual variability which quantifies the change in a dynamic 
outcome (e.g., BMI) as individuals progress through the life course (Supplementary 
Figure 3). Although within-individual trait variability is a better way to quantify outcome 
plasticity in response to environmental changes, direct estimation of genetic 
associations with within-individual variability remains challenging, mostly due to limited 
samples in existing cohorts with genotype data and longitudinal phenotypic 
measurements. We leveraged the longitudinal nature of the three datasets described 
above and used the wave-to-wave variability to quantify the within-individual variability. 
More specifically, we estimated the wave-to-wave BMI variability using the coefficient 
of variation (CV; Methods). To benchmark the performance of vPGS, we used linear 
regressions to quantify vPGS associations with CV in each cohort. vPGS based on 
QUAIL again showed the best predictive performance among all methods, followed by 
DRM (Table 2). vPGS based on HLMM showed substantially weaker associations with 
CV in all cohorts. Figure 5B shows the average within-individual CV for samples in 
each vPGS quintile. We observed 17%, 14%, and 25% increase in within-individual 
BMI variability in the highest vPGS quintile than in the lowest quintile for HRS, Add 
Health, and WLS, respectively. 
 

Population-level variability 
 HRS(N=10,550) Add Health (N=6,717) WLS (N=4,694) 

Methods Beta SE P-value Beta SE P-value Beta SE P-value 

QUAIL 0.520 0.055 3.07E-21 0.716 0.090 1.89E-15 0.610 0.077 2.16E-15 
HLMM_Var 0.260 0.058 7.08E-6 0.268 0.094 0.106 0.292 0.084 4.93E-4 
HLMM_Disp 0.098 0.058 0.094 -0.020 0.094 0.833 0.156 0.086 0.068 

DRM 0.507 0.059 9.97E-18 0.644 0.093 3.66E-12 0.521 0.082 2.33E-10 

Within-individual variability 
 HRS (N= 10,502) Add Health (N= 6,706) WLS (N= 4,471) 

Methods Beta SE P-value Beta SE P-value Beta SE P-value 

QUAIL 0.097 0.010 9.31E-24 0.092 0.012 2.60E-14 0.088 0.015 2.28E-9 
HLMM_Var 0.048 0.010 4.26E-7 0.048 0.012 8.70E-5 0.048 0.015 0.012 
HLMM_Disp 0.020 0.010 0.035 0.014 0.012 0.236 0.034 0.015 0.021 

DRM 0.086 0.010 6.47E-17 0.087 0.012 2.07E-12 0.082 0.015 8.47E-8 
 
Table 2. Benchmarking the prediction accuracy of vPGS for population-level and within-
individual BMI variability. The upper and lower tables show the results of population-level and within-
individual variability, respectively. Each row represents a different vPGS approach. In the upper table, 
Beta denotes the estimated effect size of vPGS on the population-level BMI variability using an 
evaluation method based on our quantile regression approach. In the lower table, Beta denotes the 
estimated effect of vPGS on the coefficient of variation (CV). SE is the standard error of estimated 
effects. The most predictive vPGS is highlighted in boldface.  
 
 
GxE interaction analysis using vPGS 
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To further investigate the possibility of using vPGS in GxE interaction studies, we 
randomly apportioned unrelated UKB participants of European descent into training 
and testing sets with an 80-20 split. We first applied QUAIL to estimate vQTL effects 
of all SNPs on BMI using samples in the training set, and then used QUAIL summary 
statistics to generate vPGS for samples in the testing set. We tested vPGS-PA and 
vPGS-SB interactions for BMI in the testing samples (Methods). 
 
We identified significant interactions between BMI vPGS and both PA (P = 1.1e-8) and 
SB (P = 1.6e-5) (Supplementary Table 5). Both interactions remained significant after 
adjusting for vPGS-covariate interaction terms in the model39 (P = 1.7e-8 and 1.1e-7 
for PA and SB, respectively; Supplementary Table 6). We partitioned the testing 
sample into 10 deciles based on vPGS values and observed clear, linearly decreasing 
trajectories of PA effects and increasing SB effects on BMI as vPGS increases 
(Figures 5C and 5D). 
 
 
Discussion 
 
In this paper, we introduced QUAIL, a novel, unified statistical framework for 
estimating genetic effects on the variability of quantitative traits. QUAIL constructs a 
quantile integral phenotype which aggregates information from all quantile levels, and 
only requires fitting two linear regressions per SNP in genome-wide analysis. Our 
approach directly addresses some limitations of current vQTL methods, including a 
lack of robustness to non-Gaussian phenotypes and confounding effects on both trait 
levels and trait variability. We also demonstrated that QUAIL can be extended to 
continuous predictors such as vPGS. Applied to 375,791 samples in UK Biobank, 
QUAIL identified 49 significant vQTL for BMI, including 11 novel loci that have not 
been previously identified. These vQTL were significantly enriched in functional 
genomic regions in CNS and gastrointestinal tract, were substantially enriched for GxE 
interactions with BMI-related behavioral traits, and produce vPGS that can effectively 
predict both population-level and within-individual BMI variability. Overall, these 
results hinted at distinct genetic mechanisms underlying the level and variability of 
BMI.  
 
Evidence suggests that genetics, environments, and their ubiquitous interactions 
jointly shape human phenotypes1. However, there has only been limited success in 
identifying robust GxE interactions in complex trait research. This is because detecting 
GxE interactions at the SNP level requires a hypothesis-free genome-wide scan which 
introduces an extreme burden of multiple testing and severely reduces statistical 
power. Alternatively, people constructed PGS which are genome-wide summaries of 
numerous SNPs’ aggregated effects on trait levels and used these scores as the G 
component in GxE studies5-8. However, these scores do not directly quantify the 
susceptibility of each individual to environmental exposures and could only partially 
characterize the interplay between genes and environments. Our study advances the 
field on multiple fronts. First, our approach produces statistically robust and powerful 
vQTL results. These loci associated with phenotypic variability may be used as 
candidate SNPs in GxE research, thereby reducing the search space for possible 
interactions. Second, we demonstrated that vPGS based on QUAIL effect estimates 
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show superior predictive performance compared to existing approaches. The 
improved vQTL and vPGS, coupled with large population cohorts with deep 
phenotyping and sophisticated measurements on the environments, have the potential 
to improve prioritization and aggregation of genetic effects on both trait levels and 
plasticity and accelerate findings in GxE research.  
 
Our study has some limitations. First, our method cannot be applied to binary 
phenotypes. Second, it is unclear if a linear mixed model accounting for sample 
relatedness will be compatible with the quantile integral phenotype produced by 
QUAIL. Third, the use of vPGS to predict the within-individual phenotypic variability 
requires some attention. In the paper, we generated vPGS using the vQTL effects 
obtained from a genome-wide analysis of population-level BMI variability and 
demonstrated its significant association with the longitudinal, wave-to-wave BMI 
variability. However, for certain traits, it is possible that within-individual and 
population-level variability are controlled by distinct biological processes and have 
different genetic architecture. An ultimate solution to studying the genetic basis of 
within-individual variability requires large GWAS samples with repeated 
measurements of the same outcome for each individual across time. Finally, it is 
known that genetic effects on the level and the variability of BMI can be 
correlated12,13,16. We also made similar observations in our analysis (Supplementary 
Figure 4). Young et al.16 previously introduced dispersion effect which quantifies the 
residual genetic effect on trait variance after de-correlating association with trait levels. 
But this approach may be overly conservative especially when SNP-trait associations 
are heteroskedastic. It also requires an inverse-normal transformation to the 
phenotype which has been suggested to reduce GxE signals13. In the Supplementary 
Note, we show that dispersion effect can also be estimated in our framework. It 
substantially reduces the mean-variance relationship (Supplementary Figure 4) but 
identifies fewer loci for BMI (Supplementary Figures 5-6 and Supplementary Table 
7). When and how to use these dispersion effect estimates in GxE applications 
remains to be explored in the future. 
 
Taken together, QUAIL addresses several critical limitations in existing vQTL and 
vPGS methods and provides robust, powerful, and computationally efficient estimates 
for genetic effects on phenotypic variability. These methodological advances, in 
conjunction with increasing sample size in population cohorts with longitudinal 
measures of phenotypic outcomes and environments, promise exciting new 
developments in the near future. We believe our approach complements existing 
analytical strategies and will have broad applications in future studies of complex trait 
genetics and GxE interactions.  
 
 
Methods 
 
Statistical model 
 
If a SNP 𝐺 is a vQTL for trait 𝑌, the slopes (i.e., 𝛽!) will differ in quantile regressions 
based on different quantile levels 𝜏 (Figure 1).  
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𝑄"(𝜏|𝐺 = 𝑔, 𝑪) = 	𝜇! + 𝑔𝛽! + 𝑪𝛼! 
Here, 𝑪  is a 𝑛	 × 	𝑚	matrix for covariates in the model, 𝛼!  denotes the regression 
coefficients for covariates, and 𝜇!  is the intercept. For a pair of quantile levels 
(1 − 𝜏, 𝜏), 𝜏 ∈ (0, 0.5), the difference between regression coefficients (i.e., 𝛽#$! − 𝛽!) 
quantifies the effect of SNP on the variability of 𝑌 . Instead of choosing arbitrary 
quantile levels to define the effect size, we aggregate information across all quantile 
levels to define the vQTL effect: 

𝛽%& =	3 (𝛽#$! − 𝛽!)𝑑𝜏
'.)

'
 

Note that more generally we can use ∫𝑤!𝛽! 𝑑𝜏 to quantify the effect. In this study, we 
set 𝑤! = 1 when 𝜏 ≥ 0.5 and 𝑤! = −1 when 𝜏 < 0.5. Testing if a SNP is associated 
with the variability of 𝑌 is equivalent to testing the null 𝐻':	𝛽%& = 0. In practice, 𝛽%& can 
be approximated using a linear spline expansion from 𝐾 quantile levels: 

𝛽E%& =	
∑ (𝛽E#$!) − 𝛽E!))
-
./#

𝐾  

There are two key inference problems in this framework. First, to obtain parameter 
estimates 𝜃H which include 𝜇̂!.,	𝛽E!., and 𝛼J!) (𝑘 = 1,… , 𝐾), we can use a standard fitting 
approach for quantile regression40: 

𝜃H!) = 𝑎𝑟𝑔𝑚𝑖𝑛0O𝜌!.Q𝑌1 − 𝜇!) − 𝑔1𝛽!) − 𝑪𝒊𝛼!)R
1

 

where 𝜌!.(𝑢) = 𝑢[𝜏. − 𝐼(𝑢 < 0)]  and 𝑖  is the index for the 𝑖 -th individual in the 
analysis. However, to make the linear spline approximation accurate for 𝛽%&, 𝐾 needs 
to be big. This will lead to fitting 𝐾  quantile regressions for each SNP which is 
computationally challenging in genome-wide analysis. Second, the standard error for 
quantile integrated effect 𝛽E%&  involves estimation of the variance-covariance matrix 
for 𝛽E! and is difficult to obtain. We propose a two-step procedure in QUAIL to obtain 
statistically justified estimates for quantile integral effect while bypassing these 
computational challenges. 
 
Step 1: Transform the phenotype into a quantile integrated rank score. 
 
First, we estimate the intercept  𝜇̂! and covariate effects 𝛼J! under the null model (i.e., 
𝛽! = 0) for 2𝐾 quantile levels 

𝛼J! = 𝑎𝑟𝑔𝑚𝑖𝑛3*O𝜌!(𝑌1 − 𝑪𝒊𝛼! − 𝜇!)
4

1/#

, 𝜏 = 𝜏#, … 𝜏- , 1 − 𝜏#, … ,1 − 𝜏- ,	 

where 𝜌!(𝑢) = 𝑢[𝜏 − 𝐼(𝑢 < 0)] is the loss function for quantile regression. Importantly, 
this step is done on the null model, so it does not need to be repeated for different 
SNPs in genome-wide analysis. Then, for each individual 𝑖, we construct 2𝐾 quantile 
rank scores:  

𝑎J1(𝜏) = 𝜏 − 𝐼(𝑌1 < 𝑪𝒊𝛼J! + 	𝜇̂!), 𝜏 = 𝜏#, … 𝜏- , 1 − 𝜏#, … ,1 − 𝜏- , 
where	𝐼(𝑌1 < 𝑪𝒊𝛼J!) is a binary indicator for whether 𝑌1 is smaller than the estimated 𝜏56 
conditional quantile for 𝑌1.  
 
Then, we construct a quantile rank score for each individual: 

𝑌1! =
√𝑛 × 𝑎J1(𝜏) × 𝑆𝐸(𝛾J!)

√𝜏 − 𝜏*
	, 
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where 𝑛 is the sample size, 𝑆𝐸(𝛾J!) is the standard error of the regression coefficient 
estimate 𝛾J!  in quantile regression 𝑄"(𝜏|𝑑, 𝑪) = 𝑏! + 𝑑𝛾! + 𝑪𝛼!  and 𝑑  is a random 
variable sampled from 𝑁(0,1). Here, we create the random variable 𝑑 and calculate 
𝑆𝐸(𝛾J!) as described above to approximate 𝛽E%& 	using estimated quantile regression 
coefficients 𝛽E!) while bypassing the fitting of 𝐾 quantile regressions for each SNP. We 
show the details and rationale of this approximation in Supplementary Note and 
Supplementary Figure 7-8. 
 
Finally, we construct the quantile integrated rank score for each individual 𝑖  by 
combining 𝑌1! across quantile levels: 

𝑌%&1 =	
∑ [𝑌1(#$!)) 	− 𝑌1!)
-
./# ]

𝐾  

We then center the  𝑌%& =	 ^𝑌%&#, … , 𝑌%&4_
9
to have a mean 0. 

 
Step 2: Estimate the quantile integral effect. 
 
We estimate the quantile integral effect as 

𝛽E%& = 𝑎𝑟𝑔𝑚𝑖𝑛:‖𝑌%& − 𝐺∗
9𝛽	‖*, 

where 𝐺∗  is the 𝑛 × 1	vector of genotype residuals after regressing out covariates. 
More specifically, 𝐺∗ = (𝐼 − 𝑃,)𝐺, where 𝐺 is the original 𝑛 × 1	standardized genotype 
vector with mean 0 and variance 1, 𝐶 is the 𝑛	 × 	𝑚	matrix for covariates, and 𝑃, =
𝐶(𝐶9𝐶)$#𝐶9 is the projection onto the linear space spanned by 𝐶. Since we adjusted 
for covariates when obtaining the 𝑌%& and 𝐺∗, the quantile integral effect is account for 
the covariates’ effects on traits level and variance. We provide detailed derivations of 
this procedure in the Supplementary Note.  
 
Under the null hypothesis that the slopes (i.e., 𝛽!) are identical in quantile regressions 
based on different quantile levels 𝜏, 𝛽E%&  follows a normal asymptotic distribution 

𝛽E%&~𝑁 d0, 𝜎*Q𝐺∗
9𝐺∗R

$#
f, 

where 𝜎* = 𝑉𝑎𝑟(𝜖)  and 𝜖  is the residual in linear regression 𝑌%& = 𝐺∗𝛽 + 𝜖.  We 
provide the derivation for the null distribution of test statistics in the Supplementary 
Note. In our implementation, we use a linear regression 𝑌%& = 𝐺∗𝛽 + 𝜖 to obtain the 
QUAIL test statistics and p-values. 
 
Simulation settings 
 
We performed extensive simulations to evaluate the type-I error, statistical power, and 
the ability to correct for confounding effect on trait variability for five vQTL methods 
including QUAIL, LT, DRM, and HLMM with and without inverse normal transformation. 
We used 100 quantile levels (i.e., 𝐾 = 100) for QUAIL. We generated a SNP variable 
𝐺 coded as 0, 1, 2 from 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(2, 𝑓), where 𝑓 is the minor allele frequency (MAF) 
generated from a uniform distribution on [0.05, 0.5]. Environmental exposure 𝐸 was 
generated from a standard normal distribution 𝑁(0,1). We repeated the simulation 
1000 times and calculated FPR and power as the proportion of simulations where the 
null hypothesis was rejected at 𝑃 < 0.05.  
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For FPR simulations, we used a model where the SNP only has effects on the level 
but not the variance of the phenotype. We simulated phenotype for 10,000 individuals 
according to the model 𝑦1 = 𝛽<𝐺1 + 𝜖1 , 𝑖 = 1,… ,10000 , where 𝑦1  is the simulated 
phenotype, 𝜖1 is an error term with mean 0 and variance 𝜎=* for the 𝑖-th individual. To 
simulate the error term with different levels of skewness and kurtosis, we sampled 𝜖1 
from three different distributions: standard normal distribution 𝑁(0, 1), t distribution 
with df = 3, and 𝜒* distribution with df = 6. Regression coefficients were selected such 
that the proportion of total PVE by genotype, defined as 𝑉𝑎𝑟(𝛽<𝐺1)/𝑉𝑎𝑟(𝑦1) ranged 
between 0.5%	to 5%. 𝜎=* was set to be 1 − 𝑉𝑎𝑟(𝛽<𝐺1)/𝑉𝑎𝑟(𝑦1) so that 𝑉𝑎𝑟(𝑦1) = 1. 
 
For power simulation, we simulated the phenotype such that the SNP only has a 
variance effect on the phenotype. This variance effect is reflected in the interaction 
term for the SNP and environmental exposures.  We simulated phenotype for 10,000 
individuals according to the model 𝑦1 = 𝛽+>𝐺1𝐸1 + 𝜖1 , 𝑖 = 1,… ,10000, where 𝑦1 is the 
simulated phenotype, 𝜖1  is an error term with mean 0 and variance 𝜎=*  for the 𝑖-th 
individual. We also simulated error terms from three different distributions as 
described above. We selected the regression coefficients such that the proportion of 
total PVE by the GxE interaction, i.e., 𝑉𝑎𝑟(𝛽+>𝐺1𝐸1)/𝑉𝑎𝑟(𝑦1), ranged between 0.5%	to 
5%. We set 𝜎=* = 1 − 𝑉𝑎𝑟(𝛽+>𝐺1𝐸1)/𝑉𝑎𝑟(𝑦1).		 
 
To assess different methods’ robustness to confounding effect on trait variability, we 
simulated the phenotype such that the SNP has no effect and a covariate has variance 
effect on the phenotype. This covariate was generated from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) where 𝑝 
varies with each individual’s genotype value (i.e., 𝑝 = 0.2	for individuals with 𝐺 = 0, 
𝑝 = 0.5  when 𝐺 = 1 , and 𝑝 = 0.8  when 𝐺 = 2) . The covariate’s variance effect is 
reflected in the interaction term for the covariate and environmental exposures. We 
simulated phenotype for 10,000 individuals according to the model 𝑦1 = 𝛽,>𝐶1𝐸1 +
𝜖1 , 𝑖 = 1,… ,10000, where 𝑦1  is the simulated phenotype, 𝐶1  is the covariate,	𝜖1  is an 
error term that follows 𝑁(0, 𝜎=*) for the 𝑖 -th individual. We selected the regression 
coefficients such that the proportion of total PVE by the covariate x E interaction, i.e., 
𝑉𝑎𝑟(𝛽,>𝐶1𝐸1)/𝑉𝑎𝑟(𝑦1) , ranged between 2.5%	 to 20% . We also set 𝜎=* = 1 −
𝑉𝑎𝑟(𝛽,>𝐶1𝐸1)/𝑉𝑎𝑟(𝑦1)	to rescale the variance of 𝑦1 to be 1. 
 
 
UK Biobank data processing 
 
QC procedure of genetic data in the UK Biobank has been described elsewhere41. We 
analyzed UK Biobank samples with European ancestry inferred from genetic PCs 
(data field 22006). Participants that are recommended by UK Biobank to be excluded 
(data field 22010), those with conflicting genetically inferred (data field 22001) and 
self-reported sex (data field 31), and those who withdrew from the study were excluded 
from the analyses. We also removed related individuals identified by KING42 and 
retained 377,509 unrelated individuals with European descent. 
 
 
Genome-wide vQTL mapping for BMI 
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Following previous work on genome-wide analysis in UK Biobank43, we used year of 
birth (data field 34), sex (data field 31), genotyping array, and top 12 PCs computed 
using flashPCA244 on the analytical sample as covariates for both trait level and 
variability. We only included SNPs with a MAF > 1% and missingness < 1% in the 
analysis. 
 
We conducted genome-wide vQTL analysis using four methods: QUAIL, DRM, and 
HLMM_Var, and HLMM_Disp. For QUAIL, we transformed the BMI into a quantile 
integrated rank score, obtained SNP residual values by regressing each SNP on 
covariates, and estimated the vQTL effect by regressing the quantile integrated rank 
score on SNP residuals. For DRM, we first fit a linear model between BMI and 
covariates and calculated the BMI residual. Then, we applied DRM to quantify the 
effect of each SNP on BMI residual. For HLMM, we first applied an inverse normal 
transformation to BMI. Then, we fit HLMM to obtain the additive and log-linear variance 
effects (i.e., HLMM_Var). Next, we estimated the HLMM dispersion effect (i.e., 
HLMM_Disp) by using the additive and log-linear variance effects as described 
previously16.  
 
We set the genome-wide significance threshold as 5.0e-8. To determine the number 
of independent significant vQTL, we clumped the summary statistics for each method 
in PLINK245 (--clump option with parameters --clump-p1 5.0e-8 --clump-p2 5.0e-8 --
clump-r2 0.01 and --clump-kb 5000) using the analytic sample in UK Biobank as the 
LD reference panel. To visualize the results, we generated the Manhattan plot and 
quantile-quantile plot using the ramwas46 package in R. 
 
We also conducted a GWAS for BMI using Hail47 on the same data used in the vQTL 
analysis. We included year of birth, sex, genotyping array, and top 12 PCs computed 
using flashPCA244 on the analytical sample as covariates. LD clumping and 
visualization were performed similarly as described above.  
 
Additionally, we used the estimated intercept from LD score regression48 to quantify 
the level of unadjusted confounding in genome-wide vQTL analysis. We used ashR30 
on the full set of SNPs to estimate the proportion of non-null vQTL associations. 
 
 
Cell-type heritability enrichment analysis 
 
We used stratified LD score regression33 to perform cell-type enrichment analyses with 
gene expression data using the “Multi_tissue_gene_expr” (including data from GTEx 
and Franke lab) flag and default settings. We only included non-MHC HapMap3 SNPs 
for LD score regression analysis. Cell-type enrichment p-values across 205 functional 
annotations were adjusted using the Benjamini-Hochberg method for false discovery 
rate49. 
 
 
Gene-environment interaction enrichment analysis 
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We performed GxE interaction tests using genome-wide SNP data and two BMI-
related behavioral traits (i.e., PA and SB) in UK Biobank. Details about the construction 
of PA and SB variables can be found elsewhere13,15. For PA, we assigned a three-
level categorical score (low, medium, and high) based on the short form of the 
International Physical Activity Questionnaire (IPAQ) guideline for each individual. We 
defined SB as an integer using the combined time (hours) spent driving, using 
computer, and watching television. 
 
To assess the enrichment for GxE effects in top vQTL, we first clumped the QUAIL 
summary statistics in PLINK2 (--clump option with parameters --clump-p1 1 --clump-
p2 1 --clump-r2 0.1 and --clump-kb 1000) using the CEU samples in 1000 Genome 
Project Phase III cohort as the LD reference panel. Next, we performed a GxE analysis 
to test the interaction between each SNP in the clumped summary statistics and PA 
and SB based on the model: 

𝑌1 = 𝜇 + 𝛽<𝐺1 + 𝛽>𝐸1 + 𝛽&𝐺1𝐸1 + 𝜖,			𝑖 = 1,… , 𝑛, 
where 𝑌1 is BMI, 𝐺1 is the SNP genotype, and 𝐸1 is the environmental factor for the i-th 
individual. We defined nominally significant GxE using a p-value cutoff of 0.05. We 
also defined vQTL as the top 0.1, 0.5, 1, 5, 10, and 15 percent of SNPs ordered by 
their QUAIL p-values in the clumped summary statistics. The fold enrichment is 
calculated as the actual count of significant GxE among vQTL divided by the expected 
count. We used Fisher’s exact test to test the enrichment.  
 
For comparison, we also performed enrichment analysis for GxE interaction in top 
GWAS associations using the same analytical procedure described above.  
 
 
Predicting population-level trait variability  
 
To benchmark the predictive power of vPGS, we used data from three independent 
cohorts: HRS, Add Health, and WLS. We only included individuals of European 
ancestry in the analysis. The sample size is 10,550, 6,717, and 4,694 for HRS, Add 
Health, and WLS respectively. 
 
To compute vPGS, we first clumped each set of summary statistics in PLINK2 (--clump 
option with parameters --clump-p1 1 --clump-p2 1 --clump-r2 0.1 and --clump-kb 1000) 
using the CEU samples in 1000 Genome Project Phase III cohort as the LD reference 
panel. Then, we computed vPGS using PRSice-250 without p-value filtering. We 
calculated four vPGS based on different vQTL methods: QUAIL, DRM, HLMM_Var, 
and HLMM_Disp.  
 
To quantify the performance of vPGS in predicting the population-level variability, we 
first fit a multi-level linear growth curve model on BMI and age in each cohort:  

𝑌15 =	𝛽'1 +	𝛽#1𝐴𝑔𝑒15 +	𝛽*1𝐴𝑔𝑒15* + 𝑒15 , 
where 𝑌15  and 𝐴𝑔𝑒15  denote the BMI and age of respondent 𝑖  at time point 𝑡 , 
respectively (𝑖 = 1,… , 𝑛 and 𝑡 = 1,… , 𝑇1), 𝛽'1  is assumed to be normally distributed. 
We included linear and quadratic terms for age to reflect the non-linear age-dependent 
trajectory of BMI. The estimated individual intercept (i.e., 𝛽E'1) represents the expected 
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BMI after removing age effect. We denote it as BMI-adj and use it as the trait value for 
the further analysis described below.  
 
We extended our quantile regression framework to assess vPGS performance with 
two modifications due to the eased computational burden. First, we regress the 
phenotype on the vPGS and use the residual to construct the rank score 𝑎J1(𝜏) as 
described before. Second, we perform a standard quantile regression and use the 
kernel-based sandwich approach51 to obtain the standard error of the estimated 
quantile regression coefficient for vPGS, i.e., 𝑆𝐸Q𝛽E!R. We use the same approach to 
construct the quantile integrated rank score 𝑌%& for each individual. The effect size of 
vPGS can be quantified as 

𝛽E%& = 𝑎𝑟𝑔𝑚𝑖𝑛:w𝑌%& − 𝑣𝑃𝐺𝑆∗
9𝛽w

*
	, (1) 

where 𝑣𝑃𝐺𝑆∗  is the 𝑛	 dimensional vPGS residual vector after regressing out 
covariates. Here, original vPGS is standardized to have mean 0 and variance 1. We 
use this quantile integral effect to quantify the predictive performance of vPGS on the 
population-level variability. We adjusted sex and top 10 PCs in the analysis of each 
cohort.  
 
We also extend the DGLM14,26, the method implemented in HLMM, as an alternative 
approach to evaluate vPGS performance. The DGLM takes the form of  

𝐵𝑀𝐼1 =	𝛾' + 𝛾#𝐺1 + 𝑪𝒊Θ +	𝜀1, 𝜀1 	~𝑁(0, exp	(𝛼' + 𝛼#𝐺1 + 𝑿𝒊Φ)), 
where 𝐵𝑀𝐼1 denotes the inverse normal-transformed BMI-adj of individual 𝑖, 𝐺1 is the 
vPGS of individual 𝑖, 𝑪𝒊	 is the vector of covariates including sex and top 10 PCs. Here, 
𝛼#  quantifies the effect of vPGS on the variability of BMI and is the parameter of 
interest in this analysis. We fitted DGLM using the dglm52 packages in R. 
 
To visualize the predictive performance of vPGS in predicting the population-level 
variability, we divided samples into 5 quintiles according to their vPGS values and 
compared the variance of BMI-adj across quintiles in each cohort.  
 
 
Predicting within-individual trait variability  
 
We used the same three external datasets (i.e., WLS, HRS, and Add Health) to 
benchmark the performance in predicting within-individual BMI variability. We applied 
the same QC procedure described above except that we only included individuals with 
reported BMI in at least two waves. 
 
We quantified the wave-to-wave BMI variability using CV53 defined as: 

𝐶𝑉1 =
𝑆𝐷1
𝜇1

 

where 𝑆𝐷1 is the BMI standard deviation of the 𝑖-th individual across waves and 𝜇1 is 
the individual mean of BMI across waves. We calculated CV for each individual based 
on all of the participant's BMI measurements across waves. Then, we used linear 
regression to quantify the predictive performance of vPGS on the within-individual 
variability. We regressed CV on vPGS in each cohort and included sex, mean age 
across waves, and top 10 PCs as covariates. To visualize the results, we divided 
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samples from each cohort into 5 quintiles according to their vPGS values and 
compared the average CV across quintiles.  
 
 
Gene-environment interaction analysis using vPGS 
 
To test GxE interactions using vPGS, we randomly apportioned unrelated UKB 
participants of European descent (N=375,791) into training (N=300,633) and testing 
sets (N=75,158), with an 80-20 split. We applied QUAIL to estimate the effect of each 
SNP on BMI variability using samples in the training set, while controlling for year of 
birth, sex, genotyping array, and top 12 PCs computed using flashPCA244 on the 
analytical sample as covariates.  
 
Next, we used weights obtained in the training set to construct vPGS for samples in 
the testing set. To compute vPGS, we first clumped the summary statistics in PLINK2 
(--clump option with parameters --clump-p1 1 --clump-p2 1 --clump-r2 0.1 and --clump-
kb 1000) using the CEU samples in 1000 Genome Project Phase III cohort as the LD 
reference panel. Then, we computed vPGS using PRSice-2 without p-value filtering.  
 
We tested vPGSxE effects on BMI by fitting the following model: 

𝑌1 = 𝜇 + 𝛽+𝑣𝑃𝐺𝑆1 + 𝛽>𝐸1 + 𝛽&𝑣𝑃𝐺𝑆1𝐸1 + 𝜖, 
where 𝑌1 is BMI, 𝑣𝑃𝐺𝑆1 is the standardized vPGS with mean 0 and variance 1, and 𝐸1 
is the environmental factor (i.e., PA or SB) for the 𝑖-th individual. We adjusted for year 
of birth, sex, genotyping array, and top 12 PCs. To check the robustness of our results, 
we repeated our vPGSxE analysis on BMI using the model above with vPGS-Sex and 
vPGS-Year of birth interaction terms as additional covariates. 
 
To visualize the interaction, we divided samples into 10 deciles based on their vPGS 
values and compared estimates of the environmental factor on BMI across vPGS 
deciles. 
 
 
URL 
 
UK Biobank (http://www.ukbiobank.ac.uk/);  
HRS (https://hrs.isr.umich.edu/about); 
Add Health (https://addhealth.cpc.unc.edu/); 
WLS(https://www.ssc.wisc.edu/wlsresearch/);  
HLMM (https://hlmm.readthedocs.io/en/latest/); 
DRM (https://github.com/drewmard/DRM); 
ashR (https://github.com/stephens999/ashr). 
 
 
Data and code availability 
 
QUAIL software package is publicly available at (https://github.com/qlu-lab/QUAIL). 
Summary statistics of QUAIL vQTL analysis for BMI are available at (http://qlu-
lab.org/data.html).  
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