

1 **Monomorphic *Trypanozoon*: towards reconciling phylogeny and pathologies**

2

3 **1.1 Author names**

4 Guy Oldrieve¹ (0000-0003-1428-0608), Mylène Verney² (0000-0002-0708-0045), Kamil S.

5 Jaron³ (0000-0003-1470-5450), Laurent Hébert² (0000-0002-5738-9913), Keith Matthews^{1*}

6 (0000-0003-0309-9184)

7

8 **1.2 Affiliation**

9 ¹: Institute for Immunology and Infection Research, School of Biological Sciences, University
10 of Edinburgh, Edinburgh EH9 3FL, UK

11 ²: ANSES, Unité PhEED, Laboratoire de santé animale, site de Normandie, RD675, 14430
12 Goustranville, France

13 ³: Institute of Evolutionary Biology, Ashworth Laboratories, School of Biological Sciences,
14 University of Edinburgh, Edinburgh EH9 3JT, UK

15

16 **1.3 Corresponding author ***

17 keith.matthews@ed.ac.uk

18

19 **1.4 Keywords**

20 *Trypanosoma brucei*, monomorphism, asexual, selection efficacy, phylogeny

21

22 **1.5 Repositories**

23 Raw reads generated as part of this project are available from the Sequence Read Archive

24 <https://www.ncbi.nlm.nih.gov/sra/PRJNA720808> (PRJNA720808).

25 **2. Abstract**

26

27 *Trypanosoma brucei evansi* and *Trypanosoma brucei equiperdum* are animal infective
28 trypanosomes conventionally classified by their clinical disease presentation, mode of
29 transmission, host range, kDNA composition and geographic distribution. Unlike other
30 members of the subgenus *Trypanozoon*, they are non-tsetse transmitted and predominantly
31 morphologically uniform (monomorphic) in their mammalian host. Their classification as
32 independent species or subspecies has been long debated and genomic studies have found
33 that isolates within *T. b. evansi* and *T. b. equiperdum* have polyphyletic origins. Since current
34 taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed
35 publicly available genomic data to carefully define each clade of monomorphic trypanosome.
36 This allowed us to identify, and account for, lineage specific variation. We included a recently
37 published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse
38 with dourine and typed as *T. equiperdum*. Our analyses corroborate previous studies in
39 identifying at least four distinct monomorphic *T. brucei* clades. We also found clear lineage
40 specific variation in the selection efficacy and heterozygosity of the monomorphic lineages,
41 supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1
42 suggests its reassignment to the *T. b. evansi* type B clade, challenging the relationship
43 between the *Trypanozoon* species, the infected host, mode of transmission and the
44 associated pathological phenotype. The analysis of IVM-t1 also provides the first evidence of
45 the expansion of *T. b. evansi* type B, or a 5th monomorphic lineage represented by IVM-t1,
46 outside of Africa, with important possible implications for disease diagnosis.

47 **3. Impact statement**

48

49 *Trypanosoma brucei* are unicellular parasites typically transmitted by tsetse flies.

50 Subspecies of *T. brucei* cause human African trypanosomiasis and the animal diseases,

51 nagana, surra and dourine. *T. b. evansi* and *T. b. equiperdum* have branched from *T. brucei*

52 and, by foregoing tsetse transmission, expanded their geographic range beyond the sub-

53 Saharan tsetse belt. These species can only reproduce asexually and exhibit morphological

54 uniformity in their host ('monomorphism'). *T. b. evansi* and *T. b. equiperdum* have historically

55 been classified based on fragmentary information on the parasites' transmission routes,

56 geographic distribution, kDNA composition and disease phenotypes. Our analysis of

57 genome sequencing data from monomorphic *T. brucei* supports at least four independent

58 origins with distinct evolutionary histories. One isolate, IVM-t1, typed as *T. equiperdum*, is a

59 closer relative to *T. b. evansi*, highlighting the risk of using pathognomonic descriptors for

60 subspecies assignment. We show clear lineage specific variation in the selection efficacy in

61 monomorphic *T. brucei*. Using the evolutionary relationships between lineages, we suggest it

62 would be beneficial to reconcile phylogeny and pathology in monomorphic trypanosomes.

63 **4. Data summary**

64

65 The data used in this study is available from the Sequence Read Archive or the Wellcome

66 Sanger Institute. The accessions can be found in Supplementary file 1.

67 **5. Introduction**

68

69 The *Trypanozoon* subgenus (*Trypanosoma brucei* spp.) contains parasites of medical,
70 veterinary and economic significance. In their mammalian form, developmentally competent
71 (pleomorphic) trypanosomes transition from a proliferative ‘slender’ form to a cell-cycle
72 arrested ‘stumpy’ form, adapted for survival in the midgut of its vector, the tsetse fly
73 (*Glossina* spp.). Progression to the stumpy form occurs in a density dependent manner,
74 mediated by a stumpy induction factor (1–4). Some *Trypanozoon* have a reduced ability to
75 transition from the slender to stumpy morphotype and so are described as ‘monomorphic’. In
76 the field, monomorphic *Trypanozoon* were historically classified as independent species, *T.*
77 *equiperdum* and *T. evansi*, due to their distinct modes of transmission, geographic
78 distribution, disease phenotype and host range (5). These monomorphic trypanosomes can
79 infect livestock, and are currently implicated in causing dourine and surra, respectively (6).

80

81 More recently, it was proposed that *T. evansi* and *T. equiperdum* are subspecies of *T. brucei*
82 (*T. b. evansi* and *T. b. equiperdum*) which had lost part or all of their kDNA, the parasites’
83 mitochondrial genome that encodes respiratory components required for viability in the
84 tsetse fly vector (7). Whole genome comparisons found that monomorphism arose
85 independently on at least four separate occasions, and further monomorphic isolates could
86 be continuously emerging from pleomorphic *T. brucei* in the field. However, *T. b. evansi* and
87 *T. b. equiperdum* are polyphyletic and can be assigned into at least four independently
88 derived lineages, such that their subspecific names do not describe the evolutionary
89 relationships between the different monomorphic *Trypanozoon* (8–10). *T. b. evansi* type A
90 and *T. b. evansi* type B originate from *T. brucei* in Western and Central Africa whilst *T. b.*
91 *equiperdum* type OVI and *T. b. equiperdum* type BoTat evolved from *T. brucei* in Eastern
92 Africa (9). Whilst many naming conventions exist, for the remainder of this article we will use
93 the proposition by Cuypers *et al.* (2017) (9), which currently most accurately describes the

94 polyphyletic nature of monomorphic trypanosomes (i.e. *T. b. evansi* type A, *T. b. evansi* type
95 B, *T. brucei*, *T. b. equiperdum* type OVI and *T. b. equiperdum* type BoTat).

96

97 The four *T. brucei* lineages converged on a monomorphic phenotype accompanied by a
98 switch from cyclical to mechanical transmission. All of the monomorphic subspecies display
99 a reduction or removal of their kDNA alongside an inability to complete their life cycle in their
100 vector, locking these parasites into a tsetse-independent transmission mode (11,12). Current
101 evidence suggests that *T. b. evansi* type A and *T. b. evansi* type B predominantly rely on
102 transmission via biting flies (e.g., tabanids and *Stomoxys*), whilst *T. b. equiperdum* type OVI
103 and *T. b. equiperdum* type BoTat are sexually transmitted between Equidae. Neither are
104 cyclically transmitted via the tsetse vector (6) and, as sexual reproduction occurs in the
105 tsetse salivary gland (13,14), monomorphic trypanosomes are obligately asexual and
106 proliferate via mitosis (15). Escape from transmission by the tsetse fly, whose range is
107 restricted to sub-Saharan Africa, has facilitated the expansion of monomorphic
108 trypanosomes to other regions of Africa, Asia, Europe and the Americas, although they have
109 subsequently been eradicated from North America and limited to local outbreaks in Europe
110 (16).

111

112 The use of disease pathology, host species, geographic range and kDNA composition can
113 complicate species classification where distinct lineages have converged on a phenotype.
114 Research that treats polyphyletic lineages as a single group may miss more subtle, but
115 important, differences between lineages. Here we have re-analysed existing genomic data
116 from publicly available monomorphic *Trypanozoon* isolates to confirm their evolutionary
117 relationships. This analysis included a recent isolate from Mongolia, IVM-t1, derived from the
118 genital mucosa of a horse and classified as *T. equiperdum* based on its clinical disease
119 symptoms and host species (17,18).

120

121 Through re-analysing publicly available whole genome data, we found at least four groups of
122 monomorphic *T. brucei* with independent origins, consistent with previously published
123 phylogenies (8,9). Our analysis concludes that currently IVM-t1 forms a clade with *T. b.*
124 *evansi* type B, despite its clinical presentation being more typical of the conventional
125 description of *T. equiperdum*. The presence of IVM-t1 in the genital mucosa of a horse with
126 signs of dourine supports the hypothesis that there is considerable plasticity in the mode of
127 transmission, host range and clinical presentation of monomorphic *Trypanozoon* strains of
128 distinct origins, as was suggested by Brun *et al.* and Carnes *et al.* (8,19). These findings
129 exemplify the need to classify monomorphic trypanosomes based on genetic information,
130 unbiased by the mode of transmission, disease presentation, kDNA composition and host
131 range. We also identified lineage specific variation in the heterozygosity and efficacy of
132 selection of the four independent monomorphic lineages, highlighting the importance of
133 characterising phylogeny-informed lineages. Finally, we note that the ancestor of the *T. b.*
134 *evansi* type B clade, or a 5th monomorphic lineage represented by IVM-t1, extended its
135 geographic range outside of Africa.

136 **6.1 Methods**

137

138 **Variant calling**

139

140 Publicly available genome data was accessed from the Sequence Read Archive (SRA) (20)
141 and the Wellcome Sanger Institute. Samples sequenced with older technologies, such as
142 solid-state ABI, were excluded. When PacBio and Illumina data was available for the same
143 sample, Illumina data was used preferentially to standardise the comparison.

144

145 The *T. brucei* EATRO 1125 Antat 1.1 90:13 (21) genome was sequenced as part of this
146 study. DNA was extracted using the DNeasy Blood & Tissue Kit with an RNase A step
147 (Qiagen) following the manufacturer's instructions. The DNA was sequenced (HiSeq 4000)
148 and cleaned by BGI, Hong Kong (7,723,274 reads at 150 base pair length). The *T. brucei*
149 EATRO 1125 Antat 1.1 90:13 raw data has been submitted to SRA (PRJNA720808). The
150 complete list of genomes analysed in this study, including their accession IDs, are
151 summarised in the supplementary file 1.

152

153 The quality of the raw reads were analysed with fastqc (v:0.11.9) and subjected to quality
154 trimming with trimmomatic (v0.39) (22). The reads were trimmed with the following filters:
155 SLIDINGWINDOW:4:20, ILLUMINACLIP:adapters.fa:2:40:15, MINLEN:25. The trimmed
156 reads were aligned to the *T. brucei* TREU927/4 V5 reference genome (23) with bwa-mem
157 (v:0.7.17-r1188) (24). The reads were prepared for variant calling by following the GATK4
158 (v:4.1.4.1) best practices pipeline which included marking duplicate reads (25,26). The read
159 recalibration step was performed by initially calling variants on un-calibrated reads with
160 GATK4's haplotype caller (27). The top 20% highest confidence calls from the first round
161 were used as the confident call set to re-calibrate the raw bam files. Variants were then re-
162 called on the recalibrated bam files with GATK4's haplotype caller (27).

163

164 The variants were combined and filtered with the following stringent cut-offs, in keeping with
165 GATK's best practices pipeline and previous studies (9). SNPs were filtered by quality by
166 depth (< 2.0), quality score (< 500.0), depth (<5.0), strand odds ratio (> 3.0), Fisher's exact
167 (> 60.0), mapping quality (< 40.0), mapping quality rank sum (< -12.5), read position rank
168 sum (< -8.0), window size (10) and cluster size (3). Indels were filtered on their quality by
169 depth (< 2.0), quality (< 500.0), Fisher's exact (> 200.0) and read position rank sum (< -
170 20.0).

171

172 **Phylogenetic analysis**

173

174 The filtered variants, described above, were filtered again to retain sites where a genotype
175 had been called in every sample, using VCFtools (v:0.1.16) (28). These sites were analysed
176 in two ways. The first was based on SNPs which occurred across all of the sites in the *T.*
177 *brucei* TREU927/4 V5 reference genome and the second from SNPs which occurred in a
178 CDS of a gene (excluding pseudogenes) found on one of the 11 megabase chromosomes
179 (23). For both of these analyses, a concatenated alignment of each variant was extracted
180 using VCF-kit (v:0.1.6) (29). IQ-TREE (v:2.0.3) (30) was used to create a maximum
181 likelihood tree from homozygous variant sites. Within the IQ-TREE analysis, a best-fit
182 substitution model was chosen by ModelFinder using models which included ascertainment
183 bias correction (MFP+ASC) (31). ModelFinder identified TVM+F+ASC+R2 as the best fit for
184 both of the alignments which were subjected to 1000 ultrafast bootstraps generated by
185 UFBoot2 (32). The consensus trees were visualised and annotated using iTOL (v:5) (33).

186

187 **Genome content**

188

189 Raw reads were used to predict the heterozygosity, GC content and genome size of each
190 isolate. This analysis was performed using a k-mer counting based approach with Jellyfish
191 (v:2.3.0) (34) and Genomescope (v:1). A k-mer size of 21 was used (35).

192 Non-synonymous and synonymous SNP ratios (dN/dS) can be used to estimate the
193 selection pressure upon an organism. The filtered SNPs identified for the phylogenetic
194 analysis was split by isolate using bcftools (v:1.9) (36) and these were then filtered to
195 remove all non-variant sites using GATK4 SelectVariants (v:4.1.9.0). The reverse
196 complement of each variant call format (VCF) file was generated using SNPGenie (v:
197 2019.10.31) (37). SNPGenie within-pool analysis was then completed on each isolate for
198 SNPs found in the longest CDS site of each gene, excluding pseudogenes, on the 11
199 megabase chromosomes of the *T. brucei* TREU927/4 V5 reference genome (23). The full
200 dN/dS results are available in Supplementary file 2.

201

202 **Molecular markers**

203

204 Molecular marker sequences were downloaded from NCBI: SRA (Z37159.2), RoTat1.2
205 (AF317914), *evansi* VSG JN2118HU (AJ870487), cytochrome oxidase subunit 1 (CO1)
206 (M94286.1:10712-12445) and NADH dehydrogenase subunit 4 (NADH4) (M94286.1:12780-
207 14090). bwa-mem (v:0.7.17-r1188) (24) was used to align raw reads to the molecular
208 markers. A minimum overlap of 50 base pairs between the read and target sequence was
209 used. The molecular marker presence was confirmed by counting the number of bases in
210 the target sequence covered by reads, representing the breadth of coverage, with samtools
211 mpileup (38). Orphan reads were counted and read pair overlap detection was disabled. The
212 breadth of coverage percentage was visualised with pheatmap (v:1.0.12) (39). The ATP
213 synthase γ subunit (Tb927.10.180) was screened for lineage specific variants identified in
214 the variant calling step.

215

216 Unless stated otherwise, all figures were plotted using ggplot2 (v:3.3.0) (40) and ggrepel
217 (v:0.8.1) (41) in R (v:3.6.1) (42).

218 **6.2 Results**

219

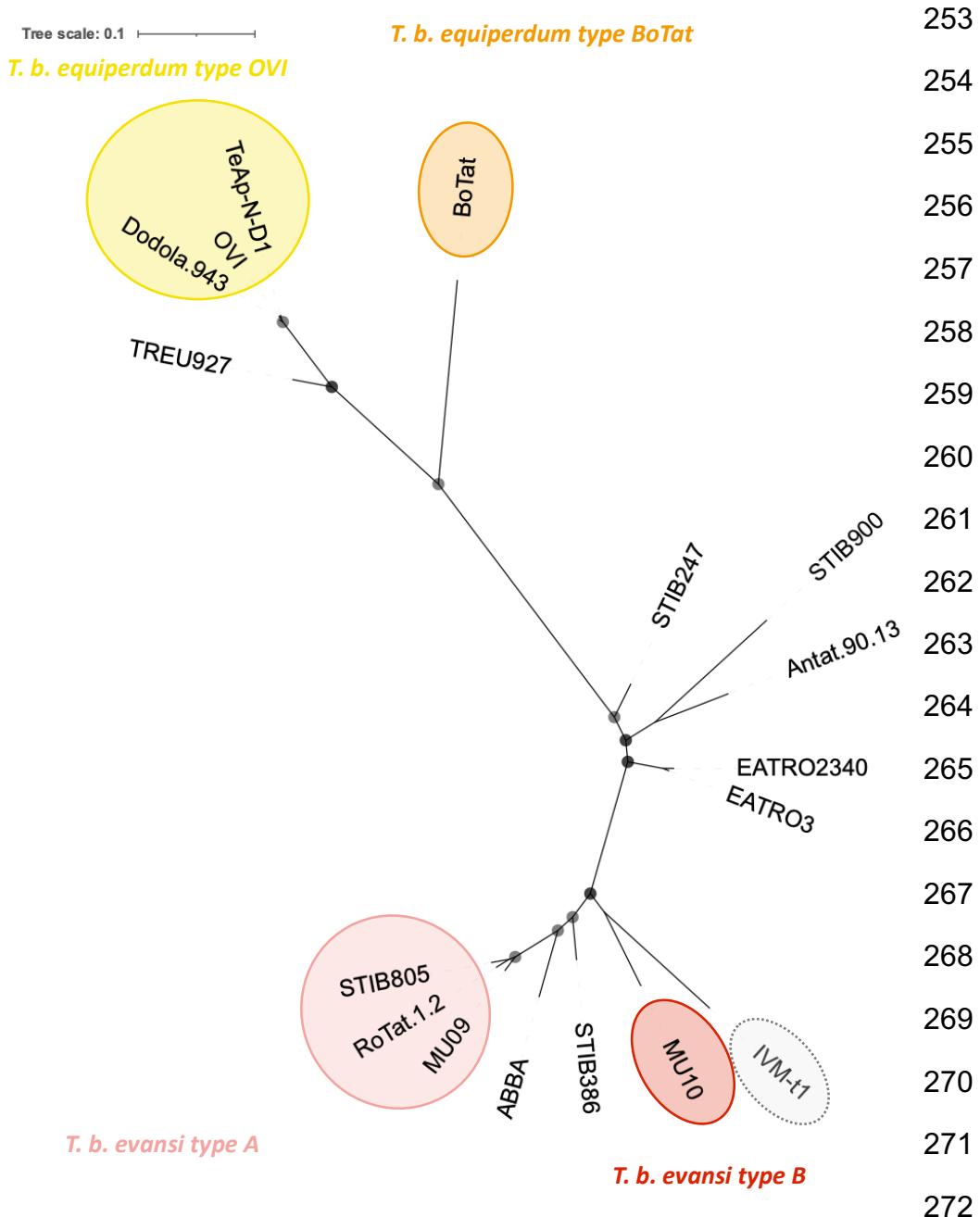
220 **Monomorphism arose independently at least four times**

221

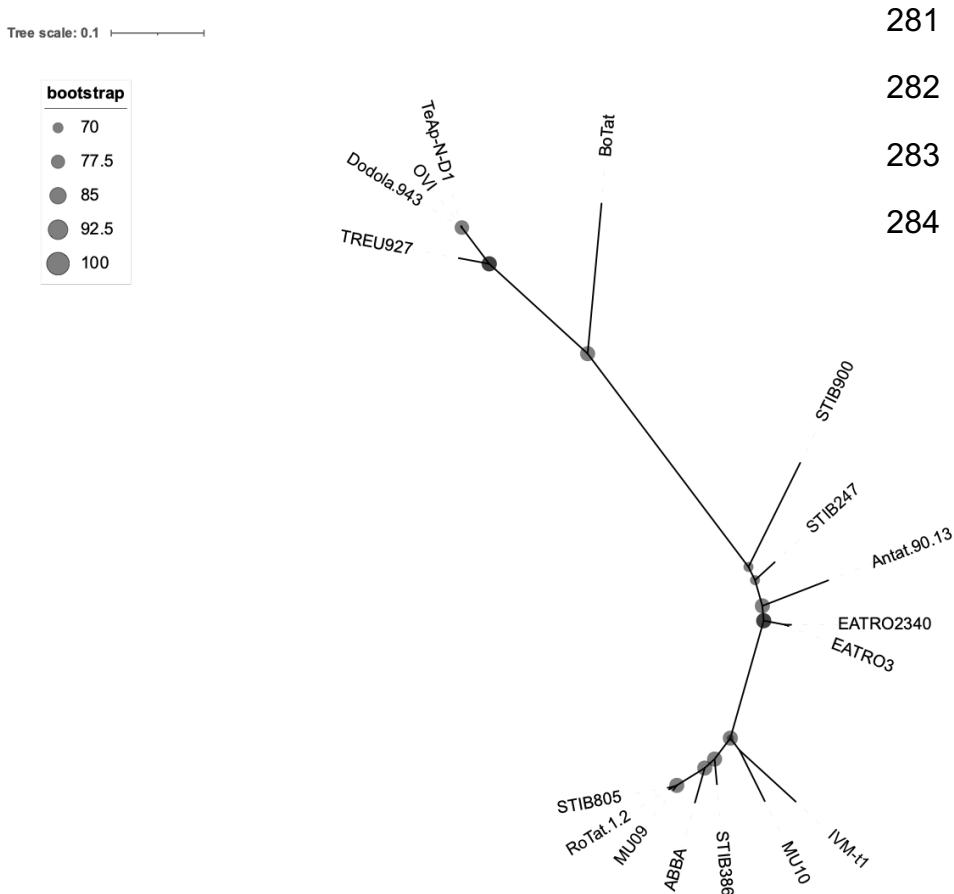
222 To determine the evolutionary relationships between monomorphic *Trypanozoon*, genomic
223 data from 17 isolates were aligned to the *T. brucei* TREU 927/4 reference genome. This
224 included publicly available data from monomorphic (n=9) and pleomorphic isolates (n=8).
225 Across the *T. brucei* TREU 927/4 v5 reference genome, 472,794 variant sites (574,775
226 unique variant alleles, 370,154 SNPs and 204,621 indels) passed the strict quality filtering
227 steps. These sites were filtered further to identify 244,013 homozygous variant SNPs across
228 the genome. 91,853 of these SNPs were present in a CDS on one of the 11 megabase
229 chromosomes of the *T. brucei* TREU 927/4 v5 reference genome. The SNPs across the
230 whole genome and those in a CDS were used to generate two unrooted phylogenetic trees.

231

232 Monomorphic *T. brucei* form at least four independent clades (Fig. 1). Our results
233 corroborate previous findings (8,9) which identified that the *T. b. equiperdum* type OVI clade
234 arose in Eastern Africa and displays minimal variation between the isolates. *T. b.*
235 *equiperdum* type BoTat is separated from other *T. b. equiperdum* isolates and represents an
236 Eastern African isolate of distinct origin. Trypanosomes designated *T. b. evansi* also form
237 two discrete clades of Western and Central African origin, with STIB805, RoTat1.2 and
238 MU09 (*T. b. evansi* type A) displaying low genetic diversity and being distinct from MU10 (*T.*
239 *b. evansi* type B).


240

241 Interestingly, the Mongolian isolate IVM-t1, with infection and disease characteristics similar
242 to *T. b. equiperdum*, branched with MU10 which is of West African origin. This contrasts with
243 its previous designation as a *T. equiperdum* isolate, whose ancestors originated from
244 Eastern Africa (9) (Fig. 1). Nonetheless, whilst IVM-t1 and MU10 shared a more recent
245 common ancestor with each other than with any other strain in this analysis, MU10 and IVM-


246 t1 have diverged considerably. Should pleomorphic *T. brucei* isolates be identified which
247 divide the clade composed of MU10 and IVM-t1, the isolates would represent independent
248 clades.

249

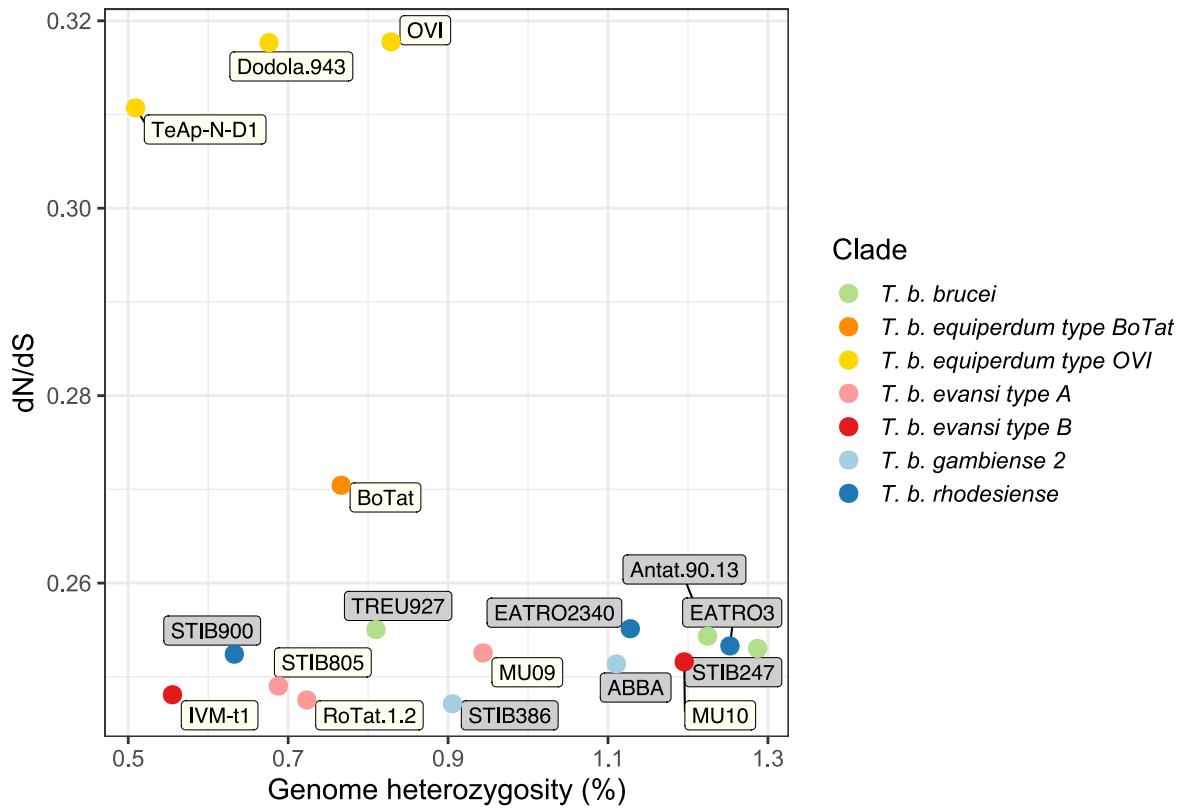
250 The results generated from SNPs found across the whole genome were similar to a tree built
251 from SNPs found in only the CDS, with the former displaying a slight reduction in bootstrap
252 confidence (Fig. S1).

273 **Figure 1:** An unrooted phylogenetic tree created with 244,013 homozygous variant SNPs
274 found across the *T. brucei* TREU 927/4 reference genome. The tree was built using a
275 TVM+F+ASC+R2 model. Bootstrap confidence is reported by the size of grey circles. All
276 bootstrap values were 100 and so each circle is the same size. Monomorphic genomes form
277 four distinct lineages which have expanded from Eastern (*T. b. equiperdum* type OVI and *T.*
278 *b. equiperdum* type BoTat) and Western/Central Africa (*T. b. evansi* type A and *T. b. evansi*
279 type B) (9). IVM-t1 was originally typed as *T. b. equiperdum* but groups here with *T. b.*
280 *evansi* type B.

285 **Supplementary figure 1:** An unrooted phylogenetic tree created with 91,853 homozygous
286 variant SNPs identified in a CDS on one of the 11 megabase chromosome of the *T. brucei*
287 TREU 927/4 reference genome. The tree was built using the TVM+F+ASC+R2 model.
288 Bootstrap values are reported by circle size. Monomorphic genomes form four distinct
289 lineages which have expanded from Eastern (*T. b. equiperdum* type OVI and *T. b.*
290 *equiperdum* type BoTat) and Western/Central Africa (*T. b. evansi* type A and *T. b. evansi*
291 type B).

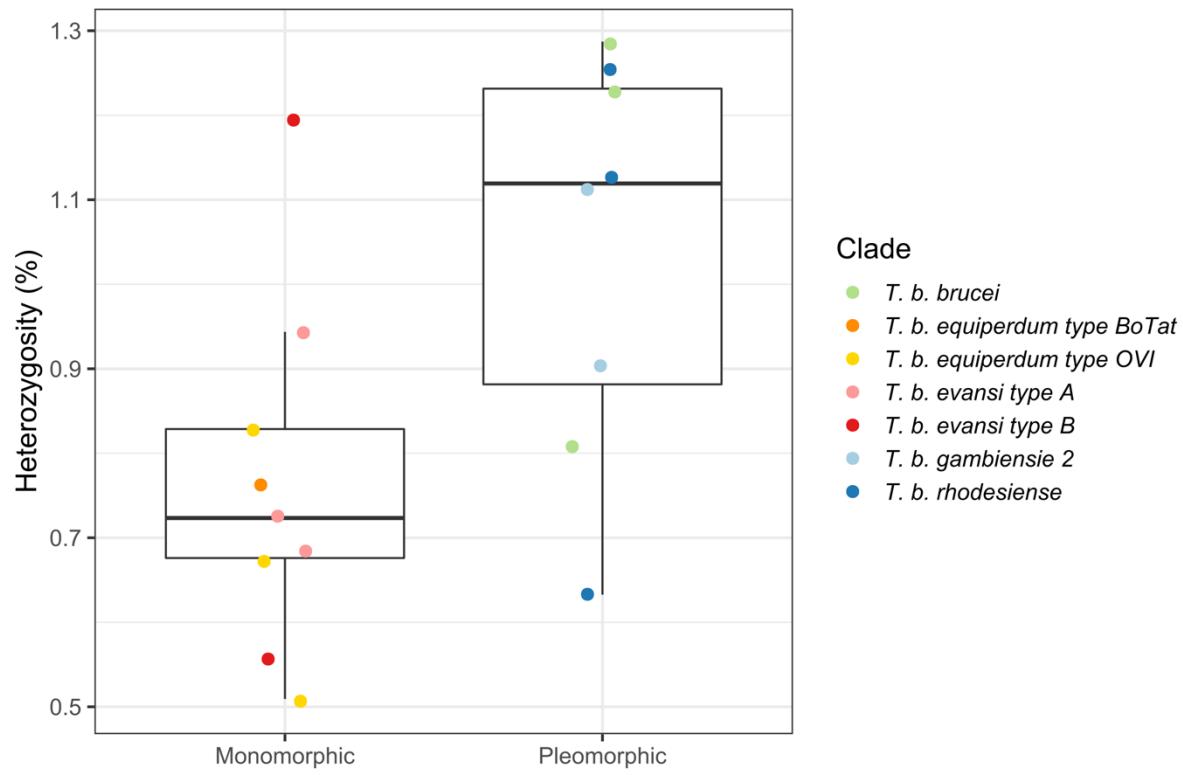
292 **There is quantifiable variation in the genetic diversity, and efficacy of selection
293 between the four asexual monomorphic clades**

294


295 Asexuality is expected to reduce the heterozygosity of the lineage, although this can be
296 lineage specific (43). Asexuality can also reduce the efficacy with which selection can act, as
297 reviewed by Otto, 2021 (44). Efficacy of selection can be estimated by calculating the ratio of
298 nonsynonymous to synonymous variants (dN/dS) compared to a reference genome.

299

300 Our analysis demonstrated that monomorphic genomes generally have a lower
301 heterozygosity compared to the genomes derived from pleomorphic isolates (Fig. 2 &
302 Fig.S2). Notable outliers in this analysis includes MU10 (*T. b. evansi* type B) which has a
303 heterozygosity value closer to that of pleomorphic genomes. The higher dN/dS ratio
304 observed in *T. b. equiperdum* type OVI is in contrast to the other monomorphic lineages,
305 highlighting the lineage specific variation, and evolutionary histories, of monomorphic
306 *Trypanozoon*.


307

308 Interestingly, IVM-t1 has the second lowest heterozygosity and one of the lowest dN/dS
309 ratios in this analysis, more similar to that of *T. b. evansi* type A and *T. b. evansi* type B and
310 in contrast to the levels observed in *T. b. equiperdum* type OVI and *T. b. equiperdum* type
311 BoTat (Fig. 2). Raw reads from *T. b. brucei* TREU 927/4 were included in the analysis. The
312 variants called against its own genome assembly represent heterozygous loci and
313 misaligned reads. *T. b. equiperdum* BoTat has the longest branch length in this analysis but
314 has a far lower dN/dS ratio than the *T. b. equiperdum* type OVI clade (Fig. S3). The low
315 dN/dS of *T. b. brucei* TREU 927/4 called against its own genome and the pattern of branch
316 length and dN/dS ratio highlights that high dN/dS of *T. b. equiperdum* type OVI is not the
317 result of the evolutionary distance between the clade and the reference genome.



318

319 **Figure 2:** Whole genome heterozygosity and dN/dS ratio of SNPs present in the longest
320 CDS of every annotated gene, excluding pseudogenes, found on one of the 11 megabase
321 chromosomes of the *T. brucei* TREU 927/4 reference genome. The values were calculated
322 for all publicly available monomorphic isolates and representative pleomorphic isolates.
323 Each point is coloured by clade and the label colour represents a pleomorphic (grey) or
324 monomorphic (white) isolate.

325 **Supplementary figure 2:** Whole genome heterozygosity of monomorphic and pleomorphic
326 isolates.

327 **Supplementary figure 3:** Branch length and dN/dS ratio of SNPs present in the CDS of
328 genes found on the 11 megabase chromosomes of the *T. brucei* TREU 927/4 reference
329 genome. The values were calculated for all publicly available monomorphic isolates and
330 representative pleomorphic isolates. Each point is coloured by clade and the label colour
331 represents a pleomorphic (grey) or monomorphic (white) isolate.

332 **Genetic markers corroborate phylogenetic and genome content analysis**

333

334 The occurrence of established molecular markers for different *Trypanosoma brucei*
335 subspecies was compared between the isolates to further validate whole genome analysis.

336 The markers' occurrence in each isolate was visualised in a hierarchical clustered heatmap.

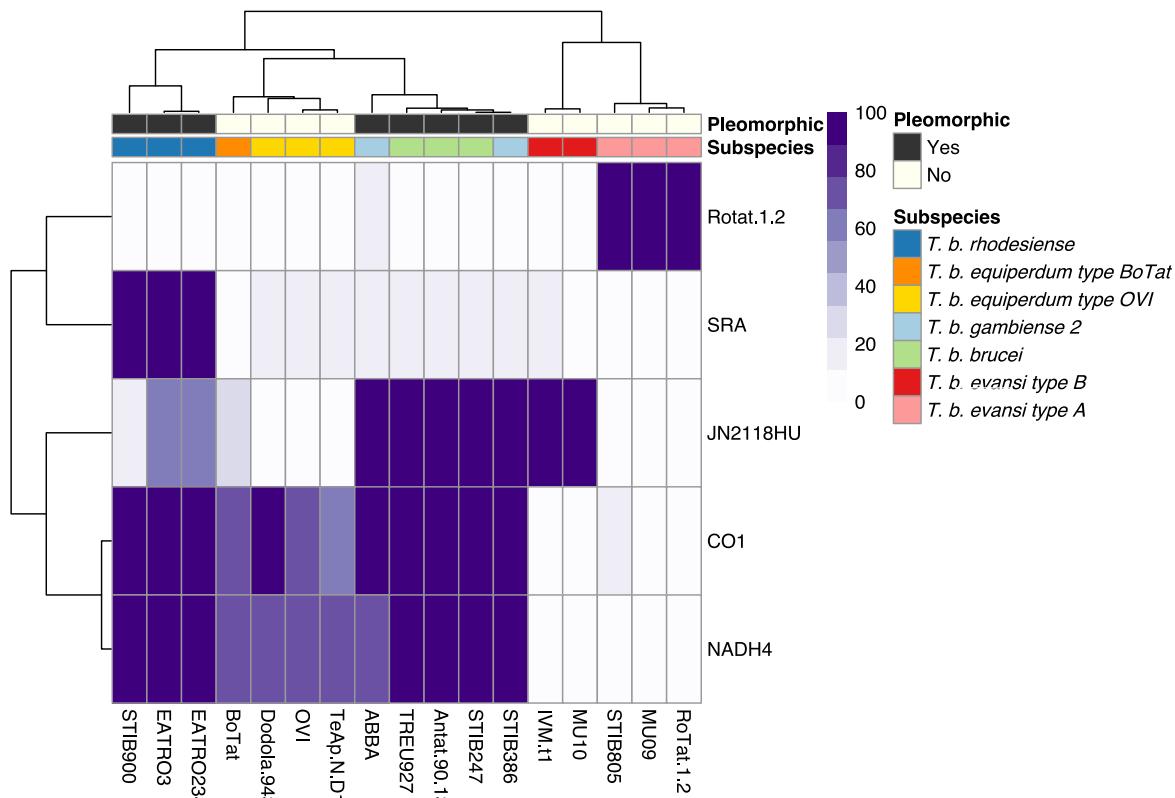
337 The clustering highlights a clear distinction between the monomorphic lineages and
338 furthermore, with just five molecular markers, it is possible to recreate a similar pattern to the
339 phylogenetic tree which is based on whole genome sequencing data (Fig. 1 & 3).

340

341 As our phylogenetic and genome content analysis identified a potential discrepancy between
342 the disease description of IVM-t1 and its genotype, particular interest was paid to this isolate.

343 Firstly, being akinetoplastic at the point of sequencing, IVM-t1 lacks coverage of the
344 mitochondrial maxicircle genes cytochrome oxidase subunit 1 (CO1) (M94286.1:10712-
345 12445) and NADH dehydrogenase subunit 4 (NADH4), as do *T. b. evansi* type A and *T. b.*
346 *evansi* type B. However, when IVM-t1 was initially isolated, a PCR for NADH4 found that it
347 contained the gene, albeit with a faint signal (17). Therefore, maxicircle presence in IVM-t1
348 appears to have been unstable, as is the case in kDNA independent isolates. IVM-t1
349 reportedly became akinetoplastic after long term culture adaptation, as has been observed in
350 other monomorphic isolates (45,46). In contrast to IVM-t1, CO1 and NADH4 are present in
351 *T. b. equiperdum* type OVI and *T. b. equiperdum* type BoTat genomes.

352


353 Secondly, IVM-t1 lacks the RoTat 1.2 VSG (AF317914.1), which is diagnostic for *T. b.*
354 *evansi* type A (47), but does have sequence coverage of VSG JN2118HU (AJ870487.1)
355 which is present in *T. b. evansi* type B, along with some *T. b. brucei* strains (48,49). In
356 contrast, JN2118HU is absent in *T. b. evansi* type A, *T. b. equiperdum* type OVI and *T. b.*
357 *equiperdum* type BoTat (Fig. 3).

358

359 Thirdly, IVM-t1 does not have the M282L ATP synthase γ subunit mutation which has been
360 characterised in other *T. b. evansi* type B genomes, such as MU10 (Supplementary file 3)
361 (49,50). This mutation is unable to compensate for kDNA loss (50). However, IVM-t1 does
362 have two homozygous mutations within that gene which are absent from all other isolates in
363 this analysis (C-terminal genomic codons G817T and A898G) although both are
364 synonymous and so predicted not to influence protein function.

365

366 In combination, these analyses further support the separation of IVM-t1 from the *T. b.*
367 *equiperdum* type OVI and *T. b. equiperdum* type BoTat lineages and also highlights
368 differences to *T. b evansi* MU10 lineage despite the phylogenetic relationship between the
369 isolates.

370

371 **Figure 3:** Occurrence of individual genetic markers corroborate phylogenetic and whole
372 genome analysis which highlights at least four independent monomorphic lineages. Genetic
373 markers: SRA (Z37159.2), RoTat1.2 VSG (AF317914.1), JN2118HU VSG (AJ870487.1),
374 cytochrome oxidase subunit 1 (M94286.1:10712-12445) and NADH4 (M94286.1:12780-
375 14090). The scale represents the percentage of the marker covered by sequencing reads.

376 **6.3 Discussion**

377

378 *Trypanozoon* phylogeny has historically been based on clinical disease pathology, mode of
379 transmission, geographic range, host species range and kDNA composition, which has
380 complicated the classification of monomorphic trypanosomes and fuelled a long-standing
381 debate in the literature (5). Here we re-analyse the molecular phylogeny of monomorphic
382 trypanosomes, providing support for the complete separation of these isolates into at least
383 four clades based on their evolutionary relationships. Our results are consistent with
384 previously published phylogenies of monomorphic *T. brucei* subspecies (Fig.1) (8,9). We
385 consider it is important to classify the monomorphic lineages through their evolutionary
386 relationships because, although they have converged upon a monomorphic phenotype,
387 lineage specific variation could be missed if their polyphyletic origin is not fully
388 acknowledged.

389

390 Variation in heterozygosity can be associated with a transition to asexuality. Asexual taxa
391 can present high heterozygosity if the lineage arose from a hybrid origin, but other types of
392 origin usually lead to a reduction in heterozygosity (43). Monomorphic strains have lost their
393 tsetse transmission ability. Given that meiotic events occur in tsetse salivary glands,
394 monomorphic strains are obligately asexual and proliferate via mitosis (13–15). This
395 asexuality is apparent in the reduction of heterozygosity observed in the majority of
396 monomorphic isolates (Fig. 2 & Fig. S2). Such reduction in heterozygosity can occur via
397 mitotic recombination and/or gene conversion, with gene conversion having been observed
398 in another asexual *T. brucei* subspecies, *T. b. gambiense* group 1 (51). Gene conversion is
399 proposed to reduce or even completely stop the mutational attrition associated with
400 asexuality, and it can occur at a faster rate than the accumulation of spontaneous mutations
401 (52) (Fig.2 & Supplementary Fig.2).

402

403 Notably, *T. b. equiperdum* type OVI and, to an extent, *T. b. equiperdum* type BoTat isolates
404 have low heterozygosity and a higher dN/dS ratio than other clades, indicative of a smaller
405 efficacy of purifying selection in removing deleterious alleles. In contrast, the efficacy of
406 selection in *T. b. evansi* type A and *T. b. evansi* type B are closer to that observed in
407 pleomorphic lineages. Further, IVM-t1, originally typed as *T. equiperdum*, has one of the
408 lowest dN/dS ratios, more indicative of *T. b. evansi* type A or *T. b. evansi* type B. The
409 efficacy of selection can be influenced by the effective population size which is linked to
410 events during the evolutionary history of a lineage such as population bottlenecks and
411 variation in the mode of inheritance (53). Asexuality is predicted to reduce the efficacy with
412 which selection can act (44). Hence, the observed lineage specific variation between
413 selection efficacy could be associated with a different length of time as an asexual lineage
414 as the predicted build-up of deleterious mutations is a gradual process, if not completely
415 counteracted by processes like gene conversion. Overall, the analyses of heterozygosity and
416 dN/dS ratio support the different monomorphic lineages displaying contrasting evolutionary
417 histories.

418

419 The extremely low heterozygosity of IVM-t1 highlights that when the sample was sequenced,
420 it did not comprise a mixed infection. Furthermore, its low heterozygosity does not support a
421 hybridisation-based event at the emergence of the IVM-t1 lineage (43). Therefore, the long
422 branch and discrepancy in heterozygosity between IVM-t1 and MU10 could be due to an
423 expansion in diversity of the MU10 branch or independent origins of monomorphism within
424 the MU10/ IVM-t1 clade. This divergence could have facilitated the distinct transmission
425 mechanism and host range displayed by IVM-t1 with respect to *T. b. evansi* type B such as
426 MU10. However, at present IVM-t1 and MU10 group as a separate clade and share the
427 monomorphic phenotype. As such IVM-t1 is currently most accurately described as *T. b.*
428 *evansi* type B. As more *T. brucei* are isolated and sequenced, it may be more accurate to
429 define IVM-t1 as a separate clade. In this case, IVM-t1 would represent a 5th independent
430 emergence of monomorphism in *T. brucei*.

431

432 The potential expansion of monomorphic lineages, along with the isolation of IVM-t1 from the
433 genital mucosa of a horse with signs of dourine suggest it could be beneficial to reconcile
434 phylogeny and disease (17). To fully uncouple the link between phylogeny and disease,
435 studies will be required on the direct mode of transmission of these isolates. For instance,
436 although the presence of IVM-t1 in the genital mucosa of a horse with signs of dourine points
437 towards sexual transmission, it cannot be ruled out that the initial infection was a coinfection
438 of IVM-t1 with an independent *T. b. equiperdum* type OVI or *T. b. equiperdum* type BoTat
439 isolate which caused the dourine symptoms but was not recovered after culture. If plasticity
440 in the mode of transmission is established, dourine and surra would best refer to the disease
441 presentation and not the causative agent, particularly where limited clinical information is
442 available for an isolate, precluding an understanding of any variable disease manifestation
443 between individual animals (6).

444

445 The emergence of at least four independent monomorphic lineages suggests there could be
446 a selective advantage to monomorphism, at least in the short term. Since monomorphic
447 lineages lose the growth control inherent in the generation of stumpy forms, they display an
448 increase in parasitaemia which improves the chance of non-tsetse transmission when tsetse
449 vectorial capacity is reduced. This adaption to a loss of cyclical transmission could also be
450 the only option for those *Trypanozoon* isolates which become isolated from the tsetse fly
451 through environmental change or geographic relocation of the host (7,54,55). Regardless of
452 the potential adaptive advantage to monomorphism, monomorphic lineages could be
453 constantly emerging from pleomorphic *T. brucei* populations across Africa that remain
454 unidentified due to a lack of sampling. Indeed, as climate change rapidly alters the tsetse
455 flies' range (56), creating a potential selective advantage for mechanical transmission in
456 areas where tsetse flies are no longer found, the rate of monomorphic *T. brucei* subspecies
457 emergence could increase. Since monomorphic lineages have lost or reduced their growth

458 control mechanism, they can be highly virulent, posing a threat to livestock in their country of
459 origin and with the risk of escape outside traditional disease boundaries.

460

461 The analysis of IVM-t1 provides the first evidence that *T. b. evansi* type B, or a 5th
462 monomorphic lineage, has expanded its geographic range outside of Africa. Previously *T. b.*
463 *evansi* type B has only been found in Kenya and Ethiopia (48,49,57). The presence of IVM-
464 t1 outside of Africa could complicate the existing screening of animals exhibiting signs of
465 dourine or surra. Currently, the molecular diagnosis of surra and dourine remains limited by
466 the parasitaemia in infected hosts, which can be below the detection limit of parasitological
467 tests and can even be below the detection limit of DNA tests, especially in Equidae and
468 African cattle. Therefore, serological methods are prescribed by the World Organisation for
469 Animal Health for surra and dourine diagnosis. In some regions and for some hosts, for
470 which *T. b. evansi* type A strains are widely present, the use of serological tests based on
471 the recognition of the specific RoTat 1.2 VSG, can provide good sensitivity and specificity
472 (47). However, this gene is absent in *T. b. evansi* type B (Fig.3). Alternatively, surveillance of
473 kDNA integrity remains a useful method of identification, which often aligns with the disease
474 presentation despite these phenomena not being biologically linked. It is important to
475 remember, however, that kDNA integrity comes with the risk of the independent appearance
476 of dyskinetoplasty in multiple lineages or the spontaneous or progressive dyskinetoplasty
477 observed after maintenance *in vitro* culture or in isolates indistinguishable at the level of the
478 nuclear genome.

479

480 To avoid these complications, it is possible to rely on markers that are generic for all
481 trypanosome subspecies. Indeed, given that treatment success depends mainly on the stage
482 of the disease rather than the specific *Trypanozoon* lineage (6), we suggest that currently it
483 remains preferable not to aim for a distinction between taxa within the *Trypanozoon*
484 subgenus for first line diagnosis. However, genome sequencing is rapidly reducing in cost

485 whilst improving in portability. Therefore, adaptive genome sequencing represents a
486 promising method for screening of animals infected with monomorphic *Trypanozoon* (58).

487

488 We note that although the use of four clades (*T. b. evansi* type A, *T. b. evansi* type B, *T. b.*
489 *equiperdum* type OVI and *T. b. equiperdum* type BoTat (9)) attempts to acknowledge the
490 polyphyletic origin of monomorphic *Trypanozoon*, the use of *evansi* or *equiperdum* at the
491 subspecific level is not based on the genetic relationship of the strains. This is the case even
492 when phylotypes are utilised after *evansi* or *equiperdum*. Therefore, we suggest it would be
493 beneficial to break the links between the fragmentary information available for taxonomy,
494 disease phenotype, host range, mode of transmission and the extent of dyskinetoplasty in
495 monomorphic *Trypanozoon*.

496

497 Instead, to fully acknowledge their polyphyletic origin and distinct evolutionary histories, we
498 suggest the taxonomy of monomorphic *Trypanozoon* should be based on whole genome
499 analysis alone, which is quantitative, non-subjective and can be assessed from samples
500 lacking detailed case records. A taxonomy based on the evolutionary relationships between
501 isolates will assist future research by identifying lineage specific variation in monomorphic
502 *Trypanozoon*. For example, we consider IVM-t1 is currently more accurately classified as a
503 branch of *T. b. evansi* type B, rather than *T. equiperdum*. Similarly, isolates such as STIB818
504 (isolated China in 1979) and ATCC30023 (isolated in France in 1903) were initially classified
505 as *T. equiperdum* but cluster with *T. b. evansi* (8,59). The disease manifestation and tissue
506 specificity of IVM-t1 also suggests that *T. b. evansi* type B, or a 5th monomorphic lineage,
507 can manifest dourine symptoms with sexual transmission, although direct transmission
508 evidence is needed to confirm this.

509

510 The incongruity between the parasites' evolutionary position and the induced pathology,
511 mode of transmission and tissue tropism highlights the potential for the host physiology and
512 immune response to contribute to clinical disease manifestation, rather than being solely

513 parasite driven (6). This provides an important exemplar of the potential distinction between
514 the taxonomic position of monomorphic trypanosomes and the diseases they cause.

515 **7. Author statements**

516

517 **7.1 Authors and contributions**

518 Guy Oldrieve: 0000-0003-1428-0608

519 Mylène Verney: 0000-0002-0708-0045

520 Kamil Jaron: 0000-0003-1470-5450

521 Laurent Hébert: 0000-0002-5738-9913

522 Keith Matthews: 0000-0003-0309-9184

523

Contributor Role	Author	
Conceptualisation	GO, KM	525
Methodology	GO, KJ	
Software	GO	527
Validation	GO	
Formal Analysis	GO	529
Investigation	GO	
Resources	GO, KM	531
Data Curation	GO	532
Writing – Original Draft Preparation	GO	533
Writing – Review and Editing	GO, KM, MV, LH, KJ	534
Visualisation	GO, KM, MV, LH, KJ	536
Supervision	KM	
Project Administration	GO, KM	538
Funding	KM	

540 **7.2 Conflicts of interest**

541 The authors declare no conflicts of interest.

542

543 **7.3 Funding information**

544 The work was supported by a Wellcome Trust Investigator award grant (103740/Z/14/Z) to

545 KM and a Wellcome Trust PhD studentship to GO (108905/B/15/Z). LH and MV were

546 supported by ANSES, the European Commission through DG SANTE funding for the

547 Reference Laboratory for Equine Diseases other than African Horse Sickness, the Regional

548 Council of Normandy and the GIS Centaure Recherche Equine. KSJ was supported by

549 funding from the European Research Council Starting Grant (PGErepo) awarded to Laura

550 Ross.

551

552 **7.4 Ethical approval**

553 Not applicable.

554

555 **7.5 Consent for publication**

556 Not applicable.

557

558 **7.6 Acknowledgments**

559 We thank Achim Schnaufer for his valuable insights and comments on the manuscript.

560 8. **References**

561

- 562 1. Vassella E, Reuner B, Yutzy B, Boshart M. Differentiation of African trypanosomes is
563 controlled by a density sensing mechanism which signals cell cycle arrest via the
564 cAMP pathway. *J Cell Sci.* 1997 Nov;110 (Pt 21):2661–71.
- 565 2. Mony BM, MacGregor P, Ivens A, Rojas F, Cowton A, Young J, *et al.* Genome-wide
566 dissection of the quorum sensing signalling pathway in *Trypanosoma brucei*. *Nature.*
567 2014 Jan 30;505(7485):681–5. doi: 10.1038/nature12864
- 568 3. McDonald L, Cayla M, Ivens A, Mony BM, MacGregor P, Silvester E, *et al.* Non-linear
569 hierarchy of the quorum sensing signalling pathway in bloodstream form African
570 trypanosomes. *PLoS Pathog.* 2018 Jun 25;14(6):e1007145. doi:
571 10.1371/journal.ppat.1007145
- 572 4. Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, *et al.* Oligopeptide
573 Signaling through TbGPR89 Drives Trypanosome Quorum Sensing. *Cell.* 2019 Jan
574 10;176(1–2):306–317.e16. doi: 10.1016/j.cell.2018.10.041
- 575 5. Hoare CA. The trypanosomes of mammals. A zoological monograph. The
576 trypanosomes of mammals A zoological monograph. 1972;
- 577 6. Büscher P, Gonzatti MI, Hébert L, Inoue N, Pascucci I, Schnaufer A, *et al.* Equine
578 trypanosomosis: enigmas and diagnostic challenges. *Parasit Vectors.* 2019 May
579 15;12(1):234. doi: 10.1186/s13071-019-3484-x
- 580 7. Lai D-H, Hashimi H, Lun Z-R, Ayala FJ, Lukes J. Adaptations of *Trypanosoma brucei*
581 to gradual loss of kinetoplast DNA: *Trypanosoma equiperdum* and *Trypanosoma*
582 *evansi* are petite mutants of *T. brucei*. *Proc Natl Acad Sci USA.* 2008 Feb
583 12;105(6):1999–2004. doi: 10.1073/pnas.0711799105
- 584 8. Carnes J, Anupama A, Balmer O, Jackson A, Lewis M, Brown R, *et al.* Genome and
585 phylogenetic analyses of *Trypanosoma evansi* reveal extensive similarity to *T. brucei*
586 and multiple independent origins for dyskinetoplasty. *PLoS Negl Trop Dis.* 2015 Jan
587 8;9(1):e3404. doi: 10.1371/journal.pntd.0003404

588 9. Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, *et al.*
589 Genome-Wide SNP Analysis Reveals Distinct Origins of *Trypanosoma evansi* and
590 *Trypanosoma equiperdum*. *Genome Biol Evol*. 2017 Aug 1;9(8):1990–7. doi:
591 10.1093/gbe/evx102

592 10. K Kay C, Williams TA, Gibson W. Mitochondrial DNAs provide insight into
593 trypanosome phylogeny and molecular evolution. *BMC Evol Biol*. 2020 Dec
594 9;20(1):161. doi: 10.1186/s12862-020-01701-9

595 11. Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic
596 trypanosomatids: how to live without mitochondrial DNA. *Int J Parasitol*. 2002
597 Aug;32(9):1071–84. doi: 10.1016/s0020-7519(02)00020-6

598 12. Dewar CE, MacGregor P, Cooper S, Gould MK, Matthews KR, Savill NJ, *et al.*
599 Mitochondrial DNA is critical for longevity and metabolism of transmission stage
600 *Trypanosoma brucei*. *PLoS Pathog*. 2018 Jul 18;14(7):e1007195. doi:
601 10.1371/journal.ppat.1007195

602 13. Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, *et al.* Identification
603 of the meiotic life cycle stage of *Trypanosoma brucei* in the tsetse fly. *Proc Natl Acad
604 Sci USA*. 2011 Mar 1;108(9):3671–6.

605 14. Peacock L, Ferris V, Sharma R, Sunter J, Bailey M, Carrington M, *et al.* Identification
606 of the meiotic life cycle stage of *Trypanosoma brucei* in the tsetse fly. *Proc Natl Acad
607 Sci USA*. 2011 Mar 1;108(9):3671–6. doi: 10.1073/pnas.1019423108

608 15. Wheeler RJ, Scheumann N, Wickstead B, Gull K, Vaughan S. Cytokinesis in
609 *Trypanosoma brucei* differs between bloodstream and tsetse trypomastigote forms:
610 implications for microtubule-based morphogenesis and mutant analysis. *Mol Microbiol*.
611 2013 Dec;90(6):1339–55. doi: 10.1111/mmi.12436

612 16. Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian trypanosomosis:
613 A review of parasites involved, their global distribution and their interaction with the
614 innate and adaptive mammalian host immune system. *Front Immunol*. 2018 Oct
615 2;9:2253. doi: 10.3389/fimmu.2018.02253

616 17. Suganuma K, Narantsatsral S, Battur B, Yamasaki S, Otgonsuren D, Musinguzi SP, et
617 al. Isolation, cultivation and molecular characterization of a new *Trypanosoma*
618 *equiperdum* strain in Mongolia. *Parasit Vectors*. 2016 Aug 31;9:481. doi:
619 10.1186/s13071-016-1755-3

620 18. Davaasuren B, Yamagishi J, Mizushima D, Narantsatsral S, Otgonsuren D,
621 Myagmarsuren P, et al. Draft Genome Sequence of *Trypanosoma equiperdum* Strain
622 IVM-t1. *Microbiol Resour Announc*. 2019 Feb 28;8(9). doi: 10.1128/MRA.01119-18

623 19. Brun R, Hecker H, Lun ZR. *Trypanosoma evansi* and *T. equiperdum*: distribution,
624 biology, treatment and phylogenetic relationship (a review). *Vet Parasitol*. 1998
625 Oct;79(2):95–107. doi: 10.1016/s0304-4017(98)00146-0

626 20. Leinonen R, Sugawara H, Shumway M, International Nucleotide Sequence Database
627 Collaboration. The sequence read archive. *Nucleic Acids Res*. 2011 Jan;39(Database
628 issue):D19-21. doi: 10.1093/nar/gkq1019

629 21. Engstler M, Boshart M. Cold shock and regulation of surface protein trafficking convey
630 sensitization to inducers of stage differentiation in *Trypanosoma brucei*. *Genes Dev*.
631 2004 Nov 15;18(22):2798–811. doi: 10.1101/gad.323404

632 22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
633 data. *Bioinformatics*. 2014 Aug 1;30(15):2114–20. doi: 10.1093/bioinformatics/btu170,

634 23. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al.
635 The genome of the African trypanosome *Trypanosoma brucei*. *Science*. 2005 Jul
636 15;309(5733):416–22. doi: 10.1126/science.1112642

637 24. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-
638 MEM. *arXiv*. 2013 Mar 16;

639 25. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
640 framework for variation discovery and genotyping using next-generation DNA
641 sequencing data. *Nat Genet*. 2011 May;43(5):491–8. doi: 10.1038/ng.806

642 26. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A,
643 et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit

644 best practices pipeline. *Curr Protoc Bioinformatics*. 2013 Oct 15;11(1110):11.10.1-
645 11.10.33. doi: 10.1002/0471250953.bi1110s43

646 27. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera
647 GA, *et al.* Scaling accurate genetic variant discovery to tens of thousands of samples.
648 *BioRxiv*. 2017 Nov 14; doi: 10.1101/201178

649 28. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, *et al.* The variant
650 call format and VCFtools. *Bioinformatics*. 2011 Aug 1;27(15):2156–8. doi:
651 10.1093/bioinformatics/btr330

652 29. Cook DE, Andersen EC. VCF-kit: assorted utilities for the variant call format.
653 *Bioinformatics*. 2017 May 15;33(10):1581–2. doi: 10.1093/bioinformatics/btx011

654 30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective
655 stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol*.
656 2015 Jan;32(1):268–74. doi: 10.1093/molbev/msu300

657 31. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermini LS. ModelFinder:
658 fast model selection for accurate phylogenetic estimates. *Nat Methods*. 2017
659 Jun;14(6):587–9. doi: 10.1038/nmeth.4285

660 32. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. Ufboot2: improving the
661 ultrafast bootstrap approximation. *Mol Biol Evol*. 2018 Feb 1;35(2):518–22. doi:
662 10.1093/molbev/msx281

663 33. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree
664 display and annotation. *Bioinformatics*. 2007 Jan 1;23(1):127–8. doi:
665 10.1093/bioinformatics/btl529

666 34. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of
667 occurrences of k-mers. *Bioinformatics*. 2011 Mar 15;27(6):764–70. doi:
668 10.1093/bioinformatics/btr011

669 35. Vulture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, *et al.*
670 GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics*.
671 2017 Jul 15;33(14):2202–4. doi: 10.1093/bioinformatics/btx153

672 36. Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: a
673 hidden Markov model approach for detecting autozygosity from next-generation
674 sequencing data. *Bioinformatics*. 2016 Jun 1;32(11):1749–51. doi:
675 10.1093/bioinformatics/btw044

676 37. Nelson CW, Moncla LH, Hughes AL. SNPGenie: estimating evolutionary parameters to
677 detect natural selection using pooled next-generation sequencing data. *Bioinformatics*.
678 2015 Nov 15;31(22):3709–11. doi: 10.1093/bioinformatics/btv449

679 38. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, *et al.* The Sequence
680 Alignment/Map format and SAMtools. *Bioinformatics*. 2009 Aug 15;25(16):2078–9. doi:
681 10.1093/bioinformatics/btp352

682 39. Kolde R. Pheatmap: pretty heatmaps. R package; 2019.

683 40. Wickham H. ggplot2: elegant graphics for data analysis. 2016;

684 41. Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels
685 with'ggplot2'. R package version 08 0 ed. 2018;

686 42. R Core Team. R: A Language and Environment for Statistical Computing. R
687 Foundation for Statistical Computing; 2019.

688 43. Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M,
689 Schwander T. Genomic features of parthenogenetic animals. *J Hered*. 2020 Sep 28;
690 112(1):19-33. doi: 10.1093/jhered/esaa031

691 44. Otto SP. Selective interference and the evolution of sex. *J Hered*. 2020 Oct 9;
692 112(1):9-18. doi: 10.1093/jhered/esaa026

693 45. Zweygarth E, Kaminsky R, Webster P. *Trypanosoma brucei evansi*: Dyskinetoplasia
694 and loss of infectivity after long-term in vitro cultivation. *Acta Trop*. 1990 Dec;48(2):95–
695 9. doi: 10.1016/0001-706X(90)90048-5

696 46. Kaminsky R, Schmid C, Lun ZR. Susceptibility of dyskinetoplastic *Trypanosoma evansi*
697 and *T. equiperdum* to isometamidium chloride. *Parasitol Res*. 1997;83(8):816–8. doi:
698 10.1007/s004360050346

699 47. Claes F, Radwanska M, Urakawa T, Majiwa PA, Goddeeris B, Büscher P. Variable

700 Surface Glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of
701 Trypanosoma evansi infections. *Kinetoplastid Biol Dis.* 2004 Sep 17;3(1):3. doi:
702 10.1186/1475-9292-3-3

703 48. Ngaira JM, Olembo NK, Njagi ENM, Ngeranwa JJN. The detection of non-RoTat 1.2
704 *Trypanosoma evansi*. *Exp Parasitol.* 2005 May;110(1):30–8. doi:
705 10.1016/j.exppara.2005.01.001

706 49. Birhanu H, Gebrehiwot T, Goddeeris BM, Büscher P, Van Reet N. New *Trypanosoma*
707 *evansi* Type B Isolates from Ethiopian Dromedary Camels. *PLoS Negl Trop Dis.* 2016
708 Apr 1;10(4):e0004556.

709 50. Dean S, Gould MK, Dewar CE, Schnaufer AC. Single point mutations in ATP synthase
710 compensate for mitochondrial genome loss in trypanosomes. *Proc Natl Acad Sci USA.*
711 2013 Sep 3;110(36):14741–6. doi: 10.1371/journal.pntd.0004556

712 51. Weir W, Capewell P, Foth B, Clucas C, Pountain A, Steketee P, *et al.* Population
713 genomics reveals the origin and asexual evolution of human infective trypanosomes.
714 *Elife.* 2016 Jan 26;5:e11473. doi: 10.7554/elife.11473

715 52. Marais GAB, Campos PRA, Gordo I. Can intra-Y gene conversion oppose the
716 degeneration of the human Y chromosome? A simulation study. *Genome Biol Evol.*
717 2010 Jul 12;2:347–57. doi: 10.1093/gbe/evq026

718 53. Charlesworth B. Fundamental concepts in genetics: effective population size and
719 patterns of molecular evolution and variation. *Nat Rev Genet.* 2009 Mar;10(3):195–
720 205. doi: 10.1038/nrg2526

721 54. Jensen RE, Simpson L, Englund PT. What happens when *Trypanosoma brucei* leaves
722 Africa. *Trends Parasitol.* 2008 Oct;24(10):428–31. doi: 10.1016/j.pt.2008.06.007

723 55. Schnaufer A. Evolution of dyskinetoplastic trypanosomes: how, and how often? *Trends*
724 *Parasitol.* 2010 Dec;26(12):557–8. doi: 10.1016/j.pt.2010.08.001

725 56. Lord JS, Hargrove JW, Torr SJ, Vale GA. Climate change and African trypanosomiasis
726 vector populations in Zimbabwe's Zambezi Valley: A mathematical modelling study.
727 *PLoS Med.* 2018 Oct 22;15(10):e1002675. doi: 10.1371/journal.pmed.1002675

728 57. Aregawi WG, Agga GE, Abdi RD, Büscher P. Systematic review and meta-analysis on
729 the global distribution, host range, and prevalence of *Trypanosoma evansi*. Parasit
730 Vectors. 2019 Jan 31;12(1):67. doi: 10.1186/s13071-019-3311-4

731 58. Payne A, Holmes N, Clarke T, Munro R, Debebe B, Loose MW. Nanopore adaptive
732 sequencing for mixed samples, whole exome capture and targeted panels. BioRxiv.
733 2020 Feb 3. doi: 10.1101/2020.02.03.926956

734 59. Claes F, Büscher P, Touratier L, Goddeeris BM. *Trypanosoma equiperdum*: master of
735 disguise or historical mistake? Trends Parasitol. 2005 Jul;21(7):316–21. doi:
736 10.1016/j.pt.2005.05.010