

1 Life without mismatch repair

2
3 **Authors:** Mathijs A. Sanders^{1,2}, Harald Vöhringer³, Victoria J. Forster^{4,5}, Luiza Moore¹, Brittany B.
4 Campbell^{4,5}, Yvette Hooks¹, Melissa Edwards^{4,5}, Vanessa Bianchi^{4,5}, Tim H. H. Coorens¹, Timothy
5 M. Butler¹, Henry Lee-Six¹, Philip S. Robinson^{1,6}, Christoffer Flensburg^{7,8}, Rebecca A. Bilardi^{7,8},
6 Ian J. Majewski^{7,8}, Agnes Reschke⁹, Elizabeth Cairney¹⁰, Bruce Crooks¹¹, Scott Lindhorst¹²,
7 Duncan Stearns¹³, Patrick Tomboc¹⁴, Ultan McDermott^{1,15}, Michael R. Stratton¹, Adam
8 Shlien^{4,16,17}, Moritz Gerstung^{3,18,21}, Uri Tabori^{4,5,19,21,*}, Peter J. Campbell^{1,19,21,*}

9
10 **Affiliations**

- 11 1. Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, Cambridgeshire
12 CB10 1SA, UK
- 13 2. Department of Hematology, Erasmus MC Cancer Institute, 3015 CN Rotterdam, the
14 Netherlands
- 15 3. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
16 Hinxton CB10 1SD, UK
- 17 4. Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G
18 1X8, Canada
- 19 5. The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children,
20 Toronto, ON M5G 1X8, Canada
- 21 6. Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ,
22 UK
- 23 7. Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research,
24 Parkville, VIC 3052, Australia
- 25 8. Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- 26 9. Division of Pediatric Hematology/Oncology, Stanford Medicine, Stanford, CA 94304, USA
- 27 10. Department of Pediatrics, London Health Sciences Centre, London, ON N6A 5W9, Canada
- 28 11. Division of Hematology-Oncology, IWK Health, Halifax, NS B3K 6R8, Canada
- 29 12. Department of Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA
- 30 13. Department of Pediatrics, University Hospitals Cleveland, Cleveland, OH 44106, USA
- 31 14. Department of Paediatrics, WVU Medicine Children's Hospital, Morgantown, WV 26506, USA
- 32 15. Oncology R&D, AstraZeneca, Cambridge CB2 0AW, UK
- 33 16. Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON
34 M5G 1X8, Canada
- 35 17. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S
36 1A8, Canada
- 37 18. European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- 38 19. Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8,
39 Canada
- 40 20. Department of Haematology, University of Cambridge, Cambridge, Cambridgeshire CB2 2XY,
41 UK
- 42 21. These authors contributed equally

43
44
45 ***Addresses for correspondence and material requests:**

46 Dr Peter J. Campbell, Cancer Genome Project, Wellcome Sanger Institute, Hinxton CB10 1SA,
47 United Kingdom. Telephone: +44 (0) 1223 834244. e-mail: pc8@sanger.ac.uk

48 Dr Uri Tabori, The Hospital for Sick Children, Toronto, ON, Canada. e-mail:
49 uri.tabori@sickkids.ca

51 **Abstract**

52 Mismatch repair (MMR) is a critical defence against mutation, but we lack quantification of its
53 activity on different DNA lesions during human life. We performed whole-genome sequencing
54 of normal and neoplastic tissues from individuals with constitutional MMR deficiency to
55 establish the roles of MMR components, tissue type and disease state in somatic mutation
56 rates. Mutational signatures varied extensively across genotypes, some coupled to leading-
57 strand replication, some to lagging-strand replication and some independent of replication,
58 implying that the various MMR components engage different forms of DNA damage. Loss of
59 *MSH2* or *MSH6* (MutS α), but not *MLH1* or *PMS2* (MutL α), caused 5-methylcytosine-
60 dependent hypermutation, indicating that MutS α is the pivotal complex for repairing
61 spontaneous deamination of methylated cytosines in humans. Neoplastic change altered the
62 distribution of mutational signatures, particularly accelerating replication-coupled indel
63 signatures. Each component of MMR repairs 1-10 lesions/day per normal human cell, and
64 many thousands of additional events during neoplastic transformation.

65

66 **Highlights**

67 • MMR repairs 1-10 lesions/day in every normal cell and thousands more in tumor cells
68 • MMR patterns and rates are shaped by genotype, tissue type and malignant
69 transformation
70 • MSH2 and MSH6 are pivotal for repairing spontaneous deamination of methylated
71 cytosine
72 • Replication indels and substitutions vary by leading versus lagging strand and genotype

73 **Introduction**

74 Protecting the integrity of our genome is vital to the normal functioning of somatic cells and
75 reducing their risk of transforming to cancer. The genome is under constant assault from
76 endogenous mutagens, such as oxygen free radicals and aldehydes; from errors of DNA
77 replication, such as those acquired in cell division or DNA repair; and from exogenous
78 mutagens, such as ultraviolet light and chemicals in tobacco smoke. With such diverse threats
79 to our genome, a similarly diverse set of DNA repair mechanisms have evolved, each targeting
80 particular types of DNA damage.

81

82 The mismatch repair (MMR) pathway is a major defence against errors introduced during DNA
83 replication by leading- and lagging-strand polymerases (Pol- ϵ and Pol- δ respectively). The
84 MMR complex MutS α , comprising a heterodimer of MSH2 and MSH6, performs surveillance
85 by sliding along histone-free DNA, engaging mismatched bases, damaged DNA or
86 insertion/deletion loops (Kunkel and Erie, 2015). It then pairs with the MutL α complex, a
87 heterodimer of MLH1 and PMS2, which recruits a cascade of DNA repair factors that ultimately
88 excise a section of the lesion-containing nascent strand (Hombauer et al., 2011; Kadyrov et
89 al., 2006). MutS α and MutL α are the major heterodimers participating in MMR, but others also
90 contribute in eukaryotes. Perhaps most well studied is the MutS β heterodimer of MSH2 and
91 MSH3, which particularly targets large insertion/deletion loops and single-base-pair deletions
92 (Johnson et al., 1996; Romanova and Crouse, 2013). It remains unclear what the relative
93 activities of these different components are in normal human cells and during transformation.

94

95 There are also potential roles of mismatch repair in protecting genomes outside of DNA
96 replication (Crouse, 2016; Meier et al., 2018). While there is a clear differential between
97 template and nascent strands that guides MMR during replication, this differential is not so
98 obvious in interphase. For a given mismatch, if MMR cannot distinguish which strand has the
99 correct sequence, there is a risk that the repair will use the incorrect sequence as the template,
100 fixing the mismatch as a mutation on both strands. This possibility is actually harnessed
101 physiologically during somatic hypermutation of the immunoglobulin loci in B cells (Zubani et
102 al., 2017), but may also introduce somatic mutations predisposing to cancer or trinucleotide
103 repeat expansions (Peña-Díaz et al., 2012).

104

105 The detailed biochemistry of MMR pathways has been pieced together from *in vitro*
106 experimental studies and animal models (Johnson et al., 1996; Lujan et al., 2014; Meier et al.,
107 2018; Romanova and Crouse, 2013; Serero et al., 2014; St Charles et al., 2015). What role

108 MMR plays in humans *in vivo* has largely been inferred from extracting mutational signatures
109 from cancers with deficiency of one component (Alexandrov et al., 2020; Campbell et al., 2017;
110 Chung et al., 2020; Meier et al., 2018). This has identified several signatures associated with
111 MMR deficiency, and has also demonstrated the role of MMR in protecting strategically
112 important regions of the genome (Frigola et al., 2017; Supek and Lehner, 2015). However,
113 these studies have focused on somatic mutations in established cancers, meaning it can be
114 difficult to disentangle consequences of increased cell division rates, the emergence of
115 additional mutational signatures during transformation and other endogenous mutational
116 processes active before MMR deficiency was acquired (Alexandrov et al., 2020; Haradhvala
117 et al., 2018; Meier et al., 2018).

118

119 Common to both experimental studies of MMR and analyses of human cancer is the utility of
120 studying mutational signatures in knock-outs of individual pathway components. MMR
121 deficiency in human cancers is mostly either sporadic (both alleles somatically mutated or
122 silenced) or inherited as an autosomal dominant condition (Lynch syndrome), where one allele
123 is inactivated in the germline and the other allele lost somatically in the tumor. Rarely,
124 however, individuals are born with both alleles of an MMR gene inactivated in the germline,
125 known as constitutional mismatch repair deficiency (CMMRD). These individuals have a
126 substantially increased risk of early-onset cancers, especially cancers of the brain,
127 gastrointestinal system and blood (Shlien et al., 2015; Tabori et al., 2017). Here, we harnessed
128 recently developed protocols to identify mutations in normal somatic cells (Brunner et al.,
129 2019; Ellis et al., 2020; Lee-Six et al., 2019) to evaluate individuals with CMMRD. Studying
130 lifelong mutation accumulation in normal cells, in neoplastic lesions, in different organ systems
131 and in different genotypes provides direct quantification of the importance of MMR in day-to-
132 day life and the types of DNA lesion repaired by individual pathway components in humans.

133

134 **Results**

135 **MMR Pathways Repair 1-10 Lesions/Day in Every Intestinal Epithelial Cell**

136 Ten CMMRD donors, aged between 3 and 32 years, were studied, comprising 2 with *MSH2*,
137 4 with *MSH6*, 2 with *MLH1* and 2 with *PMS2* biallelic germline deficiency (**Table S1**). Colonic
138 (n=7), small bowel (n=6) and brain (n=3) samples were collected during endoscopy, surgical
139 resection or autopsy. Matched normal and neoplastic intestinal epithelium samples
140 (adenomas or adenocarcinomas) were available for 4 individuals.

141

142 Intestinal crypts contain 5-15 stem cells at their base, with single stem cells frequently
143 sweeping to fixation through genetic drift (Lopez-Garcia et al., 2010). As a result, all epithelial
144 cells in individual crypts derive from a single, recent common ancestor, meaning that somatic
145 mutation burdens, rates and signature composition can be accurately estimated by
146 sequencing single crypts (Lee-Six et al., 2019). We therefore isolated 80 normal intestinal
147 crypts, 30 neoplastic intestinal crypts and 25 samples from other tissues by laser capture
148 microdissection, followed by whole genome sequencing (WGS) at a median of 30-fold
149 coverage to investigate somatically acquired mutations. We called single base substitutions
150 (SBS), small insertions and deletions (indels), structural variants (SV), telomere length and
151 copy number variations (CNV) using well-established bioinformatic algorithms (Campbell et
152 al., 2008; Jones et al., 2016; Raine et al., 2015) (**Table S2**). These data were compared to
153 previously published analyses of somatic mutations in normal intestinal epithelium from
154 mismatch repair-proficient individuals (Lee-Six et al., 2019) (**Figure S1**).

155

156 The burdens of single base substitutions were considerably increased in the normal intestinal
157 epithelium of CMMRD donors, across all genotypes, compared to healthy individuals (**Figure**
158 **1a**). Even with the young age of our cohort, individual normal intestinal epithelial cells
159 frequently had tens of thousands of mutations. The SBS mutation rate varied extensively
160 between individuals, ranging between 250 and 1450 SBS/year (**Figure 1b**), which is 5 to 30-
161 fold higher than the 49 SBS/year rate observed for normal colonic epithelium. However, within
162 an individual, SBS mutation burdens exhibited limited variation, suggesting that genotype and
163 environmental modifiers are stronger influences on mutation rates than cell-to-cell variation.

164

165 Small indel mutation burdens were similarly increased in the normal intestinal epithelium of all
166 CMMRD donors, with an even greater magnitude of increase than for base substitutions.
167 Rates ranged between 60 and 1200 indels/cell/year (**Figure 1b**), compared to 1 indel/cell/year
168 for normal intestinal epithelium without MMR deficiency. As seen for base substitutions,
169 between-individual variation was more pronounced in non-transformed epithelial cells than
170 within-individual variation, again attributable to genotype. Comparing the number of base
171 substitutions to indels, we found that *MSH2*, *MLH1* and *PMS2*-deficient cases all exhibited a
172 ratio of approximately 1:1 – namely, one indel is acquired for every base substitution acquired
173 in these normal cells (compared to 1 indel for every 49 substitutions in MMR-proficient normal
174 epithelium; **Figure 1c**). For *MSH6* deficiency, the relative mutation rate was similarly fixed
175 between the two types of lesions, but with a ratio of 1 indel for every 4 substitutions. The lower
176 rate of indels relative to substitutions for *MSH6* deficiency indicates that the MutS β

177 heterodimer (MSH2 and MSH3) repairs ~3x as many indels as MutS α (MSH2 and MSH6) in
178 normal human intestinal cells.

179
180 Comparing the ratio of deletions to insertions, we found that *MSH2* and *MSH6*-deficient
181 intestinal epithelium has a predilection for deletions, especially in polyA/T tracts, while in
182 *MLH1*-deficient cases this ratio is at near-equilibrium and for *PMS2*-deficient cases insertions
183 at polyA/T tracts are the predominant form of indel (**Figure S2a-b**). Upon neoplastic change
184 the burden of deletions considerably outnumbers the insertion burden irrespective of MMRD
185 genotype indicating that increased microsatellite instability (MSI) is predominantly defined by
186 deletions, often at poly-A/T tracts (**Figure S2c**).

187
188 Comparing synchronous normal and neoplastic intestinal epithelium from the same individual
189 showed that SBS burdens were 2 to 4-fold higher in neoplastic than normal intestinal
190 epithelium, while indel burdens increased 4 to 10-fold (**Figure 1a**). As expected, telomere
191 lengths of the intestinal crypts of neoplastic biopsies were significantly reduced compared to
192 their normal counterpart (median normal and neoplastic telomere content, Mann-Whitney U
193 test; PD40101, 478 vs. 287, $P=0.0025$; PD40103, 288 vs 181, $P=0.0008$; PD47719, 727 vs
194 514, $P=0.008$; PD47721, 432 vs 153, $P=0.016$) – this suggests that the increased cell division
195 associated with malignant change drives both telomere shortening and increases in
196 replication-associated somatic mutation.

197
198 Overall, then, in normal intestinal epithelial cells from patients lacking MMR, the combined
199 rates of base substitutions and indels ranged from 500 to 3000 mutations per year per clone
200 – this suggests that the mismatch repair pathway typically repairs an average of 1-10 events
201 per day in every normal epithelial cell throughout the intestine.

202
203 **MMR Repairs Replication-dependent and Independent DNA Damage**
204 The mismatch repair pathway has variable efficiency for correcting different types of
205 mismatch, being particularly tuned to events not already targeted by the proof-reading
206 capacity of Pol- δ and Pol- ϵ polymerases (Lujan et al., 2014). Thus, we might expect MMR
207 deficiency to be associated with distinct mutational signatures, with mutation rates varying by
208 specific base changes, indels, local sequence context and replication strand. To assess this,
209 we extracted mutational signatures jointly for all microdissected samples, including both
210 healthy and neoplastic, using the TensorSignatures algorithm (Vöhringer et al., 2020).
211 TensorSignatures extracts mutational signatures from a broad set of local and global

212 sequence information enabling the coupling of signatures of substitutions with indels as well
213 as replication and transcriptional strand biases.

214

215 In total, 6 mutational signatures were extracted from the sequencing data of all microdissected
216 samples, which we designate as signatures MMR-1 to MMR-6 (**Figure 2, Table S3**). Although
217 these signatures partially match signatures previously extracted from cancer genomes and
218 experimental models with MMR deficiency (Alexandrov et al., 2020; Meier et al., 2018; Serero
219 et al., 2014; St Charles et al., 2015), the use of normal and transformed clones from cases
220 with congenital deficiency enables clearer delineation of patterns, and isolation of individual
221 components of previously inseparable signatures.

222

223 Signature MMR-1 is characterised by C>T substitutions at CG dinucleotides, likely due to
224 deamination of 5-methylcytosine (5mC). It closely matches signature SBS1, extracted from
225 cancer genomes (Alexandrov et al., 2020), which has previously been linked with MMR
226 deficiency (Meier et al., 2018; Supek and Lehner, 2015). MMR-1 has minimal contribution from
227 indels and lacks transcription and replication strand biases. It was broadly present across all
228 samples but was especially prominent in patients with defects in MutS α , namely *MSH2* or
229 *MSH6* deficiency (**Figure 2d, Table S4**). Deamination of 5mC to thymine occurs as a
230 spontaneous chemical reaction in DNA (Shen et al., 1994) throughout the cell cycle. Such
231 events occurring in interphase require repair before DNA replication, otherwise the new
232 thymine becomes fixed as a C>T mutation in the genome. The predominance of this signature
233 in patients with MutS α deficiency suggests that a major role of the MSH2/MSH6 complex is to
234 identify G:dT mismatches for repair in interphase, independent of its activities during
235 replication. The paucity of this signature in the normal and neoplastic tissues from *MLH1* and
236 *PMS2*-deficient patients implies that the repair occurs through pathways independent of
237 MutL α , likely through nucleotide or base excision repair.

238

239 Signature MMR-2 is defined by both base substitutions and indels, predominantly A/T
240 insertions at polyA/T tracts, with the base substitutions being specifically biased towards
241 leading-strand replication (using the pyrimidine of each base-pair as the reference base).
242 Signature MMR-3 is its counterpart, with substitutions being more frequent on the lagging
243 strand of replication, comprising largely C>T and T>C transitions. In contrast to MMR-1,
244 signatures MMR-2 and MMR-3 were most enriched in those patients with defects in MutL α
245 (*MLH1* or *PMS2*). The distribution of base substitutions in MMR-3 closely matches signature

246 SBS26 extracted from cancer genomes, whereas MMR-2 has only partial similarity to SBS15
247 (Alexandrov et al., 2020).

248

249 Signature MMR-4 strongly resembles a combination of SBS17a and SBS17b as seen in
250 cancer genomes of the GI tract, with high rates of T>C in a CTT context. This signature has
251 been associated with 5-fluorouracil treatment and misincorporation of 8-hydroxy-dGTP
252 opposite adenines (Christensen et al., 2019; Pich et al., 2019; Supek and Lehner, 2017).
253 Signature MMR-5 has partial similarity to SBS20 distinguished by C>A and C>T base
254 substitutions and deletions. Interestingly in this signature, C>T events are biased towards
255 leading-strand replication and C>A events towards lagging-strand replication. Finally,
256 signature MMR-6 is nearly completely defined by A/T-base deletions at polyA/T tracts. It is
257 more pronounced in *MSH2* deficiency than *MSH6* deficiency, suggesting it may capture the
258 repair activities of the MutS β heterodimer (MSH2 and MSH3).

259

260 The observed replication strand biases of MMR-2, MMR-3 and MMR-5 could in principle be
261 of opposite strandedness when the complementary purine bases are considered as the
262 reference, such as G>A on the leading strand instead of C>T on the lagging strand. Further
263 insight can be derived from cases with combined MMRD and proofreading-defective
264 replication polymerases from The Cancer Genome Atlas (TCGA). Given that Pol- δ and Pol- ϵ
265 are the primary polymerases for lagging and leading-strand replication respectively, any
266 overlap in mutational signatures observed in these cancers and those extracted from the
267 CMMRD microdissections would provide evidence of their replicative origin. Cancers with
268 proofreading-defective POLD1 combined with MMRD have distinctive mutation profiles with a
269 predilection for C>A mutations at CCN as well as C>T and T>C transition mutations (**Figure**
270 **2b**). These mutational patterns resemble a combination of signatures MMR-3 and the C>A
271 component of MMR-5 with lagging-strand bias. Cancers with proofreading-defective POLE
272 combined with MMRD have mutation profiles with strong predilection for C>T mutations
273 predominantly at GCG trinucleotides, but also GCN (**Figure 2c**). MMR-2 and the C>T
274 component of MMR-5 with leading-strand bias recapitulate these mutational patterns. Taken
275 together, then, these data suggest that signature MMR-2 is indeed tied to leading-strand
276 replication; MMR-3 to lagging-strand replication; and MMR-5 has mixed contributions from
277 leading and lagging-strand replication.

278

279 **Mutational Processes Vary with Genotype and Cellular Transformation**

280 We reconstructed phylogenetic trees showing clonal relationships among normal and
281 neoplastic intestinal epithelium crypts (n=110). In the normal epithelium of MutS α -deficient
282 CMMRD cases (3 *MSH6*; 1 *MSH2*), the predominant mutational process was that of
283 methylated cytosine deamination, causing C>T mutations at CG dinucleotides (signature
284 MMR-1; **Figure 2a** and **3**). For example, for case PD40101, the median contribution of this
285 signature exceeded 80%, resulting in an average 16,000 methylation-deamination mutations
286 per cell over 32 years of life. A corollary to the predominance of the deamination signature,
287 MMR-1, in these normal epithelial cells is that the replication-dependent MMR signatures
288 contributed considerably fewer mutations. In contrast, in synchronously collected intestinal
289 polyps and colorectal cancers from these same patients, the replication-based signatures,
290 MMR-2, MMR-3 and MMR-5, became much more evident, accounting for the overwhelming
291 majority of excess mutations seen with cellular transformation. Thus, repair of methylated
292 cytosine deamination is numerically the most important activity of MutS α in normal intestinal
293 epithelium, whereas repair of replication-mediated errors becomes a much more significant
294 activity with neoplastic transformation.

295

296 Loss of MutL α showed a different distribution of mutational signatures in normal intestinal
297 crypts compared to MutS α -deficiency (**Figure 4**). MMR-2, marked by A/T-base insertions and
298 leading-strand C>T mutations, was common to all MutL α -deficient intestinal crypts
299 sequenced. MMR-3, with C>T and T>C transitions biased towards the lagging-strand, was
300 similarly present in all intestinal crypts, but was more pronounced in *PMS2*-deficient than
301 *MLH1*-deficient cases. This suggests that even among cases with deficiencies of components
302 from the same MMR complex there are differences in the relative activity of mutational
303 processes. Neoplastic change also impacted the composition of operative mutational
304 processes, as seen in PD47719 (**Figure 4a**). Here, MSI was considerably increased in the
305 transformed clone, as evidenced by the massive, sustained contribution of MMR-6 to the
306 excess mutations seen on this branch of the phylogeny, including the most recent branches.
307 The consequence of this was that, while insertions predominated over deletions in the normal
308 epithelium of MutL α -deficient patients including PD47719, deletions considerably
309 outnumbered insertions in this transformed clone.

310

311 Investigation of potential driver mutations revealed known oncogenic mutations in *FBXW7*,
312 *ERBB2*, *ERBB3*, *PIK3CA*, *TP53*, *PPP2R1A*, *ACVR1B*, *ACVR2A*, *ATR*, *AXIN2* and *BAP1* in
313 normal intestinal epithelium (**Figure 4**, **Figure S3a**, **Table S5**). Crypts from polyps and tumors
314 showed the expected complement of *APC* mutations (**Figure S3a**). For all MutS α -deficient

315 neoplastic tissues, *APC* mutations were C>T mutations at CG dinucleotides, indicating that
316 MMR-1 can induce driver mutations. Analysis of the driver mutation landscape across all
317 intestinal crypts indicates that MMR-1 is the primary force of driver mutation acquisition, further
318 complemented by microsatellite instability (**Figure S3b**). While MMR-proficient intestinal
319 epithelial cells rarely acquire driver mutations, constitutionally MMR-deficient cells acquire
320 more mutations, at younger ages, especially in cases of *MutS α* -deficiency (**Figure S3c**). This
321 confirms that MMR-1 represents a major force of early driver acquisition in *MutS α* -deficient
322 cells.

323

324 **Activity of Mutational Processes in Other Normal Tissues**

325 In addition to intestinal epithelium, we microdissected and sequenced 25 samples from 5
326 CMMRD donors across a wide array of tissues types, including brain cortex, lymphocyte
327 aggregates, intraepithelial nerves and arterial walls. All MMRD genotypes, with the exception
328 of *MLH1*, were represented. Sufficient numbers of SBS and indels were detected for
329 mutational signature extraction (**Figure 5a, Table S6**). While mutation burdens varied
330 considerably across the samples based on tissue type and level of clonality, we found that
331 *MutS α* -deficient donors were characterised by high levels of MMR-1, the 5mC deamination
332 signature, across different tissues; furthermore, this signature was again largely absent from
333 *MutL α* -deficient samples (**Figure 5b**). This was especially evident in the brain cortex and
334 striatopallidal fibers of the *MSH6*-deficient case PD40100 and to a lesser degree in the brain
335 blood vessel of the *MSH2*-deficient case PD40098 (**Figure 5c**). The only exceptions were
336 large intra-epithelial lymphoid populations in PD40103 (**Figure 5c**), which were enriched for
337 the replication-associated mutational signature MMR-3. The clonality of these samples
338 suggests that single B cells seeded the colonic intra-epithelial and expanded *in situ* to form
339 the observed secondary lymphoid structures, which may explain why replication-mediated
340 signatures predominated. Similar to the colonic epithelium, the tissue samples from *MutL α* -
341 deficient cases revealed strong contributions of signatures MMR-2 and MMR-3.

342

343 Taken together, these data indicate that while MMRD genotype imposes a strong influence
344 on the composition of mutational signatures across tissues, there are also detectable
345 differences based on tissue type that could be the consequence of stem cell dynamics or
346 environmental factors. This suggests that tissue-specific DNA damage influences the effects
347 of MMRD on the observed mutational landscape.

348

349 **Distribution of Mutations Across the Genome**

350 The MMR pathway is known to preferentially correct mutations in early replicating regions and
351 even more efficiently in exons, meaning that its deficiency equalizes mutation rates across the
352 genome (Frigola et al., 2017; Supek and Lehner, 2015). In our data, we found that this
353 equalization of mutation rates by replication timing was more pronounced in cases of MutS α -
354 deficiency (loss of either *MSH2* or *MSH6*) than MutL α -deficiency (loss of either *MLH1* or
355 *PMS2*; **Figure S4a-b**). This difference was especially apparent in exonic regions, where
356 MutS α -deficient cases acquired a median 50 exonic substitutions per year compared to a
357 median 19 exonic substitutions per year for cases of MutL α deficiency. Thus, our data
358 demonstrate that the targeting of mismatch repair to early replicating and exonic regions is
359 largely dependent on MutS α rather than MutL α .

360

361 Across the genome, we observed that broad domains of late-replicating DNA had high relative
362 mutation rates in cases PD40102, PD47719 and PD47722, all MutL α -deficient patients; a
363 more pronounced variation than seen for MutS α -deficient patients (**Figure 6a-b**). In contrast,
364 cases of MutS α -deficiency exhibit increased relative mutation rates at regions of high CpG
365 density, presumably reflecting the greater opportunity for 5mC deamination in such regions
366 (**Figure 6b, Figure S4c**). Indeed, using colonic whole genome methylation data, we found a
367 strong linear relationship between the density of methylated CpG dinucleotides and the
368 numbers of C>T mutations in a CG context (**Figure 6c**). Correcting the relative mutation rates
369 of CG>TG for overall CpG density only partially removed differences across genomic
370 elements; however, correcting for methylated CpG density completely eliminated these
371 differences (**Figure 6d**).

372

373 Regions with high CpG density tend to be early replicating and more gene-dense, suggesting
374 that some of the apparent equalization of mutation density in MutS α -deficient cases could be
375 caused by balanced effects of replication-dependent signatures MMR-2 and MMR-3 in late-
376 replicating regions versus MMR-1 in early-replicating regions. We therefore studied the
377 distribution of individual MMR signatures across the genome. In MutS α -deficient intestinal
378 epithelium, MMR-1 contributes to >80% of somatic mutations in early-replicating regions
379 (**Figure S5, Table S7**) and >90% in coding sequence (CDS) (**Figure S6, Table S8**), whereas
380 replication-dependent mutational processes are more evident in later-replicating regions or
381 outside the coding genome. Mutations arising from MMR-1 in the most functional genomic
382 regions is much more a feature of MutS α -deficiency than MutL α -deficiency (for earliest-
383 replicating genome: effect size 4.25; CI_{95%}=1.94-6.51; P=0.01; for CDS: effect size 2.98;

384 $CI_{95\%}=1.52-4.41$; $P=0.01$; generalized linear mixed models comparing MutS α -deficient and
385 MutL α -deficient samples).

386

387 In summary, then, mutations arising from deamination of methylated cytosine (MMR-1)
388 concentrate in the most functional coding and early replicating regions of the genome,
389 whereas mutations arising from replication errors (MMR-2, MMR-3, MMR-5) predominantly
390 distribute to late-replicating regions of the genome. In the absence of MutS α , these
391 distributions balance almost exactly, leading to broadly equal mutation rates across the
392 genome, whereas in MutL α -deficiency, the replication-associated signatures are predominant
393 such that mutation rates are higher in late-replicating regions.

394

395 **Verification of Genotype-specific Mutational Signatures in Sporadic Cancers**

396 Our investigation into subjects born without mismatch repair reveals that the mutational
397 consequences are shaped by MMRD genotype, tissue type and neoplastic transformation. To
398 assess whether these observations generalize, we analysed sequencing data from sporadic
399 MMRD tumors, collated from TCGA, CMMRD cancers and cancers sequenced in-house. The
400 germline and somatic landscape were screened for substitutions, indels, SVs and CNVs that
401 perturb any of the 4 genes encoding the core MMR pathway. Cases with disruptive MMR
402 mutations (nonsense, frameshift, splice site, copy number loss or structural variation) present
403 as homozygous, compound heterozygous variants or affecting two MMR genes were
404 identified. For missense substitutions, only clinically relevant variants recorded in ClinVar,
405 InSiGHT or the literature were classified as pathogenic. Cases with documented MMRD or
406 those with high mutation burdens and at least one MMRD-associated mutational signature
407 were selected for further characterization.

408

409 With this approach, we identified 117 cases with an established MMRD genotype, spanning
410 endometrial cancer, colorectal adenocarcinoma and gastric cancer most frequently, but also
411 occasional cases of prostate adenocarcinoma, breast cancer, brain cancers, sarcomas and
412 other cancers (**Figure 7a, Table S9**). Sporadic MMRD cancers were most often defined by
413 the loss of a single MMR component, although disruptive mutations affecting two MMR genes
414 were also seen, with *MSH2* and *MSH6* being the most common co-mutated pair (**Figure 7b**).
415 We used Dirichlet regression on the mutational signature composition to infer associations
416 between mutational signature exposure and MMRD genotype. *PMS2*-deficient cases were
417 used as reference. Replicating the observation made in congenital cases, activity of signature
418 MMR-1, reflecting methylated cytosine deamination, was significantly greater in tumors with

419 loss of *MSH2* ($P=1.66\times 10^{-5}$) or *MSH6* ($P=1.64\times 10^{-5}$; **Figure 7c**) (**Table S10**). Exposure to
420 MMR-5, found in *MutS α* and *MLH1*-deficient CMMRD tissues especially upon neoplastic
421 change, was similarly detected in sporadic MMRD cancers with these genotypes (*MLH1*:
422 $P=1.3\times 10^{-3}$; *MSH2*: $P=1.34\times 10^{-4}$; *MSH6*: $P=0.02$; **Figure 7c, Table S10**). Comparing *MutS α* -
423 deficient to *MutL α* -deficient cancers revealed that the association between *MutS α* loss and
424 increased MMR-1 activity could be replicated across different cancer subtypes (all,
425 endometrial, colorectal and rare MMRD cancers; **Figure S7a, Table S10**). The association
426 between *MutS α* loss and MMR-5 activity was confirmed in endometrial and colorectal MMRD
427 cancers (**Figure S7b, Table S10**).

428

429 As previously reported (Touat et al., 2020), defects in *MSH2* and *MSH6* were strongly
430 associated with glioblastoma multiforme in our dataset. As a result, the mutational spectrum
431 of these tumors was dominated by C>T mutations at CG dinucleotides (**Figure 7d**). For
432 colorectal and endometrial cancers, cases included both *MutS α* -deficient and *MutL α* -deficient
433 genotypes, and the mutation spectrum differed accordingly. Overall, then, the differences
434 across genotype and tissue type in CMMRD individuals generalize to sporadic MMR
435 deficiency.

436

437 **Discussion**

438 The mismatch repair pathway has long been recognised as a major bulwark in the defence of
439 our genome – our data now quantify the magnitude of its activity in the day-to-day life of
440 humans. We see rates of 500-3000 base substitutions and indels per year per cell in patients
441 with deficiency of a single component of the pathway, compared to ~50/year in normal
442 individuals (Lee-Six et al., 2019). Furthermore, we observe considerable differences in
443 mutational signatures between individuals inheriting deficiency of *MutS α* and those without
444 *MutL α* . Together, these observations suggest that each component of the MMR pathway
445 normally repairs 1-10 potentially mutagenic events every day in every intestinal cell, on
446 average, and the two major components target different forms of DNA damage or replication
447 error. This is in normal cells – once a clone begins to exhibit neoplastic growth, MMR becomes
448 an even more critical defence, likely repairing tens of thousands of additional events over short
449 periods of time.

450

451 Mismatch repair is classically described as a replication-linked process – errors introduced by
452 replication polymerases, both substitutions and indels, are recognised by *MutS α* , triggering
453 recruitment of *MutL α* , excision of the mismatch from the nascent strand and repair by

454 replication from the template strand (Kunkel and Erie, 2015). In our data, the MMR-2 and
455 MMR-3 signatures likely capture this canonical replication-linked repair – the two signatures
456 are found in both MutS α and MutL α deficiency, show clear biases by leading or lagging strand
457 of replication respectively, and vary in intensity across the genome by replication timing. The
458 two signatures reflect the different patterns of replication errors made by leading- and lagging-
459 strand polymerases, with small insertions dominating the leading-strand signature (MMR-2)
460 and T>C transitions dominating the lagging-strand signature (MMR-3). Beyond MutS α , it is
461 known that MutS β , comprising MSH2 and MSH3, also signals to MutL α to repair errors
462 introduced during replication, especially deletions (Romanova and Crouse, 2013). We find that
463 the MutS β pathway is numerically more important as the MutS α pathway for preventing indels
464 in normal human cells, evidenced by the observation that the rate of indels in deficiency of
465 MSH6, not a component of MutS β , is a quarter of the rate seen with deficiency of MSH2,
466 present in both MutS α and MutS β , or with deficiencies of PMS2 and MLH1, components of
467 MutL α (**Figure 1c**). The MMR-6 signature in part captures this MutS β repair process, as it has
468 considerably lower contribution to MSH6-deficient cases than MSH2 deficiency, and is
469 dominated by deletions.

470

471 An unexpected finding is that MutS α is the major repair pathway in human cells against
472 spontaneous deamination of methylated cytosine to thymine, a repair activity that cannot be
473 linked to replication. Our evidence for this is that signature MMR-1 is numerically the dominant
474 process in MutS α deficiency, a signature comprising almost purely C>T substitutions at CpG
475 dinucleotides, with no replication strand or transcription bias, correlating linearly with the
476 fraction of methylated cytosines across the genome. Deamination of methylated cytosine is a
477 spontaneous hydrolytic reaction in double-stranded DNA (Shen et al., 1994). As a
478 spontaneous reaction, it will occur in all phases of the cell cycle, including interphase. Because
479 the deamination generates a thymine, if the G:dT mismatch is not repaired before replication,
480 the event will become fixed as a somatic mutation – hence, this repair activity must occur
481 before replication. Interestingly, we find no increase in the rates of this mutational signature in
482 MutS α -deficient cells after neoplastic transformation, consistent with it being independent of
483 replication. Furthermore, the tumor types with sporadic MMR deficiency showing the highest
484 rates of MMR-1 are those with low intrinsic cell division rates, tissues such as meninges,
485 pleura and glial cells (**Figure 7**).

486

487 In MutS α -deficient intestinal crypts, 350-1150 C>T substitutions at CpG dinucleotides accrued
488 every year. Spontaneous deamination of methylated cytosine is estimated to occur at rates of

489 $5.8 \times 10^{-13}/5mC/\text{second}$ at 37°C (Shen et al., 1994) – with methylated cytosines comprising
490 ~1% of the human genome (Ehrlich et al., 1982), this rate equates to ~1000 deamination
491 events per diploid genome per year. The striking correspondence of the expected number of
492 spontaneous deamination events with our observed mutation rates argues that MutS α is the
493 critical component of our defence against this mutational process. The paucity of MMR-1 in
494 patients with *MLH1* or *PMS2* deficiency implies that MutL α is not the partner for repair of these
495 deamination events. Instead, a strong candidate is *MBD4*, a thymine DNA glycosylase that
496 binds G:T mismatches in a methylated cytosine context (Hendrich et al., 1999). Germline
497 deficiency of *MBD4* causes tumors with remarkably elevated C>T mutation rates at CpG
498 dinucleotides, with mutation rates and mutation spectrum very similar to that of MMR-1 here
499 (Derrien et al., 2020; Pan-cancer Analysis of Whole Genomes Consortium, 2020; Sanders et
500 al., 2018).

501

502 These data demonstrate that studying somatic mutations in normal tissues from natural
503 human knock-outs can enrich observations from experimental model systems and cancers.
504 By comparing mutation rates to normal tissues in healthy controls, we have quantified the day-
505 to-day activity of MMR in normal human cells across tissue types; by comparing mutational
506 signatures and rates across genotypes, we have separated the relative contributions of
507 individual components of the MMR pathway to different types of DNA lesions; by comparing
508 normal and transformed cells from the same patients, we have shown the increased
509 dependence on MMR's protective activity caused by rapid cellular proliferation.

510

511 **ACKNOWLEDGMENTS**

512 We thank the staff of the Wellcome Sanger Institute Sample Logistics, Sequencing and
513 Informatics facilities for their contribution, including Laura O'Neill, Calli Latimer and Kirsty
514 Roberts for their support with sample management; Remco Hoogenboezem and Peter Valk
515 for help with analyses, advice and discussions; Stefan Dentro for help with analyses; and Iñigo
516 Martincorena for advice and discussions. Results presented here are in part based upon data
517 generated by the TCGA Research Network: <https://www.cancer.gov/tcga>.

518

519 **FUNDING**

520 This work was supported by a Cancer Research UK Grand Challenge Award (C98/A24032)
521 and the Wellcome Trust (206194). MAS is supported by a Rubicon fellowship from NWO
522 (019.153LW.038) and a KWF Kankerbestrijding young investigator grant (12797/2019-2, Bas
523 Mulder Award; Dutch Cancer Foundation). This research has been supported by the National

524 Health and Medical Research Council of Australia (Project 1145912, IJM), the Cancer Council
525 of Victoria (IJM), Victorian State Government Operational Infrastructure Support and the
526 Australian Government NHMRC IRIISS. The Tabori lab research is supported by a Stand Up
527 To Cancer - Bristol-Myers Squibb Catalyst Research Grant (SU2C-AACR-CT-07-17). Stand
528 Up To Cancer is a division of the Entertainment Industry Foundation. Research Grants are
529 administered by the American Association for Cancer Research, the Scientific Partner of
530 SU2C. This Tabori lab research is also supported by Meagan's Walk (MW-2014-10),
531 b.r.a.i.n.child Canada, LivWise, a Canadian Institutes for Health Research (CIHR) Grant (PJT-
532 156006), and the CIHR Joint Canada-Israel Health Research Program. PJC was supported
533 by a Wellcome Senior Clinical Fellowship until 2020 (WT088340MA).

534

535 **AUTHOR CONTRIBUTIONS**

536 M.A.S., U.T. and P.J.C. conceived the study design. V.F., B.B.C., M.E., V.B., A.S. and U.T.
537 recruited individuals, collected samples, and curated clinical data. L.M. and M.A.S. developed
538 bespoke DNA library preparation methods. L.M., Y.H. and T.B. helped with sample
539 preparation, tissue fixation, tissue sectioning and sample submission. H.L. and M.R.S.
540 contributed and analysed control data. C.F., R.B. and I.J.M. provided help and advice on
541 analysing TCGA data. U.M. provided sequencing data. P.S.R. and T.H.H.C. provided a
542 bespoke procedure for unmatched variants filtering. H.S.V. and M.G. performed signature
543 extraction and fitting. M.A.S., H.S.V., M.G. and P.J.C. performed data analysis. P.J.C. and
544 M.G. oversaw statistical analyses. P.J.C. and M.A.S. drafted the manuscript, with input from
545 V.F. and U.T.

546

547 **CODE AVAILABILITY**

548 Code required to reproduce the analyses in this paper are available online
549 (<https://github.com/MathijsSanders/MMR>). Mutation calling algorithms are available through
550 GitHub (<https://github.com/cancerit>). All other code is available from the authors upon request.

551

552 **DATA AVAILABILITY**

553 Whole genome and exome sequencing BAM files for cases reported in this study have been
554 deposited in the European Genome-Phenome Archive (EGA) under accession code
555 EGAS00001002881 (<https://www.ebi.ac.uk/ega/home>).

556

557

558 **REFERENCES**

559 Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y., Boot, A.,
560 Covington, K.R., Gordenin, D.A., Bergstrom, E.N., et al. (2020). The repertoire of mutational
561 signatures in human cancer. *Nature* 578, 94–101.

562 Brunner, S.F., Roberts, N.D., Wylie, L.A., Moore, L., Aitken, S.J., Davies, S.E., Sanders,
563 M.A., Ellis, P., Alder, C., Hooks, Y., et al. (2019). Somatic mutations and clonal dynamics in
564 healthy and cirrhotic human liver. *Nature* 574, 538–542.

565 Campbell, B.B., Light, N., Fabrizio, D., Zatzman, M., Fuligni, F., de Borja, R., Davidson, S.,
566 Edwards, M., Elvin, J.A., Hodel, K.P., et al. (2017). Comprehensive Analysis of
567 Hypermutation in Human Cancer. *Cell* 171, 1042-1056.e10.

568 Campbell, P.J., Stephens, P.J., Pleasance, E.D., O'Meara, S., Li, H., Santarius, T.,
569 Stebbings, L.A., Leroy, C., Edkins, S., Hardy, C., et al. (2008). Identification of somatically
570 acquired rearrangements in cancer using genome-wide massively parallel paired-end
571 sequencing. *Nat. Genet.* 40, 722–729.

572 Christensen, S., Van der Roest, B., Besselink, N., Janssen, R., Boymans, S., Martens,
573 J.W.M., Yaspo, M.-L., Priestley, P., Kuijk, E., Cuppen, E., et al. (2019). 5-Fluorouracil
574 treatment induces characteristic T>G mutations in human cancer. *Nat. Commun.* 10, 4571.

575 Chung, J., Maruvka, Y.E., Sudhaman, S., Kelly, J., Haradhvala, N.J., Bianchi, V., Edwards,
576 M., Forster, V.J., Nunes, N.M., Galati, M.A., et al. (2020). DNA polymerase and mismatch
577 repair exert distinct microsatellite instability signatures in normal and malignant human cells.
578 *Cancer Discov.*

579 Crouse, G.F. (2016). Non-canonical actions of mismatch repair. *DNA Repair (Amst)*. 38,
580 102–109.

581 Derrien, A.-C., Rodrigues, M., Eeckhoutte, A., Dayot, S., Houy, A., Mobuchon, L., Gardrat,
582 S., Lequin, D., Ballet, S., Pierron, G., et al. (2020). Germline MBD4 Mutations and
583 Predisposition to Uveal Melanoma. *JNCI J. Natl. Cancer Inst.* 113, 1–8.

584 Ehrlich, M., Gama-Sosa, M.A., Huang, L.H., Midgett, R.M., Kuo, K.C., Mccune, R.A., and
585 Gehrke, C. (1982). Amount and distribution of 5-methylcytosine in human DNA from different
586 types of tissues or cells. *Nucleic Acids Res.* 10, 2709–2721.

587 Ellis, P., Moore, L., Sanders, M.A., Butler, T.M., Brunner, S.F., Lee-Six, H., Osborne, R.,
588 Farr, B., Coorens, T.H.H., Lawson, A.R.J., et al. (2020). Reliable detection of somatic
589 mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing.
590 *Nat. Protoc.* 1–31.

591 Frigola, J., Sabarinathan, R., Mularoni, L., Muinós, F., Gonzalez-Perez, A., and López-

592 Bigas, N. (2017). Reduced mutation rate in exons due to differential mismatch repair. *Nat.*
593 *Genet.* **49**, 1684–1692.

594 Haradhvala, N.J., Kim, J., Maruvka, Y.E., Polak, P., Rosebrock, D., Livitz, D., Hess, J.M.,
595 Leshchiner, I., Kamburov, A., Mouw, K.W., et al. (2018). Distinct mutational signatures
596 characterize concurrent loss of polymerase proofreading and mismatch repair. *Nat.*
597 *Commun.* **9**.

598 Hendrich, B., Hardeland, U., Ng, H.-H., Jiricny, J., and Bird, A. (1999). The thymine
599 glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. *Nature*
600 **401**, 301–304.

601 Hombauer, H., Campbell, C.S., Smith, C.E., Desai, A., and Kolodner, R.D. (2011).
602 Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair
603 intermediates. *Cell* **147**, 1040–1053.

604 Johnson, R.E., Kovvali, G.K., Prakash, L., and Prakash, S. (1996). Requirement of the yeast
605 MSH3 and MSH6 genes for MSH2-dependent genomic stability. *J. Biol. Chem.* **271**, 7285–
606 7288.

607 Jones, D., Raine, K.M., Davies, H., Tarpey, P.S., Butler, A.P., Teague, J.W., Nik-Zainal, S.,
608 and Campbell, P.J. (2016). *cgpCaVEManWrapper: Simple Execution of CaVEMan in Order*
609 *to Detect Somatic Single Nucleotide Variants in NGS Data.* In *Current Protocols in*
610 *Bioinformatics*, (Hoboken, NJ, USA: John Wiley & Sons, Inc.), pp. 15.10.1-15.10.18.

611 Kadyrov, F.A., Dzantiev, L., Constantin, N., and Modrich, P. (2006). Endonucleolytic
612 Function of MutL α in Human Mismatch Repair. *Cell* **126**, 297–308.

613 Kunkel, T.A., and Erie, D.A. (2015). Eukaryotic Mismatch Repair in Relation to DNA
614 Replication. *Annu. Rev. Genet.* **49**, 291–313.

615 Lee-Six, H., Olafsson, S., Ellis, P., Osborne, R.J., Sanders, M.A., Moore, L.,
616 Georgakopoulos, N., Torrente, F., Noorani, A., Goddard, M., et al. (2019). The landscape of
617 somatic mutation in normal colorectal epithelial cells. *Nature* **574**, 532–537.

618 Lopez-Garcia, C., Klein, A.M., Simons, B.D., and Winton, D.J. (2010). Intestinal stem cell
619 replacement follows a pattern of neutral drift. *Science* (80-.). **330**, 822–825.

620 Lujan, S.A., Clausen, A.R., Clark, A.B., MacAlpine, H.K., MacAlpine, D.M., Malc, E.P.,
621 Mieczkowski, P.A., Burkholder, A.B., Fargo, D.C., Gordenin, D.A., et al. (2014).
622 Heterogeneous polymerase fidelity and mismatch repair bias genome variation and
623 composition. *Genome Res.* **24**, 1751–1764.

624 Meier, B., Volkova, N. V., Hong, Y., Schofield, P., Campbell, P.J., Gerstung, M., and
625 Gartner, A. (2018). Mutational signatures of DNA mismatch repair deficiency in *C. elegans*

626 and human cancers. *Genome Res.* 28, 666–675.

627 Pan-cancer Analysis of Whole Genomes Consortium (2020). Pan-cancer analysis of whole
628 genomes. *Nature* 578, 82–93.

629 Peña-Díaz, J., Bregenhorn, S., Ghodgaonkar, M., Follonier, C., Artola-Borán, M., Castor, D.,
630 Lopes, M., Sartori, A.A., and Jiricny, J. (2012). Noncanonical Mismatch Repair as a Source
631 of Genomic Instability in Human Cells. *Mol. Cell* 47, 669–680.

632 Pich, O., Muiños, F., Lolkema, M.P., Steeghs, N., Gonzalez-Perez, A., and Lopez-Bigas, N.
633 (2019). The mutational footprints of cancer therapies. *Nat. Genet.* 51, 1732–1740.

634 Raine, K.M., Hinton, J., Butler, A.P., Teague, J.W., Davies, H., Tarpey, P., Nik-Zainal, S.,
635 and Campbell, P.J. (2015). cgpPindel: Identifying Somatically Acquired Insertion and
636 Deletion Events from Paired End Sequencing. *Curr. Protoc. Bioinformatics* 52, 15.7.1–
637 15.7.12.

638 Romanova, N. V., and Crouse, G.F. (2013). Different Roles of Eukaryotic MutS and MutL
639 Complexes in Repair of Small Insertion and Deletion Loops in Yeast. *PLoS Genet.* 9,
640 e1003920.

641 Sanders, M.A., Chew, E., Flensburg, C., Zeilemaker, A., Miller, S.E., Al Hinai, A.S., Bajel, A.,
642 Luiken, B., Rijken, M., McLennan, T., et al. (2018). MBD4 guards against methylation
643 damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML.
644 *Blood* 132, 1526–1534.

645 Serero, A., Jubin, C., Loeillet, S., Legoix-Né, P., and Nicolas, A.G. (2014). Mutational
646 landscape of yeast mutator strains. *Proc. Natl. Acad. Sci. U. S. A.* 111, 1897–1902.

647 Shen, J. Cheng, Rideout, W.M., and Jones, P.A. (1994). The rate of hydrolytic deamination
648 of 5-methylcytosine in double-stranded DNA. *Nucleic Acids Res.* 22, 972–976.

649 Shlien, A., Campbell, B.B., de Borja, R., Alexandrov, L.B., Merico, D., Wedge, D., Van Loo, P.,
650 Tarpey, P.S., Coupland, P., Behjati, S., et al. (2015). Combined hereditary and somatic
651 mutations of replication error repair genes result in rapid onset of ultra-hypermutated
652 cancers. *Nat. Genet.* 47, 257–262.

653 St Charles, J.A., Liberti, S.E., Williams, J.S., Lujan, S.A., and Kunkel, T.A. (2015).
654 Quantifying the contributions of base selectivity, proofreading and mismatch repair to
655 nuclear DNA replication in *Saccharomyces cerevisiae*. *DNA Repair (Amst.)* 31, 41–51.

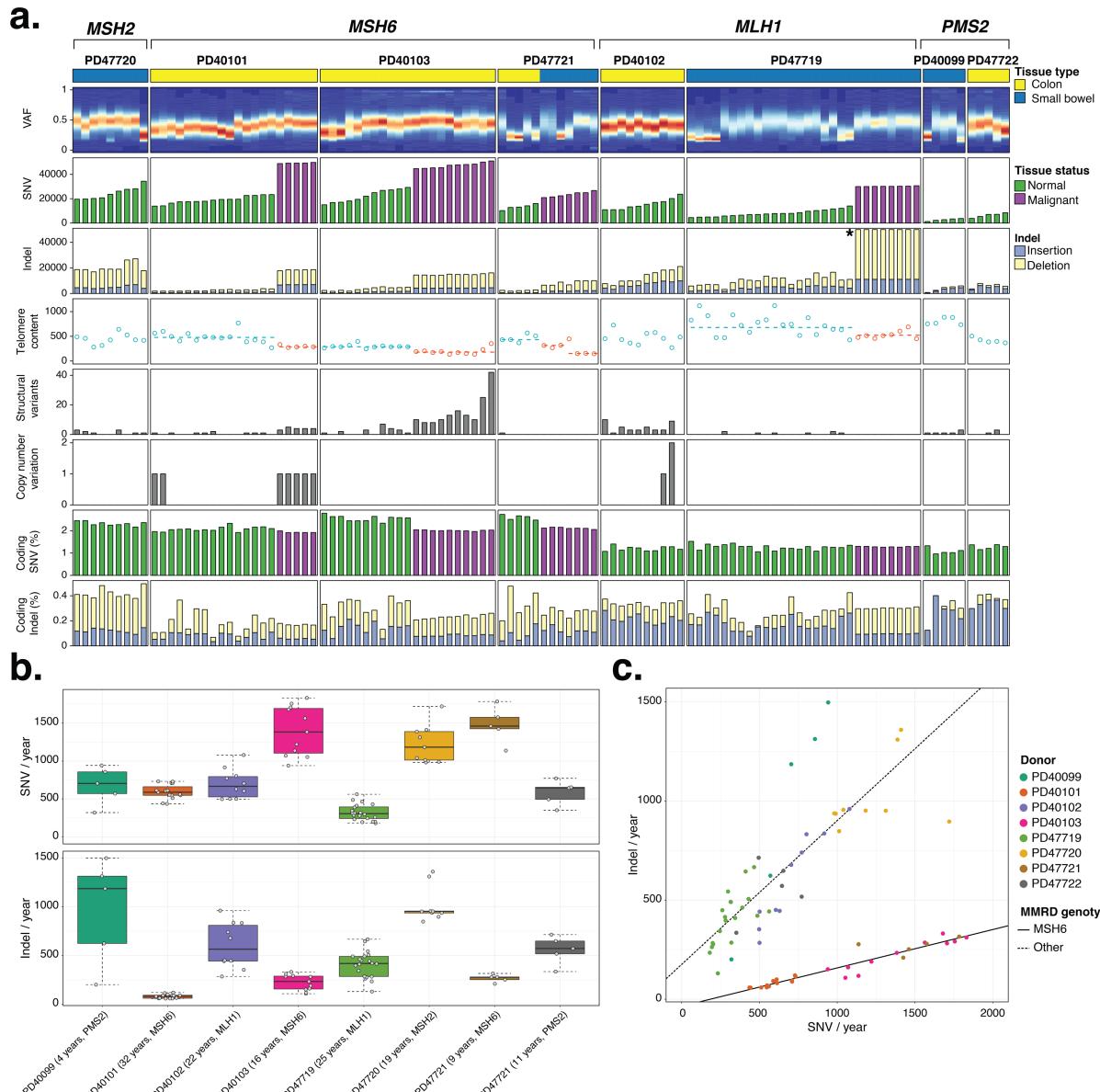
656 Supek, F., and Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate
657 variation across the human genome. *Nature* 521, 81–84.

658 Supek, F., and Lehner, B. (2017). Clustered Mutation Signatures Reveal that Error-Prone
659 DNA Repair Targets Mutations to Active Genes. *Cell* 170, 534–547.

660 Tabori, U., Hansford, J.R., Achatz, M.I., Kratz, C.P., Plon, S.E., Frebourg, T., and Brugieres,
661 L. (2017). Clinical management and tumor surveillance recommendations of inherited
662 mismatch repair deficiency in childhood. *Clin. Cancer Res.* 23, e32–e37.

663 Touat, M., Li, Y.Y., Boynton, A.N., Spurr, L.F., Iorgulescu, J.B., Bohrson, C.L., Cortes-
664 Ciriano, I., Birzu, C., Geduldig, J.E., Pelton, K., et al. (2020). Mechanisms and therapeutic
665 implications of hypermutation in gliomas. *Nature* 580, 517–523.

666 Vöhringer, H., Hoeck, A. van, Cuppen, E., and Gerstung, M. (2020). Learning mutational
667 signatures and their multidimensional genomic properties with TensorSignatures. *BioRxiv*
668 850453.


669 Zubani, G.G., Zivojnovic, M., Smet, A. De, Albagli-Curiel, O., Huetz, F., Weill, J.C., Reynaud,
670 C.A., and Storck, S. (2017). Pms2 and uracil-DNA glycosylases act jointly in the mismatch
671 repair pathway to generate Ig gene mutations at A-T base pairs. *J. Exp. Med.* 214, 1169–
672 1180.

673

674

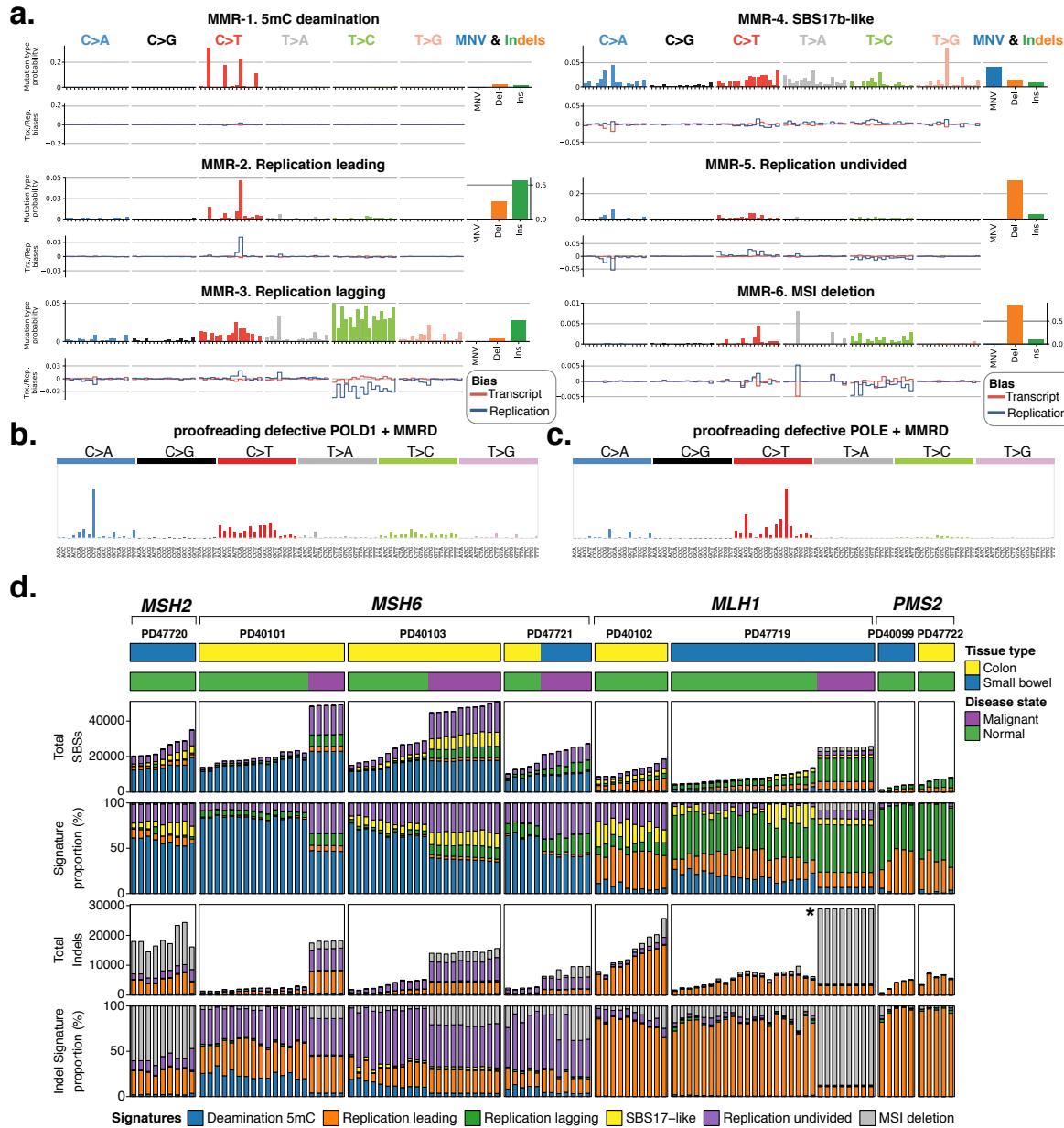
675 **FIGURES**

676

677

678 **Figure 1. Mutation Burden and Acquisition rates in Normal and Neoplastic CMMRD**
 679 **Intestinal Crypts.**

680 **(a)** Each column represents an individual sample. From top to bottom: tissue type indicator,
 681 VAF distribution heatmap, SNV burden coloured by disease state, indel burden separated on
 682 insertions and deletions, telomere content, SV burden, CNV burden, percentage of coding
 683 SNVs coloured by disease state, percentage of coding indels separated on insertions and
 684 deletions. Dashed horizontal lines indicate median telomere content for matched normal and
 685 neoplastic intestinal tissue samples.


686 **(b)** Annual SNV and indel rate for normal intestinal epithelium samples of each CMMRD
 687 (samples from neoplastic tissues not shown). Boxplots mark median, inter-quartile range

688 (IQR) and whiskers extend to 1.5 IQR from last quartile. Donor ID, age and MMRD genotype
689 are displayed below.

690 **(c)** Relationship between annual SNV and indel rates. Individual samples are colour-coded
691 based on donor origin. Solid line regresses the relationship for MSH6-deficient samples only.
692 Dashed line regresses the relationship for all other MMRD genotypes.

693 *, y-axis is limited to 50,000 indels to accommodate visualisation of the indel burden for all
694 samples.

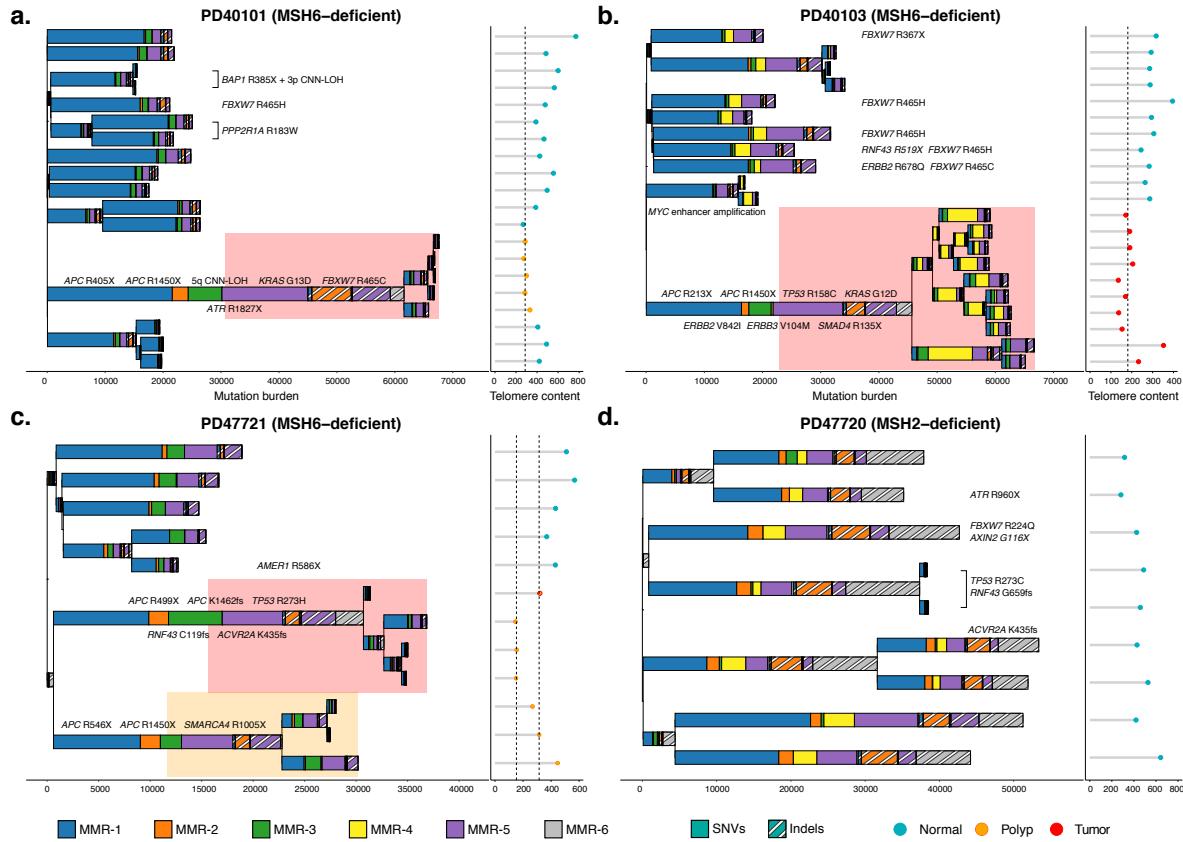
695

696

697 **Figure 2. Mutational Signature Analysis Reveals DNA Damage Repair Specificity with**
698 **Respect to MMRD Genotype and Disease State.**

699 **(a)** The 6 mutational signatures extracted by TensorSignatures from all CMMRD intestinal
700 crypts and other tissues samples. Mutational catalogues for intestinal crypts were extracted
701 from variant phylogenies (**Figures 2-3**) to prevent duplication of variants presents in multiple
702 related samples. For each signature, the left top panel shows probability for the 96 possible
703 single base substitutions classified by trinucleotide contexts grouped into the 6 possible
704 pyrimidine-based mutations. The right top panel shows mutation type probability for MNVs,
705 insertions and deletions. Total contribution of all possible SNVs and other mutations sums to
706 1. The bottom panel shows transcriptional (red line) and replication (blue line) strand biases
707 for each possible SBS type and context. Positive values indicate coding and leading strand

708 biases, respectively. Negative values indicate template and lagging strand biases,
709 respectively.

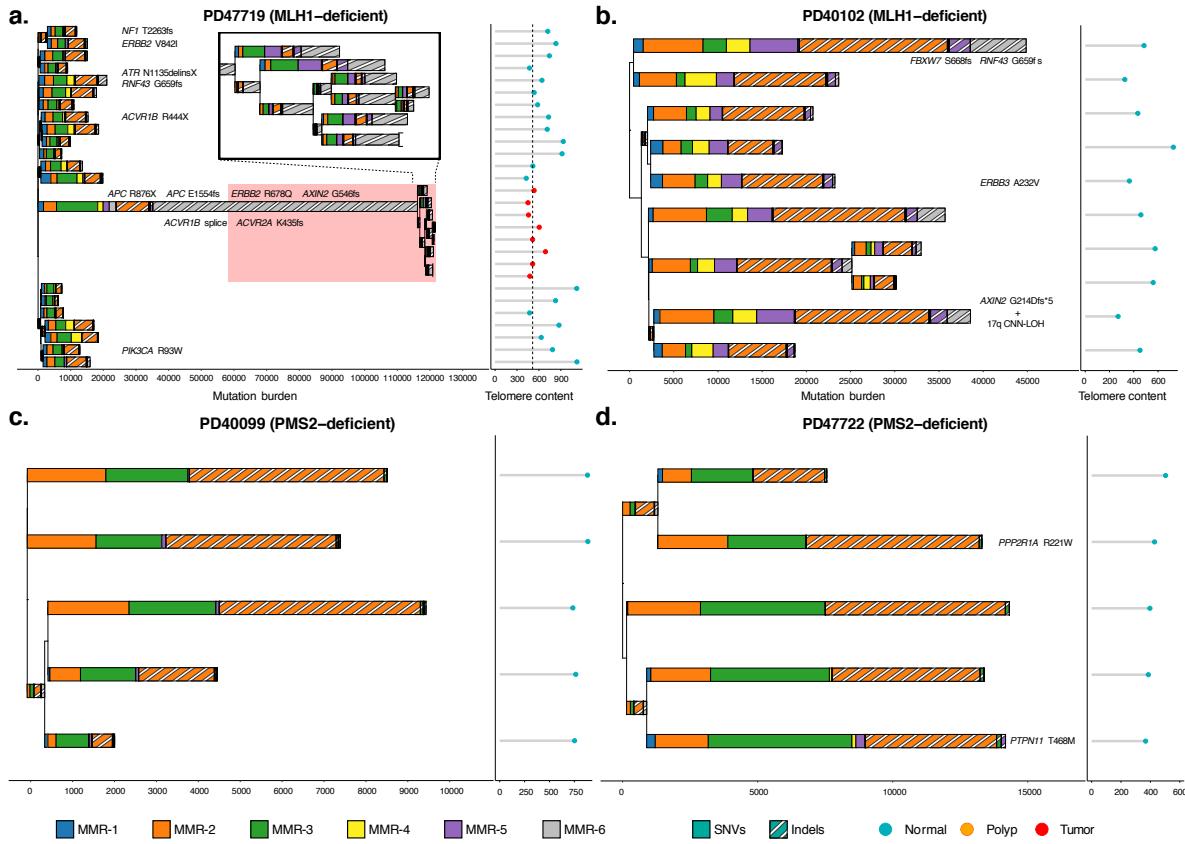

710 **(b)** Typical SBS mutational profile for cancers from TCGA marked by both proofreading
711 defective POLD1 and concomitant loss of MMR.

712 **(c)** Typical SBS mutational profile for cancers from TCGA marked by both proofreading
713 defective POLE and concomitant loss of MMR.

714 **(d)** Each column indicates an individual sample. From top to bottom: tissue type indicator,
715 mutational signature attribution for SBSs, proportional mutational signature attribution for
716 SBSs, mutational signature attribution for indels, proportional mutational signature attribution
717 for indels.

718 *: y-axis is limited to 30,000 to accommodate the visualisation of mutational signature
719 attribution for all samples.

720

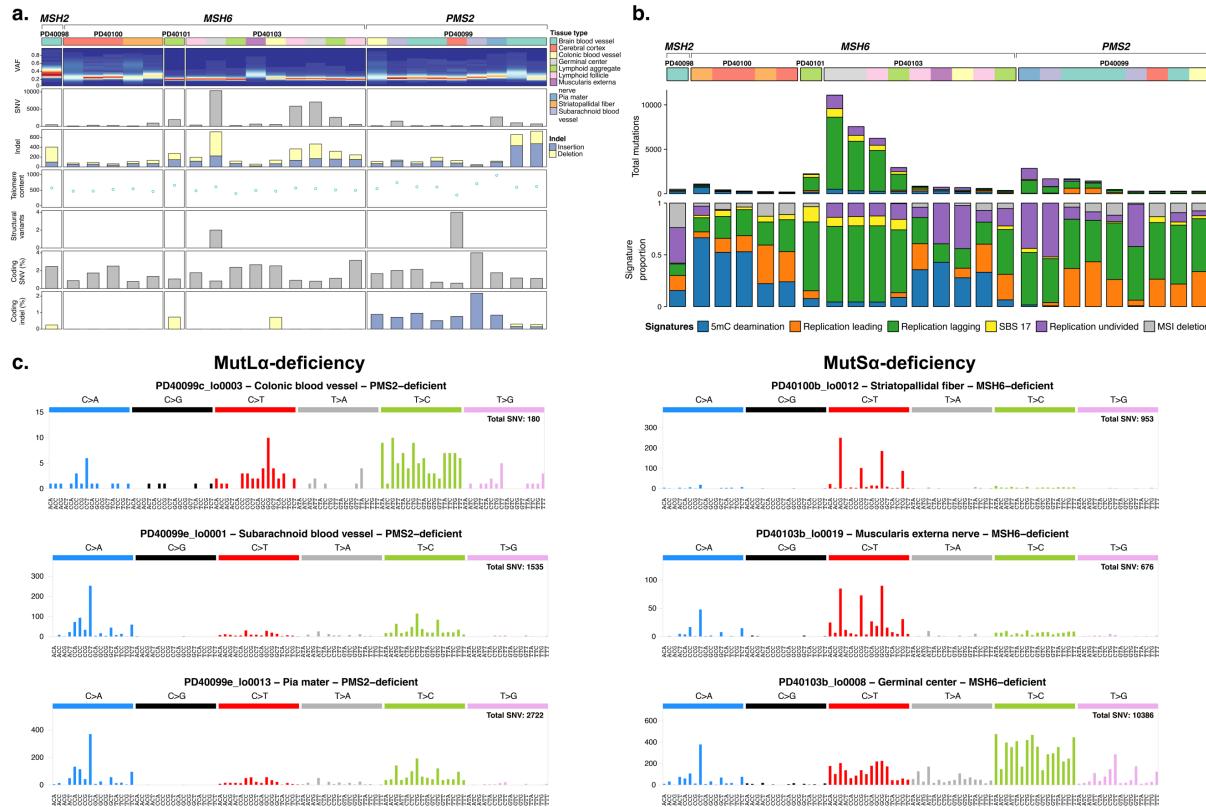


721

722 **Figure 3. Phylogenetic Mutational Signature Attribution reveals Differential DNA**
 723 **Damage Repair Deficiency in Healthy and Neoplastic MutS α -deficient Intestinal Crypts.**

724 (a-d) Intestinal crypt phylogenies were inferred from all mutations (SNVs and indels). Branch
 725 length is proportional to the number of mutations detected. Branching indicates a historical
 726 crypt fission event. Stacked bar plots represent the mutational signature composition
 727 contributing to individual branches and colour-coded according to activity. Branches defined
 728 by <100 mutations were omitted from signature extraction. Stacked bar plot constituents: solid
 729 pattern – SNVs, stripped pattern – indels. Right panel: telomere content for individual crypts
 730 coloured by disease state. Dashed line indicates the median telomere content for neoplastic
 731 intestinal crypts. Coloured rectangular areas highlight branches formed by intestinal crypts
 732 microdissected from neoplastic tissues. Detected driver mutations are listed next to or along
 733 branches to indicate their presence among related intestinal crypts. (a) PD40101 (MSH6-
 734 deficient), phylogeny comprising normal (n = 12) and matched neoplastic intestinal crypts (n
 735 = 5). (b) PD40103 (MSH6-deficient), phylogeny comprising normal (n = 11) and matched
 736 neoplastic intestinal crypts (n = 10). (c) PD47721 (MSH6-deficient), phylogeny comprising
 737 normal (n = 5) and matched neoplastic intestinal crypts (n = 4, n = 3). Coloured area indicates
 738 the branches common to the 2 individual microdissected matched polyps. (d) PD47720
 739 (MSH2-deficient), phylogeny comprising only normal intestinal crypts (n = 9).

740

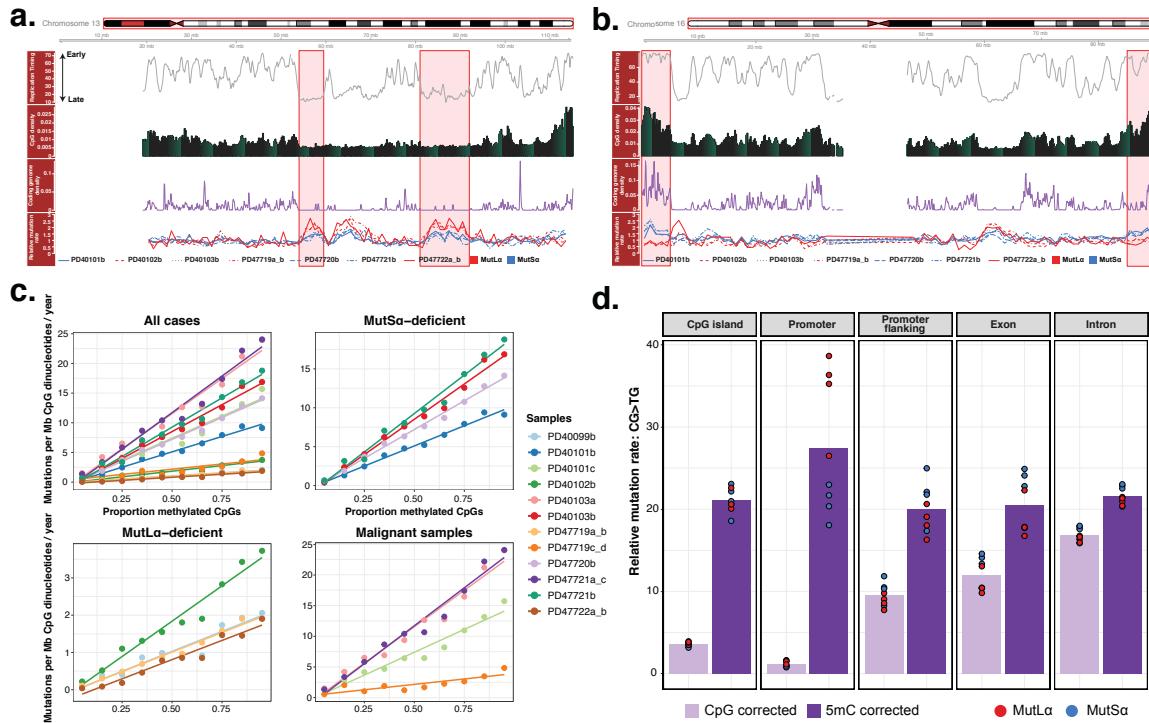


741

742 **Figure 4. Phylogenetic Mutational Signature Attribution reveals Differential DNA**
 743 **Damage Repair Deficiency in Healthy and Neoplastic MutL α -deficient Intestinal Crypts.**

744 (a-d) Intestinal crypt phylogenies were inferred from all mutations. Branch length is
 745 proportional to the number of mutations detected. Branching indicates a historical crypt fission
 746 event. Stacked bar plots represent the mutational signature composition contributing to
 747 individual branches and colour-coded according to exposure. Branches defined by <100
 748 mutations were omitted from signature extraction. Stacked bar plot constituents: solid pattern
 749 – SNVs, stripped pattern – indels. Right panel: telomere content for individual crypts coloured
 750 by disease state. Dashed line indicates the median telomere content for neoplastic intestinal
 751 crypts. Coloured rectangular areas highlight branches formed by intestinal crypts
 752 microdissected from neoplastic tissues. Detected driver mutations are listed next to or along
 753 branches to indicate their presence among related intestinal crypts. (a) PD47719 (MLH1-
 754 deficient), phylogeny of normal (n = 20) and neoplastic (n = 7) intestinal crypts. Coloured area
 755 indicates branches common matched microdissected colon cancer. Inset illustrates branches
 756 established in the final stages of colon cancer development. (b) PD40102 (MLH1-deficient),
 757 phylogeny of only normal (n = 10) intestinal crypts. (c) PD40099 (PMS2-deficient), phylogeny
 758 of only normal (n = 5) intestinal crypts. (d) PD47722 (PMS-deficient), phylogeny of only normal
 759 (n = 5) intestinal crypts.

760



761
762 **Figure 5. Mutational Signature Analysis of Other CMMRD Tissues Confirms DNA**
763 **Damage Repair Specificity Among MMR Components.**
764
765
766
767
768
769
770
771
772

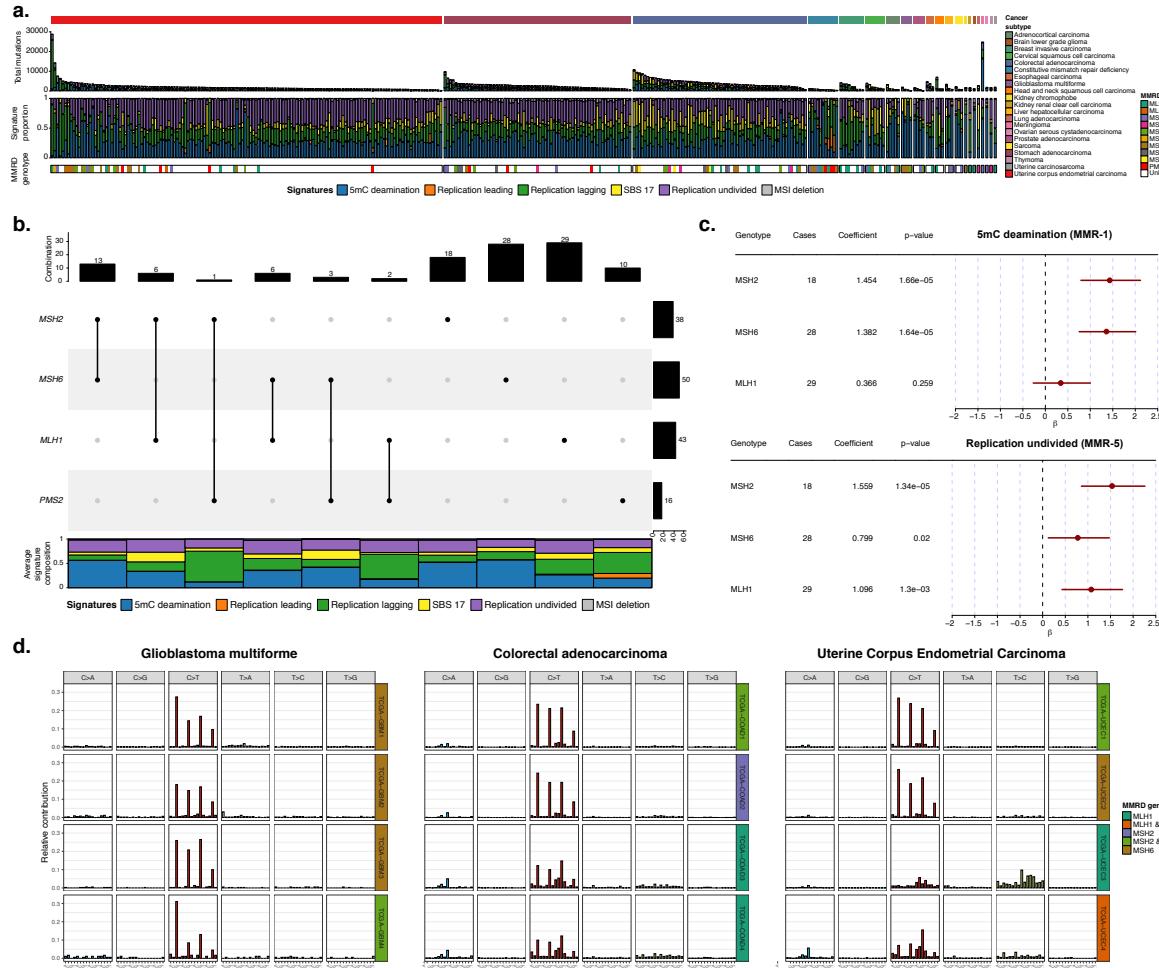
(a) Each column indicates an individual sample. From top to bottom: tissue type indicator, VAF distribution heatmap, SNV burden, indel burden distinguished by insertions and deletions, telomere content, SV burden, CNV burden, percentage of coding SNVs, percentage of coding indels distinguished by insertions and deletions.

(b) Total and relative mutational signature contribution for microdissected non-intestinal samples as identified by the indicated colour-coding. Legend is shared with panel (a).

(c) Left: typical mutational spectra for different MutL α -deficient tissues. Right: typical mutational spectra for different MutS α -deficient tissues.

773

774 **Figure 6. Determinants and Genomic Distribution of DNA Damage Typically Repaired
775 by MMR.**


776 (a) Distribution of determinants and mutations on chromosome 13 across non-overlapping 1
777 Mb bins. From top to bottom. (I) Average replication timing profile. High values indicates early
778 replication and vice versa. (II) CpG-dinucleotide frequency. (III) Coding genome frequency.
779 (IV) Average relative SNV rate of healthy intestinal crypts across the non-overlapping bins.
780 Line type indicates individual donors whereas line colour indicates which MMR complex is
781 deficient. Highlighted areas indicate broad domains of late genome replication. Case PD40099
782 was excluded on the basis of low genome-wide mutation counts.

783 (b) Distribution of determinants and mutations on chromosome 16 across non-overlapping 1
784 Mb bins. Information included and colour coding is the same as panel (a). Highlighted areas
785 indicate areas of high CpG and coding genome density.

786 (c) Linear relationship between methylation levels and methylation damage. CpG-
787 dinucleotides are grouped on observed methylation levels (methylation level bins) detected in
788 a normal sigmoid colon. Mutation burden was determined across all bins and corrected for
789 total CpG counts in millions and age. Solid line is the results of ordinary linear regression.
790 Data for all microdissected healthy intestinal crypts and deficiency of individual MMR
791 complexes is displayed in the top row and lower-left panel. Data for neoplastic samples are
792 displayed in the lower-right panel.

793 (d) Relative mutation rates (RMR) of methylation damage (CG>TG) across different genomic
794 elements further distinguished by MMR complex deficiency. RMR values are obtained per

795 genomic element by correcting the total CG>TG burden per sample by either CpG density or
796 methylation levels.
797

798

799 **Figure 7. MutS α is a Primary Repair Force Engaging Methylation Damage as Confirmed
800 in MutS α -deficient Cancers.**

801 (a-e) MMRD status was determined across all TCGA cancer subtypes and supplemented by
802 a CMMRD WES cancer cohort. MMRD genotype was determined by screening for loss-of-
803 function or known damaging variants, CNVs and SVs involving MMR components. Cases with
804 MMRD as a consequence of MMR component promoter silencing were listed as unknown.
805 (a) Mutation burden, mutational signature contribution and MMRD genotype for MMRD
806 cancers present in the combined cohort. Each column represents an individual MMRD cancer.
807 From top to bottom: cancer subtype, mutational signature attribution based on all mutations
808 (SNVs and indels), relative mutational signature composition and MMRD genotype indicator.
809 A white MMRD genotype indicator indicates either an unknown genotype or that MMRD is
810 established through MMR gene promoter silencing.
811 (b) UpSet plot summarizing MMRD genotype counts across all genotyped MMRD cancers.
812 Top: number of cases with the indicated MMRD genotype combination. Right: number of
813 cases per MMR component lost. Bottom: average mutational signature contribution per
814 indicated MMRD genotype.

815 **(c)** Forest plots summarizing the Dirichlet regression results. PMS2-deficient cancers were
816 used as reference. Cancers with components lost from both MMR complexes (MutS α and
817 MutL α) were excluded. Significant associations between MMR component loss and
818 mutational signature activity was seen for the MMR-1 and MMR-5 signatures.
819 **(d)** SBS mutational profiles per indicated cancer subtypes across different MMRD genotypes.
820 Coloured label on the right of each mutational profile indicates the established MMRD
821 genotype. Left: mutational profiles of MMRD glioblastoma multiforme enriched for loss of
822 MutS α . Middle: colorectal adenocarcinoma (COAD), top 2 rows are typical mutational profiles
823 for MutS α -deficient cases while the bottom 2 rows are indicative for MutL α -deficient cases.
824 Right: endometrial cancer, top 2 rows are typical mutational profiles for MutS α -deficient cases
825 while the bottom 2 rows are indicative for MutL α -deficient cases.

826 **METHODS**

827

828 **Human Tissue Samples**

829

830 All human biological samples were collected with informed consent by the Biallelic Mismatch
831 Repair Deficiency Syndrome (bMMRD) biobank located at The Hospital of Sick Kids, Toronto,
832 Canada, in accordance with procedures approved by the Local Research Ethics Committee
833 (REC reference 17/NW/0713). Samples were snap-frozen in liquid nitrogen or stored at -80
834 °C upon collection and stored at -80 °C after transfer to the bMMRD biobank at The Hospital
835 of Sick Kids.

836

837 **Tissue Preparation**

838

839 Frozen tissues were first thawed at 4 °C for 10-15 min. Larger biopsies were dissected into
840 smaller sections which were stored at -80 °C to safeguard materials for future experiments.
841 Thawed tissues were fixed in 70% ethanol and embedded in paraffin by the Tissue-Tek VIP 6
842 AI tissue processing instrument (Sakure) based on an ethanol-only embedding protocol.
843 Sections of 10µm thickness were cut from the paraffine-embedded tissue blocks and mounted
844 onto poly-ethylene naphtholate (PEN)-membrane slides (Leica). Tissue slides were stained
845 with the following haematoxylin and eosin (H&E) protocol in sequential steps: xylene (2 min,
846 twice), ethanol (100%, 1 min, twice), deionized water (1 min, once), Gill's haematoxylin (10-
847 20 s, once), tap water (20 s, twice), eosin (10 s, once), tap water (10-20 s, once), ethanol
848 (70%, 20 s, twice), and xylene (10-20 s, twice). Tissue slides were cover-slipped after H&E
849 staining for scanning with the NanoZoomer S60 Slide Scanner (Hamamatsu), generated
850 images were viewed with NDP.View2 (Hamamatsu).

851

852 **Laser Capture Microdissection**

853

854 Areas of interest were identified from the scanned slides. Laser capture microdissection of
855 these areas was performed with the LMD7000 microscope (Leica) and collected into a skirted
856 96-well PCR plate. Overview pre- and post-dissection images were stored for quality control.
857 For some donors bulk samples from connective or muscle tissues were taken to be used as
858 matched control. Cell lysis was achieved using 20µl of proteinase-K Picopure DNA Extraction
859 kit (Arcturus). Thermocycler protocol: sample incubation at 65 °C for 3 hours followed by
860 proteinase denaturation at 75 °C for 30 minutes. Processed samples were stored at -20 °C
861 prior to submission for DNA library preparation.

862

863 **Low-input DNA Library Preparation and Sequencing**

864

865 DNA library preparation was undertaken as previously described using a low-input DNA library
866 preparation method (Ellis et al., 2021). This protocol allows for high quality DNA library
867 preparation starting from low material quantities without whole genome amplification. DNA
868 library concentration was assessed after library preparation, a minimum library concentration
869 of 5 ng/μl was used to determine whether to take DNA sequencing forward. All LCM samples
870 were subjected to 2x150bp paired-end whole genome sequencing. Samples from donors
871 PD40098, PD40099, PD40100, PD40101, PD40102 and PD40103 were sequenced on the
872 HiSeq X platform (Illumina), while samples from donors PD47719, PD47720, PD47721 and
873 PD47722 were sequenced on the NovaSeq 6000 platform (Illumina) with the XP kit and using
874 unique dual indexes. Pools of samples were sequenced to achieve a coverage of ≥ 30 .

875

876 **SBS Calling**

877

878 Sequencing data were aligned to the NCBI human reference genome (GRCh37) using the
879 Burrow-Wheeler Aligner (BWA-MEM) (Li and Durbin, 2009). Duplicated mate-pairs were
880 marked for removal during downstream analysis. Single Base Substitutions (SBS) were called
881 using 'Cancer Variants through Expectation Maximization' (CaVEMan) (Jones et al., 2016).
882 Mutations were called against a synthetic unmatched normal control. Post-calling filters were
883 utilized to remove low-quality variants, alignment errors, low-input DNA library preparation
884 specific artefacts and germline variants as previously described (Lee-Six et al., 2019; Moore
885 et al., 2020). The following filters were applied: (1) common single nucleotide polymorphisms
886 and recurrent artefacts were removed by filtering against a panel of 75 unmatched normal
887 samples (Nik-Zainal et al., 2012), (2) common artefacts and erroneous variants as a
888 consequence of poor alignment were removed by applying a threshold for the median
889 alignment score (ASMD ≥ 140) of reads supporting variants and less than half of the variant-
890 supporting reads could be clipped (CLPM = 0), (3) by counting variant supporting fragments
891 instead of reads to prevent counting variant-supporting mate-pairs double and (4) a filter that
892 detects variants introduced due to incorrect processing of cruciform DNA during DNA library
893 preparation. Software implementing these filtering steps can be found at
894 <https://github.com/MathijsSanders/SangerLCMFiltering>.

895

896 A subsequent set of filters is applied to remove retained germline variants and potential
897 artefacts. Code for performing these filtering steps can be found at
898 https://github.com/TimCoorens/Unmatched_NormSeq. Mutations across all intestinal

899 samples were aggregated and read pile-up was performed with AnnotateBAMStatistics
900 (<https://github.com/MathijsSanders/AnnotateBAMStatistics>) to determine the fragment counts
901 of the mutant and wildtype alleles per mutation. Germline variants were filtered using an exact
902 binomial test. Per donor mutant counts were aggregated across all intestinal samples in
903 conjunction with the total fragment coverage. Taking the fragment variant and coverage
904 counts a variant is retained when it deviates significantly from the expected values from a
905 binomial distribution with $p = 0.5$. A second filter is used to filter potential remnant artefacts
906 present at lower variant allele frequencies (VAF). For somatic variants a significant
907 overdispersion is present when fitting a beta-binomial distribution. Variants consistently
908 present with similar VAFs across all included samples are likely erroneous and yield little
909 overdispersion. Therefore, a beta-binomial test was applied. Genuine variants were
910 determined by using a overdispersion threshold (rho) of ≥ 0.1 . This process yielded the final
911 list of somatic variants used for downstream analysis.

912

913 **Indel Calling**

914

915 Indels were called by cgPindel (Raine et al., 2015) using a synthetic normal, described under
916 'SBS calling', as unmatched control. Indels passing the standard filtering were subjected to a
917 quality score ≥ 300 and should be at least covered by 15 reads. Detected indels positioned in
918 large repeats ($> 9\text{bp}$) are flagged by cgPindel and removed from the final list of somatic
919 variants. The number of mutant reads, wildtype reads and VAF was determined by cgPindel.
920 After collating these statistics, a similar protocol for determining germline variants and possible
921 artefacts was used as described for SBS.

922

923 **Deletion-to-indel Ratio**

924

925 The deletion:indel ratio was determined for each normal intestinal crypt sequenced to assess
926 the linear relationship between these lesions dependent on the mismatch repair deficiency
927 (MMRD) genotype. A linear mixed model was constructed with lme4 (Bates et al., 2014) to
928 model the number of deletions as a dependent variable on the interaction effect
929 insertions:genotype (the number of insertions and MMRD genotype, fixed effect), donor label
930 (random intercept to account for multiple samples per donor) and genotype-dependent
931 insertions (random slope for insertions based on MMRD genotype). Crypts from neoplastic
932 intestinal tissues have a strong phylogenetic relationship resulting in similar numbers of indels.
933 The average deletion:indel ratio was calculated for these samples as an indication of which
934 indel lesion type are often acquired.

935

936 **Structural Variant Calling**

937

938 Structural variants (SV) were called using a matched, but phylogenetically unrelated, sample
939 from the same donor with the ‘Breakpoints Via Assembly’ (BRASS) algorithm (Campbell et
940 al., 2008), with further annotation from GRASS (<https://github.com/cancerit/BRASS>). SVs
941 were annotated further by AnnotateBRASS
942 (<https://github.com/MathijsSanders/AnnotateBRASS>) as previously described in detail (Moore
943 et al., 2020). In brief, low-input DNA preparation results in the erroneous introduction of SV at
944 low read counts. AnnotateBRASS determines the following per SV: the number of supporting
945 read pairs, the variance in the alignment position of read pairs, whether read-pairs are clipped
946 or carry an excess of variants not reported in single nucleotide polymorphism databases, are
947 in the correct orientation or whether SV-supporting read-pairs are in regions marked by high
948 proportions of other read-pairs aligning to different parts of the genome (high homology). After
949 annotation SVs are filtered as previously described in detail
950 <https://github.com/MathijsSanders/AnnotateBRASS> (Moore et al., 2020).

951

952 **Copy Number Variation Calling**

953

954 Coverage and B-allele frequency (BAF) information was extracted for samples included in the
955 study by ConstructASCATFiles (<https://github.com/MathijsSanders/ConstructASCATFiles>).
956 Single nucleotide polymorphisms (SNP) with a population frequency greater than 0.01 were
957 used for extracting coverage and BAF statistics across all samples. Coverage and BAF
958 statistics were grouped by donor and assessed for quality via ‘QualityControl_and_PCA.R’
959 (<https://github.com/MathijsSanders/PREASCAT>). For each donor one or more control
960 samples are defined which are assumed to comprise fully diploid cells. This could either be
961 bulk polyclonal samples (connective tissue) or other tissues for which it is certain that the
962 genome is diploid. SNPs with limited coverage across all control samples are excluded from
963 the analysis. Samples are corrected for library size by assuming that heterozygous SNPs with
964 a balanced VAF (~ 0.5) represent diploid genomic areas. The LogR ratio is determined by
965 dividing the library-size corrected coverage for each samples with the median library-size
966 corrected coverage of the controls. The X chromosome is multiplied by 2 for male individuals
967 to correct for sex differences. The low-input DNA library preparation protocol on occasion
968 results in substantial variance in the BAF of heterozygous SNPs in the control samples. The
969 median BAF across the control samples is used to determine the set of heterozygous SNPs
970 for each donor. Principal component analysis (PCA) was applied to normalized LogR values
971 to detect systemic biases present in all samples or the samples of the donor of interest. Among

972 such areas are the HLA locus and peri-centromeric regions and regions of high-vs-low CpG
973 density. Final LogR and BAF statistics are calculated with 'construct_ASCAT_file.R'
974 (<https://github.com/MathijsSanders/ConstructASCATFiles>). This algorithm follows the same
975 approach but includes principal component (PC) regression to assuage any systemic noise
976 present. LogR profiles are centered around 0 by subtracting the mean value followed by PC
977 regression to determine the absolute presence of noise. This fit is extracted from the 0-
978 centered LogR profile followed by restoration to the previous average value by adding the
979 mean value earlier used for subtraction. Finally, the resulting files are used in ASCAT for allele-
980 specific CNV detection (Van Loo et al., 2010).

981

982 **Telomere Content Estimation**

983

984 Attrition of the telomeres is a hallmark of cellular aging. Assessment of telomere lengths for
985 all microdissected samples, including neoplastic intestinal epithelium, was achieved by two
986 distinct approaches.

987

988 Telomerecat v3.4.0 (Farmery et al., 2018) was used for estimating telomere lengths based on
989 WGS data with length correction enabled and the number of simulations set to 100. In rare
990 instances telomere lengths could not be estimated. One possible explanation is the use of the
991 HiSeq X and NovaSeq 6000 instruments for distinct sets of microdissected samples. A second
992 telomere length algorithm, TelomereHunter (Feuerbach et al., 2019), was used as an
993 orthogonal approach which yielded results for all samples. Strong correlation was observed
994 upon comparing the different telomere length estimation algorithms. Telomeres from
995 neoplastic intestinal epithelium were significant shorter compared to their synchronously
996 collected matched normal tissues indicative that neoplastic change results in increased
997 proliferation rates and shorter telomeres. Telomere content estimates from TelomereHunter
998 were reported because information was available for all samples.

999

1000 **Inference of Phylogenetic Trees**

1001

1002 Phylogenies from all mutations, SBS and indels, of normal and neoplastic colonic crypts
1003 (n=110) was reconstructed for 8 CMMRD donors across all MMRD genotypes. SBS were
1004 called by CaVEMan as described under 'SBS calling', while indels were called by cgpPindel
1005 as described under 'Indel calling'. Finally mutations were recalled across all intestinal crypts
1006 samples for each donor using AnnotateBAMStatistics (SBS) or cgpVAF (indel). Variants with
1007 a VAF ≥ 0.3 were labelled as present (1), VAF ≤ 0.1 as absent (0) and a VAF between 0.1
1008 and 0.3 (?) as ambiguous. This string of labels was used as input for phylogenetic tree

1009 reconstruction using a parsimonious approach in MPBoot (Hoang et al., 2018), bootstrap
1010 parameter set 1.000, and mutations were mapped to branches of the phylogenetic tree using
1011 maximum likelihood estimation.

1012

1013 **Mutational Signature Extraction**

1014

1015 All classes of SBS, multi-nucleotide variants (MNV) and indels were used for mutational
1016 signature extraction. For normal and neoplastic intestinal crypts branches from the
1017 reconstructed phylogenetic trees were used as input rather than the complete per-sample
1018 mutational catalogue. Some intestinal crypts have strong phylogenetic relationship due to
1019 crypt fission at a later point in life. Using branches from the phylogenetic trees prevents
1020 mutations being duplicated in the same mutational signature extraction procedure.
1021 Additionally, using the branches as input gives insight into the changes of the mutational
1022 signature composition upon neoplastic change. The full mutational catalogue for non-intestinal
1023 epithelium microdissected samples is used due to little genetic kinship to other non-intestinal
1024 samples from the same tissue. Mutational signature analysis was performed using
1025 TensorSignatures (Vöhringer et al., 2020), which defines mutational signatures in terms of
1026 SBS, MNVs as well as indels. SBS are counted strand symmetrically (C>A, C>G, C>T, T>A,
1027 T>C and T>G) and were classified based on the 5' and 3' flanking nucleotide context. MNVs
1028 and indels were classified by variant type and increasing length. TensorSignatures
1029 deconvolves mutational signatures further on the basis of genomic properties by grouping
1030 SBS by genomic contexts including transcription and replication orientation, epigenetic and
1031 nucleosomal context, and clustering status. Transcription states include the coding, template
1032 and unknown strand and were derived from GENCODE v19 annotations. Assignment to
1033 replication orientation (leading, lagging or unknown strand) were based on consensus
1034 annotations from Repli-seq profiles of GM12818, K564, HeLa, HUVEC and HepG2 cell lines
1035 (Hansen et al., 2010). Epigenetic states (TssA, TssAFlnk, TxFlnk, Tx, TxWk, EnhG, Enh,
1036 Znf/Rpts, Het, TSSBiv, BivFlnk, EnhBiv, ReprPC, ReprPCWk and Quies) stem from
1037 consensus ChromHMM annotations derived from the 127 ENCODE cell lines (Roadmap
1038 Epigenetic Consortium). SBS assignment to nucleosomal status (minor grooves facing away
1039 from and towards histones, and linker DNA between nucleosomes) were based on MNase cut
1040 efficiency data, locating conserved nucleosome dyad (midpoint) positions in human
1041 lymphoblastoid cell lines (Pich et al., 2018). Clustered SBS were identified using a 2-state
1042 Hidden-Markov model (Vöhringer et al., 2020). The analysis was performed for decomposition
1043 ranks ranging between 2-20 and the overdispersion parameters: 10, 20, 30, 50, 100, 1,000
1044 and 10,000. The model with 6 (overdispersion = 10.000) mutational signatures was selected
1045 as suggested by the Bayesian information criterion estimator. Optimization of each model was

1046 performed for 50.000 training epochs using an ADAM optimizer and an exponential decaying
1047 learning rate (starting learning rate 0.1).

1048

1049 **Phylogenetic Tree Visualisation**

1050

1051 The mutational composition per phylogenetic tree branches was estimated by
1052 TensorSignatures (Vöhringer et al., 2020). The structure of the reconstructed tree was
1053 determined as described under 'Inference of phylogenetic trees'. The fortified tree was plotted
1054 by ggtree (Yu, 2020), while the stacked bar plots were drawn upon the tree with ggplot2 and
1055 ggpattern (<https://github.com/coolbutuseless/ggpattern>). Length of branch indicates the
1056 number of SBS and indels detected, while the coloured segments of the stacked barplot
1057 indicates the contribution of each mutational signature. The SBS and indels were separated
1058 for each branch. Coloured solid segments indicate the number of SBS contributed per
1059 mutational signature while the coloured striped segments indicate the number of indels
1060 contributed per mutational signature. Telomere lengths were added with aplot and ggpibr.

1061

1062 **Driver Mutation Calling**

1063

1064 Driver mutation analysis was performed by taking two separate approaches. First, dNdScv
1065 (Martincorena et al., 2017) was used to identify mutations under positive selection by
1066 comparing the observed nonsynonymous:synonymous mutation ratio to the expected value
1067 after correcting for mutational context biases and local genomic information, such as
1068 replication timing or local epigenetic state. Mutations were extracted from the phylogenetic
1069 trees to prevent variant duplication. Settings were kept at default because none of the samples
1070 violated the predefined condition of having a moderate amount of coding mutations or an
1071 excess of mutations for a single gene. When including all dissected intestinal crypts,
1072 irrespective whether normal or neoplastic, yielded only the gene *APC* as significantly enriched
1073 (Benjamini-Hochberg corrected q -value ≤ 0.05) for disruptive mutations which is not
1074 unexpected given the inclusion of neoplastic intestinal tissues. For normal tissues none of the
1075 recurrently mutated genes were considered significantly enriched for non-silent mutations,
1076 even when performing restricted hypothesis testing.

1077

1078 Yet, there were multiple mutations detected in the normal intestinal crypts with amino acid
1079 changes often seen in intestinal cancers as reported by COSMIC (Forbes et al., 2008). In the
1080 second phase SBS and indels were collated across the normal and neoplastic intestinal crypts
1081 separately. Analysis was restricted to protein-coding changes and essential splice acceptor or

1082 donor sites. Mutations were annotated with ANNOVAR (Wang et al., 2010), including COSMIC
1083 db v91, and compared to a list of 369 driver genes previously published (Martincorena et al.,
1084 2017). All types of premature truncating variants (PTV; frameshifts, stopgains or essential
1085 splice-site mutations) were considered sufficient for genes known to act as tumour
1086 suppressors or have been associated with frequent PTVs. Missense mutations should be
1087 located in hotspot locations previously reported in COSMIC in at least a few cancers. For
1088 instance, *FBXW7* is found recurrently mutated in this study, most often at known hotspot
1089 positions. However, a few missense mutations detected in this gene were reported in a low
1090 number of intestinal cancers. Even less missense mutations were not reported and could
1091 therefore not be considered genuine driver mutations. The frequency of driver mutations was
1092 compared between samples taken from of MutS α and MutL α deficient tissues. These
1093 frequencies were similarly compared to the driver mutation landscape of 445 MMR-
1094 proficient healthy intestinal crypts (Lee-Six et al., 2019), which were annotated and
1095 filtered using the same approaches.

1096

1097 **Genomic Distribution Mutations**

1098

1099 Genomic regions were masked based on the ENCODE blacklist to rule out errors due to read
1100 misalignment, regions of poor alignment or regions exhibiting anomalous coverage intensity
1101 signals in an approach similar as previously published (Supek and Lehner, 2015). The
1102 remainder of the unmasked genome was segregated into non-overlapping 100 kb (Figure
1103 S4B) or 1 Mb (Figures 6A-B and Figure S4C) windows and those for which a significant
1104 proportion ($\geq 50\%$) fails the above criteria are removed from further analysis. The Y
1105 chromosome was similarly excluded from analysis. This masking process yielded 26396 100
1106 kb or 2588 1 Mb windows passing the above criteria. Different from previous approaches
1107 (Supek and Lehner, 2015), exonic areas are included. SBS densities were calculated per
1108 donor and tissue combination. For instance the normal colonic epithelium of case PD40102.
1109 SBS can be aggregated across intestinal crypts under the assumption that mutation rates are
1110 approximately similar across the different intestinal crypts from the same tissue. SBS are
1111 extracted from the phylogenetic trees to prevent mutations being duplicated. For each donor
1112 and tissue combination, the SBS density of each window is determined by aggregating the
1113 SBS across all microdissected intestinal crypts and dividing the total count by the effective
1114 window length after masking. In the end there are 26396 or 2588 SBS density values for each
1115 donor and intestinal tissue combination. The relative mutation frequency (RMF) is determined
1116 by dividing the SBS density value by the mean SBS density value across all windows per
1117 donor and tissue combination.

1118

1119 A DNA replication timing profile was generated from 11 Repli-seq datasets from ENCODE
1120 (Consortium, 2012) downloaded through the UCSC genome browser (hg19). The data
1121 comprises genome-wide wavelet-smoothed Repli-seq values per 1kb bins for 11 cell lines
1122 (BG02ES, BJ, GM12878, Hela-S3, HepG2, HUVEC, IMR90, K562, MCF-7 and NHEK). The
1123 median value across all cell lines was calculated per 1kb window and from these median
1124 values the median value was calculated for 100 kb or 1 Mb non-overlapping windows. These
1125 non-overlapping windows were sorted based on the summarized Repli-seq value and
1126 distributed among 5 equally-sized domains, named the Earliest, Early, Median, Late and
1127 Latest replication timing domains. The higher the summarized Repli-seq value the earlier it is
1128 expected that this region of the genome undergoes replication. Thereafter mutation windows
1129 are assigned to the replication timing domains to assess the effect of replication timing on the
1130 relative SBS mutation rate.

1131

1132 For each non-overlapping RMF window the density of coding sequence is determined with the
1133 EnsDb.Hsapiens.v75 package in R, while the CpG density is determined using the
1134 BSgenome.Hsapiens.UCSC.hg19 package in R. RMF, replication timing, coding genome
1135 density and CpG density were plotted with Gviz (Hahne and Ivanek, 2016).

1136

1137 **Relative Mutation Rate**

1138

1139 Whole genome bisulfite sequencing (WGBS) data from 2 normal sigmoid cell colon samples
1140 were downloaded from GEO Omnibus (GSM983645 and GSM1010989) and was used for
1141 assessing the methylation state of CpGs. The analysis was restricted to CpG sites covered by
1142 at least 1 WGBS sample, the average is calculated in case sufficient coverage was present in
1143 both samples. The relative mutation rate for CpG or 5mC can be calculated by determining
1144 the CpG abundance (RMR-CG) or 5mC (RMR-5mC) abundance as previously described
1145 (Sanders et al., 2018). RMR-CG reflects the number of mutations expected in 1Mb of CpGs
1146 in a particular genomic feature if 1000 somatic mutations are randomly selected from the
1147 mutation catalogue:

1148

$$\text{RMR}_{ij}^{\text{CpG}} = \frac{\mu_{ij}}{\left(\frac{\alpha_i}{10^6}\right) \cdot \left(\frac{\tau_j}{10^3}\right)}$$

1149

1150 Where μ_{ij} represents the CG>TG mutation count in feature i for sample j, α_i represents the
1151 total number of CpGs in feature i, and τ_j is the total CG>TG mutation burden for sample j.

1152

1153 For RMR-5mC the α_i is replaced with the methylation level sum across feature i:

1154

$$\text{RMR}_{ij}^{5mC} = \frac{\mu_{ij}}{\left(\frac{\omega_i}{10^6}\right) \cdot \left(\frac{\tau_j}{10^3}\right)}$$

1155 Where:

1156

$$\omega_i = \sum_{CpG \in i} \beta_i$$

1157 Where β_i is the average methylation level (ranging between 0 – no methylation – and 1 – full
1158 methylation). RMR-5mC corrects for the methylation state of features of interest. For
1159 instance, promoters often have little methylation.

1160

1161 To assess the linear relationship between methylation level and mutation probability, CG>TG
1162 mutations are binned per sample based on the methylation level detected in the normal
1163 sigmoid colon into consecutive bins of 0.1 interval, ranging from 0 (no methylation) to 1 (full
1164 methylation) with a 0.1 interval. The total count per bin is divided by 1.000.000 and the age
1165 of the donor to assess the annual mutation rate per million methylated CpGs.

1166

1167 **Fitting Mutational Signatures for Regions of Interest**

1168

1169 For normal intestinal epithelium crypts mutations per region of interest are determined. First,
1170 replication timing domains (Early, Earliest, Median, Late, Latest) as described before. Second,
1171 across the coding sequence (CDS), all human exons, complete genes and the intergenic
1172 space. Mutational signatures extracted from the microdissected samples, described under
1173 'Mutational signature extraction', are fitted to the mutational catalogues of the replication
1174 domains or regions of interest with TensorSignatures (Vöhringer et al., 2020). For MutS α -
1175 deficient intestinal crypts the contribution of MMR-1 is high in early replication regions
1176 and the CDS due to the increase CpG density in these regions. A beta generalized
1177 linear mixed model was fitted to test whether MutS α -deficient intestinal crypts have an
1178 enrichment of MMR-1 in these regions compared to the MutL α -deficient intestinal
1179 crypts. Fitting was done with glmmTMB (Brooks et al., 2017) using the exposure of
1180 MMR-1 (proportion) as the dependent variable, MutS α -deficiency as fixed effect
1181 (dichotomous variable) and donor as random intercept (multiple samples per tissue).
1182 The 95%-CI was determined by 10.000 bootstraps via bootMer from lme4, while the
1183 p-value was determined by parametric bootstrapping for 10.000 bootstraps with a full
1184 model, containing MutS α -deficiency as fixed effect and a reduced model, without

1185 MutS α -deficiency as variable and calculating the loglikelihood deviance as
1186 comparator.

1187

1188 **Assessing MMRD Genotype**

1189

1190 MSI status for endometrial, colorectal and stomach cancer from The Cancer Genome Atlas
1191 (TCGA) was downloaded from the GDC data portal. For the remainder of the TCGA cohort,
1192 including endometrial, colorectal and stomach cancers with a negative MSI status, samples
1193 were selected with a high whole exome sequencing (WES) mutation burden (≥ 150 somatic
1194 mutations) for further characterization. The mutational catalogues of selected WES were fitted
1195 with the standard COSMIC v3 MMR signatures SBS-6, SBS-15, SBS-20, SBS-21 and SBS-
1196 26 and SBS-1. Cases with an exposure of ≥ 0.25 for one MMR signature or SBS-1 were
1197 selected for genotyping. Mutational profiles were on occasion manually reviewed to ensure
1198 correct cases were selected for further analysis. Including the constitutive mismatch repair
1199 deficiency (CMMRD) this resulted in 337 possible MMRD cancers.

1200

1201 Tumor-only variant calling was done with Mutect2 (Benjamin et al., 2019). Protein truncating
1202 variants (PTV) in *MLH1*, *MSH2*, *MSH6* or *PMS2* were considered disruptive. Missense
1203 mutations in these genes in a hypermutation setting can result in incorrect genotyping. Only
1204 missense mutations listed as 'likely pathogenic' or 'pathogenic' in the InSiGHT (Thompson et
1205 al., 2014) or ClinVar (Landrum et al., 2018) databases were considered clinically relevant. The
1206 remainder of missense mutations in the MMR genes were only considered relevant if there
1207 was strong evidence in the literature from *in vivo/in vitro* assays that a hypermutation
1208 phenotype is observed. Transcript fusions or structural variants effecting a MMR gene was
1209 considered relevant. Finally, CNV loss as determined by ASCAT (Van Loo et al., 2010) or by
1210 local loss of coverage was considered relevant.

1211

1212 Based on sample purity as estimated by ASCAT, cases were only considered genotyped, if
1213 the following is found: a clinically relevant homozygous mutation after taking purity into
1214 account, compound heterozygous relevant mutations in the same gene, digenic relevant
1215 mutations or when a clinically relevant mutation is combined with a CNV or SV. Promoter
1216 methylation followed by gene silencing, commonly observed for *MLH1* in CpG island
1217 hypermethylation (CIMP) colorectal cancers, was not taken along because the methylator
1218 phenotype might be an event secondary to neoplastic change or is transient in nature. This
1219 resulted in 117 MMRD cancers being genotyped. For a considerable number of cases the
1220 clinically relevant variant is germline, presumably Lynch syndrome. In accordance with TCGA

1221 procedures the cases have been anonymized in all figures and tables. The names reflect the
1222 TCGA cancer subtype only and additional information on the MMR genes with disruptive
1223 variants are included in the supplementary tables.

1224

1225 **Dirichlet Regression**

1226

1227 The extracted mutational signatures are fitted to the TCGA and CMMRD WES mutational
1228 catalogues to determine the mutational signature composition per case. Dirichlet regression
1229 (Maier, 2014) was applied to relate changes in the mutational signature composition to the
1230 MMRD genotype or the deficiency of a specific MMR complex. Cases with clinically relevant
1231 variants in both the MutS α and the MutL α (digenic) complexes were excluded from the
1232 analysis. It remains difficult to assess whether the loss of both complexes in cancer has a
1233 compounding effect on a mutational level or whether there was an chronological order in the
1234 loss of both complexes. Cases with digenic clinically relevant mutations in the same complex,
1235 e.g., *MSH2* and *MSH6*, were retained. First, PMS2-deficient cancers were used as the
1236 reference when linking changes in the mutational signature composition to the MMRD
1237 genotypes. This analysis was performed on all the MMRD cancers fulfilling the listed criteria.
1238 Cancers with MutL α -deficiency were used as reference when comparing MutS α -deficiency to
1239 MutL α -deficiency for changes in the mutational signature composition. This analyses was
1240 performed across all MMRD cancers, all MMRD cancers commonly associated with MMRD
1241 (endometrial, colorectal, stomach and prostate cancer), endometrial cancer alone, colorectal
1242 cancer alone, stomach cancer alone and all other remaining MMRD cancers.

1243

1244 **REFERENCES**

1245

1246 Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-effects models
1247 using lme4. arXiv preprint arXiv:14065823.

1248 Benjamin, D., Sato, T., Cibulskis, K., Getz, G., Stewart, C., and Lichtenstein, L. (2019).
1249 Calling Somatic SNVs and Indels with Mutect2. bioRxiv, 861054.

1250 Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A.,
1251 Skaug, H.J., Machler, M., and Bolker, B.M. (2017). glmmTMB balances speed and flexibility
1252 among packages for zero-inflated generalized linear mixed modeling. The R journal 9, 378-
1253 400.

1254 Campbell, P.J., Stephens, P.J., Pleasance, E.D., O'Meara, S., Li, H., Santarius, T.,
1255 Stebbings, L.A., Leroy, C., Edkins, S., Hardy, C., et al. (2008). Identification of somatically
1256 acquired rearrangements in cancer using genome-wide massively parallel paired-end
1257 sequencing. Nat Genet 40, 722-729.

1258 Consortium, E.P. (2012). An integrated encyclopedia of DNA elements in the human
1259 genome. *Nature* **489**, 57-74.

1260 Ellis, P., Moore, L., Sanders, M.A., Butler, T.M., Brunner, S.F., Lee-Six, H., Osborne, R.,
1261 Farr, B., Coorens, T.H.H., Lawson, A.R.J., *et al.* (2021). Reliable detection of somatic
1262 mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing.
1263 *Nat Protoc* **16**, 841-871.

1264 Farmery, J.H.R., Smith, M.L., Diseases, N.B.-R., and Lynch, A.G. (2018). Telomerecat: A
1265 ploidy-agnostic method for estimating telomere length from whole genome sequencing data.
1266 *Sci Rep* **8**, 1300.

1267 Feuerbach, L., Sieverling, L., Deeg, K.I., Ginsbach, P., Hutter, B., Buchhalter, I., Northcott,
1268 P.A., Mughal, S.S., Chudasama, P., Glimm, H., *et al.* (2019). TelomereHunter - in silico
1269 estimation of telomere content and composition from cancer genomes. *BMC Bioinformatics*
1270 **20**, 272.

1271 Forbes, S.A., Bhamra, G., Bamford, S., Dawson, E., Kok, C., Clements, J., Menzies, A.,
1272 Teague, J.W., Futreal, P.A., and Stratton, M.R. (2008). The Catalogue of Somatic Mutations
1273 in Cancer (COSMIC). *Curr Protoc Hum Genet Chapter 10*, Unit 10 11.

1274 Hahne, F., and Ivanek, R. (2016). Visualizing genomic data using Gviz and bioconductor. In
1275 Statistical genomics (Springer), pp. 335-351.

1276 Hansen, R.S., Thomas, S., Sandstrom, R., Canfield, T.K., Thurman, R.E., Weaver, M.,
1277 Dorschner, M.O., Gartler, S.M., and Stamatoyannopoulos, J.A. (2010). Sequencing newly
1278 replicated DNA reveals widespread plasticity in human replication timing. *Proc Natl Acad Sci
1279 U S A* **107**, 139-144.

1280 Hoang, D.T., Vinh, L.S., Flouri, T., Stamatakis, A., von Haeseler, A., and Minh, B.Q. (2018).
1281 MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation.
1282 *BMC Evol Biol* **18**, 11.

1283 Jones, D., Raine, K.M., Davies, H., Tarpey, P.S., Butler, A.P., Teague, J.W., Nik-Zainal, S.,
1284 and Campbell, P.J. (2016). cgpCaVEManWrapper: Simple Execution of CaVEMan in Order
1285 to Detect Somatic Single Nucleotide Variants in NGS Data. *Curr Protoc Bioinformatics* **56**,
1286 15 10 11-15 10 18.

1287 Landrum, M.J., Lee, J.M., Benson, M., Brown, G.R., Chao, C., Chitipiralla, S., Gu, B., Hart,
1288 J., Hoffman, D., Jang, W., *et al.* (2018). ClinVar: improving access to variant interpretations
1289 and supporting evidence. *Nucleic Acids Res* **46**, D1062-D1067.

1290 Lee-Six, H., Olafsson, S., Ellis, P., Osborne, R.J., Sanders, M.A., Moore, L.,
1291 Georgakopoulos, N., Torrente, F., Noorani, A., Goddard, M., *et al.* (2019). The landscape of
1292 somatic mutation in normal colorectal epithelial cells. *Nature* **574**, 532-537.

1293 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
1294 transform. *Bioinformatics* **25**, 1754-1760.

1295 Maier, M.J. (2014). DirichletReg: Dirichlet regression for compositional data in R.

1296 Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies,

1297 H., Stratton, M.R., and Campbell, P.J. (2017). Universal Patterns of Selection in Cancer and

1298 Somatic Tissues. *Cell* 171, 1029-1041 e1021.

1299 Moore, L., Leongamornlert, D., Coorens, T.H.H., Sanders, M.A., Ellis, P., Dentro, S.C.,

1300 Dawson, K.J., Butler, T., Rahbari, R., Mitchell, T.J., *et al.* (2020). The mutational landscape

1301 of normal human endometrial epithelium. *Nature* 580, 640-646.

1302 Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C., Van Loo, P., Greenman, C.D., Raine, K.,

1303 Jones, D., Hinton, J., Marshall, J., Stebbings, L.A., *et al.* (2012). Mutational processes

1304 molding the genomes of 21 breast cancers. *Cell* 149, 979-993.

1305 Pich, O., Muinos, F., Sabarinathan, R., Reyes-Salazar, I., Gonzalez-Perez, A., and Lopez-

1306 Bigas, N. (2018). Somatic and Germline Mutation Periodicity Follow the Orientation of the

1307 DNA Minor Groove around Nucleosomes. *Cell* 175, 1074-1087 e1018.

1308 Raine, K.M., Hinton, J., Butler, A.P., Teague, J.W., Davies, H., Tarpey, P., Nik-Zainal, S.,

1309 and Campbell, P.J. (2015). cgpPindel: Identifying Somatically Acquired Insertion and

1310 Deletion Events from Paired End Sequencing. *Curr Protoc Bioinformatics* 52, 15 17 11-15 17

1311 12.

1312 Sanders, M.A., Chew, E., Flensburg, C., Zeilemaker, A., Miller, S.E., Al Hinai, A.S., Bajel, A.,

1313 Luiken, B., Rijken, M., McLennan, T., *et al.* (2018). MBD4 guards against methylation

1314 damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML.

1315 *Blood* 132, 1526-1534.

1316 Supek, F., and Lehner, B. (2015). Differential DNA mismatch repair underlies mutation rate

1317 variation across the human genome. *Nature* 521, 81-84.

1318 Thompson, B.A., Spurdle, A.B., Plazzer, J.P., Greenblatt, M.S., Akagi, K., Al-Mulla, F.,

1319 Bapat, B., Bernstein, I., Capella, G., den Dunnen, J.T., *et al.* (2014). Application of a 5-tiered

1320 scheme for standardized classification of 2,360 unique mismatch repair gene variants in the

1321 InSiGHT locus-specific database. *Nat Genet* 46, 107-115.

1322 Van Loo, P., Nordgard, S.H., Lingjaerde, O.C., Russnes, H.G., Rye, I.H., Sun, W., Weigman,

1323 V.J., Marynen, P., Zetterberg, A., Naume, B., *et al.* (2010). Allele-specific copy number

1324 analysis of tumors. *Proc Natl Acad Sci U S A* 107, 16910-16915.

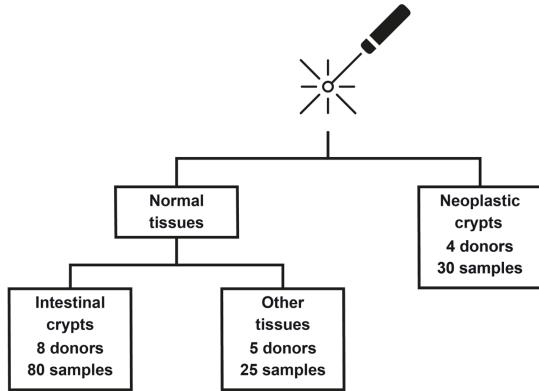
1325 Vöhringer, H., van Hoeck, A., Cuppen, E., and Gerstung, M. (2020). Learning mutational

1326 signatures and their multidimensional genomic properties with TensorSignatures. *bioRxiv*,

1327 850453.

1328 Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic

1329 variants from high-throughput sequencing data. *Nucleic Acids Res* 38, e164.

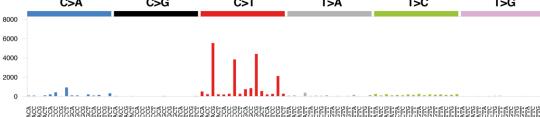

1330 Yu, G. (2020). Using ggtree to visualize data on tree-like structures. *Current protocols in*

1331 *bioinformatics* 69, e96.

1332

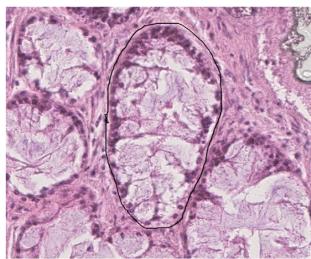
1333 **SUPPLEMENTARY FIGURES**

a. **Laser capture microdissection**



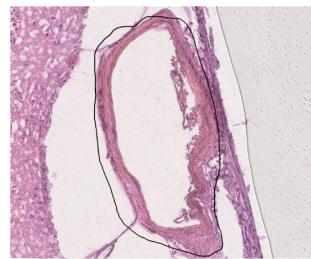
b.

PD40103b - MSH6-deficient



Normal colonic crypt

c.


PD40102b - MLH1-deficient

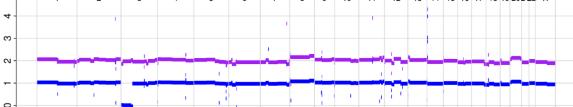
Normal colonic crypt

d.

PD40099e - PMS2-deficient

Subarachnoid blood vessel

e. PD40098c - MSH2-deficient



Brain blood vessel

f.

PD40101b_lo0020 - CNN-LOH 3p + BAP1 stopgain

Ploidy: 2.00, aberrant cell fraction: 68%, goodness of fit: 98.4%

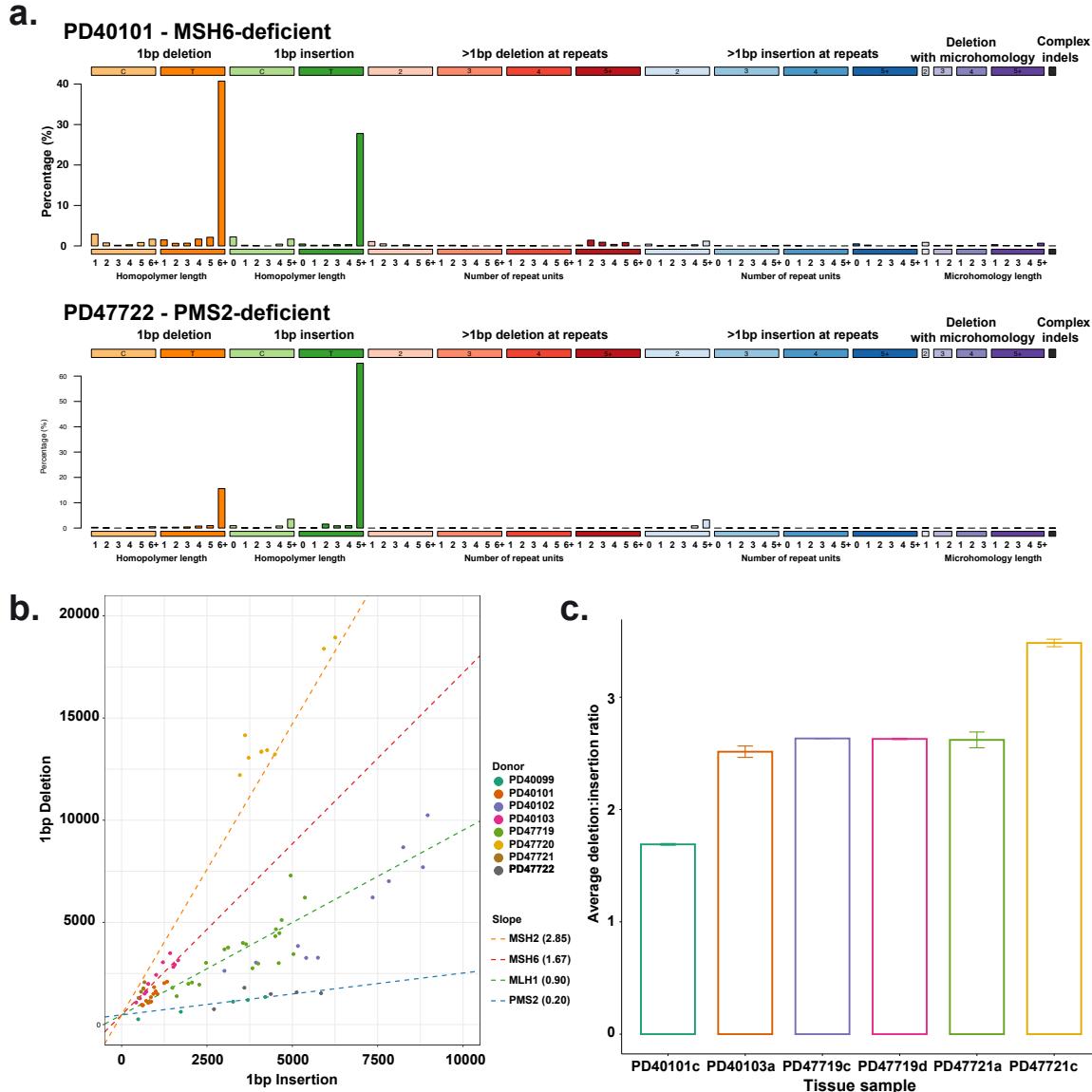
PD40102b_lo0002 - CNN-LOH 17q + AXIN2 frameshift

Ploidy: 2.01, aberrant cell fraction: 84%, goodness of fit: 98.4%

1334

1335

1336 **Figure S1. Mutational Profiles and Genetic Lesions Determined from CMMRD Tissues**
1337 **by Laser Capture Microdissection, Related to Figures 1-2 and 5.**


1338 (a) Sample collection outline for CMMRD tissues by laser capture microdissection.

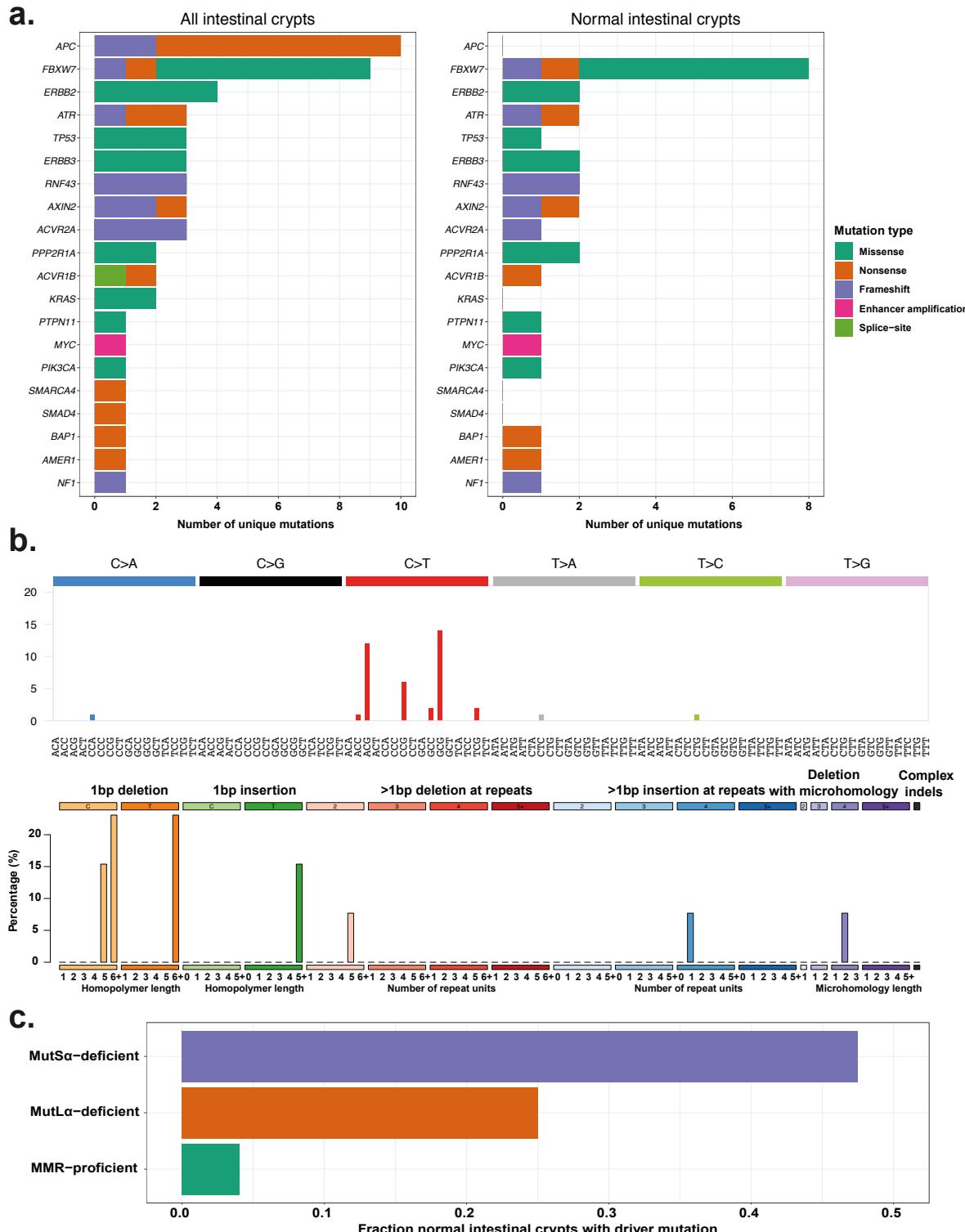
1339 (b-e) Microdissected areas and matched mutational profile for (b) a normal colonic crypt from
1340 MSH6-deficient donor PD40103, (c) a normal colonic crypt from MLH1-deficient donor
1341 PD40102, (d) a subarachnoid blood vessel collected from a brain sample of PMS2-deficient

1342 donor PD40099 and (e) a blood vessel collected from a brain sample from MSH2-deficient
1343 donor PD40098.

1344 (f) Examples of homozygous loss of driver genes through truncating mutations coinciding with
1345 copy number neutral loss of heterozygosity in individual crypts of donors PD40101 and
1346 PD40102.

1347

1348

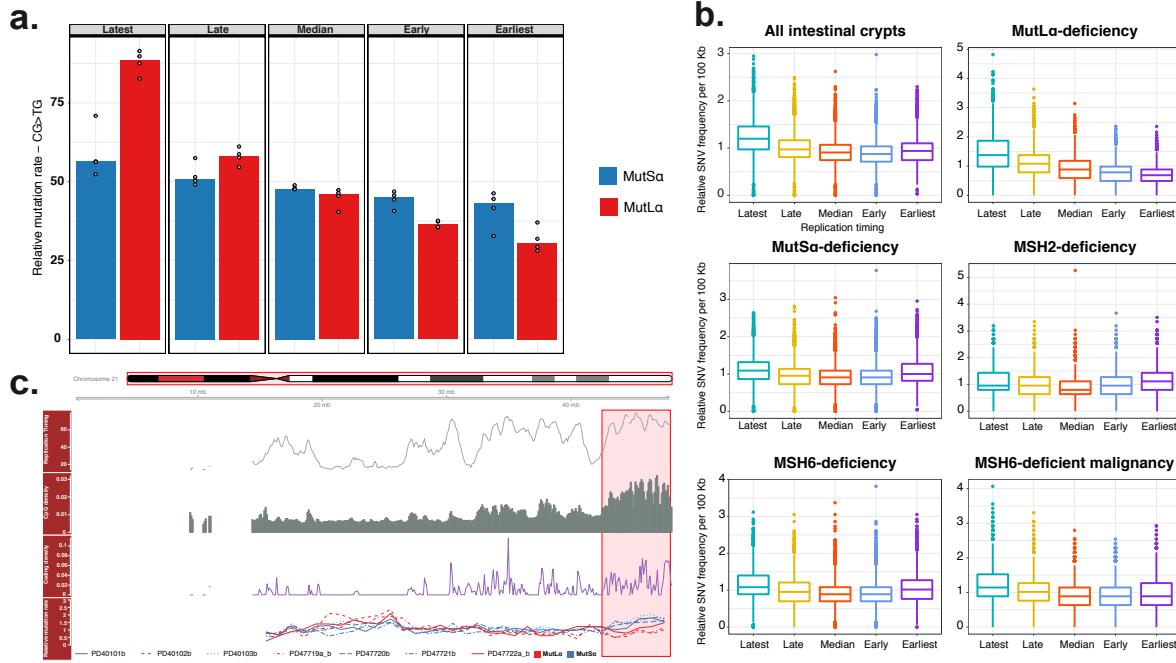

1349 **Figure S2. Insertion and Deletion Types and Acquisition Rates Differs Across MMRD**
 1350 **Genotype, Related to Figures 1 and 3-4.**

1351 (a) Typical insertion and deletion (indel) classification profiles observed from normal intestinal
 1352 crypts from a MSH6-deficient and PMS2-deficient donor. Similar indel classification profiles
 1353 were observed for other donors with the same MMRD genotype.

1354 (b) Linear mixed model fit for 1bp insertions against 1bp deletions with the MMRD genotype
 1355 (MSH2, MSH6, MLH1 and PMS) included as fixed effect, donor included as random intercept
 1356 and MMRD genotype included as random slope.

1357 (c) Average 1bp deletion-insertion ratios calculated across intestinal crypts from collected
 1358 neoplastic tissues.

1359



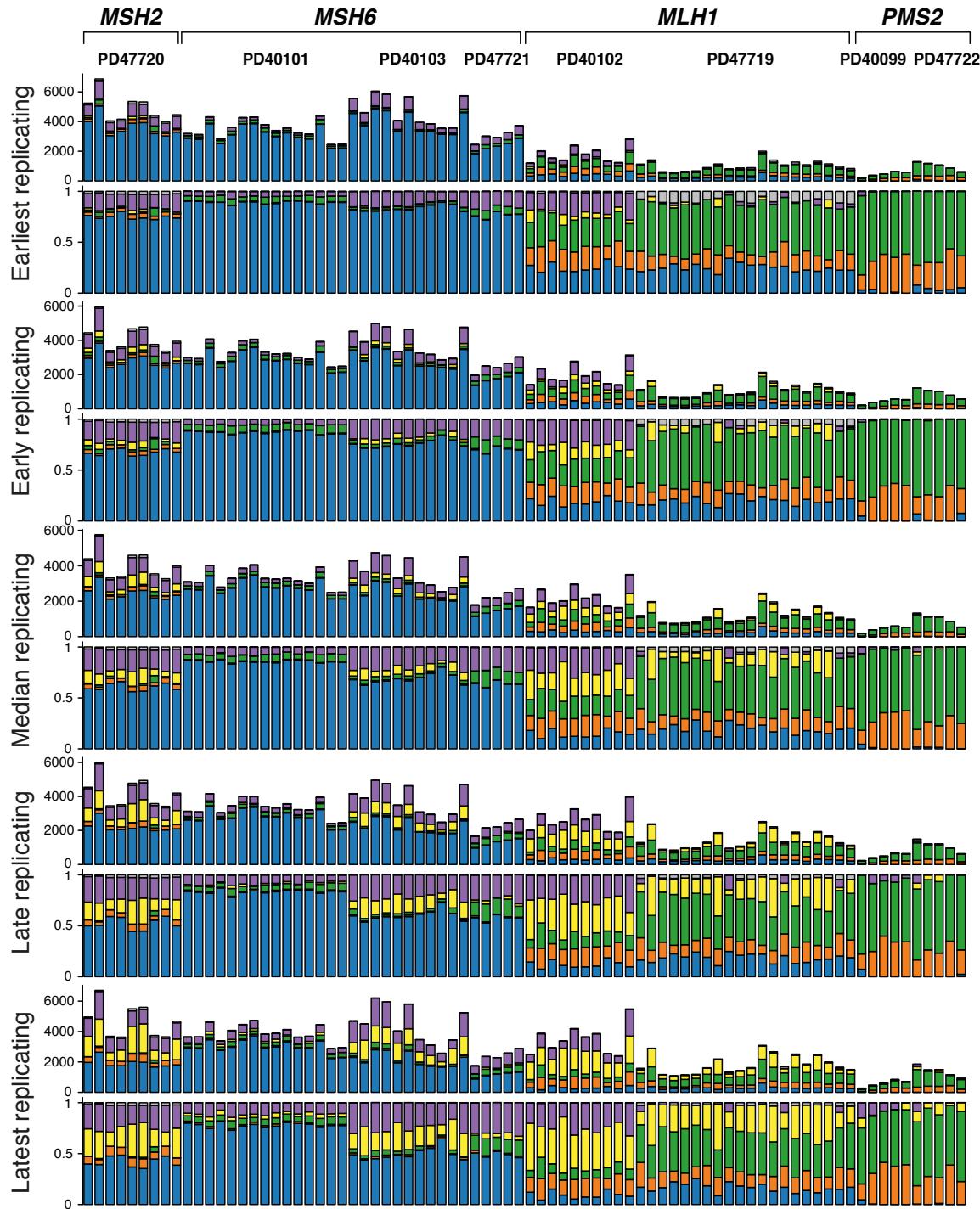
1360
1361 **Figure S3. MMRD Driver Mutation Landscape Recapitulates Active Mutational**
1362 **Processes and Is Enriched Compared to the Healthy Population, Related to Figures 3-**
1363 **4.**
1364 (a) Driver mutation count coloured by mutation type for (Left) all intestinal crypts isolated and
1365 (Right) all normal intestinal crypts. Mutation types include: missense, nonsense, essential
1366 splice site, frameshifts mutations and copy number changes.

1367 (b) SBS and indel mutational profiles of driver mutations detected in healthy and neoplastic
1368 intestinal crypts.

1369 (c) Fraction of normal intestinal crypts with driver mutations as detected in MutS α -deficient
1370 donors (MSH2 or MSH6, n = 40 crypts), MutL α -deficient donors (MLH1 or PMS2, n = 40
1371 crypts) and MMR-proficient donors (n = 445 crypts).

1372

1373

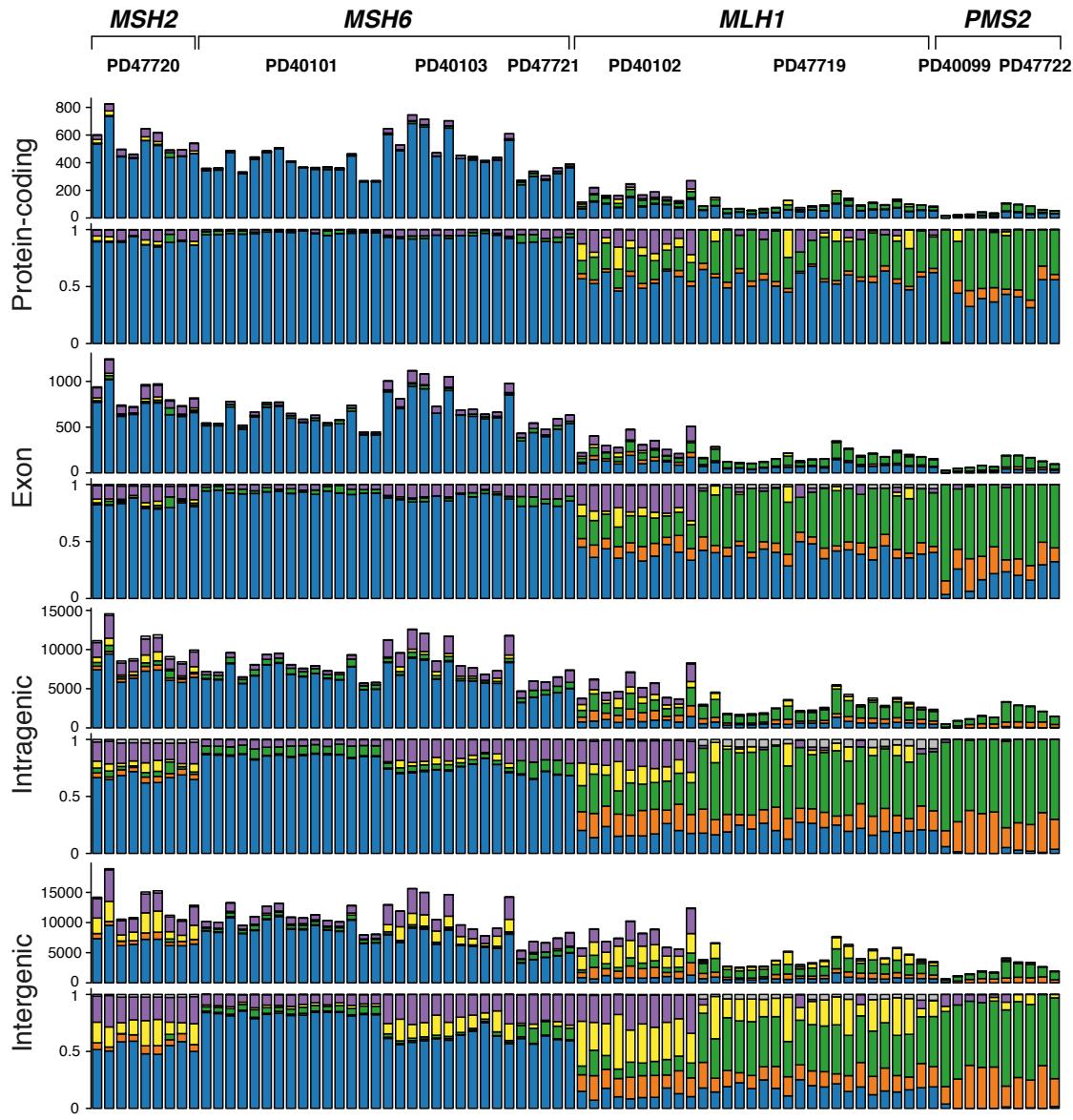

1374 **Figure S4. Genomic Distribution of Mutations in Intestinal Crypts is Associated with**
1375 **MMRD Genotype and Disease State, Related to Figures 1, 3-4 and 6.**

1376 (a) Relative mutations rates (RMR) of CG>TG mutations was calculated for the replication
1377 timing domains (latest, late, median, early and earliest) by correcting for CpG-density and
1378 sample-specific mutation burden. Calculated RMR values were grouped based on MutS α or
1379 MutL α -deficiency to illustrate the changes in CG>TG mutation rates across replication timing
1380 domains.

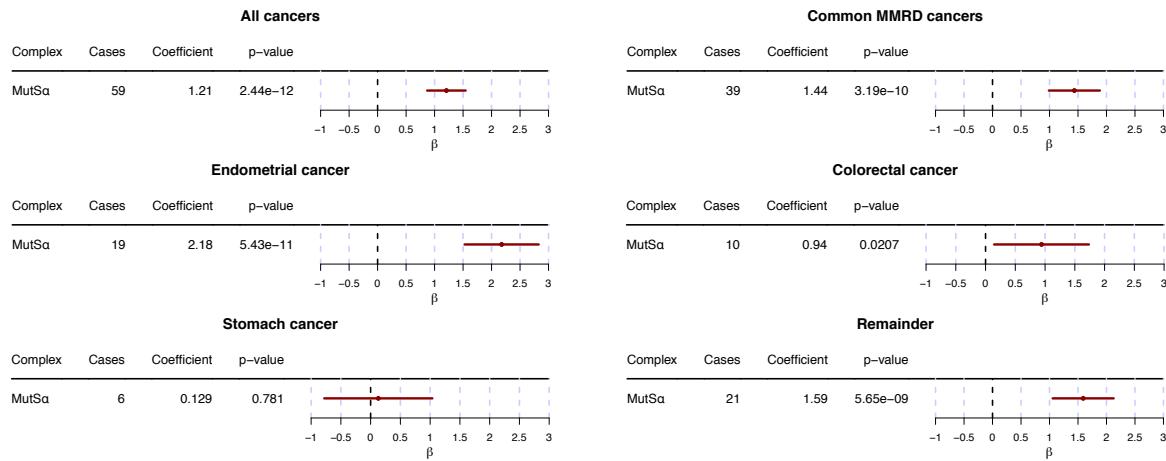
1381 (b) Relative SBS frequency boxplots for 100 kb non-overlapping bins across the genome
1382 grouped on replication timing domains. Data for healthy intestinal crypts is illustrated for all
1383 donors, donors grouped on MMR complex deficiency and loss of individual MMR components.
1384 Data for MSH6-deficient neoplastic intestine is illustrated in the bottom-right panel.

1385 (c) Distribution of mutations and established determinants of mutation rate for chromosome
1386 21 across non-overlapping 1 Mb bins. From top to bottom. (I) Average replication timing profile.
1387 High values indicate early replication and vice versa. (II) CpG-dinucleotide density. (III) Coding
1388 genome density. (IV) Average relative SBS frequency of healthy intestinal crypts for individual
1389 donors as indicated by line type. Line color indicates the MMR complex lost for each donor.
1390 Highlighted areas indicate broad regions of high CpG and coding genome density.

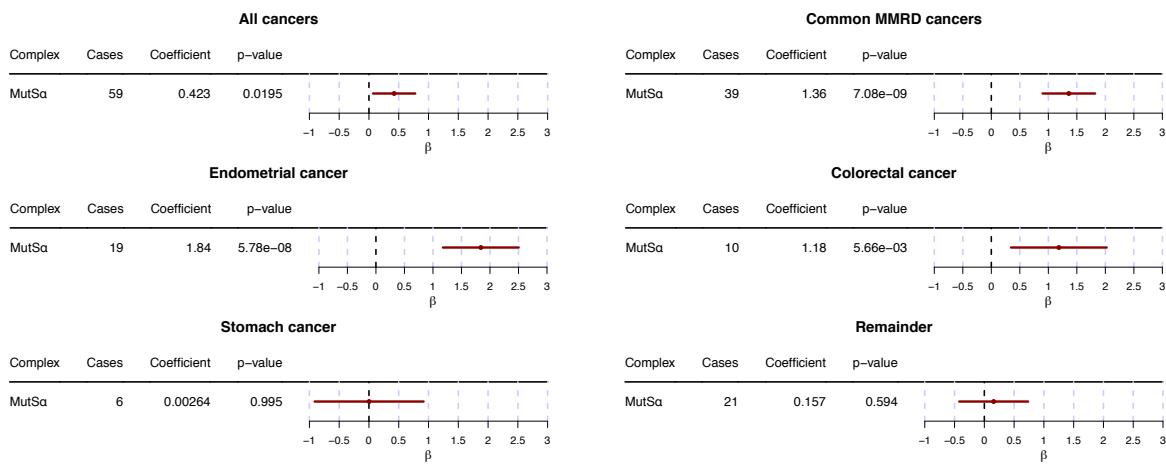
1391



1392


1393 **Figure S5. Differential DNA Damage Acquisition Across Replication Timing Domains**
1394 **Reveals the DNA Repair Patterns of Individual MMR components, Related to Figures 2-**
1395 **4 and 6.**

1396 Mutations were counted across the replication timing domains. Mutational signatures
1397 extracted from the genome-wide normal CMMRD intestinal crypt mutation catalogues (Figure
1398 2) were fitted to each replication timing domain to establish mutational signature composition
1399 per sample and domain. Samples are grouped by donor and MMR complex deficiency. From


1400 top to bottom: Mutational signature attribution based on all mutations (SBSs and indels) and
1401 the relative mutational signature attribution for each replication timing domain, ranging from
1402 earliest, early, median, late, latest.
1403
1404

5mC deamination (MMR-1)

Replication undivided (MMR-5)

1418

1419 **Figure S7. Validation of Mutational Signature Activity in Public Cancer Datasets,**
 1420 **Related to Figures 2 and 7.**

1421 Dirichlet regression performed on the mutational signature composition established by fitting
 1422 the extracted mutational signatures to the WES mutational catalogues of MMRD cancers.
 1423 Cases with loss of both MMR complexes (MutS α and MutL α) were excluded from the analysis.
 1424 Cancers with MutL α -deficiency were used as reference. Enrichment or significance should be
 1425 considered relative. Significance of mutational signature enrichment was tested in all MMRD
 1426 cancers, the cancer subtypes enriched for MMRD (endometrial, colorectal, stomach and
 1427 prostate cancer), endometrial cancer, colorectal cancer, stomach cancer and the remainder
 1428 of MMRD cancers.

1429 **(a)** Validation of the association between 5mC deamination signature (MMR-1) activity and
 1430 MutS α -deficiency in all predefined cancer categories with the exception of MMRD stomach
 1431 cancer.

1432 (b) Validation of the association between 'Replication Undivided' signature (MMR-5) activity
1433 and MutS α -deficiency in all predefined cancer categories with the exception of MMRD
1434 stomach cancer and the remainder of MMRD cancers.