

1 **A reference-quality NLRome for the hexaploid sweetpotato and diploid wild**
2 **relatives**

3

4 C. H. Parada-Rojas¹, K. L. Childs², M. Fernández de Soto³, A. Salcedo¹, K. Pecota⁴, G. C.
5 Yencho⁴, C. Almeyda⁵, M. Kitavi⁶, C. R. Buell⁶, G. C. Conant⁷, D. Baltzgar³, and L. M.
6 Quesada-Ocampo¹

7

8 ¹Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North
9 Carolina State University, Raleigh, NC 27695, USA.

10 ²Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.

11 ³Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC, 27695

12 ⁴Department of Horticulture, North Carolina State University, Raleigh, NC 27695, USA.

13 ⁵Micropropagation and Repository Unit, NC State University, Raleigh, NC 27695, USA.

14 ⁶Department of Crop and Soil Science, University of Georgia, Athens, GA 30602

15 ⁷Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695

16 ***Corresponding author:** L. M. Quesada-Ocampo, lmquesad@ncsu.edu

17

18 **Key words:** *Ipomoea batatas* (sweetpotato), NLRs, RenSeq, wild relatives, hexaploid

19 **Funding:** United States Department of Agriculture (USDA), National Institute of Food and
20 Agriculture (NIFA) Award 2168-207-2023550, the Bill and Melinda Gates Foundation (INV-
21 002971), the Foundation for Food and Agriculture Research (FFAR) Fellowship Program, the
22 NC Sweetpotato Commission, and the NC State Hatch Project NC02890.

23 **ABSTRACT**

24 Breeding for sweetpotato (*Ipomea batatas*) resistance requires accelerating our
25 understanding genomic of sources of resistance. Nucleotide-binding domain leucine-rich repeat
26 receptors (NLRs) proteins represent a key component of the plant immune system that mediate
27 plant immune responses. We cataloged the NLR diversity in 32 hexaploid sweetpotato genotypes
28 and three diploid wild relatives using resistance gene enrichment sequencing (RenSeq) to capture
29 and sequence full NLRs. A custom designed NLR bait-library enriched NLR genes with an
30 average 97% target capture rate. We employed a curated database of cloned and functionally
31 characterized NLRs to assign sequenced sweetpotato NLRs to canonical phylogenetic clades. We
32 identified between 800 to 1,200 complete NLRs, highlighting the expanded diversity of coiled-
33 coil NLRs (CNLs) across all genotypes. NLRs among sweetpotato genotypes exhibited large
34 conservation across genotypes. Phylogenetic distance between 6X (hexaploid) and 2X (diploid)
35 genotypes revealed that a small repertoire of *I. batatas* CNLs diverged from the sweetpotato wild
36 relatives. Finally, we obtained chromosome coordinates in hexaploid (Beauregard) and diploid
37 (*Ipomoea trifida*) genomes and recorded clustering of NLRs on chromosomes arms. Our study
38 provides a catalog of NLR genes that can be used to accelerate breeding and increase our
39 understanding of evolutionary dynamics of sweetpotato NLRs.

40 **Key words:** *Ipomea batatas* (sweetpotato), NLRs, RenSeq, wild relatives, hexaploid

41 **INTRODUCTION**

42 Opportunistic plant pathogens survive in agroecosystems strategically by widening their
43 host range within and between plant families and evolving long term survival structures (Henry
44 *et al.* 2019). Soilborne plant pathogens (nematodes, fungi, oomycetes, and bacteria) have
45 evolved strategies to persist endemically and reemerge to infect susceptible hosts when the
46 opportunity presents itself (Quesada-Ocampo *et al.* 2023). In the last decade, restrictions on soil
47 fumigation resulted in the reemergence of many soilborne pathogens and pests in agriculture
48 (Chellemi *et al.* 2016; Holmes *et al.* 2020; Land *et al.* 2022; Sanogo *et al.* 2022). Without
49 effective soil fumigation, farmers rely on a combination of fungicides/nematicides, biological
50 amendments, and host resistance (Miller *et al.* 2020; Parada-Rojas and Quesada-Ocampo, 2022).
51 Host resistance remains a tool that provides flexible and economical control that is compatible
52 with diverse cropping systems (Michelmore *et al.* 2017). However, breeding for pathogen
53 resilient crops requires accelerating our understanding of sources of resistance within plant
54 genomes. Many domesticated crop draft genomes have been sequenced and refined (Sato *et al.*
55 2012; Kim and Buell, 2015; Consortium (IWGSC) *et al.* 2018; Edger *et al.* 2019), yet the vast
56 majority of crop species lack a comprehensive understanding of resistance loci within their
57 genomes to realize their full potential (Steuernagel *et al.* 2015; Kourelis and van der Hoorn,
58 2018; Parada-Rojas and Quesada-Ocampo, 2021).

59 Plants and pathogens exist in a continuum of coevolutionary struggle for survival
60 (Tamborski and Krasileva, 2020; Derevnina *et al.* 2021). An important layer of plant immunity is
61 the recognition of pathogen effector molecules by innate intracellular immune receptors known
62 as NLR proteins (nod-like receptors or nucleotide binding leucine rich repeat proteins) (Jones *et*
63 *al.* 2016). NLR proteins are part of a larger class of cellular receptors used for chemical
64 communication within and between organisms, and a subset of NLRs have evolved to stimulate

65 defense response in cells (Steidele and Stam, 2021). Upon direct or indirect recognition of
66 secreted pathogen effectors, NLRs induce robust immune responses that include among other
67 features hypersensitive programmed cell death, which has the potential to render plants resistant
68 (Balint-Kurti, 2019). NLR architecture includes a combination of a canonical nucleotide binding
69 (NBARC) domain, a C-terminal leucine rich repeat (LRR) domain, and three diverse accessory
70 N-terminal domains, Toll-interleukin-1 receptor (TIR), coiled-coil (CC), and Resistance to
71 Powdery Mildew 8 (RPW8) domains. Generally, patterns of N-terminal domain composition
72 inform the classification of NLRs into three major classes that form monophyletic groups in the
73 NLR phylogeny: TNLs, CNLs, and RNLs (Shao *et al.* 2016; Tamborski and Krasileva, 2020;
74 Kourelis *et al.* 2021). Other subgroups of NLRs include those that carry the late-blight R1 (B)
75 domain, the recently discovered C-terminal jelly roll/Ig-like domain (C-JID/J), and any non
76 canonical integrated domains (IDs) (Ballvora *et al.* 2002; Cesari *et al.* 2014; Ma *et al.* 2020;
77 Kourelis *et al.* 2021). NLRs have evolved as one of the most diverse gene families in plants in
78 response to the extraordinary diversity of plant pathogens and their arsenal of protein effectors
79 (Wu *et al.* 2017; Adachi *et al.* 2019). Collective NLR repertoire (NL Rome) evolution favors
80 networking among NLRs with sensor NLRs detecting pathogen effectors and helper NLRs
81 rendering effector recognition into a hypersensitive response (HR) phenotype (Derevnina *et al.*
82 2021). These two types of NLRs are considered key components of the NLR immune network
83 and are more recently referred to as NLR-required for cell death (NRC) proteins. NRCs represent
84 a phylogenetically supported NLR class with deployment potential (Wu *et al.* 2017; Kourelis *et*
85 *al.* 2022).

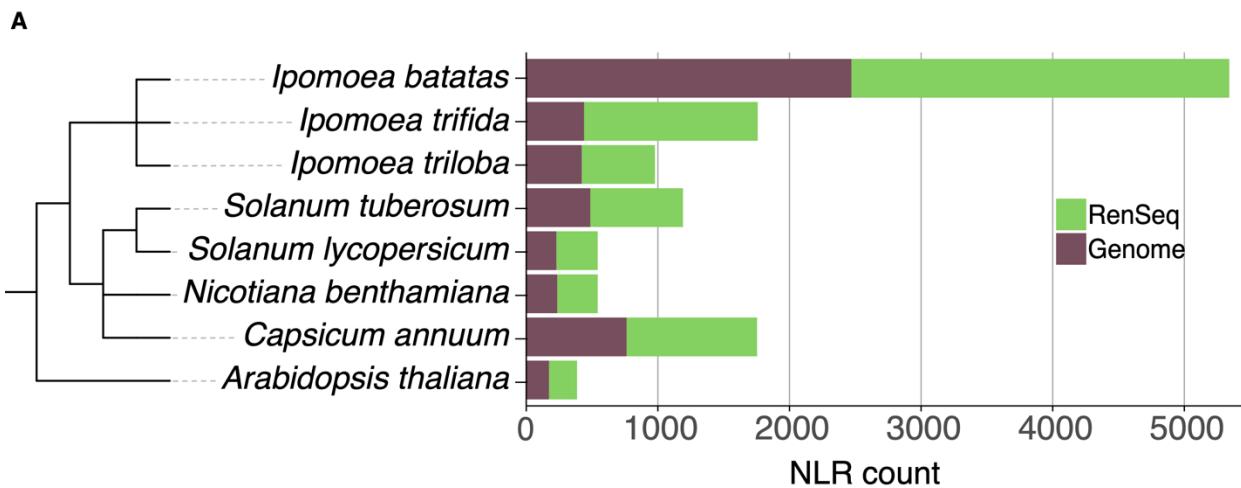
86 Because of the sheer diversity in this plant gene family, genome assembly and annotation
87 of NLRs in different plant species often requires novel approaches (Jupe *et al.* 2013; Stam *et al.*

88 2016; Witek *et al.* 2016; Van de Weyer *et al.* 2019). Even diploid whole genome projects
89 struggle to generate accurate NLR annotations due to their clustering in chromosomes and
90 overlap of repetitive sequences (Andolfo *et al.* 2014; Bayer *et al.* 2018). To add complexity,
91 cultivated/domesticated polyploid crops often rely on knowledge of diploid wild relative
92 genomes for crop improvement (Fajardo *et al.* 2016; Wu *et al.* 2018b; Edger *et al.* 2019; Sun *et*
93 *al.* 2020). Target capture NLR sequencing (RenSeq) represents a desirable tool to reduce
94 complexity and explore NLR diversity in crop species, especially if cultivated/domesticated
95 genomes are available (Witek *et al.* 2016). One of the advantages of using exome capture tools is
96 the ability of baits to hybridize to sequences with 20% mismatch (Witek *et al.* 2016; Giolai *et al.*
97 2016). This feature allows for the use of wild relative genomes to investigate complex
98 domesticated polyploid crop species. RenSeq recently allowed examination of intra and
99 interspecies NLR diversity in 64 *Arabidopsis thaliana* ecotypes and 16 accessions from 5
100 different *Solanum* species (Van de Weyer *et al.* 2019; Seong *et al.* 2020).

101 Sweetpotato (*Ipomoea batatas* (L.) Lam)(2n = 6X = 90), a globally grown root crop with
102 origins from northern South America and Central America, provides more nutrients per farmed
103 hectare than any other food crop (Oke *et al.* 1990; Truong *et al.* 2018). Due to its versatility as a
104 staple feed, food, and fuel source, sweetpotatoes consistently rank highly among the most
105 important crops worldwide (FAOSTAT, 2022). Like potato and numerous other flowering
106 plants, cultivated sweetpotato exhibits polyploidy (6X) and high degrees of self-incompatibility
107 (Arumuganathan and Earle, 1991; Tsuchiya, 2014). Its 1.6 Gb genome harbors a high degree of
108 heterozygosity driven by outcrossing breeding methods (Wu *et al.* 2018b). Today, sweetpotato
109 improvement through genomic selection mainly relies on high quality genomic resources of two
110 diploid wild relatives (*I. trifida* and *I. triloba*) (da Silva Pereira *et al.* 2020; Oloka *et al.* 2021).

111 Identification and deployment of resistance in sweetpotato to emerging and persistent
112 pathogen threats lags behind other staple crops (Chakraborty *et al.* 2018; Kaloshian and Teixeira,
113 2019; Wang *et al.* 2021). *Ceratocystis fimbriata*, *Fusarium solani* and *Meloidogyne enterolobii*
114 represent contemporary soilborne pathogens that limit sweetpotato production and global trade
115 (Lewthwaite *et al.* 2011; Scruggs and Quesada Ocampo, 2016; Yang *et al.* 2018; Lee *et al.* 2019;
116 Schwarz *et al.* 2021; Parada-Rojas *et al.* 2021; Rutter *et al.* 2021). Host resistance represents a
117 sustainable tool for sweetpotato resilience against pathogens that can protect cultivated
118 sweetpotatoes globally. RenSeq is a novel genomic tool that can be used to reduce the
119 complexity of the sweetpotato genome and reveal sweetpotato NLR gene diversity. A better
120 understanding of the origin and evolution of NLR gene families in plants requires data from
121 highly heterozygous polyploid domesticated staple crops. Here we describe in detail the first
122 comprehensive NL Rome in a non-model organism and a major crop species by cataloging 32
123 sweetpotato (6X) and 3 wild relative (2X) NL Rome. Specifically, we aimed to (i) compare the
124 success of a RenSeq approach in recovering full NLR gene models in hexaploid *I. batatas*, and
125 diploid *Ipomoea* species against whole genome sequencing annotations; (ii) dissect NLR domain
126 diversity and evaluate their phylogenetic relationship among *I. batatas* and wild relatives; (iii)
127 identify core and accessory NLRs in hexaploid sweetpotato based on NLR families; and (iv)
128 provide a genetic map of NLRs in sweetpotato to help accelerate breeding efforts in sweetpotato.
129 Our study provides a foundation for accelerating resistance breeding and functional studies of
130 NLR genes in sweetpotato.

131 **RESULTS**


132 ***RenSeq sequencing and assembly quality.*** To catalog the NLR repertoire in sweetpotato,
133 we implemented the long-read PacBio RenSeq protocol. Our RenSeq bait library was designed to
134 capture 2,032 NLR coding regions with the bait library covering 90.1% of desired target
135 positions with at least 1 bait. Library preparation and sequencing yielded a total of 6,163,025
136 CCS reads across all 35 genotypes with an average 176,086 reads per genotype. We consistently
137 obtained above 90% on-target capture rate with an average of 97% of the CCS reads containing
138 bait sequences at or above the set threshold across all 35 genotypes (Table S1). To evaluate read
139 quality, we used NLR-parser's definition of complete NLRs to calculate the number of reads
140 containing complete NLR motifs for each sample. We found that on average 70% of the CCS
141 reads carried a complete set of motifs associated with NLRs (Table S1). Combined CCS read
142 metrics provided confidence in our bait library design and allowed us to accurately assemble
143 NLRs in hexaploid sweetpotato. The captured and assembled NLRomes for hexaploid and
144 diploid genotypes averaged 21.2 Mb and 7.8 Mb with contig N50 length of 6,208 and 7,372 bp,
145 respectively (Table S2). The number of hexaploid RenSeq contigs ranged between 5,027 to
146 3,048 for hexaploid genotypes and 1,558 to 765 for diploid genotypes with an average of 3,556
147 and 1,145 contigs, respectively (Table S2). The resulting RenSeq assemblies for all genotypes
148 ranged in coverage between 20X for Covington and 69X for Southern Delight with an average
149 coverage across 35 genotypes of 42X. The NLR-annotator analysis revealed that on average 88%
150 and 79% of the hexaploid and diploid genotype contigs contained NLR motifs, respectively. An
151 average of 82% of the total number of NLR motif-containing contigs in both 6X and 2X
152 genotypes carried NLRs defined as complete by NLR-annotator. On average and as defined by
153 NLR-annotator, the number of contigs containing a single NLR complement for hexaploid and
154 diploid genotypes was 2,795 and 790 respectively (Table S2).

155 **Table S1.** Enrichment quality assessment based on number and percentage of circular consensus
156 reads (CCS) containing 1 or more target baits in a range of 96 base pairs at 80% sequence
157 identity. This table also includes the number of reads identified by NLRparser as containing a
158 complete or partial set of NLR motifs. <https://doi.org/10.6084/m9.figshare.21899886>

159 **Table S2.** Assembly statistics and NLR-Annotator based counts for 32 sweetpotato and 3 wild
160 relative genotypes. <https://doi.org/10.6084/m9.figshare.21899898>

161 ***RenSeq improves NLR annotation.*** Over the course of this study a sweetpotato
162 hexaploid chromosome level assembly was released (<http://sweetpotato.uga.edu>). This prompted
163 us to evaluate the performance of the standard annotation project versus our NLR tailored
164 annotation pipeline. We expanded our search and included comparisons for plant species with
165 completed RenSeq projects. These included mainly Solanales species and Arabidopsis. In the
166 Beauregard 6X proteome and NL Rome, we identified 2,471 and 2,871 proteins as NLRs,
167 respectively (Figure 1). Sweetpotato ranked highest for NLR counts across all tested species.
168 Overall, RenSeq projects annotated more NLRs than standard genome annotations. We found
169 that *I. trifida* and *I. triloba* genome annotations consistently had lower counts in comparison to
170 our RenSeq annotations. In particular, our *I. trifida* NLR tailored annotation yielded 3 times the
171 NLR content of the genome project for the same genotype (Figure 1A). This analysis also
172 revealed that NLR content is largely independent of genome size, with sweetpotato genome size
173 (1.6Gb) being roughly half the pepper genome size (3.5Gb) but harboring more than double the
174 number of NLRs (Figure 1B). These results indicate that RenSeq improves NLR annotation of
175 the sweetpotato reference genome and its wild relatives.

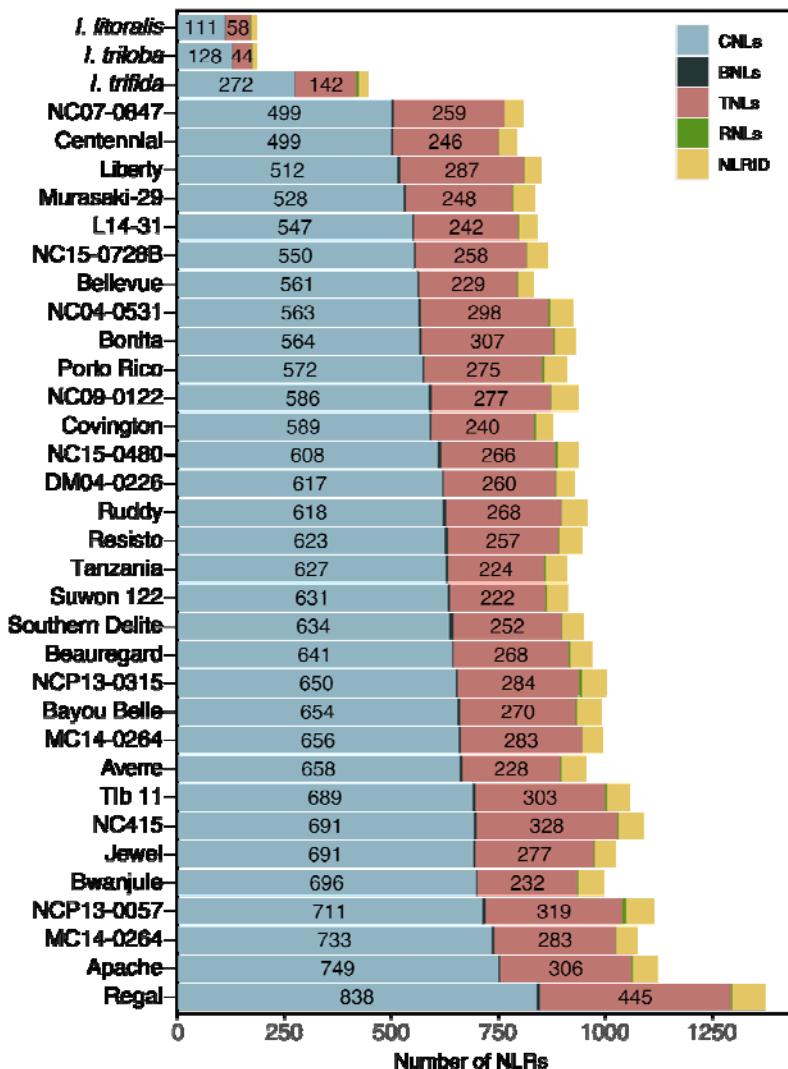
176

B

	Genome				RenSeq		
	N50	Genome size	Technology	Ref.	Technology	Assembly strategy	Ref.
<i>Ipomoea batatas</i>	9.20 Mb	1.60 Gb	long reads	(a)	long reads	de novo	(g)
<i>Ipomoea trifida</i>	1.20 Mb	0.52 Gb	short & long reads	(a)	long reads	de novo	(g)
<i>Ipomoea triloba</i>	6.90 Mb	0.49 Gb	short & long reads	(a)	long reads	de novo	(g)
<i>Solanum tuberosum</i>	36.91 Mb	3.10 Gb	long reads	(b)	long reads	de novo	(h)
<i>Solanum lycopersicum</i>	5.50 Mb	0.99 Gb	short & long reads	(c)	short & long reads	Map to reference	(i)
<i>Nicotiana benthamiana</i>	0.50 Mb	3.03 Gb	short & long reads	(d)	short & long reads	Map to reference	(i)
<i>Capsicum annuum</i>	3.69 Mb	3.50 Gb	linked-reads	(e)	short & long reads	Map to reference	(i)
<i>Arabidopsis thaliana</i>	NA	0.13 Gb	Sanger	(f)	short & long reads	Map to reference	(j)

177

178 **Figure 1. RenSeq improves NLR annotation. Species tree of a subset of Solanales species**

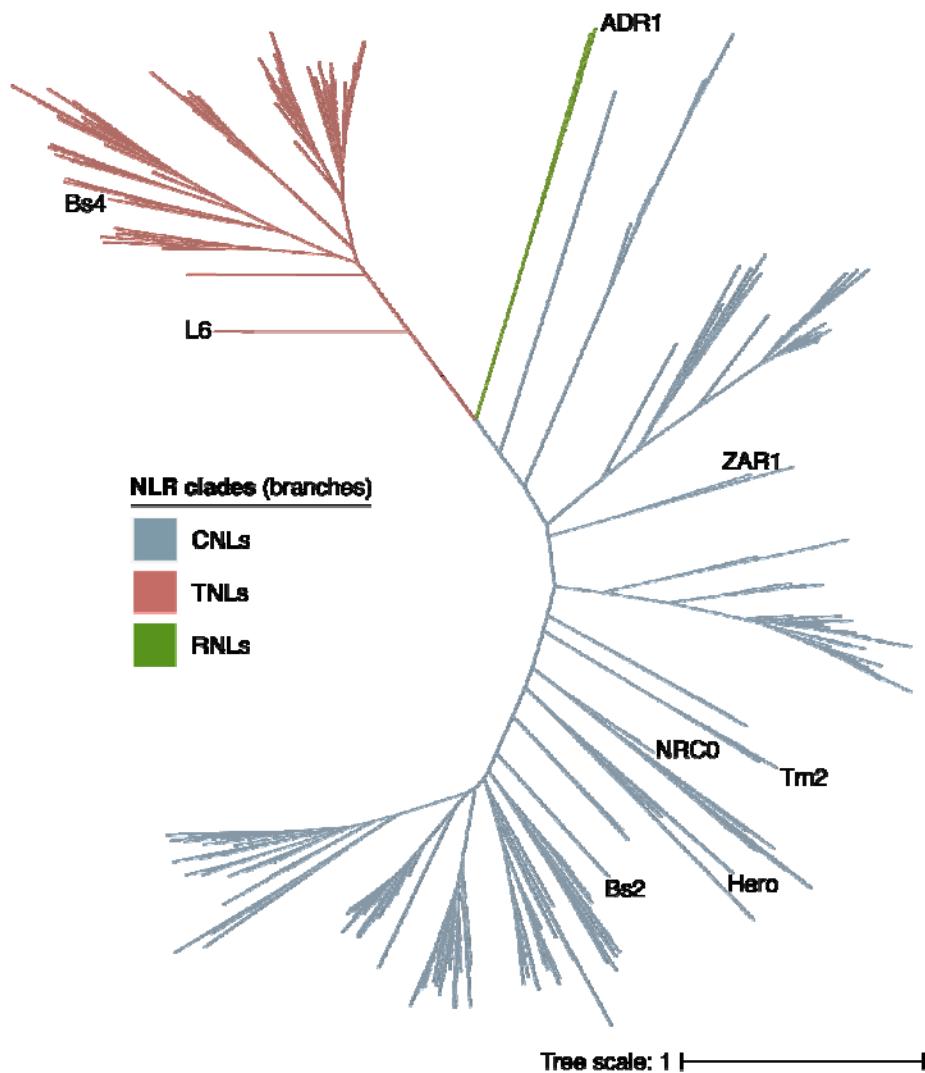

179 **NLR annotations using RenSeq and Genome annotations.** The numbers of nucleotide-binding
180 and leucine-rich repeat immune receptors (NLRs) annotated per plant species as reported by each
181 RenSeq effort versus the predicted annotation via NLRtracker from each proteome. (A) The
182 species tree indicates the phylogenetic relationship of the species analyzed. The number of NLRs
183 as annotated by NLRtracker is shown in the stack bar plot with green and brown bars
184 representing RenSeq annotated and genome annotated NLRs for each species, respectively. (B)
185 Genome statistics and sequencing technology used for both Genome and RenSeq projects. Refs.
186 (a) Wu et al., 2018b, (b) Pham et al., 2020, (c) Hosmani et al., 2019, (d) Bombarely et al.,

187 2012, (e) Hulse-Kemp et al., 2018, (f) TAIR, 2022, (g) This study, (h) Jupe et al. 2013, (i) Seong
188 et al. 2020, (j) Van de Weyer et al. 2019.

189 ***Sweetpotato and wild relative genomes harbor a diverse catalog of NLRs.*** To reveal the
190 nature and the diversity of sweetpotato NLRs, we performed a comparative NLRome analysis
191 that relies on NLR annotations by NLRtracker (Kourelis *et al.* 2021). Collectively, NLRtracker
192 detected NLRs, degenerate NLRs, and NB-ARC containing proteins (Table S3). Informed by the
193 NLRtracker results registered across all 35 genotypes, we arbitrarily focused on 13 main NLR
194 domain architectures that we grouped into 5 major domains including the canonical CNL, RNL
195 and TNL but also the non canonical NLR-IDs and BNLs (Figure S1). We categorized CNLs as
196 NLRs containing one or two CC domains at the N-terminal and containing the NB-ARC and
197 LRR domains. TNLs included NLRs containing TIR, NB-ARC and LRR domains in addition to
198 an optional CID-J domain at the C-terminal. RNLs were categorized as NLRs containing RPW8,
199 NB-ARC, and LRR domains. We also included the BNL category reported by NLRtracker, as
200 NLRs containing a late blight R1 domain in the N-terminus, combined with CC, NB-ARC, and
201 LRR domain (i.e. BNLs and BCNLs). We included the NLR Integrated Domains (NLR-IDs) as
202 they represented a substantial proportion of NLRs found across all genotypes and potential
203 effector targets. These NLRs were classified as NLR-IDs if they carried an ID (O) domain at
204 either end of a complete NLR protein with the exception of ONLs, which could represent a novel
205 N-terminal domain for sweetpotato. We excluded from our analysis NLRs that carried only an
206 NB-ARC and a LRR domain as we consider them not full-length NLRs.

207 **Table S3.** NLRtracker output for each catalog of annotated NLRs in each of the 32 sweetpotato
208 and 3 wild relative genotypes. <https://doi.org/10.6084/m9.figshare.21899910>

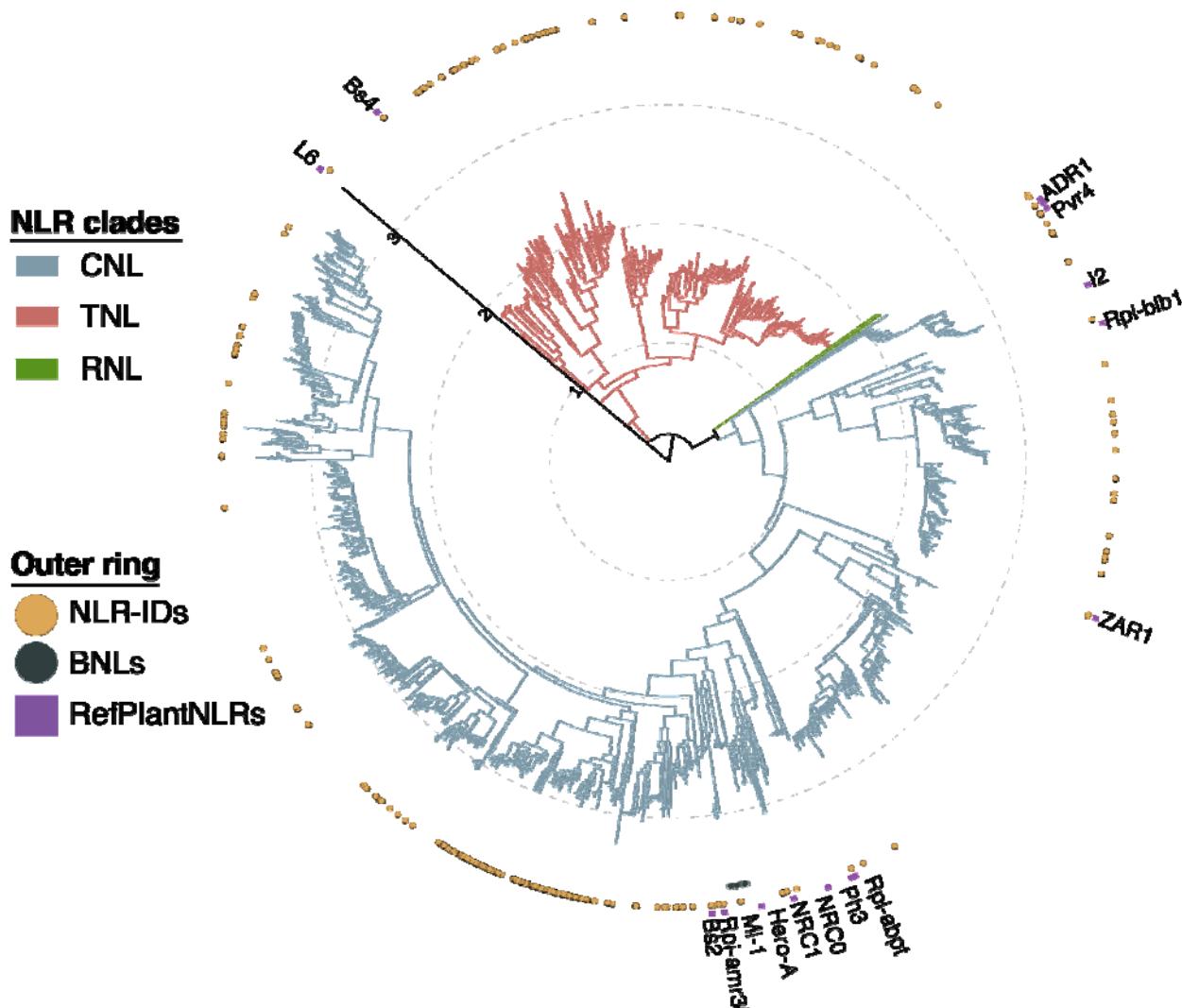
209 Characterization of the five NLR domains revealed a diverse set of architectures with a
210 notable expansion of the CNLs across the 35 genotypes followed by TNLs and NLR-IDs (Figure
211 S2). RNLs and BNLs represented a small fraction of the NLRs across all genotypes investigated
212 (Figure 2). The wild relatives contained a proportionally similar number of CNLs, ranging from
213 111 to 272 CNLs. Among the *I. batatas* genotypes, Regal ranked highest for total NLR content
214 followed by the historical genotype Apache (Figure 2). NC07-0847 and Centennial genotypes
215 contained the lowest NLR counts across all *I. batatas* genotypes. We observed a consistent
216 proportion of NLR-IDs across all *I. batatas* and wild relative genotypes as the third most-
217 common NLR architecture we recorded in our study. Altogether, our NLR domain architecture
218 analysis confirms the widespread presence of CNLs, TNLs, and NLR-IDs among sweetpotato
219 genotypes.


220

221 **Figure 2. Sweetpotato and wild relative genomes harbor a diverse catalog of NLRs.** Stack
222 bar plot distribution of 32 sweetpotato genotypes and three *Ipomoea* spp. complete NLRs as
223 annotated by NLRtracker. The number of each domain architecture for each genotype is plotted
224 as a stack plot. CNLs, coiled-coil nucleotide-binding and leucine-rich repeat immune receptors
225 (i.e. CNL or CCNL); BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
226 receptors (i.e. BNL or BCNL); TNLs, Toll/interleukin-1 receptor nucleotide-binding and
227 leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like domain (i.e.
228 TNL or TNLJ); RNLs, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich

229 repeat immune receptors; NLR-IDs, nucleotide-binding and leucine-rich repeat immune
230 receptors containing non canonical “integrated domains”. Detailed domain architecture and
231 abbreviations are as shown in Figure S1.

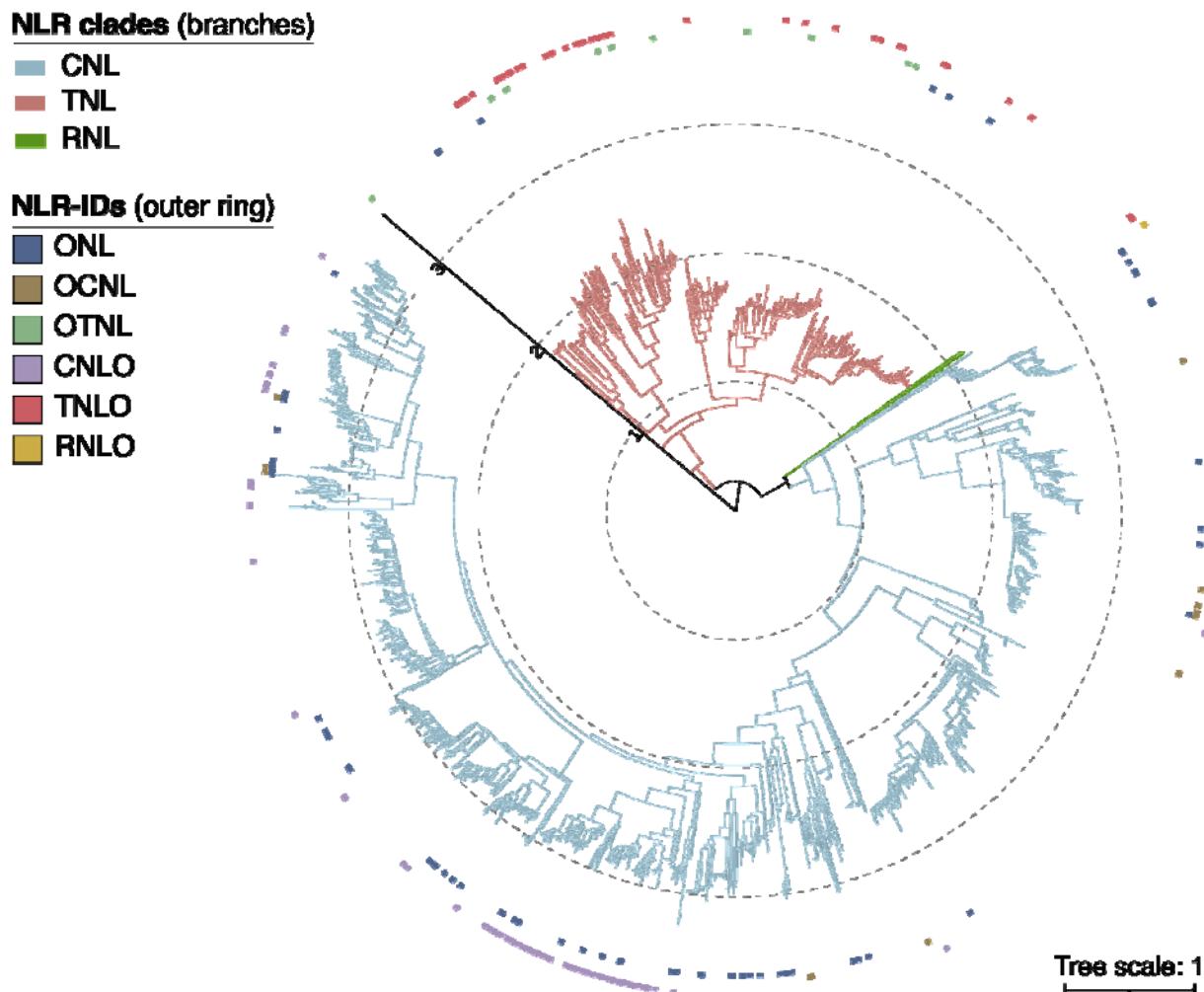
232 To examine the evolutionary history of NLRs in sweetpotato and its wild relatives, we
233 constructed an NLR phylogeny using the NB-ARC domain and inferred major phylogenetic
234 clades. The un-rooted 29,553 NB-ARC phylogeny clustered by the three canonical NLR
235 domains: CNL, TNL and RNLs (Figure S3). To navigate the phylogeny, we placed 35
236 RefPlantNLRs and rooted the tree at the TNL clade. The CNL clade represented the largest
237 domain architecture, with strong radiation and branching pattern, indicating high diversification
238 within the CNL clade (Figure 3). Approximately half of the CNL clade expands beyond the
239 anchoring of the RefPlantNLRs in our tree. The TNL and RNL clades were more compact in
240 comparison to the CNL clade. We observed clustering of the BNLs across all genotypes within
241 the CNL clade (Figure 3). To take a closer look at NLR-IDs within our phylogenetic tree, we
242 decorated the outer ring that corresponded to NB-ARCs associated with NLR-IDs classified by
243 NLRtracker (Kourelis *et al.* 2021). We observed the spread of NLR-IDs across the phylogeny
244 with certain clades harboring more NLR-IDs than others (Figure 3). We inspected the NLR-ID
245 clustering by canonical architecture with CNLO and OCNLs placement occurring within the
246 CNL clade and TNLO and OTNL placement within the TNL clade (Figure S4). Notably, ONLs
247 were mainly placed within the CNL clade, with a small number of ONLs falling within the TNL
248 clade (Figure S4). We observed two large CNL sub-clades that had poor NLR-ID assignments
249 (Figure S4). Our phylogenetic analysis highlights the expanded diversity of CNLs across all


250 genotypes and their evolutionary history.

251

252 **Figure S3. Unrooted sweetpotato and wild relatives NLR phylogeny exhibit clustering by**
253 **canonical domain.** Phylogenetic diversity of sweetpotato and wild relative NLRs. Unrooted NB-
254 ARC domain phylogeny of 29,553 amino acid sequences inferred using the Maximum
255 Likelihood method based on the Jones–Taylor–Thornton (JTT) and Per Site Rate (PSR) models
256 in ExaML. The major TNL, CNL, and RNL clades are indicated by branch colors. Tip labels
257 correspond to RefPlantNLRs included in the phylogeny. Domain architecture and abbreviations
258 are as shown in Figure S1. Branch scale represents the number of substitutions per site.

259

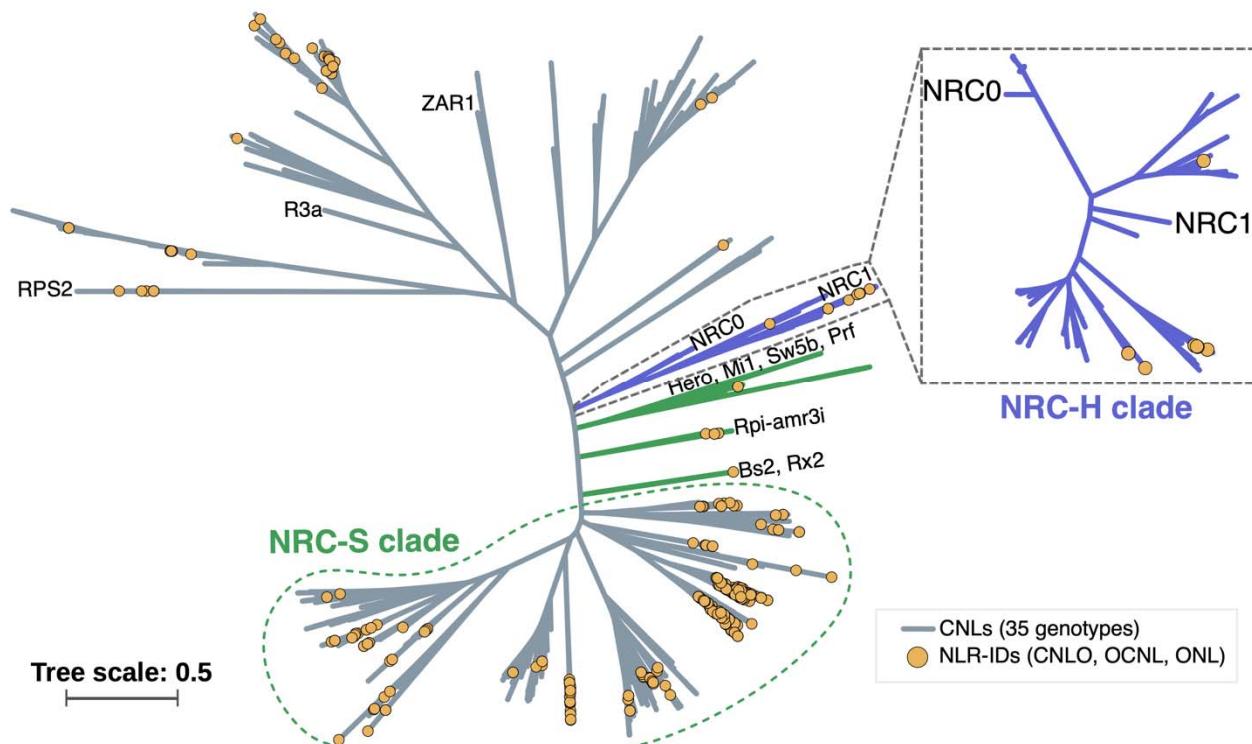


260

261 **Figure 3. Sweetpotato and wild relatives exhibit expanded diversity of CNLs.** Phylogenetic
262 diversity of sweetpotato and wild relative NLRs. NB-ARC domain phylogeny of 29,553 amino
263 acid sequences inferred using the Maximum Likelihood method based on the Jones Taylor
264 Thornton (JTT) and Per Site Rate (PSR) models in ExaML. Domain architecture abbreviations
265 correspond to CNLs, coiled-coil nucleotide-binding and leucine-rich repeat immune receptors
266 (i.e. CNL or CCNL); BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
267 receptors (i.e. BNL or BCNL); TNLS, Toll/interleukin-1 receptor nucleotide-binding and
268 leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like domain (i.e.

269 TNL or TNLJ); RNLs, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich
270 repeat immune receptors; NLR-IDs, nucleotide-binding and leucine-rich repeat immune
271 receptors containing non canonical “integrated domains” as shown in Figure S1. The tree
272 branches are rooted on the branch connecting TNL and non-TNL clades. The major TNL, CNL,
273 and RNL clades are indicated by branch colors. The color code of the outer ring shapes indicates
274 to which of the non canonical NLR architectures (i.e. NLR-IDs or BNLs) the corresponding tips
275 belong to and the placement of RefPlantNLRs (Kourelis *et al.* 2021). Branch scale represents the
276 number of substitutions per site.

277

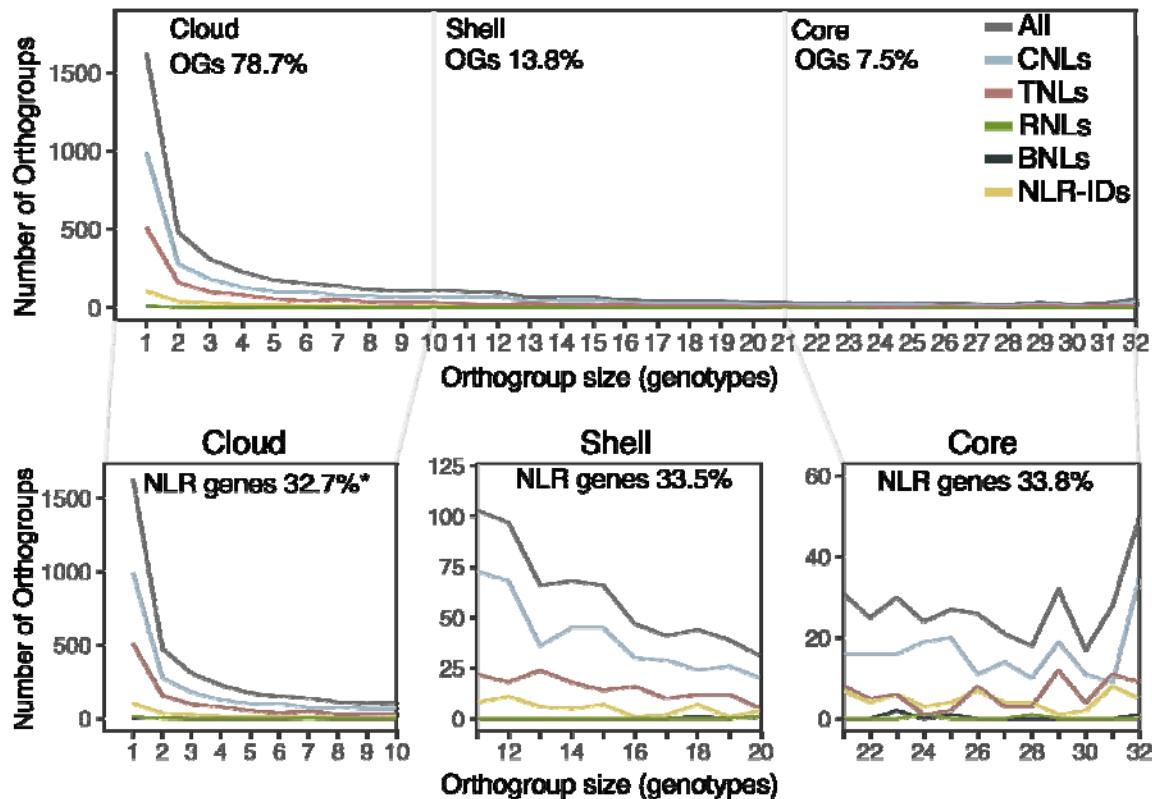


278

279 **Figure S4. Sweetpotato and wild relatives harbor diverse sets of NLR-IDs clustering with**
280 **canonical NLRs in the large NLR phylogeny.** Maximum likelihood phylogeny of sweetpotato
281 and wild relative NLRs inferred from central NB-ARC domain. Outer ring represents different
282 types of NLR-IDs annotated by NLRtracker and their placement corresponds to their pair branch
283 and model. The phylogeny was built using the Jones–Taylor–Thornton (JTT) and Per Site Rate
284 (PSR) models in ExaML. The tree branches are rooted on the branch connecting TNL and non-
285 TNL clades. The major TNL, CNL, and RNL clades are indicated by branch colors. Domain
286 architecture and abbreviations are as shown in Figure S1. Branch scale represents the number of
287 substitutions per site.

288 To examine the phylogenetic structure network of sensor and helper NLRs across the 35
289 genotypes, we extracted the CNL clade and examined the placement of well characterized NRCs
290 including sensor and helper types. We highlighted the putative position of NRC0 and NRC1,
291 which fall within a smaller clade in CNLs composed of 956 receptors (Figure 4). We defined this
292 as the NRC-H subclade in sweetpotato and wild relatives, and extracted NLRs for further
293 phylogenetic analysis. NRC0 clustered with 246 NLRs from sweetpotato and wild relatives. The
294 majority of helper NLRs in our genotypes clustered separately (Figure 4). We labeled clades
295 with known NRC sensors (NRC-S) and observed a radiating clade that branches from known
296 NRC-S references like Bs2, Rx2, and Rpi-amr3i (Figure 4). Our phylogenetic analysis revealed a
297 compact NRC-H subclade and an expanding NRC-S clade among sweetpotato genotypes and
298 wild relatives.

299

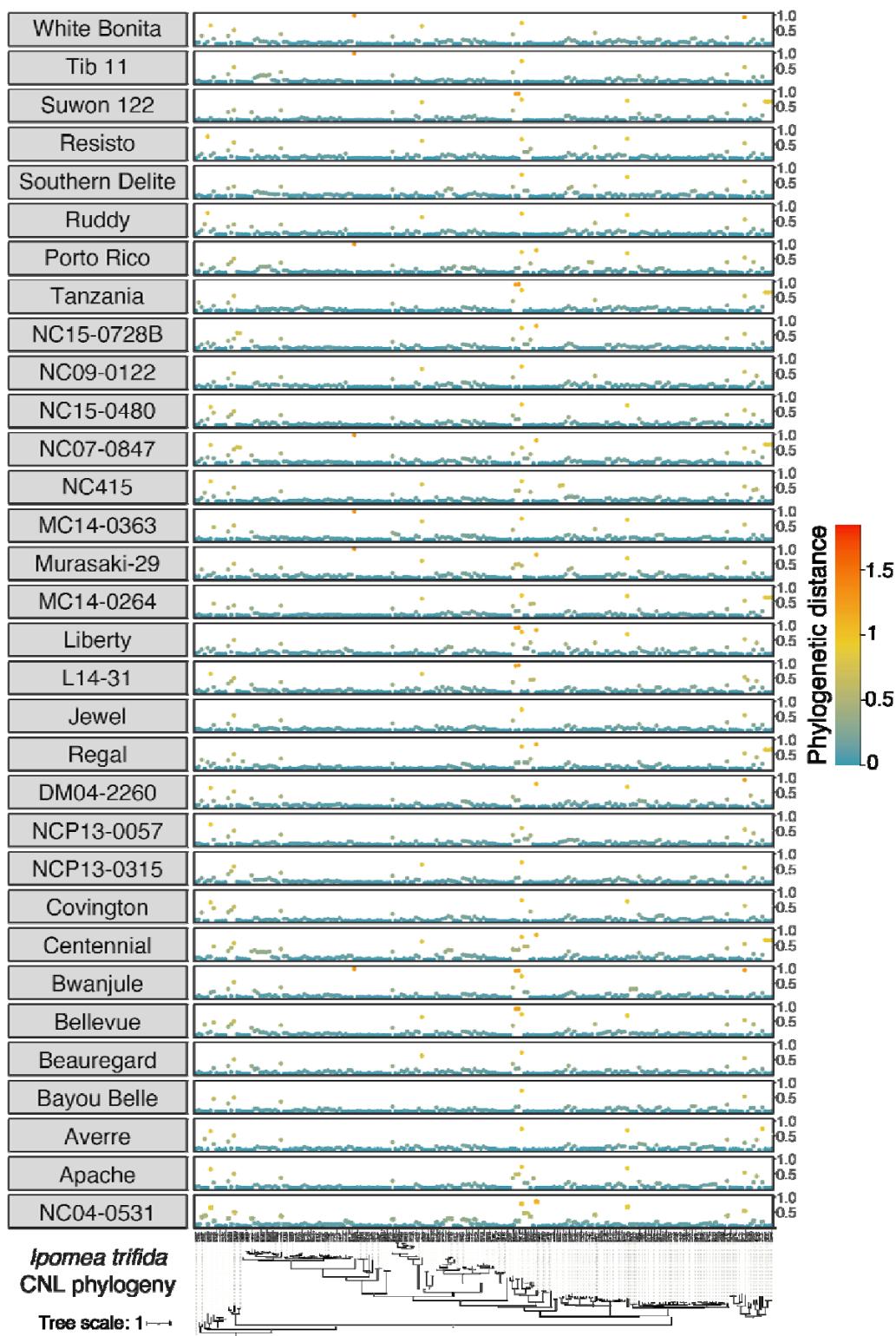

300

301 **Figure 4. Sweetpotato genotypes and wild relatives harbor a compact NRC-H subclade.**

302 Phylogeny of sweetpotato and wild relative CNLs. The Maximum Likelihood tree includes only
303 NB-ARC sequences corresponding to complete CNLs as predicted by NLRtracker. Branches
304 predicted to correspond to major NLR required for cell death – helper and sensor clades (NRC-
305 H, NRC-S) were highlighted based on phylogenetic placement of NRC0/1 (helpers-purple) and
306 Hero-A, Rpi-amr3i, and Bs2 (sensors-green), respectively. Tips linked to CNLs containing
307 integrated domains are labeled with yellow dots. The purple phylogenetic tree (right) includes
308 only sequences from the indicated NRC-H lineage (left), underlining the *I. batatas*, *I. trifida*, *I.*
309 *triloba* and *I. littoralis* sequences phylogenetically predicted as helper NLRs. Domain
310 architecture and abbreviations are as shown in Figure S1.

311 ***A substantial core of NLRs in sweetpotato.*** To understand the NLR allelic variation
312 among sweetpotato genotypes, we clustered NLRs from all 32 sweetpotato genotypes into
313 orthogroups (OGs) based on NB-ARC sequence identity at an optimal cutoff of 1.5% amino acid
314 divergence (98.5% identity). We curated the sweetpotato NL Rome into 4,366 OGs that
315 corresponded to complete NLR domain architectures. We observed a cohort of singleton NLRs
316 with 37 % of all OGs (N=1,626) falling into any single genotype, however singletons account for
317 only 5.9% of the total NLR counts (N=27,615) across all sweetpotato genotypes. Figure 5 shows
318 the classification of OGs based on the number of OGs among shared sweetpotato genotypes,
319 their proportion across NLR counts, and their corresponding domain architecture. The core
320 NL Rome included 329 OGs (7.5%) shared by 21 to 32 genotypes. A cohort of 602 OGs (13.8%)
321 were categorized as shared between 11 to 20 genotypes; we defined this cohort as the shell. The
322 cloud constituted the largest group with 3,435 OGs (78.7%) found in 10 or fewer genotypes
323 (Figure 5). We recorded 2,661 OGs consisting of CNLs, which corroborates with the highest
324 abundance found by NLR tracker. A total of 50 OGs were shared by all 32 genotypes accounting
325 for 1,600 NLRs (Figure 5). When examining the proportion of NLR counts within each of the
326 categories and ignoring singletons, the core, shell, and cloud accounted for 33.84%, 33.47%, and
327 32.69% of the total NLR counts, respectively (Figure 5). Together, this analysis demonstrates the
328 large conservation of NLRs in sweetpotato and corroborates that NLRs in sweetpotato present

329 limited divergence at the individual genotype level.

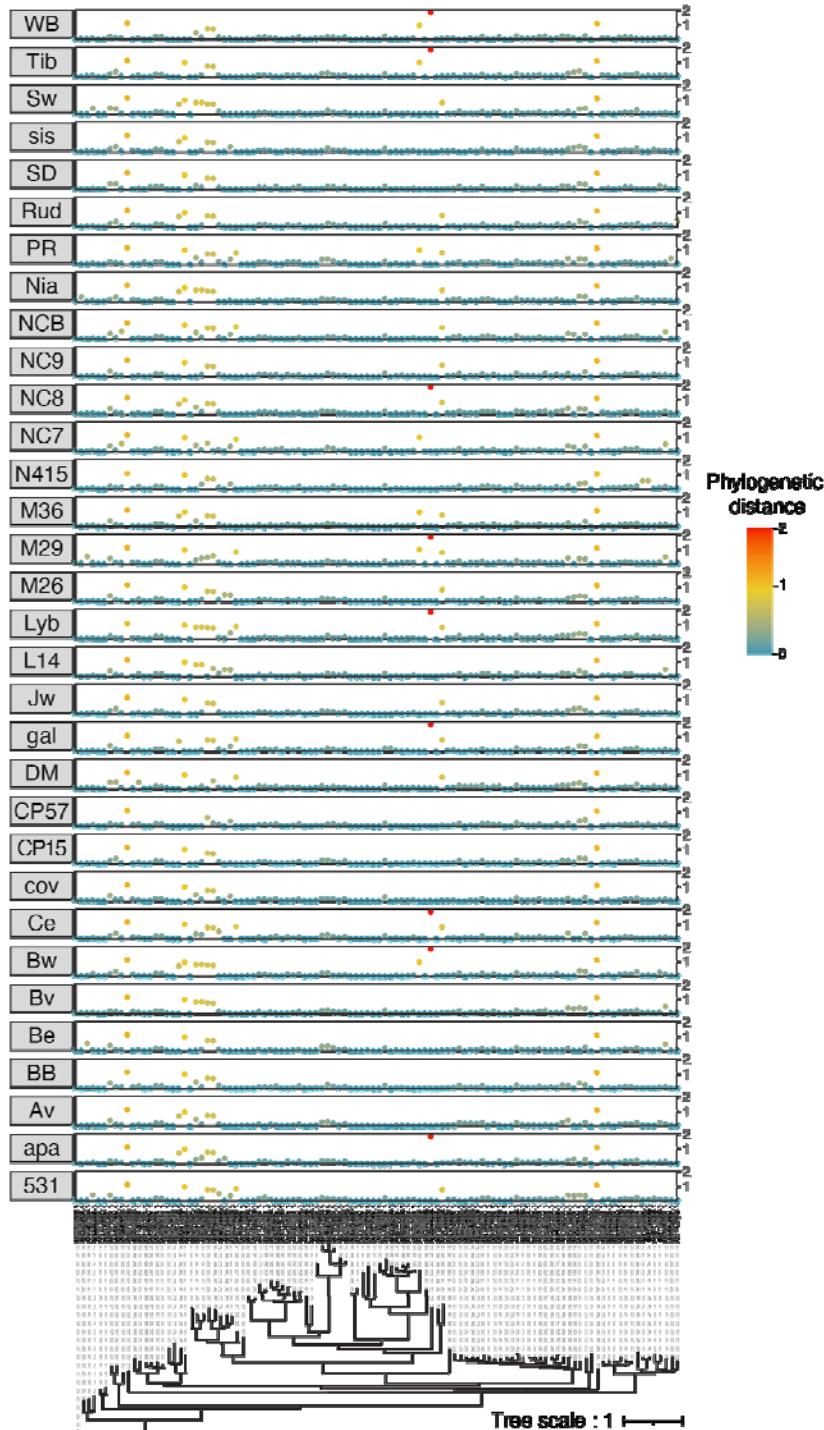


330

331 **Figure 5. NLRs in sweetpotato present high conservancy.** Orthogroup (OG) size distribution
332 among 32 sweetpotato genotypes. Top line graph indicates the distribution of OGs shared by any
333 of the 32 sweetpotato genotypes. NLR domain types associated with corresponding OGs are
334 denoted by line colors. Percentage of OGs shared by genotypes in each category, Cloud (1 – 10
335 genotypes), Shell (10 – 20 genotypes) and Core (21 – 32 genotypes) are shown on top. Bottom
336 line graphs show OG category specific distribution of sweetpotato NLRs in cloud (left), shell
337 (center), and core (right). Percentage of NLR genes corresponding to each category is indicated
338 on top. Asterisk (*) denotes that the NLR gene percentage was calculated excluding singletons.
339 Domain architecture and abbreviations are as shown in Figure S1.

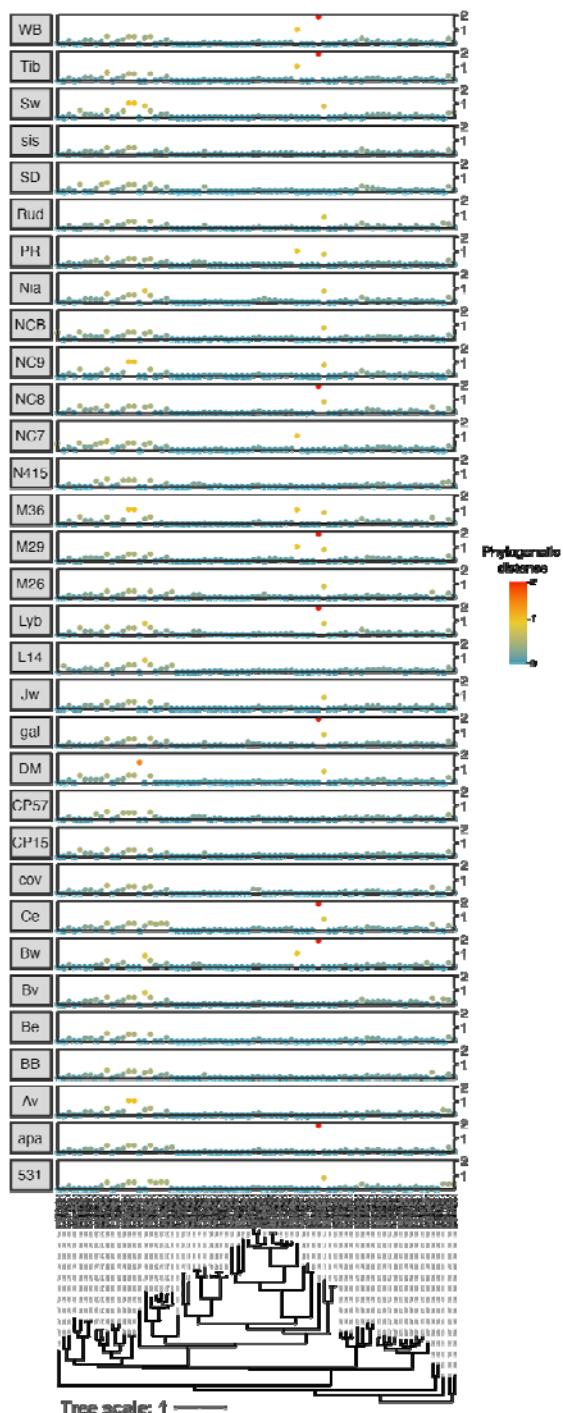
340 **CNLs among sweetpotato genotypes remain largely conserved.** We documented large
341 phylogenetic diversity and an expansion in the CNL clade among *Ipomoea* genotypes (Figure 3).

342 To evaluate CNL conservation across sweetpotato genotypes, we used a phylogenetic tree from
343 32 sweetpotato genotypes and each of the 3 diploid wild relatives. We calculated the
344 phylogenetic (patristic) distance between each of the 197 CNLs from *I. trifida*, 106 CNLs from *I.*
345 *triloba*, 74 CNLs from *I. littoralis* to their closest phylogenetic neighbor from each of the 32
346 sweetpotato genotypes. We found that most CNLs in the 32 sweetpotato genotypes have short
347 phylogenetic distance to their orthologs in the wild relatives (Figure 6, S5, and S6). This analysis
348 revealed a set of 20 CNLs with patristic distance greater than 0.5 when compared against *I.*
349 *trifida*, the progenitor of cultivated sweetpotato (Figure 6). A total of 13 CNLs from *I. triloba*
350 and 8 CNLs for *I. littoralis* displayed greater than 0.5 phylogenetic distance when compared
351 against all 32 sweetpotato genotypes (Figure S5 and S6). We identified a cluster of 4 CNLs that
352 consistently exhibit high phylogenetic distance across all 32 sweetpotato genotypes against
353 CNLs in *I. trifida*. Notably, a single CNL ortholog across Bwanjule, Murasaki-29, MC14-0363,
354 NC07-0847, Porto Rico, Tib 11, and White Bonita exhibited the highest phylogenetic distance
355 from its corresponding ortholog in *I. trifida* (Figure 6). Altogether, this analysis revealed that a
356 small repertoire of *I. batatas* CNLs diverged from *I. trifida*, *I. triloba*, and *I. littoralis*.



357

358 **Figure 6. Widespread CNL conservation between *I. trifida* and *I. batatas* genotypes (N= 32).**

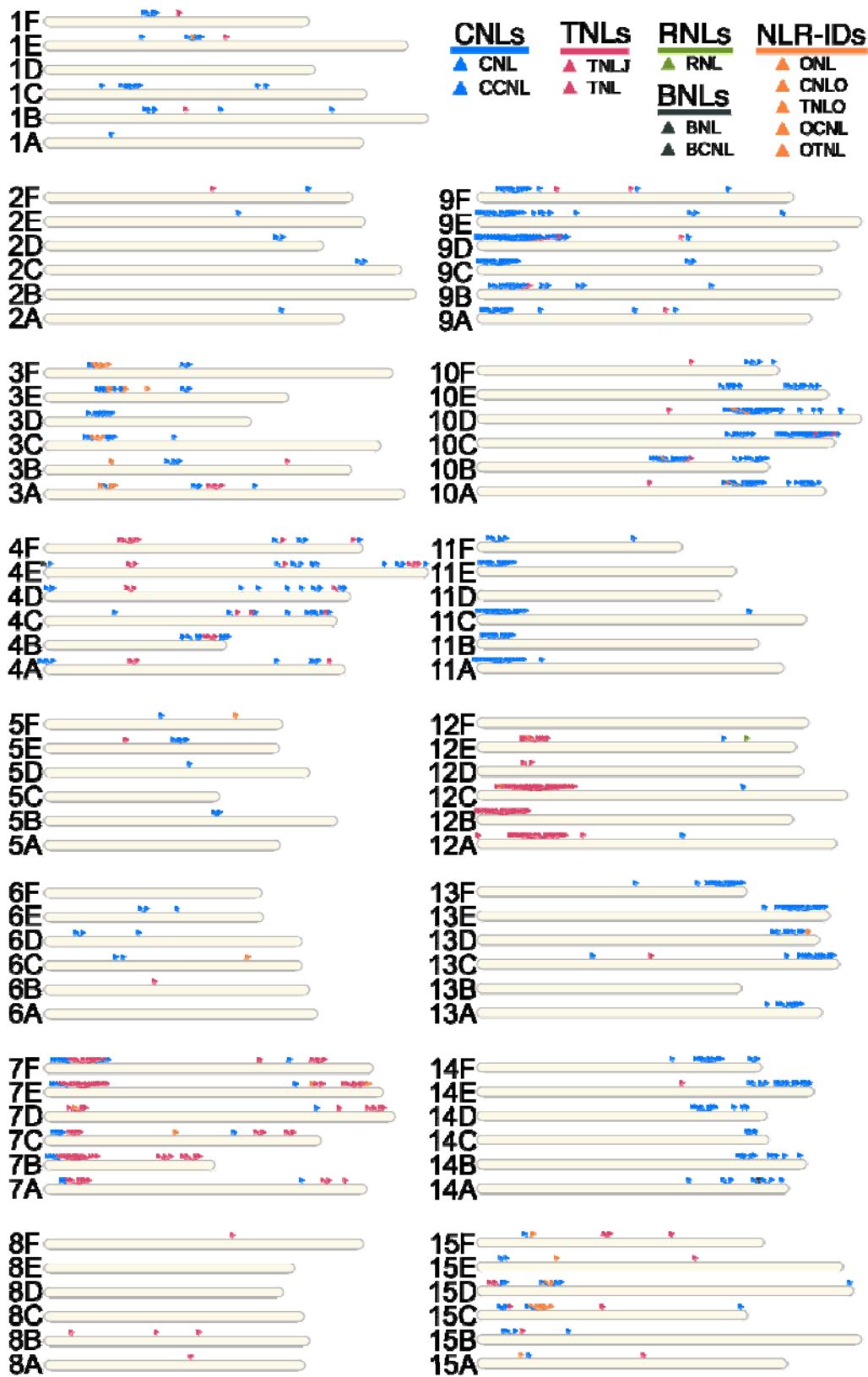

359 Phylogenetic (patristic) distance of two CNL nodes between *I. trifida* and each *I. batatas*

360 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each
361 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
362 pair. Domain architecture and abbreviations are as shown in Figure S1.

364 **Figure S5 CNL conservation between *Ipomoea triloba* and *I. batatas* genotypes (N= 32).**

365 Phylogenetic (patristic) distance of two CNL nodes between *I. triloba* and each *I. batatas*
366 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each
367 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
368 pair. Genotype abbreviations match names contained in Table S4. Domain architecture and
369 abbreviations are as shown in Figure S1.

370

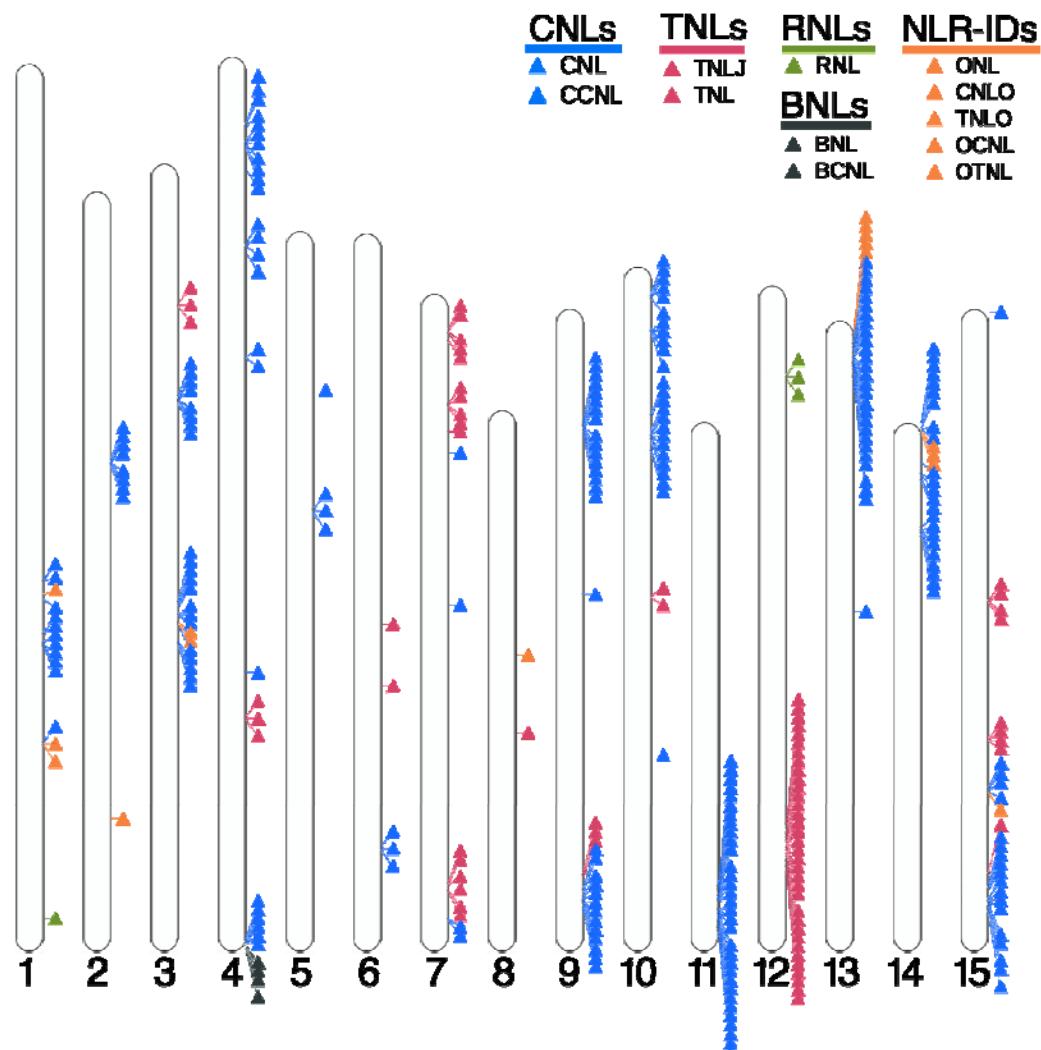

371 **Figure S6 CNL conservation between *Ipomoea littoralis* and *I. batatas* genotypes (N= 32).**

372 Phylogenetic (patristic) distance of two CNL nodes between *I. littoralis* and each *I. batatas*

373 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each

374 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
375 pair. Genotype abbreviations match names contained in Table S4. Domain architecture and
376 abbreviations are as shown in Figure S1.

377 **Anchoring NLR loci in chromosome-level genomes of *I. batatas* and *I. trifida*.** To pinpoint
378 areas in the genome harboring NLRs, we positioned Beauregard and *I. trifida* NLR loci on the 90
379 and 15 chromosome scale genome assemblies for *I. batatas* and *I. trifida*, respectively (Figure 7
380 and 8). With a threshold of 99% identity and focusing only on NLRs contigs associated to NLRs
381 with complete NLR architecture, we placed 810 NLR contigs for *I. batatas* and 313 contigs for *I.*
382 *trifida*. These contigs represent major NLR domain architectures. We recorded clustering of
383 CNLs in *I. batatas* Chromosomes 4, 9, 10, 11, 13, and 14 and *I. trifida*'s Chromosomes 1, 3, 4, 9,
384 10, 11, 13, 14, and 15 (Figure 7 and 8). Contigs associated with TNLs clustered in Chromosome
385 7 and 12 for both *I. batatas* and *I. trifida*. We observed remarkable clustering at the distal portion
386 of chromosomes. For *I. batatas*, some chromosome copies completely lacked NLR loci including
387 Chromosome 1D, 2B, 5C, 5A, 6A, 6F, 8C, 8D, 8E, 11D, 12F, and 13B. Together, these results
388 represent the state-of-the-art physical mapping of NLR loci on the hexaploid Beauregard *I.*
389 *batatas* and the diploid *I. trifida* assembly.



390

391 **Figure 7. RenSeq allowed anchoring of NLR contigs corresponding to complete NLR**

392 **domain architecture in *Ipomoea batatas*.** Physical positions of sweetpotato genotype
393 Beauregard NLR contigs displayed along the 90 chromosome diagrams for the Beauregard
394 genome assembly. Each contig is represented by a triangle marked with colors corresponding to
395 the associated NLR architectures. Blue triangles correspond to CNLs, coiled-coil nucleotide-
396 binding and leucine-rich repeat immune receptors (i.e. CNL or CCNL); dark grey triangles
397 correspond to BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
398 receptors (i.e. BNL or BCNL); red triangles are for TNLs, Toll/interleukin-1 receptor nucleotide-
399 binding and leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like
400 domain (i.e. TNL or TNLJ); green triangles correspond to RNLs, N-terminal RPW8-type coiled-
401 coil nucleotide-binding and leucine-rich repeat immune receptors; and orange triangles
402 correspond to NLR-IDs, nucleotide-binding and leucine-rich repeat immune receptors containing
403 non canonical “integrated domains”. Detailed domain architecture and abbreviations are as
404 shown in Figure S1.

405

406

407 **Figure 8. RenSeq allowed anchoring of NLR contigs corresponding to complete NLR**
408 **domain architecture in *Ipomoea trifida*.** Physical positions of *I. trifida* NLR contigs displayed
409 along the 15 chromosome diagrams for the *I. trifida* genome assembly. Each contig is
410 represented by a triangle marked with colors corresponding to the associated NLR architecture.
411 Blue triangles correspond to CNLs, coiled-coil nucleotide-binding and leucine-rich repeat
412 immune receptors (i.e. CNL or CCNL); dark grey triangles correspond to BNLs, Late-Blight R1
413 nucleotide-binding and leucine-rich repeat immune receptors (i.e. BNL or BCNL); red triangles

414 are for TNLs, Toll/interleukin-1 receptor nucleotide-binding and leucine-rich repeat immune
415 receptors with or without C-terminal jelly roll/Ig-like domain (i.e. TNL or TNLJ); green triangles
416 correspond to RNLs, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich
417 repeat immune receptors; and orange triangles correspond to NLR-IDs, nucleotide-binding and
418 leucine-rich repeat immune receptors containing non canonical “integrated domains”. Detailed
419 domain architecture and abbreviations are as shown in Figure S1.

420 **MATERIALS AND METHODS**

421 **Plant material, growth conditions and DNA extractions.** To capture the global and
422 local diversity of *Ipomoea batatas*, we included 32 hexaploid *I. batatas* genotypes and three
423 diploid wild *Ipomoea* sp. genotypes. We selected a set of 32 representative *I. batatas* genotypes
424 based on their importance and potential as parents of mapping populations. This *I. batatas* panel
425 included land races, cultivated, and advanced breeding lines. We also included three wild
426 *Ipomoea* species including *I. littoralis* (PI 573335), *I. triloba* (NCNSP0323), and *I. trifida*
427 (NCNSP0306); the former is considered the progenitor of cultivated sweetpotato (Table S5 and
428 Methods S1). Genomic DNA of young leaf tissues obtained from one to two plants per genotype
429 was extracted using NucleoBond HMW DNA Kit (MACHEREY - NAGEL Inc., PA, USA). We
430 extracted approximately 10 µg of genomic DNA per genotype to allow downstream library
431 preparation.

432

Table S5. Metadata information for 32 sweetpotato genotypes and 3 wild relatives included in our RenSeq experiment.

Genotype	GRKN ^a	Fusarium ^b	sRKN ^c	SSR ^d	Species	Source	Country	Release year	Ploidy
Apache	NA ^e	S	R	NA	batatas	USDA ^f	US	1959	6X ^k
Averre	S	R	S	MR	batatas	NCSU ^g	US	2017	6X
Bayou Belle	S	R	S	MS	batatas	LSU ^h	US	2013	6X
Beauregard	S	R	S	MR	batatas	LSU	US	1987	6X
Bellevue	S	R	R	R	batatas	LSU	US	2014	6X
Bwanjule	R	S	R	NA	batatas	NAARI ⁱ	Uganda	2001	6X
Centennial	R	MR	S	S	batatas	LSU	US	1960	6X
Covington	S	R	R	MR	batatas	NCSU	US	2005	6X
DM04-0226	NA	S	R	S	batatas	NCSU	US	NR ^j	6X
Jewel	R	R	R	HS	batatas	NCSU	US	1970	6X
L14-31	R	R	R	MR	batatas	LSU	US	NR	6X
Liberty	NA	S	HR	MS	batatas	USDA	US	2004	6X
MC14-0264	S	S	R	R	batatas	NCSU	US	NR	6X
MC14-0363	S	HR	R	MR	batatas	NCSU	US	NR	6X
Murasaki-29	R	R	R	MR	batatas	LSU	US	2008	6X
NC04-0531	S	R	R	MR	batatas	NCSU	US	2021	6X
NC07-0847	S	MR	R	MR	batatas	NCSU	US	NR	6X
NC09-0122	S	R	R	MR	batatas	NCSU	US	2022	6X
NC15-0480	S	HR	R	R	batatas	NCSU	US	NR	6X
NC15-0728B	NA	S	R	NA	batatas	NCSU	US	NR	6X
NC415	NA	S	MR	S	batatas	NCSU	US	NR	6X

433

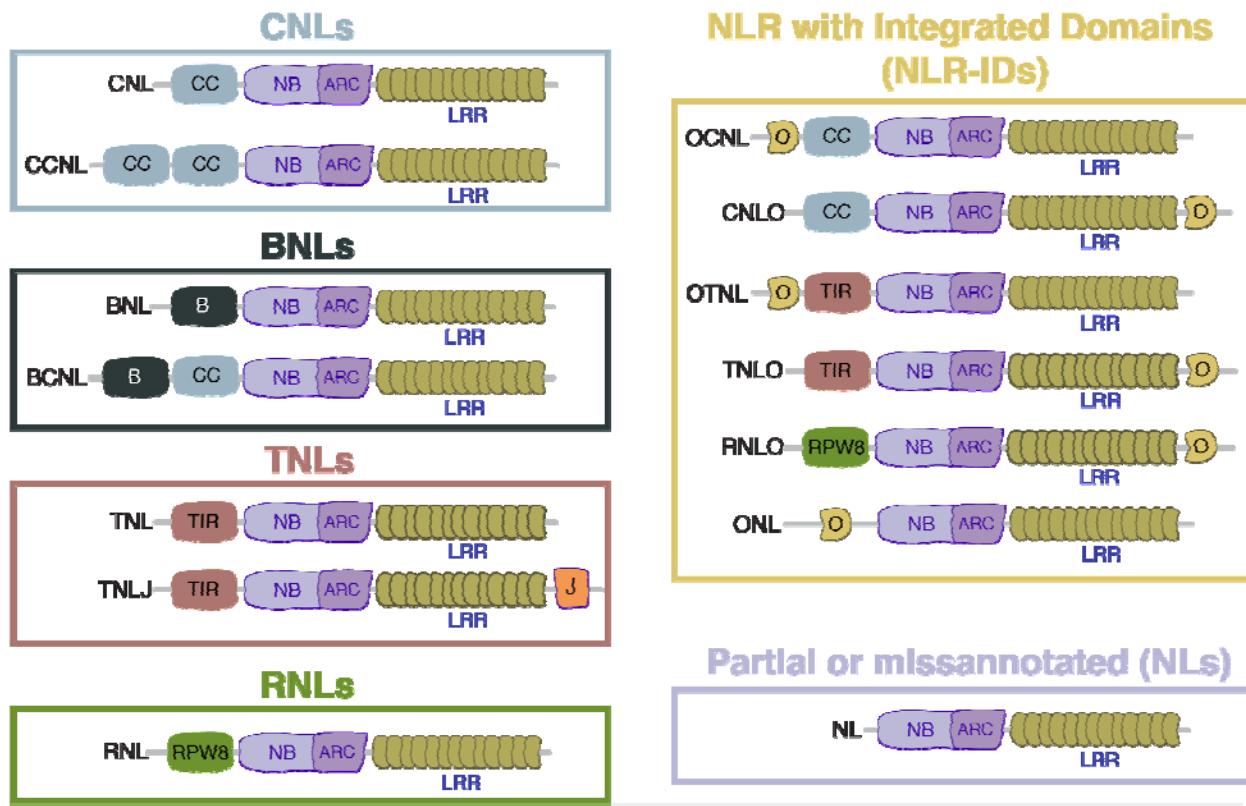
434

435 **Table S5** continue
436

NCP13-0057	NA	HR	R	NA	batatas	NCSU	US	NR	6X
NCP13-0315	S	MR	S	S	batatas	NCSU	US	2022	6X
Porto Rico	R	S	S	HS	batatas	USDA	US	1906	6X
Regal	R	R	R	S	batatas	USDA	US	1985	6X
Resisto	R	R	R	S	batatas	USDA	US	1983	6X
Ruddy	NA	S	R	S	batatas	USDA	US	1999	6X
Southern Delite	R	NA	R	S	batatas	USDA	US	1987	6X
Suwon 122	S	S	S	NA	batatas	NA	South Korea	NA	6X
Tanzania	R	R	R	NA	batatas	NAARI	Uganda	2001	6X
Tib 11	R	R	MR	S	batatas	IITA	Nigeria	NA	6X
White Bonita	S	MS	R	MS	batatas	LSU	US	NA	6X
<i>Ipomoea trifida</i>	NA	NA	NA	NA	trifida	NA	NA	NA	2X
<i>Ipomoea triloba</i>	NA	NA	NA	NA	triloba	NA	NA	NA	2X
<i>Ipomoea littoralis</i>	NA	NA	NA	NA	littoralis	NA	NA	NA	2X ¹

437 ^aGuava Root Knot Nematode phenotype; ^bFusarium wilt phenotype; ^cSouthern Root Knot Nematode phenotype; ^dStreptomyces Soil;
438 Rot phenotype; ^eNot applicable; ^fUnited States Department of Agriculture - Germplasm Resources Information Network; ^g
439 Sweetpotato and Potato Breeding at North Carolina State University; ^hLouisiana State University; ⁱNamulonge Agricultural and
440 Animal Production Research Institute; ^jNot released; ^kHexaploid; ^lDiploid

442 **NLR gene enrichment sequencing.** To design our target NLR bait library, we used
443 NLR-parser, a benchmarked NLR annotation tool, that provides sequence coordinates of
444 complete and partial NLRs in a set of query sequences (Steuernagel *et al.* 2015). We scanned the
445 available genomic resources for sweetpotato, including two diploid wild relatives (*I. trifida* and *I.*
446 *triloba*) high-confidence coding DNA sequences (cDNA), a transcriptome assembly from the
447 hexaploid genotype Beauregard, and cDNA from *I. nil* (Steuernagel *et al.* 2015). The cDNA
448 sequences represent spliced transcript models, including untranslated regions, and were chosen
449 to ensure comprehensive representation of gene models. Only complete putative NLR sequences
450 were used to create a bait library as described by Jupe *et al.* (2013). In brief, the library was
451 composed of 38,694 120-mer biotinylated RNA baits starting from the first nucleotide following
452 the predicted coding region and synthesized by Arbor Biosciences (Arbor Biosciences, Ann
453 Arbor, MI, USA). A total of 10 µg of high molecular weight (HMW) genomic DNA (gDNA)
454 from each genotype were fragmented with a sonicator to obtain 3-5 Kb fragments (Covaris Inc.,
455 Woburn, MA, USA). NLR capture followed MYbaits v4.0 protocol with modifications detailed
456 in Methods S1. To test the enrichment efficiency, we performed qPCRs on four NLR targets
457 included in the bait library and Actin gene. Quantitative PCRs (qPCRs) primers are listed in
458 Table S6 and protocols are detailed in Methods S1. Captured libraries that passed the enrichment
459 efficiency check (8 -10 cycle difference) were amplified using high fidelity KAPA enzyme 1
460 U/µL (Roche, Indianapolis, IN) and subsequently prepared for PacBio SMRT sequencing
461 following the NC State-GSL (Genomic Sciences Laboratory) standard recommendations for 4-10
462 kb library preparation. The libraries were sequenced using the Sequel PacBio platform at the NC
463 State GSL.


464 **Table S6.** Primers used for enrichment efficiency check qPCR.

465 <https://doi.org/10.6084/m9.figshare.21970805>

466 **Assembly, structural and functional NLR annotation.** Circular Consensus Sequencing

467 (CCS) reads were generated from raw subreads using *ccs* with three full passes and 90%
468 accuracy (PacBio, 2022). Each set of CCS reads from each genotype was processed to remove
469 the adapters and barcodes using Cutadapt (version 1.16) (Martin, 2011). To assess the number of
470 CCS reads containing at least one NLR bait sequence, we conducted a BLAST search of the
471 entire NLR bait library on each genotype CCS read library using BLAST+ (v.2.9.0). We also
472 calculated the number of reads containing NLR motifs using NLR-parser to scan DNA
473 sequences (Steuernagel *et al.* 2015). Only non-chimeric reads were assembled using Canu
474 (version 1.6) (Koren *et al.* 2017). We reported the number of contigs containing complete NLR
475 motifs as defined by NLR-annotator (version 1.0) (Zhang, 2020). All contigs were retained
476 during annotation to preserve haplotypic variants and ensure the accurate representation of allelic
477 diversity. A custom MAKER2 annotation pipeline was designed to predict NLR gene models
478 (version 2.31.9) (Holt and Yandell, 2011). Protein evidence from *I. trifida*, *I. triloba* and *I. nil*
479 was externally aligned using Exonerate (version 2.2.0). Transcript evidence consisted of
480 Beauregard ONT (Oxford Nanopore Technology) full-length cDNA reads generated from
481 combined leaf, fibrous, and storage root tissues (Buell *unpublished*). Gene predictions from
482 representative hexaploid (Beauregard) and diploid (*I. trifida*) were used to train AUGUSTUS
483 (Korf, 2004) and SNAP HMMs (Hidden Markov Models) (Stanke *et al.* 2008). Evidence and
484 gene model inspection was carried out in the Integrative Genomics Viewer software
485 (IGV)(version IGV 2.14.x) (Robinson *et al.* 2011). NLR protein models were classified based on
486 their multi-domain architecture using the benchmarked NLRtracker tool (Kourelis *et al.* 2021).
487 We arbitrarily set a threshold to select complete NLR protein models that consisted of: models
488 carrying the canonical NB-ARC, LRR, and one the N or C-terminal domains (CC, TIR, RPW8,

489 B, CID-J, and IDs) (Figure S1). The current notion of integrated domains suggest that NLRs
490 carrying IDs represent key pathogen effector targets, therefore we looked at their distribution in
491 our dataset by grouping them into 6 distinct subclasses: ONL, OCNL, CNLO, OTNL, TNLO,
492 and RNLO (Figure S1) (Cesari *et al.* 2014). Greater detail is provided in Methods S1. Table S4
493 lists the general abbreviation/naming convention for each of the 35 genotypes included in this
494 study.

495
496 **Figure S1. Modular representation of NLR domain architecture diversity examined in this**
497 **study.** NB-ARC, nucleotide-binding adaptor shared by APAF-1; CNLs, coiled-coil nucleotide-
498 binding and leucine-rich repeat immune receptors (i.e. CNL or CCNL); BNLs, Late-Blight R1
499 nucleotide-binding and leucine-rich repeat immune receptors (i.e. BNL or BCNL); TNLs,
500 Toll/interleukin-1 receptor nucleotide-binding and leucine-rich repeat immune receptors with or
501 without C-terminal jelly roll/Ig-like domain (i.e. TNL or TNLJ); RNLS, N-terminal RPW8-type
502 coiled-coil nucleotide-binding and leucine-rich repeat immune receptors; NLR-IDs, nucleotide-

503 binding and leucine-rich repeat immune receptors containing non canonical “integrated
504 domains”. The integrated domain may reside at the N- or C- terminus of the protein. We defined
505 partial or missannotated NLRs as those models comprise of NB-ARC and LRR domains (NLs).

506 **Table S4.** Gene model naming scheme. This table shows our abbreviation scheme and our fasta
507 header gene ID scheme. Notice that for example a gene id "iba_apo00730g01.1" includes the
508 following information: iba = Ipomoea batatas; apo= genotype apache; 00730 = contig number;
509 g01= specifies the gene number in the respective contig ex. g01 means this is the first gene in the
510 contig; .1 = remind us that this gene has a transcript sequence associated in a different file.

511 <https://doi.org/10.6084/m9.figshare.21899877>

512 **Comparison of NLR content in standard genome annotation.** To highlight the
513 differences in NLR annotation outcomes between standard genome annotation projects and
514 RenSeq/NLR tailored annotation pipelines, the proteomes from 8 plant species were downloaded
515 from individual genome project repositories (Methods S1). All protein sequences were scanned
516 through NLRtracker and categorized as NLRs if the sequence contained an NB-ARC domain and
517 at least 1 additional domain. We compared each genome annotation NLR count with that
518 reported for the corresponding RenSeq projects for the same plant species. The NLR counts from
519 RenSeq projects were collected as reported in each RenSeq study.

520 **NLR phylogenetic diversity in 6X and 2X *Ipomoea* spp.** To explore the diversity of
521 NLRs in the 32 *I. batatas* hexaploid and 3 diploid wild relatives, we constructed NLR
522 phylogenies for complete NLRs only. We employed NB-ARC domains extracted by NLRtracker
523 to produce a multiple sequence alignment (MSA). We included 35 refPlantNLRs that
524 encompasses major functionally annotated and phylogenetically diverse NLRs (Kourelis et al.
525 2021). The MSA was generated using the globalpair alignment in MAFFT (version 7.490)

526 (Rozewicki *et al.* 2019). A maximum-likelihood tree was inferred from the resulting MSA of 379
527 columns and 29,553 sequences using ExaML (version 3.0.17) (Kozlov *et al.* 2015). We inferred
528 6 randomized stepwise addition order parsimony-based starting trees required for ExaML using
529 RAxML (version 8.1.20) (Stamatakis, 2014). The final tree was visualized in the Interactive Tree
530 Of Life (iTOL) software (version 6.6) and arbitrarily rooted on the branch connecting TNLs and
531 non-TNL clades (Letunic and Bork, 2007). We pruned and extracted NLRs that clustered with
532 functionally characterized NRC0 and NRC1 NLRs and visualized the phylogeny in iTOL
533 (Methods S1).

534 **Phylogenetic distance analysis.** To evaluate NLR conservation between diploid wild
535 relatives (N = 3) and *I. batatas* genotypes (N= 32), we calculated phylogenetic distance among
536 complete CNLs as they represent the largest expanding NLR clade in our study. First, we
537 extracted NB-ARC deduplicated domains corresponding to complete CNLs in all 35 genotypes.
538 A total of 6 NB-ARC datasets were generated; three datasets represented the 3 wild relatives
539 individually (*I. trifida*, *I. triloba*, and *I. littoralis*) and the other 3 datasets included all 32
540 hexaploid *I. batatas* genotypes in combination with a single wild relative (32 + Itf; 32 + Itb; 32 +
541 lito). We aligned the NB-ARC amino acid sequences using MAFFT (version 7.505). We
542 generated an NLR phylogeny for each dataset described above. We calculated the phylogenetic
543 (patristic) distance between each pair of CNLs in the diploid wild relatives and their
544 corresponding closest CNLs in the 32 hexaploid sweetpotato genotypes. We visualized distance
545 against each diploid wild relative phylogeny in R using ggplot2 (Methods S1).

546 **Orthology inference, refinement, and classification.** We inferred orthologous groups
547 using a pairwise global amino acid similarity approach over the length of the NB-ARC domains
548 extracted by NLRtracker from each of the 35 genotypes using BLAST+ (v.2.9.0) (Methods S1).

549 For any pair of genes with a BLAST Evalue $> 1e-20$, we used the global alignment algorithm of
550 Needleman and Wunsch (1970) to align the two sequences: we then computed the pairwise
551 amino acid percent difference between the two sequences and stored this value in the matrix. We
552 created a graph where edges connected nodes (sequences) with percent identity $> 98.5\%$. We then
553 inferred orthogroups to be connected components within this graph. We kept orthogroups that
554 contained sequences assigned to complete NLR domains (RNLO, TNLO, CNLO, OCNL,
555 OTNL, ONL, BNL, BCNL, CNL, TNL, RNL, CCNL, and TNLJ) (Figure S1). The orthogroup
556 counts per genotype were converted into a presence/absence matrix to examine orthogroup
557 distribution among 32 sweetpotato genotypes and assign cloud, shell, and core categories. We
558 classified orthogroups into the cloud category if the orthogroups were shared by < 10 genotypes,
559 the shell category included orthogroups shared between 11 and 20 genotypes, finally the core
560 orthogroup category included orthogroups shared by > 21 genotypes. The co-occurrence of
561 orthogroups and their corresponding category across genotypes was visualized in R using
562 ggplot2.

563 **Genomic anchoring of complete NLRs in hexaploid Beauregard.** To examine the
564 chromosome level clustering and location of NLRs in hexaploid sweetpotato, we anchored the
565 hexaploid Beauregard RenSeq contigs into the recently haplotype-resolved chromosome-scale
566 Beauregard genome assembly (*pre-publication version*) (Methods S1). We visualized NLR
567 contigs along chromosomes using the R package RIdogram (version 0.2.2) (Hao *et al.* 2020).
568 We repeated this process for the *I. trifida* RenSeq contigs and its corresponding genome
569 assembly (Wu *et al.* 2018b).

570

571 **Data availability.** The CCS reads described here were deposited as raw data in the
572 National Center for Biotechnology Information under the BioProject accession [PRJNA946648](https://doi.org/10.5225/1/PRJNA946648).
573 The metadata table linking SRA numbers, Biosample, and sweetpotato genotype information
574 was deposited in fishare under the link (<https://doi.org/10.6084/m9.figshare.2787247>). All
575 resulting NLRtracker annotations were deposited in FigShare
576 (<https://figshare.com/account/home#/projects/157356>). All the assemblies were made available
577 to the community in figshare (<https://doi.org/10.6084/m9.figshare.27635481>). We provided the
578 FASTA file containing filtered and clustered NLR baits used in the sweetpotato RenSeq
579 experiment (<https://doi.org/10.6084/m9.figshare.25303204>).
580

581 **DISCUSSION**

582 In this study, we used RenSeq, a genome complexity reduction approach, to reveal a
583 myriad of NLRs harbored in the genomes of 32 hexaploid sweetpotato genotypes and three
584 diploid wild relatives. We captured, sequenced, and annotated a breadth of NLRs for all
585 genotypes, with minimal off-target rate (2.7 %) to produce state-of-the-art NLR annotations.
586 Early RenSeq projects obtained lower capture efficiency at the read and contig level which
587 speaks to the quality of our bait design, skilled library preparation, and improvements by the bait
588 library manufacturer (Giolai *et al.* 2016). When comparing genome projects versus SMRT
589 RenSeq and NLR tailored annotations, we captured and annotated more NLRs than the genome
590 annotation projects for *I. batatas*, *I. trifida*, and *I. triloba* (Wu *et al.* 2018b). Our annotation
591 pipeline utilized long read cDNA as evidence and avoided masking repetitive sequences during
592 gene model predictions. Repeat masking introduces bias when annotating highly repetitive NLRs
593 in Brassicaceae as documented by Bayer *et al.* (2018), who reported that *ab initio* annotation
594 programs failed to distinguish transposable elements fused with NLR genes. Given the ploidy
595 level (6X) and importance of this staple crop, our sweetpotato NLR repertoire exhibits great
596 potential to advance sweetpotato resistance breeding and highlights the benefit of deploying
597 RenSeq in other polyploid crops.

598 The CNL domain, which generally carries a coiled-coil motif at its N-terminus, ranked as
599 the most common NLR domain in all wild and cultivated genotypes. In agreement with this
600 observation, other Solanales species with high quality NLRomes also exhibit an expansion of
601 CNLs (Jupe *et al.* 2013; Stam *et al.* 2016; Witek *et al.* 2016; Seong *et al.* 2020, 2022). Recently,
602 Seong *et al.* (2020) reported the diversification of CNLs in 16 accessions from five different wild
603 tomato relatives, in addition to *Nicotiana benthamiana* and *Capsicum annuum*, also belonging to

604 the Solanales order. Our comparative phylogenetic analysis revealed separation of canonical
605 domains as evidenced by our unrooted phylogeny and supported the diverging evolutionary
606 history of the TNL and CNL clades as previously reported (Kourelis *et al.* 2021). Our NLR
607 phylogeny confirmed the expansion of CNLs with a large number of tips radiating beyond any
608 RefPlantNLRs included as reference. The majority of ONLs clustered within the expanding CNL
609 clades and few within the TNL clade. Our sweetpotato NLR phylogeny allows for placement of
610 several ONLs that would otherwise be unclassified.

611 The new paradigm of CNL networking categorizes NLRs into “sensor NLRs”, which
612 function in direct recognition of pathogen effectors and “helper NLRs”, which interact with the
613 sensors and mediate downstream immune signaling (Wu *et al.* 2018a; Adachi *et al.* 2019;
614 Contreras *et al.* 2022). As helper and sensor NLRs form well-supported phylogenetic clusters
615 (Wu *et al.* 2017), we aimed to identify NLRs belonging to either group using a comparative
616 phylogenetic clustering analysis with functionally characterized helper or sensor NLRs. We
617 observed the formation of two phylogenetically distinct sweetpotato NRC-H subclades from the
618 NRC0/1 references. Consistent with our observations, Adachi *et al.* (2023) identified the
619 formation of two small subclades apart from the NCR1/2/3, NRC4, and NRCX clades in a
620 phylogenetic analysis that included CNLs from *Arabidopsis*, sugar beet, tomato and *N.*
621 *benthamiana*. Helper NLRs are critical hubs in the NLR network (Białas *et al.* 2018). We
622 documented the expansion of *Ipomoea* NRC sensors and provided an example for an NRC
623 superclade experiencing diversification in the NRC-S subclades. Our clustering analysis aids in
624 identification of candidate NRC proteins that can be assessed for importance within the
625 sweetpotato NLR network via functional studies (Kourelis *et al.* 2022).

626 The domesticated sweetpotato NL Rome contained more than 1,000 NLRs for some
627 genotypes while its wild ancestor harbored roughly half in our study. Notably, other clonally
628 propagated polyploid crops harbor unusually large NL Romes with sizeable expansions (Jia *et al.*
629 2015; Tang *et al.* 2022). Such expansion of NLRs in apples is hypothesized to be a result of
630 domestication (Jia *et al.* 2015). Tang *et al.* (2022) postulated that the potato NL Rome expansion
631 may have co-evolved with the emergence of clonal propagation approximately 7.3 million years
632 ago. Our observations in cultivated sweetpotato and wild relative genotypes support this
633 hypothesis. While domestication secured an adaptable and staple sweetpotato crop, the
634 functional significance of harboring a large NL Rome remains unknown but worthy of
635 exploration. By conducting a presence/absence analysis of orthogroups across genotypes, we
636 confirmed that a third of orthogroups belonged to 10 or more genotypes, however, they
637 accounted for two thirds of the shared NLR counts. Only 5.9% of NLRs were uniquely observed
638 within a single genotype with a high proportion of NLRs shared across two or more genotypes
639 reflecting true conservation. This pattern of conservation in sweetpotato contrasts with both *A.*
640 *thaliana* and Solanaceae pan-NL Rome analyses that reported a limited core of NLRs across
641 genotypes accounting for only a small proportion of all NLR genes (Van de Weyer *et al.* 2019;
642 Seong *et al.* 2020; Barragan and Weigel, 2021).

643 Detection of invading pathogens and activation of immune response represents a major
644 role of NLRs in plants (Jones *et al.* 2016). Largely influenced by pathogen evolution, NLRs
645 exhibit patterns of rapid and dynamic evolution at the intraspecific level (Lee and Chae, 2020).
646 However, we lack knowledge on the level of divergence occurring among sweetpotato genotypes
647 and their wild relatives. Time calibrated phylogenies indicate that the hexaploid sweetpotato
648 likely diverged from its closest wild relative, *I. trifida*, over 1 million years ago with a significant

649 portion of sweetpotato diversity largely predating the onset of agriculture (Muñoz-Rodríguez *et*
650 *al.* 2018, 2019). Equipped with our curated CNL annotations, we examined the phylogenetic
651 distance among CNLs of sweetpotato genotypes and its ancestor, *I. trifida*. Our analysis revealed
652 that CNLs remain largely conserved within *I. batatas* genotypes and *I. trifida*, with only a few
653 CNLs diverging. This supports our OG analysis, which suggested a largely common NL Rome
654 among *I. batatas* genotypes. We postulate that an ancient wild relative likely provided the NLRs
655 that remain common across the majority of *I. batatas* genotypes indicating conservation of the
656 sweetpotato gene pool over domestication, clonal propagation, and breeding. In a meta-analysis
657 that included barley, cucurbits, and sunflower NLRs, Baggs *et al.* (2017) postulate that NLR
658 count variation between wild relatives and cultivated genotypes is a consequence of
659 domestication bottlenecks. In our study, we observed the opposite and hypothesize that
660 polyploidization and outcrossing breeding enriched NLRs in sweetpotato. Our gene models were
661 predicted using long read cDNA evidence suggesting transcriptionally active NLR genes.
662 However, some NLR genes may be epigenetically regulated (Lai and Eulgem, 2018) and/or
663 constitute the large functional redundancy required by the helper/sensor model proposed by Wu
664 *et al.* (2018). In addition, we discovered a small set of sweetpotato CNLs with notable patristic
665 distance from the 3 diploid wild relatives. These CNLs represent excellent candidates to measure
666 directional selection as they appear to be an important group of NLRs undergoing divergence
667 among some sweetpotato genotypes. Elucidating if the divergence observed among some
668 genotypes arose as modulation of inappropriate activation of NLR defense signaling by
669 surrounding microbes/pathogens in the environment could help identify NLRs acting as
670 susceptibility genes (Warmerdam *et al.* 2018). Perhaps, these CNLs activation becomes

671 detrimental for some genotypes if over-triggered, equating to energy loss or pathogen
672 recognition fatigue (Karasov *et al.* 2017).

673 Sweetpotato exhibit self-incompatibility, which results in high levels of heterozygosity
674 (Wu *et al.* 2018b). A recent study by Seong *et al.* (2022) suggested that for highly heterozygous
675 plant species, RenSeq fails to resolve the complexity of NLR diversity. Judging by our number
676 of gene models that correspond to truncated/partial NLRs (i.e. NLs, CNs, TNs), we agree with
677 their assertion. However, we hypothesize that for highly heterozygous hosts a more stringent
678 cutoff for complete NLR loci results in a highly accurate set of NLRs. We conclude this based on
679 the proportion of NLR counts in the diploid wild relative species included in our study. Focusing
680 on a set of complete NLR domains allowed us to obtain relatively high mapping rates (84%) of
681 our RenSeq data on the reference genome assemblies. Thus, we postulate that a higher level of
682 filtering can be applied to the gene models that contain canonical sets. We expected that some
683 models would be miss-annotated, but by focusing on models that are likely accurate based on
684 domain architecture and consistency across genotypes, we were able to improve our knowledge
685 of NLR diversity in heterozygous sweetpotato. Partial NLR models excluded from this study
686 may represent misannotated NLRs that could be prioritized for manual curation in future studies
687 in the same manner as Seong *et al.* (2022), Lin *et al.* (2022), and Van de Weyer *et al.* (2021)
688 implemented for *Solanum* wild relatives and *Arabidopsis* ecotypes.

689 Capturing NLRs using RenSeq facilitates anchoring NLR contigs to reference genomes
690 (Jupe *et al.* 2013; Arora *et al.* 2019). Here, we used RenSeq derived contigs to identify regions in
691 the chromosome scale assembly harboring NLR loci, focusing only on NLR loci predicted to
692 contain full-length NLRs. We observed heavy NLR clustering and separation by canonical
693 domain types with some CNL and TNL loci restricted to specific chromosomes. Anchoring NLR

694 contigs to chromosomes remains an intricate task that relies on the quality of sequences flanking
695 the NLR loci which largely depends on the length of the original molecules captured during the
696 enrichment step (Barragan and Weigel, 2021). A limitation of our approach is that there may be
697 other NLR loci with duplication events or lower mapping identity that we excluded but may
698 represent viable breeding targets. However, our NLR loci anchoring analysis allowed us to map
699 the vast majority of the full-length NLR loci representing a nearly complete map of NLRs in the
700 hexaploid sweetpotato. The NLR coordinates and clustering that we documented among
701 chromosomes could facilitate breeding efforts by improving resolution for QTLs of interest.

702 Future work leveraging synteny analyses and phylogenetic reconstruction could explore the
703 evolutionary dynamics of NLR loci across the different sub-genomes, particularly in relation to
704 wild relatives such as *I. trifida*. Our RenSeq panel included parents of mapping populations
705 segregating for resistance to different diseases. Subsequent RenSeq studies in combination with
706 bulked segregant analysis (BSA) may help identify NLRs conferring resistance to particular
707 pathogens (Lin *et al.* 2022). As a first step towards that goal, we conducted RenSeq in a
708 polyploid highly heterozygous staple crop, potentially contributing to NLR cataloging efforts in
709 orphan crops (Ye and Fan, 2021).

710 In conclusion, we described the NL Rome of hexaploid sweetpotato and its wild relatives,
711 identifying a highly conserved NLR catalog among sweetpotato genotypes. Our annotation and
712 phylogenetic analysis reveal an expanding CNL clade with potential sensor and helper NLRs to
713 functionally characterize. We recorded low divergence between *I. batatas* and *I. trifida* CNLs
714 also suggesting a conserved NL Rome. This study provided the nearly complete NLR loci
715 coordinates within the sweetpotato chromosome level assembly. Our RenSeq study provides a
716 catalog of NLR genes that will accelerate breeding for disease resistance and improve our

717 understanding of the evolutionary dynamics of NLRs in sweetpotato.

718

719 **ACKNOWLEDGMENTS**

720 We thank Dr. Zhangjun Fei for pre-publication access to the hexaploid genome assembly
721 that we used for NLR anchoring and clustering analysis. We want to thank Chris Heim for
722 assistance on maintenance of sweetpotato genotypes in the greenhouse. We specially thank
723 Kamil Witek and Brian Brunelle for helpful discussions on the implementation of RenSeq in our
724 study. We also thank Lisa Lowe for her assistance with parallel optimization of NLR assembly
725 and phylogeny software. We acknowledge the computing resources provided by NC State
726 University High Performance Computing Services Core Facility (RRID:SCR_022168). We also
727 thank Lindsey Becker for commenting on an earlier draft of the manuscript. The Vegetable
728 Pathology Lab at NC State University for their kind support, especially Katie Rose Ketzes and
729 Hunter Collins. This work was supported by the United States Department of Agriculture
730 (USDA), National Institute of Food and Agriculture (NIFA) Award 2168-207-2023550, the Bill
731 and Melinda Gates Foundation (INV-002971), the Foundation for Food and Agriculture
732 Research (FFAR) Fellowship Program, the NC Sweetpotato Commission, and the NC State
733 Hatch Project NC02890.

734

735 **AUTHOR CONTRIBUTIONS**

736 CHPR and LMQO designed the project. CHPR designed the bait library. CA, GCY, and
737 KP provided plant material. CHPR performed DNA extractions. CHPR, AS, DB, and MFS
738 performed RenSeq library construction. CHPR and KLC conducted assembly and structural
739 annotation. CRB and MK provided long read transcript evidence for gene annotation. CHPR,
740 KC, GCC, analyzed the data and results. CHPR wrote the manuscript.

741 **LITERATURE CITED**

742 Adachi H, Derevnina L, Kamoun S. 2019. NLR singletons, pairs, and networks: evolution,
743 assembly, and regulation of the intracellular immunoreceptor circuitry of plants. *Current*
744 *Opinion in Plant Biology* 50: 121–131.

745 Adachi H, Sakai T, Harant A, Pai H, Honda K, Toghani A, *et al.* 2023. An atypical NLR protein
746 modulates the NRC immune receptor network in *Nicotiana benthamiana*. *PLoS Genet* 19(1):
747 e1010500.

748 Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG. 2014. Defining the full
749 tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. *BMC Plant*
750 *Biology* 14: 120.

751 Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J,
752 Periyannan S, Singh N, *et al.* 2019. Resistance gene cloning from a wild crop relative by
753 sequence capture and association genetics. *Nature Biotechnology* 37: 139–143.

754 Arumuganathan K, Earle ED. 1991. Nuclear DNA content of some important plant species.
755 *Plant Molecular Biology Reporter* 9: 208–218.

756 Baggs, E., Dagdas, G. and Krasileva, K.V. 2017. NLR diversity, helpers and integrated domains:
757 making sense of the NLR IDentity. *Current opinion in plant biology* 38: 59-67.

758 Balint-Kurti P. 2019. The plant hypersensitive response: concepts, control and consequences.
759 *Molecular Plant Pathology* 20: 1163–1178.

760 Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F,
761 Gebhardt C. 2002. The R1 gene for potato resistance to late blight (*Phytophthora infestans*)
762 belongs to the leucine zipper/NBS/LRR class of plant resistance genes. *The Plant Journal: For*
763 *Cell and Molecular Biology* 30: 361–371.

764 Barragan AC, Weigel D. 2021. Plant NLR diversity: the known unknowns of pan-NLRomes.
765 *The Plant Cell* 33: 814–831.

766 Bayer PE, Edwards D, Batley J. 2018. Bias in resistance gene prediction due to repeat masking.
767 *Nature Plants* 4: 762–765.

768 Białas A, Zess E, De la Concepcion Jc, Franceschetti M, Pennington H, Yoshida K, Upson J,
769 Chanclud E, Wu CH, Langner T, *et al.* 2018. Lessons in Effector and NLR Biology of Plant-
770 Microbe Systems. *Molecular plant-microbe interactions* □: MPMI 31(1):34-45.

771 Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB. 2012. A Draft Genome
772 Sequence of *Nicotiana benthamiana* to Enhance Molecular Plant-Microbe Biology Research.
773 *Molecular Plant-Microbe Interactions* 25: 1523–1530.

774 Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated
775 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* 25: 1972–1973.

776 Cesari S, Bernoux M, Moncquet P, Kroj T, Dodds P. 2014. A novel conserved mechanism for
777 plant NLR protein pairs: the ‘integrated decoy’ hypothesis. *Frontiers in Plant Science* 5.

778 Chaisson, M.J., Tesler, G. 2012. Mapping single molecule sequencing reads using basic local
779 alignment with successive refinement (BLASR): application and theory. *BMC Bioinformatics*
780 13: 238.

781 Chakraborty J, Priya P, Dastidar SG, Das S. 2018. Physical interaction between nuclear
782 accumulated CC-NB-ARC-LRR protein and WRKY64 promotes EDS1 dependent Fusarium wilt
783 resistance in chickpea. *Plant Science* 276: 111–133.

784 Chellemi DO, Gamliel A, Katan J, Subbarao KV. 2016. Development and Deployment of
785 Systems-Based Approaches for the Management of Soilborne Plant Pathogens. *Phytopathology*
786 106: 216–225.

787 Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH, Cruces AV, Kourvelis J, Ahn H-K, Lee
788 K-T, Wu C-H, *et al.* 2022. Sensor NLR immune proteins activate oligomerization of their NRC
789 helpers in response to plant pathogens. *The EMBO Journal* 42: e111519.

790 Derevnina L, Contreras MP, Adachi H, Upson J, Cruces AV, Xie R, Sklenar J, Menke FLH,
791 Mugford ST, MacLean D, *et al.* 2021. Plant pathogens convergently evolved to counteract
792 redundant nodes of an NLR immune receptor network. *PLOS Biology* 19: e3001136.

793 Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, McKain MR, Smith RD, Teresi SJ,
794 Nelson ADL, Wai CM, *et al.* 2019. Origin and evolution of the octoploid strawberry genome.
795 *Nature Genetics* 51: 541–547.

796 Fajardo DA, Ramaraj T, Devitt N, Tang HB, Cameron CT, Brummer EC, Town CD, Udvardi
797 MK, Monteros MJ, Farmer AD. 2016. Sequencing and genome assembly of cultivated alfalfa at
798 the diploid level (CADL) *Medicago sativa*. In: Proceedings of plant and animal genome
799 conference XXIV, San Diego, CA.

800 FAOSTAT. 2022. Global food production by 2020.

801 Giolai M, Paajanen P, Verweij W, Percival-Alwyn L, Baker D, Witek K, Jupe F, Bryan G, Hein
802 I, Jones JDG, *et al.* 2016. Targeted capture and sequencing of gene-sized DNA molecules.
803 *BioTechniques* 61: 315–322.

804 GitHub. 2022. BioinformaticsArchive/blasr.

805 Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, Chen J. 2020. RIDeogram: drawing SVG graphics to
806 visualize and map genome-wide data on the idiograms. *PeerJ. Computer Science* 6: e251.

807 Henry PM, Pastrana AM, Leveau JHJ, Gordon TR. 2019. Persistence of *Fusarium oxysporum* f.
808 sp. *fragariae* in Soil Through Asymptomatic Colonization of Rotation Crops. *Phytopathology*
809 109: 770-779

810 Holmes GJ, Mansouripour SM, Hewavitharana SS. 2020. Strawberries at the Crossroads:
811 Management of Soilborne Diseases in California Without Methyl Bromide. *Phytopathology* 110:
812 956–968.

813 Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management
814 tool for second-generation genome projects. *BMC bioinformatics* 12: 491.

815 Hosmani PS, Flores-Gonzalez M, Geest H van de, Maumus F, Bakker LV, Schijlen E, Haarst J
816 van, Cordewener J, Sanchez-Perez G, Peters S, *et al.* 2019. An improved de novo assembly and
817 annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity
818 ligation and optical maps. *bioRxiv*: 767764.

819 Hulse-Kemp AM, Maheshwari S, Stoffel K, Hill TA, Jaffe D, Williams SR, Weisenfeld N,
820 Ramakrishnan S, Kumar V, Shah P, *et al.* 2018. Reference quality assembly of the 3.5-Gb
821 genome of *Capsicum annuum* from a single linked-read library. *Horticulture Research* 5: 1–13.

822 Jia, Y., Yuan, Y., Zhang, Y., Yang, S. and Zhang, X. 2015. Extreme expansion of NBS-encoding
823 genes in Rosaceae. *BMC genetics* 16: 1-12.

824 Jones JDG, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in
825 plants and animals. *Science* 354: aaf6395.

826 Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, Maclean D, Cock PJ,
827 Leggett RM, Bryan GJ, *et al.* 2013. Resistance gene enrichment sequencing (RenSeq) enables
828 reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of
829 resistance loci in segregating populations. *The Plant Journal* 76: 530–544.

830 Kaloshian I, Teixeira M. 2019. Advances in Plant–Nematode Interactions with Emphasis on the
831 Notorious Nematode Genus *Meloidogyne*. *Phytopathology* 109: 1988–1996.

832 Karasov TL, Chae E, Herman JJ, Bergelson J. 2017. Mechanisms to Mitigate the Trade-Off
833 between Growth and Defense. *The Plant Cell* 29: 666–680.

834 Kim J, Buell CR. 2015. A Revolution in Plant Metabolism: Genome-Enabled Pathway
835 Discovery. *Plant Physiology* 169: 1532–1539.

836 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable
837 and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome*
838 *Research* 27: 722–736.

839 Korf I. 2004. Gene finding in novel genomes. *BMC bioinformatics* 5: 59.

840 Kourelis J, Contreras MP, Harant A, Pai H, Lüdke D, Adachi H, Derevnina L, Wu C-H, Kamoun
841 S. 2022. The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused
842 by the cell-surface receptor Cf-4. *PLOS Genetics* 18: e1010414.

843 Kourelis J, van der Hoorn RAL. 2018. Defended to the Nines: 25 Years of Resistance Gene
844 Cloning Identifies Nine Mechanisms for R Protein Function. *The Plant Cell* 30: 285–299.

845 Kourelis J, Sakai T, Adachi H, Kamoun S. 2021. RefPlantNLR is a comprehensive collection of
846 experimentally validated plant disease resistance proteins from the NLR family. *PLOS Biology*
847 19: e3001124.

848 Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. 2019. Transcriptome
849 assembly from long-read RNA-seq alignments with StringTie2. *Genome Biology* 20: 278.

850 Kozlov AM, Aberer AJ, Stamatakis A. 2015. ExaML version 3: a tool for phylogenomic
851 analyses on supercomputers. *Bioinformatics* 31: 2577–2579.

852 Lai, Y. and Eulgem, T. 2018. Transcript-level expression control of plant NLR genes.
853 *Molecular plant pathology* 19:267-1281.

854

855 Land CJ, Vallad GE, Desaeger J, Van Santen E, Noling J, Lawrence K. 2022. Supplemental
856 Fumigant Placement Improves Root Knot and Fusarium Wilt Management for Tomatoes
857 Produced on a Raised-Bed Plasticulture System in Florida's Myakka Fine Sand. *Plant Disease*
858 106: 73–78.

859 Lee RRQ, Chae E. 2020. Variation Patterns of NLR Clusters in *Arabidopsis thaliana* Genomes.
860 *Plant Communications* 1: 100089.

861 Lee S, Paul NC, Park W, Yu G-D, Park J-C, Chung M-N, Nam S-S, Han S-K, Lee H-U, Goh S,
862 *et al.* 2019. Screening of Selected Korean Sweetpotato (*Ipomoea batatas*) Varieties for Fusarium
863 Storage Root Rot (*Fusarium solani*) Resistance. *The Korean Journal of Mycology* 47: 407–416.

864 Letunic I, Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree
865 display and annotation. *Bioinformatics* 23: 127–128.

866 Lewthwaite SL, Wright PJ, Triggs CM. 2011. Sweetpotato cultivar susceptibility to infection by
867 *Ceratocystis fimbriata*. *New Zealand Plant Protection* 64: 1–6.

868 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34: 3094–
869 3100.

870 Li L, Weigel D. 2021. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a
871 Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. *Annual Review of*
872 *Phytopathology* 59: 213–237.

873 Lin, X., Jia, Y., Heal, R., Prokchorchik, M., Sindalovskaya, M., Olave-Achury, A., Makechemu,
874 M., et al. 2022. The *Solanum americanum* pangenome and effectoromics reveal new resistance
875 genes against potato late blight. *bioRxiv*, 2022-08.

876

877 Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, Logemann E, Yu D, Wang J, Jirschitzka J, et
878 al. 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a
879 holoenzyme. *Science* 370: eabe3069.

880 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
881 *EMBnet.journal* 17: 10–12.

882 Michelmore R, Coaker G, Bart R, Beattie G, Bent A, Bruce T, Cameron D, Dangl J, Dinesh-
883 Kumar S, Edwards R, et al. 2017. Foundational and Translational Research Opportunities to
884 Improve Plant Health. *Molecular Plant-Microbe Interactions* 30: 515–516.

885 Miller NF, Standish JR, Quesada-Ocampo LM. 2020. Sensitivity of *Fusarium oxysporum* f. sp.
886 *niveum* to prothioconazole and pydiflumetofen *in vitro* and efficacy for Fusarium wilt
887 management in watermelon. *Plant Health Progress*. 21: 13–8.

888 Muñoz-Rodríguez P, Carruthers T, Wood JRI, Williams BRM, Weitemier K, Kronmiller B, Ellis
889 D, Anglin NL, Longway L, Harris SA, et al. 2018. Reconciling Conflicting Phylogenies in the
890 Origin of Sweet Potato and Dispersal to Polynesia. *Current biology: CB* 28: 1246–1256.e12.

891 Muñoz-Rodríguez P, Carruthers T, Wood JRI, Williams BRM, Weitemier K, Kronmiller B,
892 Goodwin Z, Sumadijaya A, Anglin NL, Filer D, et al. 2019. A taxonomic monograph of *Ipomoea*
893 integrated across phylogenetic scales. *Nature Plants* 5: 1136–1144.

894 Needleman SB, Wunsch CD. 1970. A general method applicable to the search for similarities in
895 the amino acid sequence of two proteins. *Journal of Molecular Biology* 48: 443–453.

896 Oke OL, Redhead J, Hussain MA. 1990. Roots, tubers, plantains and bananas in human nutrition.
897 *FAO food and nutrition series* 24.

898 Oloka BM, da Silva Pereira G, Amankwaah VA, Mollinari M, Pecota KV, Yada B, Olukolu BA,
899 Zeng Z-B, Craig Yencho G. 2021. Discovery of a major QTL for root-knot nematode
900 (*Meloidogyne incognita*) resistance in cultivated sweetpotato (*Ipomoea batatas*). *Theoretical and*
901 *Applied Genetics* 134: 1945–1955.

902 PacBio. 2022. CCS Home. *CCS Docs*.

903 Parada-Rojas CH, Quesada-Ocampo LM. 2021. Uncovering the NLR Family of Disease
904 Resistance Genes in Cultivated Sweetpotato and Wild Relatives. In: Spadaro D, Droby S,
905 Gullino ML, eds. Postharvest Pathology: Next Generation Solutions to Reducing Losses and
906 Enhancing Safety. Cham: Springer International Publishing, 41–61.

907 Parada-Rojas CH, Pecota K, Almeyda C, Yencho GC, Quesada-Ocampo LM. 2021. Sweetpotato
908 Root Development Influences Susceptibility to Black Rot Caused by the Fungal Pathogen
909 *Ceratocystis fimbriata*. *Phytopathology* 111: 1660–1669.

910 Parada-Rojas CH, Quesada-Ocampo LM. 2022. Phytophthora capsici Populations Are Structured
911 by Host, Geography, and Fluopicolide Sensitivity. *Phytopathology*. 112: 1559–67.

912 Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell CR.
913 2020. Construction of a chromosome-scale long-read reference genome assembly for potato.
914 *GigaScience* 9: giaa100.

915 Quesada-Ocampo LM, Parada-Rojas CH, Hansen Z, Vogel G, Smart C, Hausbeck MK, Carmo
916 RM, Huitema E, Naegele RP, *et al.* 2023. *Phytophthora capsici*: Recent Progress on
917 Fundamental Biology and Disease Management 100 Years After Its Description. *Annual Review*
918 *of Phytopathology* 61: 3.1–3.24.

919 Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.
920 2011. Integrative Genomics Viewer. *Nature biotechnology* 29: 24–26.

921 Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated
922 protein sequence and structural alignment. *Nucleic Acids Research* 47: W5–W10.

923 Rutter WB, Wadl PA, Mueller JD, Agudelo P. 2021. Identification of Sweet Potato Germplasm
924 Resistant to Pathotypically Distinct Isolates of *Meloidogyne enterolobii* from the Carolinas.
925 *Plant Disease* 105: 3147–3153.

926 Sanogo S, Lamour K, Kousik S, Lozada DN, Parada-Rojas CH, Quesada-Ocampo L, Wyenandt
927 CA, Babadoost M, et al. 2022 *Phytophthora capsici*, 100 Years Later: Research Mile Markers
928 from 1922 to 2022. *Phytopathology*. in press.

929 Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y,
930 Shibata D, Aoki K, et al. 2012. The tomato genome sequence provides insights into fleshy fruit
931 evolution. *Nature* 485: 635–641.

932 Schwarz TR, Li C, Yencho GC, Pecota KV, Heim CR, Davis EL. 2021. Screening Sweetpotato
933 Genotypes for Resistance to a North Carolina Isolate of *Meloidogyne enterolobii*. *Plant Disease*
934 105: 1101–1107.

935 Scruggs AC, Quesada-Ocampo LM. 2016. Etiology and epidemiological conditions promoting
936 Fusarium root rot in sweetpotato. *Phytopathology*. 106: 909-919.

937 Seong K, Seo E, Witek K, Li M, Staskawicz B. 2020. Evolution of NLR resistance genes with
938 noncanonical N-terminal domains in wild tomato species. *New Phytologist* 227: 1530–1543.

939 Seong K, Shaw CL, Seo E, Li M, Krasileva KV, Staskawicz B. 2022. A draft genome assembly
940 for the heterozygous wild tomato *Solanum habrochaites* highlights haplotypic structural
941 variations of intracellular immune receptors. : 2022.01.21.477156.

942 Shao Z-Q, Xue J-Y, Wu P, Zhang Y-M, Wu Y, Hang Y-Y, Wang B, Chen J-Q. 2016. Large-
943 Scale Analyses of Angiosperm Nucleotide-Binding Site-Leucine-Rich Repeat Genes Reveal
944 Three Anciently Diverged Classes with Distinct Evolutionary Patterns. *Plant Physiology* 170:
945 2095–2109.

946 da Silva Pereira G, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Diaz F, Mosquera V,
947 Gruneberg WJ, Khan A, Buell CR, et al. 2020. Multiple QTL Mapping in Autopolyploids: A
948 Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib
949 Population. *Genetics* 215: 579–595.

950 Stam R, Scheikl D, Tellier A. 2016. Pooled Enrichment Sequencing Identifies Diversity and
951 Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population. *Genome*
952 *Biology and Evolution* 8: 1501–1515.

953 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
954 large phylogenies. *Bioinformatics* 30: 1312–1313.

955 Stanke M, Diekhans M, Baertsch R, Haussler D. 2008. Using native and syntenically mapped
956 cDNA alignments to improve de novo gene finding. *Bioinformatics (Oxford, England)* 24: 637–
957 644.

958 Steidele, C.E., Stam, R. 2021. Multi-omics approach highlights differences between RLP classes
959 in *Arabidopsis thaliana*. *BMC Genomics* 22: 1-14.

960 Steuernagel B, Jupe F, Witek K, Jones JDG, Wulff BBH. 2015. NLR-parser: rapid annotation of
961 plant NLR complements. *Bioinformatics* 31: 1665–1667.

962 Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, Duan N, Khan A, Ban S, Xu K, Cheng L, et
963 al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic
964 history of apple domestication. *Nature Genetics* 52: 1423–1432.

965 TAIR. 2022. The *Arabidopsis* Information Resource.

966 Tamborski J, Krasileva KV. 2020. Evolution of Plant NLRs: From Natural History to Precise
967 Modifications. *Annual Review of Plant Biology* 71: 355–378.

968 Tang D, Jia Y, Zhang J, et al. 2022. Genome evolution and diversity of wild and cultivated
969 potatoes. *Nature* 606 :535-541

970 THE INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM (IWGSC),
971 Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak CJ, Choulet F, Distelfeld
972 A, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference
973 genome. *Science* 361: eaar7191.

974 Truong VD, Avula RY, Pecota KV, Yencho GC. 2018. Sweetpotato production, processing, and
975 nutritional quality. *Handbook of vegetables and vegetable processing* 2.

976 Tsuchiya T. 2014. Self-Incompatibility System of *Ipomoea trifida*, a Wild-Type Sweet Potato.
977 In: Sawada H, Inoue N, Iwano M, eds. Sexual Reproduction in Animals and Plants. Tokyo:
978 Springer Japan, 305–325.

979 Van de Weyer A-L, Monteiro F, Furzer OJ, Nishimura MT, Cevik V, Witek K, Jones JDG,
980 Dangl JL, Weigel D, Bemm F. 2019. A Species-Wide Inventory of NLR Genes and Alleles in
981 *Arabidopsis thaliana*. *Cell* 178: 1260-1272.e14.

982 Wang W, Chen L, Fengler K, Bolar J, Llaca V, Wang X, Clark CB, Fleury TJ, Myrvold J, Oneal
983 D, *et al.* 2021. A giant NLR gene confers broad-spectrum resistance to *Phytophthora sojae* in
984 soybean. *Nature Communications* 12: 6263.

985 Warmerdam S, Sterken MG, van Schaik C, Oortwijn MEP, Sukarta OCA, Lozano □ Torres JL,
986 Dicke M, Helder J, Kammenga JE, Goverse A, *et al.* 2018. Genome □ wide association mapping
987 of the architecture of susceptibility to the root □ knot nematode *Meloidogyne incognita* in
988 *Arabidopsis thaliana*. *The New Phytologist* 218: 724–737.

989 Witek K, Jupe F, Witek AI, Baker D, Clark MD, Jones JDG. 2016. Accelerated cloning of a
990 potato late blight–resistance gene using RenSeq and SMRT sequencing. *Nature Biotechnology*
991 34: 656–660.

992 Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S. 2017.
993 NLR network mediates immunity to diverse plant pathogens. *Proceedings of the National
994 Academy of Sciences* 114: 8113–8118.

995 Wu C-H, Derevnina L, Kamoun S. 2018a. Receptor networks underpin plant immunity. *Science*
996 360: 1300–1301.

997 Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet DC, Olukolu BA,
998 Wang H, *et al.* 2018b. Genome sequences of two diploid wild relatives of cultivated sweetpotato
999 reveal targets for genetic improvement. *Nature Communications* 9: 4580.

1000 Yang J-W, Nam S-S, Lee H-U, Choi K-H, Hwang S-G, Paul NC. 2018. Fusarium root rot caused
1001 by *Fusarium solani* sweet potato (*Ipomoea batatas*) in South Korea. *Canadian Journal of
1002 Plant Pathology* 40: 90–95.

1003 Ye C-Y, Fan L. 2021. Orphan Crops and their Wild Relatives in the Genomic Era. *Molecular*
1004 *Plant* 14: 27–39.

1005 Zhang W. 2020. NLR-Annotator: A Tool for De Novo Annotation of Intracellular Immune
1006 Receptor Repertoire. *Plant Physiology* 183: 418–420.

1007 **TABLE LEGENDS**

1008

1009 **Table S1.** Enrichment quality assessment based on number and percentage of circular consensus
1010 reads (CCS) containing 1 or more target baits in a range of 96 base pairs at 80% sequence
1011 identity. This table also includes the number of reads identified by NLRparser as containing a
1012 complete or partial set of NLR motifs. <https://doi.org/10.6084/m9.figshare.21899886>

1013 **Table S2.** Assembly statistics and NLR-Annotator based counts for 32 sweetpotato and 3 wild
1014 relative genotypes. <https://doi.org/110.6084/m9.figshare.21899898>

1015 **Table S3.** NLRtracker output for each catalog of annotated NLRs in each of the 32 sweetpotato
1016 and 3 wild relative genotypes. <https://doi.org/10.6084/m9.figshare.21899910>

1017 **Table S4.** Gene model naming scheme. This table shows our abbreviation scheme and our fasta
1018 header gene ID scheme. Notice that for example a gene id "iba_ap00730g01.1" includes the
1019 following information: iba = Ipomoea batatas; ap0 = genotype apache; 00730 = contig number;
1020 g01 = specifies the gene number in the respective contig ex. g01 means this is the first gene in the
1021 contig; .1 = reminds us that this gene has a transcript sequence associated in a different file.

1022 <https://doi.org/10.6084/m9.figshare.21899877>

1023 **Table S5.** Metadata information for 32 sweetpotato genotypes and 3 wild relatives included in
1024 our RenSeq experiment.

1025 **Table S6.** Primers used for enrichment efficiency check qPCR.

1026 <https://doi.org/10.6084/m9.figshare.21970805>

1027 **FIGURE LEGENDS**

1028 **Figure 1. RenSeq improves NLR annotation. Species tree of a subset of Solanales species**

1029 **NLR annotations using RenSeq and Genome annotations.** The numbers of nucleotide-binding
1030 and leucine-rich repeat immune receptors (NLRs) annotated per plant species as reported by each
1031 RenSeq effort versus the predicted annotation via NLRtracker from each proteome. **(a)** The
1032 species tree indicates the phylogenetic relationship of the species analyzed. The number of NLRs
1033 as annotated by NLRtracker is shown in the stack bar plot with green and brown bars
1034 representing RenSeq annotated and genome annotated NLRs for each species, respectively. **(b)**
1035 Genome statistics and sequencing technology used for both Genome and RenSeq projects.

1036 **Figure 2. Sweetpotato and wild relatives genomes harbor a diverse catalog of NLRs.** Stack

1037 bar plot distribution of 32 sweetpotato genotypes and three *Ipomoea* spp. complete NLRs as
1038 annotated by NLRtracker. The number of each domain architecture for each genotype is plotted
1039 as a stack plot. CNLs, coiled-coil nucleotide-binding and leucine-rich repeat immune receptors
1040 (i.e. CNL or CCNL); BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
1041 receptors (i.e. BNL or BCNL); TNLs, Toll/interleukin-1 receptor nucleotide-binding and
1042 leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like domain (i.e.
1043 TNL or TNLJ); RNLs, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich
1044 repeat immune receptors; NLR-IDs, nucleotide-binding and leucine-rich repeat immune
1045 receptors containing non canonical “integrated domains”. Detailed domain architecture and
1046 abbreviations are as shown in Figure S1.

1047 **Figure 3. Sweetpotato and wild relatives exhibit expanded diversity of CNLs.** Phylogenetic

1048 diversity of sweetpotato and wild relative NLRs. NB-ARC domain phylogeny of 29,553 amino
1049 acid sequences inferred using the Maximum Likelihood method based on the Jones Taylor

1050 Thornton (JTT) and Per Site Rate (PSR) models in ExaML. Domain architecture abbreviations
1051 correspond to CNLs, coiled-coil nucleotide-binding and leucine-rich repeat immune receptors
1052 (i.e. CNL or CCNL); BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
1053 receptors (i.e. BNL or BCNL); TNLs, Toll/interleukin-1 receptor nucleotide-binding and
1054 leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like domain (i.e.
1055 TNL or TNLJ); RNLs, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich
1056 repeat immune receptors; NLR-IDs, nucleotide-binding and leucine-rich repeat immune
1057 receptors containing non canonical “integrated domains” as shown in Figure S1. The tree
1058 branches are rooted on the branch connecting TNL and non-TNL clades. The major TNL, CNL,
1059 and RNL clades are indicated by branch colors. The color code of the outer ring shapes indicates
1060 to which of the non canonical NLR architectures (i.e. NLR-IDs or BNLs) the corresponding tips
1061 belong to and the placement of RefPlantNLRs (Kourelis *et al.* 2021). Branch scale represents the
1062 number of substitutions per site.

1063 **Figure 4. Sweetpotato genotypes and wild relatives harbor a compact NRC-H subclade.**
1064 Phylogeny of sweetpotato and wild relative CNLs. The Maximum Likelihood tree includes only
1065 NB-ARC sequences corresponding to complete CNLs as predicted by NLRtracker. Branches
1066 predicted to correspond to major NLR required for cell death – helper and sensor clades (NRC-
1067 H, NRC-S) were highlighted based on phylogenetic placement of NRC0/1 (helpers-purple) and
1068 Hero-A, Rpi-amr3i, and Bs2 (sensors-green), respectively. Tips linked to CNLs containing
1069 integrated domains are labeled with yellow dots. The purple phylogenetic tree (right) includes
1070 only sequences from the indicated NRC-H lineage (left), underlining the *I. batatas*, *I. trifida*, *I.*
1071 *triloba* and *I. littoralis* sequences phylogenetically predicted as helper NLRs. Domain
1072 architecture and abbreviations are as shown in Figure S1.

1073 **Figure 5. NLRs in sweetpotato present high conservancy.** Orthogroup (OG) size distribution
1074 among 32 sweetpotato genotypes. Top line graph indicates the distribution of OGs shared by any
1075 of the 32 sweetpotato genotypes. NLR domain types associated with corresponding OGs are
1076 denoted by line colors. Percentage of OGs shared by genotypes in each category, Cloud (1 – 10
1077 genotypes), Shell (10 – 20 genotypes) and Core (21 – 32 genotypes) are shown on top. Bottom
1078 line graphs show OG category specific distribution of sweetpotato NLRs in cloud (left), shell
1079 (center), and core (right). Percentage of NLR genes corresponding to each category is indicated
1080 on top. Asterisk (*) denotes that the NLR gene percentage was calculated excluding singletons.
1081 Domain architecture and abbreviations are as shown in Figure S1.

1082 **Figure 6. Widespread CNL conservation between *I. trifida* and *I. batatas* genotypes (N= 32).**
1083 Phylogenetic (patristic) distance of two CNL nodes between *I. trifida* and each *I. batatas*
1084 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each
1085 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
1086 pair. Domain architecture and abbreviations are as shown in Figure S1.

1087 **Figure 7. RenSeq allowed anchoring of NLR contigs corresponding to complete NLR**
1088 **domain architecture in *Ipomoea batatas*.** Physical positions of sweetpotato genotype
1089 Beauregard NLR contigs displayed along the 90 chromosome diagrams for the Beauregard
1090 genome assembly. Each contig is represented by a triangle marked with colors corresponding to
1091 the associated NLR architectures. Blue triangles correspond to CNLs, coiled-coil nucleotide-
1092 binding and leucine-rich repeat immune receptors (i.e. CNL or CCNL); dark grey triangles
1093 correspond to BNLs, Late-Blight R1 nucleotide-binding and leucine-rich repeat immune
1094 receptors (i.e. BNL or BCNL); red triangles are for TNLs, Toll/interleukin-1 receptor nucleotide-
1095 binding and leucine-rich repeat immune receptors with or without C-terminal jelly roll/Ig-like

1096 domain (i.e. TNL or TNLJ); green triangles correspond to RNLS, N-terminal RPW8-type coiled-
1097 coil nucleotide-binding and leucine-rich repeat immune receptors; and orange triangles
1098 correspond to NLR-IDs, nucleotide-binding and leucine-rich repeat immune receptors containing
1099 non canonical “integrated domains”. Detailed domain architecture and abbreviations are as
1100 shown in Figure S1.

1101 **Figure 8. RenSeq allowed anchoring of NLR contigs corresponding to complete NLR**
1102 **domain architecture in *Ipomoea trifida*.** Physical positions of *I. trifida* NLR contigs displayed
1103 along the 15 chromosome diagrams for the *I. trifida* genome assembly. Each contig is
1104 represented by a triangle marked with colors corresponding to the associated NLR architecture.
1105 Blue triangles correspond to CNLS, coiled-coil nucleotide-binding and leucine-rich repeat
1106 immune receptors (i.e. CNL or CCNL); dark grey triangles correspond to BNLs, Late-Blight R1
1107 nucleotide-binding and leucine-rich repeat immune receptors (i.e. BNL or BCNL); red triangles
1108 are for TNLS, Toll/interleukin-1 receptor nucleotide-binding and leucine-rich repeat immune
1109 receptors with or without C-terminal jelly roll/Ig-like domain (i.e. TNL or TNLJ); green triangles
1110 correspond to RNLS, N-terminal RPW8-type coiled-coil nucleotide-binding and leucine-rich
1111 repeat immune receptors; and orange triangles correspond to NLR-IDs, nucleotide-binding and
1112 leucine-rich repeat immune receptors containing non canonical “integrated domains”. Detailed
1113 domain architecture and abbreviations are as shown in Figure S1.

1114

1115 **Figure S1. Modular representation of NLR domain architecture diversity examined in this**
1116 **study.** NB-ARC, nucleotide-binding adaptor shared by APAF-1; CNLS, coiled-coil nucleotide-
1117 binding and leucine-rich repeat immune receptors (i.e. CNL or CCNL); BNLs, Late-Blight R1

1118 nucleotide-binding and leucine-rich repeat immune receptors (i.e. BNL or BCNL); TNLs,
1119 Toll/interleukin-1 receptor nucleotide-binding and leucine-rich repeat immune receptors with or
1120 without C-terminal jelly roll/Ig-like domain (i.e. TNL or TNLJ); RNLs, N-terminal RPW8-type
1121 coiled-coil nucleotide-binding and leucine-rich repeat immune receptors; NLR-IDs, nucleotide-
1122 binding and leucine-rich repeat immune receptors containing non canonical “integrated
1123 domains”. The integrated domain may reside at the N- or C- terminus of the protein. We defined
1124 partial or missannotated NLRs as those models comprise of NB-ARC and LRR domains (NLs).

1125 **Figure S2 Sweetpotato and wild relative genomes harbor a diverse catalog of NLRs.** NLRs
1126 grouped in the canonical domains TNL, CNL, and RNL domain architecture and non canonical
1127 BNLs and NLR-IDs. Counts for each genotype are plotted as black circles and densities shown
1128 as half violin plots. Domain architecture and abbreviations are as shown in Figure S1.

1129 **Figure S3. Unrooted sweetpotato and wild relatives NLR phylogeny exhibit clustering by**
1130 **canonical domain.** Phylogenetic diversity of sweetpotato and wild relative NLRs. Unrooted NB-
1131 ARC domain phylogeny of 29,553 amino acid sequences inferred using the Maximum
1132 Likelihood method based on the Jones–Taylor–Thornton (JTT) and Per Site Rate (PSR) models
1133 in ExaML. The major TNL, CNL, and RNL clades are indicated by branch colors. Tip labels
1134 correspond to RefPlantNLRs included in the phylogeny. Domain architecture and abbreviations
1135 are as shown in Figure S1. Branch scale represents the number of substitutions per site.

1136 **Figure S4 Sweetpotato and wild relatives harbor diverse sets of NLR-IDs clustering with**
1137 **canonical NLRs in the large NLR phylogeny.** Maximum likelihood phylogeny of sweetpotato
1138 and wild relative NLRs inferred from central NB-ARC domain. Outer ring represents different
1139 types of NLR-IDs annotated by NLRtracker and their placement corresponds to their pair branch

1140 and model. The phylogeny was built using the Jones–Taylor–Thornton (JTT) and Per Site Rate
1141 (PSR) models in ExaML. The tree branches are rooted on the branch connecting TNL and non-
1142 TNL clades. The major TNL, CNL, and RNL clades are indicated by branch colors. Domain
1143 architecture and abbreviations are as shown in Figure S1. Branch scale represents the number of
1144 substitutions per site.

1145 **Figure S5 CNL conservation between *Ipomoea triloba* and *I. batatas* genotypes (N= 32).**

1146 Phylogenetic (patristic) distance of two CNL nodes between *I. triloba* and each *I. batatas*
1147 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each
1148 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
1149 pair. Genotype abbreviations match names contained in Table S2. Domain architecture and
1150 abbreviations are as shown in Figure S1.

1151 **Figure S6 CNL conservation between *Ipomoea littoralis* and *I. batatas* genotypes (N= 32).**

1152 Phylogenetic (patristic) distance of two CNL nodes between *I. littoralis* and each *I. batatas*
1153 genotypes were calculated from a combined NLR phylogeny. The patristic distances for each
1154 corresponding *I. batatas* CNLs are plotted with color scale indicating the distance level for each
1155 pair. Genotype abbreviations match names contained in Table S2. Domain architecture and
1156 abbreviations are as shown in Figure S1.