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Abstract

A current strategy for obtaining haplotype information from several individuals involves
short-read sequencing of pooled amplicons, where fragments from each individual is
identified by a unique DNA barcode. In this paper, we report a new method to recover
the phylogeny of haplotypes from short-read sequences obtained using pooled amplicons
from a mixture of individuals, without barcoding. The method, AFPhyloMix, accepts
an alignment of the mixture of reads against a reference sequence, obtains the
single-nucleotide-polymorphisms (SNP) patterns along the alignment, and constructs the
phylogenetic tree according to the SNP patterns. AFPhyloMix adopts a Bayesian model
of inference to estimates the phylogeny of the haplotypes and their relative frequencies,
given that the number of haplotypes is known. In our simulations, AFPhyloMix
achieved at least 80% accuracy at recovering the phylogenies and frequencies of the
constituent haplotypes, for mixtures with up to 15 haplotypes. AFPhyloMix also
worked well on a real data set of kangaroo mitochondrial DNA sequences.

Introduction

Molecular phylogenetic reconstruction is the mainstay of modern evolutionary

biology [1,2]. To use a particularly relevant and recent example, tracing the spread of
the COVID-19 pandemic, and understanding the emergence of new variants, has
required the use of reliably constructed phylogenies of SARS-CoV-2 genomes [3]. DNA
sequencing is used to produce the data from which such valuable phylogenies can be
inferred. However, because modern sequencing technologies can produce several
gigabases of nucleotide sequences in a single day, one of the challenges for the molecular
phylogeneticist is to deal with this quantity of data in a timely manner while still
reconstructing accurate phylogenies. To this end, phylogeneticists have developed rapid
alignment and tree reconstruction algorithms [4,5], using pre-processed and curated
sequences. Pre-processing and sequence curation can be laborious, but are necessary
tasks because a great deal of sequence data are generated using next generation
short-read sequencing technologies. Sequences generated in this way are often barcoded
using unique DNA identifier tags, and then collectively pooled and sequenced in a single
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run. The unique barcode allows sequences belonging to different samples to be
separated computationally, before additional error-correction and subsequent
down-stream analyses are performed.

Quite apart from the costs incurred by data pre-processing and curation, the
preparation of barcoded sequence libraries is itself costly. More importantly, there are
some samples where barcoding is impractical. For instances, rapidly evolving viruses
(e.g., Human Immunodeficiency Virus (HIV) and Hepatitis C Virus (HCV)) typically
exist as a collection of genetically diverse genomes within an infected individual. To
sequence one or more target genes from a collection of these viruses using barcoding,
one would need to isolate individual viral genomes before library preparation. This can
be done, but again, is time-consuming and laborious.

In this paper, we describe a novel approach, AFPhyloMix (Assembly-Free
Phylogenetics for Mixtures) to reconstruct the phylogeny of non-barcoded amplicons in
a mixture that has been sequenced using short-read sequencing. More precisely, the
input sample consists of mixtures of anonymous (i.e., non-barcoded) amplicons of a
targeted locus, obtained from multiple individuals, each amplicon longer than the
read-length of sequenced fragments. We assume that all short-reads can be aligned to
the same reference sequence. We have developed our method to work on samples drawn

from a population of closely related individuals (i.e., from individuals within a species).

In any mixture of individuals drawn from such populations, some amplicons may be
identical to others. We refer to a group of identical amplicons as a haplotype [6]. The
mixture, therefore, contains a collection of haplotypes, each haplotype being represented
by a relative frequency between 0 and 1 (non-inclusive). AFPhyloMix estimates the
phylogeny of the haplotypes and their relative frequencies. To validate our approach, we
evaluate the efficiency of the method on simulated and real data, and we discuss the
conditions under which the method performs well, and its limitations.

Methods

Overview

The algorithm, AFPhyloMix, proceeds as follows. Given a mixture of n haplotypes,
with relative frequencies (f1, fa, ..., fn), short-read sequencing generates k sequences
that can be aligned to a reference sequence. AFPhyloMix then identifies the potential
sites with single-nucleotide-polymorphisms (SNPs) from this alignment of reads. Under
an infinite-sites model of evolution [7], where each mutation occurs at a new site and
any given SNP can have a maximum of two nucleotides, we distinguish between the
frequency of a given nucleotide at a given SNP, and the number of SNPs with the same
frequency distribution of nucleotides. We refer to these two types of frequencies as the
SNP ratio and the SNP frequency, respectively. For example, assume that in an
alignment with three SNPs; site ¢ has nucleotides A and G with frequencies 0.75, 0.25,
respectively; site j has nucleotides C' and T', with frequencies 0.6 and 0.4, respectively;
and site k£ has nucleotides G and T" with frequencies 0.75 and 0.25, respectively. We will
adopt the convention of using the smaller nucleotide frequency when identifying the
value of a SNP ratio. Therefore, the SNP ratio for site 7 is 0.25. Sites ¢ and k have the
same frequency distribution of nucleotides, even though they may have different
constituent nucleotides. In this case, the SNP frequency for the nucleotide distribution
instantiated in sites ¢ and & is 0.67 or 2/3. (We note that the SNP ratios and
frequencies are related to the Site Frequency Spectrum [8]; however, because coverage of
short-reads vary across the alignment, nucleotide frequencies at each SNP vary as a
continuous rational variable rather than as an integer).

In AFPhyloMix, a likelihood function computes the probability of observing the
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distributions of SNP ratios (data, D) along the alignment given their expected
distributions, which is itself conditional on a specified tree topology, haplotype
frequencies, and sequencing error, assuming an infinite-sites model of evolution. A
Bayesian approach is used to compute the posterior probability P(F,T,e|D) of a set of
parameters: the frequencies of haplotypes (F'), the tree topology (T'), and the
sequencing error (e), given the observed pattern of the data (D), as follows.

P(F,T,e|D) ~ L(D|F,T,e)P(F)P(T)P(e)

L(DI|F,T,e) is the likelihood of the observed pattern of SNPs given the frequencies
of haplotypes, tree topology, and the sequencing error. P(F), P(T), and P(e) are the
prior probabilities of the frequencies of haplotypes, tree topology, and the sequencing
error, respectively. A Bayesian Metropolis-coupled Markov chain Monte Carlo
(MCMCMC) inference engine is implemented, to deliver the joint posterior probability
distribution of tree topologies and haplotype frequencies. After the Bayesian
computation, based on the tree topology with the highest posterior probability, the edge
lengths on the tree are computed according to the SNP frequencies.

To illustrate this approach, consider Fig 1 which shows the relationship between
observed and expected SNP ratios and frequencies, along a specified tree. Given a 5-tip
tree with tip frequencies (i.e. the frequencies of the corresponding haplotypes
represented by the tips) shown in Fig 1A, a mutation « € {A,C, G, T} that occurs on
the edge XA over evolutionary time would lead to a different nucleotide on a SNP site
in haplotype A relative to other haplotypes. The expected SNP ratio of any mutation
along the edge XA would be 0.075, which is the frequency of tip A. The number of
SNPs with this mutational pattern — the SNP frequency — would depend on the
length of the edge XA. Figure 1B shows the SNP ratio and SNP frequencies and the
expected ratio of the occurrences for the mutations on different edges of the tree. For
example, the high expected SNP frequency of sites with SNP ratio of 0.485 is due to the
mutation on the long edge XZ.

Consideration of the connection between two SNP sites

In Figs 1B and 1C, every SNP site is treated independently. The fact that reads cover
multiple sites means that the observed frequencies for multiple sites are correlated. We
found that modelling this correlation improved the accuracy of the estimation on the
tree topology and the tip frequencies. Where there is no sequencing error, as illustrated
in Fig 2A, two SNP sites likely generate three different combinations (patterns of
nucleotides) on the nucleotide sequences if the mutations of two SNP sites occur on
different edges of the tree, while there are only two patterns of nucleotides if their
mutations happen on the same edge of the tree. For example, two SNP sites with one
mutation on the edge ZE and another on the edge XY, as shown in Fig 2A, lead to
three different patterns of nucleotides on these two SNP sites with expected frequencies
0.125, 0.41, and 0.465. Different locations of the mutations on the tree can result in
different sets of expected frequencies (Fig 2B). Similar to the compatibility problem of
two sets of binary characters [9], since the infinite site model only allows one mutation
along the tree for every SNP site, two SNP sites can create either two or three, but not
four patterns of nucleotides. Moreover, how often these patterns of nucleotides happen
depends on the product of the lengths of the edges on which the two SNP sites occur.
Considering the possible three patterns of nucleotides (with frequencies f1, fo,
f3=1—f1 — fo where f; < fo < f3) due to the mutations of two SNP sites on different
edges of the tree, Fig 3A shows the distribution of all possible pairs of f; and f;
according to the tree in Fig 2A. The size of the circle represents the expected probability
of occurrence. For example, the largest circle at (f; = 0.125, fo = 0.39) refers to the

April 6, 2021

3/22

65

66

67

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112


https://doi.org/10.1101/2021.04.09.439138
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439138; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Fig 1. Distribution of SNP frequencies along the genome (A) An example of
5-tip tree with tip frequencies (i.e. haplotype frequencies). (B) The expected SNP
frequencies and the expected SNP ratio of the occurrences for the mutations on different
edges of the tree. (C) The observed distribution of SNP frequencies from the short read
sequences generated from five simulated genomic sequences with various frequencies
based on the tree and the tip frequencies in (A).
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SNP frequencies

patterns of nucleotides created by two SNP sites with mutations on the edges X7 and
ZE, and the probability is relatively high because of their long edge lengths. When we
examined the short read sequences generated from five simulated genomic sequences
with frequencies based on the tree and the tip frequencies in Fig 2A, we checked every
pair of SNP sites close enough to be covered by the same short reads, and obtained the
pair of observed values of fi and f; based on the set of short reads covering the pair of
SNP sites. Fig 3B displays the distribution of pairs of observed values of f; and fo. The
distribution matches the expected distribution in Fig 3A. Moreover, the distributions of
the observed frequencies from the two patterns of nucleotides generated by the
mutations of two SNP sites on the same edge of the tree were also found consistent with
the corresponding expected distributions, although they are not shown here. We are
applying a Bayesian approach to the problem and AFPhyloMix estimates the posterior
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probability distribution of tree topologies and tip frequencies given the observed
frequencies of the patterns of nucleotides created by pairs of SNP sites.

Fig 2. Consideration of connections between two SNP sites (A) Under the
infinite site model, by allowing one mutation along the tree for every SNP site, two SNP
sites may make three different patterns of nucleotides. (B) Different locations of the
mutations on the tree can result in different set of expected frequencies.
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Estimation of tree topology and tip frequencies

Assume that there are n haplotypes. If there is no sequencing error, there should be
only two types of nucleotides on each SNP site; for convenience, we will refer to the two
allowable states at a given SNP location canonically as ‘0" and ‘1’. Considering two sites
1 and j, let s(ij) be the nucleotides of the same read covering the sites ¢ and j. Also let
the states of the root of the tree be r; and r;, where r;,r; € {0,1}, on the site ¢ and the
site j, respectively. Given a n-tip rooted tree topology T, a set of n tip frequencies F',
and the edges of T: {e1, - ,ean_2}, let P(s(ij) = pq|u, v, 7;,7;), where p,q € {0,1}
and u,v € {e,e1, -+ ,ean—_2} (the empty string ¢ represents no mutation on the site), be
the expected probability of the same sequence having nucleotide p on the site 7 and
nucleotide ¢ on the site j given the mutations of the site i and j are on the edge u and
the edge v, and the states of the root of the tree are r; and r;. For example, for the
topology and tip frequencies in Fig 2, when u = XY v =ZEr; =r; =0,

P(s(ij) = 00|u,v,7;,7;) = 0.465, P(s(ij) = 01|u,v,r;,7;) = 0.410,

P(s(ij) = 10ju,v,7i,7;) = 0.125, and P(s(ij) = 11|u,v,7;,7;) = 0.0.

Ideally, if there is no sequencing error, the number of combinations between the
nucleotides of the reads covering the sites ¢ and j should either be one (if u = v =€),
two (for example, when u = v #£ €, or v #u = ¢, or u # v = €), or three. However, in a
data set with sequencing error, the number of combinations observed may well be more
(up to a maximum of 16). We will compute the expected probabilities taking account of
sequencing errors. With the sequencing errors, each SNP site may contain 4 nucleotide
types, say 0, 1, 2, and 3. Without loss of generality, we assume 0 and 1 are the major
characters, while 2 and 3 are the characters created by the sequencing errors. Given a
tree topology T, a set of tip frequencies F', and a sequencing error rate e, define
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Fig 3. Distribution of the first and the second frequencies of three patterns
of nucleotides created by two SNP sites Considering the tree in Fig 2A, two SNP
sites having mutations on different pair of edges can lead to three patterns of nucleotides
with frequencies fi1, fa, f3 =1— f1 — fa, where f1 < fo < f3. (A) The distribution of

all possible pairs of f; and fs. The size of the circle represents the expected chance of
occurrence. (B) The distribution of pairs of observed values of f; and f obtained from

the short read sequences generated from five simulated genomic sequences with
frequencies based on the same tree and the same tip frequencies. Every pair of SNP
sites close enough to be covered by the same short reads were checked.
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P(s(ij) = pglu,v,r;, ), where p,q € {0,1,2,3}, as the expected probability of

observing the same read having nucleotide p on the site ¢ and nucleotide ¢ on the site j,
when the mutations of the sites ¢ and j are on the edges v and v, and the states of the

root of the tree are r; and r;, respectively.

P(s(ij) = pglu,v,risry) = Y P(s(ig) = p'qlu,v,ri,ry) (0 = p)(d’ —q) (1)

p'q'€{0,1}

Y(p" — p) where p’ € {0,1} and p € {0,1,2,3} is the probability of observing a
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nucleotide p on the read when the actual nucleotide should be p'.

1—e, ifp =p

Mﬂ+m={ (2)

e/3,  otherwise

Again, consider two sites ¢ and j, and let n;;(p, q), where p,q € {0,1,2,3} be the
number of reads observed having nucleotide p on site 7 and nucleotide g on site j in the
data set. Let A;; = {n;;(p,q)|p,q € {0,1,2,3}} be the observed combinations of
characters on the reads covering the site i and the site ¢;. Given a n-tip rooted tree
topology T, a set of n tip frequencies F', and a sequencing error rate e, define
L(A;j|lu,v, 7,75, T, F,e) as the likelihood function of the alignment with sites ¢ and j,
where i # j, provided that the mutations of the SNP sites ¢ and j are on the edges u
and v, and the states of the root of the tree on the SNP sites 7 and j are r; and r;,
respectively. We assume that the ratios of the reads having different patterns of
nucleotides for the sites ¢ and j follow the multinomial distribution.

n!
IL, , 7P, q)!
where n = Z nij (P, )

p,q

L(Aij‘U,U,Ti,Tj,T, F7 6) = HP(S(ZJ) :pQ|uavaTiaTj)n”(p7q) (3)
p,q

Practically, when performing an analysis on the alignment of the reads, for each site
of the alignment, AFPhyloMix assigns the nucleotide supported by the largest number
of reads to 0, the second largest to 1, the third largest to 2, and the one with the least
supports to 3. There are three reasons to observe two or more nucleotides at a site:

e A site truly has a single mutational event only in its evolutionary history,
sequencing errors and other technical artifacts can introduce more than two
nucleotides in the alignment of short-reads;

e A site is truly invariable over the evolutionary tree, but sequencing errors/artifacts
introduce more than a single observed nucleotide in the alignment at that site; or

e A site truly has experienced multiple mutational events in its events in its

evolutionary history (and thus, violates the assumption of an infinite sites model).

We deal with the second and third of these cases below, but if a site truly has only a
single mutational event in its history, then nucleotides 0 and 1 should dominate, while
nucleotides 2 and 3 will be due to sequencing errors.

Let the n SNP sites be {S1, S2, S3, S4, S5, 56, -+ , Sn}. One approach is to consider
the patterns observed with pairs of adjacent SNP sites [i.e., if n is even, then consider
(S1,52)(S3,54) -+, (Sn—1,5n))]. This approach allows, at most, only n/2 pairs of SNP
sites to be considered. On the other hand, if we nominate a reference site, and pair each
non-reference site with the reference, we can use =~ n pairs of SNP sites. We have used
this approach, as follows: the whole alignment is partitioned into m non-overlapping

windows (Wy, Wa, -+, Wy, -+, Wy,) of size d (d was set to 100 in our implementation).

In each window W, a reference position ¢, € Wy, is selected. Let the average of the read
coverage along the alignment be covgyy. The reference site is selected arbitrarily among
those sites covered by at least max{50, 7 * covqyq } reads (where r was set to 0.2). Thus,
the selected reference sites will have reasonably high levels of support. For every site 4
inside the window W, its association with the reference position ¢ is considered. This
approach allows us to consider n — m pairs of SNP sites. Note that if such reference
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positions cannot be found (because the coverage of the whole window is not high

enough), then a reference covered by the highest number of reads is selected for the

window.
The likelihood of the whole alignment (A) given the tree topology (T'), the tip
frequencies (F') and the sequencing error rate (e) is:

L(A|T7 Fa 6) = HL(Wk|T7 Fa 6)

k
- H( 3" L(Wilre,,v, T, F,¢)Pr(re,|T, F,e)Pr(v|T, F, e))
k

Tep sV

(4)

The patterns obtained from the pair of site ¢ and the reference ¢, depends on the
tree topology, the tip frequencies, the sequencing error rate, the root states, and the
edges on which the mutations occur for both the site 7 and the reference c¢;. Amongst

all sites paired with the reference site, pattern frequencies are independent after

conditioning on the tree topology, the tip frequencies, the sequencing error rate, the root

state and the edge on which the mutation occurs for the reference cy.

Therefore, the likelihood of the window (W},) given the tree topology (T'), the tip

frequencies (F'), the sequencing error (e), the root state (rc,) and the edge on which the

mutation occurs (v) for the reference ¢y is:

L(Wy|re,,v, T, F,e) = H L(Ac, |re,,v, T, F,e)
i€(Wr—{ck})
- H (Z L(Ae, |u,v,7i,7¢,, T, F,e)Pr(r;|T, F,e)
iE(ka{Ck}) Ti,U

Pr(u|T, F, e))

Using this approach, the likelihood essentially integrates across all observed patterns,
thus negating the need to identify observed nucleotide ratios that are the consequence of

sequencing errors.

(5)

During the experiments, the following modified formula was found to have a better

accuracy on the estimation of the tree topology and the tip frequencies:

L(A|T,F,e) =~ H(mfm(Z( H (mﬁxx(Z L(A;c, |u,v,7i,7¢,, T, F, e)Pr(ri))))
k r;

Tep  1€(Wik—{ck})

Pr(rck)))

where Pr(r;) = the observed frequency of the nucleotide 7; in A

Define P(T, F,e|A) as the posterior probability of the tree topology T', the tip
frequencies F', and the sequencing error e given the alignment A.

P(T, F,e|A) o L(A|T, F,e)P(T)P(F)P(e)

(6)

(7)

where P(T), P(F), P(e) are the prior probabilities of T, F, e, respectively

Identifying invariable sites

As noted above, a truly invariable site may appear to be a SNP because of sequencing

errors. To speed up the computation, AFPhyloMix skips all the sites which are
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identified as invariable sites. Let the maximum value of the sequencing error rate be 216
€maz (in our application of AFPhyloMix, €,,,. is set to 0.01). A site is regarded as an 27
invariable site if there exists only one nucleotide such that the percentage of the reads 2
having that nucleotide covering the site is higher than e,,,,. Let I be the set of these 210
sites which are identified as invariable sites; then 20

vAr Fe o [T (max(3( TT (mas(X LA, v e T E ) P ) ))
k

Tep 1€(Wi—{ck}—1) Ti

Pr(ra,))) ®)

Markov chain Monte Carlo implementation 2

AFPhyloMix adopts a Bayesian model of inference to obtain an estimate of the joint 2
posterior probability of phylogenies, haplotype frequencies, and sequencing error, using 23
Markov chain Monte Carlo (MCMC) sampling [10,11]. The MCMC approach has been 2
extensively used in phylogenetic analysis [12,13], but sampling chains may not mix as s
well as they should. To overcome this, the Metropolis-coupled Markov chain Monte 26
Carlo (MCMCMC) approach was developed by [14]. Although MCMCMC requires 227
multiple parallel sampling chains to be run simultaneously (and thus, has demanding 28
computational overheads), the approach has been demonstrated to improve mixing and 2
convergence to a stationary posterior probability distribution [15]. We implemented 230
MCMCMC in AFPhyloMix, which reports a the tree topology and the tip frequencies  au
which gives the highest value among all the resulting posterior probabilities along the 23

computation. 233
Estimation on edge lengths 234
After AFPhyloMix estimates the topology T, the tip frequencies F', and the sequencing s
error e for the mixture of short read sequences from n haplotypes, AFPhyloMix 236
calculates the edge lengths in T' (with edges ey, - -, e2,-2) by the following method. 237

Let length(u) be the length of edge e,. In AFPhyloMix, length(u) is approximated 2
as the probability of having mutation on edge u along the tree. Note that length(u =0) 23
is the probability of no mutation along the tree (i.e. > ., <o,_olength(u) =1). 240

length(u) = Pr(edge u)
_ >, Pr(edge u at site 7)
Y, Predge ' at site i)}

where Pr(edge u at site i) is the probability of a mutation on edge u of the tree at site i. a

As described above, the whole genome is partitioned into non-overlapping windows  2e
(W, Wa, -+, Wy, --+) of size d (d was set to 100), and inside each window W}, a 23
reference site ¢, € Wy, is selected. For every site i (say it is inside the window W), we  2u
consider the connection between the site ¢ and the reference position ci. For i # ¢y, let s
Nice,, (P, q), where p, q € {0,1,2,3}, be the number of reads observed having nucleotide p 24
at site ¢ and nucleotide ¢ at site ¢; on the same read. Define A;., = {n;., (p,q)|p,q € 247
{0,1,2,3}} as the observed combinations of characters on the same reads at the sites i s
and ¢g. Similarly, for i = ¢y, let ne, (q), where ¢ € {0,1,2,3} be the number of reads 249
observed having nucleotide ¢ at site ¢, and let A., = {n.,(¢)|q € {0,1,2,3}} be the 250
observed pattern of characters on the reads at the site cy. 251

To calculate Pr(edge u at site i), two cases are considered: 252
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e Case 1: i # ¢ (i.e. the site ¢ is not the reference site of the window);
e Case 2: i = ¢ (i.e. the site ¢ is exactly the reference site of the window).
For case 1,
Pr(edge u at site )
Yo {ZT% {ZT L(Aick|u,v,ri,rck)Pr(ri)} Pr(rck)} Pr(edge v at site cy)
Do {Zv {ZT% {Zn L(Aick|u’,v,n-,rck)Pr(ri)} Pr(rck)} Pr(edge v at site ck)}

For case 2,

Zrck L(Ac,lu,re, ) Pr(re,)
S {0, LAl Priva) }

Pr(r;) and Pr(r.,) are the probabilities of the root states r; and ., , which are set
to the observed frequencies of r; and r., in A, respectively. L(A;., |u,v,r;,7.,) is the
likelihood value of the observed combinations of characters on the same reads at the
sites ¢ and ¢, given the mutations on edges u and v and the root states r; and r., for
the sites ¢ and c¢g, respectively, while L(A., |u, 7, ) is the likelihood value of the
observed pattern of characters on the reads at the site ¢, given the mutation on edge u
and the root state r., for the site ¢;. The calculation of L(A., |u,r.,) can be done by
using the similar approach. Whereas it is theoretically possible to simultaneously infer
edge lengths and topologies, we have found that this does not deliver accurate results.
This is because, in the absence of sequence information at the tips, mutations will
naturally favour long branches, thus lowering the probability of seeing short branches.
But estimating edge lengths after the topology has been estimated, we overcome this
bias. An alternative is to define a suitable prior (e.g., a coalescent prior [16]) that will
override the tendency of the likelihood to favour long branches.

Pr(edge u at site ¢;) =

Removal of the sites that violate the infinite sites model

AFPhyloMix uses an infinite site model for modelling the evolution of the genomic
sequences between the haplotypes, and thus assumes that every site has no or only one
mutation in its evolutionary history. Before AFPhyloMix proceeds to estimate the
topology and the tip frequencies, AFPhyloMix examines the read alignments and filters
out the sites likely having more than one mutation. The procedure to identify these
sites is as follows:

1. If the SNP site has more than two different characters supported by at least €44
(i.e. 1%) of the reads, then the SNP site is ignored.

2. Consider the SNP sites with only two different characters supported by at least
1% of the reads. If there is no back/hidden mutation, two SNP positions will give
at most three combinations (as mentioned before). Based on this observation, the
following simple method has been developed to identify the sites which are likely
to have back/hidden mutations:

Consider a SNP site i, we check all other SNP sites j such that there are sufficient
number of reads covering both sites ¢ and j. If there are at least d sites (i.e. ji, jo,
-++, ja) which separately have more than three combinations supported by at least
1% of the reads when considering together with site 4, then the site ¢ is regarded
having back/hidden mutations and it is discarded. We have tested for different
values of d on simulated data and found that when d = 3 the method performed
reasonably well in terms of accuracy.
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Experiment and results

Both simulated and real data were used to evaluate AFPhyloMix.

Simulated data

Six hundred data sets were simulated and each data set was a mixture of various
numbers (n) of haplotypes, where n € {5,7,9,11,13,15} (100 data sets each). In each
data set, the n haplotypes were mixed in different random concentrations (with the
difference between any two haplotypes > 0.0033). Paired-end reads of length 150bp
with total coverage of 15,000x were simulated by ART [17] with the Tllumina HiSeq 2500
error model - HS25, from n 50k-long haplotype sequences, which were generated by
INDELible [18] using JC model [19] from a n-tip tree with 0.03 root-to-tip distance
randomly created by Evolver [20] from PAML package [21].

The root sequence reported by INDELible [18] was used as the reference sequence.
After using BWA [22] to align the reads against the reference sequence, we ran
AFPhyloMix under the default settings on the read alignments to estimate the tree

topology and the tip frequencies (i.e. concentrations of the sub-samples) for the mixture.

By default, AFPhyloMix runs 8 MCMC processes in parallel: one cold chain and seven
hot chains, and each chain runs 650K (for mixture with 5 sub-samples) to 1150K (for 15
sub-samples) iterations, depending on the number of edges in the resulting tree. Fig 4
shows a result from AFPhyloMix on a simulated data set with a mixture of 15
sub-samples. Fig 4A displays the posterior probabilities along the cold chain of
MCMCMC process while running the AFPhyloMix. The posterior probabilities
increased rapidly during the burn-in period and then appeared to stabilise to an
equilibrium distribution. Fig 4B shows the distribution of tip frequencies (i.e. haplotype
concentration) along the cold chain of MCMCMC process from AFPhyloMix. The
distribution was found to match the expected tip frequencies (marked with red dots)
from the real tree used to simulate the data set. Fig 4C is the resulting tree from
AFPhyloMix with tip frequencies. This is the tree with the highest posterior probability
along the cold chain of MCMCMC process. The tree is topologically congruent with the
real tree (Fig 4D) and the tip frequencies are also very similar with the real sub-sample
concentrations.

Fig 5A shows the summary on the accuracy of AFPhyloMix running on the
simulated data sets. Among the data sets with the same number of haplotypes, the
figure shows the percentage of data sets with correct estimation on both topologies and
tip frequencies. The estimated result is regarded as correct if the tips on an estimated
tree can be paired up with the tips on the actual tree satisfying the following conditions:
(1) the difference between the predicted tip frequency and the corresponding actual tip
frequency paired with is less than 0.01; and (2) their topologies are the same. From the
figure, AFPhyloMix achieved at least 80% accuracy for the mixtures with up to 15
haplotypes. To further examine the derivation between the predicted tip frequencies
and the actual sample concentrations, and that between the estimated and the actual
edge lengths, for each data set with correct estimation, we computed the
root-mean-square value of the differences between the estimated and the actual values.
Figure 5B and Figure 5C show the summary on the distributions of the
root-mean-square of the differences for the tip frequencies and the edge lengths. The
values rise gradually as the number of haplotypes increase. For tip frequencies, the
root-mean-square values were all below 0.0012, while over 75% of the cases were below
0.0008. For edge lengths, the root-mean-square values were all below 0.005.

The pooled 95% highest posterior density of the MCMCMC estimate of error rates

on these simulated data sets was between 0.00199 and 0.00204 with an average 0.00202.

ART [17] reports the errors for the reads simulated by the error model HS25; in our
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Fig 4. The result of AFPhyloMix on a simulated data set with a mixture
consisting of 15 sub-samples AFPhyloMix was run under the default settings on the
read alignments of a simulated mixture of 15 sub-samples in order to estimate the tree
topology and the tip frequencies. (A) The posterior probabilities along the cold chain of
MCMCMC process while running the AFPhyloMix, which increased rapidly during the
burn-in period and then frustrated steadily over a range of values and was reaching a
convergence. (B) The distribution of tip frequencies (i.e. sub-sample concentration)
along the cold chain of MCMCMC process from AFPhyloMix. The actual sub-sample
concentrations are marked by the red dots. (C) The tree with tip frequencies having
highest posterior probability along the computation reported by AFPhyloMix. (D) The

real tree with the actual sample concentration used for simulating the data set.
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simulations, we obtained a simulated error rate of 0.00190. AFPhyloMix relies on the
alignment of reads against a root sequence to obtain the marginal posterior probability

distribution of error rates. We expect, therefore, that the slightly higher value
(=~ +0.00012) of the MCMCMC estimate of error rates on these simulated data

sets,

compared with the simulated error rate reported by ART), is likely due to imperfect

alignment between simulated reads and the root sequences.
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Fig 5. Performance of AFPhyloMix on simulated data. (A) Accuracy of
AFPhyloMix - The percentage of data sets (out of 100), for different number of
haplotypes, with correct estimated topologies and predicted tip frequencies. (B)

Root-mean-square differences between the actual and the predicted tip frequencies. (C)
Root-mean-square differences between the actual and the predicated edge lengths.
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Real data

Apart from the simulated data sets, mixtures of reads from kangaroo haplotypes were
also used to evaluate the performance of AFPhyloMix.

DINA material collection and extraction

In Australia, kangaroo are not farmed, but are culled annually to control population
numbers. Culled animals are butchered by certified butchers, and the meat is sold in
supermarkets. As the exact provenance of kangaroo meat sold at supermarkets is
unknown, meat (produced by Macro Meats) was purchased at local supermarkets in the
Australian Capital Territory (Coles Supermarkets Australia Pty Ltd and Woolworths
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Ltd) on 10 separate occasions over one year (from 29th May 2018 to 26th July 2019), to
avoid sampling the same animal. According to statistics from the Department of the
Environment and Energy of Australia, they should be of genus Macropus, and most
likely eastern grey kangaroo, Macropus giganteus, as it is the largest population with
highest quota in New South Wales, Australia [23].

Approximately 30 mg of meat was excised and homogenized for each individual.
Genomic DNA was then extracted using the DNeasy Blood & Tissue Kits (Qiagen)
following the manufacturer’s protocol.

Amplification and sequencing

Long PCR amplification of complete kangaroo mitochondrial genomes was carried out
using the pair of primers (Lt12cons: 5- GGGATTAGATACCCCACTAT -3’, HtPhe:
5-CCATCTAAGCATTTTCAGT -3’), which was selected from a previous study [24].
PCR reactions was performed using Takara PrimeSTAR GXL DNA Polymerase under
the following conditions: 1 min initial denaturation at 95°C, followed by 30 cycles of 10
s at 98°C, 15 s at 55°C, and 15 min at 68°C. The PCR products were electrophoresed
in 1% agarose gel, purified the fragments, and then randomly fragmented to 650 bp by
sonication (Covaris 5220).

Library preparation and sequencing were performed by GENEWIZ. Amplified
fragments of all 10 individuals were sequenced under the same run. In order to obtain a
highly reliable phylogenetic tree of these sub-samples for evaluating our method, each
individual was barcoded with unique indices before multiplexing and sequencing, so that
each short read sequence could be identified to the corresponding sub-sample. The
relative concentrations of the sub-samples are listed in the Table 1 (2"¢ column).
Sequencing was performed on an Illumina MiSeq machine with paired-end read length
of 2 x 300 bp.

Table 1. Concentration of kangaroo sub-samples

Sub-sample ID | Concentration Concentration
without K01

Ko01 0.019 -

K02 0.029 0.030
K03 0.045 0.046
K04 0.047 0.048
K05 0.094 0.096
K06 0.102 0.104
Ko7 0.125 0.127
K08 0.130 0.132
K09 0.188 0.192
K10 0.221 0.225
Total 1.000 1.000

The relative concentration between different kangaroo sub-samples.

Phylogenetic tree reconstruction

To start with, a reliable phylogenetic tree between the haplotypes was constructed, so
that this gold-standard result could be used to evaluate our method. First, all the short
read sequences were demultiplexed into sub-samples according to the barcodes

appended on the sequences. Then de-novo assembly was performed on the short reads
for each sub-sample separately by SOAPdenovo-Trans-127mer from SOAPdenovo-Trans
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package [25] with parameter: kmer-size=91. After the mitochondria DNA sequences of
the 10 haplotypes were constructed, a multiple sequences alignment was computed by
MAFFT [4] with G-INS-i strategy in Geneious 11.1.5 [26]. The phylogenetic analysis
was conducted using IQ-TREE [27] with the evolutionary model HKY+F+1I, and the
ML phylogenetic tree (shown in Fig 6B) was used as the reference tree to evaluate our
method.

The short read sequences from 10 haplotypes were then mixed together, and the
barcode of each haplotype was removed. Then Trimmomatic [28] was run on the
mixture of reads to remove adaptors, leading and trailing low quality bases by using the
options: "ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36”. Then the reads were aligned to the reference
sequence of the eastern gray kangaroo mitochondrial genome (GenBank Accession
Number: NC_027424) by BWA [22] and the alignments with mapping quality score
(MAPQ) lower than 20 were discarded.

AFPhyloMix was used with the short-read alignment to estimate the phylogenetic
tree and the relative frequencies of each haplotype. For each read, AFPhyloMix
discarded the nucleotides with base quality score lower than 25. Fig 6A shows the
reported tree, as well as the tip frequencies, with the highest posterior probability
obtained. The tip labels inside the brackets were added manually after comparing with
the tree reported by IQ-Tree (in Fig 6B), indicating the corresponding sample that each
tip should be assigned according to the topology and the tip frequencies. Overall, the
topology and the tip frequencies outputted by AFPhyloMix matched with the tree from
1Q-Tree, except that AFPhyloMix combined two haplotypes K01 and K07 into one.
From the tree reported by IQ-TREE, the distance between the tips K01 and K07 is
0.00054 (99.946% similarity between these two sequences). The method could not

distinguish the two too-similar sequences, and thus regarded them as the same sequence.

To detect whether these two nearly identical sequences affect the performance of
AFPhyloMix, we removed the sub-sample of K01 and re-estimated the phylogeny with
the same method as described above. The updated relative concentrations of the
remaining haplotypes among the mixture is shown in Table 1 (3" column). Both
AFPhyloMix and IQ-TREE analyses resulted in the same topology associated with tip
frequencies well matched the concentrations of those 9 haplotypes (in Fig 7).

The 95% highest posterior density of the MCMCMC estimate of error rates on the
real data sets was between 0.000722 and 0.000735 with an average 0.000729. In order to
compute the underlying actual error rate on the real data set, reads which had been
processed by Trimmomatic [28], were compared with the corresponding assembled
haplotype and the error rate of 0.000713 was obtained, after discarding the read bases
with base quality scores lower than 25 (the same criteria AFPhyloMix used to filter out
the low-quality read bases). Again, the slightly higher value ( 40.000016) of the
MCMCMUC estimate of error rates on the real data sets compared with the obtained
error rate is consistent with what we observed with simulated data, and is likely due to
the imperfect alignment between the reads and the reference sequence.

Discussion

This research demonstrates the feasiblity of reconstructing a phylogenetic tree directly
from the short read sequences obtained from a mixture of closely related amplified
sequences, without barcoding. The results indicate that our methods work well on the
simulated data set for a mixture of reads generated from up to 15 haplotypes and on a
real data set of a mixture with 10 haplotypes.

Perhaps unsurprisingly, AFPhyloMix worked better in the simulated data sets than
in the real data sets when it came to estimating haplotype concentrations. The
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Fig 6. Result on a real data set with mixture of 10 sub-samples (A) The tree
with tip frequencies reported by AFPhyloMix. (B) The tree reported by IQ-Tree [27].
Note that the tip labels inside the brackets in (A) were added manually after comparing
with the tree reported by IQ-Tree, indicating the corresponding sample that each tip
should be assigned to according to the topology and the tip frequencies.

f=0.13071092 (K08) 0.00035
A B K08 f=0.130
0.00446 (
— f=0.03179581 (K02) 0.00025
K02 f=0.029
0{00069
— f=0.04665904 (K04) 0.90031
K04 f=0.047
f=0.20374692 (K10) 0.00284
B —————————— K10 f=0.221
f=0.17636072 (K09) 0.00046
K09 f=0.188
— f=0.042 K 0.00039
0.04289686 (K03) K03 f=0.045

0.00446

£=0.09668856 (KO5) %05 £=0.094

0.00037
K07 f=0.125

f=0.14762212 (KO7+K01)

£=0.10728203 (K06) 2%01 f=0.019

— f=0.01623703 (redundant) K06 f=0.102

root-mean-square difference between the estimated sub-samples concentrations and the
expected concentrations in the real data sets was 0.0059 (from Fig 7), which was larger
than those in the simulated data sets (i.e. all were below 0.0027 in Fig 5B). Of course,
the expected haplotype concentrations may have differed from the true concentrations
in the mixture: the physical act of mixing small volumes could have led to differences in
the relative concentrations of haplotypes, and this may have contributed to a
higher-than-expected root-mean-square.

Another factor affecting the performance of the method is the varying coverage of
short read sequences along the genome. Fig 8A shows the actual distribution of the read
alignments of 10 haplotypes along the genome. We expected read coverages to vary
along the genome randomly, without any association to haplotypes. Surprisingly, we
found that, when all the haplotypes were sequenced under the same run (i.e. all
haplotypes were pooled into the same library before sequencing), the read coverages of
the haplotypes had similar trends: all had relatively high (or low) read coverages at the
same regions of the genome. As shown in Fig 8B, the similar trends of the read
coverages along the genome between the haplotypes led to a steady distribution of the
ratios on the read coverages between the haplotypes along the genome. The consistent
read coverage ratios along the genome worked in our method’s favor; on the other hand,
as shown in Fig 8B, we noticed that few short regions on the genome had sudden
changes in the ratios of the read coverage amongst haplotypes. In those regions, some
reads were trimmed after the alignment against the reference sequence or could not be
aligned to the reference sequence due to the dissimilarity between the read sequences
and the reference sequence. Another preprocessing step was therefore developed in
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Fig 7. Result on a real data set with mixture of 9 sub-samples The haplotype
K01 was removed from the mixture and the experiment was repeated. (A) The tree

with tip frequencies reported by AFPhyloMix. (B) The tree reported by IQ-TREE [27].

Note that the tip labels inside the brackets in (A) were added manually after comparing
with the tree reported by 1Q-Tree, indicating the corresponding sample that each tip
should be assigned to according to the topology and the tip frequencies.
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AFPhyloMix, in which read alignments were examined and problematic regions removed
if there existed over r (r was set to 2% of the read coverage) reads being trimmed
around the same sites on the genome.

AFPhyloMix only considers the association between two SNP sites, but it is sensible
to consider the association between more SNP sites in order to acquire higher sensitivity
of the methods especially when the number of haplotypes increases. The time
complexity of the algorithm is O(mn?) where n is the number of haplotypes, m is the
number of potential SNP sites, and d is the number of SNP sites associated to construct
patterns of nucleotides. In our current implementation of AFPhyloMix, d = 2. The
running time of the algorithm will increase exponentially as d increases. It will be a
challenge to come up with a faster algorithm and consider the association between more
number of SNP sites, so that the method can work more effectively even for a mixture
with a large number of sub-samples.

Finally, it is worth noting that we have applied AFPhyloMix to sequences of closely
related individuals — in our simulations, we set a root-to-tip distance of 0.03. The
assumption of an infinite sites model that is applied in AFPhyloMix is appropriate for
closely-related individuals. Amongst other things, the infinite sites model allows us to
constrain the number of site patterns we expect to see, and use deviations from these
expected patterns to error-correct. To extend our algorithm to more divergent
sequences will require a different model of mutation. This remains a work in progress.
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Fig 8. Distribution of the read alignments of 10 haplotypes against the
reference genome (A) The absolute read coverages along the genome. (B) The ratios
on read coverages between sub-samples along the genome.
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Conclusion

AFPhyloMix is designed to estimate the concentration of haplotypes and reconstruct
the phylogenetic tree directly from the short read sequences in the mixture of
haplotypes with no barcode, given that the number of haplotypes is known. This
research demonstrates the feasibility of our approach, and is a first attempt to infer the
phylogenetic tree from the mixture of reads unidentifiable to haplotypes, bypassing the
assembly process of multiple genomic sequences. The experimental results have
demonstrated that AFPhyloMix works reasonably well for both simulated data and real
data.

Supporting information

S1 Appendix. Moves in Markov chain Monte Carlo
AFPhyloMix applies the Metropolis algorithm and proposes changes in either tip
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frequencies, error rate, or tree topology, serially. The following moves during the
Markov chain Monte Carlo process are implemented. All these moves have Hastings
ratio equal to 1.

e Update in tip frequencies

For every tip ¢ on the tree, its frequency (f;) is updated to f; + r where
r ~ U(—0.15,0.15). If the new value of frequency is a negative value, then the
frequency is —(f; +r).

e Update in the error rate

The error rate (e) is updated to e 4+ r where r ~ U(—0.0005,0.0005). If the new
value of error rate is a negative value, then the error rate is —(e + r).

e Distribute the frequencies between two tips

Randomly select two tips ¢ and j on the tree. Update their frequencies f; and f;
to r and f; + f; —r where r ~ U(0, f; + f;).

e Swap the frequencies between two tips

Randomly select two tips on the tree and swap their frequencies.

o NNI

Randomly select an internal edge on the tree and perform Nearest-neighbor
interchange (NNT).

e Swap between two subtrees

Randomly select two nodes (internal or terminal) A and B satisfying the following
criteria: (1) A and B are not sister nodes; (2) A is not an ancestor of B; and (3)
B is not an ancestor of A. Then swap between the subtree rooted at A and the
subtree rooted at B.

e Merge and split

Randomly select an internal node A with exactly two leaves ¢ and j. Select
another tip k£ which is not a sister node of A. If fi > f;, then use the following
step to merge the leaves ¢ and j and split the leaf k into two tips. First remove
the tip 4 and j and turn A into a new tip with frequency f; + f;. Then add two
children at the node k with frequencies f; and fr — f;.

e Combine move

Among the moves of NNI, Swap between two subtrees, and, Merge and split,
randomly select two of them and consider to perform the two moves together.

Prior distributions

The prior of haplotype frequency is a gamma distribution with rate parameter 0.1
and shape parameter 2. The prior of the tree topology is uniform across all the possible
topologies, and the prior of the error rate a uniform distribution with maximum value of
€maz (Which is set to 0.01 for the reads produced from Ilumina sequencing machines).

Metropolis-coupled Markov chain Monte Carlo

AFPhyloMix runs 8 Markov chain Monte Carlo processes in parallel: one cold chain
and seven hot chains. The 4-th hot chain’s temperature is set to (1 —4/8). A hot chain
is randomly selected and its posterior probability is compared with that of the cold
chain for every z iterations (where the value of z equals to the number of possible
moves times 5, for example, z = 12 x 5 = 60 for 5 haplotypes; while x =22 x 5 =110
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for 15 haplotypes). If the posterior probability of the hot chain is higher than that of
the cold chain, two chains will be swapped. When swapping between two chains, we
followed [29]’s implementation that the temperature of the two chains were exchanged
instead of the states. Exchanging their temperatures are more efficient than exchanging

their states, because the states which include many parameters are usually large in size.

Availability of software and materials

The software AFPhyloMix and the materials are available in OSF repository:
https://osf.io/whs2h/ (DOI: 10.17605/OSF.I0/W5S2H)
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