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27  Abstract

28 Fasciola gigantica and Fasciola hepatica are causative pathogens of fascioliasis,
29  with the widest latitudinal, longitudinal, and altitudinal distribution; however, among
30  parasites, they have the largest sequenced genomes, hindering genomic research. In the
31 present study, we used various sequencing and assembly technologies to generate a new
32  high-quality Fasciola gigantica reference genome. We improved the integration of gene
33  structure prediction, and identified two independent transposable element expansion
34  events contributing to (1) the speciation between Fasciola and Fasciolopsis during the
35  Cretaceous-Paleogene boundary mass extinction, and (2) the habitat switch to the liver
36 during the Paleocene-Eocene Thermal Maximum, accompanied by gene length
37 increment. Long interspersed element (LINE) duplication contributed to the second
38  transposon-mediated alteration, showing an obvious trend of insertion into gene regions,
39  regardless of strong purifying selection. Gene ontology analysis of genes with long
40  LINE insertions identified membrane-associated and vesicle secretion process proteins,
41 further implicating the functional alteration of the gene network. We identified 852
42  excretory/secretory proteins and 3300 protein-protein interactions between Fasciola
43  gigantica and its host. Among them, copper/zinc superoxide dismutase genes, with
44  specific gene copy number variations, might play a central role in the phase I
45  detoxification process. Analysis of 559 single-copy orthologs suggested that Fasciola
46  gigantica and Fasciola hepatica diverged at 11.8 Ma near the Middle and Late Miocene
47  Epoch boundary. We identified 98 rapidly evolving gene families, including actin and
48  aquaporin, which might explain the large body size and the parasitic adaptive character
49  resulting in these liver flukes becoming epidemic in tropical and subtropical regions.
50 Introduction

51 Fasciola gigantica and Fasciola hepatica, known as liver flukes, are two species
52 in the genus Fasciola, which cause fascioliasis commonly in domestic and wild
53  ruminants, but also are causal agents of fascioliasis in humans. Fascioliasis reduces the
54  productivity of animal industries, imposes an economic burden of at least 3.2 billion
55  dollars annually worldwide [1], and is a neglected zoonotic tropical disease of humans,
56  according the World Health Organization’s list [2]. F gigantica, the major fluke
57 infecting ruminants in Asia and Africa, has been a serious threat to the farming of
58  domesticated animals, such as cows and buffaloes, and dramatically reduces their feed
59  conversion efficiency and reproduction [3]. The prevalence F. gigantica infection has
60 greatly affected subsistence farmers, who have limited resources to treat their herds,
61 and has hindered economic development and health levels, especially in developing
62  countries.

63 The various omics technologies provide powerful tools to advance our
64  understanding of the molecules that act at the host-parasite interface, and allow the
65 identification of new therapeutic targets against fascioliasis [4]. To date, four
66  assemblies for F. hepatica and two assemblies for F. gigantica have been deposited at
67 the NCBI [5-8]. These assemblies reveal a large genome with a high percentage of
68  repeat regions in Fasciola species, and provided valuable insights into features of
69 adaptation and evolution. However, these assemblies are based on the short read
70 Illumina sequencing or hybrid sequencing methods, with limited ability to span large
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71 families of repeats. Various limitations have led to the current assemblies in the genus
72 Fasciola being fragmented (8 kb to 33 kb and 128 kb to 1.9 Mb for contig and scaffold
73 NbO0s, respectively). Subsequent gene annotation analysis using current assemblies
74 were also challenging, with abundant transposition events occurring over evolutionary
75  history, which significantly increased the repeat components in intron regions, resulting
76  in considerable fragmentation in gene annotation.

77 Infection by Fasciola causes extensive damage to the liver, and excretory/secretory
78  (E/S) proteins play an important role in host-parasite interactions. Parasite-derived
79  molecules interact with proteins from the host cell to generate a protein interaction
80  network, and these proteins partly contribute to Fasciola’s striking ability to avoid and
81  modulate the host’s immune response [9]. Previous proteomics of E/S proteins have
82  highlighted the importance of secreted extracellular vesicles (EVs) and detoxification
83  enzymes to modulate host immunity by internalizing with host immune cells [10, 11].
84  The anthelminthic drug, triclabendazole (TCBZ), is currently the major drug available
85  to treat fascioliasis at the early and adult stages, which acts by disrupting B-tubulin
86  polymerization [1]; however, over-reliance on TCBZ to treat domesticated ruminants
87  has resulted in selection for resistance to liver flukes [12]. Drug and vaccine targets for
88 molecules associated with reactive oxygen species (ROS)-mediated apoptosis have
89  recently been validated as an effective tools in multiple helminth parasites [13].
90 Increased understanding of host-parasite and drug-parasite interactions would facilitate
91 the development of novel strategies to control fascioliasis.

92 In recent years, there have been increasing numbers of human cases of fascioliasis,
93  becoming a major public health concern in many regions [14, 15]. However, high
94  quality genome assemblies for liver flukes are still insufficient. In the present study, we
95 combined multiple sequencing technologies to assemble a chromosome-level genome
96 for F. gigantica and provided integrated gene annotation. Protein-protein interactions
97 were analyzed between the predicted F gigantica secretome and host proteins
98  expressed in the small intestine and liver. In addition, gene family analysis identified a
99  series of genes expansions in F. gigantica. Interestingly, the distribution of repeat
100  sequences in the genome exhibit an excess of long interspersed element (LINE)
101  duplications inserted into intronic regions, potentially helping to explain the
102  duplications of transposable element (TE) plasticizing gene structures and possibly
103  acting as long-term agents in the speciation of Fasciola.

104  Results

105  Pacbio long reads-based de novo assembly and gene annotation

106 The F. gigantica genome contains abundant repeat sequences that are difficult to
107  span using short read assembly methods, and the complex regions also hinder integrated
108  gene annotation of the genome. Therefore, in the present study, multiple sequencing
109  technologies, have been applied: (1) Single-molecule sequencing long reads (~91x
110  depth) using the Pachio Sequel Il platform; (2) paired-end reads (~66x depth) using the
111 Hlumina platform; and (3) chromosome conformation capture sequencing (Hi-C) data
112 (~100x depth) (Supplementary Table 1). The initial assembly was performed using the
113  Pacbio long reads, followed by mapping using single-molecule sequencing and
114  Hlumina sequencing reads to polish assembly errors and sequencing mistakes, resulting
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115 ina contig N50 size of 4.89 Mb (Fig. 1A). The Hi-C data were used to build final
116  super-scaffolds, resulting in a total length of 1.35 Gb with a scaffold N50 size of 133
117  Mb (Fig. 1B, Table 1, Supplementary Table S2-3, Supplementary Fig. S1). The final
118  assembly consists of 10 pseudo-chromosomes covering more than 99.9% of the F
119  gigantica genome, and the length distribution was approximate equal to the estimation
120 by karyotype in previous research (Supplementary Fig. S2, Supplementary Table S4)
121 [16]. The assessment of nucleotide accuracy shows that the error rate was 5.7x10° in
122 the genome. QUAST analysis [17] showed a high mapping and coverage rate using
123 both Illumina short reads and Pachio long reads, in which 99.73% of reads mapped to
124 99.85% of the genome with more than 10x depth (Supplementary Table S5).

125 Combing de novo/homolog/RNA-seq prediction, a total of 12,503 protein coding
126 genes were annotated in the F. gigantica genome. BUSCO assessment [18] indicated
127  that the genome is 90.4% complete and 5.6% fragmented, underscoring the significant
128  improvement of the genome continuity and gene-structure predictions compared with
129  previous assemblies (Supplementary Table S6). Specifically, the average gene length
130 inthe annotated data is 28.8 kb, nearly twice the length of that in other digenean species,
131  but contrasted with the similar average length of the coding sequences (CDSs). Through
132 functional annotation, we found that 8569 of the genes could be characterized in the
133 InterPro database [19, 20], 7892 of themwere mapped to the gene ontology (GO) terms,
134  and 5353 of them were identified by the Kyoto Encyclopedia of Genes and Genomes
135 (KEGG) pathways database (Supplementary Fig. S3-4, Supplementary Table S7).
136  The unique repeat duplications in Fasciola

137 TEs are insertional mutagens and major drivers of genome evolution in eukaryotes,
138 and replication of these sequences, resulting in variation of gene structure and
139  expression, have been extensively documented [21, 22]. Besides, TEs are molecular
140  fossils, being remnants of past mobilization waves that occurred millions of years ago
141 [23]. In the present study, we identified repeat sequences combined the analysis from
142  RepeatModeler [24] and RepeatMasker [25], and detected a significant proportion of
143 them neglected by previous studies. In the F. gigantica genome, we identified 945 Mb
144  of repeat sequences, which was approximate 20% more than that identified in other
145  assemblies in Fasciola species, while the lengths of non-repeat sequences were nearly
146  identical. The most convincing explanation for the additional assembled repeat
147  sequences was that the contigs constructed from Pacbio long reads spanned longer
148  repeat regions, which were compressed in previous assemblies. Among these repeat
149  sequences, there were 408 Mb of LINEs (corresponding to 30.3% of the assembled
150 genome), 285 Mb of long terminal repeats (LTRs, corresponding to 21.2% of the
151  assembled genome), and 162 Mb of unclassified interspersed repeats (corresponding to
152 12.0% of the assembled genome) (Supplementary Fig. S5, Supplementary Table S8).
153  According to the repeat landscapes, we found that there were two shared expansion
154  events for LINEs and LTRs that occurred approximately 12 million years ago (Ma) and
155 65 Ma, and an additional expansion event at 33 Ma for LTRs (Supplementary Fig. S6-
156 7). The abundant repeat sequences in the Fasciola genomes aroused our interest
157  concerning the role of repeats in evolution (Fig. 2A), and inspired us to hypothesize
158  that the expansion of TEs enlarged the genome size of an ancestor of Fasciola to gain a
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159  new advantage by rewiring gene networks. To test this hypothesis, we focused on the
160  genome-wide repeats distribution and test signatures of selection.

161 For new TE insertions to persist through vertical inheritance, transposition events
162  must be under strong purifying selection among gene loci to avoid disturbing their
163  biological function. However, we observed many intronic repeat elements in Fasciola,
164  resulting in a larger intron size per gene. If there are equal selection effects on newly
165 inserted TEs in intronic and intergenic regions, there would a high correlation between
166  the distribution of insertion time and retained TE lengths between these two regions.
167 By contrast, there would be fewer accumulated repeat sequences existing under
168  purifying selection. In this study, we use the relative proportion of TEs between intronic
169  and intergenic regions as a simple indicator, and use the inferred size of intronic and
170  intergenic regions over evolutionary history as a control to estimate the signatures of
171  selection. The results showed that TE insertions into intronic regions are under
172 persistent intense purifying selection, except for LINEs. There was an excess of
173 persistent LINE insertions into intronic regions between 41 Ma and 62 Ma, indicating
174  different modes of accumulating LINES into intronic regions compared with that in
175  other periods (Fig. 2B). Specifically, the time of the ancient intronic LINE expansion
176  (~51.5 Ma) was different to the genome-wide LINE expansion time (~68.0 Ma),
177  whereas the time was coincident with two important environmental change events, the
178  Cretaceous-Paleogene boundary (KPB) mass extinction (~66.0 Ma) and the Paleocene-
179  Eocene Thermal Maximum (PETM) (~55.8 Ma). Both the PETM and KPB events
180  recorded extreme and rapid warming climate changes; however, rapid evolutionary
181  diversification followed the PETM event, as opposed to near total mass extinction at
182 the KPB [26]. Therefore, we selected genes with different LINE lengths, derived
183  between 41 Ma and 62 Ma, and expected to identify a transposon-mediated alterative
184  gene network contributing to the host switch and the shift from intestinal to hepatic
185  habitats.

186  LINE-mediated alterative gene network

187 We identified a substantial proportion of genes with LINE insertions, derived
188  between 41 Ma and 62 Ma, indicating a universal effect of the gene network. We
189  selected 1288 genes with the LINE insertions of more than 10 kb, representing more
190 than one third of the average gene length, and annotated the genes using Gene Ontology
191 (GO) terms and processes and Kyoto encyclopedia of genes and genomes (KEGG)
192 pathways (Fig. 2C, Supplementary Table S9-11). These genes involve molecules
193  internalizing  substances  from  their  external  environment, including
194  membrane-associated and vesicle secretion process proteins. Meanwhile, the gene
195  network was likely adapted to the evolution of protein biosynthesis and modification
196  of histones.

197 Enrichment analysis of GO terms showed that membrane and
198  membrane-associated proteins are over-represented, involving “synaptic membrane” (P
199 = 3.52E-04), “clathrin-coated vesicle membrane” (P = 1.08E-03), and “synaptic vesicle”
200 (P = 3.02E-03), as well as vesicles secretion processes, such as “endocytosis” (P =
201 7.06E-06), “Golgi organization” (P = 7.45E-05), “COPII vesicle coating” (P = 2.72E-
202  04), “intracellular signal transduction” (P = 5.16E-04), and “endosomal transport” (P =
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203  2.47E-03). The over-representation of genes involved in membrane transport was
204  particularly interesting because helminth parasites interfere with the host immune
205  system by secreting molecules from surface tegument or gut. The TMED10 gene in F,
206  gigantica (encoding transmembrane P24 trafficking protein 10) was used as an example.
207 TMEDZ10 is a cargo receptor involved in protein vesicular trafficking along the secretory
208  pathway [27, 28], and the genes has an 11.1 kb LINE insertion in the third intron,
209  resulting in an over three-fold increment in the gene length (Fig. 2D). The enrichment
210  suggests that the gene network related to secretion could have experienced adaptive
211 evolution during LINE transposition events. We further compared our dataset with the
212  proteome result from F hepatica extracellular vesicles (EVs) [29], and found 21
213  proteins that were also identified as surface molecules associated with EV biogenesis
214  and vesicle trafficking (IST1, VPS4B, TSG101, MYOF, ATG2B, STXBP5L, and 15 Rho
215  GTPase-activating related proteins). Specifically, IST1, VPS4B, and TSG101 are
216 members of the endosomal sorting complex required for transport (ESCRT) pathway,
217  which promotes the budding and release of EVs. TSG101, a crucial member of the
218  ESCRT-I complex, has an important role in mediating the biogenesis of multi-vesicular
219  bodies, cargo degradation, and recycling of membrane receptors. Besides, the ESCRT
220 pathway promotes the formation of both exosomal carriers for immune communication.
221 During the formation of the immunological synapse between T-cells and antigen-
222 presenting B cells, TSG101 ensures the ubiquitin-dependent sorting of T-Cell Receptor
223 (TCR) molecules to exosomes that undergo VPS4-dependent release into the synaptic
224 cleft[30].

225 The most significant KEGG pathway was aminoacyl-tRNA biosynthesis (P =
226  7.16E-04), containing 15 out of 38 annotated aminoacyl tRNA synthetases (AAASS).
227  AARSs are the enzymes that catalyze the aminoacylation reaction by covalently linking
228 anamino acid to its cognate tRNA inthe first step of protein translation. The large-scale
229  insertion of LINEs reside in AAAS genes suggested that the ancestor of Fasciola may
230 have profited from the effect of transposition, with changes to protein biosynthesis and
231 several metabolic pathways for cell viability. In addition, a significant number of genes
232 are strongly associated with histone modulation, including “histone deacetylase
233  complex” (P = 1.89E-03), “histone methyltransferase activity (H3-K36 specific)” (P =
234  1.08E-03), and “methylated histone binding” (P = 2.37E-03). Histone modifications
235  play fundamental roles in the manipulation and expression of DNA. We found nine
236  histone deacetylases and Histone methyltransferases in the gene set (HDAC4, HDACS,
237 HDAC10, KMT2E, KMT2H, KMT3A, KDMS8, NSD1, and NSD3). Histone
238  modifications can exert their effects by influencing the overall structure of chromatin
239  and modifying and regulating the binding of effector molecules [31, 32]; therefore, the
240  variation of these genes might bring about evolution from a disturbed gene structure to
241  a mechanism of genome stabilization to tackle a continuous genome amplification
242  process in evolutionary history.

243  Genome-wide host-parasite interaction analysis

244 In the Fasciola genome, we predicted genes encoding 268 proteases, 36 protease
245  inhibitors (PIs), and 852 excretory/secretory (E/S) proteins that are commonly involved
246  in interacting with hosts and modulating host immune responses. The largest class of
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247  proteases was cysteine peptidases (n=113), which was also identified in the F. hepatica
248  genome (Fig. 3A, Supplementary Table S12). The largest (n = 19, 52.8% of PIs) PI
249  family was the 102 family of Kunitz-BPTI serine protease inhibitors, which bind to
250  Cathepsin L with a possible immunoregulatory function [33] (Supplementary Table
251 S13). GO enrichment analysis of E/S proteins showed that proteins related to
252 “activation of cysteine-type endopeptidase activity” (P = 6.14E-19), “peroxidase
253 activity” (P =3.79E-07) and “protein disulfide isomerase activity” (P = 3.75E-06) are
254  over-represented (Fig. 3B, Supplementary Table S14-15). Indeed, there were 38
255  cysteine peptidases identified as E/S proteins, including cathepsin L-like, cathepsin B-
256 like, and legumain proteins, which participate in excystment, migration through gut
257  wall,and immune evasion [34].

258 In parasites, as in mammalian cells, ROS are produced as a by-product of cell
259  metabolism and from the metabolism of certain pharmacological agents. The ability of
260 a parasite to survive in its host has been directly related to its antioxidant enzyme
261 content [35]. To further analyze host-parasite interactions, we identified the
262  protein-protein interactions (PPIs) between the F. gigantica secretome and human
263  proteins expressed in the small intestine and liver. In total, we identified 3300 PPIs,
264  including rich interactions that directly or indirectly participated in the two phases of
265  detoxification pathways (Fig. 3C). Superoxide dismutase [Cu-Zn] (SOD, PPIs = 49)
266 was first highlighted because of its important role on phase | detoxification against ROS,
267  inwhich it catalyzes the dismutation of the superoxide radical to molecular oxygen and
268  hydrogen peroxide (H20-) [36]. Gene family analysis identified six SOD paralogs in F.
269 gigantica, and two of them contained a signal peptide (Fig. 4D). Previous enzyme
270  activity assays also confirmed a significant difference between SOD activities and
271  concentration in E/S proteins of two Fasciola species [37], suggesting an intense ability
272  to resist superoxide radical toxicity. Meanwhile, the metabolite of phase I, H.O-, can
273 also damage parasites, which requires detoxification enzymes, including
274  glutathione-dependent enzymes GPx, glutathione reductase, and other peroxidases.
275  Protein disulfide-isomerase (P4HB, PPIs = 132) and phospholipid hydroperoxide
276  glutathione peroxidase (GPX4, PPIs=28) were as functioning in phase Il detoxification.
277  GPx catalyzes the reduction of hydroperoxides (ROOH) to water, using glutathione
278  (GSH) as the reductant. PAHB also participates in the process by mediating homeostasis
279  of the antioxidant glutathione [38]. However, we did not identify E/S proteins in the
280  Cytochrome P450 (CYP450) family in phase Il detoxification. Therefore, we
281  speculated that successful parasite defense against F. gigantica is mainly depends on
282  the strong superoxide activity and efficient hydrogen peroxide detoxification.

283  Gene family analysis

284 Gene family analysis was performed using eight taxa (F. gigantica, F. hepatica,
285  Fasciolopsis buski[39], Clonorchis sinensis [40], Schistosoma mansoni)[41], Taenia
286  multiceps [42], swamp buffalo [43], and human [44], which identified 17,992 gene
287  families (Fig. 4A). Phylogeny analysis of 559 single-copy orthologs showed that F
288  gigantica and F. hepatica shared a common ancestor approximately 11.8 million years
289 ago (2.2-22.5 Ma, 95% highest posterior density [HPD]) near the Middle and Late
290  Miocene Epoch boundary. The Miocene warming began 21 million years ago and
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291  continued until 14 million years ago, when global temperatures took a sharp drop at the
292  Middle Miocene Climate Transition (MMCT). The divergence of the two Fasciola
293  species may have resulted from the consequences of rapid climate changes, such as
294  migration of the host causing geographic isolation. Our estimation is between the
295  previously suggested date of 5.3 Ma based on 30 nuclear protein-coding genes [45],
296 and 19 Ma based on cathepsin L-like cysteine proteases [46]. Although we used a more
297  integrative gene dataset, the wide HPD interval could not be neglected, raising possible
298  uncertainty from the complex process of speciation or inappropriate protein sequence
299  alignment between members of the genus Fasciola.

300 The distribution of gene family size among different species is used to estimate
301  which lineages underwent significant contractions or expansions. Compared with F,
302 hepatica, F. gigantica shows more gene family expansion events (643 compared to 449)
303 and a similar number of gene family contractions (713 compared to 672). The result
304 emphasize the general trend that, relative to the common ancestor of Fasciola, the
305 ancestor of F gigantica apparently underwent a higher extent of gene-expansion than
306  did the ancestor of F. hepatica. Gene duplication is one of the primary contributors to
307 the acquisition of new functions and physiology [47]. We identified 98 gene families,
308 including 629 genes, as rapidly evolving families specific to F gigantica. Family
309  analysis showed a fascinating trend of gene duplication, with substantial enrichment for
310 the “structural constituent of cytoskeleton” (P = 3.52E-24), “sarcomere organization”
311 (P =2.29E-14), “actin filament capping” (P = 6.19E-13), and “spectrin” (P = 3.03E-11)
312 in F gigantica (Supplementary Table S16). There were 24 actin paralogs in F
313  gigantica, in contrast to 8 actin paralogs in F. hepatica. Actin is one of the most
314  abundant proteins in most cells, and actin filaments, one of the three major cytoskeletal
315  polymers, provide structure and support internal movements of organisms [48]. They
316  are also highly conserved, varying by only a few amino acids between algae, amoeba,
317  fungi, and animals [49]. We observed three types of actin proteins in flukes, according
318  to their identity from human actin family. Seventeen of the 24 actin proteins in F
319  gigantica are highly conserved (Identity > 95%) (Fig. 4B). Consistent with the accepted
320 role of the epidermal actin cytoskeleton in embryonic elongation [50, 51], we
321  speculated that the significant expansion of actin and spectrin genes increased the body
322  size of F. gigantica via cell elongation or proliferation during morphogenesis. Another
323  rapidly evolving family is the aquaglyceroporin subfamily in the membrane water
324  channel family. We found six aquaglyceroporin paralogs in F. gigantica, which were
325  over-represented in the GO term “water transport” (P = 2.10E-06) (Fig. 4C).
326  Aquaglyceroporins are highly permeated by glycerol and other solutes, and variably
327 permeated by water, as functionally validated by several studies [52, 53]. The
328  mammalian aquaglyceroporins regulate glycerol content in epidermal, fat, and other
329  tissues, and appear to be involved in skin hydration, cell proliferation, carcinogenesis,
330 and fat metabolism. A previous study showed that F. gigantica could withstand a wider
331  range of osmotic pressures compared with F. hepatica [54], and we speculated that a
332 higher aquaglyceroporin gene copy number might help explain this observation.

333 It is worth mentioning that 57.6% of rapidly evolving expansion genes specific to
334 the F gigantica genome were driven by tandem duplication, such that the newly formed
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335  duplicates preserved nearly identical sequences to the original genes. The newly formed
336  genes would accumulate non-functionalizing mutations, or develop new functions over
337 time. We found only few tandem duplicated genes that had non-functionalizing
338  mutations, suggesting that adaptive evolution could have an important role in the
339  consequences of these genes via a dosage effect or neo-functionalization.

340  Discussion

341 The genome of Fasciola species contains a large percentage of repeat sequences,
342  making them the largest parasite genomes sequenced to date. Since the first assembly
343  of F hepatica was submitted in 2015 [6], several studies have aimed to improve the
344  quality of assembly and gene annotation [5, 7, 8]. With advances in long read
345  sequencing assembly and Hi-C scaffolding technologies, it is now viable to resolve the
346 genomic “dark matter” of repetitive sequences, and other complex structural regions at
347  relatively low cost [55]. Therefore, we present the highest quality genome and gene
348 annotation for F. gigantica to date, and provide long-awaited integrated genome
349  annotation for fascioliasis research.

350 Our research determined the TE sequences among intronic and intergenic regions.
351  TE sequences of F. gigantica experienced massive expansion through the genome via
352 a ‘copy-and-paste’ model of transposition [56]. Especially, the speciation between
353  Fasciola and Fasciolopsis was most likely caused by a Fasciola-specific whole genome
354  repeat expansion event during the KPB mass extinction, and similarly, the speciation
355  between the Fasciola and Fascioloides—a habitat switch from the small intestine to the
356 liver in the host—occurred during the PETM, accompanied by LINE expansion biased
357  toward intronic regions (Fig. 5). These synchronous events informed a new hypothesis
358  of adaptive evolution driven by transposition events and will prompt investigations of
359  how such differences contribute mechanistically to the morphological phenotypes of
360 liver flukes and related species. This hypothesis could be tested by targeted genome
361  assembly of Fascioloides species and estimating whether they had a different pattern of
362  LINE duplication among intronic regions. There are also many studies in other species
363  supporting the hypothesis that TE invasions endured by organisms have catalyzed the
364  evolution of gene-regulatory network [57]. For example, Eutherian-specific TEs have
365 the epigenetic signatures of enhancers, insulators, and repressors, and bind directly to
366  transcription factors that are essential for pregnancy and coordinately regulate gene
367  expression [58]. Similarly, genes with large-scale insertion of TEs in Fasciola species
368 identified here, represent a signature of Fasciola-specific evolutionary gene network to
369  distinguish other flukes of the family Fasciolidae. These genes overlap significantly
370  with host-parasite interaction genes, including proteases and E/S proteins, and are
371 enriched inthe pathways of EV biogenesis and vesicle trafficking.

372 The data from genomic, transcriptomic, and proteomic studies can form a good
373 complementary relationship to further our understanding of helminth parasites and their
374  interaction with their hosts. Previous studies have identified a rich source of
375  stage-specific molecules of interest using transcriptomic and proteomic analysis [59,
376  60]. Here, we provided a comprehensive list of predicted E/S proteins in F. gigantica
377  and predicted 3300 PPIs at the host-parasite interface, extending our understanding of
378  how the phase I and phase Il detoxification enzymes counteract the effect of ROS. The
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379  ability of Fasciola species to infect and survive in different tissue environments is
380 underpinned by several key E/S protein gene duplications. Both Fasciola species have
381  a common expansion in the secretion of papain-like cysteine peptidase family (Clan A,
382 family C1) [6]. Besides, F. gigantica has a specific variation in the SOD gene copy
383  number, allowing it to regulate the catalytic activity of the superoxide radical released
384 by the host. The effect of specific gene duplications can also be reflect in the increased
385  body size of F. gigantica, which is an important morphometric character to distinguish
386  Fasciola species and has a decisive influence on the final host species [61], although a
387  gene level study of this phenotype is barely reported.

388 Overall, our study demonstrated that the combination of long-read sequencing
389  with Hi-C scaffolding produced a very high-quality liver fluke genome assembly and
390 gene annotation. Additionally, identification of the repeat distribution among the gene
391  regions extended our understanding of the evolutionary process in Fasciola species.
392  Further detailed functional studies of secretion might be of great scientific significance
393  to explore their potential application in fascioliasis treatment.

394

395

396  Materials and Methods

397  Sample collection and de novo sequencing.

398 All animal work was approved by the Guangxi University Institutional Animal
399  Care and Use Committee. For the reference genome sequencing, F. gigantica was
400 derived from infected buffalo in the Guangxi Zhuang Autonomous Region. Nucleic
401  acids were extracted using a QIAGEN DNeasy (DNA) kit (Qiagen Hilden, Germany).
402  Three de novo genome sequencing methods were performed on the liver fluke: We
403  generated (1) 122.4 Gb (~88x depth) PacBio Sequel Il single-molecule long reads, with
404  anaverage read length of 15.8 kb (PacBio, Menlo Park, CA, USA); (2) 89.5 Gb (~66x%
405  depth) lllumina HiSeq PE150 pair-end sequencing to correcterrors (Illumina, San
406  Diego, CA, USA); and (3) 134 Gb (~100x depth) chromosome conformation capture
407  sequencing (Hi-C) data (sequenced by Illumina platform).

408  De novo assembly and assessment of the genome quality.

409 A PacBio-only assembly was performed using Canu v2.0 [62, 63] using new
410  overlapping and assembly algorithms, including an adaptive overlapping strategy based
411  on tf-idf weighted MinHash and a sparse assembly graph construction that avoids
412  collapsing diverged repeats and haplotypes. To remove haplotigs and contig overlaps
413 in the assembly, we used Purge Dups based on the read depth [64]. Arrow
414  (https://github.com/PacificBiosciences/GenomicConsensus) was initially used to
415  reduce the assembly error in the draft assembly, with an improved consensus model
416  based on a more straightforward hidden Markov model approach. Pilon [65] was used
417  to improve the local base accuracy of the contigs via analysis of the read alignment
418  information based on paired-end bam files (thrice). As a result, the initial assembly
419  resulted had an N50 size of 4.89 Mb for the F. gigantica reference genome. ALLHIC
420  was capable of building chromosomal-scale scaffolds for the initial genome using Hi-C
421  paired-end reads containing putative restriction enzyme site information [66].

422 Three methods were used to evaluate the quality of the genomes. First, we used
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423  QUality ASsessment Tool (QUAST) [67] to align the Illumina and PacBio raw reads to
424  the F gigantica reference genome to estimate the coverage and mapping rate. Second,
425  all the lllumina paired-end reads were mapped to the final genome using BWA [68],
426  and single nucleotide polymorphisms (SNPs) were called using Samtools and Bcftools
427  [69]. The predicted error rate was calculated by the homozygous substitutions divided
428 by length of the whole genome, which included the discrepancy between assembly and
429  sequencing data. Thirdly, we assessed the completeness of the genome assemblies and
430 annotated the genes using BUSCO [18].

431  Genome annotation

432 Three gene prediction methods, based on de novo prediction, homologous genes,
433  and transcriptomes, were integrated to annotate protein-coding genes. RNA-seq data of
434  F gigantica were obtained from the NCBI Sequence Read Archive, SRR4449208 [70].
435 RNA-seq reads were aligned to the genome assembly using HISAT2 (v2.2.0) [71] and
436  subsequently assembled using StringTie (v2.1.3) [72]. PASA (v2.4) [73] was another
437  tool used to assemble RNA-seq reads and further generated gene models to train de
438  novo programs. Two de novo programs, including Augustus (v3.0.2) [74] and SNAP
439  (v2006-07-28) [75], were used to predict genes in the repeat-masked genome sequences.
440 For homology-based prediction, protein sequences from UniRefl00 [76]
441  (plagiorchiida-specific, n = 75,612) were aligned on the genome sequence using
442  TBLASTN [77] (e-value < 10*), and GeneWise (version 2.4.1) [78] was used to identify
443  accurate gene structures. All predicted genes from the three approaches were combined
444  using MAKER (v3.1.2) [79] to generate high-confidence gene sets. To obtain gene
445  function annotations, Interproscan (v5.45) [80] was used to identify annotated genes
446  features, including protein families, domains, functional sites, and GO terms from the
447  InterPro database. SwissProt and TrEMBL protein databases were also searched using
448  BLASTp [81] (e-value < 10%). The best BLASTp hits were used to assign homology-
449  Dbased gene functions. BlastKOALA [82] was used to search the KEGG ORTHOLOGY
450 (KO) database. The subsequent enrichment analysis was performed using
451  clusterProfiler using total annotated genes as the background with the “enricher”
452  function [83].

453  Repeat annotation and analysis

454 We combined de novo and homology approaches to identify repetitive sequences
455  inour assembly and previous published assemblies, including F. gigantica, F. hepatica,
456  and Fasciolopsis buski. RepeatModeler (v2.0.1) [24] was first used to construct the de
457  novo identification and accurate compilation of sequence models representing all of the
458  unique TE families dispersed in the genome. Then, RepeatMasker (v4.1.0) [25] was run
459  on the genome using the combination of de novo libraries and a library of known repeats
460  (Repbase-20181026). The relative position between a repeat and a gene was identified
461  using bedtools [84], and the type of repeat was further divided to intronic and intergenic
462  origin. The repeat landscape was constructed using sequence alignments and the
463  complete annotations output from RepeatMasker, depicting the Kimura divergence
464  (Kimura genetic distances between identified repeat sequences and their consensus)
465  distribution of all repeats types. The most notable peak in the repeat landscapes was
466  considered as the most convincing time of repeat duplication in that period. The
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467  transition between the Kimura divergence and age was performed by dividing the
468  divergence by the two-fold mutation rate per year (T = d/2mu). The mutation rate (mu
469 = 1.73x10° was calculated using MCMCTree [85] based on the CDS sequence
470  alignment of single-copy gene families.

471  Genome-wide host-parasite protein interaction analysis

472 In addition to the genome data that we generated for F. gigantica, we downloaded
473 genome annotation information for human (GCA_000001405.28), swamp buffalo
474  (GWHAAJZ00000000), F hepatica (GCA_002763495.2), Fasciolopsis buski
475  (GCA _008360955.1), Clonorchis sinensis (GCA _003604175.1), Schistosoma mansoni
476 (GCA _000237925.2), and Taenia multiceps (GCA _001923025.3) from the NCBI
477  database and BIG Sub (China National Center for Bioinformation, Beijing, China).
478  Proteases and protease inhibitors were identified and classified into families using
479  BLASTp (e-value < 10*) against the MEROPS peptidase database (merops_scan.lib;
480  (European Bioinformatics Institute (EMBL-EBI), Cambridge, UK)), with amino acids
481  atleast 80% coverage matched for database proteins. These proteases were divided into
482  five major classes (aspartic, cysteine, metallo, serine, and threonine proteases). E/S
483  proteins (i.e., the secretome) were predicted by the programs SignalP 5.0 [86], TargetP
484  [87], and TMHMM [88]. Proteins with a signal peptide sequence but without a
485  transmembrane region were identified as secretome proteins, excluding the
486  mitochondrial sequences. Genome-wide host-parasite protein interaction analysis was
487  perform by constructing the PPIs between the F gigantica secretome and human
488  proteins expressed in the tissues related to the liver fluke life cycle. For the hosts, we
489  selected human proteins expressed in the small intestine and liver, and located in the
490 plasma membrane and extracellular region. The gene expression and subcellular
491 location information were obtained from the TISSUES [89] and Uniprot (EMBL-EBI)
492  databases, respectively. For F. gigantica, secretome molecules were mapped to the
493  human proteome as the reference, using the reciprocal best-hit BLAST method. These
494  two gene datasets were used to construct host-parasite PPI networks. We downloaded
495 the interaction files (protein.links.v11.0) in the STRING database [90], and only highly
496  credible PPIs were retained by excluding PPIs with confidence scores below 0.7. The
497  final STRING network was plotted using Cytoscape [91].

498  Gene family analysis

499 We chose the longest transcript in the downloaded annotation dataset to represent
500 each gene, and removed genes with open reading frames shorter than 150 bp. Gene
501  family clustering was then performed using OrthoFinder (v 2.3.12) [92], based on the
502  predicted gene set for eight genomes. This analysis yielded 17,992 gene families. To
503 identify gene families that had undergone expansion or contraction, we applied the
504 CAFE (v5.0.0) program [93], which inferred the rate and direction of changes in gene
505  family size over a given phylogeny. Among the eight species, 559 single-copy orthologs
506  were aligned using MUSCLE (v3.8.1551) [94], and we eliminated poorly aligned
507 positions and divergent regions of the alignment using Gblock 0.91b [95]. RAXML (v
508 8.2.12) was then used with the PROTGAMMALGF model to estimate a maximum
509 likelihood tree. Divergence times were estimated using PAML MCMCTREE [85]. A
510  Markov chain Monte Carlo (MCMC) process was run for 2,000,000 iterations, with a
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511  sample frequency of 100 after a burn-in of 1,000 iterations under an independent rates
512 model. Two independent runs were performed to check the convergence. The
513  fossil-calibrated eukaryote phylogeny was used to set the root height for the species
514 tree, taken from the age of Animals (602-661 Ma) estimated in a previous
515  fossil-calibrated eukaryotic phylogeny [96] and the divergence time between the
516  euarchontoglires and laurasiatheria: (95.3-113 Ma) [97].
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851 Fig. 1 Landscape of the Fasciola gigantica genome.

852 (A) Comparisons of the assembled contigs and scaffold lengths (y-axis) and tallies
853  (x-axis) in Fasciola species. (B) Hi-C interactive heatmap of the genome-wide
854  organization. The effective mapping read pairs between two bins were used as a signal
855  of the strength of the interaction between the two bins. (C) Integration of genomic and
856  annotation data using 1 Mb bins in 10 Hi-C assembled chromosomes. (a) Distribution
857 of the GC content (GC content > 39% and < 52%); (b) distribution of the long
858 interspersed element (LINE) percentage > 0% and < 50%; (c) distribution of the long
859  terminal repeat (LTR) percentage > 0% and < 50%; (d) distribution of the gene
860  percentage > 0% and < 70%; (e) distribution of the heterozygosity density of our sample
861  (percentage > 0% and < 1%); (f) distribution of the heterozygosity density of
862 SAMNO03459319 in the NCBI database. Hi-C, chromosome conformation capture
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865 Fig. 2 ldentification of repeat expansion and alternative gene networks in the
866  Fasciolagigantica genome.

867 (A) The distribution of repetitive sequence length among the genomes of six
868  flatworms and the human genome. (B) Landscape of LINEs and LTRs distribution in
869  the Fasciola gigantica genome. The x-axis shows the expansion time of TEs calculated
870 by the divergence between repeat sequences. The mutation rate was set as 1.73 x 10°
871  per year. The orange line represents the repeat length ratio, used to estimate the
872  signatures of selection, which was corrected by the total length of intronic and
873 intergenic regions in history. (C) The functional enrichment of genes with more than 10
874 kb LINE insertions between 41 Ma and 62 Ma by Gene Ontology (GO) classification.
875 The GO terms related to vesicle secretion are marked in red. (D) TMED10 gene
876  structure map. LINEs original between 41 Ma and 62 Ma and longer than 500 bp
877 identified by RepeatMasker were plotted. LTRs longer than 500 bp were plotted. Long
878 interspersed element, LINE; long terminal repeat, LTR; TE, transposable element;
879  TMEDI0, transmembrane P24 trafficking protein 10.
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Fig. 3 Genome-wide host-parasite interaction analysis.

(A) Pie chart for proteases identified in Fasciola gigantica. (B) The interaction mode
between the adult Fasciola gigantica and the host. (C) The protein-protein interaction
(PP1) network of redox-related pathways in Fasciola gigantica with host proteins. The
genes indicated in the three gene ontology (GO) terms were significantly enriched and
have their encoded proteins have PPIs with excretory/secretory (E/S) proteins.
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891  Fig. 4 Phylogenetic tree and gene family analysis.
892 (A) A phylogenetic tree generated using 559 single-copy orthologous genes. The
893  numbers on the species names are the expanded (+) and contracted (-) gene families.
894  The numbers on the nodes are the divergence time between species. (B) A phylogenetic
895 tree of actin genes in flatworms and humans. All human homologue genes are selected
896 as outgroup. (C) Phylogenetic tree of aquaglyceroporin (AQP) family genes in
897  flatworms and humans. The human homolog genes (AQP11, AQP12A, and AQP12B)
898  were selected as the outgroup. (D) A phylogenetic tree of copper/zinc superoxide
899  dismutase (SOD) genes in flatworms and humans. The midpoint was selected as the
900  root node.
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903 Fig. 5 Schematic diagram of the process of Fasciola-specific repeat expansion
904  during evolution.
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908 Table 1. Summary statistics for the genome sequences and annotation.
909

F. gigantica
Total Genome Size (Mb) 1,348
Chromosome Number 10
Scaffold Number @ 10+24
Genome Scaffold N50 (Mb) 133
Scaffold L50 4
Contig Number 1,022
Contig N50 (Mb) 4.89
Heterozygosity Rate (%) 1.9x 103
Total Gene Number 12,503
Average CDS Length (bp) 1552.7
i Average Gene Length (kb) 28.8
Annotation Percentage of Genome Covered by CDSs (%) 1.5%
BUSCO Assessment 90.4%
Repeat Content 70.0%

anumber of chromosome level scaffolds and unplaced scaffolds.
CDS, coding sequence.
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913  Fig. S1. Genome-wide all-by-all chromosome conformation capture sequencing (Hi-C)
914 interaction in F. gigantica (Bins = 500 K).
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918  Fig. S2. Comparison of chromosome length between the chromosome conformation
919  capture sequencing (Hi-C) assembly and estimates from published karyotype data by
920 Jae Ku Rhee.

,.g 300
< 250
2
S 200
£
g 150
S
w100
=]
5
=0
1 2 3 4 5 6 7 8 9 10
w Jae Ku Rhee (1987) Hi-C assembly
921
922
923
924
925
926
927
928  Fig. S3. Boxplot of average gene length.
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935  Fig. S4. Boxplot of average coding sequence (CDS) length per gene.
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943  Fig. S5. Divergence distribution of classified families of transposable elements. The
944  classified transposon families in F. gigantica.
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Fig. S6. Expansion time of long terminal repeats (LTRs) and long interspersed elements
(LINES). The mutation rate was 1.73x107°,
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Fig. S7. Estimation of F. gigantica genome size based on the expansion time of repeat
sequences during evolution. The mutation rate was 1.73x10°.
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968  Supplementary Table 1. Genome sequencing strategy for buffaloes

969  Supplementary Table 2. Summary of the Fasciola giganticagenome assembly

970  Supplementary Table 3. Summary of different assemblies in Fasciola species

971  Supplementary Table 4. Summary of chromosome conformation capture sequencing
972  (Hi-C) assembly of the chromosome length in Fasciola gigantica

973  Supplementary Table 5. Assessment of the completeness and accuracy of the genome
974  Supplementary Table 6. BUSCO assessment of the genome

975  Supplementary Table 7. Number of genes with functional classification gained using
976  various methods

977  Supplementary Table 8. Transposable element content of Fasciola gigantica genome
978  Supplementary Table 9. The list of genes with more than 10 kb of long interspersed
979  element (LINE) insertion between 41 Ma and 62 Ma

980  Supplementary Table 10. Gene ontology (GO) term category enrichment for genes with
981  more than 10 kb of long interspersed element (LINE) insertion between 41 Ma and 62
982 Ma

983  Supplementary Table 11. Kyoto Encyclopedia of Genes and Genomes (KEGG pathway
984  enrichment for genes with more than 10 kb of long interspersed element (LINE)
985 insertion between 41 Ma and 62 Ma

986  Supplementary Table 12. Kyoto Encyclopedia of Genes and Genomes (KEGG)
987  pathway enrichment for genes with more than 10 kb of long interspersed element (LINE)
988 insertion between 41 Ma and 62 Ma

989  Supplementary Table 13. Protein inhibitors in the Fasciola gigantica genome

990  Supplementary Table 14. Excretory/secretory (E/S) proteins in the Fasciola gigantica
991  genome

992  Supplementary Table 15. Gene ontology (GO) term category enrichment for
993  excretory/secretory (E/S) proteins

994  Supplementary Table 16. Gene ontology (GO) term category enrichment for rapidly
995  evolving families specific to F. gigantica.
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