

1 **High-quality reference genome of *Fasciola gigantica*: Insights into
2 the genomic signatures of transposon-mediated evolution and
3 specific parasitic adaption in tropical regions**

4 Xier Luo^{*1,2}, Kuiqing Cui^{*1}, Zhiqiang Wang^{*1}, Lijuan Yin², Zhipeng Li¹, Zhengjiao Wu¹, Tong Feng^{1,2},
5 Xiaobo Wang^{1,2}, Weikun Jin¹, Wenda Di¹, Dongying Wang¹, Saif ur Rehman¹, Weiyi Huang¹,
6 Xingquan Zhu³, Weiyu Zhang^{†1}, Jue Ruan^{†2}, Qingyou Liu^{†1}

7 1. State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, Guangxi
8 University, Nanning 530004, China

9 2. Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the
10 Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of
11 Agricultural Sciences, Shenzhen 518120, China.

12 3. College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's
13 Republic of China.

14

15 *These authors contributed equally:Xier Luo, Kuiqing Cui, Zhiqiang Wang.

16 †Corresponding author. E-mail: zweiyu@gxu.edu.cn; ruanjue@caas.cn; qyliu-gene@gxu.edu.cn.

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 *Fasciola gigantica* and *Fasciola hepatica* are causative pathogens of *fascioliasis*,
29 with the widest latitudinal, longitudinal, and altitudinal distribution; however, among
30 parasites, they have the largest sequenced genomes, hindering genomic research. In the
31 present study, we used various sequencing and assembly technologies to generate a new
32 high-quality *Fasciola gigantica* reference genome. We improved the integration of gene
33 structure prediction, and identified two independent transposable element expansion
34 events contributing to (1) the speciation between *Fasciola* and *Fasciolopsis* during the
35 Cretaceous-Paleogene boundary mass extinction, and (2) the habitat switch to the liver
36 during the Paleocene-Eocene Thermal Maximum, accompanied by gene length
37 increment. Long interspersed element (LINE) duplication contributed to the second
38 transposon-mediated alteration, showing an obvious trend of insertion into gene regions,
39 regardless of strong purifying selection. Gene ontology analysis of genes with long
40 LINE insertions identified membrane-associated and vesicle secretion process proteins,
41 further implicating the functional alteration of the gene network. We identified 852
42 excretory/secretory proteins and 3300 protein-protein interactions between *Fasciola*
43 *gigantica* and its host. Among them, copper/zinc superoxide dismutase genes, with
44 specific gene copy number variations, might play a central role in the phase I
45 detoxification process. Analysis of 559 single-copy orthologs suggested that *Fasciola*
46 *gigantica* and *Fasciola hepatica* diverged at 11.8 Ma near the Middle and Late Miocene
47 Epoch boundary. We identified 98 rapidly evolving gene families, including actin and
48 aquaporin, which might explain the large body size and the parasitic adaptive character
49 resulting in these liver flukes becoming epidemic in tropical and subtropical regions.

50 **Introduction**

51 *Fasciola gigantica* and *Fasciola hepatica*, known as liver flukes, are two species
52 in the genus *Fasciola*, which cause *fascioliasis* commonly in domestic and wild
53 ruminants, but also are causal agents of *fascioliasis* in humans. *Fascioliasis* reduces the
54 productivity of animal industries, imposes an economic burden of at least 3.2 billion
55 dollars annually worldwide [1], and is a neglected zoonotic tropical disease of humans,
56 according the World Health Organization's list [2]. *F. gigantica*, the major fluke
57 infecting ruminants in Asia and Africa, has been a serious threat to the farming of
58 domesticated animals, such as cows and buffaloes, and dramatically reduces their feed
59 conversion efficiency and reproduction [3]. The prevalence *F. gigantica* infection has
60 greatly affected subsistence farmers, who have limited resources to treat their herds,
61 and has hindered economic development and health levels, especially in developing
62 countries.

63 The various omics technologies provide powerful tools to advance our
64 understanding of the molecules that act at the host-parasite interface, and allow the
65 identification of new therapeutic targets against *fascioliasis* [4]. To date, four
66 assemblies for *F. hepatica* and two assemblies for *F. gigantica* have been deposited at
67 the NCBI [5-8]. These assemblies reveal a large genome with a high percentage of
68 repeat regions in *Fasciola* species, and provided valuable insights into features of
69 adaptation and evolution. However, these assemblies are based on the short read
70 Illumina sequencing or hybrid sequencing methods, with limited ability to span large

71 families of repeats. Various limitations have led to the current assemblies in the genus
72 *Fasciola* being fragmented (8 kb to 33 kb and 128 kb to 1.9 Mb for contig and scaffold
73 N50s, respectively). Subsequent gene annotation analysis using current assemblies
74 were also challenging, with abundant transposition events occurring over evolutionary
75 history, which significantly increased the repeat components in intron regions, resulting
76 in considerable fragmentation in gene annotation.

77 Infection by *Fasciola* causes extensive damage to the liver, and excretory/secretory
78 (E/S) proteins play an important role in host-parasite interactions. Parasite-derived
79 molecules interact with proteins from the host cell to generate a protein interaction
80 network, and these proteins partly contribute to *Fasciola*'s striking ability to avoid and
81 modulate the host's immune response [9]. Previous proteomics of E/S proteins have
82 highlighted the importance of secreted extracellular vesicles (EVs) and detoxification
83 enzymes to modulate host immunity by internalizing with host immune cells [10, 11].
84 The anthelmintic drug, triclabendazole (TCBZ), is currently the major drug available
85 to treat *fascioliasis* at the early and adult stages, which acts by disrupting β -tubulin
86 polymerization [1]; however, over-reliance on TCBZ to treat domesticated ruminants
87 has resulted in selection for resistance to liver flukes [12]. Drug and vaccine targets for
88 molecules associated with reactive oxygen species (ROS)-mediated apoptosis have
89 recently been validated as an effective tools in multiple helminth parasites [13].
90 Increased understanding of host-parasite and drug-parasite interactions would facilitate
91 the development of novel strategies to control *fascioliasis*.

92 In recent years, there have been increasing numbers of human cases of *fascioliasis*,
93 becoming a major public health concern in many regions [14, 15]. However, high
94 quality genome assemblies for liver flukes are still insufficient. In the present study, we
95 combined multiple sequencing technologies to assemble a chromosome-level genome
96 for *F. gigantica* and provided integrated gene annotation. Protein-protein interactions
97 were analyzed between the predicted *F. gigantica* secretome and host proteins
98 expressed in the small intestine and liver. In addition, gene family analysis identified a
99 series of genes expansions in *F. gigantica*. Interestingly, the distribution of repeat
100 sequences in the genome exhibit an excess of long interspersed element (LINE)
101 duplications inserted into intronic regions, potentially helping to explain the
102 duplications of transposable element (TE) plasticizing gene structures and possibly
103 acting as long-term agents in the speciation of *Fasciola*.

104 Results

105 Pacbio long reads-based *de novo* assembly and gene annotation

106 The *F. gigantica* genome contains abundant repeat sequences that are difficult to
107 span using short read assembly methods, and the complex regions also hinder integrated
108 gene annotation of the genome. Therefore, in the present study, multiple sequencing
109 technologies, have been applied: (1) Single-molecule sequencing long reads (~91 \times
110 depth) using the Pacbio Sequel II platform; (2) paired-end reads (~66 \times depth) using the
111 Illumina platform; and (3) chromosome conformation capture sequencing (Hi-C) data
112 (~100 \times depth) (Supplementary Table 1). The initial assembly was performed using the
113 Pacbio long reads, followed by mapping using single-molecule sequencing and
114 Illumina sequencing reads to polish assembly errors and sequencing mistakes, resulting

115 in a contig N50 size of 4.89 Mb (**Fig. 1A**). The Hi-C data were used to build final
116 super-scaffolds, resulting in a total length of 1.35 Gb with a scaffold N50 size of 133
117 Mb (**Fig. 1B, Table 1, Supplementary Table S2-3, Supplementary Fig. S1**). The final
118 assembly consists of 10 pseudo-chromosomes covering more than 99.9% of the *F.*
119 *gigantica* genome, and the length distribution was approximate equal to the estimation
120 by karyotype in previous research (**Supplementary Fig. S2, Supplementary Table S4**)
121 [16]. The assessment of nucleotide accuracy shows that the error rate was 5.7×10^{-6} in
122 the genome. QUAST analysis [17] showed a high mapping and coverage rate using
123 both Illumina short reads and Pacbio long reads, in which 99.73% of reads mapped to
124 99.85% of the genome with more than 10 \times depth (**Supplementary Table S5**).

125 Combing *de novo*/homolog/RNA-seq prediction, a total of 12,503 protein coding
126 genes were annotated in the *F. gigantica* genome. BUSCO assessment [18] indicated
127 that the genome is 90.4% complete and 5.6% fragmented, underscoring the significant
128 improvement of the genome continuity and gene-structure predictions compared with
129 previous assemblies (**Supplementary Table S6**). Specifically, the average gene length
130 in the annotated data is 28.8 kb, nearly twice the length of that in other digenetic species,
131 but contrasted with the similar average length of the coding sequences (CDSs). Through
132 functional annotation, we found that 8569 of the genes could be characterized in the
133 InterPro database [19, 20], 7892 of them were mapped to the gene ontology (GO) terms,
134 and 5353 of them were identified by the Kyoto Encyclopedia of Genes and Genomes
135 (KEGG) pathways database (**Supplementary Fig. S3-4, Supplementary Table S7**).

136 The unique repeat duplications in *Fasciola*

137 TEs are insertional mutagens and major drivers of genome evolution in eukaryotes,
138 and replication of these sequences, resulting in variation of gene structure and
139 expression, have been extensively documented [21, 22]. Besides, TEs are molecular
140 fossils, being remnants of past mobilization waves that occurred millions of years ago
141 [23]. In the present study, we identified repeat sequences combined the analysis from
142 RepeatModeler [24] and RepeatMasker [25], and detected a significant proportion of
143 them neglected by previous studies. In the *F. gigantica* genome, we identified 945 Mb
144 of repeat sequences, which was approximate 20% more than that identified in other
145 assemblies in *Fasciola* species, while the lengths of non-repeat sequences were nearly
146 identical. The most convincing explanation for the additional assembled repeat
147 sequences was that the contigs constructed from Pacbio long reads spanned longer
148 repeat regions, which were compressed in previous assemblies. Among these repeat
149 sequences, there were 408 Mb of LINEs (corresponding to 30.3% of the assembled
150 genome), 285 Mb of long terminal repeats (LTRs, corresponding to 21.2% of the
151 assembled genome), and 162 Mb of unclassified interspersed repeats (corresponding to
152 12.0% of the assembled genome) (**Supplementary Fig. S5, Supplementary Table S8**).
153 According to the repeat landscapes, we found that there were two shared expansion
154 events for LINEs and LTRs that occurred approximately 12 million years ago (Ma) and
155 65 Ma, and an additional expansion event at 33 Ma for LTRs (**Supplementary Fig. S6-7**).
156 The abundant repeat sequences in the *Fasciola* genomes aroused our interest
157 concerning the role of repeats in evolution (**Fig. 2A**), and inspired us to hypothesize
158 that the expansion of TEs enlarged the genome size of an ancestor of *Fasciola* to gain a

159 new advantage by rewiring gene networks. To test this hypothesis, we focused on the
160 genome-wide repeats distribution and test signatures of selection.

161 For new TE insertions to persist through vertical inheritance, transposition events
162 must be under strong purifying selection among gene loci to avoid disturbing their
163 biological function. However, we observed many intronic repeat elements in *Fasciola*,
164 resulting in a larger intron size per gene. If there are equal selection effects on newly
165 inserted TEs in intronic and intergenic regions, there would a high correlation between
166 the distribution of insertion time and retained TE lengths between these two regions.
167 By contrast, there would be fewer accumulated repeat sequences existing under
168 purifying selection. In this study, we use the relative proportion of TEs between intronic
169 and intergenic regions as a simple indicator, and use the inferred size of intronic and
170 intergenic regions over evolutionary history as a control to estimate the signatures of
171 selection. The results showed that TE insertions into intronic regions are under
172 persistent intense purifying selection, except for LINEs. There was an excess of
173 persistent LINE insertions into intronic regions between 41 Ma and 62 Ma, indicating
174 different modes of accumulating LINEs into intronic regions compared with that in
175 other periods (Fig. 2B). Specifically, the time of the ancient intronic LINE expansion
176 (~51.5 Ma) was different to the genome-wide LINE expansion time (~68.0 Ma),
177 whereas the time was coincident with two important environmental change events, the
178 Cretaceous-Paleogene boundary (KPB) mass extinction (~66.0 Ma) and the Paleocene-
179 Eocene Thermal Maximum (PETM) (~55.8 Ma). Both the PETM and KPB events
180 recorded extreme and rapid warming climate changes; however, rapid evolutionary
181 diversification followed the PETM event, as opposed to near total mass extinction at
182 the KPB [26]. Therefore, we selected genes with different LINE lengths, derived
183 between 41 Ma and 62 Ma, and expected to identify a transposon-mediated alterative
184 gene network contributing to the host switch and the shift from intestinal to hepatic
185 habitats.

186 **LINE-mediated alterative gene network**

187 We identified a substantial proportion of genes with LINE insertions, derived
188 between 41 Ma and 62 Ma, indicating a universal effect of the gene network. We
189 selected 1288 genes with the LINE insertions of more than 10 kb, representing more
190 than one third of the average gene length, and annotated the genes using Gene Ontology
191 (GO) terms and processes and Kyoto encyclopedia of genes and genomes (KEGG)
192 pathways (Fig. 2C, Supplementary Table S9-11). These genes involve molecules
193 internalizing substances from their external environment, including
194 membrane-associated and vesicle secretion process proteins. Meanwhile, the gene
195 network was likely adapted to the evolution of protein biosynthesis and modification
196 of histones.

197 Enrichment analysis of GO terms showed that membrane and
198 membrane-associated proteins are over-represented, involving “synaptic membrane” (P
199 = 3.52E-04), “clathrin-coated vesicle membrane” (P = 1.08E-03), and “synaptic vesicle”
200 (P = 3.02E-03), as well as vesicles secretion processes, such as “endocytosis” (P =
201 7.06E-06), “Golgi organization” (P = 7.45E-05), “COPII vesicle coating” (P = 2.72E-
202 04), “intracellular signal transduction” (P = 5.16E-04), and “endosomal transport” (P =

203 2.47E-03). The over-representation of genes involved in membrane transport was
204 particularly interesting because helminth parasites interfere with the host immune
205 system by secreting molecules from surface tegument or gut. The *TMED10* gene in *F.*
206 *gigantica* (encoding transmembrane P24 trafficking protein 10) was used as an example.
207 *TMED10* is a cargo receptor involved in protein vesicular trafficking along the secretory
208 pathway [27, 28], and the genes has an 11.1 kb LINE insertion in the third intron,
209 resulting in an over three-fold increment in the gene length (**Fig. 2D**). The enrichment
210 suggests that the gene network related to secretion could have experienced adaptive
211 evolution during LINE transposition events. We further compared our dataset with the
212 proteome result from *F. hepatica* extracellular vesicles (EVs) [29], and found 21
213 proteins that were also identified as surface molecules associated with EV biogenesis
214 and vesicle trafficking (*IST1*, *VPS4B*, *TSG101*, *MYOF*, *ATG2B*, *STXBP5L*, and 15 Rho
215 GTPase-activating related proteins). Specifically, *IST1*, *VPS4B*, and *TSG101* are
216 members of the endosomal sorting complex required for transport (ESCRT) pathway,
217 which promotes the budding and release of EVs. *TSG101*, a crucial member of the
218 ESCRT-I complex, has an important role in mediating the biogenesis of multi-vesicular
219 bodies, cargo degradation, and recycling of membrane receptors. Besides, the ESCRT
220 pathway promotes the formation of both exosomal carriers for immune communication.
221 During the formation of the immunological synapse between T-cells and antigen-
222 presenting B cells, *TSG101* ensures the ubiquitin-dependent sorting of T-Cell Receptor
223 (*TCR*) molecules to exosomes that undergo *VPS4*-dependent release into the synaptic
224 cleft[30].

225 The most significant KEGG pathway was aminoacyl-tRNA biosynthesis ($P =$
226 7.16E-04), containing 15 out of 38 annotated aminoacyl tRNA synthetases (AAASs).
227 AAASs are the enzymes that catalyze the aminoacylation reaction by covalently linking
228 an amino acid to its cognate tRNA in the first step of protein translation. The large-scale
229 insertion of LINEs reside in AAAS genes suggested that the ancestor of *Fasciola* may
230 have profited from the effect of transposition, with changes to protein biosynthesis and
231 several metabolic pathways for cell viability. In addition, a significant number of genes
232 are strongly associated with histone modulation, including “histone deacetylase
233 complex” ($P = 1.89E-03$), “histone methyltransferase activity (H3-K36 specific)” ($P =$
234 1.08E-03), and “methylated histone binding” ($P = 2.37E-03$). Histone modifications
235 play fundamental roles in the manipulation and expression of DNA. We found nine
236 histone deacetylases and Histone methyltransferases in the gene set (*HDAC4*, *HDAC8*,
237 *HDAC10*, *KMT2E*, *KMT2H*, *KMT3A*, *KDM8*, *NSD1*, and *NSD3*). Histone
238 modifications can exert their effects by influencing the overall structure of chromatin
239 and modifying and regulating the binding of effector molecules [31, 32]; therefore, the
240 variation of these genes might bring about evolution from a disturbed gene structure to
241 a mechanism of genome stabilization to tackle a continuous genome amplification
242 process in evolutionary history.

243 **Genome-wide host-parasite interaction analysis**

244 In the *Fasciola* genome, we predicted genes encoding 268 proteases, 36 protease
245 inhibitors (PIs), and 852 excretory/secretory (E/S) proteins that are commonly involved
246 in interacting with hosts and modulating host immune responses. The largest class of

247 proteases was cysteine peptidases ($n = 113$), which was also identified in the *F. hepatica*
248 genome (**Fig. 3A, Supplementary Table S12**). The largest ($n = 19$, 52.8% of PIs) PI
249 family was the I02 family of Kunitz-BPTI serine protease inhibitors, which bind to
250 Cathepsin L with a possible immunoregulatory function [33] (**Supplementary Table**
251 **S13**). GO enrichment analysis of E/S proteins showed that proteins related to
252 “activation of cysteine-type endopeptidase activity” ($P = 6.14\text{E-}19$), “peroxidase
253 activity” ($P = 3.79\text{E-}07$) and “protein disulfide isomerase activity” ($P = 3.75\text{E-}06$) are
254 over-represented (**Fig. 3B, Supplementary Table S14-15**). Indeed, there were 38
255 cysteine peptidases identified as E/S proteins, including cathepsin L-like, cathepsin B-
256 like, and legumain proteins, which participate in excystment, migration through gut
257 wall, and immune evasion [34].

258 In parasites, as in mammalian cells, ROS are produced as a by-product of cell
259 metabolism and from the metabolism of certain pharmacological agents. The ability of
260 a parasite to survive in its host has been directly related to its antioxidant enzyme
261 content [35]. To further analyze host-parasite interactions, we identified the
262 protein-protein interactions (PPIs) between the *F. gigantica* secretome and human
263 proteins expressed in the small intestine and liver. In total, we identified 3300 PPIs,
264 including rich interactions that directly or indirectly participated in the two phases of
265 detoxification pathways (**Fig. 3C**). Superoxide dismutase [Cu-Zn] (*SOD*, PPIs = 49)
266 was first highlighted because of its important role on phase I detoxification against ROS,
267 in which it catalyzes the dismutation of the superoxide radical to molecular oxygen and
268 hydrogen peroxide (H_2O_2) [36]. Gene family analysis identified six *SOD* paralogs in *F.*
269 *gigantica*, and two of them contained a signal peptide (**Fig. 4D**). Previous enzyme
270 activity assays also confirmed a significant difference between *SOD* activities and
271 concentration in E/S proteins of two *Fasciola* species [37], suggesting an intense ability
272 to resist superoxide radical toxicity. Meanwhile, the metabolite of phase I, H_2O_2 , can
273 also damage parasites, which requires detoxification enzymes, including
274 glutathione-dependent enzymes *GPx*, glutathione reductase, and other peroxidases.
275 Protein disulfide-isomerase (*P4HB*, PPIs = 132) and phospholipid hydroperoxide
276 glutathione peroxidase (*GPX4*, PPIs=28) were as functioning in phase II detoxification.
277 *GPx* catalyzes the reduction of hydroperoxides (ROOH) to water, using glutathione
278 (*GSH*) as the reductant. *P4HB* also participates in the process by mediating homeostasis
279 of the antioxidant glutathione [38]. However, we did not identify E/S proteins in the
280 Cytochrome P450 (*CYP450*) family in phase III detoxification. Therefore, we
281 speculated that successful parasite defense against *F. gigantica* is mainly depends on
282 the strong superoxide activity and efficient hydrogen peroxide detoxification.

283 **Gene family analysis**

284 Gene family analysis was performed using eight taxa (*F. gigantica*, *F. hepatica*,
285 *Fasciolopsis buski*[39], *Clonorchis sinensis* [40], *Schistosoma mansoni*)[41], *Taenia*
286 *multiceps* [42], swamp buffalo [43], and human [44], which identified 17,992 gene
287 families (**Fig. 4A**). Phylogeny analysis of 559 single-copy orthologs showed that *F.*
288 *gigantica* and *F. hepatica* shared a common ancestor approximately 11.8 million years
289 ago (2.2-22.5 Ma, 95% highest posterior density [HPD]) near the Middle and Late
290 Miocene Epoch boundary. The Miocene warming began 21 million years ago and

291 continued until 14 million years ago, when global temperatures took a sharp drop at the
292 Middle Miocene Climate Transition (MMCT). The divergence of the two *Fasciola*
293 species may have resulted from the consequences of rapid climate changes, such as
294 migration of the host causing geographic isolation. Our estimation is between the
295 previously suggested date of 5.3 Ma based on 30 nuclear protein-coding genes [45],
296 and 19 Ma based on cathepsin L-like cysteine proteases [46]. Although we used a more
297 integrative gene dataset, the wide HPD interval could not be neglected, raising possible
298 uncertainty from the complex process of speciation or inappropriate protein sequence
299 alignment between members of the genus *Fasciola*.

300 The distribution of gene family size among different species is used to estimate
301 which lineages underwent significant contractions or expansions. Compared with *F.*
302 *hepatica*, *F. gigantica* shows more gene family expansion events (643 compared to 449)
303 and a similar number of gene family contractions (713 compared to 672). The result
304 emphasize the general trend that, relative to the common ancestor of *Fasciola*, the
305 ancestor of *F. gigantica* apparently underwent a higher extent of gene-expansion than
306 did the ancestor of *F. hepatica*. Gene duplication is one of the primary contributors to
307 the acquisition of new functions and physiology [47]. We identified 98 gene families,
308 including 629 genes, as rapidly evolving families specific to *F. gigantica*. Family
309 analysis showed a fascinating trend of gene duplication, with substantial enrichment for
310 the “structural constituent of cytoskeleton” ($P = 3.52\text{E-}24$), “sarcomere organization”
311 ($P = 2.29\text{E-}14$), “actin filament capping” ($P = 6.19\text{E-}13$), and “spectrin” ($P = 3.03\text{E-}11$)
312 in *F. gigantica* (**Supplementary Table S16**). There were 24 actin paralogs in *F.*
313 *gigantica*, in contrast to 8 actin paralogs in *F. hepatica*. Actin is one of the most
314 abundant proteins in most cells, and actin filaments, one of the three major cytoskeletal
315 polymers, provide structure and support internal movements of organisms [48]. They
316 are also highly conserved, varying by only a few amino acids between algae, amoeba,
317 fungi, and animals [49]. We observed three types of actin proteins in flukes, according
318 to their identity from human actin family. Seventeen of the 24 actin proteins in *F.*
319 *gigantica* are highly conserved (Identity > 95%) (**Fig. 4B**). Consistent with the accepted
320 role of the epidermal actin cytoskeleton in embryonic elongation [50, 51], we
321 speculated that the significant expansion of actin and spectrin genes increased the body
322 size of *F. gigantica* via cell elongation or proliferation during morphogenesis. Another
323 rapidly evolving family is the aquaglyceroporin subfamily in the membrane water
324 channel family. We found six aquaglyceroporin paralogs in *F. gigantica*, which were
325 over-represented in the GO term “water transport” ($P = 2.10\text{E-}06$) (**Fig. 4C**).
326 Aquaglyceroporins are highly permeated by glycerol and other solutes, and variably
327 permeated by water, as functionally validated by several studies [52, 53]. The
328 mammalian aquaglyceroporins regulate glycerol content in epidermal, fat, and other
329 tissues, and appear to be involved in skin hydration, cell proliferation, carcinogenesis,
330 and fat metabolism. A previous study showed that *F. gigantica* could withstand a wider
331 range of osmotic pressures compared with *F. hepatica* [54], and we speculated that a
332 higher aquaglyceroporin gene copy number might help explain this observation.

333 It is worth mentioning that 57.6% of rapidly evolving expansion genes specific to
334 the *F. gigantica* genome were driven by tandem duplication, such that the newly formed

335 duplicates preserved nearly identical sequences to the original genes. The newly formed
336 genes would accumulate non-functionalizing mutations, or develop new functions over
337 time. We found only few tandem duplicated genes that had non-functionalizing
338 mutations, suggesting that adaptive evolution could have an important role in the
339 consequences of these genes via a dosage effect or neo-functionalization.

340 Discussion

341 The genome of *Fasciola* species contains a large percentage of repeat sequences,
342 making them the largest parasite genomes sequenced to date. Since the first assembly
343 of *F. hepatica* was submitted in 2015 [6], several studies have aimed to improve the
344 quality of assembly and gene annotation [5, 7, 8]. With advances in long read
345 sequencing assembly and Hi-C scaffolding technologies, it is now viable to resolve the
346 genomic “dark matter” of repetitive sequences, and other complex structural regions at
347 relatively low cost [55]. Therefore, we present the highest quality genome and gene
348 annotation for *F. gigantica* to date, and provide long-awaited integrated genome
349 annotation for *fascioliasis* research.

350 Our research determined the TE sequences among intronic and intergenic regions.
351 TE sequences of *F. gigantica* experienced massive expansion through the genome via
352 a ‘copy-and-paste’ model of transposition [56]. Especially, the speciation between
353 *Fasciola* and *Fasciolopsis* was most likely caused by a *Fasciola*-specific whole genome
354 repeat expansion event during the KPB mass extinction, and similarly, the speciation
355 between the *Fasciola* and *Fascioloides*—a habitat switch from the small intestine to the
356 liver in the host—occurred during the PETM, accompanied by LINE expansion biased
357 toward intronic regions (Fig. 5). These synchronous events informed a new hypothesis
358 of adaptive evolution driven by transposition events and will prompt investigations of
359 how such differences contribute mechanistically to the morphological phenotypes of
360 liver flukes and related species. This hypothesis could be tested by targeted genome
361 assembly of *Fascioloides* species and estimating whether they had a different pattern of
362 LINE duplication among intronic regions. There are also many studies in other species
363 supporting the hypothesis that TE invasions endured by organisms have catalyzed the
364 evolution of gene-regulatory network [57]. For example, Eutherian-specific TEs have
365 the epigenetic signatures of enhancers, insulators, and repressors, and bind directly to
366 transcription factors that are essential for pregnancy and coordinately regulate gene
367 expression [58]. Similarly, genes with large-scale insertion of TEs in *Fasciola* species
368 identified here, represent a signature of *Fasciola*-specific evolutionary gene network to
369 distinguish other flukes of the family *Fasciolidae*. These genes overlap significantly
370 with host-parasite interaction genes, including proteases and E/S proteins, and are
371 enriched in the pathways of EV biogenesis and vesicle trafficking.

372 The data from genomic, transcriptomic, and proteomic studies can form a good
373 complementary relationship to further our understanding of helminth parasites and their
374 interaction with their hosts. Previous studies have identified a rich source of
375 stage-specific molecules of interest using transcriptomic and proteomic analysis [59,
376 60]. Here, we provided a comprehensive list of predicted E/S proteins in *F. gigantica*
377 and predicted 3300 PPIs at the host-parasite interface, extending our understanding of
378 how the phase I and phase II detoxification enzymes counteract the effect of ROS. The

ability of *Fasciola* species to infect and survive in different tissue environments is underpinned by several key E/S protein gene duplications. Both *Fasciola* species have a common expansion in the secretion of papain-like cysteine peptidase family (Clan A, family C1) [6]. Besides, *F. gigantica* has a specific variation in the *SOD* gene copy number, allowing it to regulate the catalytic activity of the superoxide radical released by the host. The effect of specific gene duplications can also be reflected in the increased body size of *F. gigantica*, which is an important morphometric character to distinguish *Fasciola* species and has a decisive influence on the final host species [61], although a gene level study of this phenotype is barely reported.

Overall, our study demonstrated that the combination of long-read sequencing with Hi-C scaffolding produced a very high-quality liver fluke genome assembly and gene annotation. Additionally, identification of the repeat distribution among the gene regions extended our understanding of the evolutionary process in *Fasciola* species. Further detailed functional studies of secretion might be of great scientific significance to explore their potential application in *fascioliasis* treatment.

394

395

396 Materials and Methods

397 Sample collection and *de novo* sequencing.

398 All animal work was approved by the Guangxi University Institutional Animal
399 Care and Use Committee. For the reference genome sequencing, *F. gigantica* was
400 derived from infected buffalo in the Guangxi Zhuang Autonomous Region. Nucleic
401 acids were extracted using a QIAGEN DNeasy (DNA) kit (Qiagen Hilden, Germany).
402 Three *de novo* genome sequencing methods were performed on the liver fluke: We
403 generated (1) 122.4 Gb (~88× depth) PacBio Sequel II single-molecule long reads, with
404 an average read length of 15.8 kb (PacBio, Menlo Park, CA, USA); (2) 89.5 Gb (~66×
405 depth) Illumina HiSeq PE150 pair-end sequencing to correct errors (Illumina, San
406 Diego, CA, USA); and (3) 134 Gb (~100× depth) chromosome conformation capture
407 sequencing (Hi-C) data (sequenced by Illumina platform).

408 *De novo* assembly and assessment of the genome quality.

409 A PacBio-only assembly was performed using Canu v2.0 [62, 63] using new
410 overlapping and assembly algorithms, including an adaptive overlapping strategy based
411 on *tf-idf* weighted MinHash and a sparse assembly graph construction that avoids
412 collapsing diverged repeats and haplotypes. To remove haplotigs and contig overlaps
413 in the assembly, we used Purge_Dups based on the read depth [64]. Arrow
414 (<https://github.com/PacificBiosciences/GenomicConsensus>) was initially used to
415 reduce the assembly error in the draft assembly, with an improved consensus model
416 based on a more straightforward hidden Markov model approach. Pilon [65] was used
417 to improve the local base accuracy of the contigs via analysis of the read alignment
418 information based on paired-end bam files (thrice). As a result, the initial assembly
419 resulted had an N50 size of 4.89 Mb for the *F. gigantica* reference genome. ALLHiC
420 was capable of building chromosomal-scale scaffolds for the initial genome using Hi-C
421 paired-end reads containing putative restriction enzyme site information [66].

422 Three methods were used to evaluate the quality of the genomes. First, we used

423 QQuality ASsessment Tool (QUAST) [67] to align the Illumina and PacBio raw reads to
424 the *F. gigantica* reference genome to estimate the coverage and mapping rate. Second,
425 all the Illumina paired-end reads were mapped to the final genome using BWA [68],
426 and single nucleotide polymorphisms (SNPs) were called using Samtools and Bcftools
427 [69]. The predicted error rate was calculated by the homozygous substitutions divided
428 by length of the whole genome, which included the discrepancy between assembly and
429 sequencing data. Thirdly, we assessed the completeness of the genome assemblies and
430 annotated the genes using BUSCO [18].

431 **Genome annotation**

432 Three gene prediction methods, based on *de novo* prediction, homologous genes,
433 and transcriptomes, were integrated to annotate protein-coding genes. RNA-seq data of
434 *F. gigantica* were obtained from the NCBI Sequence Read Archive, SRR4449208 [70].
435 RNA-seq reads were aligned to the genome assembly using HISAT2 (v2.2.0) [71] and
436 subsequently assembled using StringTie (v2.1.3) [72]. PASA (v2.4) [73] was another
437 tool used to assemble RNA-seq reads and further generated gene models to train *de*
438 *novo* programs. Two *de novo* programs, including Augustus (v3.0.2) [74] and SNAP
439 (v2006-07-28) [75], were used to predict genes in the repeat-masked genome sequences.
440 For homology-based prediction, protein sequences from UniRef100 [76]
441 (plagiorchiida-specific, n = 75,612) were aligned on the genome sequence using
442 TBLASTN [77] (e-value < 10⁻⁴), and GeneWise (version 2.4.1) [78] was used to identify
443 accurate gene structures. All predicted genes from the three approaches were combined
444 using MAKER (v3.1.2) [79] to generate high-confidence gene sets. To obtain gene
445 function annotations, Interproscan (v5.45) [80] was used to identify annotated genes
446 features, including protein families, domains, functional sites, and GO terms from the
447 InterPro database. SwissProt and TrEMBL protein databases were also searched using
448 BLASTp [81] (e-value < 10⁻⁴). The best BLASTp hits were used to assign homology-
449 based gene functions. BlastKOALA [82] was used to search the KEGG ORTHOLOGY
450 (KO) database. The subsequent enrichment analysis was performed using
451 clusterProfiler using total annotated genes as the background with the “enricher”
452 function [83].

453 **Repeat annotation and analysis**

454 We combined *de novo* and homology approaches to identify repetitive sequences
455 in our assembly and previous published assemblies, including *F. gigantica*, *F. hepatica*,
456 and *Fasciolopsis buski*. RepeatModeler (v2.0.1) [24] was first used to construct the *de*
457 *novo* identification and accurate compilation of sequence models representing all of the
458 unique TE families dispersed in the genome. Then, RepeatMasker (v4.1.0) [25] was run
459 on the genome using the combination of *de novo* libraries and a library of known repeats
460 (Repbase-20181026). The relative position between a repeat and a gene was identified
461 using bedtools [84], and the type of repeat was further divided to intronic and intergenic
462 origin. The repeat landscape was constructed using sequence alignments and the
463 complete annotations output from RepeatMasker, depicting the Kimura divergence
464 (Kimura genetic distances between identified repeat sequences and their consensus)
465 distribution of all repeats types. The most notable peak in the repeat landscapes was
466 considered as the most convincing time of repeat duplication in that period. The

467 transition between the Kimura divergence and age was performed by dividing the
468 divergence by the two-fold mutation rate per year ($T = d/2\mu$). The mutation rate (μ
469 = 1.73×10^{-9}) was calculated using MCMCTree [85] based on the CDS sequence
470 alignment of single-copy gene families.

471 **Genome-wide host-parasite protein interaction analysis**

472 In addition to the genome data that we generated for *F. gigantica*, we downloaded
473 genome annotation information for human (GCA_000001405.28), swamp buffalo
474 (GWHAJZ00000000), *F. hepatica* (GCA_002763495.2), *Fasciolopsis buski*
475 (GCA_008360955.1), *Clonorchis sinensis* (GCA_003604175.1), *Schistosoma mansoni*
476 (GCA_000237925.2), and *Taenia multiceps* (GCA_001923025.3) from the NCBI
477 database and BIG Sub (China National Center for Bioinformation, Beijing, China).
478 Proteases and protease inhibitors were identified and classified into families using
479 BLASTp (e -value < 10^{-4}) against the MEROPS peptidase database (merops_scan.lib;
480 (European Bioinformatics Institute (EMBL-EBI), Cambridge, UK)), with amino acids
481 at least 80% coverage matched for database proteins. These proteases were divided into
482 five major classes (aspartic, cysteine, metallo, serine, and threonine proteases). E/S
483 proteins (i.e., the secretome) were predicted by the programs SignalP 5.0 [86], TargetP
484 [87], and TMHMM [88]. Proteins with a signal peptide sequence but without a
485 transmembrane region were identified as secretome proteins, excluding the
486 mitochondrial sequences. Genome-wide host-parasite protein interaction analysis was
487 performed by constructing the PPIs between the *F. gigantica* secretome and human
488 proteins expressed in the tissues related to the liver fluke life cycle. For the hosts, we
489 selected human proteins expressed in the small intestine and liver, and located in the
490 plasma membrane and extracellular region. The gene expression and subcellular
491 location information were obtained from the TISSUES [89] and Uniprot (EMBL-EBI)
492 databases, respectively. For *F. gigantica*, secretome molecules were mapped to the
493 human proteome as the reference, using the reciprocal best-hit BLAST method. These
494 two gene datasets were used to construct host-parasite PPI networks. We downloaded
495 the interaction files (protein.links.v11.0) in the STRING database [90], and only highly
496 credible PPIs were retained by excluding PPIs with confidence scores below 0.7. The
497 final STRING network was plotted using Cytoscape [91].

498 **Gene family analysis**

499 We chose the longest transcript in the downloaded annotation dataset to represent
500 each gene, and removed genes with open reading frames shorter than 150 bp. Gene
501 family clustering was then performed using OrthoFinder (v 2.3.12) [92], based on the
502 predicted gene set for eight genomes. This analysis yielded 17,992 gene families. To
503 identify gene families that had undergone expansion or contraction, we applied the
504 CAFE (v5.0.0) program [93], which inferred the rate and direction of changes in gene
505 family size over a given phylogeny. Among the eight species, 559 single-copy orthologs
506 were aligned using MUSCLE (v3.8.1551) [94], and we eliminated poorly aligned
507 positions and divergent regions of the alignment using Gblock 0.91b [95]. RAxML (v
508 8.2.12) was then used with the PROTGAMMALGF model to estimate a maximum
509 likelihood tree. Divergence times were estimated using PAML MCMCTREE [85]. A
510 Markov chain Monte Carlo (MCMC) process was run for 2,000,000 iterations, with a

511 sample frequency of 100 after a burn-in of 1,000 iterations under an independent rates
512 model. Two independent runs were performed to check the convergence. The
513 fossil-calibrated eukaryote phylogeny was used to set the root height for the species
514 tree, taken from the age of Animals (602–661 Ma) estimated in a previous
515 fossil-calibrated eukaryotic phylogeny [96] and the divergence time between the
516 euarchontoglires and laurasiatheria: (95.3–113 Ma) [97].

517

518 **ACKNOWLEDGEMENTS**

519 This work was supported by the National Natural Science Fund (U20A2051,
520 31760648 and 31860638), and Guangxi Natural Science Foundation (AB18221120),
521 and Guangxi Distinguished scholars Program (201835), Science and Technology Major
522 Project of Guangxi (Guike AA17204057).

523 **DATA AND MATERIALS AVAILABILITY**

524 The whole genome assembly (contig version) and gene annotation reported in this
525 paper have been deposited in the Genome Warehouse in BIG Data Center [98], Beijing
526 Institute of Genomics (China National Center for Bioinformation), Chinese Academy
527 of Sciences, under accession number GWHAZTT00000000 that is publicly accessible
528 at <http://bigd.big.ac.cn/gwh>. The AGP file for Hi-C was uploaded as supplement file.
529 The Pacbio sequencing reads has been deposited into the genome sequence archive
530 (GSA) in BIG under accession code CRA003783. The whole genome assembly also
531 can be obtained in the National Center for Biotechnology Information (NCBI) under
532 Bioproject PRJNA691688.

533 **AUTHOR CONTRIBUTIONS**

534 Q.L., J.R. and Y.W. conceived and designed the project. Q.L., K.Q., Z.Q., Z.J., Z.P.,
535 W.K., W.D. and D. W. collected the samples and performed experiments. J.R., Q.L.,
536 X.L., Z.Q., X.W., and T.F. analyzed the data. X.L., Q.L., K.Q. and Z.Q. drafted the
537 manuscript. J.R., Y.W., W.Y., X.Q., and J.Y revised the manuscript.

538

539

540

541

542 **References**

- 543 1. Spithill TW, Smooker PM, Copeman DB. "Fasciola gigantica": Epidemiology, control, immunology
544 and molecular biology. *Fasciolosis*. Oxon UK: CABI; 1999. p. 465-525.
- 545 2. World Health O. Accelerating work to overcome the global impact of neglected tropical diseases -
546 a roadmap for implementation. Accelerating work to overcome the global impact of neglected tropical
547 diseases - a roadmap for implementation. 2012;37 pp.- pp. PubMed PMID: CABI:20123334373.
- 548 3. Yadav SC, Sharma RL, Kalicharan A, Mehra UR, Dass RS, Verma AK. Primary experimental infection
549 of riverine buffaloes with *Fasciola gigantica*. *Veterinary Parasitology*. 1999;82(4):285-96. doi:
550 10.1016/s0304-4017(99)00005-9. PubMed PMID: WOS:000080591400004.
- 551 4. Cwiklinski K, Dalton JP. Advances in *Fasciola hepatica* research using 'omics' technologies.
552 International Journal for Parasitology. 2018;48(5):321-31. doi:
553 <https://doi.org/10.1016/j.ijpara.2017.12.001>.
- 554 5. McNulty SN, Tort JF, Rinaldi G, Fischer K, Rosa BA, Smircich P, et al. Genomes of *Fasciola hepatica*

555 from the Americas Reveal Colonization with *Neorickettsia* Endobacteria Related to the Agents of
556 Potomac Horse and Human Sennetsu Fevers. *Plos Genetics*. 2017;13(1). doi:
557 10.1371/journal.pgen.1006537. PubMed PMID: WOS:000394147700015.

558 6. Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJL, Hodgkinson J, et al. The *Fasciola*
559 *hepatica* genome: gene duplication and polymorphism reveals adaptation to the host environment and
560 the capacity for rapid evolution. *Genome Biology*. 2015;16. doi: 10.1186/s13059-015-0632-2. PubMed
561 PMID: WOS:000353190400001.

562 7. Choi Y-J, Fontenla S, Fischer PU, Thanh Hoa L, Costabile A, Blair D, et al. Adaptive Radiation of the
563 Flukes of the Family *Fasciolidae* Inferred from Genome-Wide Comparisons of Key Species. *Mol Biol Evol*.
564 2020;37(1):84-99. doi: 10.1093/molbev/msz204. PubMed PMID: WOS:000515121200009.

565 8. Pandey T, Ghosh A, Todur VN, Rajendran V, Kalita P, Kalita J, et al. Draft Genome of the Liver Fluke
566 *Fasciola gigantica*. *Acs Omega*. 2020;5(19):11084-91. doi: 10.1021/acsomega.0c00980. PubMed PMID:
567 WOS:000537145000049.

568 9. Soyemi J, Isewon I, Oyelade J, Adebiyi E. Inter-Species/Host-Parasite Protein Interaction Predictions
569 Reviewed. *Current Bioinformatics*. 2018;13(4):396-406. doi: 10.2174/1574893613666180108155851.
570 PubMed PMID: WOS:000437860800010.

571 10. de la Torre-Escudero E, Gerlach JQ, Bennett APS, Cwiklinski K, Jewhurst HL, Huson KM, et al.
572 Surface molecules of extracellular vesicles secreted by the helminth pathogen *Fasciola hepatica* direct
573 their internalisation by host cells. *PLoS Negl Trop Dis*. 2019;13(1). doi: 10.1371/journal.pntd.0007087.
574 PubMed PMID: WOS:000457398700049.

575 11. Jaikua W, Kueakhai P, Chaithirayanan K, Tanomrat R, Wongwairot S, Riengrojpitak S, et al. Cytosolic
576 superoxide dismutase can provide protection against *Fasciola gigantica*. *Acta Tropica*. 2016;162:75-82.
577 doi: <https://doi.org/10.1016/j.actatropica.2016.06.020>.

578 12. Kelley JM, Elliott TP, Beddoe T, Anderson G, Skuce P, Spithill TW. Current Threat of Triclabendazole
579 Resistance in *Fasciola hepatica*. *Trends in Parasitology*. 2016;32(6):458-69. doi:
580 10.1016/j.pt.2016.03.002. PubMed PMID: WOS:000377730100007.

581 13. Rehman A, Ullah R, Gupta D, Khan MAH, Rehman L, Beg MA, et al. Generation of oxidative stress
582 and induction of apoptotic like events in curcumin and thymoquinone treated adult *Fasciola gigantica*
583 worms. *Experimental Parasitology*. 2020;209:107810. doi:
584 <https://doi.org/10.1016/j.exppara.2019.107810>.

585 14. Le TH, De NV, Agatsuma T, Thi Nguyen TG, Nguyen QD, McManus DP, et al. Human fascioliasis and
586 the presence of hybrid/introgressed forms of *Fasciola hepatica* and *Fasciola gigantica* in Vietnam.
587 *International Journal for Parasitology*. 2008;38(6):725-30. doi:
588 <https://doi.org/10.1016/j.ijpara.2007.10.003>.

589 15. Ashrafi K, Valero MA, Panova M, Periago MV, Massoud J, Mas-Coma S. Phenotypic analysis of
590 adults of *Fasciola hepatica*, *Fasciola gigantica* and intermediate forms from the endemic region of Gilan,
591 Iran. *Parasitology International*. 2006;55(4):249-60. doi: <https://doi.org/10.1016/j.parint.2006.06.003>.

592 16. Rhee JK, Eun GS, Lee SB. Karyotype of *Fasciola* sp. obtained from Korean cattle. *Kisaengch'unghak*
593 *chapchi* The Korean journal of parasitology. 1987;25(1):37-44. PubMed PMID: MEDLINE:12886080.

594 17. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies.
595 *Bioinformatics*. 2013;29(8):1072-5. doi: 10.1093/bioinformatics/btt086. PubMed PMID:
596 WOS:000318109300015.

597 18. Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO
598 Applications from Quality Assessments to Gene Prediction and Phylogenomics. *Mol Biol Evol*.

599 2018;35(3):543-8. doi: 10.1093/molbev/msx319. PubMed PMID: WOS:000427260700002.

600 19. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, et al. The InterPro database,
601 an integrated documentation resource for protein families, domains and functional sites. *Nucleic Acids
602 Research*. 2001;29(1):37-40. doi: 10.1093/nar/29.1.37. PubMed PMID: WOS:000166360300007.

603 20. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein
604 function classification. *Bioinformatics*. 2014;30(9):1236-40. doi: 10.1093/bioinformatics/btu031.
605 PubMed PMID: WOS:000336095100007.

606 21. Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. *Nature
607 Reviews Genetics*. 2020;21(12):721-36. doi: 10.1038/s41576-020-0251-y.

608 22. Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. The Influence of
609 LINE-1 and SINE Retrotransposons on Mammalian Genomes. *Microbiol Spectr*. 2015;3(2):MDNA3-2014.
610 doi: 10.1128/microbiolspec.MDNA3-0061-2014. PubMed PMID: 26104698.

611 23. Bejerano G, Lowe C, Ahituv N, King B, Siepel A, Salama S, et al. A distal enhancer and an
612 ultraconserved exon are derived from a novel retroposon. *Nature*. 2006;441:87-90.

613 24. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for
614 automated genomic discovery of transposable element families. *Proceedings of the National Academy
615 of Sciences of the United States of America*. 2020;117(17):9451-7. Epub 2020/04/16. doi:
616 10.1073/pnas.1921046117. PubMed PMID: 32300014.

617 25. Smit AFA. Interspersed repeats and other mementos of transposable elements in mammalian
618 genomes. *Current Opinion in Genetics & Development*. 1999;9(6):657-63. doi: 10.1016/s0959-
619 437x(99)00031-3. PubMed PMID: WOS:000084277900007.

620 26. Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B, Spangenberg J, et al. Environmental changes
621 during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum:
622 Implications for the Anthropocene. *Gondwana Research*. 2018;56:69-89. doi:
623 <https://doi.org/10.1016/j.gr.2017.12.002>.

624 27. Pastor-Cantizano N, Montesinos JC, Bernat-Silvestre C, Marcote MJ, Aniento F. p24 family proteins:
625 key players in the regulation of trafficking along the secretory pathway. *Protoplasma*. 2016;253(4):967-
626 85. doi: 10.1007/s00709-015-0858-6.

627 28. Montesinos JC, Sturm S, Langhans M, Hillmer S, Marcote MJ, Robinson DG, et al. Coupled transport
628 of *Arabidopsis* p24 proteins at the ER-Golgi interface. *J Exp Bot*. 2012;63(11):4243-61. Epub 2012/05/10.
629 doi: 10.1093/jxb/ers112. PubMed PMID: 22577184.

630 29. de la Torre-Escudero E, Gerlach JQ, Bennett APS, Cwiklinski K, Jewhurst HL, Huson KM, et al.
631 Surface molecules of extracellular vesicles secreted by the helminth pathogen *Fasciola hepatica* direct
632 their internalisation by host cells. *PLoS Negl Trop Dis*. 2019;13(1):e0007087-e. doi:
633 10.1371/journal.pntd.0007087. PubMed PMID: 30657764.

634 30. Juan T, Fürthauer M. Biogenesis and function of ESCRT-dependent extracellular vesicles. *Seminars
635 in Cell & Developmental Biology*. 2018;74:66-77. doi: <https://doi.org/10.1016/j.semcdb.2017.08.022>.

636 31. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. *Cell Research*.
637 2011;21(3):381-95. doi: 10.1038/cr.2011.22.

638 32. Oda H, Okamoto I, Murphy N, Chu J, Price SM, Shen MM, et al. Monomethylation of histone H4-
639 lysine 20 is involved in chromosome structure and stability and is essential for mouse development. *Mol
640 Cell Biol*. 2009;29(8):2278-95. Epub 2009/02/17. doi: 10.1128/MCB.01768-08. PubMed PMID:
641 19223465.

642 33. Muiño L, Perteguer MJ, Gárate T, Martínez-Sernández V, Beltrán A, Romarís F, et al. Molecular and

643 immunological characterization of *Fasciola* antigens recognized by the MM3 monoclonal antibody.
644 Molecular and Biochemical Parasitology. 2011;179(2):80-90. doi:
645 <https://doi.org/10.1016/j.molbiopara.2011.06.003>.

646 34. Dalton JP, Neill SO, Stack C, Collins P, Walshe A, Sekiya M, et al. *Fasciola hepatica* cathepsin L-like
647 proteases: biology, function, and potential in the development of first generation liver fluke vaccines.
648 International Journal for Parasitology. 2003;33(11):1173-81. doi: [https://doi.org/10.1016/S0020-7519\(03\)00171-1](https://doi.org/10.1016/S0020-7519(03)00171-1).

650 35. Batra S, Chatterjee RK, Srivastava VML. Antioxidant system of *Litomosoides carinii* and *Setariacervi*:
651 effect of a macrofilaricidal agent. Veterinary Parasitology. 1992;43(1):93-103. doi:
652 [https://doi.org/10.1016/0304-4017\(92\)90052-B](https://doi.org/10.1016/0304-4017(92)90052-B).

653 36. McGonigle S, Dalton JP. ISOLATION OF FASCIOLA-HEPATICA HEMOGLOBIN. Parasitology.
654 1995;111:209-15. doi: 10.1017/s0031182000064969. PubMed PMID: WOS:A1995RR28600011.

655 37. Farahnak A, Golestani A, Eshraghian M. Activity of Superoxide Dismutase (SOD) Enzyme in the
656 Excretory-Secretory Products of *Fasciola hepatica* and *F. gigantica* Parasites. Iran J Parasitol.
657 2013;8(1):167-70. PubMed PMID: 23682275.

658 38. Okada K, Fukui M, Zhu B-T. Protein disulfide isomerase mediates glutathione depletion-induced
659 cytotoxicity. Biochemical and Biophysical Research Communications. 2016;477(3):495-502. doi:
660 <https://doi.org/10.1016/j.bbrc.2016.06.066>.

661 39. Biswal DK, Roychowdhury T, Pandey P, Tandon V. De novo genome and transcriptome analyses
662 provide insights into the biology of the trematode human parasite *Fasciolopsis buski*. Plos One.
663 2018;13(10). doi: 10.1371/journal.pone.0205570. PubMed PMID: WOS:000447430800025.

664 40. Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. The draft genome of the carcinogenic human
665 liver fluke *Clonorchis sinensis*. Genome Biology. 2011;12(10). doi: 10.1186/gb-2011-12-10-r107.
666 PubMed PMID: WOS:000301176900010.

667 41. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the
668 blood fluke *Schistosoma mansoni*. Nature. 2009;460(7253):352-U65. doi: 10.1038/nature08160.
669 PubMed PMID: WOS:000267979000029.

670 42. Li W, Liu B, Yang Y, Ren Y, Wang S, Liu C, et al. The genome of tapeworm *Taenia multiceps* sheds
671 light on understanding parasitic mechanism and control of coenurosis disease. DNA Research.
672 2018;25(5):499-510. doi: 10.1093/dnare/dsy020. PubMed PMID: WOS:000456004800005.

673 43. Luo X, Zhou Y, Zhang B, Zhang Y, Wang X, Feng T, et al. Understanding divergent domestication
674 traits from the whole-genome sequencing of swamp- and river-buffalo populations. National Science
675 Review. 2020;7(3):686-701. doi: 10.1093/nsr/nwaa024. PubMed PMID: WOS:000537425800024.

676 44. de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, et al. Initial sequencing and analysis
677 of the human genome (vol 409, pg 860, 2001). Nature. 2001;412(6846):565-6. PubMed PMID:
678 WOS:000170202900052.

679 45. Choi Y-J, Fontenla S, Fischer PU, Le TH, Costabile A, Blair D, et al. Adaptive Radiation of the Flukes
680 of the Family *Fasciolidae* Inferred from Genome-Wide Comparisons of Key Species. Mol Biol Evol.
681 2020;37(1):84-99. doi: 10.1093/molbev/msz204. PubMed PMID: 31501870.

682 46. Irving JA, Spithill TW, Pike RN, Whisstock JC, Smooker PM. The Evolution of Enzyme Specificity in
683 *Fasciola* spp. Journal of Molecular Evolution. 2003;57(1):1-15. doi: 10.1007/s00239-002-2434-x.

684 47. Näsvall J, Sun L, Roth JR, Andersson DI. Real-time evolution of new genes by innovation,
685 amplification, and divergence. Science. 2012;338(6105):384-7. doi: 10.1126/science.1226521. PubMed
686 PMID: 23087246.

687 48. Pollard TD. Actin and Actin-Binding Proteins. *Cold Spring Harb Perspect Biol.* 2016;8(8):a018226.

688 49. Dominguez R, Holmes KC. Actin Structure and Function. *Annual Review of Biophysics.* 2011;40(1):169.

690 50. Priess JR, Hirsh DI. *Caenorhabditis elegans* morphogenesis: the role of the cytoskeleton in 691 elongation of the embryo. *Developmental biology.* 1986;117(1):156-73. doi: 10.1016/0012- 692 1606(86)90358-1. PubMed PMID: MEDLINE:3743895.

693 51. McKeown C, Praitis V, Austin J. *sma-1* encodes a beta(H)-spectrin homolog required for 694 *Caenorhabditis elegans* morphogenesis. *Development.* 1998;125(11):2087-98. PubMed PMID: 695 WOS:000074337100011.

696 52. de Almeida A, Martins AP, Mosca AF, Wijma HJ, Prista C, Soveral G, et al. Exploring the gating 697 mechanisms of aquaporin-3: new clues for the design of inhibitors? *Molecular Biosystems.* 698 2016;12(5):1564-73. doi: 10.1039/c6mb00013d. PubMed PMID: WOS:000374936700015.

699 53. Soveral G, Casini A. Aquaporin modulators: a patent review (2010-2015). *Expert Opinion on 700 Therapeutic Patents.* 2016;27(1):49.

701 54. Geadkaew A, von Bülow J, Beitz E, Grams SV, Viyanant V, Grams R. Functional analysis of novel 702 aquaporins from *Fasciola gigantica*. *Molecular and Biochemical Parasitology.* 2011;175(2):144-53. doi: 703 <https://doi.org/10.1016/j.molbiopara.2010.10.010>.

704 55. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range 705 sequencing and mapping. *Nature Reviews Genetics.* 2018;19(6):329-46. doi: 10.1038/s41576-018- 706 0003-4.

707 56. Feschotte C. Transposable elements and the evolution of regulatory networks. *Nat Rev Genet.* 708 2008;9(5):397-405. doi: 10.1038/nrg2337. PubMed PMID: 18368054.

709 57. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to 710 benefits. *Nature Reviews Genetics.* 2017;18(2):71-86. doi: 10.1038/nrg.2016.139.

711 58. Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory 712 networks contributed to the evolution of pregnancy in mammals. *Nature Genetics.* 2011;43(11):1154- 713 9. doi: 10.1038/ng.917.

714 59. Zhang F-K, Zhang X-X, Elsheikha HM, He J-J, Sheng Z-A, Zheng W-B, et al. Transcriptomic responses 715 of water buffalo liver to infection with the digenetic fluke *Fasciola gigantica*. *Parasites & Vectors.* 716 2017;10(1):56. doi: 10.1186/s13071-017-1990-2.

717 60. Zhang F-K, Hu R-S, Elsheikha HM, Sheng Z-A, Zhang W-Y, Zheng W-B, et al. Global serum proteomic 718 changes in water buffaloes infected with *Fasciola gigantica*. *Parasites & Vectors.* 2019;12(1):281. doi: 719 10.1186/s13071-019-3533-5.

720 61. Valero MA, Darce NAn, Panova M, Mas-Coma S. Relationships between host species and 721 morphometric patterns in *Fasciola hepatica* adults and eggs from the northern Bolivian Altiplano 722 hyperendemic region. *Veterinary Parasitology.* 2001;102(1):85-100. doi: 723 [https://doi.org/10.1016/S0304-4017\(01\)00499-X](https://doi.org/10.1016/S0304-4017(01)00499-X).

724 62. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate 725 long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research.* 726 2017;27(5):722-36. doi: 10.1101/gr.215087.116. PubMed PMID: WOS:000400392400007.

727 63. Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. Assembling large genomes with 728 single-molecule sequencing and locality-sensitive hashing. *Nature Biotechnology.* 2015;33(6):623-30. 729 doi: 10.1038/nbt.3238.

730 64. Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic

731 duplication in primary genome assemblies. *Bioinformatics (Oxford, England)*. 2020;36(9):2896-8. doi:
732 10.1093/bioinformatics/btaa025. PubMed PMID: 31971576.

733 65. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: An Integrated Tool for
734 Comprehensive Microbial Variant Detection and Genome Assembly Improvement. *Plos One*. 2014;9(11).
735 doi: 10.1371/journal.pone.0112963. PubMed PMID: WOS:000345533200052.

736 66. Zhang X, Zhang S, Zhao Q, Ming R, Tang H. Assembly of allele-aware, chromosomal-scale
737 autopolyploid genomes based on Hi-C data. *Nature Plants*. 2019;5(8):833-45. doi: 10.1038/s41477-019-
738 0487-8.

739 67. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation
740 with QUAST-LG. *Bioinformatics*. 2018;34(13):i142-i50. Epub 2018/06/29. doi:
741 10.1093/bioinformatics/bty266. PubMed PMID: 29949969; PubMed Central PMCID: PMCPMC6022658.

742 68. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
743 *Bioinformatics*. 2010;26(5):589-95. doi: 10.1093/bioinformatics/btp698. PubMed PMID:
744 WOS:000274973800001.

745 69. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map
746 format and SAMtools. *Bioinformatics*. 2009;25(16):2078-9. doi: 10.1093/bioinformatics/btp352.
747 PubMed PMID: WOS:000268808600014.

748 70. Zhang X-X, Cwiklinski K, Hu R-S, Zheng W-B, Sheng Z-A, Zhang F-K, et al. Complex and dynamic
749 transcriptional changes allow the helminth *Fasciola gigantica* to adjust to its intermediate snail and
750 definitive mammalian hosts. *BMC Genomics*. 2019;20(1):729-. doi: 10.1186/s12864-019-6103-5.
751 PubMed PMID: 31606027.

752 71. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping
753 with HISAT2 and HISAT-genotype. *Nature biotechnology*. 2019;37(8):907-15. Epub 2019/08/02. doi:
754 10.1038/s41587-019-0201-4. PubMed PMID: 31375807.

755 72. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables
756 improved reconstruction of a transcriptome from RNA-seq reads. *Nature biotechnology*.
757 2015;33(3):290-5. Epub 2015/02/18. doi: 10.1038/nbt.3122. PubMed PMID: 25690850.

758 73. Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Jr., Hannick LI, et al. Improving the
759 *Arabidopsis* genome annotation using maximal transcript alignment assemblies. *Nucleic acids research*.
760 2003;31(19):5654-66. doi: 10.1093/nar/gkg770. PubMed PMID: 14500829.

761 74. Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in
762 eukaryotes. *Nucleic Acids Research*. 2004;32(suppl_2):W309-W12. doi: 10.1093/nar/gkh379.

763 75. Korf I. Gene finding in novel genomes. *BMC Bioinformatics*. 2004;5(1):59. doi: 10.1186/1471-2105-
764 5-59.

765 76. The UniProt Consortium. UniProt: the universal protein knowledgebase. *Nucleic acids research*.
766 2017;45(D1):D158-D69. Epub 2016/11/29. doi: 10.1093/nar/gkw1099. PubMed PMID: 27899622.

767 77. Gertz EM, Yu Y-K, Agarwala R, Schäffer AA, Altschul SF. Composition-based statistics and translated
768 nucleotide searches: improving the TBLASTN module of BLAST. *BMC Biol*. 2006;4:41-. doi:
769 10.1186/1741-7007-4-41. PubMed PMID: 17156431.

770 78. Birney E, Clamp M, Durbin R. GeneWise and Genomewise. *Genome research*. 2004;14(5):988-95.
771 doi: 10.1101/gr.1865504. PubMed PMID: 15123596.

772 79. Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for
773 second-generation genome projects. *BMC bioinformatics*. 2011;12:491-. doi: 10.1186/1471-2105-12-
774 491. PubMed PMID: 22192575.

775 80. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein
776 domains identifier. *Nucleic acids research*. 2005;33(Web Server issue):W116-20. doi:
777 10.1093/nar/gki442. PubMed PMID: 15980438.

778 81. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST:
779 a new generation of protein database search programs. *Nucleic acids research*. 1997;25(17):3389-402.
780 doi: 10.1093/nar/25.17.3389. PubMed PMID: 9254694.

781 82. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional
782 Characterization of Genome and Metagenome Sequences. *Journal of Molecular Biology*.
783 2016;428(4):726-31. doi: <https://doi.org/10.1016/j.jmb.2015.11.006>.

784 83. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes
785 Among Gene Clusters. *Omics-a Journal of Integrative Biology*. 2012;16(5):284-7. doi:
786 10.1089/omi.2011.0118. PubMed PMID: WOS:000303653300007.

787 84. Quinlan AR. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr Protoc
788 Bioinformatics*. 2014;47:11.2.1-2.34. doi: 10.1002/0471250953.bi1112s47. PubMed PMID: 25199790.

789 85. Yang Z, Rannala B. Bayesian Estimation of Species Divergence Times Under a Molecular Clock Using
790 Multiple Fossil Calibrations with Soft Bounds. *Mol Biol Evol*. 2006;23(1):212-26. doi:
791 10.1093/molbev/msj024.

792 86. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from
793 transmembrane regions. *Nature Methods*. 2011;8(10):785-6. doi: 10.1038/nmeth.1701. PubMed PMID:
794 WOS:000295358000004.

795 87. Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins
796 based on their N-terminal amino acid sequence. *Journal of Molecular Biology*. 2000;300(4):1005-16. doi:
797 10.1006/jmbi.2000.3903. PubMed PMID: WOS:000088508500026.

798 88. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology
799 with a hidden Markov model: Application to complete genomes. *Journal of Molecular Biology*.
800 2001;305(3):567-80. doi: 10.1006/jmbi.2000.4315. PubMed PMID: WOS:000167760800017.

801 89. Santos A, Tsafou K, Stolte C, Pletscher-Frankild S, O'Donoghue SI, Jensen LJ. Comprehensive
802 comparison of large-scale tissue expression datasets. *Peerj*. 2015;3. doi: 10.7717/peerj.1054. PubMed
803 PMID: WOS:000357321300006.

804 90. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 8-a global view on
805 proteins and their functional interactions in 630 organisms. *Nucleic Acids Research*. 2009;37:D412-D6.
806 doi: 10.1093/nar/gkn760. PubMed PMID: WOS:000261906200075.

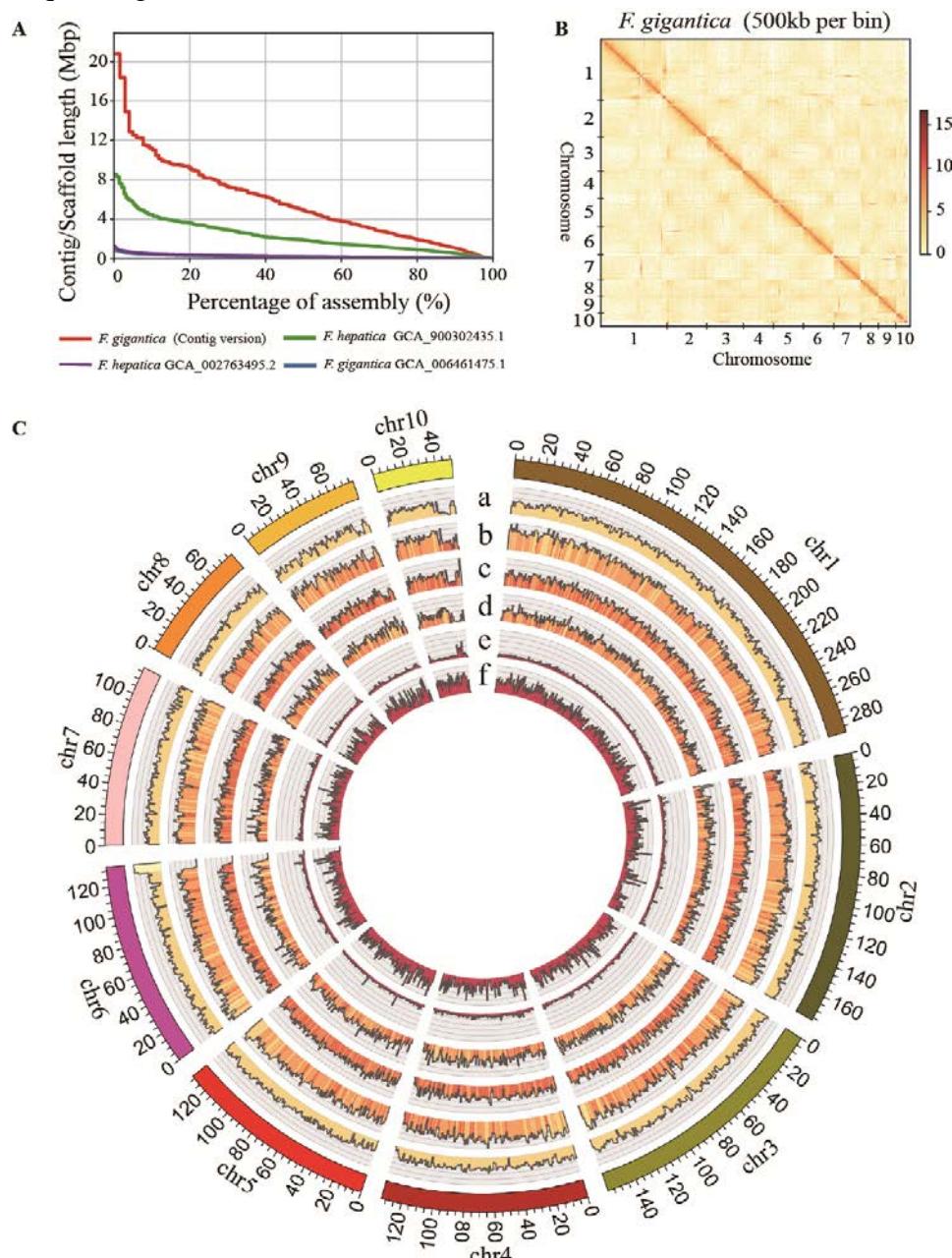
807 91. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: Network Analysis and
808 Visualization of Proteomics Data. *Journal of Proteome Research*. 2019;18(2):623-32. doi:
809 10.1021/acs.jproteome.8b00702. PubMed PMID: WOS:000457947700007.

810 92. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.
811 *Genome Biology*. 2019;20(1):238. doi: 10.1186/s13059-019-1832-y.

812 93. Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. Estimating Gene Gain and Loss Rates in the
813 Presence of Error in Genome Assembly and Annotation Using CAFE 3. *Mol Biol Evol*. 2013;30(8):1987-
814 97. doi: 10.1093/molbev/mst100. PubMed PMID: WOS:000321820400022.

815 94. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space
816 complexity. *Bmc Bioinformatics*. 2004;5:1-19. doi: 10.1186/1471-2105-5-113. PubMed PMID:
817 WOS:000223920500001.

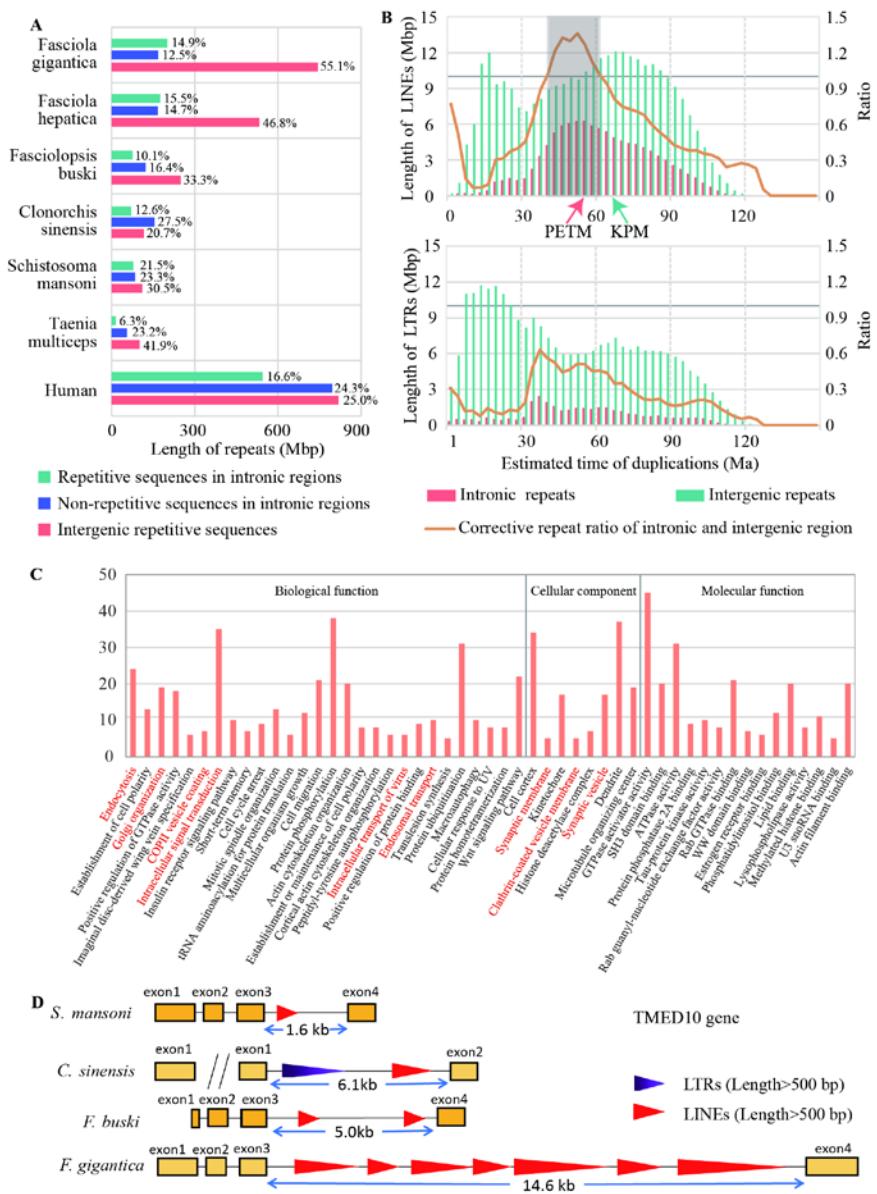
818 95. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously


819 aligned blocks from protein sequence alignments. *Systematic Biology*. 2007;56(4):564-77. doi:
820 10.1080/10635150701472164. PubMed PMID: WOS:000248359900002.
821 96. Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification
822 with multigene molecular clocks. *Proceedings of the National Academy of Sciences*.
823 2011;108(33):13624. doi: 10.1073/pnas.1110633108.
824 97. Benton MJ, Donoghue PCJ. Paleontological evidence to date the tree of life (vol 24, pg 26, 2007).
825 *Mol Biol Evol*. 2007;24(3):889-91. doi: 10.1093/molbev/msm017. PubMed PMID:
826 WOS:000244662000027.
827 98. Members C-N, Partners. Database Resources of the National Genomics Data Center, China National
828 Center for Bioinformation in 2021. *Nucleic Acids Research*. 2021;49(D1):D18-D28. doi:
829 10.1093/nar/gkaa1022.

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

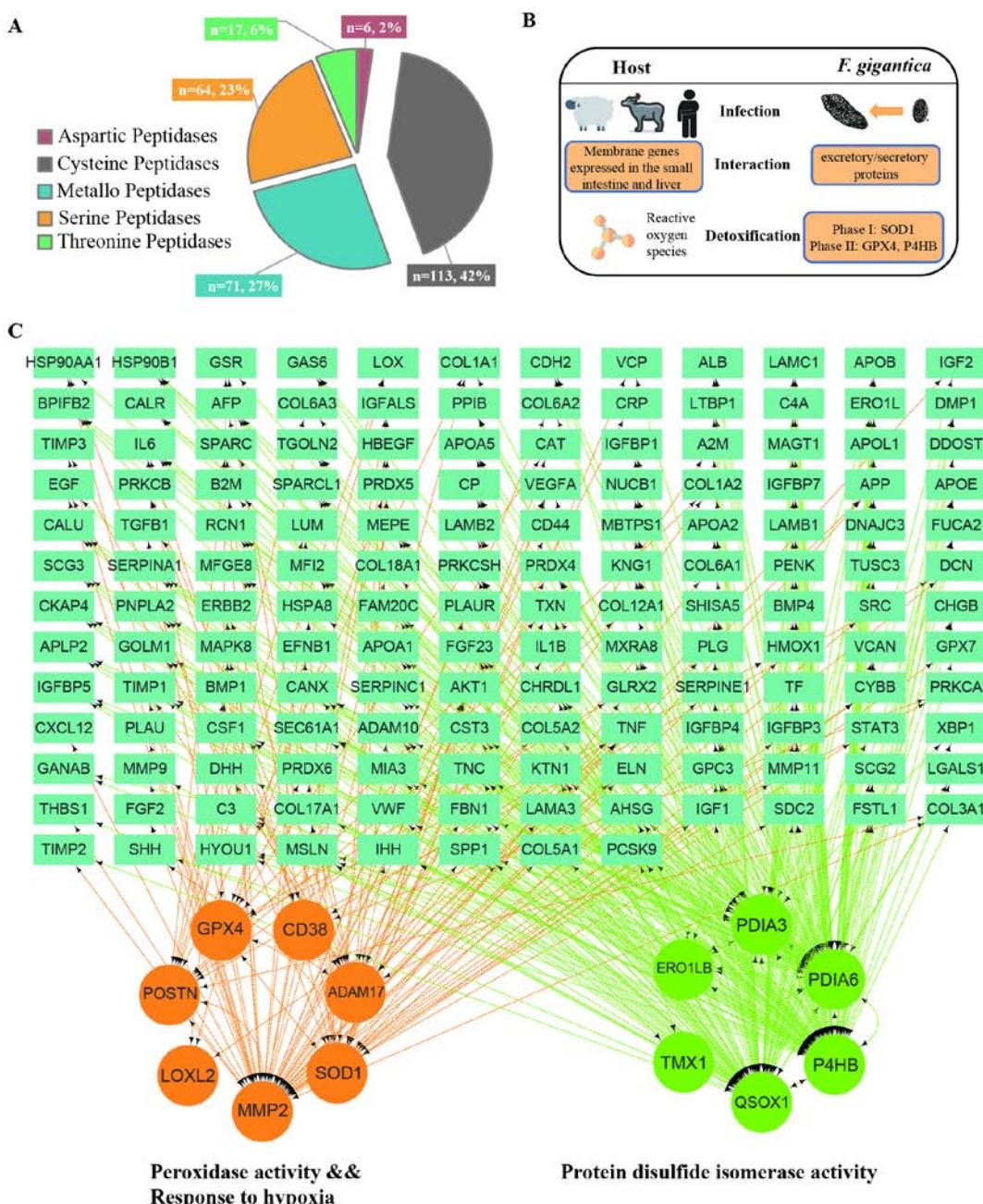
851 **Fig. 1 Landscape of the *Fasciola gigantica* genome.**

852 (A) Comparisons of the assembled contigs and scaffold lengths (y-axis) and tallies
853 (x-axis) in *Fasciola* species. (B) Hi-C interactive heatmap of the genome-wide
854 organization. The effective mapping read pairs between two bins were used as a signal
855 of the strength of the interaction between the two bins. (C) Integration of genomic and
856 annotation data using 1 Mb bins in 10 Hi-C assembled chromosomes. (a) Distribution
857 of the GC content (GC content > 39% and < 52%); (b) distribution of the long
858 interspersed element (LINE) percentage > 0% and < 50%; (c) distribution of the long
859 terminal repeat (LTR) percentage > 0% and < 50%; (d) distribution of the gene
860 percentage > 0% and < 70%; (e) distribution of the heterozygosity density of our sample
861 (percentage > 0% and < 1%); (f) distribution of the heterozygosity density of
862 SAMN03459319 in the NCBI database. Hi-C, chromosome conformation capture


863 sequencing;

864

865 **Fig. 2 Identification of repeat expansion and alternative gene networks in the**
866 ***Fasciola gigantica* genome.**


(A) The distribution of repetitive sequence length among the genomes of six flatworms and the human genome. (B) Landscape of LINEs and LTRs distribution in the *Fasciola gigantica* genome. The x-axis shows the expansion time of TEs calculated by the divergence between repeat sequences. The mutation rate was set as 1.73×10^{-9} per year. The orange line represents the repeat length ratio, used to estimate the signatures of selection, which was corrected by the total length of intronic and intergenic regions in history. (C) The functional enrichment of genes with more than 10 kb LINE insertions between 41 Ma and 62 Ma by Gene Ontology (GO) classification. The GO terms related to vesicle secretion are marked in red. (D) *TMED10* gene structure map. LINEs original between 41 Ma and 62 Ma and longer than 500 bp identified by RepeatMasker were plotted. LTRs longer than 500 bp were plotted. Long interspersed element, LINE; long terminal repeat, LTR; TE, transposable element; TMED10, transmembrane P24 trafficking protein 10.

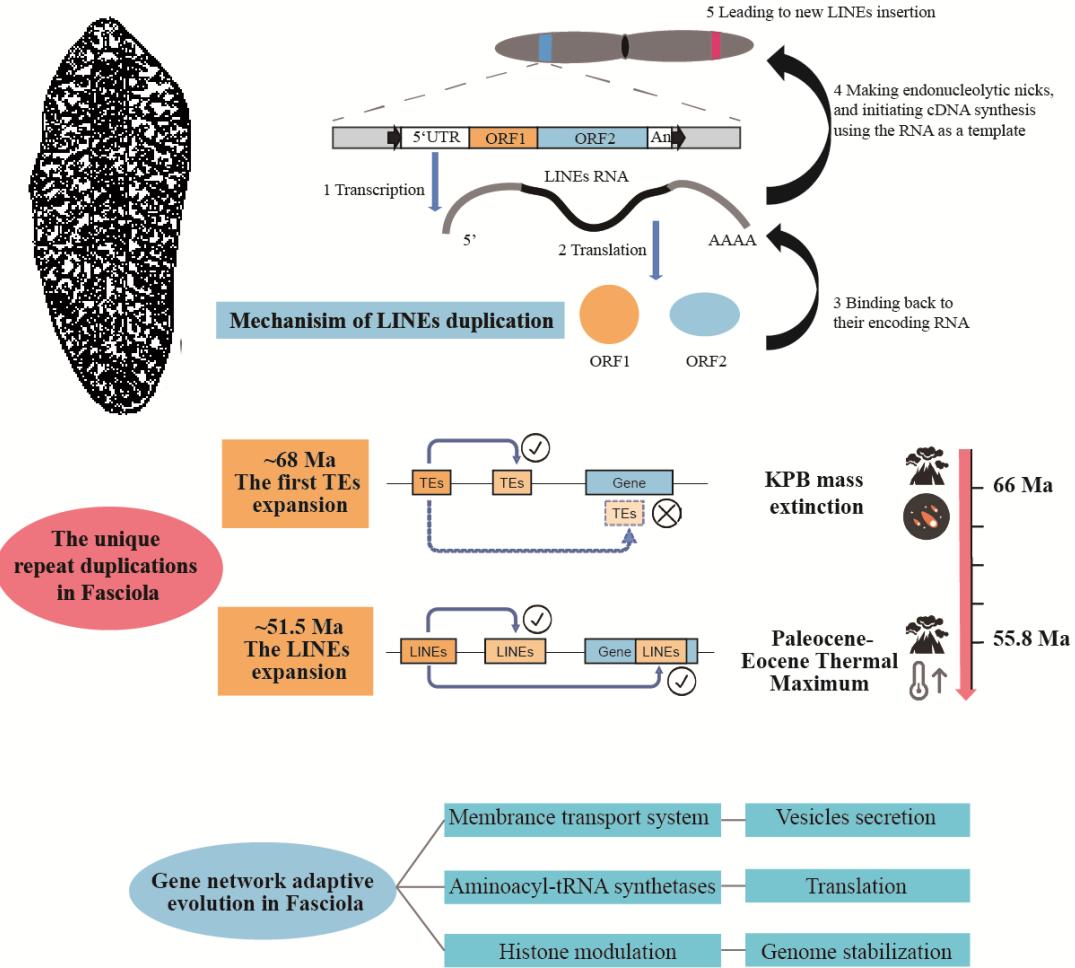
882 **Fig. 3 Genome-wide host-parasite interaction analysis.**

883 (A) Pie chart for proteases identified in *Fasciola gigantica*. (B) The interaction mode
 884 between the adult *Fasciola gigantica* and the host. (C) The protein-protein interaction
 885 (PPI) network of redox-related pathways in *Fasciola gigantica* with host proteins. The
 886 genes indicated in the three gene ontology (GO) terms were significantly enriched and
 887 have their encoded proteins have PPIs with excretory/secretory (E/S) proteins.

888

889
 890

891 **Fig. 4 Phylogenetic tree and gene family analysis.**


892 (A) A phylogenetic tree generated using 559 single-copy orthologous genes. The
 893 numbers on the species names are the expanded (+) and contracted (-) gene families.
 894 The numbers on the nodes are the divergence time between species. (B) A phylogenetic
 895 tree of actin genes in flatworms and humans. All human homologue genes are selected
 896 as outgroup. (C) Phylogenetic tree of aquaglyceroporin (AQP) family genes in
 897 flatworms and humans. The human homolog genes (*AQP11*, *AQP12A*, and *AQP12B*)
 898 were selected as the outgroup. (D) A phylogenetic tree of copper/zinc superoxide
 899 dismutase (*SOD*) genes in flatworms and humans. The midpoint was selected as the
 900 root node.

901

902

903 **Fig. 5 Schematic diagram of the process of *Fasciola*-specific repeat expansion**
904 **during evolution.**

905

906

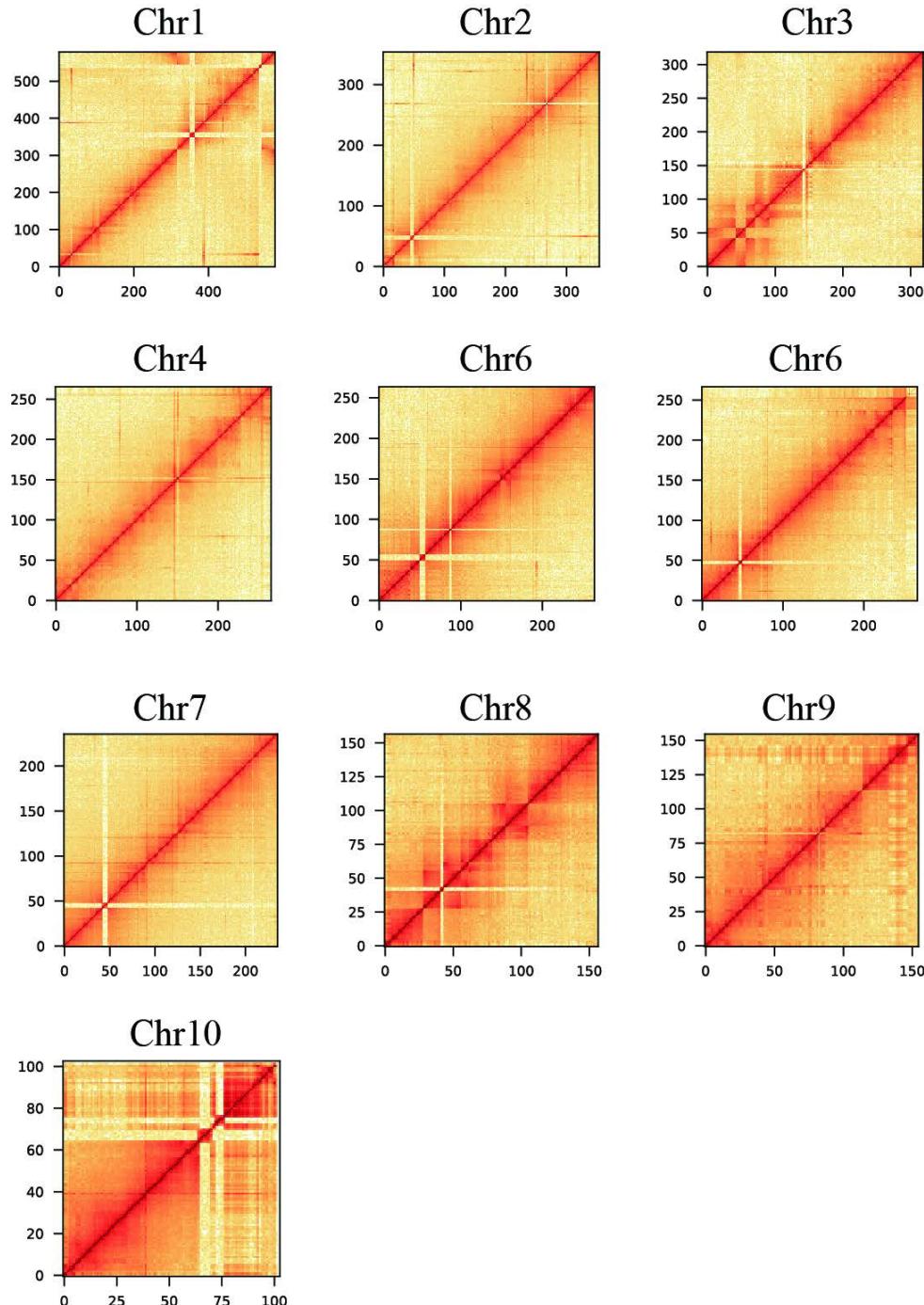
907

908 **Table 1. Summary statistics for the genome sequences and annotation.**

909

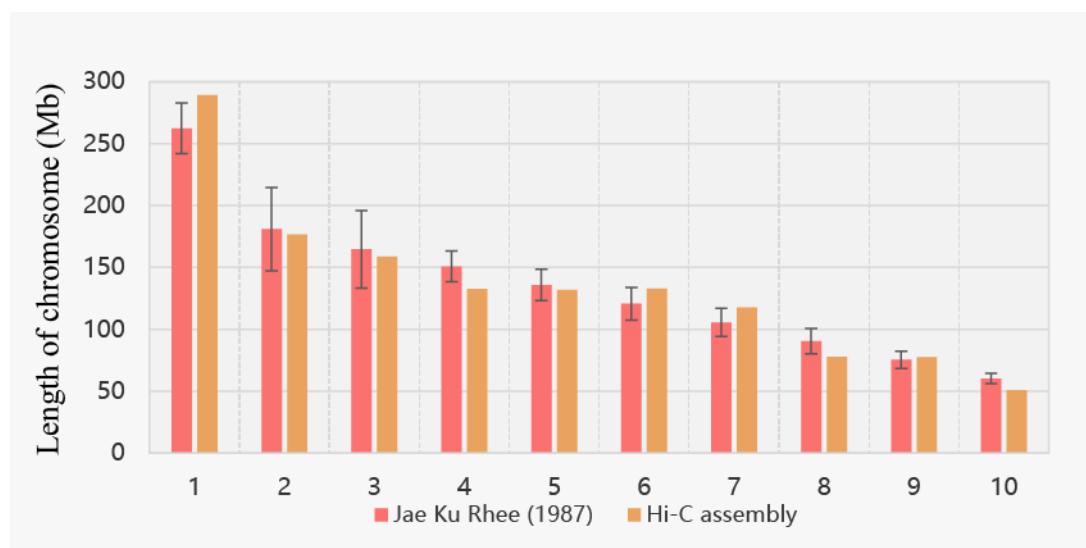
<i>F. gigantica</i>		
Genome	Total Genome Size (Mb)	1,348
	Chromosome Number	10
	Scaffold Number ^a	10+24
	Scaffold N50 (Mb)	133
	Scaffold L50	4
	Contig Number	1,022
	Contig N50 (Mb)	4.89
Heterozygosity Rate (%)		
Annotation	Total Gene Number	12,503
	Average CDS Length (bp)	1552.7
	Average Gene Length (kb)	28.8
	Percentage of Genome Covered by CDSs (%)	1.5%
	BUSCO Assessment	90.4%
	Repeat Content	70.0%

^a number of chromosome level scaffolds and unplaced scaffolds.


CDS, coding sequence.

910

911


912

913 Fig. S1. Genome-wide all-by-all chromosome conformation capture sequencing (Hi-C)
914 interaction in *F. gigantica* (Bins = 500 K).

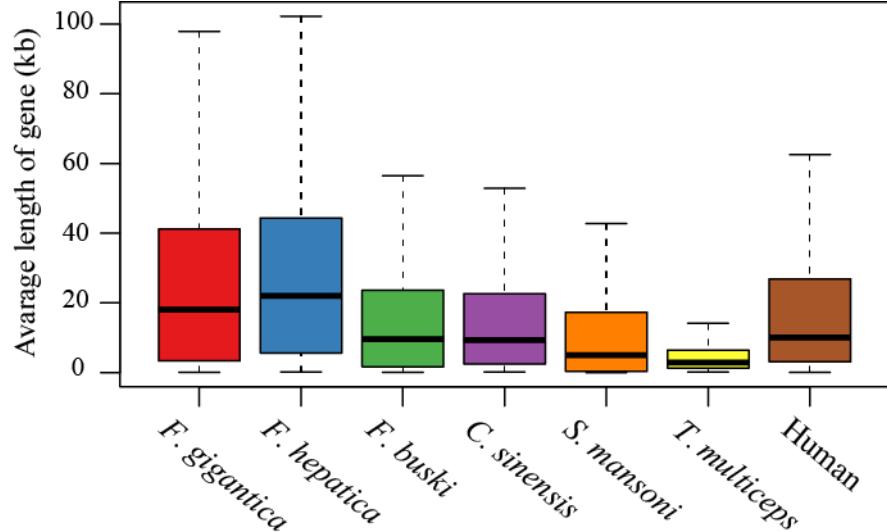
915
916
917

918 Fig. S2. Comparison of chromosome length between the chromosome conformation
919 capture sequencing (Hi-C) assembly and estimates from published karyotype data by
920 Jae Ku Rhee.

921

922

923


924

925

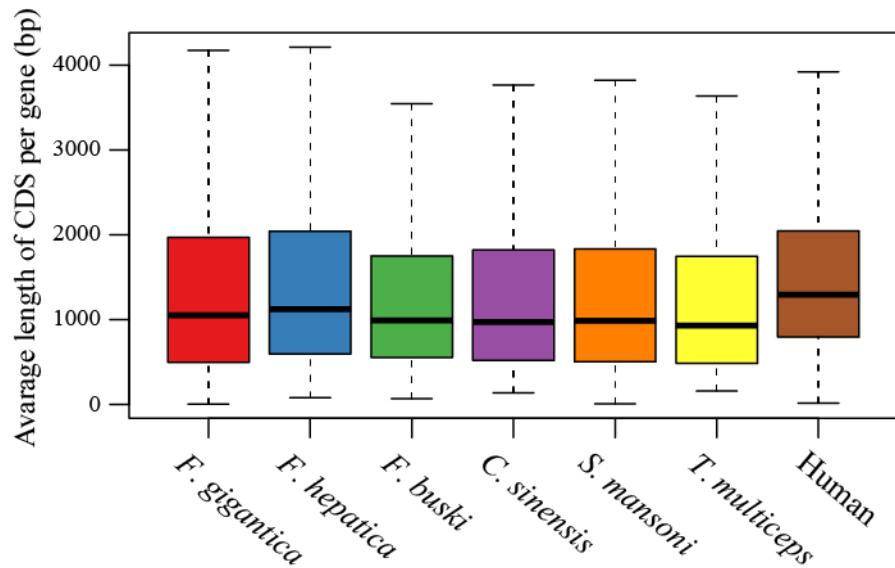
926

927

928 Fig. S3. Boxplot of average gene length.

929

930


931

932

933

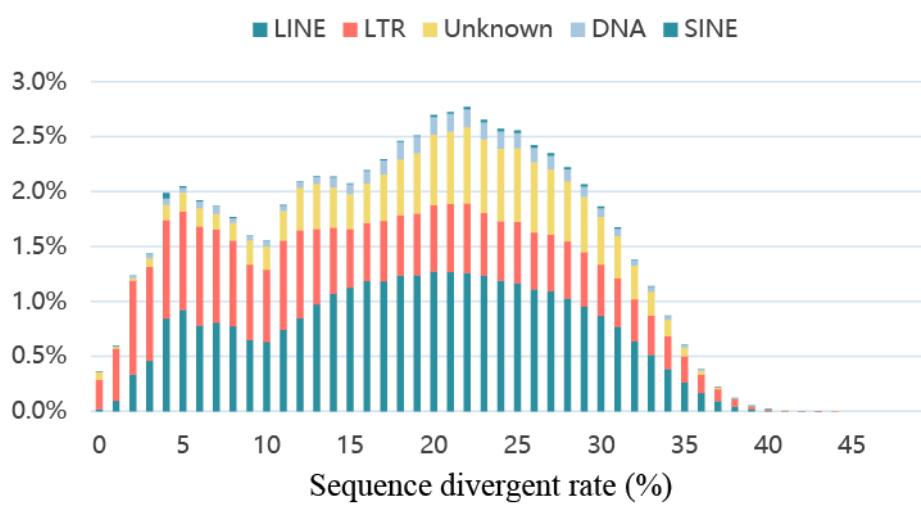
934

935 Fig. S4. Boxplot of average coding sequence (CDS) length per gene.

936

937

938


939

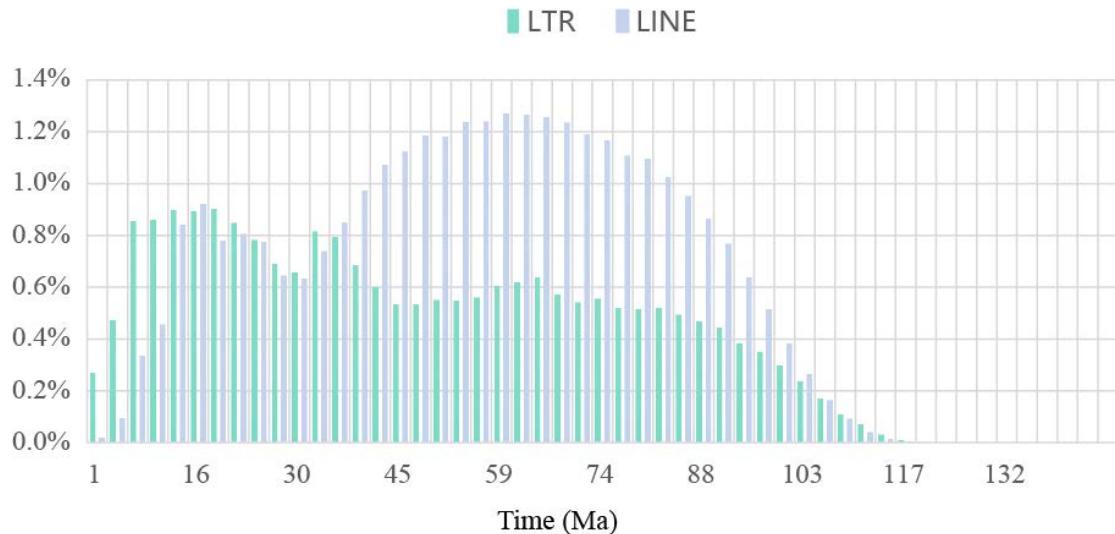
940

941

942

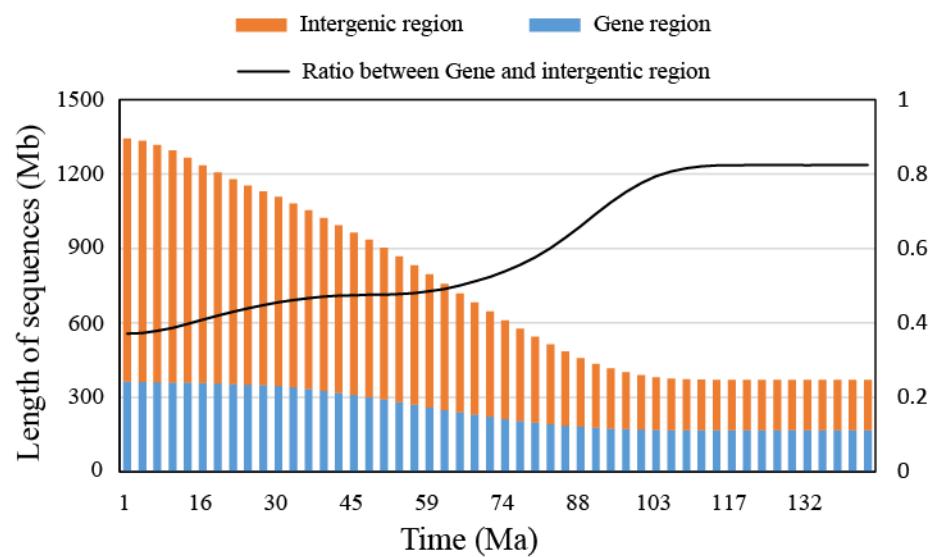
943 Fig. S5. Divergence distribution of classified families of transposable elements. The
944 classified transposon families in *F. gigantica*.

945


946

947

948


949

950 Fig. S6. Expansion time of long terminal repeats (LTRs) and long interspersed elements
951 (LINEs). The mutation rate was 1.73×10^{-9} .

952
953
954
955
956
957
958
959
960

961 Fig. S7. Estimation of *F. gigantica* genome size based on the expansion time of repeat
962 sequences during evolution. The mutation rate was 1.73×10^{-9} .

963
964
965
966
967

968 Supplementary Table 1. Genome sequencing strategy for buffaloes
969 Supplementary Table 2. Summary of the *Fasciola gigantica* genome assembly
970 Supplementary Table 3. Summary of different assemblies in *Fasciola* species
971 Supplementary Table 4. Summary of chromosome conformation capture sequencing
972 (Hi-C) assembly of the chromosome length in *Fasciola gigantica*
973 Supplementary Table 5. Assessment of the completeness and accuracy of the genome
974 Supplementary Table 6. BUSCO assessment of the genome
975 Supplementary Table 7. Number of genes with functional classification gained using
976 various methods
977 Supplementary Table 8. Transposable element content of *Fasciola gigantica* genome
978 Supplementary Table 9. The list of genes with more than 10 kb of long interspersed
979 element (LINE) insertion between 41 Ma and 62 Ma
980 Supplementary Table 10. Gene ontology (GO) term category enrichment for genes with
981 more than 10 kb of long interspersed element (LINE) insertion between 41 Ma and 62
982 Ma
983 Supplementary Table 11. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway
984 enrichment for genes with more than 10 kb of long interspersed element (LINE)
985 insertion between 41 Ma and 62 Ma
986 Supplementary Table 12. Kyoto Encyclopedia of Genes and Genomes (KEGG)
987 pathway enrichment for genes with more than 10 kb of long interspersed element (LINE)
988 insertion between 41 Ma and 62 Ma
989 Supplementary Table 13. Protein inhibitors in the *Fasciola gigantica* genome
990 Supplementary Table 14. Excretory/secretory (E/S) proteins in the *Fasciola gigantica*
991 genome
992 Supplementary Table 15. Gene ontology (GO) term category enrichment for
993 excretory/secretory (E/S) proteins
994 Supplementary Table 16. Gene ontology (GO) term category enrichment for rapidly
995 evolving families specific to *F. gigantica*.

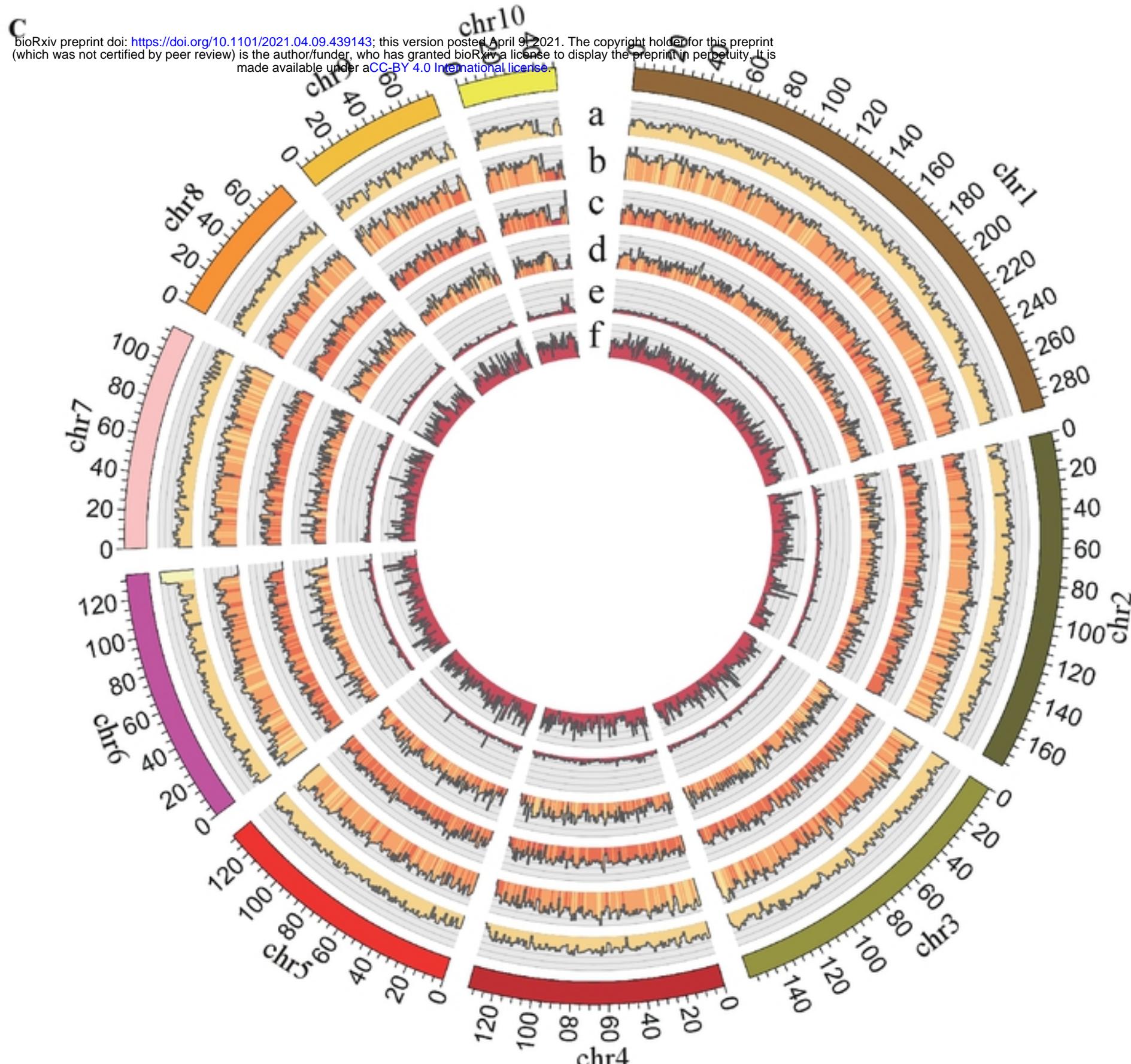
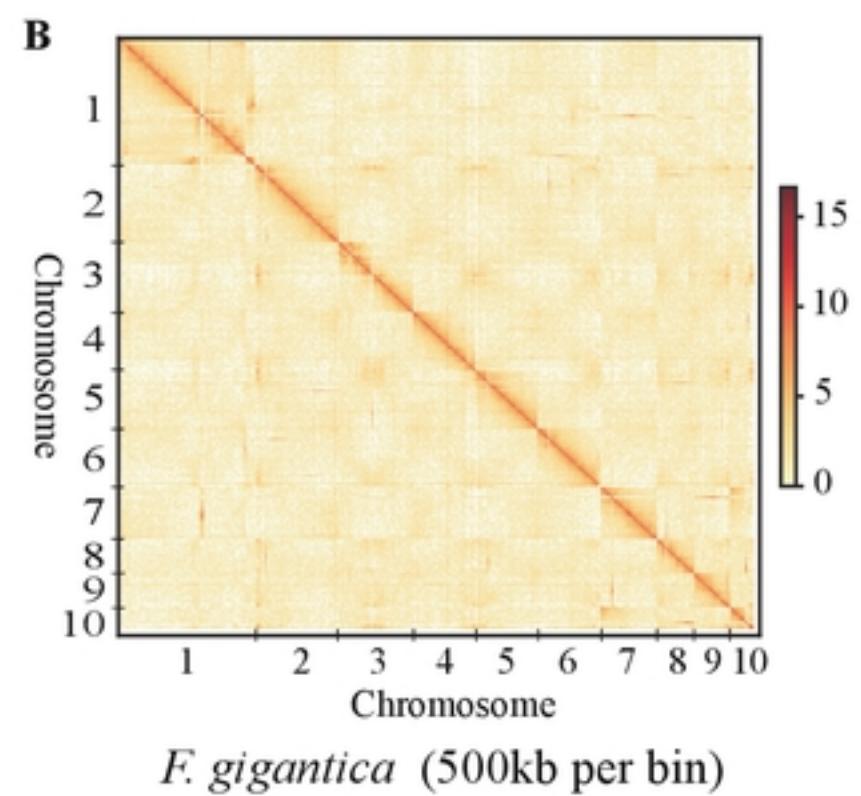
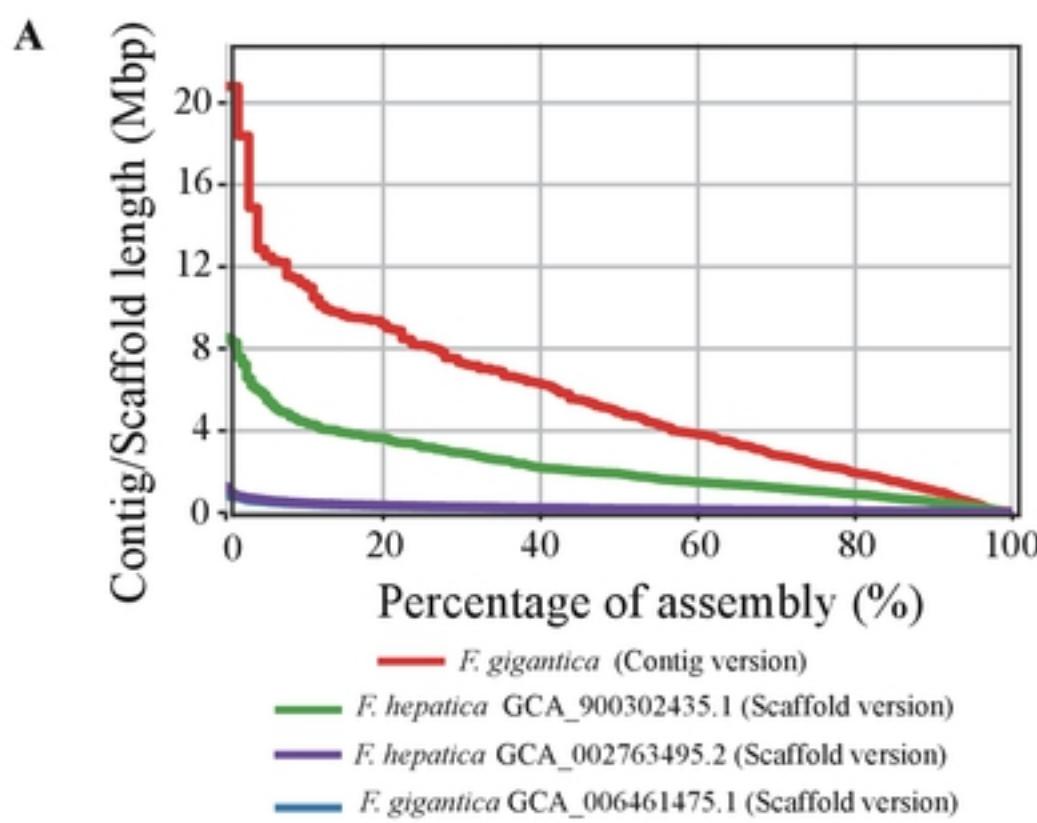




Figure 1

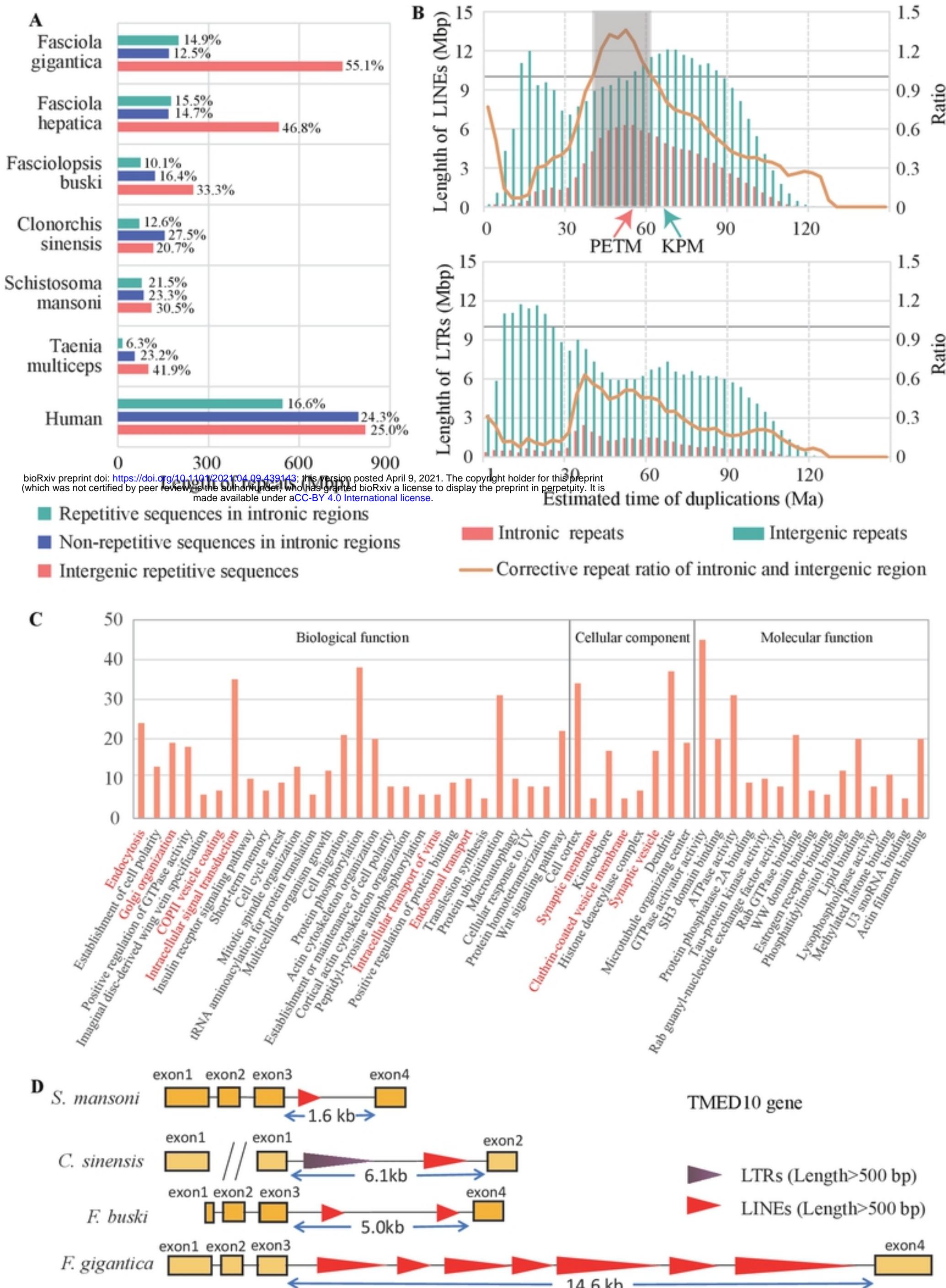
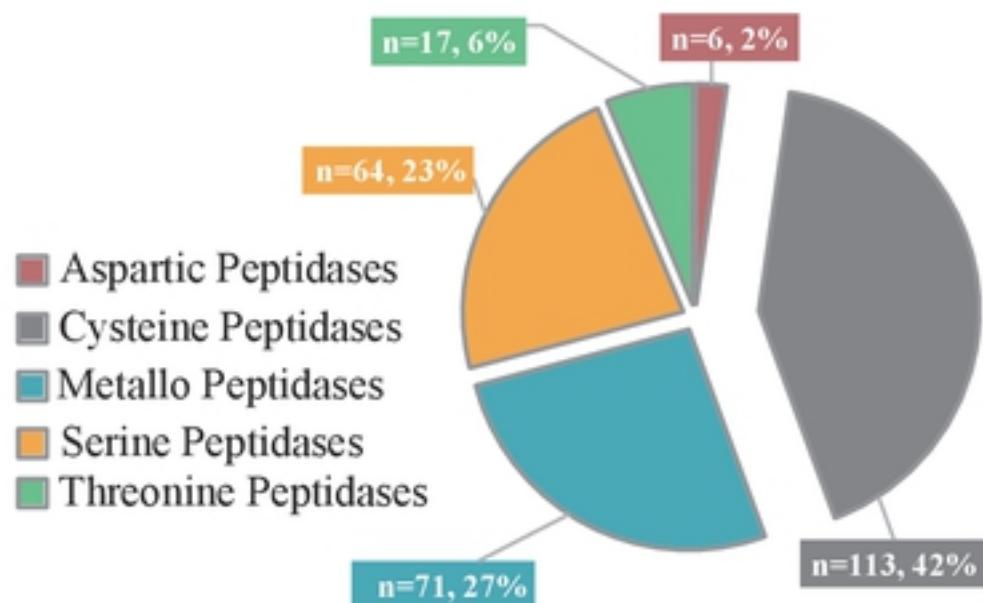
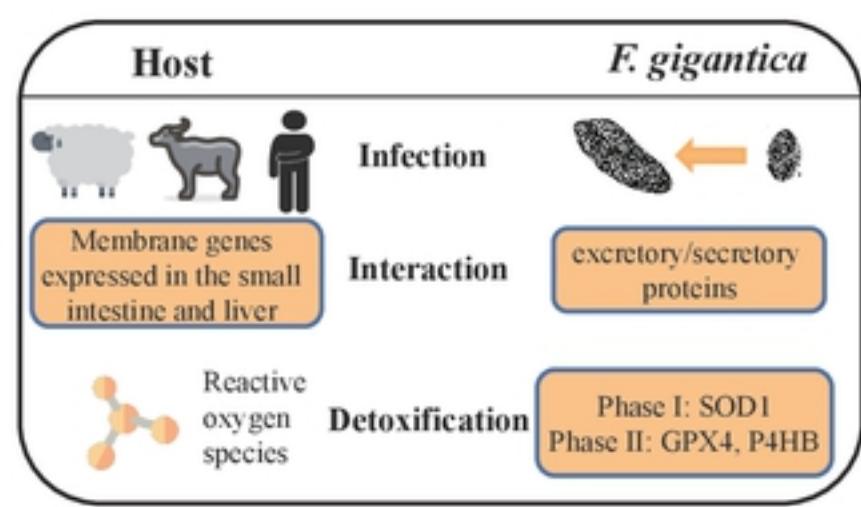
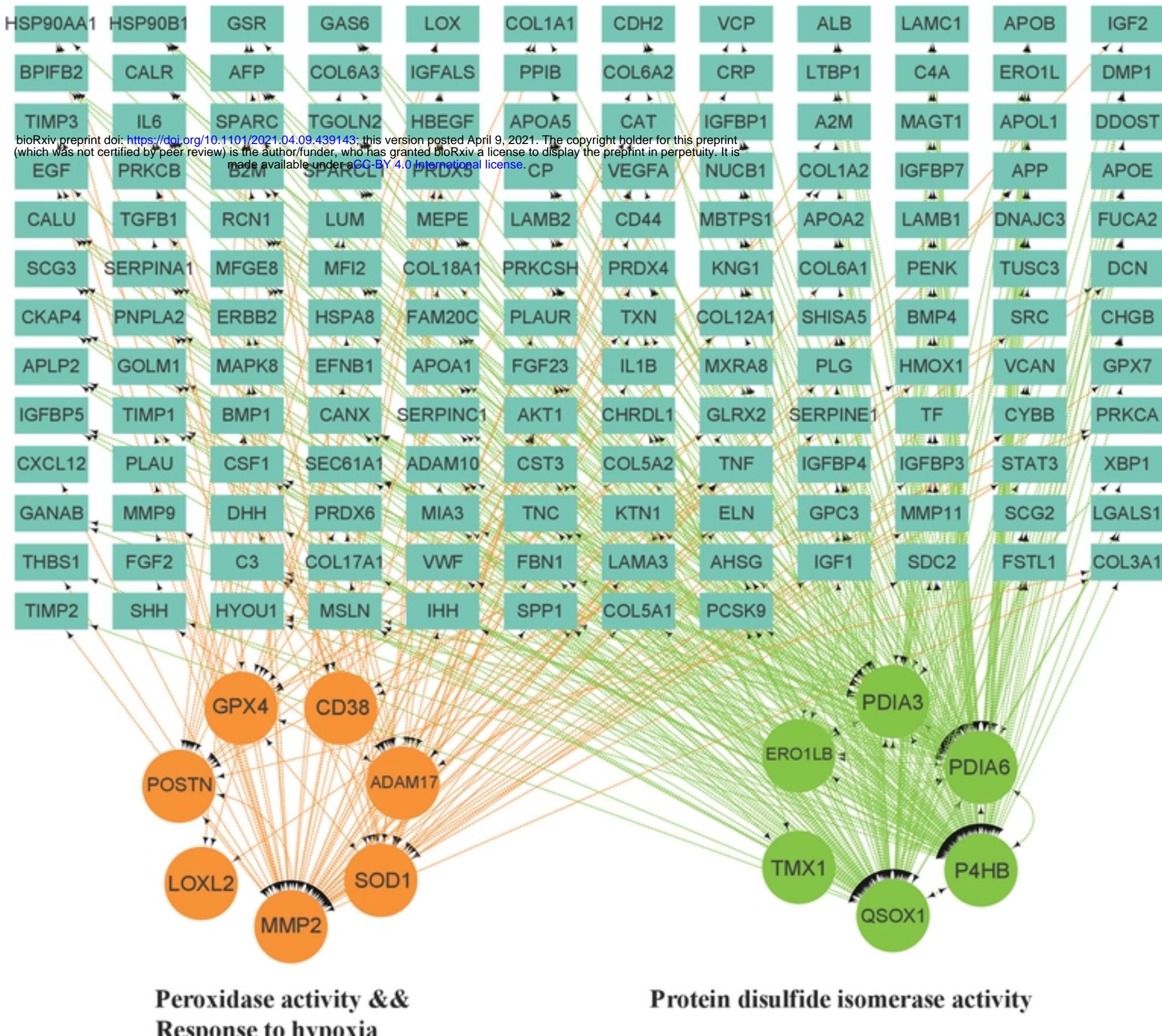





Figure2

A**B****C****Figure3**

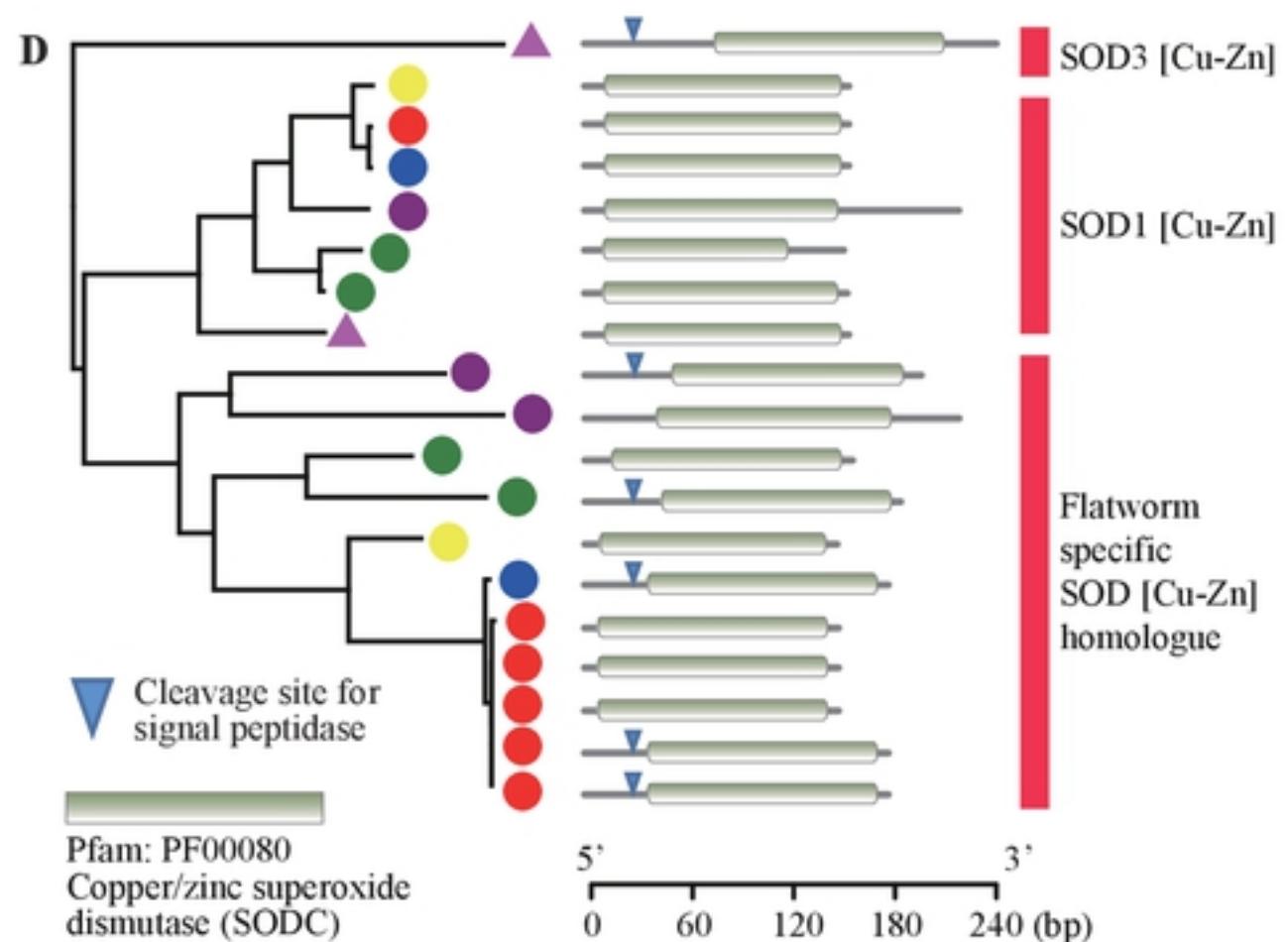
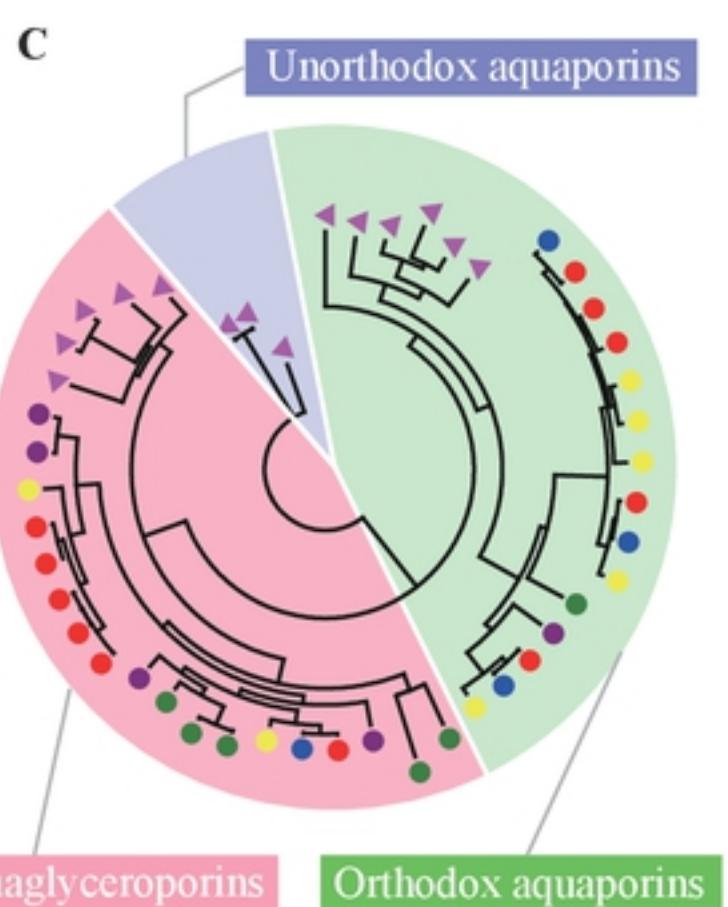
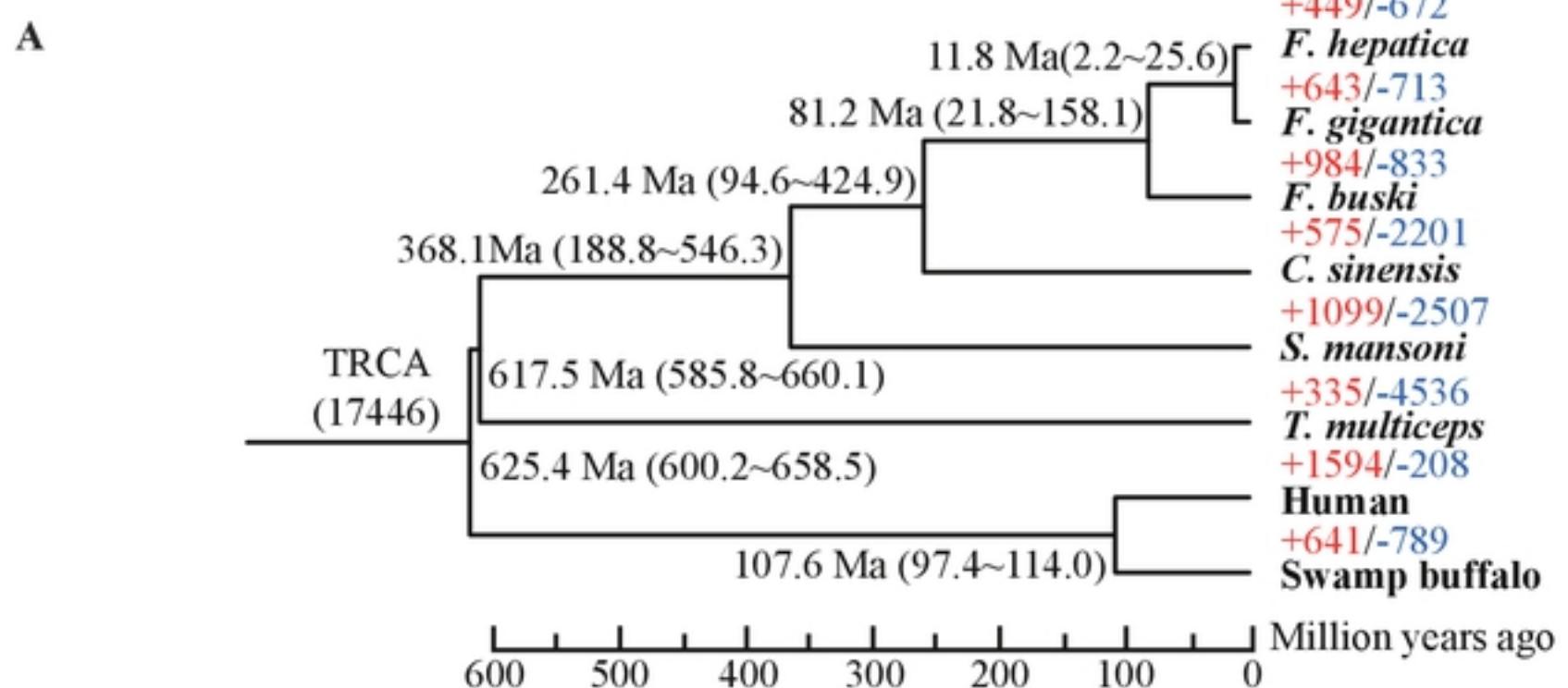
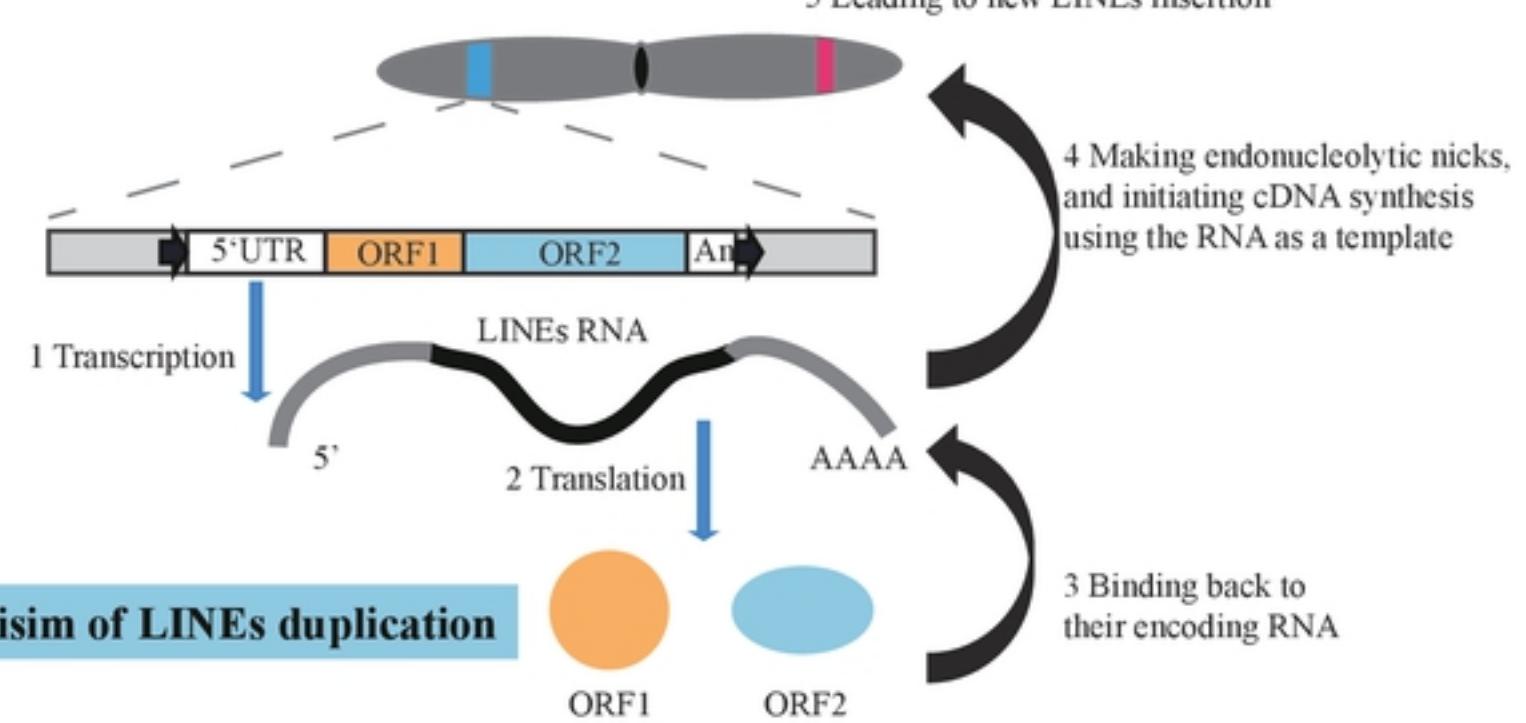
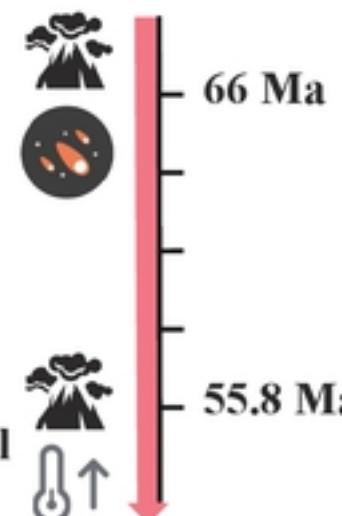





Figure4


Mechanism of LINEs duplication

The unique repeat duplications in *Fasciola*

~68 Ma
The first TEs expansion

~51.5 Ma
The LINEs expansion

KPB mass extinction

Gene network adaptive evolution in *Fasciola*

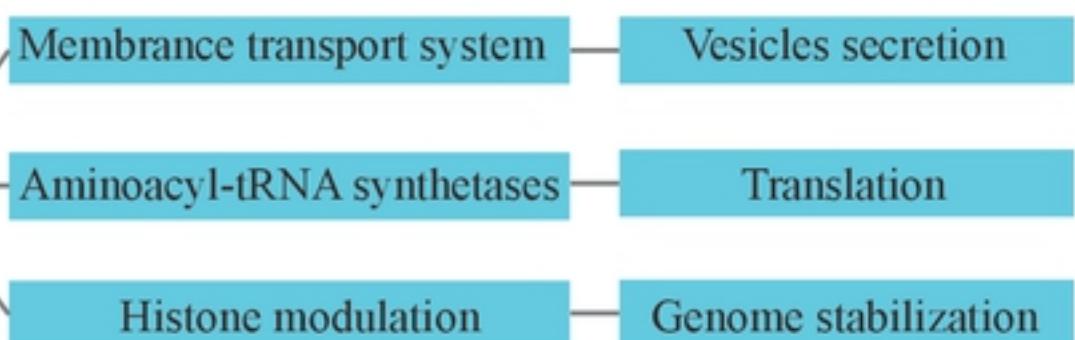


Figure5