

1 **Phosphoproteomics of ATR Signaling in Prophase I of Mouse Meiosis**

2

3 Jennie R. Sims¹, Vitor M. Faça², Catalina Pereira³, Gerardo A. Arroyo-Martinez³, Raimundo
4 Freire^{4,5,6}, Paula E. Cohen³, Robert S. Weiss³ and Marcus B. Smolka^{1,*}

5

6 ¹Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology,
7 Cornell University, Ithaca, NY 14853, USA

8 ²Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of
9 São Paulo, Ribeirão Preto, SP 14049-900, Brazil.

10 ³Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA

11 ⁴Unidad de Investigación, Hospital Universitario de Canarias, 38320 Tenerife, Spain

12 ⁵Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200, La Laguna,
13 Tenerife, Spain

14 ⁶Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain

15

16

17 * Correspondence and requests for materials should be addressed to M.B.S. (email:
18 mbs266@cornell.edu).

19 **Abstract**

20

21 During mammalian meiosis, the ATR kinase plays crucial roles in the coordination of DNA
22 repair, meiotic sex chromosome inactivation and checkpoint signaling. Despite the
23 importance of ATR in meiosis, the meiotic ATR signaling network remains largely unknown.
24 Here we defined ATR signaling during prophase I in mice. Quantitative analysis of
25 phosphoproteomes obtained after genetic ablation of the ATR-activating 9-1-1 complex or
26 chemical inhibition of ATR revealed over 12,000 phosphorylation sites, of which 863
27 phosphorylation sites were dependent on both 9-1-1 and ATR. ATR and 9-1-1-dependent
28 signaling was enriched for S/T-Q and S/T-X-X-K motifs and included proteins involved in
29 DNA damage signaling, DNA repair, and piRNA and mRNA metabolism. We find that ATR
30 targets the RNA processing factors SETX and RANBP3 and regulate their localization to the
31 sex body. Overall, our analysis establishes a comprehensive map of ATR signaling in
32 spermatocytes and highlights potential meiotic-specific actions of ATR during prophase I.

33

34

35 **Introduction**

36 Meiosis is a specialized cellular process whereby a single round of DNA replication is
37 followed by two successive rounds of cell division to produce haploid gametes. To ensure
38 proper chromosome segregation at the first meiotic division, meiotic cells must undergo a
39 series of highly regulated processes, including programmed double-strand break (DSB)
40 formation, recombination, and chromosome synapsis^{1,2}. The serine/threonine-protein kinase
41 ATR (ataxia telangiectasia and Rad-3 related protein) has well-characterized roles in
42 maintaining genome stability in mitotic cells^{3–5}. In mammals, ATR also plays an essential role
43 in spermatogenesis by promoting meiotic sex chromosome inactivation (MSCI), a process
44 that is required for silencing of the X and Y chromosomes^{6–8}. Impairment of ATR activity
45 results in insufficient MSCI and germ cell elimination at the mid-pachytene stage of
46 prophase I^{7–13}. A major readout of ATR activity during MSCI is the phosphorylation of the
47 histone variant H2AX within the dense heterochromatin domain of the nucleus that houses
48 the X and Y chromosomes known as the sex body. Additionally, ATR regulates the sex body
49 localization of several other DNA damage response proteins such as MDC1, CHK1 and
50 BRCA1 in a feed-forward mechanism that allows these proteins to spread from the
51 chromosome cores to the chromatin loops, ultimately resulting in MSCI^{9,14–19}. Furthermore,
52 loss of ATR protein in spermatocytes results in defects in DSB repair and chromosome
53 synapsis, implying that ATR regulates several aspects of meiotic progression^{14,20}. Despite the
54 importance of ATR in meiosis, the mechanisms by which meiotic ATR signaling coordinates
55 meiotic progression remains limited due to the complexity and interdependence of meiotic
56 DNA repair, chromosome synapsis, and silencing of unsynapsed chromatin.

58 While ATR activation is less understood in meiotic cells than in somatic cells, it is likely that at
59 least some of the molecular determinants of ATR activation are shared. In mitotic cells, ATR
60 is activated at sites of single-stranded DNA (ssDNA) that arise during replication or DNA
61 repair^{3,21}. ATR is recruited to RPA-coated ssDNA via interaction with ATRIP (ATR interacting
62 protein)²², while the 9A-1-1 (RAD9A-RAD1-HUS1) checkpoint clamp is independently loaded
63 at the dsDNA-ssDNA junction by the RAD17-RCF clamp loader^{23,24}. The ATR activating
64 protein, TOPBP1 (topoisomerase binding protein 1), then interacts with the c-terminal tail of
65 RAD9A and directly activates ATR via its ATR activation domain (AAD)²⁵⁻²⁸. Recently a
66 second ATR activating protein, ETAA1 (Ewing's tumor-associated antigen 1), was
67 identified²⁹⁻³¹. ETAA1 can directly activate ATR at RPA-coated ssDNA at replication forks
68 and is thought to be important for ATR activation during unchallenged DNA replication^{32,33}.
69 Once activated, ATR preferentially phosphorylates proteins at S/T-Q motifs³⁴. In mitotic cells,
70 ATR-mediated phosphorylation of H2AX and the MDC1 scaffold help promote checkpoint
71 activation through ATR phosphorylation of the CHK1/CHK2 kinases, resulting in checkpoint-
72 mediated cell cycle arrest^{35,36}. Meiotic roles for TOPBP1 in promoting key ATR signaling
73 outcomes have been described¹⁹. Conditional TOPBP1 depletion in germ cells resulted in
74 defective meiotic sex chromosome silencing as well as loss of ATR and H2AX
75 phosphorylation in the sex body. The results suggest a prominent role for TOPBP1 in
76 mediating the strong ATR signaling observed during pachynema. Intriguingly, this strong
77 induction of ATR activity observed during normal spermatogenesis is compatible with the
78 progression of the meiotic cell cycle. How ATR signaling in meiotic cells coordinates meiotic
79 progression without imposing a checkpoint arrest remains a fundamental unanswered
80 question.

82 While hundreds of targets of ATR have been characterized using quantitative
83 phosphoproteomics in mitotic cells^{32,37}, much less is understood about ATR signaling in
84 meiosis. A comprehensive dataset of meiotic ATR-dependent phosphorylation events is
85 necessary to further our understanding of the mechanisms by which ATR coordinates DNA
86 repair, chromosome synapsis, checkpoint and MSCI pathways during meiosis. To define the
87 network of phosphorylation events mediated by ATR in meiotic cells we performed extensive
88 phosphoproteomic analyses of testes derived from mice with two independent methods of
89 impairing ATR signaling. Given that ATR depletion results in embryonic lethality^{35,38,39}, we
90 used a genetic model of impairing ATR signaling whereby the 9-1-1 component RAD1 is
91 conditionally depleted under the germ-cell specific *Stra8-Cre*. Depletion of RAD1 in germ
92 cells is anticipated to disrupt all potential 9-1-1 complexes, including those that could form
93 with the testes-specific paralogs *Hus1b*⁴⁰ and *Rad9b*⁴¹, and therefore significantly impair ATR
94 signaling⁴². In parallel, we collected testes from mice treated with ATR inhibitor (AZ20) and
95 vehicle treated controls. We processed these tissues to isolate phosphorylated peptides,
96 labeled them with amino reactive tandem mass tag reagents (TMT) followed by mass
97 spectrometry to generate phosphoproteomic datasets. By combining these datasets, we were
98 able to identify a set of over 800 high-confidence meiotic phosphorylation events that are
99 dependent on both ATR and RAD1, including phosphorylation of crucial DNA damage
100 signaling and DNA repair proteins. Intriguingly, we also detected ATR-dependent
101 phosphorylation of several RNA metabolic proteins and found that ATR-dependent
102 phosphorylation controls the localization of key RNA processing factors. Overall, our analysis
103 establishes a comprehensive map of ATR signaling in spermatocytes and highlights potential
104 meiotic-specific actions of ATR during prophase I progression.

105 **Results**

106 **A pharmacological and genetic approach to map ATR-dependent signaling in**
107 **spermatocytes**

108 Despite the central role of ATR in Prophase I of mammalian meiosis, the signaling network
109 mediated by ATR remains largely unknown. Here, we generated phosphoproteomic
110 databases from two sets of mice with independent methods of ATR inhibition. First, to
111 genetically impair ATR activity, we utilized a *Rad1* conditional knockout model in which RAD1
112 is depleted in germ cells under a *Stra-8-Cre* promoter. Next, to chemically inhibit ATR, we
113 treated mice with the ATR inhibitor AZ20. By comparing the databases generated from these
114 two methods of ATR inhibition, we can take advantage of the tissue-specificity of the
115 conditional knockout model as well as the acute inhibition of the kinase after ATR inhibitor
116 treatment to identify a set of high-confidence ATR and RAD1-dependent phosphorylation
117 events and overcome limitations arising from analysis of these two models individually (Fig.
118 1A).

119

120 We collected tissue from mice treated with ATR inhibitor AZ20 (ATRi), or vehicle, as well as
121 from *Rad1* CKO and control mice (Fig. 1A). For ATRi, we treated mice with 50 mg/kg AZ20
122 per day and collected tissue at 2.5 or 3 days, following conditions previously described⁷. We
123 also collected testis from mice 4 hours after one dose of 50mg/kg of AZ20. To ensure the
124 ATRi dosage and timing was sufficient to impair ATR activity, we examined meiotic
125 chromosome spreads to monitor the localization of γH2AX at the sex body during
126 pachynema, which is dependent on ATR^{2,9,43–47}. In mice treated with ATRi, we observed
127 robust reduction in sex body γH2AX localization in pachynema staged cells 4 hours after a

128 single dose of 50mg/kg treatment with AZ20 (Fig. 1B-C, S1A-B), indicating that ATR activity
129 is rapidly impaired following AZ20 administration. We collected tissue for further mass
130 spectrometry analysis from one pair of experimental and control mice under each of the
131 treatment conditions for a total of four ATRi and vehicle control pairs of mice (2 pairs after
132 2.5-3 days of treatment and 2 pairs 4 hours after a single dose). We also collected
133 decapsulated whole-testes from three *Rad1* CKO mice and litter-mate controls. Tissue
134 samples were lysed and digested with trypsin, followed by enrichment of phosphopeptides
135 and labeling with the 6-plex Tandem Mass Tag (TMT) reagent (Fig. 1A). HILIC pre-
136 fractionation of TMT-labeled phosphopeptides allowed in-depth quantitative
137 phosphoproteomic analysis, resulting in a total of 37,180 phosphorylation sites identified
138 between the seven experiments (Fig. 1D). After selecting for high-quality phosphosites
139 (localization score to > 0.85) and considering only phosphopeptides identified in both the
140 AZ20 and *RAD1* CKO datasets in at least two independent samples, our final list yielded
141 12,220 quantitated phosphorylation sites (Fig. 1D-E, table S1).

142

143 **RAD1-dependent ATR signaling targets proteins involved in nucleic acid metabolism,**
144 **DNA damage response and the cell cycle**

145 As previously described, quantitative phosphoproteomic analysis combining datasets from
146 chemical (ATRi) and genetic (*Rad1*-CKO) ATR inhibition was predicted to enrich for acute
147 ATR signaling events specifically in germ cells. We therefore focused on phosphopeptides
148 displaying consistent reduction in abundance in testes from both ATRi treated and *Rad1*-
149 CKO mice (positioned in Q2, highlighted in Fig 2A). To address errors in quantitation and
150 variation due to sample handling we applied the “Bow-tie” filter by excluding data points that

151 fell outside of a fourfold of the log2 scale interval of correlation as previously described⁴⁸. By
152 comparing the number of phosphopeptides in each of the regions (quadrants) of the
153 experimental correlation plots, we observed a biased distribution with approximately 4-fold
154 more differentially phosphorylated peptides in Q2 compared to each of the other quadrants
155 indicating that the primary mode of ATR activation during meiosis is RAD1 dependent (Fig.
156 2B, S4A). Gene enrichment analysis of each quadrant revealed that Q2 is enriched for gene
157 ontology categories such as nucleic acid metabolism, DNA damage response and cell cycle
158 (Fig. 2C, table S2), consistent with the expected roles for ATR and RAD1 in these processes.

159

160 Depletion of RAD1 in spermatocytes results in reduction in tubule size, infertility and loss of
161 germ cells⁴². Meiotic spreads from *Rad1* CKO mice further showed mid-pachytene arrest⁴².
162 Therefore, we performed gene enrichment analysis on the subset of RAD1-dependent, ATR-
163 independent sites which are depicted in Q1 (Fig. 2D). Our analysis revealed enrichment in
164 functional groups related to spermatogenesis, gamete generation and reproductive
165 processes (Fig. 2E, S4B, table S2). This finding is consistent with our rationale that Q1 would
166 contain phosphorylation events that reflect indirect or pleiotropic events caused by long-term
167 depletion of RAD1 and loss of 9-1-1-mediated ATR signaling. Furthermore, these pleiotropic
168 events are expected to reflect the impairment of processes downstream of meiosis I. Gene
169 ontology of RAD1-independent, ATR-dependent phosphosites found in Q3 (Fig S4A-B, table
170 S2) revealed enrichment for many GO terms involved in cytoskeletal organization and protein
171 polymerization/depolymerization. These targets are potentially regulated by RAD1-
172 independent ETAA1 activation of ATR or reflect events in non-meiotic cell types.

173

174 To further assess the quality of the generated dataset, we examined the distribution of
175 phosphopeptides of MDC1, a known ATR target during prophase I that binds to
176 phosphorylated H2AX and further stimulate the spreading of ATR and DNA repair factors on
177 chromatin loops of the X and Y chromosomes to promote MSC1^{43,49}. Thirty MDC1
178 phosphorylation sites were detected, including ten sites in Q2 (ATR- and RAD1-dependent)
179 and twenty sites that were not dependent on ATR phosphorylation (Fig. 2F-G,S4F). These
180 data reveal that MDC1 is a multiply-phosphorylated, with both ATR-dependent and
181 independent modes of regulation. Furthermore, the identification of MDC1 phosphosites
182 whose phosphorylation status did not change upon ATR inhibition suggested that
183 phosphorylation changes in Q2 are not due to changes in MDC1 protein abundance, nor are
184 they due to non-specific changes in MDC1 phosphorylation status. Notably, we were able to
185 detect at least one phosphorylation site that did not change between the control and reduced
186 ATR activity condition (non-regulated) in over 60% of the proteins containing a
187 phosphorylation site detected in Q2 (Table S1), which indicates that the majority of
188 phosphorylation in Q2 are not likely due to protein abundance changes, but rather regulated
189 and specific phosphorylation events. Nonetheless, for proteins whose phosphorylation sites
190 are only detected in Q2, it remains possible that protein abundance change may be the
191 underlying cause of the observed change in phosphopeptide abundance. Overall, these
192 results validate our experimental rationale and reinforce the importance of combining data
193 from ATRi and *Rad1* CKO datasets to map primary meiosis-specific ATR signaling.

194

195 **Connectivity analysis defines ATR-regulated sub-networks**

196 To examine the network of ATR signaling in our dataset, we performed a Cytoscape/ClueGO
197 analysis to systematically define a comprehensive map of processes involving ATR- & RAD1-
198 dependent phosphorylation. ClueGO analysis revealed several expected categories including
199 nucleic acid metabolic processes, regulation of cell cycle, chromosome organization and
200 DNA repair. Additionally, STRING analysis of all proteins with ATR- & RAD1-dependent
201 phosphorylation revealed a densely connected sub-network of DNA repair proteins (Fig. 3A).
202 The sub-network of DNA repair proteins defined by string analysis comprises several proteins
203 involved in ATR recruitment and activation, including TOPBP1, ATRIP, and RAD9B. This
204 sub-network also included a number of key proteins involved in homologous recombination
205 and related DNA repair activities/transactions, such as RAD50, NBS1 (Nbn), CTIP (RBBP8),
206 RAD51C, PALB2, RAD18, SLX4, RAP80 (UIMC1) and RNF168 (Fig. S4F-G). Notably,
207 STRING and ClueGO analysis also identified RNA metabolic processes such as mRNA
208 processing, transcription and splicing as represented groups for proteins identified in Q2 (Fig.
209 3A, S4C-D). In particular, a sub-network of proteins involved in splicing, including several
210 components of the pre- and post-splicing multi-protein mRNP complexes (Fig. S4C-D) were
211 found. Surprisingly, meiotic ATR signaling also impinged on a highly connected sub-network
212 of proteins involved in centrosome assembly and function, several of which are categorized
213 under the biological process “cell cycle” (Fig. S4E). Overall, these data reveal the scope of
214 processes affected by meiotic ATR signaling, which while extensive, seems to preferentially
215 converge on the control of DNA repair, mRNA processing and cell cycle processes.

216

217 **Meiotic ATR promotes extensive phospho-signaling at an S/T-P-X-K motif**

218 To further examine the network of RAD1 and ATR-dependent phosphorylation events, we
219 performed an unbiased analysis of phosphorylation motifs in Q2. As shown in Fig. 3B, we
220 computed the relative proportion of each amino acid at the +/-6 positions surrounding the
221 identified phosphorylation sites, comparing their prevalence in Q2 (ATR and RAD1-
222 dependent sites) versus center (unregulated or not-differentially phosphorylated sites). The
223 resulting matrix revealed the relative degree of depletion or enrichment for each amino acid in
224 each position. Notably, the preferred ATR motif (Q at +1 position) was only slightly enriched
225 in Q2. Of the 863 ATR and RAD1 dependent sites identified in Q2, 42 sites were at the S/T-Q
226 consensus motif, a ~5% prevalence that represents a ~2-fold enrichment over the prevalence
227 of this motif in the group of unregulated sites (Table S1). The finding that most
228 phosphorylation sites in Q2 are not in the S/T-Q motif suggests that ATR is able to
229 phosphorylate other motifs and/or directly or indirectly regulate the activity of other kinases or
230 phosphatases during meiosis. Consistent with the latter hypothesis, several kinases were
231 found to contain an ATR and RAD1-dependent phosphorylation site, including CDK1/2, MAK,
232 NEK1 and PKMYT1. Strikingly, in addition to the expected enrichment of Q at the +1 position
233 we noticed a drastic enrichment of K at the +3 position. Close inspection of the group of ATR
234 and RAD1-dependent phospho-sites with K at +3 revealed that 85.5% of them contained a P
235 at the +1 position (Fig. 3C). We next compared the prevalence of S/T-P-X-K motifs Q2 sites
236 (ATR- & RAD1-dependent) to the set of unregulated phosphosites found in the center of the
237 dataset and found Q2 had ~4-fold more S/T-P-X-K. (Fig. 3D, table S1). These results suggest
238 that ATR is activating one or more kinases that have a preference for S/T-P-X-K motif. The
239 identity of the kinase(s) responsible for phosphorylating the large set of ATR- & RAD1-
240 dependent sites (112 sites in Q2) at the S/T-P-X-K remains unknown.

242 Interestingly, we noticed that several components of the piRNA network were enriched for
243 RAD1- and ATR-dependent phosphorylation within the S/T-P-X-K motif (Fig. 3E). piRNAs are
244 abundant in spermatocytes and protect genome integrity by preventing retrotransposon
245 integration during meiosis^{50,51}. Male mice deficient for piRNA biogenesis such as the those
246 deficient for PIWI proteins are infertile due to spermatocyte arrest⁵². Despite the importance
247 of piRNAs in spermatogenesis, a thorough mechanistic understanding of piRNA regulation
248 and function remains unknown. Several components of the piRNA biogenesis pathway
249 contained one or more non-S/T-Q phosphorylation site. For example, we identified two
250 phosphorylated S/T-P-X-K motifs as well as one S/T-P motif in TDRD9 (Fig. 3E), an RNA
251 helicase that functions in piRNA metabolism and is important for spermatogenesis⁵³,
252 suggesting that TDRD9 may be regulated by kinases in a RAD1-and ATR-dependent
253 manner. Although it is unclear which kinase(s) are phosphorylating TDRD9 or other
254 components of the piRNA network, these data implicate the ATR signaling cascade in
255 regulating the piRNA pathway. Further work will be important to dissect the role of ATR in
256 regulating piRNA proteins.

257

258 **RAD1- and ATR-dependent phosphorylation at S/T-Q sites defines potentially direct**
259 **ATR targets involved in DNA damage signaling, DNA repair and RNA metabolism**

260 Given that ATR preferentially phosphorylates S/T-Q motifs^{54,55}, we reasoned that most
261 phosphorylation sites at S/T-Q in Q2 are more likely to reflect direct ATR substrates in
262 meiosis. As expected, proteins involved in DNA damage signaling and repair were found to
263 contain Q2 S/T-Q phosphorylation, including ATR itself, TOPBP1, RAP80, and components
264 of the MRN-CTIP complex (Fig. 4D-E). The group of S/T-Q sites in Q2 also included proteins

265 involved in RNA metabolism and chromatin regulation (Fig. 4B, D-E). Notably, S/T-Q sites in
266 proteins involved in RNA metabolism (SETX, XPO5 and RANBP3) displayed the highest
267 ATR-dependency (Fig. 4E). Most proteins with an S/T-Q phosphorylation site identified in Q2
268 have additional phosphorylation sites that did not change with RAD1 CKO or ATR inhibition
269 (Fig. 4A-B), indicating that the overall abundance of these proteins was not likely changing.
270 Furthermore, many Q2 proteins contained both an S/T-Q motif and another non-S/T-Q
271 phosphorylation site that was also ATR-dependent (Fig. 4A-B). Taken together, these results
272 reveal a set of proteins that may potentially be direct substrates of ATR in meiosis and define
273 a set of RNA regulatory proteins subjected to 9-1-1 and ATR-dependent phosphoregulation.

274

275 **ATR modulates the localization of RNA regulatory factors Senataxin and RANBP3**

276 Although ATR localizes to the sex body to promote MSCI, it is not known if ATR directly
277 regulates RNA metabolic proteins to promote silencing or processing of RNAs. To investigate
278 how meiotic ATR may regulate RNA metabolism we focused on RNA metabolic proteins with
279 S/T-Q phosphosites in Q2. We found serine 353 in Senataxin (SETX), an RNA:DNA helicase
280 with established roles in transcriptional regulation and genome maintenance⁵⁶, to be
281 downregulated upon RAD1 loss and ATR inhibition (Fig. 4B and 4E). Senataxin disruption is
282 associated with male infertility in humans and *Setx*^{-/-} male mice are infertile resulting from
283 arrest at the pachytene stage in meiosis I^{57,58}. Senataxin localizes to the XY chromosomes
284 and promotes the localization of ATR, γH2AX and other DNA repair and checkpoint factors to
285 the sex body to promote MSCI⁵⁹. Senataxin interacts with many proteins involved in
286 transcription and is thought to regulate multiple aspects of RNA metabolism such as splicing
287 efficiency and transcription termination in part by its activity in resolving R-loops (RNA-DNA

288 hybrids)⁶⁰. To assess whether ATR modulates Senataxin function in meiosis, we stained for
289 Senataxin in meiotic spreads derived from both ATR inhibitor treated and *RAD1*-CKO mice.
290 In accordance with previous work, we found that Senataxin localizes to the sex body at
291 pachynema control spreads^{58,59}. Strikingly, Senataxin accumulation at the sex body was
292 significantly reduced in pachytene spreads derived from ATRi treated mice (Fig. 5A-B, S2A-
293 B). While it is difficult to morphologically distinguish the X and Y chromosomes in the *Rad*
294 CKO spreads, we observed no enrichment of Senataxin around any selection of
295 chromosomes in pachytene-like spreads with four or more synapsed autosomes (Fig.5 C-
296 D,S2C-D). Previous studies have found that Senataxin inhibition results in diminished ATR
297 signaling at the sex body, implicating Senataxin in promoting ATR signaling^{58,59}. Our results
298 further suggest that ATR-dependent phosphorylation promotes the recruitment or retention of
299 Senataxin at the sex body, consistent with a model in which Senataxin and ATR act in a feed-
300 forward loop to cooperatively promote their recruitment and efficient sex body formation and
301 MSCI.

302

303 Another protein with a S/T-Q phosphorylation site identified in Q2 was RANBP3 (serine 283).
304 RANBP3 is a relatively unknown protein with connections to miRNA and protein export in
305 mitotic cells⁶¹ . Unfortunately, it is not known if RANBP3 depletion results in a loss of fertility
306 although one study has found an association with decreased RANBP3 expression and
307 human infertility⁶². We investigated the localization of RANBP3 in meiotic spreads and found
308 that in cells derived from wild type or vehicle treated mice, RANBP3 localizes to the sex body
309 at pachynema (Fig 5E-F, S3A-B). The accumulation of RANBP3 is significantly lost at the sex
310 body derived from ATRi treated mice and at all chromosome cores in *Rad1* CKO pachytene-

311 like spreads (Fig 5G-H, S3C-D), suggesting a role for ATR in the recruitment or retention of
312 RANBP3 at the sex body. Overall, these results support a model whereby ATR promotes the
313 proper localization of SETX and RANBP3 to the sex body in pachynema.

314

315

316 **Discussion**

317 ATR has well established roles in promoting genome stability in mitotic cells by regulating
318 multiple aspects of DNA metabolism such as DNA repair, DNA replication and the DNA
319 damage checkpoint^{37,63}. Several phosphoproteomic databases have been generated to
320 characterize the targets of ATR during conditions of replication stress or within the context of
321 mitosis^{32,63-69}. These resources have been useful not only to mechanistically dissect the
322 different roles of ATR, but also to gain a more comprehensive understanding of its
323 multifaceted action in genome metabolism. In the context of meiosis, much less is understood
324 about ATR signaling, and although previous reports have catalogued phosphorylation events
325 in mouse testis using phosphoproteomics, these datasets lack experimentally established
326 kinase-substrate relationships⁷⁰⁻⁷⁴. Given the utmost importance of defining the ATR-
327 mediated signaling events in mammalian meiosis to mechanistically dissect its function and
328 mode of action, here we performed an in-depth phosphoproteomic analysis of ATR signaling
329 in meiosis. The success of our work mostly relied on a two-part approach for identifying high-
330 confidence ATR-dependent phosphorylation events. By combining the datasets from the
331 *Rad1* CKO genetic mouse model and ATR inhibitor treated mice, we enhanced our
332 confidence in identifying meiosis-specific ATR functions. As validation of our dataset, we
333 detected known ATR targets such as MDC1 and TOPBP1 in the set of ATR and RAD1-
334 dependent signaling events. Additionally, we observed the expected enrichment for DNA
335 metabolism, DNA repair and cell cycle gene ontology categories. We anticipate that this
336 database will be a useful resource for the meiosis community for further study into the
337 mechanisms of meiotic ATR activity.

338

339 The set of ATR-mediated signaling events detected included phosphorylation in proteins
340 involved in RNA metabolism, such as Senataxin and RANBP3. It is tempting to speculate that
341 these are direct targets since they were phosphorylated at the S/T-Q motif and their
342 localization to the XY body was compromised during ATR inhibition. We propose that these
343 data highlight a need for ATR in regulating distinct aspects of RNA metabolism such as R-
344 loop accumulation, splicing, termination and RNA export at the X and Y chromosome to allow
345 for proper silencing. The model implicates ATR as a central regulator of multiple aspects of
346 RNA metabolism during meiosis, and it is interesting that several proteins involved in the
347 piRNA network were also found to be regulated in an ATR-dependent manner. The
348 connection of ATR to RNA metabolism is not completely surprising since other reports on the
349 mitotic action of ATR have uncovered similar connections⁷⁵. Notably, given that silencing of
350 the XY is inextricably linked to prophase I progression, it is likely that the connection of
351 meiotic ATR signaling to RNA metabolism is even more relevant compared to its mitotic
352 signaling. An interesting model to be explored in future work is that SETX and RANBP3 may
353 both play a key coordinated role in removing RNA from XY DNA, and exporting it, to establish
354 MSCI (Fig. S3F). Further work will be needed to establish these as direct ATR substrates and
355 to dissect the mechanism by which ATR promotes the localization and action of Senataxin,
356 RANBP3 and other RNA metabolic proteins identified in this study.

357

358 Since our phosphoproteomic is unbiased and not only directed at the preferred S/T-Q motif,
359 we were able to capture a range of phosphorylation events in other motifs suggesting that
360 ATR regulates multiple downstream kinases during meiosis. Strikingly, we observed a strong
361 enrichment for ATR-dependent phosphorylation sites at the S/T-P-X-K motif, suggesting that

362 ATR promotes activation of one of multiple downstream proline-directed kinases. We
363 identified several kinases subjected to ATR and RAD1-dependent phosphorylation, including
364 CDK1/2, MAK, NEK1 and PKMYT1. Of those, CDK1/2 and MAK have established
365 preferential phosphorylation motif consistent with the S/T-P-X-K motif. A simple model would
366 predict that these kinases are activated by ATR during prophase I, which could be tested by
367 future phosphoproteomic analysis of testes from mice treated with inhibitors for these
368 kinases. It is worth mentioning that in mitosis, the canonical action of ATR in promoting DNA
369 damage checkpoint, and consequent cell cycle arrest, is mediated via inhibition CDK activity,
370 and consequent reduction in S/T-P phosphorylation sites⁷⁶. In this sense, the observed
371 dependency of S/T-P-X-K motif for ATR in meiosis is the opposite to what would be predicted
372 from mitotic cells. Since the high activity of ATR in meiosis does not result in meiotic arrest,
373 but is actually required for meiotic progression, it is possible that our data is revealing a
374 drastic difference in how ATR signaling is wired with downstream kinases in meiotic versus
375 mitotic cells. In addition to S/T-P-X-K motif, several other motifs were represented in the set
376 of ATR- and RAD1- dependent sites. We cannot exclude that the presence of other motifs in
377 Q2 is due to the function of ATR regulation of phosphatases. Importantly, several
378 phosphatases, including PPM1G and PP1R7, were also identified in Q2.

379

380 Overall, our work represents an initial attempt to reveal the scope of targets and processes
381 affected by meiotic ATR signaling. As expected, the ATR signaling network in meiosis is
382 overwhelming complex and multifaceted. Major challenges will be to untangle the functional
383 relevance of most of the identified signaling events, and understand how the different modes
384 of ATR signaling are coordinated for proper control of meiotic progression. Of importance,

385 ATR may be activated in a 9-1-1-independent manner, via ETAA1. Therefore, additional
386 phosphoproteomic analyses from mouse mutants/CKOs of *ETAA1* are likely to identify
387 different subsets of ATR targets that may represent different modes of ATR signaling in
388 meiosis. Another key outstanding question is to understand how the ATR kinase, which
389 imposes cell cycle checkpoints in most other cell types, is so highly activated in
390 spermatocytes without inducing cell cycle arrest. A potential explanation may lay at the
391 specificity of ATR's action at the sex body, which may be devoted to the regulation of
392 checkpoint-independent processes such as the control of RNA processing during meiotic
393 prophase I, as supported by our data. Finally, there are medical implications of understanding
394 ATR signaling in meiosis, since many ATR inhibitors are currently in phase 2 clinical trials for
395 cancer treatment and determining the impact of these inhibitors in meiotic cells will be
396 relevant to define the effects of these treatments in patient fertility.

397

398

399

400

401

402

403

404

405

406 **Materials and Methods**

407

408

409 **ATR inhibitor treatment of mice**

410 AZ20 was reconstituted in 10% DMSO (Sigma), 40% propylene glycol (Sigma), and 50%
411 water. Control mice were treated with 10% DMSO (Sigma), 40% propylene glycol (Sigma),
412 and 50% water. Wild-type C57BL/6 male mice aged to 8 weeks-old were gavaged with
413 50mg/kg of AZ20 (Selleckchem) and euthanized at indicated time points. Specific timepoints
414 examined in this study include collection after 3 days of 50mg/kg, 2.5 days of 50mg/kg per
415 day or 4 hours after one dose of 50mg/kg AZ20. All mice used for this study were handled
416 following federal and institutional guidelines under a protocol approved by the Institutional
417 Anima Care and Use Committee (IACUC) at Cornell University.

418

419 **Testes phosphopeptide enrichment and TMT labeling**

420 Whole, decapsulated testes were collected and frozen at -80° C from 8 week-old AZ20 and
421 vehicle-treated C57BL/6 mice 4 hours after treatment as indicated. Whole, decapsulated
422 testes from *Rad1* CKO and littermate control mice were collected at 8 or 12 weeks of age.
423 *Rad1* CKO control genotypes are *Rad1*^{-/Fl};Cre⁻, *Rad1*^{+/Fl}; Cre⁻ and *Rad1*^{+/Fl};Cre⁺. Individual
424 testes were thawed at 4° C in lysis buffer (50mM Tris pH 8.0, 5mM EDTA, 150mM NaCl,
425 0.2% Tergitol) supplemented with 1mM PMSF and PhosSTOP (sigma) and sonicated. 4 mg
426 of protein (quantified by Bradford protein assay, Biorad) was collected, denatured with 1%
427 SDS and reduced with 5mM DTT at 65° C for 10 minutes followed by alkylation with 60mM
428 Iodoacetamide. Proteins were precipitated in a cold solution of 50% acetone, 49.9% ethanol

429 and 0.1% acetic acid and protein pellet was washed once with a solution of 0.08M Urea in
430 water. Protein pellet was resuspended at a concentration of 10mg/ml in 8M urea, Tris 0.05M,
431 pH 8.0, NaCl 0,15M and diluted 5-fold prior digestion with 80ug of trypsin (TPCK-treated,
432 Sigma) overnight at 37° C. Protein digests were acidified to a final concentration of 1% TFA
433 and cleaned-up in a solid-phase extraction (SPE) C₁₈ cartridge pre-conditioned with 0.1%
434 TFA solution. Peptides were eluted from the cartidges with 80% acetonitrile, 0.1% acetic acid
435 aqueous solution and dried in speed-vac. Phosphopeptide enrichment was performed using a
436 Thermo-Fisher Fe-NTA phosphopeptides enrichment kit according to the manufacturer
437 protocol (Cat# A32992, ThermoScientific). Phosphopeptides samples were split into 4
438 aliquots (10%, 30%, 30% and 30%) and dried in silanized glass tubes. For each experiment,
439 the three 30% aliquots from each control and AZ20-treated or control and RAD1-KO samples
440 were resuspended in 35uL of 50mM HEPES and labeled with 100ug of each of the
441 TMTsixplex Isobaric Label Reagents (ThermoFisher), previously diluted in 15uL of pure
442 acetonitrile. TMT-labeling reaction was carried out at room temperature for 1h and quenched
443 with 50uL of 1M Glycine. All 6-plex TMT labeled aliquots were mixed, diluted with 200uL of
444 aqueous solution of formic acid 1% (v/v) and cleaned up in a SPE 1cc C₁₈ cartridge (Sep-Pak
445 C18 cc vac cartridge, 50 mg Sorbent, WATERS). Bound TMT-labeled phosphopeptides were
446 eluted with 50% acetonitrile, 0.1% formic acid in water and dried in a speed-vac.

447

448 **Mass spectrometric analysis of TMT-labeled phosphopeptides**

449 Dried TMT-labeled phosphopeptides were ressuspended in 16.5uL water, 10uL formic acid
450 10% (v.v) and 60uL of pure acetonitrile and submitted to HILIC pre-fractionation. Samples
451 were fractionated using a TSK gel Amide-80 column (2 mm x 150 mm, 5 µm; Tosoh

452 Bioscience), using a three-solvent system: buffer A (90% acetonitrile), buffer B (75%
453 acetonitrile and 0.005% trifluoroacetic acid), and buffer C (0.025% trifluoroacetic acid). The
454 chromatographic runs were carried out at 150uL/min and gradient used was: 100% buffer A
455 at time = 0 min; 94% buffer B and 6% buffer C at t = 3 min; 65.6% buffer B and 34.4% buffer
456 C at t = 30 min with a curve factor of 7; 5% buffer B and 95% buffer C at t = 32 min; isocratic
457 hold until t = 37 min; 100% buffer A at t = 39 to 51 min. One-minute fractions were collected
458 between minutes 8 and 10 of the gradient; 30-second fractions between minutes 10 and 26;
459 and two-minute fractions between minutes 26 and 38 for a total of 40 fractions. Individual
460 fractions were combined according chromatographic features, dried in speedvac and
461 individually submitted to LC-MS/MS analysis. Individual phosphopeptide fractions were
462 resuspended in 0.1% trifluoroacetic acid and subjected to LC-MS/MS analysis in an
463 UltiMate™ 3000 RSLC nano chromatographic system coupled to a Q-Exactive HF mass
464 spectrometer (Thermo Fisher Scientific). The chromatographic separation was carried out in
465 35-cm-long 100-µm inner diameter column packed in-house with 3 µm C₁₈ reversed-phase
466 resin (Reprosil Pur C18AQ 3µm). Q-Exactive HF was operated in data-dependent mode with
467 survey scans acquired in the Orbitrap mass analyzer over the range of 380 to 1800 m/z with
468 a mass resolution of 120,000. MS/MS spectra was performed selecting the top 15 most
469 abundant +2, +3 or +4 ions and precursor isolation window of 0.8 m/z. Selected ions were
470 fragmented by Higher-energy Collisional Dissociation (HCD) with normalized collision
471 energies of 38 and the mass spectra acquired in the Orbitrap mass analyzer with a monitored
472 first mass of 100m/z, mass resolution of 60,000, AGC target set to 1x10⁵ and max injection
473 time set to 110ms. A dynamic exclusion window was set for 30 seconds.

474

475 **Phosphoproteomic data analysis**

476 The peptide identification and quantification pipeline relied on MaxQuant platform (v.1.6.3.4)
477 and the Andromeda search engine⁷⁷. The Mouse UNIPROT proteome database (22,297
478 entries) was downloaded on 2018-10-22 and supplemented with the default MaxQuant
479 contaminant protein database. Search parameters included tryptic requirement, 20 ppm for
480 the precursor match tolerance, dynamic mass modification of 79.966331Da for
481 phosphorylation of serine, threonine and tyrosine and static mass modification of
482 57.021465Da for alkylated cysteine residues. TMT-labeling correction parameters were
483 added according the information provided by manufacturer. All the additional MaxQuant
484 parameters were the default. The original raw files representing each set of fractions for each
485 experiment were organized into groups for data processing. Phospho(STY)Sites.txt
486 MaxQuant output table was processed in order to obtain the TMT ratio for the 7 individual
487 experiments, for each phosphosite identified. Additional sets of criteria were applied to select
488 for high confidence phosphosite identification and regulation, as presented in results
489 sections. The phosphoproteomic data generated in this study were deposited to the Massive
490 database (<http://massive.ucsd.edu>) and received the ID:
491 MSV000086764, doi:10.25345/C57N54, and ProteomeExchange ID: PXD023803.

492

493 **Meiotic chromosome spread immunofluorescence**

494 Meiotic spreads were produced as previously described⁷⁸. Briefly, decapsulated testes
495 tubules were incubated in a hypotonic extraction buffer (30mM Tris pH 7.2, 50mM sucrose,
496 17mM citrate, 5mM EDTA, 0.5mM DTT, 0.1mM PMSF) for 1 hour. 1mm sections of tubule
497 were dissected in 100mM sucrose solution and then added to slides coated in 1%

498 paraformaldehyde/0.15% Triton-X and allowed to spread for 2.5 hours in a humidification
499 chamber. Slides were then dried for 30 minutes and washed in 0.4% photoflo (Kodak)/PBS
500 solution for 5 minutes. Slides were immediately processed for immunofluorescence or frozen
501 at -80°C. For staining, slides were washed in a solution of 0.4% photoflo/PBS for 10 minutes,
502 0.1% Triton X/PBS for 10 minutes and blocked in 10% antibody dilution buffer (3% BSA, 10%
503 goat serum, 0.0125% Triton X)/PBS for 10 minutes. Primary antibodies were diluted in
504 antibody dilution buffer at the indicated dilution and incubated with a strip of parafilm to
505 spread the antibody solution in a humidification chamber at 4°C overnight. After primary
506 antibody incubation, the slides are washed with 0.4% photoflo/PBS for 10 minutes, 0.1%
507 Triton-X for 10 minutes and blocked with 10% antibody dilution buffer. Secondary antibodies
508 were diluted as indicated and incubated on slides with a parafilm strip at 37°C for 1 hour.
509 Slides were then washed in 0.4% photoflo/PBS for 10 minutes twice followed by 0.4%
510 photoflo/H₂O for 10 minutes twice and allowed to dry before mounting with DAPI/antifade.

511

512 **Imaging and quantification**

513 Slides were imaged on a Leica DMi8 Microscope with a Leica DFC9000 GTC camera using
514 the LAS X (Leica Application Suite X) software. For every condition, a minimum of 50 images
515 from three independent mice were acquired. To quantify fluorescence intensity, the LAS X
516 software quantification tool was used. Briefly, a ROI (region of interest) line was drawn over
517 the sex body and mean intensity of the underlying pixels was recorded. Additionally, two ROI
518 lines of equal length were placed over two autosome cores and the mean pixel intensity was
519 also recorded to serve as an internal control for background fluorescence. The sex body ROI
520 intensity was then normalized to the average of the two autosomal ROI intensities for each

521 individual cell. For the *Rad1* CKO mice, where a true sex body does not form, a line was
522 drawn over chromosomes that were best morphologically identified as the sex chromosomes
523 by SYCP3 staining.

524

525 **Antibody list**

526

Reagent- Primary Antibody	Source	Identifier	Dilution
yH2AX	Millipore	05-636	1:10000
pMDC1 (phosphoT4)	Abcam	Ab35967	1:500
SETX	Abcam	Ab220827	1:100
RANBP3	Bethyl	IHC-00295	1:100
SYCP3 (mouse)	Custom ⁷⁹	N/A	1:2000
SYCP3 (rabbit)	Abcam	Ab15093	1:2000

527

Reagent- Secondary Antibody	Identifier	Dilution
Goat anti-mouse Alexa Fluor 488	62-6511	1:2000
Goat anti-mouse Alexa Fluor 555	A-10521	1:2000
Goat anti-rabbit Alexa Fluor 488	65-6111	1:2000
Goat anti-rabbit Alexa Fluor 555	A-10520	1:2000

528

529

530

531 **Competing Interest Statement**

532 The authors declare that they have no conflict of interest.

533

534 **Acknowledgements**

535 We thank all members of the Smolka, Weiss and Cohen Labs for valuable discussions
536 related to this work. The authors thank Robert Gingras and Mason Muir for assistance with
537 imaging and image quantification, Fenghua Hu and Tony Bretscher for use of the
538 microscopes, and Shannon Marshall for assistance with phosphopeptide enrichment. Figure
539 1A and 2F was created using BioRender.com. This work is supported by a grant from the
540 National Institute of Health (R01-HD095296) to M.B.S. and R.W.

541

542 **Author Contributions**

543 MS, RW, JS and CP designed the study. JS and CP performed phosphoproteomic
544 experiments. JS performed all imaging and quantification of meiotic spreads. VF conceived of
545 data processing pipeline. VF and GAM wrote scripts for data analysis. PC and RF provided
546 critical reagents. JS and MS wrote the manuscript. PC and RS edited the manuscript.

547

548 **References**

549 1. Keeney, S., Giroux, C. N. & Kleckner, N. Meiosis-Specific DNA Double-Strand Breaks
550 Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family. *Cell* **88**, 375–
551 384 (1997).

552 2. Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and
553 regulation. *Nat. Rev. Genet.* **14**, 794–806 (2013).

554 3. Lovejoy, C. A. & Cortez, D. Common mechanisms of PIKK regulation. *DNA Repair* **8**,
555 1004–1008 (2009).

556 4. Yazinski, S. A. & Zou, L. Functions, Regulation, and Therapeutic Implications of the ATR
557 Checkpoint Pathway. *Annu. Rev. Genet.* **50**, 155–173 (2016).

558 5. Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful
559 duplication of a challenging genome. *Nat. Rev. Mol. Cell Biol.* **18**, 622–636 (2017).

560 6. Royo, H. *et al.* Evidence that Meiotic Sex Chromosome Inactivation Is Essential for Male
561 Fertility. *Curr. Biol.* **20**, 2117–2123 (2010).

562 7. Pacheco, S. *et al.* ATR is required to complete meiotic recombination in mice. *Nat.*
563 *Commun.* **9**, 2622 (2018).

564 8. Widger, A. *et al.* ATR is a multifunctional regulator of male mouse meiosis. *Nat. Commun.*
565 **9**, 2621 (2018).

566 9. Royo, H. *et al.* ATR acts stage specifically to regulate multiple aspects of mammalian
567 meiotic silencing. *Genes Dev.* **27**, 1484–1494 (2013).

568 10. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase Chromatin Domains
569 Involved in DNA Double-Strand Breaks in Vivo. *J. Cell Biol.* **146**, 905–916 (1999).

570 11. Pacheco, S. *et al.* The ATM Signaling Cascade Promotes Recombination-Dependent
571 Pachytene Arrest in Mouse Spermatocytes. *PLOS Genet.* **11**, e1005017 (2015).

572 12. Turner, J. M. A. Meiotic sex chromosome inactivation. *Development* **134**, 1823–1831

573 (2007).

574 13. Turner, J. M. A. Meiotic Silencing in Mammals. *Annu. Rev. Genet.* **49**, 395–412

575 (2015).

576 14. Turner, J. M. A. *et al.* BRCA1, Histone H2AX Phosphorylation, and Male Meiotic Sex

577 Chromosome Inactivation. *Curr. Biol.* **14**, 2135–2142 (2004).

578 15. Lange, J. *et al.* ATM controls meiotic double-strand-break formation. *Nature* **479**, 237–

579 240 (2011).

580 16. Ichijima, Y., Sin, H.-S. & Namekawa, S. H. Sex chromosome inactivation in germ cells:

581 emerging roles of DNA damage response pathways. *Cell. Mol. Life Sci.* **69**, 2559–2572

582 (2012).

583 17. Alavattam, K. G. *et al.* Elucidation of the Fanconi Anemia Protein Network in Meiosis

584 and Its Function in the Regulation of Histone Modifications. *Cell Rep.* **17**, 1141–1157

585 (2016).

586 18. Jeon, Y. *et al.* TopBP1 deficiency impairs the localization of proteins involved in early

587 recombination and results in meiotic chromosome defects during spermatogenesis.

588 *Biochem. Biophys. Res. Commun.* **508**, 722–728 (2019).

589 19. Ellinati, E. *et al.* DNA damage response protein TOPBP1 regulates X chromosome

590 silencing in the mammalian germ line. *Proc. Natl. Acad. Sci.* **114**, 12536–12541 (2017).

591 20. Burgoyne, P. S., Mahadevaiah, S. K. & Turner, J. M. A. The consequences of

592 asynapsis for mammalian meiosis. *Nat. Rev. Genet.* **10**, 207–216 (2009).

593 21. Lempiäinen, H. & Halazonetis, T. D. Emerging common themes in regulation of PIKKs

594 and PI3Ks. *EMBO J.* **28**, 3067–3073 (2009).

595 22. Zou, L. Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA
596 Complexes. *Science* **300**, 1542–1548 (2003).

597 23. Delacroix, S., Wagner, J. M., Kobayashi, M., Yamamoto, K. -i. & Karnitz, L. M. The
598 Rad9-Hus1-Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1. *Genes Dev.*
599 **21**, 1472–1477 (2007).

600 24. Eichinger, C. S. & Jentsch, S. 9-1-1: PCNA's specialized cousin. *Trends Biochem. Sci.*
601 **36**, 563–568 (2011).

602 25. Burtelow, M. A., Roos-Mattjus, P. M. K., Rauen, M., Babendure, J. R. & Karnitz, L. M.
603 Reconstitution and Molecular Analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA Damage
604 Responsive Checkpoint Complex. *J. Biol. Chem.* **276**, 25903–25909 (2001).

605 26. Takeishi, Y., Iwaya-Omi, R., Ohashi, E. & Tsurimoto, T. Intramolecular Binding of the
606 Rad9 C Terminus in the Checkpoint Clamp Rad9-Hus1-Rad1 Is Closely Linked with Its
607 DNA Binding. *J. Biol. Chem.* **290**, 19923–19932 (2015).

608 27. Roos-Mattjus, P. *et al.* Phosphorylation of Human Rad9 Is Required for Genotoxin-
609 activated Checkpoint Signaling. *J. Biol. Chem.* **278**, 24428–24437 (2003).

610 28. Thada, V. & Cortez, D. Common motifs in ETAA1 and TOPBP1 required for ATR
611 kinase activation. *J. Biol. Chem.* **294**, 8395–8402 (2019).

612 29. Feng, S. *et al.* Ewing Tumor-associated Antigen 1 Interacts with Replication Protein A
613 to Promote Restart of Stalled Replication Forks. *J. Biol. Chem.* **291**, 21956–21962 (2016).

614 30. Haahr, P. *et al.* Activation of the ATR kinase by the RPA-binding protein ETAA1. *Nat.*
615 *Cell Biol.* **18**, 1196–1207 (2016).

616 31. Lee, Y.-C., Zhou, Q., Chen, J. & Yuan, J. RPA-Binding Protein ETAA1 Is an ATR
617 Activator Involved in DNA Replication Stress Response. *Curr. Biol.* **26**, 3257–3268 (2016).

618 32. Bass, T. E. & Cortez, D. Quantitative phosphoproteomics reveals mitotic function of
619 the ATR activator ETAA1. *J. Cell Biol.* **218**, 1235–1249 (2019).

620 33. Bass, T. E. *et al.* ETAA1 acts at stalled replication forks to maintain genome integrity.
621 *Nat. Cell Biol.* **18**, 1185–1195 (2016).

622 34. Blackford, A. N. & Jackson, S. P. ATM, ATR, and DNA-PK: The Trinity at the Heart of
623 the DNA Damage Response. *Mol. Cell* **66**, 801–817 (2017).

624 35. Brown, E. J. Essential and dispensable roles of ATR in cell cycle arrest and genome
625 maintenance. *Genes Dev.* **17**, 615–628 (2003).

626 36. Lou, Z., Minter-Dykhouse, K., Wu, X. & Chen, J. MDC1 is coupled to activated CHK2
627 in mammalian DNA damage response pathways. *Nature* **421**, 957–961 (2003).

628 37. Lanz, M. C., Dibitetto, D. & Smolka, M. B. DNA damage kinase signaling: checkpoint
629 and repair at 30 years. *EMBO J.* **38**, (2019).

630 38. Brown, E. J. & Baltimore, D. ATR disruption leads to chromosomal fragmentation and
631 early embryonic lethality. *6*.

632 39. de Klein, A. *et al.* Targeted disruption of the cell-cycle checkpoint gene ATR leads to
633 early embryonic lethality in mice. *Curr. Biol.* **10**, 479–482 (2000).

634 40. Weiss, R. S., Matsuoka, S., Elledge, S. J. & Leder, P. Hus1 Acts Upstream of Chk1 in
635 a Mammalian DNA Damage Response Pathway. *Curr. Biol.* **12**, 73–77 (2002).

636 41. Hopkins, K. M. *et al.* Deletion of Mouse Rad9 Causes Abnormal Cellular Responses to
637 DNA Damage, Genomic Instability, and Embryonic Lethality. *Mol. Cell. Biol.* **24**, 7235–7248
638 (2004).

639 42. Pereira, C. *et al.* Multiple 911 complexes promote homolog synapsis, DSB repair and
640 ATR signaling during mammalian meiosis. *Unpublished*.

641 43. Ichijima, Y. *et al.* MDC1 directs chromosome-wide silencing of the sex chromosomes
642 in male germ cells. *Genes Dev.* **25**, 959–971 (2011).

643 44. Fernandez-Capetillo, O. *et al.* H2AX Is Required for Chromatin Remodeling and
644 Inactivation of Sex Chromosomes in Male Mouse Meiosis. *Dev. Cell* **4**, 497–508 (2003).

645 45. Mahadevaiah, S. K. *et al.* Extensive meiotic asynapsis in mice antagonises meiotic
646 silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome
647 inactivation. *J. Cell Biol.* **182**, 263–276 (2008).

648 46. Bellani, M. A. SPO11 is required for sex-body formation, and Spo11 heterozygosity
649 rescues the prophase arrest of Atm-/- spermatocytes. *J. Cell Sci.* **118**, 3233–3245 (2005).

650 47. Turner, J. M. A. *et al.* Silencing of unsynapsed meiotic chromosomes in the mouse.
651 *Nat. Genet.* **37**, 41–47 (2005).

652 48. Faca, V. M. *et al.* Maximized quantitative phosphoproteomics allows high confidence
653 dissection of the DNA damage signaling network. *Sci. Rep.* **10**, 18056 (2020).

654 49. Lou, Z. *et al.* MDC1 Maintains Genomic Stability by Participating in the Amplification of
655 ATM-Dependent DNA Damage Signals. *Mol. Cell* **21**, 187–200 (2006).

656 50. Goh, W. S. S. *et al.* piRNA-directed cleavage of meiotic transcripts regulates
657 spermatogenesis. *Genes Dev.* **29**, 1032–1044 (2015).

658 51. Marcon, E., Babak, T., Chua, G., Hughes, T. & Moens, P. B. miRNA and piRNA
659 localization in the male mammalian meiotic nucleus. *Chromosome Res.* **16**, 243–260
660 (2008).

661 52. Fu, Q. & Wang, P. J. Mammalian piRNAs: Biogenesis, function, and mysteries.
662 *Spermatogenesis* **4**, e27889 (2014).

663 53. Arafat, M. *et al.* Mutation in TDRD9 causes non-obstructive azoospermia in infertile
664 men. *J. Med. Genet.* **54**, 633–639 (2017).

665 54. Kim, S.-T., Lim, D.-S., Canman, C. E. & Kastan, M. B. Substrate Specificities and
666 Identification of Putative Substrates of ATM Kinase Family Members. *J. Biol. Chem.* **274**,
667 37538–37543 (1999).

668 55. O'Neill, T. *et al.* Utilization of Oriented Peptide Libraries to Identify Substrate Motifs
669 Selected by ATM. *J. Biol. Chem.* **275**, 22719–22727 (2000).

670 56. Cohen, S. *et al.* Senataxin resolves RNA:DNA hybrids forming at DNA double-strand
671 breaks to prevent translocations. *Nat. Commun.* **9**, 533 (2018).

672 57. Becherel, O. J. *et al.* Disruption of Spermatogenesis and Infertility in Ataxia with
673 Oculomotor Apraxia Type 2 (AOA2). *The Cerebellum* **18**, 448–456 (2019).

674 58. Becherel, O. J. *et al.* Senataxin Plays an Essential Role with DNA Damage Response
675 Proteins in Meiotic Recombination and Gene Silencing. *PLoS Genet.* **9**, e1003435 (2013).

676 59. Yeo, A. J. *et al.* Senataxin controls meiotic silencing through ATR activation and
677 chromatin remodeling. *Cell Discov.* **1**, 15025 (2015).

678 60. Skourtis-Stathaki, K., Proudfoot, N. J. & Gromak, N. Human Senataxin Resolves
679 RNA/DNA Hybrids Formed at Transcriptional Pause Sites to Promote Xrn2-Dependent
680 Termination. *Mol. Cell* **42**, 794–805 (2011).

681 61. Boudhraa, Z., Carmona, E., Provencher, D. & Mes-Masson, A.-M. Ran GTPase: A Key
682 Player in Tumor Progression and Metastasis. *Front. Cell Dev. Biol.* **8**, 345 (2020).

683 62. Tang, W. *et al.* Ran \square binding protein 3 is associated with human spermatogenesis and
684 male infertility. *Andrologia* **52**, (2020).

685 63. Pereira, C., Smolka, M. B., Weiss, R. S. & Brieño-Enríquez, M. A. ATR signaling in
686 mammalian meiosis: From upstream scaffolds to downstream signaling. *Environ. Mol.*
687 *Mutagen.* **61**, 752–766 (2020).

688 64. Faca, V. M. *et al.* Maximizing Quantitative Phosphoproteomics of Kinase Signaling
689 Expands the Mec1 and Tel1 Networks.
690 <http://biorxiv.org/lookup/doi/10.1101/2020.03.25.008367> (2020)
691 doi:10.1101/2020.03.25.008367.

692 65. Lanz, M. C. *et al.* Separable roles for Mec1/ATR in genome maintenance, DNA
693 replication, and checkpoint signaling. 15.

694 66. Bastos de Oliveira, F. M. *et al.* Phosphoproteomics Reveals Distinct Modes of
695 Mec1/ATR Signaling during DNA Replication. *Mol. Cell* **57**, 1124–1132 (2015).

696 67. Wagner, S. A. *et al.* ATR inhibition rewires cellular signaling networks induced by
697 replication stress. *PROTEOMICS* **16**, 402–416 (2016).

698 68. Schlam-Babayov, S. *et al.* Phosphoproteomics reveals novel modes of function and
699 inter-relationships among PIKKs in response to genotoxic stress. *EMBO J.* (2020)
700 doi:10.15252/embj.2020104400.

701 69. Matsuoka, S. *et al.* ATM and ATR Substrate Analysis Reveals Extensive Protein
702 Networks Responsive to DNA Damage. *Science* **316**, 1160–1166 (2007).

703 70. Guo, X., Zhang, P., Huo, R., Zhou, Z. & Sha, J. Analysis of the human testis proteome
704 by mass spectrometry and bioinformatics. *PROTEOMICS - Clin. Appl.* **2**, 1651–1657
705 (2008).

706 71. MacLeod, G., Taylor, P., Mastropaoletti, L. & Varmuza, S. Comparative
707 phosphoproteomic analysis of the mouse testis reveals changes in phosphopeptide
708 abundance in response to Ppp1cc deletion. *EuPA Open Proteomics* **2**, 1–16 (2014).

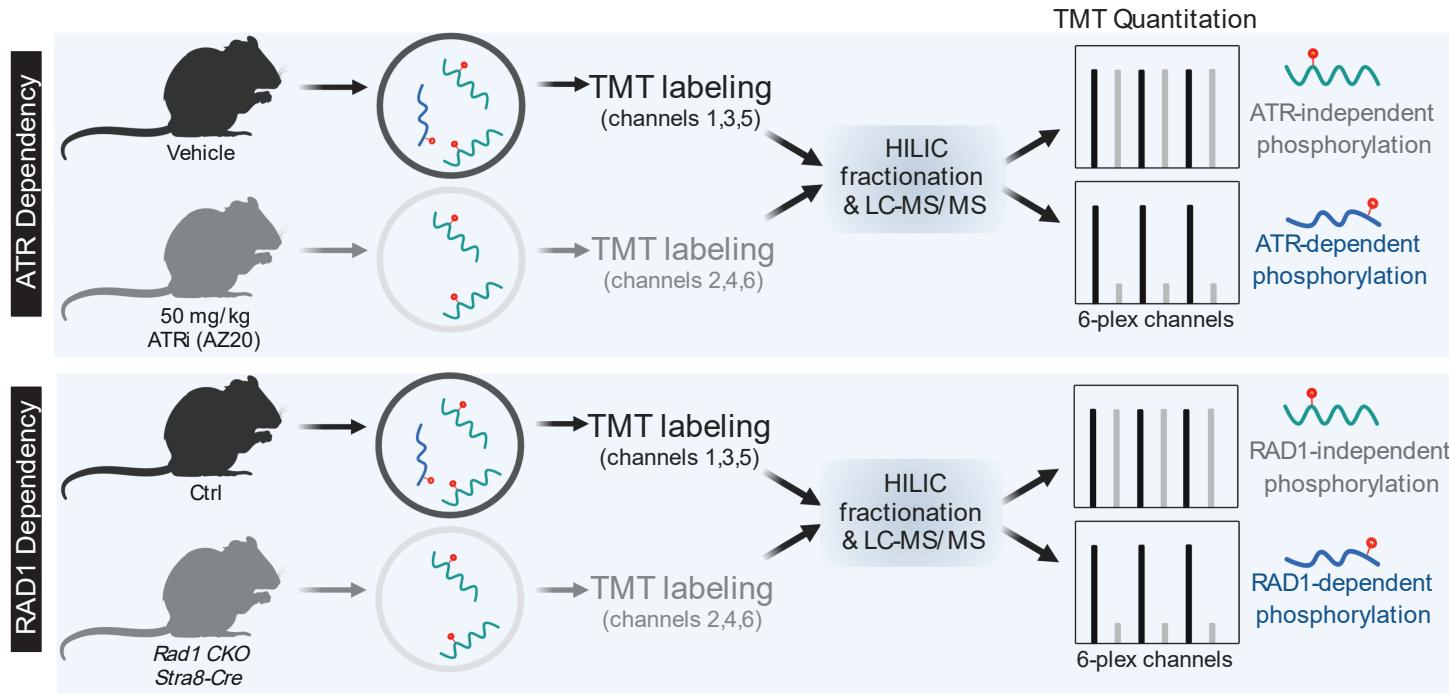
709 72. Castillo, J. *et al.* Human Testis Phosphoproteome Reveals Kinases as Potential
710 Targets in Spermatogenesis and Testicular Cancer. *Mol. Cell. Proteomics* **18**, S132–S144
711 (2019).

712 73. Qi, L. *et al.* Systematic Analysis of the Phosphoproteome and Kinase-substrate
713 Networks in the Mouse Testis. *Mol. Cell. Proteomics* **13**, 3626–3638 (2014).

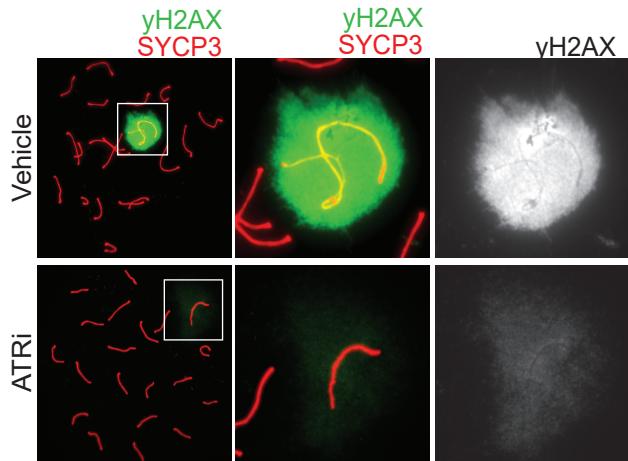
714 74. Li, Y. *et al.* The Protein Phosphorylation Landscape of Mouse Spermatids during
715 Spermiogenesis. *PROTEOMICS* **19**, 1900055 (2019).

716 75. Burger, K., Ketley, R. F. & Gullerova, M. Beyond the Trinity of ATM, ATR, and DNA-
717 PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA
718 Metabolism. *Front. Mol. Biosci.* **6**, 61 (2019).

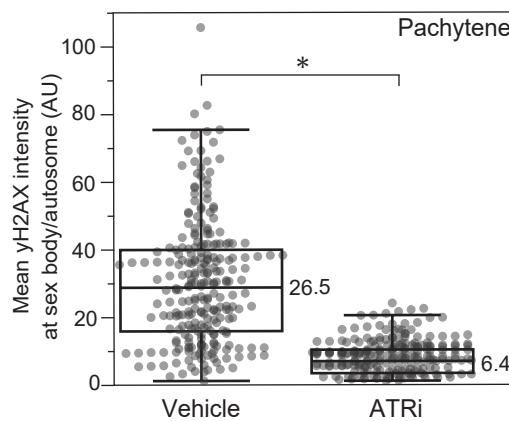
719 76. Sorensen, C. S. & Syljuasen, R. G. Safeguarding genome integrity: the checkpoint
720 kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication.
721 *Nucleic Acids Res.* **40**, 477–486 (2012).


722 77. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized
723 p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat. Biotechnol.*
724 **26**, 6 (2008).

725 78. Holloway, J. K., Sun, X., Yokoo, R., Villeneuve, A. M. & Cohen, P. E. Mammalian
726 CNTD1 is critical for meiotic crossover maturation and deselection of excess precrossover
727 sites. *J. Cell Biol.* **205**, 633–641 (2014).

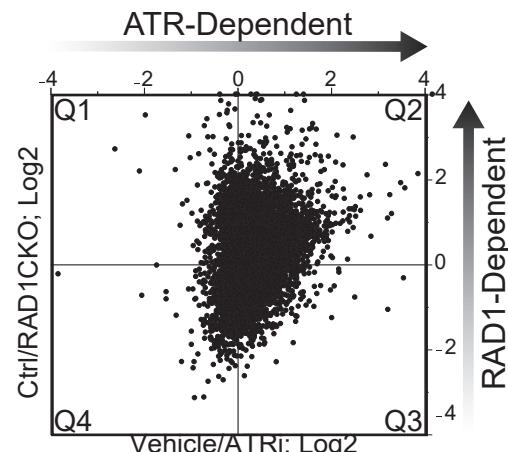

728 79. Kolas, N. K. *et al.* Localization of MMR proteins on meiotic chromosomes in mice
729 indicates distinct functions during prophase I. *J. Cell Biol.* **171**, 447–458 (2005).

730


A

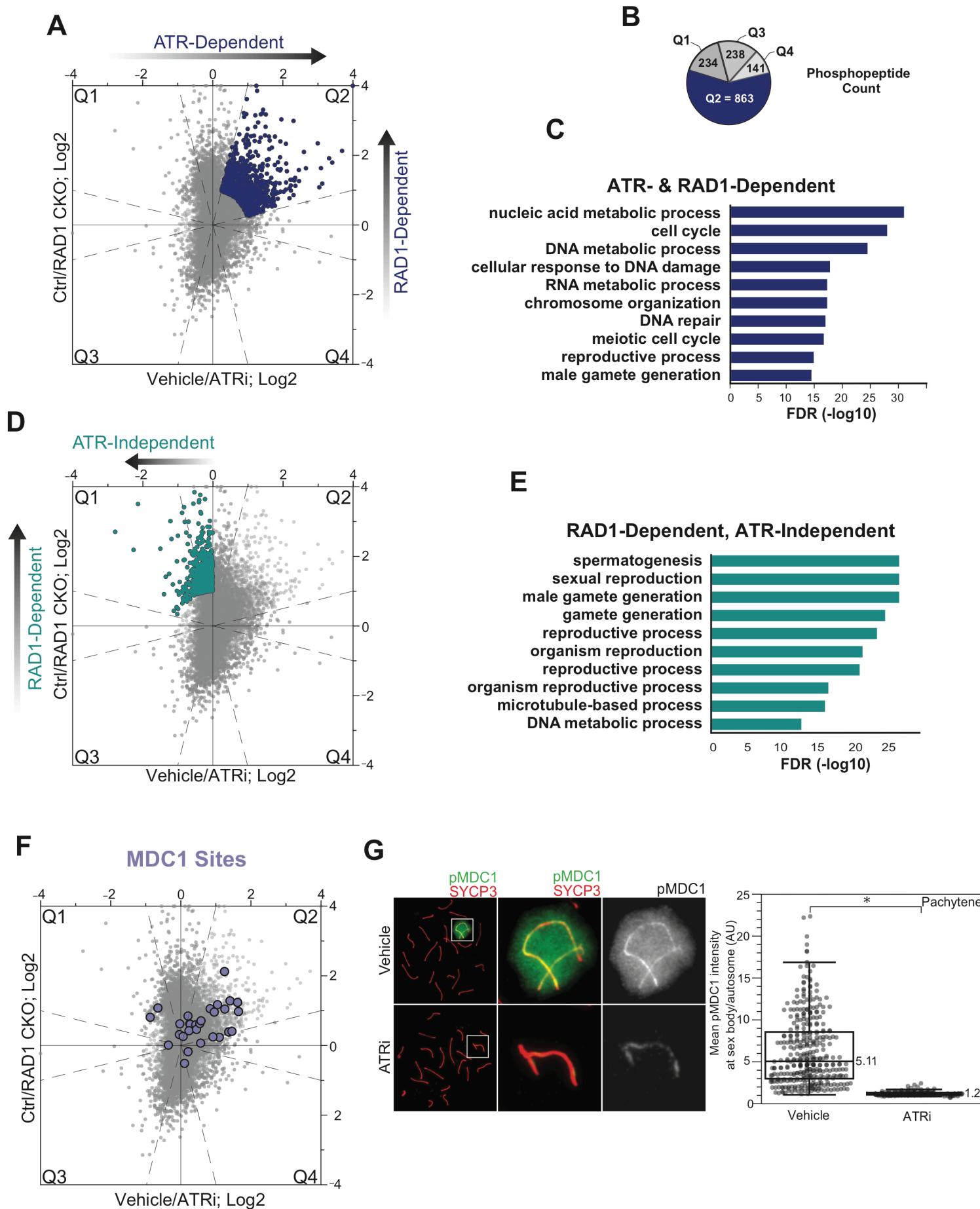
B

C



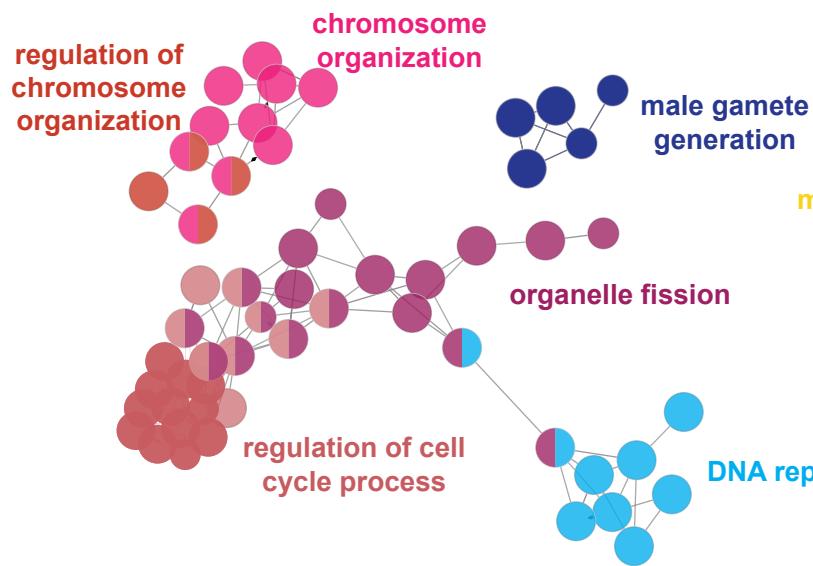
D

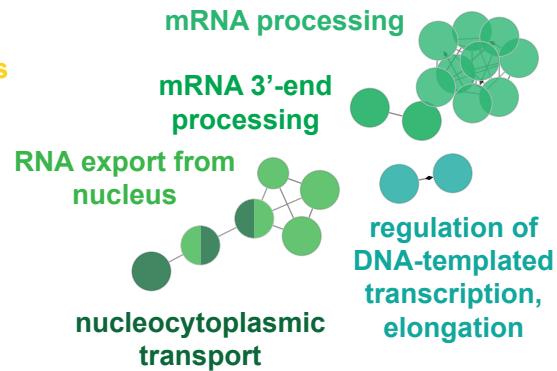
	Phosphorylation sites identified
EXP1: ATRi vs vehicle (4 replicates)	23,329
EXP2: RAD1 CKO vs control (3 replicates)	22,406
Total identified	37,180
Found in both EXP1 and EXP2 and filtered*	12,220


*detected in 2 or more replicates; phospho-site localization score >0.85

E

Figure 1. Approach for identifying ATR-dependent and RAD1-dependent phosphorylation events in mouse testes.


A) Whole, decapsulated testes were collected from vehicle and AZ20-treated mice (top) or *Rad1 CKO* and control litter mates (bottom) and subjected to quantitative phosphoproteomic analysis to identify ATR-dependent and RAD1-dependent phosphorylation events (see methods for details). B) Immunofluorescence staining of meiotic spreads from ATRi or vehicle treated mice collected 4 hours after 50 mg/kg treatment with AZ20. C) Quantification of yH2AX intensity (4 vehicle mice, n=246 cells; 4 ATRi mice, n=309 cells p=0.019 measured by student's t-test) (see methods for more details). D) Description of replicates and filters utilized in generation of the final phosphoproteomic dataset. E) Scatter plot of the final consolidated phosphoproteomic dataset.

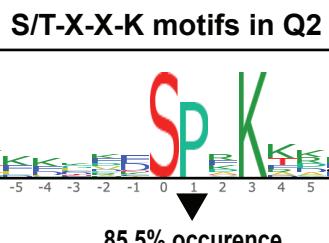

Figure 2. Functional classification analysis of identified signaling events.

A) Scatter plot indicating designated set of ATR and RAD1-dependent phosphopeptides (quadrant 2; Q2). Dashed lines indicate filtering thresholds applied to Q2. B) Phosphopeptide count per quadrant. C) Curated gene ontology list of proteins with ATR and RAD1-dependent phosphorylation identified in Q2. D) RAD1-dependent and ATR-independent phosphopeptides in Q1 (no thresholds applied). E) Gene ontology of proteins with RAD1-dependent, ATR-independent phosphorylation. F) Scatter plot highlighting the detected MDC1 phosphopeptides. G) Immunofluorescence of meiotic spreads from mice treated with vehicle or 50 mg/kg AZ20 for four hours and stained for pMDC1 (green) and SYCP3 (red) with quantification of pachytene-staged cells (4 vehicle mice, n=360 cells; 4 ATRi mice, n=282 cells p=0.0268 measured by student's t-test) (see methods for details)

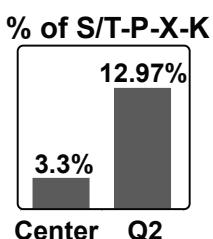
A



nucleic acid metabolic process

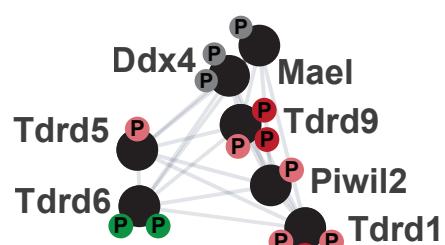

B

Q2 vs Center



	P-6	P-5	P-4	P-3	P-2	P-1	P	P1	P2	P3	P4	P5	P6
A	-0.30	0.08	-0.30	0.09	-0.30	-0.31	NaN	-0.01	-0.11	-0.24	-0.23	0.06	-0.10
C	-0.51	0.95	0.12	0.59	-0.33	0.15	NaN	-0.84	-1.12	-1.45	-0.23	-0.44	0.69
D	0.17	0.31	0.71	0.13	0.70	0.70	NaN	0.46	0.37	-0.18	0.37	0.04	0.11
E	0.63	0.57	0.35	0.43	0.83	0.71	NaN	0.09	0.45	0.43	0.41	0.37	0.36
F	-0.75	-0.41	0.00	0.62	0.14	-0.71	NaN	-1.78	0.06	-0.35	-0.51	-0.46	-0.06
G	-0.30	-0.26	0.08	-0.33	-0.02	-0.46	NaN	-0.23	-0.45	0.12	-0.00	0.05	-0.11
H	0.04	-0.68	0.16	0.35	0.47	0.09	NaN	-0.16	-0.32	0.02	-0.32	-1.21	0.13
I	-0.15	-0.58	0.00	-0.27	-0.39	0.31	NaN	-1.57	-0.94	-1.78	-0.53	-0.31	-0.15
K	0.68	0.64	0.62	0.55	0.68	0.98	NaN	0.31	0.86	1.67	1.36	1.04	0.63
L	-0.38	-0.55	-0.26	0.28	-0.22	-0.33	NaN	-1.61	-0.03	-1.05	-0.84	-0.28	-0.57
M	0.10	0.57	-0.07	0.28	-0.30	-0.61	NaN	-1.95	1.14	-0.85	-0.82	-0.28	0.17
N	0.19	-0.02	0.04	-0.12	0.24	-0.03	NaN	-0.06	0.11	-0.34	-0.44	0.05	0.12
P	-0.26	-0.56	-0.29	-0.57	-0.47	-1.22	NaN	0.15	-0.31	-0.60	-0.54	-0.72	-0.73
Q	-0.11	-0.20	-0.57	-0.32	-0.23	-0.67	NaN	0.85	-0.07	-0.43	-0.23	-0.78	0.04
R	-0.01	0.20	0.09	-0.43	-0.49	-0.03	NaN	-0.25	0.22	0.12	0.55	0.39	0.23
S	-0.24	-0.06	-0.23	0.05	-0.05	0.41	-0.05	0.20	-0.25	0.04	-0.48	-0.12	-0.16
T	-0.13	0.02	-0.36	-0.17	-0.05	0.11	0.40	-0.72	-0.57	-0.63	0.55	-0.47	-0.34
V	-0.05	-0.55	-0.30	0.27	0.09	-0.41	NaN	-0.76	-0.09	-0.18	-0.31	-0.24	-0.18
W	0.46	0.34	-1.12	-0.08	-0.67	-0.28	NaN	-0.67	-0.42	0.17	-0.97	0.51	0.58
Y	0.35	-0.14	-0.57	0.44	0.31	0.13	-1.08	0.19	0.36	-0.37	-0.15	-0.03	-0.53

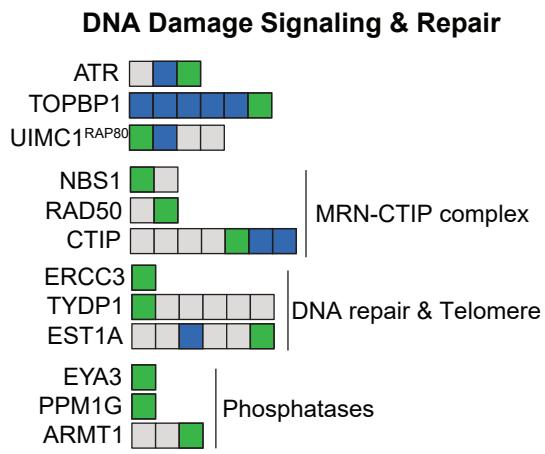
C



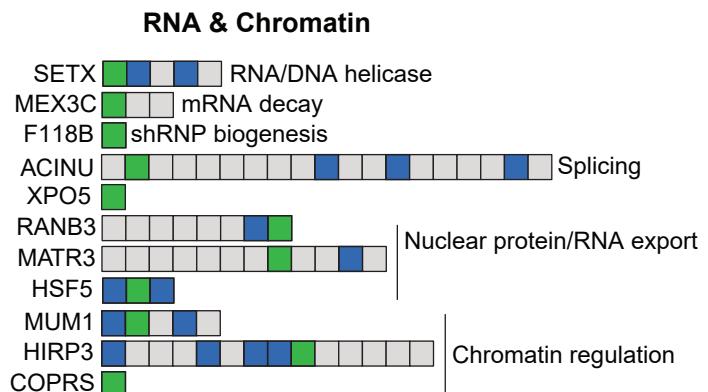
D

E

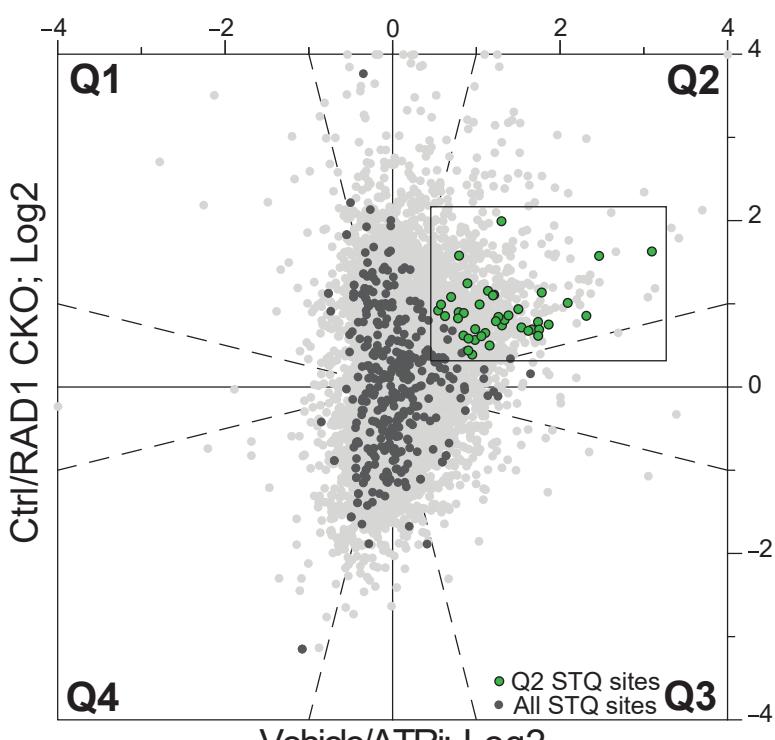
piRNA network

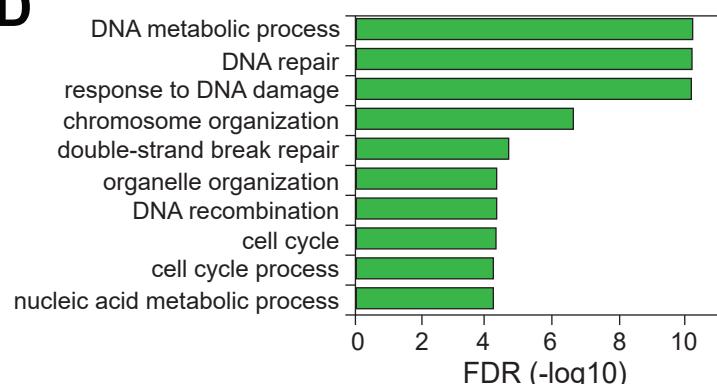

ATR- & RAD1-dependent (Q2)

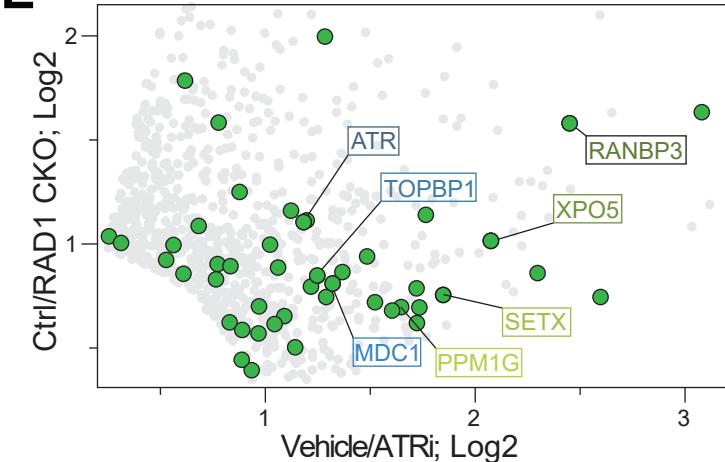
- P → phosS/T-P
- P → phosS/T-P-X-K
- P → phosS/T-D/E
- P → other motifs


Figure 3. ClueGO and phospho-motif analysis of ATR and RAD1-dependent events in Q2.

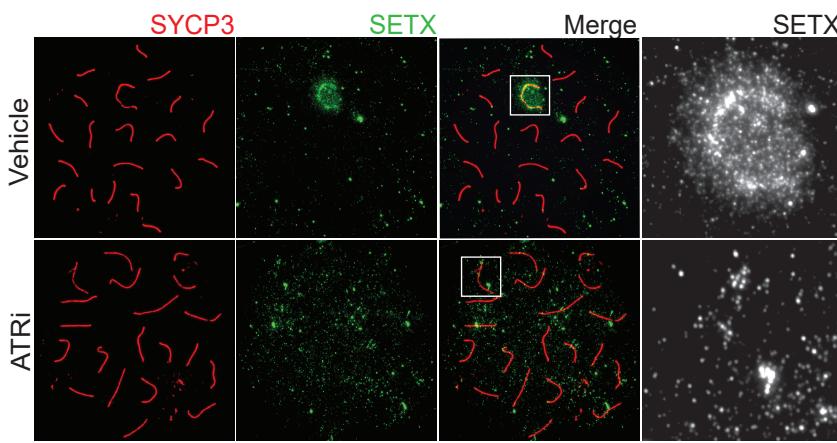
A) Functional GO network generated by ClueGO analysis of RAD1 and ATR-dependent phosphopeptides in Q2. GO functional groups are separated by color and colored text where nodes with multiple colors belong to multiple GO functional groups. Each node represents a GO term with a P value of <0.05 with size of the node corresponding to the significance of the enrichment. B) Unbiased analysis of amino acid prevalence surrounding identified phosphorylation sites. Prevalence data for Q2 phosphopeptides were compared to prevalence data for all non-regulated phosphopeptides (“Center” of scatter plot in Figure 2) to yield relative depletion or enrichment indexes. Negative values indicate a specific amino acid is less prevalent in phosphopeptides in Q2, and positive values indicate a specific amino acid is more prevalent in phosphopeptides in Q2. “P” indicates position with respect to identified phosphorylation site. RAD1- and ATR-dependent signaling (Q2) is enriched in phosphorylation sites within an S/T-X-X-K motif. C) Analysis of amino acid prevalence in Q2 phosphopeptides having the S/T-X-X-K motif. Larger letters indicate higher prevalence. Image indicates results for serine phosphorylated phosphopeptides. Similar result is obtained for threonine phosphorylated phosphopeptides. Overall occurrence of proline at +1 position for both serine and threonine phosphorylated phosphopeptides in Q2 at S/T-X-X-K motif is 85.5%. D) Bar graph of percentage of S/T-P-X-K motif in the Center (non-regulated) and Q2 regions. E) Schematic of the network of piRNA proteins having ATR- and RAD1-dependent phosphorylation events (Q2). Color represents distinct phospho-motifs.

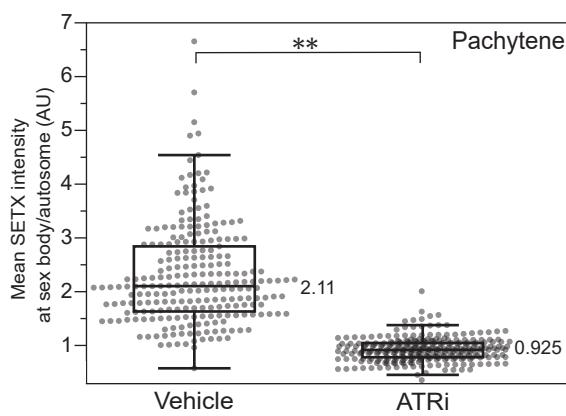

A


B

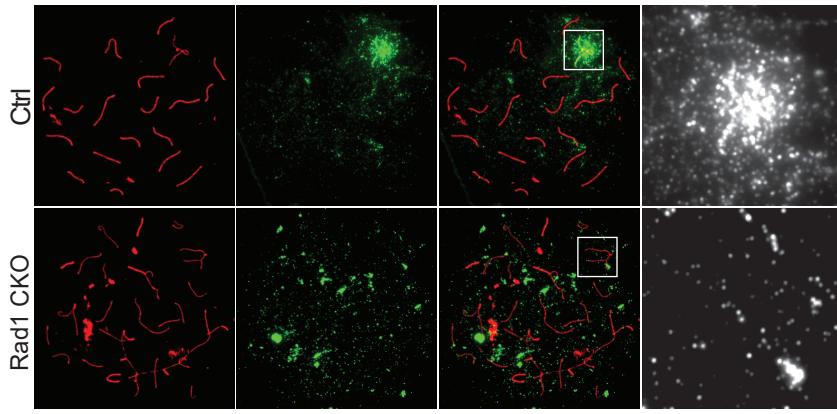

C

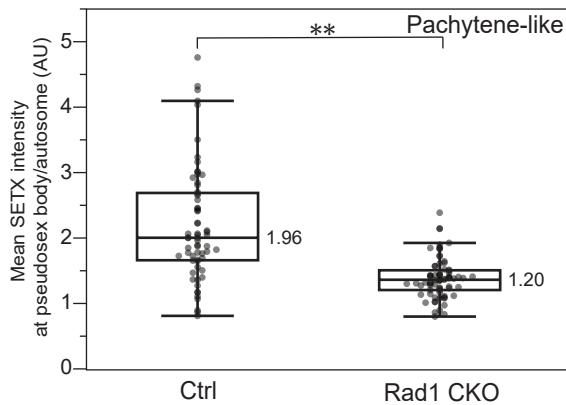
D

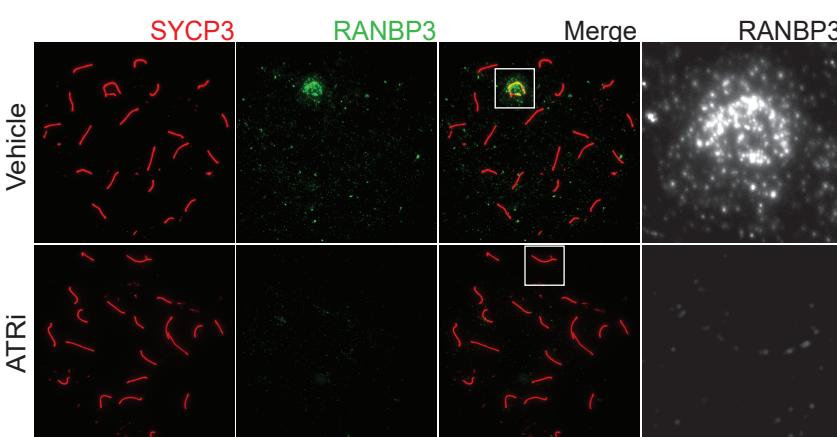

E

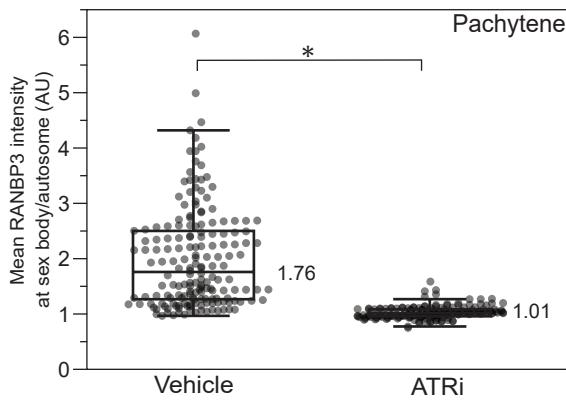

Figure 4. RAD1 and ATR-dependent phosphorylation at the S/T-Q motif includes proteins involved in DNA and RNA processes.

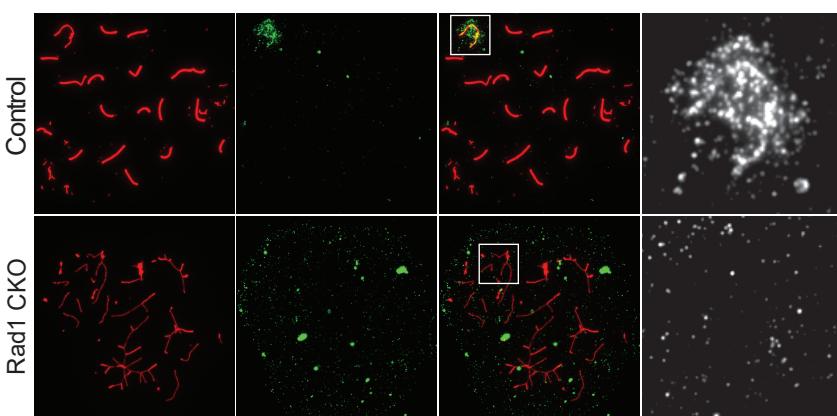
A) Selected set of proteins involved in DNA damage signaling and DNA repair found to have RAD1- and ATR-dependent phosphorylation at the S/T-Q motif. Identified phosphorylation sites are ordered sequentially from the n-terminus to the c-terminus of each protein. B) Selected set of proteins involved in chromatin modification and RNA metabolic processes found to have RAD1- and ATR-dependent phosphorylation at the S/T-Q motif. Identified phosphorylation sites are ordered sequentially from the n-terminus to the c-terminus of each protein. C) Scatter plot highlighting all S/T-Q phosphorylation outside Q2 (dark grey) and S/T-Q phosphorylation inside Q2 (green). D) Gene ontology of proteins containing S/T-Q phosphorylation within Q2. E) A zoomed region of the scatter plot in 4C highlighting Q2 S/T-Q phosphopeptides in proteins involved in DNA repair and RNA metabolism.

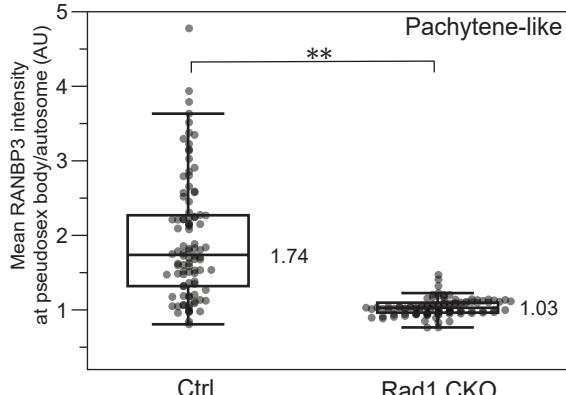

A


B

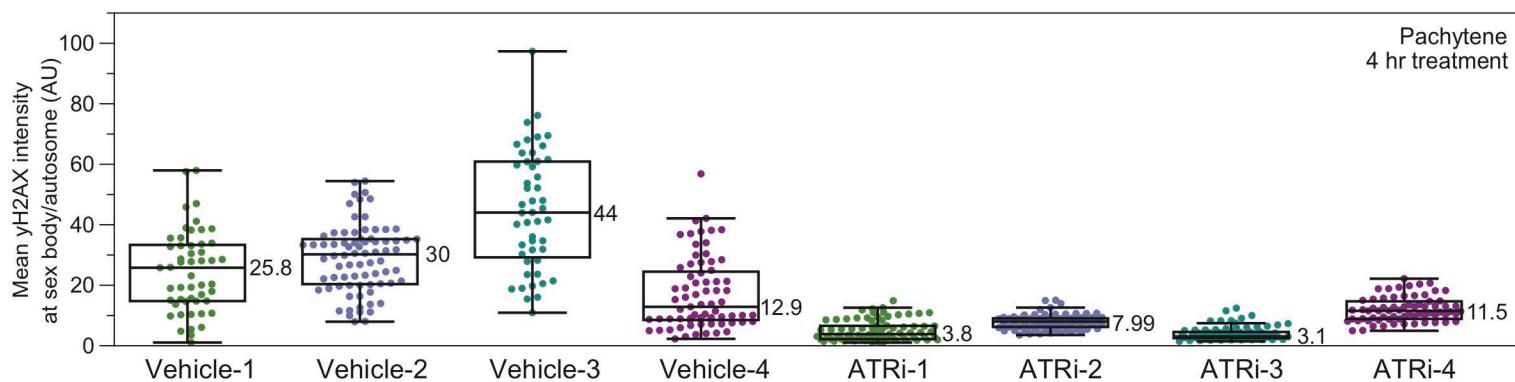

C

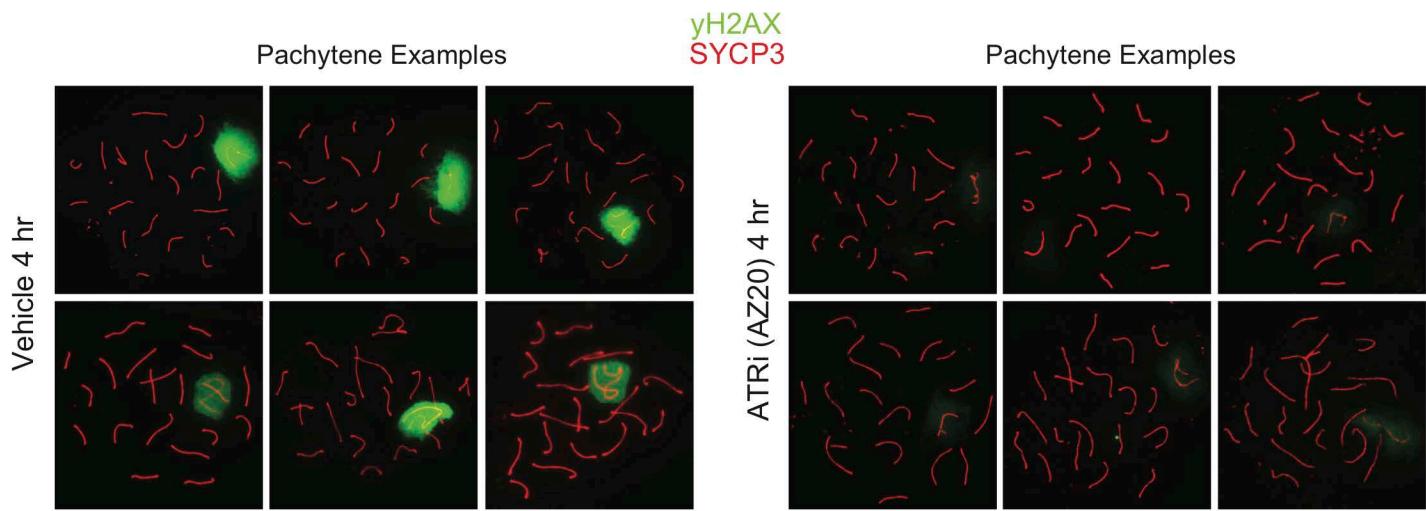

D


E

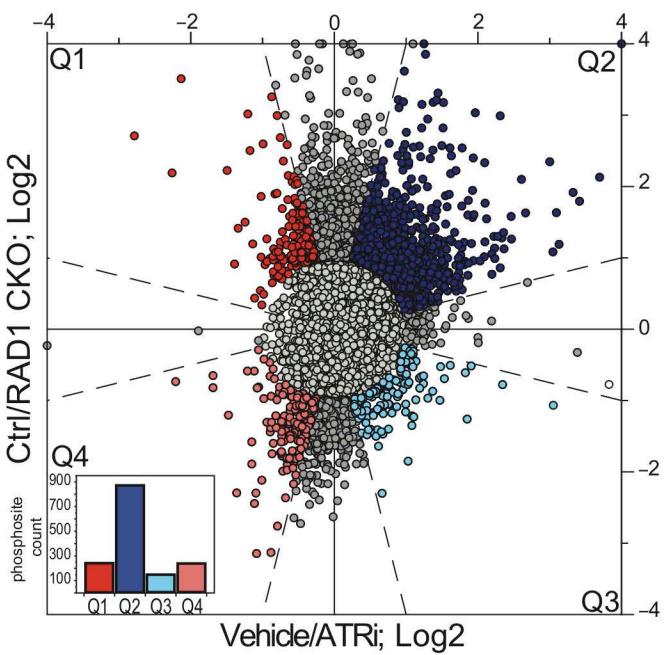

F

G

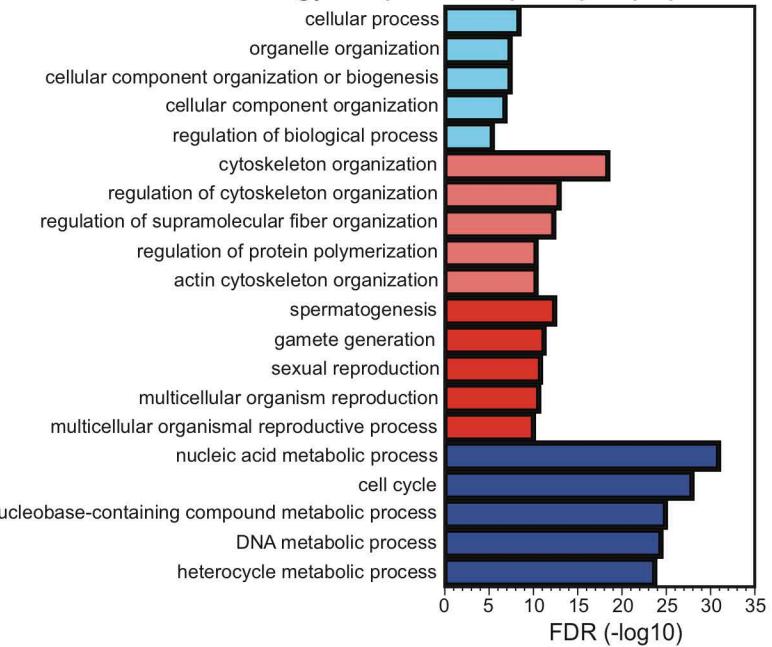

H


Figure 5. SETX and RANBP3 localization to the sex body is lost upon ATR inhibition.

A) Immunofluorescence of meiotic chromosome spreads with SETX (green) and SYCP3 (red) from mice collected 4 hours after 50 mg/kg treatment with AZ20 or vehicle. B) Quantification of pachytene spreads from 5A (4 vehicle mice; n=237 cells; 4 ATRi mice; n=283 cells p=0.00435 measured by student's t-test). C) Immunofluorescence of meiotic chromosome spreads with SETX (green) and SYCP3 (red) from *Rad1* CKO and control spreads. D) Quantification of pachytene or pachytene-like spreads from 5C (4 control mice, n=64 cells; 4 *RAD1* CKO mice, n=72 cells p=0.00286 measured by student's t-test). E) Immunofluorescence of meiotic chromosome spreads with RANBP3 (green) and SYCP3 (red) from mice collected 4 hours after 50 mg/kg treatment with AZ20 or vehicle. F) Quantification of pachytene spreads from 5E (3 vehicle mice, n=174 cells; 3 ATRi mice, n=167 cells p=0.048 measured by student's t-test). G) Immunofluorescence of meiotic chromosome spreads with RANBP3 (green) and SYCP3 (red) from *Rad1* CKO and control spreads. H) Quantification of pachytene or pachytene-like spreads from 5G (4 control mice, n=96 cells; 4 CKO mice, n=99 cells p=0.0039 measured by student's t-test).


A

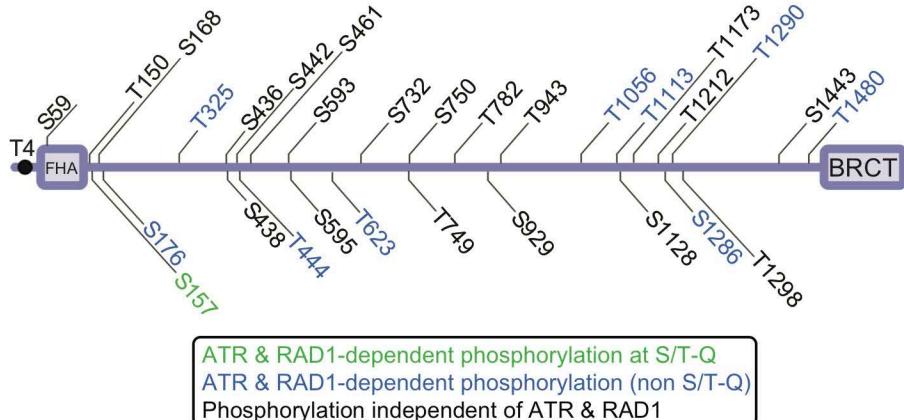
B



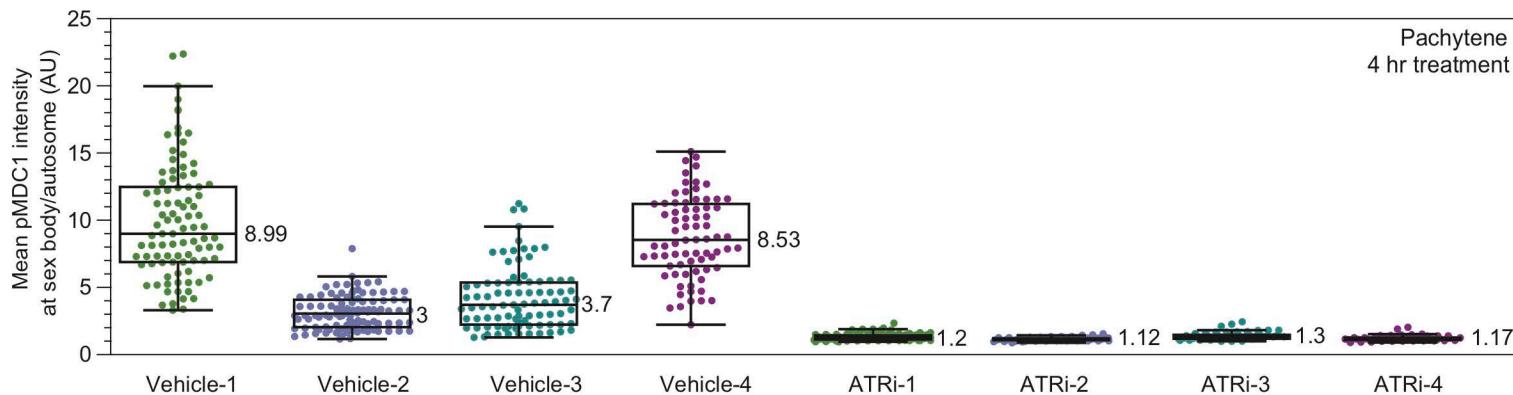
C

D

Gene ontology of quadrant phosphopeptides



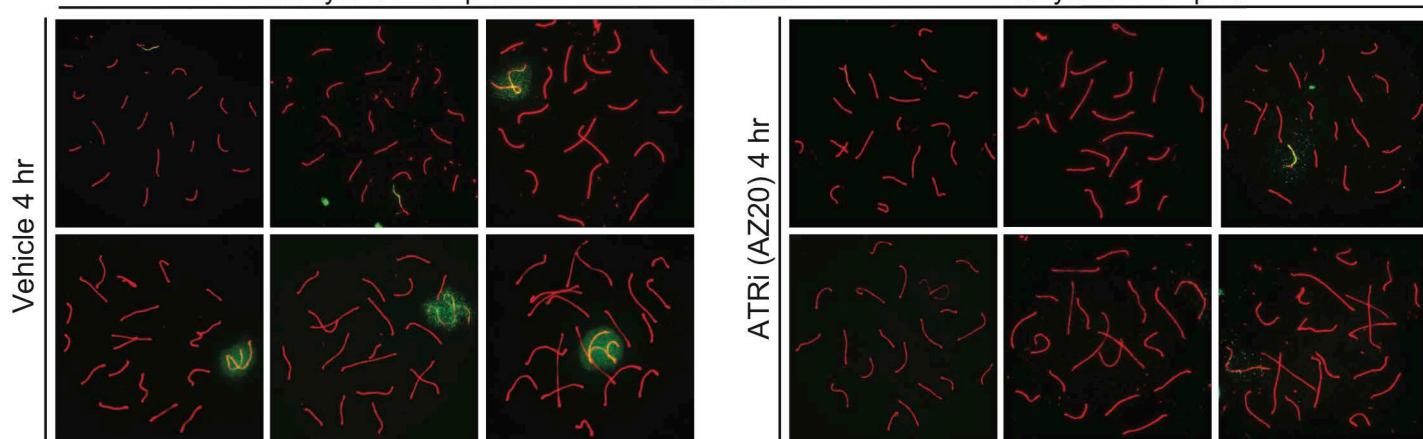
Supplemental Figure 1. yH2AX is reduced at the sex body after 4 hours of 50 mg/kg treatment with AZ20 and gene ontology of quadrants.


a) quantification mean intensity of the ratio of yH2AX signal as depicted in Figure 1C separated by individual animal replicates. yH2AX intensity is measured as described in methods. Datapoints indicate the ratio of signal intensity across sex body to average of intensity across two autosomes for an individual pachytene-stage meiotic spread. b) example of pachytene spreads showing variation in signal intensity and pattern from quantification in S1A with yH2AX (green) and SYCP3 (red). c) scatterplot identifying peptides in each quadrant with phosphopeptide count (bar graph, lower left) and corresponding top five STRING analysis categories in d) bar graph.

A

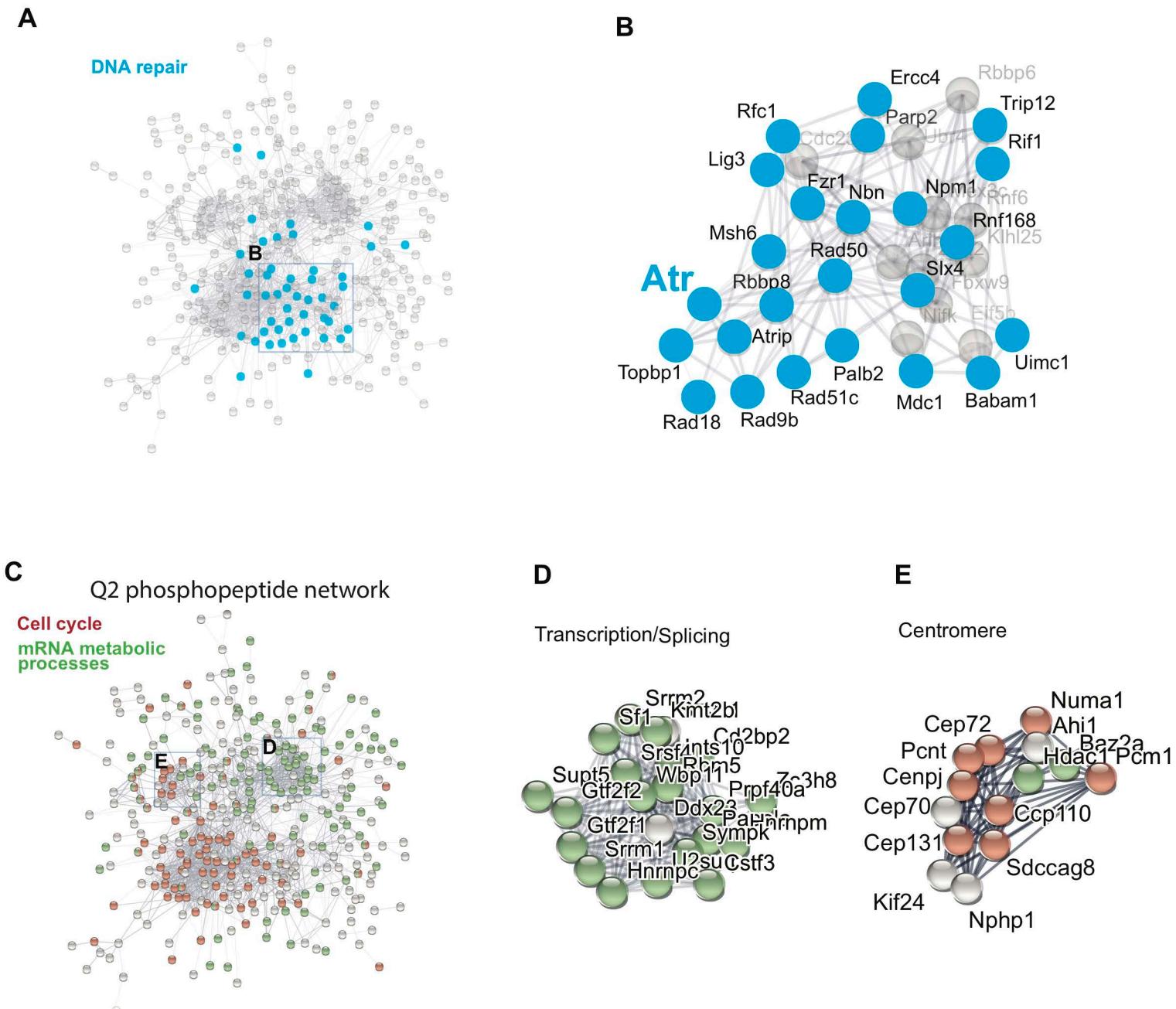
MDC1 phosphorylation sites identified

B



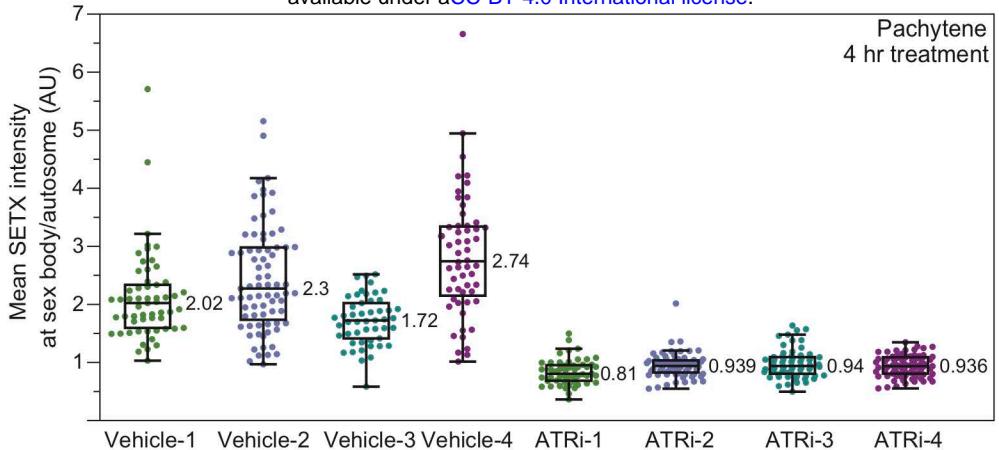
C

Pachytene Examples


**pMDC1
SYCP3**

Pachytene Examples

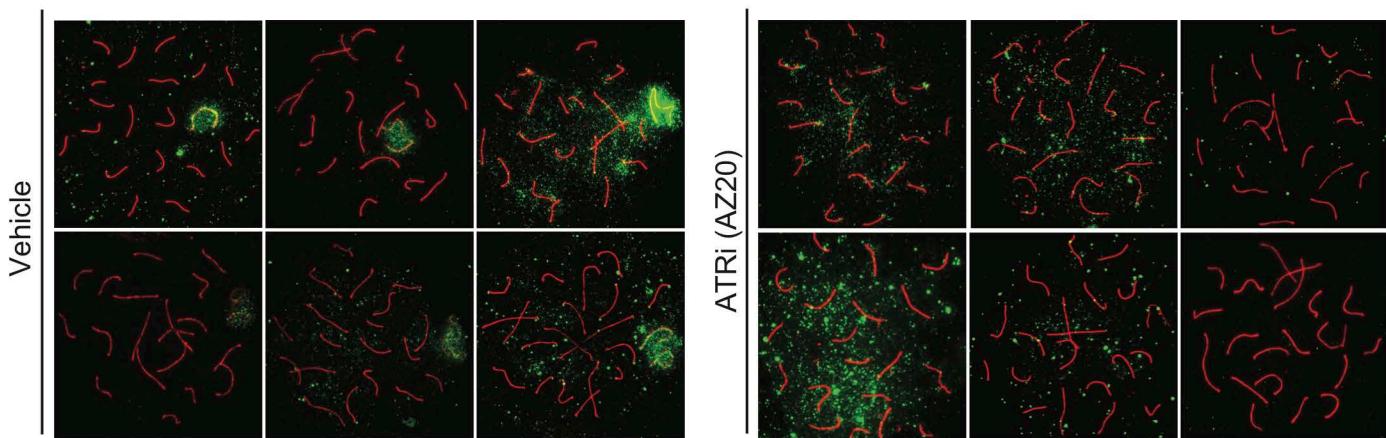
Supplemental Figure 2. pMDC1 signal is lost at the sex body upon ATR inhibition.


a) Schematic of detected phosphorylation sites in MDC1 b) quantified pMDC1 intensity from 2G separated by individual mice after treatment with vehicle or ATR inhibitor for 4 hours as indicated. Quantification was done as described in methods. c) example meiotic spreads depicting variation in signal intensity and pattern for pMDC1 (green) and SYCP3 (red) for ATRi and vehicle- treated mice.

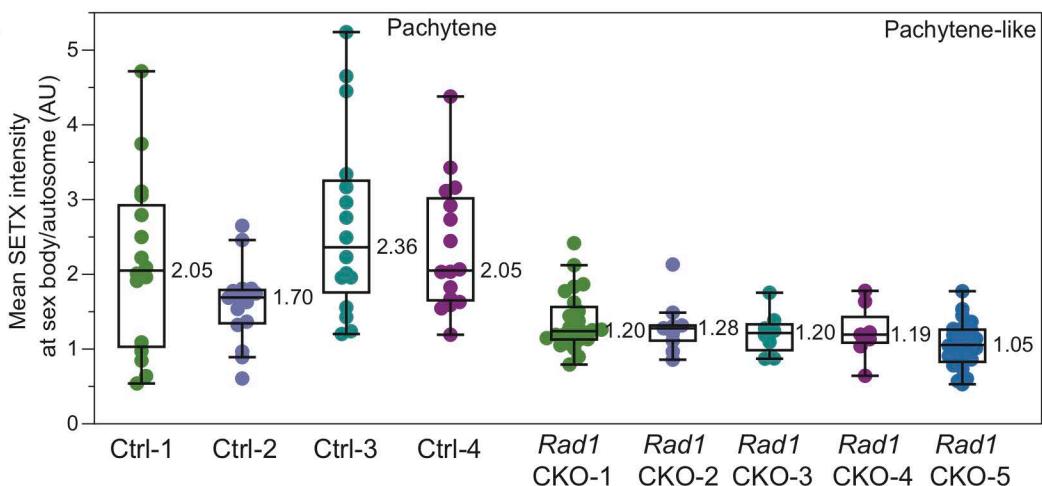
Supplemental Figure 3. Gene ontology of protein networks.

- a) STRING analysis of Q2 proteins with network of highlighted proteins in the GO DNA repair category
- b) detail of DNA repair protein network highlighting ATR-associated node.
- c) STRING network of cell cycle and mRNA metabolic proteins.
- d) detail of transcription/splicing
- e) centromere proteins

A



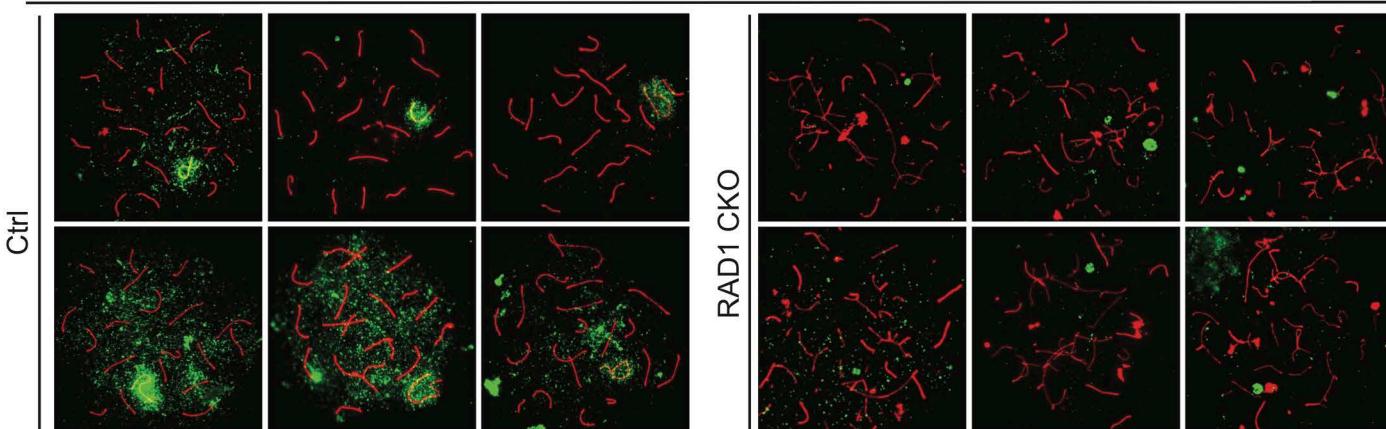
B


Pachytene Examples

SETX SYCP3

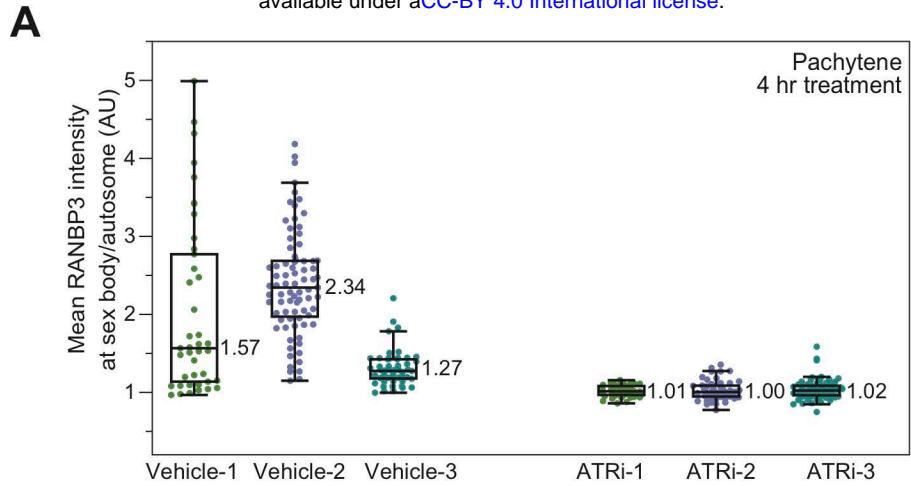
Pachytene Examples

C

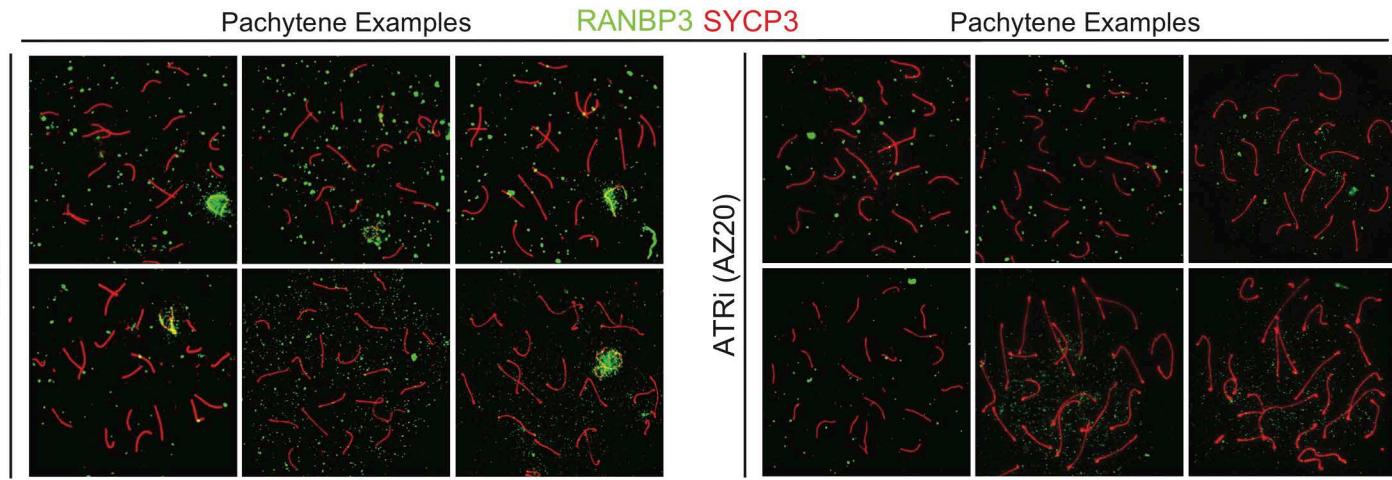


D

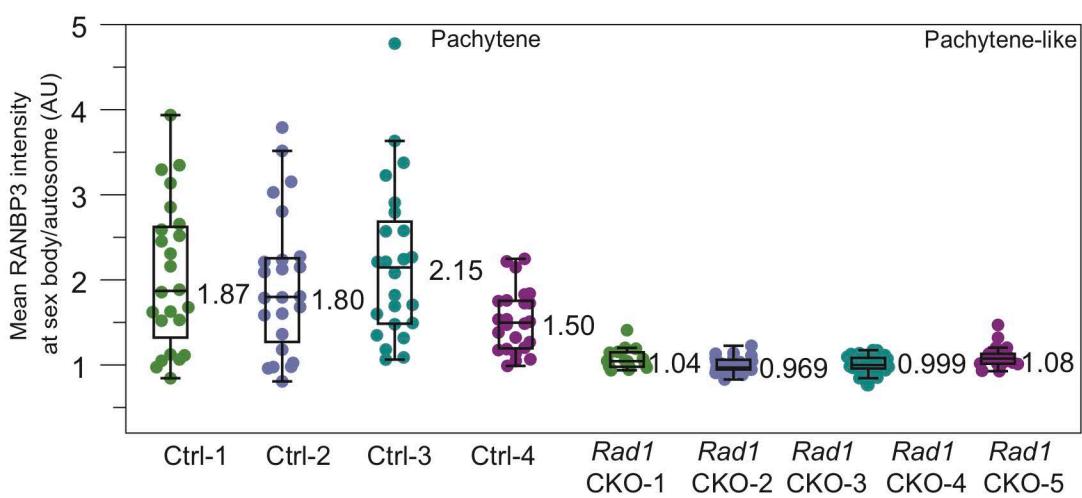
Pachytene Examples

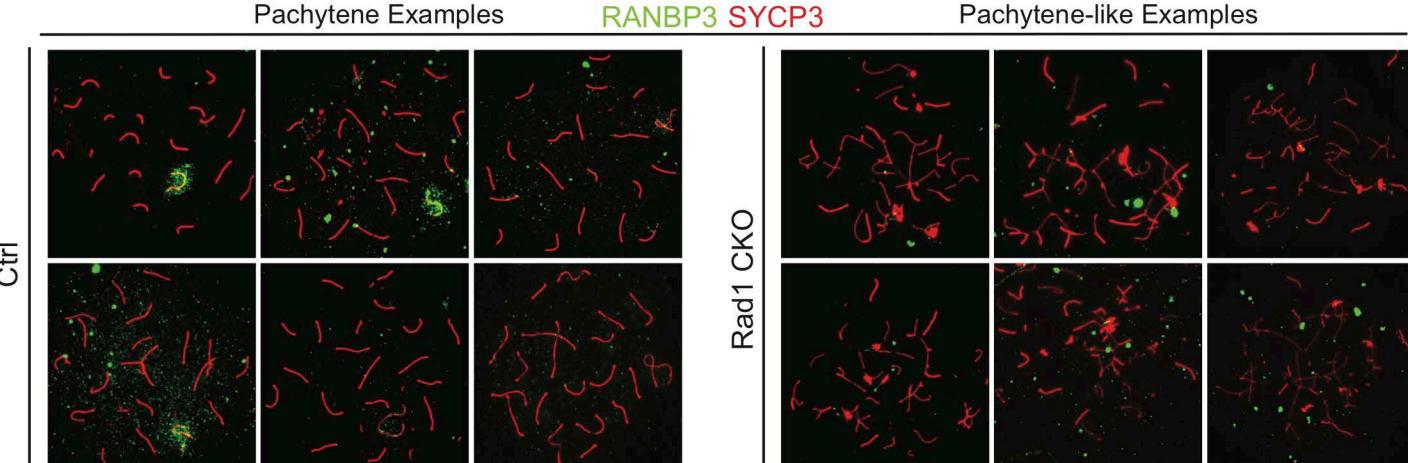

SETX SYCP3

Pachytene-like Examples

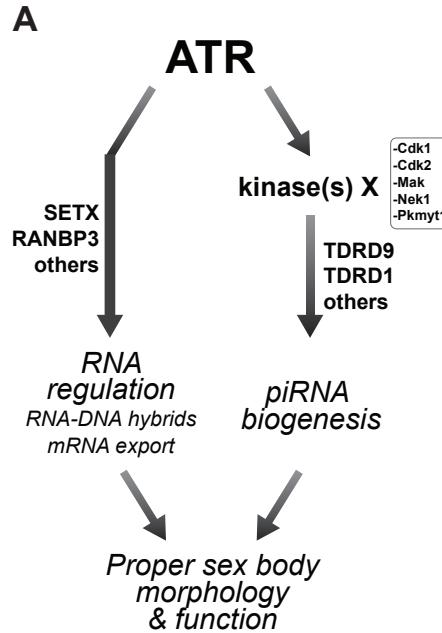


Supplemental Figure 4. SETX signal is lost at the sex body upon ATR inhibition.


a) quantification of SETX signal at the sex body separated by individual mice with c) example images from vehicle or ATR inhibitor treated mice collected 4 hours after 50 mg/kg treatment with AZ20 or vehicle. c) quantification of SETX at sex body or sex chromosomes of control or *Rad1* CKO mice, respectively. d) example spreads of SETX (green) and SYCP3 (red) staining. *Rad1* CKO ‘pachytene-like’ stage was defined as having 3 or more fully synapsed autosomes. See methods for more details on quantification.


B

C



D

Supplemental Figure 5. RANBP3 signal is lost at the sex body upon ATR inhibition.

a) Quantification RANBP3 intensity from meiotic spreads separated by animal with b) example spreads from mice collected 4 hours after 50 mg/kg treatment with AZ20 or vehicle. c) quantification of RANBP3 at the sex body or sex chromosomes body of control or *Rad1* CKO meiotic spreads, respectively with d) examples images. See methods for more details on quantification.

Supplemental Figure 6. Speculative model for ATR-mediated control of RNA processes during prophase I of mammalian meiosis.

Based on the model, ATR directly phosphorylates proteins involved in RNA metabolism, such as SETX and RANBP3, to promote their robust localization to the sex body. In this scenario, sex body-localized SETX and RANBP3 would contribute to ATR-mediated silencing by favoring the disengagement of mRNA from XY chromatin and mRNA export from the sex body. ATR also regulates the activity of additional kinases that in turn phosphorylate piRNA biogenesis-related proteins that may also contribute to sex body morphology and function. Collectively, ATR signaling promotes a range of events contributing to sex body formation.