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Abstract

A current strategy for obtaining haplotype information from several individuals involves
short-read sequencing of pooled amplicons, where fragments from each individual is
identified by a unique DNA barcode. In this paper, we report a new method to recover
the phylogeny of haplotypes from short-read sequences obtained using pooled amplicons
from a mixture of individuals, without barcoding. The method, AFPhyloMix, accepts
an alignment of the mixture of reads against a reference sequence, obtains the
single-nucleotide-polymorphisms (SNP) patterns along the alignment, and constructs the
phylogenetic tree according to the SNP patterns. AFPhyloMix adopts a Bayesian model
of inference to estimates the phylogeny of the haplotypes and their relative frequencies,
given that the number of haplotypes is known. In our simulations, AFPhyloMix
achieved at least 80% accuracy at recovering the phylogenies and frequencies of the
constituent haplotypes, for mixtures with up to 15 haplotypes. AFPhyloMix also
worked well on a real data set of kangaroo mitochondrial DNA sequences.

Introduction 1

Molecular phylogenetic reconstruction is the mainstay of modern evolutionary 2

biology [1, 2]. To use a particularly relevant and recent example, tracing the spread of 3

the COVID-19 pandemic, and understanding the emergence of new variants, has 4

required the use of reliably constructed phylogenies of SARS-CoV-2 genomes [3]. DNA 5

sequencing is used to produce the data from which such valuable phylogenies can be 6

inferred. However, because modern sequencing technologies can produce several 7

gigabases of nucleotide sequences in a single day, one of the challenges for the molecular 8

phylogeneticist is to deal with this quantity of data in a timely manner while still 9

reconstructing accurate phylogenies. To this end, phylogeneticists have developed rapid 10

alignment and tree reconstruction algorithms [4, 5], using pre-processed and curated 11

sequences. Pre-processing and sequence curation can be laborious, but are necessary 12

tasks because a great deal of sequence data are generated using next generation 13

short-read sequencing technologies. Sequences generated in this way are often barcoded 14

using unique DNA identifier tags, and then collectively pooled and sequenced in a single 15
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run. The unique barcode allows sequences belonging to different samples to be 16

separated computationally, before additional error-correction and subsequent 17

down-stream analyses are performed. 18

Quite apart from the costs incurred by data pre-processing and curation, the 19

preparation of barcoded sequence libraries is itself costly. More importantly, there are 20

some samples where barcoding is impractical. For instances, rapidly evolving viruses 21

(e.g., Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV)) typically 22

exist as a collection of genetically diverse genomes within an infected individual. To 23

sequence one or more target genes from a collection of these viruses using barcoding, 24

one would need to isolate individual viral genomes before library preparation. This can 25

be done, but again, is time-consuming and laborious. 26

In this paper, we describe a novel approach, AFPhyloMix (Assembly-Free 27

Phylogenetics for Mixtures) to reconstruct the phylogeny of non-barcoded amplicons in 28

a mixture that has been sequenced using short-read sequencing. More precisely, the 29

input sample consists of mixtures of anonymous (i.e., non-barcoded) amplicons of a 30

targeted locus, obtained from multiple individuals, each amplicon longer than the 31

read-length of sequenced fragments. We assume that all short-reads can be aligned to 32

the same reference sequence. We have developed our method to work on samples drawn 33

from a population of closely related individuals (i.e., from individuals within a species). 34

In any mixture of individuals drawn from such populations, some amplicons may be 35

identical to others. We refer to a group of identical amplicons as a haplotype [6]. The 36

mixture, therefore, contains a collection of haplotypes, each haplotype being represented 37

by a relative frequency between 0 and 1 (non-inclusive). AFPhyloMix estimates the 38

phylogeny of the haplotypes and their relative frequencies. To validate our approach, we 39

evaluate the efficiency of the method on simulated and real data, and we discuss the 40

conditions under which the method performs well, and its limitations. 41

Methods 42

Overview 43

The algorithm, AFPhyloMix, proceeds as follows. Given a mixture of n haplotypes, 44

with relative frequencies (f1, f2, ..., fn), short-read sequencing generates k sequences 45

that can be aligned to a reference sequence. AFPhyloMix then identifies the potential 46

sites with single-nucleotide-polymorphisms (SNPs) from this alignment of reads. Under 47

an infinite-sites model of evolution [7], where each mutation occurs at a new site and 48

any given SNP can have a maximum of two nucleotides, we distinguish between the 49

frequency of a given nucleotide at a given SNP, and the number of SNPs with the same 50

frequency distribution of nucleotides. We refer to these two types of frequencies as the 51

SNP ratio and the SNP frequency, respectively. For example, assume that in an 52

alignment with three SNPs, site i has nucleotides A and G with frequencies 0.75, 0.25, 53

respectively; site j has nucleotides C and T , with frequencies 0.6 and 0.4, respectively; 54

and site k has nucleotides G and T with frequencies 0.75 and 0.25, respectively. We will 55

adopt the convention of using the smaller nucleotide frequency when identifying the 56

value of a SNP ratio. Therefore, the SNP ratio for site i is 0.25. Sites i and k have the 57

same frequency distribution of nucleotides, even though they may have different 58

constituent nucleotides. In this case, the SNP frequency for the nucleotide distribution 59

instantiated in sites i and k is 0.67 or 2/3. (We note that the SNP ratios and 60

frequencies are related to the Site Frequency Spectrum [8]; however, because coverage of 61

short-reads vary across the alignment, nucleotide frequencies at each SNP vary as a 62

continuous rational variable rather than as an integer). 63

In AFPhyloMix, a likelihood function computes the probability of observing the 64
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distributions of SNP ratios (data, D) along the alignment given their expected 65

distributions, which is itself conditional on a specified tree topology, haplotype 66

frequencies, and sequencing error, assuming an infinite-sites model of evolution. A 67

Bayesian approach is used to compute the posterior probability P (F, T, e|D) of a set of 68

parameters: the frequencies of haplotypes (F ), the tree topology (T ), and the 69

sequencing error (e), given the observed pattern of the data (D), as follows. 70

P (F, T, e|D) ∼ L(D|F, T, e)P (F )P (T )P (e)

L(D|F, T, e) is the likelihood of the observed pattern of SNPs given the frequencies 71

of haplotypes, tree topology, and the sequencing error. P (F ), P (T ), and P (e) are the 72

prior probabilities of the frequencies of haplotypes, tree topology, and the sequencing 73

error, respectively. A Bayesian Metropolis-coupled Markov chain Monte Carlo 74

(MCMCMC) inference engine is implemented, to deliver the joint posterior probability 75

distribution of tree topologies and haplotype frequencies. After the Bayesian 76

computation, based on the tree topology with the highest posterior probability, the edge 77

lengths on the tree are computed according to the SNP frequencies. 78

To illustrate this approach, consider Fig 1 which shows the relationship between 79

observed and expected SNP ratios and frequencies, along a specified tree. Given a 5-tip 80

tree with tip frequencies (i.e. the frequencies of the corresponding haplotypes 81

represented by the tips) shown in Fig 1A, a mutation x ∈ {A,C,G, T} that occurs on 82

the edge XA over evolutionary time would lead to a different nucleotide on a SNP site 83

in haplotype A relative to other haplotypes. The expected SNP ratio of any mutation 84

along the edge XA would be 0.075, which is the frequency of tip A. The number of 85

SNPs with this mutational pattern — the SNP frequency — would depend on the 86

length of the edge XA. Figure 1B shows the SNP ratio and SNP frequencies and the 87

expected ratio of the occurrences for the mutations on different edges of the tree. For 88

example, the high expected SNP frequency of sites with SNP ratio of 0.485 is due to the 89

mutation on the long edge XZ. 90

Consideration of the connection between two SNP sites 91

In Figs 1B and 1C, every SNP site is treated independently. The fact that reads cover 92

multiple sites means that the observed frequencies for multiple sites are correlated. We 93

found that modelling this correlation improved the accuracy of the estimation on the 94

tree topology and the tip frequencies. Where there is no sequencing error, as illustrated 95

in Fig 2A, two SNP sites likely generate three different combinations (patterns of 96

nucleotides) on the nucleotide sequences if the mutations of two SNP sites occur on 97

different edges of the tree, while there are only two patterns of nucleotides if their 98

mutations happen on the same edge of the tree. For example, two SNP sites with one 99

mutation on the edge ZE and another on the edge XY, as shown in Fig 2A, lead to 100

three different patterns of nucleotides on these two SNP sites with expected frequencies 101

0.125, 0.41, and 0.465. Different locations of the mutations on the tree can result in 102

different sets of expected frequencies (Fig 2B). Similar to the compatibility problem of 103

two sets of binary characters [9], since the infinite site model only allows one mutation 104

along the tree for every SNP site, two SNP sites can create either two or three, but not 105

four patterns of nucleotides. Moreover, how often these patterns of nucleotides happen 106

depends on the product of the lengths of the edges on which the two SNP sites occur. 107

Considering the possible three patterns of nucleotides (with frequencies f1, f2, 108

f3 = 1− f1 − f2 where f1 ≤ f2 ≤ f3) due to the mutations of two SNP sites on different 109

edges of the tree, Fig 3A shows the distribution of all possible pairs of f1 and f2 110

according to the tree in Fig 2A. The size of the circle represents the expected probability 111

of occurrence. For example, the largest circle at (f1 = 0.125, f2 = 0.39) refers to the 112

April 6, 2021 3/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439138
http://creativecommons.org/licenses/by/4.0/


Fig 1. Distribution of SNP frequencies along the genome (A) An example of
5-tip tree with tip frequencies (i.e. haplotype frequencies). (B) The expected SNP
frequencies and the expected SNP ratio of the occurrences for the mutations on different
edges of the tree. (C) The observed distribution of SNP frequencies from the short read
sequences generated from five simulated genomic sequences with various frequencies
based on the tree and the tip frequencies in (A).
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patterns of nucleotides created by two SNP sites with mutations on the edges XZ and 113

ZE, and the probability is relatively high because of their long edge lengths. When we 114

examined the short read sequences generated from five simulated genomic sequences 115

with frequencies based on the tree and the tip frequencies in Fig 2A, we checked every 116

pair of SNP sites close enough to be covered by the same short reads, and obtained the 117

pair of observed values of f1 and f2 based on the set of short reads covering the pair of 118

SNP sites. Fig 3B displays the distribution of pairs of observed values of f1 and f2. The 119

distribution matches the expected distribution in Fig 3A. Moreover, the distributions of 120

the observed frequencies from the two patterns of nucleotides generated by the 121

mutations of two SNP sites on the same edge of the tree were also found consistent with 122

the corresponding expected distributions, although they are not shown here. We are 123

applying a Bayesian approach to the problem and AFPhyloMix estimates the posterior 124
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probability distribution of tree topologies and tip frequencies given the observed 125

frequencies of the patterns of nucleotides created by pairs of SNP sites. 126

Fig 2. Consideration of connections between two SNP sites (A) Under the
infinite site model, by allowing one mutation along the tree for every SNP site, two SNP
sites may make three different patterns of nucleotides. (B) Different locations of the
mutations on the tree can result in different set of expected frequencies.

Estimation of tree topology and tip frequencies 127

Assume that there are n haplotypes. If there is no sequencing error, there should be 128

only two types of nucleotides on each SNP site; for convenience, we will refer to the two 129

allowable states at a given SNP location canonically as ‘0’ and ‘1’. Considering two sites 130

i and j, let s(ij) be the nucleotides of the same read covering the sites i and j. Also let 131

the states of the root of the tree be ri and rj , where ri, rj ∈ {0, 1}, on the site i and the 132

site j, respectively. Given a n-tip rooted tree topology T , a set of n tip frequencies F , 133

and the edges of T : {e1, · · · , e2n−2}, let P̃ (s(ij) = pq|u, v, ri, rj), where p, q ∈ {0, 1} 134

and u, v ∈ {ε, e1, · · · , e2n−2} (the empty string ε represents no mutation on the site), be 135

the expected probability of the same sequence having nucleotide p on the site i and 136

nucleotide q on the site j given the mutations of the site i and j are on the edge u and 137

the edge v, and the states of the root of the tree are ri and rj . For example, for the 138

topology and tip frequencies in Fig 2, when u = XY ,v = ZE,ri = rj = 0, 139

P̃ (s(ij) = 00|u, v, ri, rj) = 0.465, P̃ (s(ij) = 01|u, v, ri, rj) = 0.410, 140

P̃ (s(ij) = 10|u, v, ri, rj) = 0.125, and P̃ (s(ij) = 11|u, v, ri, rj) = 0.0. 141

Ideally, if there is no sequencing error, the number of combinations between the 142

nucleotides of the reads covering the sites i and j should either be one (if u = v = ε), 143

two (for example, when u = v 6= ε, or v 6= u = ε, or u 6= v = ε), or three. However, in a 144

data set with sequencing error, the number of combinations observed may well be more 145

(up to a maximum of 16). We will compute the expected probabilities taking account of 146

sequencing errors. With the sequencing errors, each SNP site may contain 4 nucleotide 147

types, say 0, 1, 2, and 3. Without loss of generality, we assume 0 and 1 are the major 148

characters, while 2 and 3 are the characters created by the sequencing errors. Given a 149

tree topology T , a set of tip frequencies F , and a sequencing error rate e, define 150
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Fig 3. Distribution of the first and the second frequencies of three patterns
of nucleotides created by two SNP sites Considering the tree in Fig 2A, two SNP
sites having mutations on different pair of edges can lead to three patterns of nucleotides
with frequencies f1, f2, f3 = 1− f1 − f2, where f1 ≤ f2 ≤ f3. (A) The distribution of
all possible pairs of f1 and f2. The size of the circle represents the expected chance of
occurrence. (B) The distribution of pairs of observed values of f1 and f2 obtained from
the short read sequences generated from five simulated genomic sequences with
frequencies based on the same tree and the same tip frequencies. Every pair of SNP
sites close enough to be covered by the same short reads were checked.
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P (s(ij) = pq|u, v, ri, rj), where p, q ∈ {0, 1, 2, 3}, as the expected probability of 151

observing the same read having nucleotide p on the site i and nucleotide q on the site j, 152

when the mutations of the sites i and j are on the edges u and v, and the states of the 153

root of the tree are ri and rj , respectively. 154

P (s(ij) = pq|u, v, ri, rj) =
∑

p′q′∈{0,1}

P̃ (s(ij) = p′q′|u, v, ri, rj)ψ(p′ → p)ψ(q′ → q) (1)

ψ(p′ → p) where p′ ∈ {0, 1} and p ∈ {0, 1, 2, 3} is the probability of observing a 155
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nucleotide p on the read when the actual nucleotide should be p′. 156

ψ(p′ → p) =

{
1− e, if p′ = p

e/3, otherwise
(2)

Again, consider two sites i and j, and let nij(p, q), where p, q ∈ {0, 1, 2, 3} be the 157

number of reads observed having nucleotide p on site i and nucleotide q on site j in the 158

data set. Let Aij = {nij(p, q)|p, q ∈ {0, 1, 2, 3}} be the observed combinations of 159

characters on the reads covering the site i and the site ck. Given a n-tip rooted tree 160

topology T , a set of n tip frequencies F , and a sequencing error rate e, define 161

L(Aij |u, v, ri, rj , T, F, e) as the likelihood function of the alignment with sites i and j, 162

where i 6= j, provided that the mutations of the SNP sites i and j are on the edges u 163

and v, and the states of the root of the tree on the SNP sites i and j are ri and rj , 164

respectively. We assume that the ratios of the reads having different patterns of 165

nucleotides for the sites i and j follow the multinomial distribution. 166

L(Aij |u, v, ri, rj , T, F, e) =
n̂!∏

p,q nij(p, q)!

∏
p,q

P (s(ij) = pq|u, v, ri, rj)nij(p,q) (3)

where n̂ =
∑
p,q

nij(p, q)

Practically, when performing an analysis on the alignment of the reads, for each site 167

of the alignment, AFPhyloMix assigns the nucleotide supported by the largest number 168

of reads to 0, the second largest to 1, the third largest to 2, and the one with the least 169

supports to 3. There are three reasons to observe two or more nucleotides at a site: 170

• A site truly has a single mutational event only in its evolutionary history, 171

sequencing errors and other technical artifacts can introduce more than two 172

nucleotides in the alignment of short-reads; 173

• A site is truly invariable over the evolutionary tree, but sequencing errors/artifacts 174

introduce more than a single observed nucleotide in the alignment at that site; or 175

• A site truly has experienced multiple mutational events in its events in its 176

evolutionary history (and thus, violates the assumption of an infinite sites model). 177

We deal with the second and third of these cases below, but if a site truly has only a 178

single mutational event in its history, then nucleotides 0 and 1 should dominate, while 179

nucleotides 2 and 3 will be due to sequencing errors. 180

Let the n SNP sites be {S1, S2, S3, S4, S5, S6, · · · , Sn}. One approach is to consider 181

the patterns observed with pairs of adjacent SNP sites [i.e., if n is even, then consider 182

(S1, S2)(S3, S4) · · · , (Sn−1, Sn))]. This approach allows, at most, only n/2 pairs of SNP 183

sites to be considered. On the other hand, if we nominate a reference site, and pair each 184

non-reference site with the reference, we can use ≈ n pairs of SNP sites. We have used 185

this approach, as follows: the whole alignment is partitioned into m non-overlapping 186

windows (W1, W2, · · · , Wk, · · · , Wm) of size d (d was set to 100 in our implementation). 187

In each window Wk a reference position ck ∈Wk is selected. Let the average of the read 188

coverage along the alignment be covavg. The reference site is selected arbitrarily among 189

those sites covered by at least max{50, r ∗ covavg} reads (where r was set to 0.2). Thus, 190

the selected reference sites will have reasonably high levels of support. For every site i 191

inside the window Wk, its association with the reference position ck is considered. This 192

approach allows us to consider n−m pairs of SNP sites. Note that if such reference 193
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positions cannot be found (because the coverage of the whole window is not high 194

enough), then a reference covered by the highest number of reads is selected for the 195

window. 196

The likelihood of the whole alignment (A) given the tree topology (T ), the tip 197

frequencies (F ) and the sequencing error rate (e) is: 198

L(A|T, F, e) =
∏
k

L(Wk|T, F, e)

=
∏
k

(∑
rck ,v

L(Wk|rck , v, T, F, e)Pr(rck |T, F, e)Pr(v|T, F, e)
)

(4)

The patterns obtained from the pair of site i and the reference ck depends on the 199

tree topology, the tip frequencies, the sequencing error rate, the root states, and the 200

edges on which the mutations occur for both the site i and the reference ck. Amongst 201

all sites paired with the reference site, pattern frequencies are independent after 202

conditioning on the tree topology, the tip frequencies, the sequencing error rate, the root 203

state and the edge on which the mutation occurs for the reference ck. 204

Therefore, the likelihood of the window (Wk) given the tree topology (T ), the tip 205

frequencies (F ), the sequencing error (e), the root state (rck) and the edge on which the 206

mutation occurs (v) for the reference ck is: 207

L(Wk|rck , v, T, F, e) =
∏

i∈(Wk−{ck})

L(Aick |rck , v, T, F, e)

=
∏

i∈(Wk−{ck})

(∑
ri,u

L(Aick |u, v, ri, rck , T, F, e)Pr(ri|T, F, e)

Pr(u|T, F, e)
)

(5)

Using this approach, the likelihood essentially integrates across all observed patterns, 208

thus negating the need to identify observed nucleotide ratios that are the consequence of 209

sequencing errors. 210

During the experiments, the following modified formula was found to have a better 211

accuracy on the estimation of the tree topology and the tip frequencies: 212

L(A|T, F, e) ≈
∏
k

(
max

v

(∑
rck

( ∏
i∈(Wk−{ck})

(
max
u

(∑
ri

L(Aick |u, v, ri, rck , T, F, e)Pr(ri)
)))

Pr(rck)
))

(6)

where Pr(ri) = the observed frequency of the nucleotide ri in A

Define P (T, F, e|A) as the posterior probability of the tree topology T , the tip
frequencies F , and the sequencing error e given the alignment A.

P (T, F, e|A) ∝ L(A|T, F, e)P (T )P (F )P (e) (7)

where P (T ), P (F ), P (e) are the prior probabilities of T, F, e, respectively

Identifying invariable sites 213

As noted above, a truly invariable site may appear to be a SNP because of sequencing 214

errors. To speed up the computation, AFPhyloMix skips all the sites which are 215
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identified as invariable sites. Let the maximum value of the sequencing error rate be 216

emax (in our application of AFPhyloMix, emax is set to 0.01). A site is regarded as an 217

invariable site if there exists only one nucleotide such that the percentage of the reads 218

having that nucleotide covering the site is higher than emax. Let I be the set of these 219

sites which are identified as invariable sites; then 220

L(A|T, F, e) ∝
∏
k

(
max

v

(∑
rck

( ∏
i∈(Wk−{ck}−I)

(
max
u

(∑
ri

L(Aick |u, v, ri, rck , T, F, e)Pr(ri)
)))

Pr(rck)
))

(8)

Markov chain Monte Carlo implementation 221

AFPhyloMix adopts a Bayesian model of inference to obtain an estimate of the joint 222

posterior probability of phylogenies, haplotype frequencies, and sequencing error, using 223

Markov chain Monte Carlo (MCMC) sampling [10,11]. The MCMC approach has been 224

extensively used in phylogenetic analysis [12,13], but sampling chains may not mix as 225

well as they should. To overcome this, the Metropolis-coupled Markov chain Monte 226

Carlo (MCMCMC) approach was developed by [14]. Although MCMCMC requires 227

multiple parallel sampling chains to be run simultaneously (and thus, has demanding 228

computational overheads), the approach has been demonstrated to improve mixing and 229

convergence to a stationary posterior probability distribution [15]. We implemented 230

MCMCMC in AFPhyloMix, which reports a the tree topology and the tip frequencies 231

which gives the highest value among all the resulting posterior probabilities along the 232

computation. 233

Estimation on edge lengths 234

After AFPhyloMix estimates the topology T , the tip frequencies F , and the sequencing 235

error e for the mixture of short read sequences from n haplotypes, AFPhyloMix 236

calculates the edge lengths in T (with edges e1, · · · , e2n−2) by the following method. 237

Let length(u) be the length of edge eu. In AFPhyloMix, length(u) is approximated 238

as the probability of having mutation on edge u along the tree. Note that length(u = 0) 239

is the probability of no mutation along the tree (i.e.
∑

0≤u≤2n−2 length(u) = 1). 240

length(u) = Pr(edge u)

=

∑
i Pr(edge u at site i)∑

u′ {
∑

i Pr(edge u
′ at site i)}

where Pr(edge u at site i) is the probability of a mutation on edge u of the tree at site i. 241

As described above, the whole genome is partitioned into non-overlapping windows 242

(W1, W2, · · · , Wk, · · · ) of size d (d was set to 100), and inside each window Wk a 243

reference site ck ∈Wk is selected. For every site i (say it is inside the window Wk), we 244

consider the connection between the site i and the reference position ck. For i 6= ck, let 245

nick(p, q), where p, q ∈ {0, 1, 2, 3}, be the number of reads observed having nucleotide p 246

at site i and nucleotide q at site ck on the same read. Define Aick = {nick(p, q)|p, q ∈ 247

{0, 1, 2, 3}} as the observed combinations of characters on the same reads at the sites i 248

and ck. Similarly, for i = ck, let nck(q), where q ∈ {0, 1, 2, 3} be the number of reads 249

observed having nucleotide q at site ck, and let Ack = {nck(q)|q ∈ {0, 1, 2, 3}} be the 250

observed pattern of characters on the reads at the site ck. 251

To calculate Pr(edge u at site i), two cases are considered: 252
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• Case 1: i 6= ck (i.e. the site i is not the reference site of the window); 253

• Case 2: i = ck (i.e. the site i is exactly the reference site of the window). 254

For case 1,

Pr(edge u at site i)

=

∑
v

{∑
rck

{∑
ri
L(Aick |u, v, ri, rck)Pr(ri)

}
Pr(rck)

}
Pr(edge v at site ck)∑

u′

{∑
v

{∑
rck

{∑
ri
L(Aick |u′, v, ri, rck)Pr(ri)

}
Pr(rck)

}
Pr(edge v at site ck)

}
For case 2,

Pr(edge u at site ck) =

∑
rck

L(Ack |u, rck)Pr(rck)∑
u′

{∑
rck

L(Ack |u′, rck)Pr(rck)
}

Pr(ri) and Pr(rck) are the probabilities of the root states ri and rck , which are set 255

to the observed frequencies of ri and rck in A, respectively. L(Aick |u, v, ri, rck) is the 256

likelihood value of the observed combinations of characters on the same reads at the 257

sites i and ck given the mutations on edges u and v and the root states ri and rck for 258

the sites i and ck, respectively, while L(Ack |u, rck) is the likelihood value of the 259

observed pattern of characters on the reads at the site ck given the mutation on edge u 260

and the root state rck for the site ck. The calculation of L(Ack |u, rck) can be done by 261

using the similar approach. Whereas it is theoretically possible to simultaneously infer 262

edge lengths and topologies, we have found that this does not deliver accurate results. 263

This is because, in the absence of sequence information at the tips, mutations will 264

naturally favour long branches, thus lowering the probability of seeing short branches. 265

But estimating edge lengths after the topology has been estimated, we overcome this 266

bias. An alternative is to define a suitable prior (e.g., a coalescent prior [16]) that will 267

override the tendency of the likelihood to favour long branches. 268

Removal of the sites that violate the infinite sites model 269

AFPhyloMix uses an infinite site model for modelling the evolution of the genomic 270

sequences between the haplotypes, and thus assumes that every site has no or only one 271

mutation in its evolutionary history. Before AFPhyloMix proceeds to estimate the 272

topology and the tip frequencies, AFPhyloMix examines the read alignments and filters 273

out the sites likely having more than one mutation. The procedure to identify these 274

sites is as follows: 275

1. If the SNP site has more than two different characters supported by at least emax 276

(i.e. 1%) of the reads, then the SNP site is ignored. 277

2. Consider the SNP sites with only two different characters supported by at least 278

1% of the reads. If there is no back/hidden mutation, two SNP positions will give 279

at most three combinations (as mentioned before). Based on this observation, the 280

following simple method has been developed to identify the sites which are likely 281

to have back/hidden mutations: 282

Consider a SNP site i, we check all other SNP sites j such that there are sufficient 283

number of reads covering both sites i and j. If there are at least d sites (i.e. j1, j2, 284

· · · , jd) which separately have more than three combinations supported by at least 285

1% of the reads when considering together with site i, then the site i is regarded 286

having back/hidden mutations and it is discarded. We have tested for different 287

values of d on simulated data and found that when d = 3 the method performed 288

reasonably well in terms of accuracy. 289
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Experiment and results 290

Both simulated and real data were used to evaluate AFPhyloMix. 291

Simulated data 292

Six hundred data sets were simulated and each data set was a mixture of various 293

numbers (n) of haplotypes, where n ∈ {5, 7, 9, 11, 13, 15} (100 data sets each). In each 294

data set, the n haplotypes were mixed in different random concentrations (with the 295

difference between any two haplotypes ≥ 0.0033). Paired-end reads of length 150bp 296

with total coverage of 15,000x were simulated by ART [17] with the Illumina HiSeq 2500 297

error model - HS25, from n 50k-long haplotype sequences, which were generated by 298

INDELible [18] using JC model [19] from a n-tip tree with 0.03 root-to-tip distance 299

randomly created by Evolver [20] from PAML package [21]. 300

The root sequence reported by INDELible [18] was used as the reference sequence. 301

After using BWA [22] to align the reads against the reference sequence, we ran 302

AFPhyloMix under the default settings on the read alignments to estimate the tree 303

topology and the tip frequencies (i.e. concentrations of the sub-samples) for the mixture. 304

By default, AFPhyloMix runs 8 MCMC processes in parallel: one cold chain and seven 305

hot chains, and each chain runs 650K (for mixture with 5 sub-samples) to 1150K (for 15 306

sub-samples) iterations, depending on the number of edges in the resulting tree. Fig 4 307

shows a result from AFPhyloMix on a simulated data set with a mixture of 15 308

sub-samples. Fig 4A displays the posterior probabilities along the cold chain of 309

MCMCMC process while running the AFPhyloMix. The posterior probabilities 310

increased rapidly during the burn-in period and then appeared to stabilise to an 311

equilibrium distribution. Fig 4B shows the distribution of tip frequencies (i.e. haplotype 312

concentration) along the cold chain of MCMCMC process from AFPhyloMix. The 313

distribution was found to match the expected tip frequencies (marked with red dots) 314

from the real tree used to simulate the data set. Fig 4C is the resulting tree from 315

AFPhyloMix with tip frequencies. This is the tree with the highest posterior probability 316

along the cold chain of MCMCMC process. The tree is topologically congruent with the 317

real tree (Fig 4D) and the tip frequencies are also very similar with the real sub-sample 318

concentrations. 319

Fig 5A shows the summary on the accuracy of AFPhyloMix running on the 320

simulated data sets. Among the data sets with the same number of haplotypes, the 321

figure shows the percentage of data sets with correct estimation on both topologies and 322

tip frequencies. The estimated result is regarded as correct if the tips on an estimated 323

tree can be paired up with the tips on the actual tree satisfying the following conditions: 324

(1) the difference between the predicted tip frequency and the corresponding actual tip 325

frequency paired with is less than 0.01; and (2) their topologies are the same. From the 326

figure, AFPhyloMix achieved at least 80% accuracy for the mixtures with up to 15 327

haplotypes. To further examine the derivation between the predicted tip frequencies 328

and the actual sample concentrations, and that between the estimated and the actual 329

edge lengths, for each data set with correct estimation, we computed the 330

root-mean-square value of the differences between the estimated and the actual values. 331

Figure 5B and Figure 5C show the summary on the distributions of the 332

root-mean-square of the differences for the tip frequencies and the edge lengths. The 333

values rise gradually as the number of haplotypes increase. For tip frequencies, the 334

root-mean-square values were all below 0.0012, while over 75% of the cases were below 335

0.0008. For edge lengths, the root-mean-square values were all below 0.005. 336

The pooled 95% highest posterior density of the MCMCMC estimate of error rates 337

on these simulated data sets was between 0.00199 and 0.00204 with an average 0.00202. 338

ART [17] reports the errors for the reads simulated by the error model HS25; in our 339

April 6, 2021 11/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.09.439138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.09.439138
http://creativecommons.org/licenses/by/4.0/


Fig 4. The result of AFPhyloMix on a simulated data set with a mixture
consisting of 15 sub-samples AFPhyloMix was run under the default settings on the
read alignments of a simulated mixture of 15 sub-samples in order to estimate the tree
topology and the tip frequencies. (A) The posterior probabilities along the cold chain of
MCMCMC process while running the AFPhyloMix, which increased rapidly during the
burn-in period and then frustrated steadily over a range of values and was reaching a
convergence. (B) The distribution of tip frequencies (i.e. sub-sample concentration)
along the cold chain of MCMCMC process from AFPhyloMix. The actual sub-sample
concentrations are marked by the red dots. (C) The tree with tip frequencies having
highest posterior probability along the computation reported by AFPhyloMix. (D) The
real tree with the actual sample concentration used for simulating the data set.

simulations, we obtained a simulated error rate of 0.00190. AFPhyloMix relies on the 340

alignment of reads against a root sequence to obtain the marginal posterior probability 341

distribution of error rates. We expect, therefore, that the slightly higher value 342

(≈ +0.00012) of the MCMCMC estimate of error rates on these simulated data sets, 343

compared with the simulated error rate reported by ART, is likely due to imperfect 344

alignment between simulated reads and the root sequences. 345
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Fig 5. Performance of AFPhyloMix on simulated data. (A) Accuracy of
AFPhyloMix - The percentage of data sets (out of 100), for different number of
haplotypes, with correct estimated topologies and predicted tip frequencies. (B)
Root-mean-square differences between the actual and the predicted tip frequencies. (C)
Root-mean-square differences between the actual and the predicated edge lengths.
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Real data 346

Apart from the simulated data sets, mixtures of reads from kangaroo haplotypes were 347

also used to evaluate the performance of AFPhyloMix. 348

DNA material collection and extraction 349

In Australia, kangaroo are not farmed, but are culled annually to control population 350

numbers. Culled animals are butchered by certified butchers, and the meat is sold in 351

supermarkets. As the exact provenance of kangaroo meat sold at supermarkets is 352

unknown, meat (produced by Macro Meats) was purchased at local supermarkets in the 353

Australian Capital Territory (Coles Supermarkets Australia Pty Ltd and Woolworths 354
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Ltd) on 10 separate occasions over one year (from 29th May 2018 to 26th July 2019), to 355

avoid sampling the same animal. According to statistics from the Department of the 356

Environment and Energy of Australia, they should be of genus Macropus, and most 357

likely eastern grey kangaroo, Macropus giganteus, as it is the largest population with 358

highest quota in New South Wales, Australia [23]. 359

Approximately 30 mg of meat was excised and homogenized for each individual. 360

Genomic DNA was then extracted using the DNeasy Blood & Tissue Kits (Qiagen) 361

following the manufacturer’s protocol. 362

Amplification and sequencing 363

Long PCR amplification of complete kangaroo mitochondrial genomes was carried out 364

using the pair of primers (Lt12cons: 5’- GGGATTAGATACCCCACTAT -3’, HtPhe: 365

5’-CCATCTAAGCATTTTCAGT -3’), which was selected from a previous study [24]. 366

PCR reactions was performed using Takara PrimeSTAR GXL DNA Polymerase under 367

the following conditions: 1 min initial denaturation at 95◦C, followed by 30 cycles of 10 368

s at 98◦C, 15 s at 55◦C, and 15 min at 68◦C. The PCR products were electrophoresed 369

in 1% agarose gel, purified the fragments, and then randomly fragmented to 650 bp by 370

sonication (Covaris S220). 371

Library preparation and sequencing were performed by GENEWIZ. Amplified 372

fragments of all 10 individuals were sequenced under the same run. In order to obtain a 373

highly reliable phylogenetic tree of these sub-samples for evaluating our method, each 374

individual was barcoded with unique indices before multiplexing and sequencing, so that 375

each short read sequence could be identified to the corresponding sub-sample. The 376

relative concentrations of the sub-samples are listed in the Table 1 (2nd column). 377

Sequencing was performed on an Illumina MiSeq machine with paired-end read length 378

of 2 x 300 bp. 379

Table 1. Concentration of kangaroo sub-samples

Sub-sample ID Concentration Concentration
without K01

K01 0.019 -
K02 0.029 0.030
K03 0.045 0.046
K04 0.047 0.048
K05 0.094 0.096
K06 0.102 0.104
K07 0.125 0.127
K08 0.130 0.132
K09 0.188 0.192
K10 0.221 0.225
Total 1.000 1.000

The relative concentration between different kangaroo sub-samples.

Phylogenetic tree reconstruction 380

To start with, a reliable phylogenetic tree between the haplotypes was constructed, so 381

that this gold-standard result could be used to evaluate our method. First, all the short 382

read sequences were demultiplexed into sub-samples according to the barcodes 383

appended on the sequences. Then de-novo assembly was performed on the short reads 384

for each sub-sample separately by SOAPdenovo-Trans-127mer from SOAPdenovo-Trans 385
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package [25] with parameter: kmer-size=91. After the mitochondria DNA sequences of 386

the 10 haplotypes were constructed, a multiple sequences alignment was computed by 387

MAFFT [4] with G-INS-i strategy in Geneious 11.1.5 [26]. The phylogenetic analysis 388

was conducted using IQ-TREE [27] with the evolutionary model HKY+F+I, and the 389

ML phylogenetic tree (shown in Fig 6B) was used as the reference tree to evaluate our 390

method. 391

The short read sequences from 10 haplotypes were then mixed together, and the 392

barcode of each haplotype was removed. Then Trimmomatic [28] was run on the 393

mixture of reads to remove adaptors, leading and trailing low quality bases by using the 394

options: ”ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3 395

SLIDINGWINDOW:4:15 MINLEN:36”. Then the reads were aligned to the reference 396

sequence of the eastern gray kangaroo mitochondrial genome (GenBank Accession 397

Number: NC 027424) by BWA [22] and the alignments with mapping quality score 398

(MAPQ) lower than 20 were discarded. 399

AFPhyloMix was used with the short-read alignment to estimate the phylogenetic 400

tree and the relative frequencies of each haplotype. For each read, AFPhyloMix 401

discarded the nucleotides with base quality score lower than 25. Fig 6A shows the 402

reported tree, as well as the tip frequencies, with the highest posterior probability 403

obtained. The tip labels inside the brackets were added manually after comparing with 404

the tree reported by IQ-Tree (in Fig 6B), indicating the corresponding sample that each 405

tip should be assigned according to the topology and the tip frequencies. Overall, the 406

topology and the tip frequencies outputted by AFPhyloMix matched with the tree from 407

IQ-Tree, except that AFPhyloMix combined two haplotypes K01 and K07 into one. 408

From the tree reported by IQ-TREE, the distance between the tips K01 and K07 is 409

0.00054 (99.946% similarity between these two sequences). The method could not 410

distinguish the two too-similar sequences, and thus regarded them as the same sequence. 411

To detect whether these two nearly identical sequences affect the performance of 412

AFPhyloMix, we removed the sub-sample of K01 and re-estimated the phylogeny with 413

the same method as described above. The updated relative concentrations of the 414

remaining haplotypes among the mixture is shown in Table 1 (3rd column). Both 415

AFPhyloMix and IQ-TREE analyses resulted in the same topology associated with tip 416

frequencies well matched the concentrations of those 9 haplotypes (in Fig 7). 417

The 95% highest posterior density of the MCMCMC estimate of error rates on the 418

real data sets was between 0.000722 and 0.000735 with an average 0.000729. In order to 419

compute the underlying actual error rate on the real data set, reads which had been 420

processed by Trimmomatic [28], were compared with the corresponding assembled 421

haplotype and the error rate of 0.000713 was obtained, after discarding the read bases 422

with base quality scores lower than 25 (the same criteria AFPhyloMix used to filter out 423

the low-quality read bases). Again, the slightly higher value (≈ +0.000016) of the 424

MCMCMC estimate of error rates on the real data sets compared with the obtained 425

error rate is consistent with what we observed with simulated data, and is likely due to 426

the imperfect alignment between the reads and the reference sequence. 427

Discussion 428

This research demonstrates the feasiblity of reconstructing a phylogenetic tree directly 429

from the short read sequences obtained from a mixture of closely related amplified 430

sequences, without barcoding. The results indicate that our methods work well on the 431

simulated data set for a mixture of reads generated from up to 15 haplotypes and on a 432

real data set of a mixture with 10 haplotypes. 433

Perhaps unsurprisingly, AFPhyloMix worked better in the simulated data sets than 434

in the real data sets when it came to estimating haplotype concentrations. The 435
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Fig 6. Result on a real data set with mixture of 10 sub-samples (A) The tree
with tip frequencies reported by AFPhyloMix. (B) The tree reported by IQ-Tree [27].
Note that the tip labels inside the brackets in (A) were added manually after comparing
with the tree reported by IQ-Tree, indicating the corresponding sample that each tip
should be assigned to according to the topology and the tip frequencies.

root-mean-square difference between the estimated sub-samples concentrations and the 436

expected concentrations in the real data sets was 0.0059 (from Fig 7), which was larger 437

than those in the simulated data sets (i.e. all were below 0.0027 in Fig 5B). Of course, 438

the expected haplotype concentrations may have differed from the true concentrations 439

in the mixture: the physical act of mixing small volumes could have led to differences in 440

the relative concentrations of haplotypes, and this may have contributed to a 441

higher-than-expected root-mean-square. 442

Another factor affecting the performance of the method is the varying coverage of 443

short read sequences along the genome. Fig 8A shows the actual distribution of the read 444

alignments of 10 haplotypes along the genome. We expected read coverages to vary 445

along the genome randomly, without any association to haplotypes. Surprisingly, we 446

found that, when all the haplotypes were sequenced under the same run (i.e. all 447

haplotypes were pooled into the same library before sequencing), the read coverages of 448

the haplotypes had similar trends: all had relatively high (or low) read coverages at the 449

same regions of the genome. As shown in Fig 8B, the similar trends of the read 450

coverages along the genome between the haplotypes led to a steady distribution of the 451

ratios on the read coverages between the haplotypes along the genome. The consistent 452

read coverage ratios along the genome worked in our method’s favor; on the other hand, 453

as shown in Fig 8B, we noticed that few short regions on the genome had sudden 454

changes in the ratios of the read coverage amongst haplotypes. In those regions, some 455

reads were trimmed after the alignment against the reference sequence or could not be 456

aligned to the reference sequence due to the dissimilarity between the read sequences 457

and the reference sequence. Another preprocessing step was therefore developed in 458
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Fig 7. Result on a real data set with mixture of 9 sub-samples The haplotype
K01 was removed from the mixture and the experiment was repeated. (A) The tree
with tip frequencies reported by AFPhyloMix. (B) The tree reported by IQ-TREE [27].
Note that the tip labels inside the brackets in (A) were added manually after comparing
with the tree reported by IQ-Tree, indicating the corresponding sample that each tip
should be assigned to according to the topology and the tip frequencies.

AFPhyloMix, in which read alignments were examined and problematic regions removed 459

if there existed over r (r was set to 2% of the read coverage) reads being trimmed 460

around the same sites on the genome. 461

AFPhyloMix only considers the association between two SNP sites, but it is sensible 462

to consider the association between more SNP sites in order to acquire higher sensitivity 463

of the methods especially when the number of haplotypes increases. The time 464

complexity of the algorithm is O(mnd) where n is the number of haplotypes, m is the 465

number of potential SNP sites, and d is the number of SNP sites associated to construct 466

patterns of nucleotides. In our current implementation of AFPhyloMix, d = 2. The 467

running time of the algorithm will increase exponentially as d increases. It will be a 468

challenge to come up with a faster algorithm and consider the association between more 469

number of SNP sites, so that the method can work more effectively even for a mixture 470

with a large number of sub-samples. 471

Finally, it is worth noting that we have applied AFPhyloMix to sequences of closely 472

related individuals — in our simulations, we set a root-to-tip distance of 0.03. The 473

assumption of an infinite sites model that is applied in AFPhyloMix is appropriate for 474

closely-related individuals. Amongst other things, the infinite sites model allows us to 475

constrain the number of site patterns we expect to see, and use deviations from these 476

expected patterns to error-correct. To extend our algorithm to more divergent 477

sequences will require a different model of mutation. This remains a work in progress. 478
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Fig 8. Distribution of the read alignments of 10 haplotypes against the
reference genome (A) The absolute read coverages along the genome. (B) The ratios
on read coverages between sub-samples along the genome.
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Conclusion 479

AFPhyloMix is designed to estimate the concentration of haplotypes and reconstruct 480

the phylogenetic tree directly from the short read sequences in the mixture of 481

haplotypes with no barcode, given that the number of haplotypes is known. This 482

research demonstrates the feasibility of our approach, and is a first attempt to infer the 483

phylogenetic tree from the mixture of reads unidentifiable to haplotypes, bypassing the 484

assembly process of multiple genomic sequences. The experimental results have 485

demonstrated that AFPhyloMix works reasonably well for both simulated data and real 486

data. 487

Supporting information 488

S1 Appendix. Moves in Markov chain Monte Carlo 489

AFPhyloMix applies the Metropolis algorithm and proposes changes in either tip 490
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frequencies, error rate, or tree topology, serially. The following moves during the 491

Markov chain Monte Carlo process are implemented. All these moves have Hastings 492

ratio equal to 1. 493

• Update in tip frequencies 494

For every tip i on the tree, its frequency (fi) is updated to fi + r where 495

r ∼ U(−0.15, 0.15). If the new value of frequency is a negative value, then the 496

frequency is −(fi + r). 497

• Update in the error rate 498

The error rate (e) is updated to e+ r where r ∼ U(−0.0005, 0.0005). If the new 499

value of error rate is a negative value, then the error rate is −(e+ r). 500

• Distribute the frequencies between two tips 501

Randomly select two tips i and j on the tree. Update their frequencies fi and fj 502

to r and fi + fj − r where r ∼ U(0, fi + fj). 503

• Swap the frequencies between two tips 504

Randomly select two tips on the tree and swap their frequencies. 505

• NNI 506

Randomly select an internal edge on the tree and perform Nearest-neighbor 507

interchange (NNI). 508

• Swap between two subtrees 509

Randomly select two nodes (internal or terminal) A and B satisfying the following 510

criteria: (1) A and B are not sister nodes; (2) A is not an ancestor of B; and (3) 511

B is not an ancestor of A. Then swap between the subtree rooted at A and the 512

subtree rooted at B. 513

• Merge and split 514

Randomly select an internal node A with exactly two leaves i and j. Select 515

another tip k which is not a sister node of A. If fk > fi, then use the following 516

step to merge the leaves i and j and split the leaf k into two tips. First remove 517

the tip i and j and turn A into a new tip with frequency fi + fj . Then add two 518

children at the node k with frequencies fi and fk − fi. 519

• Combine move 520

Among the moves of NNI, Swap between two subtrees, and, Merge and split, 521

randomly select two of them and consider to perform the two moves together. 522

Prior distributions 523

The prior of haplotype frequency is a gamma distribution with rate parameter 0.1 524

and shape parameter 2. The prior of the tree topology is uniform across all the possible 525

topologies, and the prior of the error rate a uniform distribution with maximum value of 526

emax (which is set to 0.01 for the reads produced from Illumina sequencing machines). 527

Metropolis-coupled Markov chain Monte Carlo 528

AFPhyloMix runs 8 Markov chain Monte Carlo processes in parallel: one cold chain 529

and seven hot chains. The i-th hot chain’s temperature is set to (1− i/8). A hot chain 530

is randomly selected and its posterior probability is compared with that of the cold 531

chain for every x iterations (where the value of x equals to the number of possible 532

moves times 5, for example, x = 12× 5 = 60 for 5 haplotypes; while x = 22× 5 = 110 533
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for 15 haplotypes). If the posterior probability of the hot chain is higher than that of 534

the cold chain, two chains will be swapped. When swapping between two chains, we 535

followed [29]’s implementation that the temperature of the two chains were exchanged 536

instead of the states. Exchanging their temperatures are more efficient than exchanging 537

their states, because the states which include many parameters are usually large in size. 538

Availability of software and materials 539

The software AFPhyloMix and the materials are available in OSF repository: 540

https://osf.io/w5s2h/ (DOI: 10.17605/OSF.IO/W5S2H) 541
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