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Summary

The kinase domain transfers phosphate from ATP to substrates. However, the Legionella
effector Sidd adopts a kinase fold yet catalyzes calmodulin (CaM)-dependent
glutamylation to inactivate the SidE ubiquitin ligases. The structural and mechanistic
basis in which the kinase domain catalyzes protein glutamylation is unknown. Here we
present cryo-EM reconstructions of SidJ:CaM:SidE reaction intermediate complexes. We
show that the kinase-like active site of SidJ adenylates an active site Glu in SidE resulting
in the formation of a stable reaction intermediate complex. An insertion in the catalytic
loop of the kinase domain positions the donor Glu near the acyl-adenylate for peptide
bond formation. Our structural analysis led us to discover that the SidJ paralog SdjA is a
glutamylase that differentially regulates the SidE-ligases during Legionella infection. Our
results uncover the structural and mechanistic basis in which the kinase fold catalyzes
non-ribosomal amino acid ligations and reveal an unappreciated level of SidE-family

regulation.
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Introduction

Legionella pneumophila, the causative agent of Legionnaires disease, translocates more
than 330 effectors utilizing a Type 4 secretion system to establish a replicative niche
known as the Legionella Containing Vacuole (LCV) (Cornejo et al., 2017; Isberg et al.,
2009). Within the Legionella effector repertoire are protein domains with recognizable
folds that occasionally catalyze unexpected reactions (Black et al., 2019; Mukherjee et
al., 2011; Neunuebel et al., 2011; Qiu et al., 2016). For example, the Legionella effector
SidJ adopts a kinase-like fold yet catalyzes calmodulin (CaM)-dependent glutamylation
to inactivate the SidE ubiquitin (Ub) ligases (Bhogaraju et al., 2019; Black et al., 2019;
Gan et al., 2019; Sulpizio et al., 2019). The SidE effectors SdeA, SdeB, SdeC and SidE
(collectively referred to as SidE), employ ADP ribosyltransferase (ART) and
phosphodiesterase (PDE) activities to catalyze ligation of Ub to proteins independent of
E1 and E2 enzymes (Bhogaraju et al., 2016; Kotewicz et al., 2017; Qiu et al., 2016). The
SidE ART domain uses NAD+ to ADP-ribosylate Ub on Arg42. ADP ribosylated Ub
serves as a substrate for the PDE domain, which hydrolyzes the phosphodiester bond
and transfers Ub to Ser residues on proteins forming a Ser-phosphoribosyl (pR)-Ub
linkage (Akturk et al., 2018; Dong et al., 2018; Kalayil et al., 2018; Wang et al., 2018).

SidE-family ubiquitination promotes infectivity of Legionella pneumophila and is required
for proper formation of the LCV (Bardill et al., 2005). However, unrestrained SidE activity
is harmful to the host. Therefore, SidE-family ubiquitination is regulated by Legionella
deubiquitinases DupA and DupB, which reverse pR ubiquitination (Shin et al., 2020; Wan
et al., 2019), and the pseudokinase SidJ, which glutamylates and inactivates the SidE
effectors (Bhogaraju et al., 2019; Black et al., 2019; Gan et al., 2019; Sulpizio et al., 2019).
Three of the four SidE-family members lie within a contiguous genomic locus that also
includes dupA and sidJ (Figure 1A). The dupB gene neighbors the sidJ paralog, sdjA.
Despite sharing 52% amino acid sequence identity, SidJ and SdjA are not functionally
redundant (Qiu et al., 2017b). As such, the function of SdjA is unknown.

Pseudoenzymes contain a protein domain that resembles a catalytically active
counterpart (Kwon et al., 2019; Ribeiro et al., 2019). However, pseudoenzymes lack key

catalytic residues believed to be required for activity. Recent work on pseudokinases has
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revealed that different binding orientations of ATP and active site residue migration can
repurpose the kinase scaffold to catalyse novel reactions (Black et al., 2019; Sreelatha et
al., 2018). These results suggest that the kinase fold is more versatile than previously
appreciated and that pseudokinases should be reanalyzed for alternative transferase

activities.

Structures of the SidJ:CaM complex uncovered an N-terminal domain (NTD) of unknown
function, a kinase-like domain with two ligand binding pockets and a C-terminal domain
that binds CaM (Bhogaraju et al., 2019; Black et al., 2019; Gan et al., 2019; Sulpizio et
al., 2019) (Figure 1B). The canonical kinase-like ATP binding pocket of SidJ contains
residues that are required for glutamylation of the SidE ligases. An insertion in the
catalytic loop of the kinase domain extends away from the kinase active site and forms a
migrated nucleotide binding pocket, which is also required for glutamylation (Bhogaraju
etal., 2019; Black et al., 2019; Gan et al., 2019; Sulpizio et al., 2019). From these studies,
we proposed a catalytic mechanism, whereby CaM binding allows the kinase—like active
site of SidJ to bind ATP and transfer AMP to the active site Glu on SidE forming a high
energy acyl-adenylate intermediate. Adenylated SidE binds the migrated nucleotide-
binding pocket, positioning the acyl-adenylate and donor Glu for glutamylation and
inactivation of the SidE effectors (Black et al., 2019) (Figure 1C). However, others argue
that the migrated nucleotide binding pocket is an allosteric site that facilitates

glutamylation (Sulpizio et al., 2019).

Here, we present cryo-EM structures of the reaction intermediate complex formed
between SidJ and SdeA, and SidJ and SdeC. We propose a model that explains how a
pseudokinase catalyzes protein glutamylation. Furthermore, we show that the SidJ
paralog, SdjA is an active glutamylase that differentially regulates SidE-family activity in
vitro and during Legionella infection.

Results
SidJ and SdeA/C Form a Stable Reaction Intermediate Complex

In several amidoligases, including the ATP-grasp enzymes involved in tubulin
glutamylation, a stable reaction intermediate complex facilitates the formation of the
peptide bond (Garnham et al., 2015; Mahalingan et al., 2020). We hypothesized that
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SidJ:CaM would also form a stable reaction intermediate complex with the SidE ligases
95  when Glu was excluded and when the reaction was performed under acidic conditions to
prevent base-catalyzed hydrolysis of the acyl-adenylate (Figure 1C). We incubated
SidJ%7-85:CaM (SidJ:CaM) with SdeAZ'-11%0 (SdeAC°®) or SdeC?*'-1222 (SdeCCtor),
initiated the reactions with ATP/Mg?*, and analyzed the reaction products by SDS-PAGE
following size-exclusion chromatography (SEC) in a slightly acidic (pH 6.5) buffer. We
100  detected the formation of stable ternary complexes consisting of SidJ, CaM, and SdeC¢°r®
(Figure 1D) and SidJ, CaM and SdeA’° (Figure S1A). Upon supplementation of the
reaction with Glu, or when the complex was subjected to SEC using a mildly basic buffer
(pH 7.5), the SidJ:CaM:SdeC®° complex dissociated (Figure 1D). These results are
consistent with the presence of an acyl-adenylate intermediate within the complex.

105 Extensive Interface Interactions Facilitate Complex Formation Between SidJ:CaM
and SdeA/CCere

We determined cryo-EM structures of SidJ:CaM:SdeAc°® and SidJ:CaM:SdeC¢°®
complexes with resolution up to 2.5 A and 2.8 A, respectively (Figure 1E, and Figures
S1-S4, Table S1). The density maps reveal details of the interface between the proteins
110  and their active sites, with clear densities for SidJ, CaM and the PDE and ART domains
of SdeAC°® and SdeCC®®. Densities for the distal parts of the PDE domain and most of
the C-terminal coiled coil are less clear, suggesting a higher degree of flexibility in these
regions. We use the SidJ:CaM:SdeAC°® maps for description of the interface and the
SidJ:CaM:SdeC®°® maps to describe interactions related to catalysis.

115 The overall reaction intermediate complexes are highly similar, with a root mean square
deviation (RMSD) of 1.5 A (Figures S4C and S5). The SidJ/CaM conformation remains
similar to those previously determined by X-ray crystallography (Black et al., 2019) and
cryo-EM (Bhogaraju et al., 2019). SidJ sits in a V-shaped cleft made up of the PDE and
ART domains of SdeA/Cc° (Figure 2A). The interfaces between SidJ and SdeA/CC¢°®

120 span ~2,200 A? and are predominantly formed by the SidJ NTD (Figure 2B). Within the
NTD of SidJ, there are three regions that form extensive contacts with SdeAc°®. 1) A
helix-turn-helix (HTH) motif that forms electrostatic contacts with residues located in the
back of the ART domain, 2) a B-hairpin wedged in between the PDE and ART domains
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and 3) a helical bundle that interacts with the PDE domain. To verify the relevance of

125 these interactions for SidJ-catalyzed glutamylation of SdeA, we mutated D833, K569,
D565 and D372 of SdeAC°®, which lie near the interfaces of the three regions. Reversing
the charge on these residues in SdeAC°® markedly reduced its propensity to be
glutamylated by SidJ (Figure 2C). Our observation that SidJ interacts with both the
SdeA/C ART and PDE domains reconciles previous data showing that SidJ-dependent

130  suppression of SdeA-mediated yeast toxicity requires the PDE and ART domains of SdeA
(Havey and Roy, 2015). As expected, SidJ did not glutamylate the isolated ART domain
of SdeA (Figure 2D).

Unique Active Sites in SidJ Catalyze Adenylation and Glutamylation

Within the kinase-like domain, the a-23 helix from the C-lobe of SidJ interacts with the a-
135 14 helix within the PDE domain of SdeAC°, adjacent to its interaction with the NTD -
hairpin (Figure 2B; inset 2). Interactions also occur within the migrated-nucleotide
binding pocket and the ARTT loop within the active site of the ART domain. Remarkably,
we observed density that is consistent with a covalent bond between the phosphate of
AMP and the y-carboxyl group of E857 in SdeC®°, which is consistent with an acyl-
140  adenylate (Figure 3A). The acyl-adenylate is stabilized by R500, N733, H492 and Y506
within the SidJ migrated nucleotide binding pocket. Mutation of these residues to Ala
markedly reduced glutamylation of SdeA by SidJ (Black et al., 2019). When comparing
the active site of SdeA in the reaction intermediate complex to the apo structure of SdeA
(Dong et al., 2018), significant rearrangement of the ARTT loop is observed, which
145  facilitates SidJ binding and stabilization of the acyl-adenylate (Figure S6A).

During catalysis, SidJ cannot substitute Asp for Glu, suggesting a high degree of
specificity (Black et al., 2019). Analysis of the electrostatic surface in the vicinity of the
active site revealed a small positively charged pocket in SidJ that we predict binds Glu
(Figure 3B). We modelled a donor Glu into this pocket, positioning the :NH2 group near
150  the acyl-adenylate for nucleophilic attack and formation of the Glu-Glu isopeptide bond.
The y-carboxyl was placed at a distance of ~3 A from the SidJ R522 guanidinium,
indicating a potential strong electrostatic interaction (Figure 3C). Mutation of R522
abolished SidJ-catalyzed glutamylation of SdeA (Figure 3D). Assuming the carboxyl
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group of a donor Asp side chain could enter the pocket and interact with R522, the

155  distance between the :NH2 group of Asp and the acyl-adenylate would be too long for it
to perform a nucleophilic attack. This mode of specificity is analogous to the Glu
specificity observed for the tubulin glutamylase TTL6 (Mahalingan et al., 2020) (Figure
S6B).

We also observed density in the kinase-like active site that corresponds to ATP and two

160  Mg?* ions (Figure 3E). The adenine is stabilized by stacking interaction with Y532 and
the phosphates and Mg?* ions are bound by kinase-like active site residues including
K367 (PKA; K72), N534 (PKA; N171) and D542 (PKA; D184). Mutation of these residues
reduced glutamylation activity (Black et al., 2019) (Figure 3F). Similar to canonical
kinases, the ATP sits in a pocket between the two lobes of the kinase-like domain;

165 however, the nucleotide is positioned in a unique manner. The f- and y-phosphates of
ATP are buried in a positively charged pocket, which is reminiscent of the pseudokinase
SelO that binds ATP in a flipped orientation and transfers AMP from ATP to hydroxyl-
containing amino acids (Sreelatha et al., 2018) (Figure 3G).

To determine the role of the kinase-like active site in SidJ, we performed adenylation
170  reactions by monitoring 3?P incorporation from [a-32P]JATP in the absence of Glu. The
reactions were terminated with trichloroacetic acid (TCA) and adenylated SdeA‘°® was
detected as *?P-labelled protein in TCA-insoluble material. To account for any auto-
modification of SidJ or non-specific modification of SdeA, we utilized a SdeA®°® E860Q
mutant as a control and also added Glu to release the 3?P-AMP signal from SdeAc°r,
175 Although the kinase-like active site residues are required for adenylation, His492 in the
migrated nucleotide binding pocket is also required (Figure 3H), likely because it
stabilizes the acyl-adenylate (Figure 3A). Notably, although the putative donor Glu-
interacting Arg522 within the migrated nucleotide binding pocket is required for
glutamylation (Figure 3D), the R522A mutant of SidJ still retains adenylation activity
180  towards SdeAC°® (Figure 3H). Importantly, the addition of Glu to the R522A mutant
reaction failed to decrease the 32P-signal in TCA precipitates. These results provide
evidence that Arg522 in SidJ plays a major role in positioning the donor Glu. Taken
together, the kinase-like active site of SidJ adenylates the SidE active site Glu, which is
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stabilized by the migrated nucleotide binding pocket to position the donor Glu for attack
185 of the acyl-adenylate intermediate and the formation of an isopeptide bond.

CaM Binding is Required for SidJ to Bind ATP and Adenylate SdeA

Several bacterial effectors and toxins are activated by eukaryote-specific proteins, such
as CaM, to achieve spatial regulation (Guo et al., 2016; Guo et al., 2005; Leppla, 1984).
CaM activates SidJ by binding to the 1Q helix within the CTD (Black et al., 2019).

190  However, the mechanism by which CaM activates SidJ is unknown. We monitored the
thermal stability of SidJ and observed an ATP/Mg?*-dependent thermal shift that occurred
only in the presence of CaM (Figure 3l). As expected, CaM was required for adenylation
of SdeAC°® (Figure 3J). Thus, CaM binding renders SidJ competent to bind ATP and
adenylate the SidE-ligases.

195  The SidJ Paralog SdjA is an Active Glutamylating Enzyme

In L. pneumophila, the T4SS effector SdjA shares ~52% sequence identity to SidJ (Figure
4A); however, the function of SdjA is unknown. When overexpressed in yeast, SidJ, but
not SdjA suppresses the growth inhibition phenotype induced by SdeA (Qiu et al., 2017a),
suggesting different functions for the two effectors. Moreover, deletion of SidJ in L.
200  pneumophila results in a growth inhibition phenotype that cannot be complemented by
endogenous SdjA (Liu and Luo, 2007). Although the predicted kinase-like domains are
66% identical and the catalytic residues and CaM interacting IQ motif are well conserved,
the NTDs are significantly different between SidJ and SdjA (Figure S7A and B). Because
the majority of the interactions between SidJ and SdeACc°' lie within the SidJ NTD (Figure
205  2B), we asked whether SdjA could glutamylate the SidE-ligases. We incubated SdjA with
CaM, ATP/Mg?*, [“C]-Glu and full-length SidE-family proteins and observed '4C
incorporation into SdeB, SdeC and SidE, but not SdeA (Figure 4B). Consistent with our
previous results (Black et al., 2019), SidJ glutamylated all 4 effectors. The SdjA reaction
required CaM, ATP/Mg?* and the residues in both the kinase-like active site and the
210  migrated nucleotide binding pocket (Figures 4C and D). Similar to SidJ, SdjA
glutamylated the active site Glu in SdeB, SdeC and SidE (Figure 4E). As expected, SdjA-
mediated glutamylation completely abolished Ub ligase activity of SdeB, SdeC and SidE,
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in vitro (Figure S7C) and in cells (Figure 4F). Thus, SidJ and SdjA are CaM-dependent
glutamylases that differentially inactivate the SidE-family of Ub ligases.

215 The SidJ/SdjA NTDs Determine Specificity For the SidE Effectors

Because most of the interactions between SidJ/CaM with SdeA/C®°® come from the NTD,
we hypothesized that the NTD could be the determining factor for the differential
regulation of the SidE-family by SidJ and SdjA. We generated chimeric SidJ-SdjA
proteins, in which the NTD from SidJ was replaced with the NTD from SdjA, and vice
220  versa (Figure 5A). Replacing the HTH motif in SdjA with the corresponding HTH from
SidJ resulted in an active chimeric protein that retained its ability to glutamylate SdeB,
SdeC and SidE but also glutamylated SdeA (Figure 5B, lane 9). A SidJ chimera
containing the SdjA NTD (SidJSYA-NTD) Jost most of its activity towards SdeA (Figure 5B,
lane 13). Thus, the variable NTD appears to be the major determinant of SidJ and SdjA
225  specificity for the SidE effectors.

Differential Regulation of the SidE-effectors by SidJ and SdjA During Legionella

Infection.

SidJ is one of only a few T4SS effectors that when deleted from the Legionella genome
causes a replication phenotype in infected cells, suggesting that SidJ and SdjA are not

230  redundant (Jeong et al., 2015; Liu and Luo, 2007). We reasoned that in the background
of a sdeA deletion, SidJ and SdjA would be functionally redundant (Figure 6A). We
generated a AsdjAAsidJAsdeA Legionella strain and monitored its replication in the
environmental host Acanthamoeba castellanii (Figure S8). Remarkably, both SidJ and
SdjA could complement the growth defect in the AsdjAAsidJAsdeA strain (Figure 6B). In

235 contrast, SidJ, but not SdjA could rescue the growth defect in a AsdjAAsidJ strain (Figure
6C). Collectively, our results suggest that the SidE-UDb ligases are differentially regulated
by SidJ and SdjA during Legionella infection.

Discussion

We propose a model for how SidJ glutamylates the SidE-family of Ub ligases (Figure 7).
240  During infection, SidJ is translocated into the host cell where it binds CaM (1), which
allows the kinase-like active site to bind ATP/Mg?* (2). Notably, because CaM is a


https://doi.org/10.1101/2021.04.13.439722
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.13.439722; this version posted April 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

eukaryote-specific protein, this mechanism allows for spatial regulation of the SidE-Ub
ligases within the host cell. SidJ then adenylates the active site Glu within the ARTT loop
in the SidE effectors (3). Adenylated SidE binds the migrated nucleotide binding pocket

245 (4), which positions free Glu near the acyl-adenylate intermediate for nucleophilic attack
and subsequent formation of the Glu-Glu isopeptide bond (5).

Our structural and biochemical data suggest that the kinase-like active site performs the
adenylation reaction and the migrated nucleotide binding pocket executes the
glutamylation reaction. Although His492 in the migrated nucleotide binding pocket is
250  required for adenylation and glutamylation, the R522A SidJ mutant retains adenylation
activity, fails to bind the donor Glu and is inactive in glutamylation reactions. Because
Arg522 does not contact the acyl-adenylate, His492 appears to be required for

adenylation because it stabilizes the acyl-adenylate intermediate (Figure 3A).

SidJ homologs are found in taxonomically diverse groups of organisms including archaea

255  and viruses, suggesting that SidJ is being spread by horizontal gene transfer (Figure
S9A). None of these organisms except for Legionella species have SidE homologs or the
SidJ CaM-binding 1Q motif and they show virtually no conservation within the SidE-
interacting NTD (Figure S9B). Thus, although the kinase-like active site residues are
conserved among SidJ homologs, their substrates and activation mechanisms will likely

260  differ. Interestingly, SidJ homologs from crocodilepox viruses are located next to a cluster
of proteins that differ from SidE but are involved in the modulation of host ubiquitination
pathways (Afonso et al., 2006).

In mammals, tubulin glutamylation, tyrosination and glycylation are performed by Tubulin-
tyrosine ligase-like enzymes (TTLL), members of the ATP-grasp superfamily (Song and
265  Brady, 2015; Yu et al., 2015). TTLLs catalyze amino acid ligation via the formation of a
high-energy acyl-phosphate intermediate, which is subsequently attacked by the amine
group of the donor amino acid (Szyk et al., 2011). Interestingly, both the protein kinase
and ATP-grasp fold enzymes share a common topology (Grishin, 1999). In contrast to
most protein kinases, SidJ adenylates a carboxyl containing amino acid as an
270  intermediate step in peptide bond formation. We propose that the protein kinase fold can
phosphorylate or adenylate carboxylic groups to mediate non-ribosomal amino-acid
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ligation reactions. Notably, a recent study of “the hidden phosphoproteome” revealed
that a vast number of Glu and Asp residues within HelLa cells are phosphorylated
(Hardman et al., 2019).

275 In summary, our work underscores the catalytic versatility of the kinase fold and reveals
a previously unappreciated level of regulation of the SidE Ub ligases.
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Figure 1. SidJ forms a stable acyl-adenylate-intermediate complex with SdeA and
SdeC.

(A) Organization of the sidE family (salmon), sidJ (green) and dupA (white) , dupB, (grey)
and sdjA (blue) effectors in the genome of L. pneumophila. SdeA, SdeB and SdeC lie in
305  agenomic neighbourhood with SidJ and DupA, while SidE lies in a different locus (upper).

(B) Structure of SidJ depicting the N-terminal domain (NTD; orange), the kinase-like
domain (green), the C-terminal domain (CTD; black) and CaM (purple). The kinase-like
active site and the migrated nucleotide binding pocket formed by an insertion in the
catalytic loop (red) are highlighted.

310  (C) Schematic representation of SidJ-catalyzed glutamylation of the SidE effectors. The
SidJ:CaM complex binds ATP/Mg?*, which is used to adenylate the SidE-family active
site Glu (SdeC; Glu®®). Adenylated SidE forms a stable reaction intermediate complex
with SidJ, which facilitates Glu binding, positioning of the NH2 group for attack of the acyl-
adenylate and formation of the isopeptide bond. Note that under basic conditions, :OH"

315  can hydrolyze the acyl-adenylate.

(D) SEC trace (upper) and SDS-PAGE and Coomassie staining (lower) of the SidJ-SdeC

complex (blue) and the products resulting from the addition of Glu (dashed red) or

increasing the pH to 7.5 (dashed blue). Note that the addition of Glu and increasing the

pH dissociates the complex, consistent with the presence of an acyl-adenylate in the
320 complex.

(E) Cryo-EM density map representation of the SidJ:CaM:SdeA complex. SidJ is in green,
SdeAC°r is in salmon and CaM is in purple. Front and back views are shown.
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Figure 2. SidJ:CaM:SdeA/Cc°® complex formation is mediated by extensive
interface interactions.

(A) Overview of SidJ:CaM:SdeAC°® reaction intermediate complex. The SidJ NTD,

kinase-like domain and CTD are in orange, green, and black, respectively. The SdeA
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330 PDE domain is in red and the ART domain is in blue. CaM is in purple. SidJ lies within
a V-shaped cleft between SdeA PDE and ART domains.

(B) Back view of the SidJ:CaM:SdeAC°® interface. The SidJ NTD forms three distinct
regions of interaction with SdeA (labelled 1-3). 1. A loop within the SdeA ART domain
interacts with the helix-turn-helix (HTH) motif within the SidJ NTD. 2. A B-hairpin from the
335  SidJ NTD is nestled between the PDE and ART domains of SdeA, forming electrostatic
and hydrophobic interactions. A helix from the SidJ kinase-like domain also interacts with
the SidJ B-hairpin and the PDE domain of SdeA. 3. A helical bundle from the SidJ NTD
interacts with the PDE domain of SdeA. Zoomed in view depicting the residues involved
in the interaction interfaces are shown in subpanels (lower) and colored as in A. Residues
340 targeted for mutagenesis are marked with asterisks. Putative hydrogen bonds and salt

bridges are depicted as dotted lines.

(C) Glutamylation activity of SidJ using SdeAC°® and mutations that disrupt interface
interactions. Residues mutated are also marked with an asterisk in (B). [*H]Glu was used
as a substrate and the reaction products were resolved by SDS PAGE and visualized by

345 Coomassie staining. Radioactive gel bands were excised and 3H incorporation into
SdeAC°® was quantified by scintillation counting.

(D) Incorporation of ['*C]-Glu into full length SdeA, SdeAPPE*ART  SdeAPPE or SdeAART by
SidJ. Reaction products were separated by SDS PAGE and visualized by Coomassie

staining (upper) and autoradiography (lower).

350
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Figure 3. Unique active sites facilitate SidJ-mediated glutamylation of the SidE
effectors.

355  (A) Details of the migrated nucleotide binding pocket of SidJ (green) and the ARTT loop
of SdeCC°® (blue) showing the interactions (dashed lines) involved in binding the acyl-
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adenylate reaction intermediate. The AMP is shown as sticks and the Coulomb potential
map is shown in mesh. Note the formation of a covalent bond between AMP and the
SdeC active site Glu857.

360 (B, C) Electrostatic surface representation (B) and molecular interactions (C) of the
migrated nucleotide binding pocket of SidJ bound to SdeCC®® depicting a positively
charged cleft adjacent to the acyl-adenylate reaction intermediate. A donor Glu was
manually placed inside of the pocket, with its y-carboxyl group interacting with Arg522 of
SidJ. The donor Glu :NH2 group is in position to attack the acyl-adenylate. Electrostatic

365  surface is contoured at 7kT.

(D) Glutamylation activity of SidJ and the Arg522 mutant using SdeACc°™ as substrate.
Reaction products were analyzed as in Figure 2C.

(E) Details of the kinase-like active site of SidJ (green) depicting the molecular
interactions (dashed lines) that facilitate ATP/Mg?* binding. The ATP is in sticks, the
370  Coulomb potential map is shown in mesh and the Mg?* ions are shown as spheres.

(F) Glutamylation activity of SidJ and kinase-like active site mutants using SdeA®°® as a
substrate. Reaction products were analyzed as in Figure 2C. Note that the other residues
have been mutated and analyzed for glutamylation in our previous work (Black et al.,
2019).

375  (G) Ball-and-stick representation of superimposed nucleotides from SidJ and protein
kinase CK1 (left) and SidJ and SelO (right) as a result of superposition of the kinase active
sites. The a, B, and y-phosphates of SidJ, SelO and CK1 are highlighted. Note that the
nucleotide orientation of SidJ is similar to SelO, which transfers AMP to proteins
(Sreelatha et al., 2018).

380  (H) Quantification of acyl-adenylate formation following reactions with SidJ%%-¢%" (WT and
mutants), SdeA° and [a-*’P]JATP. SdeAC° E860Q was used to calculate the baseline
signal in TCA precipitates. The reactions were terminated by the addition of TCA and the
SdeA acyl-adenylate was detected by scintillation counting of the acid-insoluble material
(red bars). Glu was also added to the reactions (green bars), which displaces the 32P-

385  AMP from SdeA into a TCA soluble fraction.
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() Differential scanning fluorimetry (DSF) depicting the thermal stability profiles of SidJ
(left) and SidJ:CaM (right) in the presence or absence of ATP/Mg?*. Protein denaturation
was followed by monitoring the fluorescence of SYPRO Orange dye, which binds

hydrophobic regions on proteins. The Tm values are shown in the insets.

390  (J) Quantification of acyl-adenylate formation following reactions with SidJ%%-8%1, SdeACere,
[a-32P]ATP in the presence (+) or absence (-) of CaM. SdeA‘° E860Q was used to
calculate the baseline signal in TCA precipitates. Reaction products were analyzed as in
Figure 3H.

395
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Figure 4. SidJ and SdjA differentially regulate the SidE-Ub ligases in vitro.

400  (A) Cartoon representation of SidJ and SdjA depicting the NTD (orange), the kinase-like
domain (green), and the CaM binding CTD (grey). The percent sequence identity and
similarity are shown for each domain and for the overall protein.

(B) Glutamylation activity of SidJ (SidJ%°-#5") and SdjA using full length SdeA, SdeB, SdeC
and SidE as substrates. Reaction products were analyzed as in Figure 2D. DA denotes
405 SidJP542A or SdjAP480A Note that SdjA does not glutamylate SdeA.
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(C) Glutamylation activity of SidJ%®-®5" and SdjA3%78 using SdeCt°® as substrate.

Reaction products were analyzed as in Figure 2D. DA denotes SidJP%#2A or SdjAP480A,

(D) Glutamylation activity of SdjA%-78° and indicated mutants using SdeA°®°® [*H]Glu as
substrates. Reaction products were analyzed as in Figure 2C. The kinase-like active

410  site residues and the residues in the migrated nucleotide binding pocket are highlighted.

|Q mutant: deAI776D; Q777D; R778E; R781E_

(E) Glutamylation activity of SidJ5%-8%" and SdjA3%-78% using full length SdeA, SdeB, SdeC
and SidE as substrates. Reaction products were analyzed as in Figure 2D. DA denotes
SidJP%2A or SdjAP489A, EQ denotes SdeAF889Q SdeBE8S7Q, SdeCE8S7Q, or SidEFESSQ,

415 (F) Protein immunoblotting of total extracts from HEK293A cells expressing HA-UbCC/AA
Myc-SdeA, Myc-SdeB, Myc-SdeC, or Myc-SidE and SidJ-V5, V5-SdjA or the indicated
mutants. GAPDH is shown as a loading control. HA-Ub®®AA was used to specifically
interrogate SidE-family activity because it cannot be used by the endogenous Ub
machinery. DA denotes SidJP%4?A or SdjAP480A,

420

19


https://doi.org/10.1101/2021.04.13.439722
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.13.439722; this version posted April 13, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

.)*/5 i t >
SidJSUA-NTD .\L

B
SidJ SdjA SdjASEHTH Gl JSHANTD
Substtatt: ABCEABCE ABCEATBTCE

250
130

BISSBWO0)

100
70,

s =
250| L. (S A 4 m
130 7 Ly
100 4 , :

70

Lane: 1 2 3 4 5 6 7 8

(Ov) PRIOINY

9 10 11 12 13 14 15 16
Figure 5. The variable NTD is the major determinant of SidJ and SdjA specificity for
the SidE effectors.

(A) Cartoon representation of SidJSMANTD (left) and SdjASd-HTH (right) chimeras depicting

425  the interchanged regions. SidJ is in green and SdjA is in salmon.

(B) Glutamylation activity of SidJ5%-8%!, SdjA, SdjAS®HT™ and SidJSHANTD ysing full length
SdeA (A), SdeB (B), SdeC (C) and SidE (E) as substrates. Reaction products were
analyzed as in Figure 2D. Compare lanes 1 and 13 (SidJ loss of activity), 5 and 9 (SdjA

gain of activity).

430
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Figure 6. SidJ and SdjA differentially regulate the SidE-Ub ligases during
Legionella infection.

(A) Schematic representation of SidJ/SdjA genetic interaction during Legionella infection.

435 In a wild-type L. pneumophila (Lp02) strain, SdjA is unable to complement SidJ because
it is inactive against SdeA (left). In a AsdeA background, SdjA is functionally redundant
with SidJ (right).

(B, C) Replication of L. pneumophila strains in A. castellanii. Infected amoeba cells were
lysed at the indicated timepoints and bacterial replication was quantified by plating serial

440  dilutions of lysates. Results are representative of two independent experiments; error
bars denote STD from 1 experiment performed in triplicate. AsdjAAsidJAsdeA (AAA),
AsidJAsdeA (AA), EV; empty vector, DA denotes SidJP%#2A or SdjAP48%A | p03; AdotA
(T4SS deficient).
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Figure 7. Model of SidJ-catalyzed glutamylation of the SidE effectors. (1) SidJ is
translocated into host cells and binds CaM. (2) CaM binding renders the kinase-like active
site competent to bind ATP/Mg?* (Figure 3l) and (3) adenylate the active site Glu in the
SidE effectors (Figures 3E-H). (4) Adenylated SidE binds the migrated nucleotide binding
450  pocket of SidJ, forming a stable reaction intermediate (Figures 1D and 2A). Free Glu

binds to a positively charged cleft in the migrated nucleotide binding pocket of SidJ
(Figures 3B-D), which positions the NHz group for nucleophilic attack of the acyl-
adenylate, (5) releasing AMP and forming an isopeptide bond (Figure 1C).
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