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ABSTRACT

We propose the Neural Potts Model objective as an amortized optimization problem.
The objective enables training a single model with shared parameters to explicitly
model energy landscapes across multiple protein families. Given a protein sequence
as input, the model is trained to predict a pairwise coupling matrix for a Potts
model energy function describing the local evolutionary landscape of the sequence.
Couplings can be predicted for novel sequences. A controlled ablation experiment
assessing unsupervised contact prediction on sets of related protein families finds a
gain from amortization for low-depth multiple sequence alignments; the result is
then confirmed on a database with broad coverage of protein sequences.

1 INTRODUCTION

When two positions in a protein sequence are in spatial contact in the folded three-dimensional
structure of the protein, evolution is not free to choose the amino acid at each position independently.
This means that the positions co-evolve: when the amino acid at one position varies, the assignment at
the contacting site may vary with it. A multiple sequence alignment (MSA) summarizes evolutionary
variation by collecting a group of diverse but evolutionarily related sequences. Patterns of variation,
including co-evolution, can be observed in the MSA. These patterns are in turn associated with the
structure and function of the protein (Gobel et al., 1994). Unsupervised contact prediction aims to
detect co-evolutionary patterns in the statistics of the MSA and infer structure from them.

The standard method for unsupervised contact prediction fits a Potts model energy function to the
MSA (Lapedes et al., 1999; Thomas et al., 2008; Weigt et al., 2009). Various approximations are used
in practice including mean field (Morcos et al., 2011), sparse inverse covariance estimation (Jones
et al., 2011), and pseudolikelihood maximization (Balakrishnan et al., 2011; Ekeberg et al., 2013;
Kamisetty et al., 2013). To construct the MSA for a given input sequence, a similarity query is
performed across a large database to identify related sequences, which are then aligned to each other.
Fitting the Potts model to the set of sequences identifies statistical couplings between different sites
in the protein, which can be used to infer contacts in the structure (Weigt et al., 2009). Contact
prediction performance depends on the depth of the MSA and is reduced when few related sequences
are available to fit the model.

In this work we consider fitting many models across many families simultaneously with parameter
sharing across all the families. We introduce this formally as the Neural Potts Model (NPM) objective.
The objective is an amortized optimization problem across sequence families. A Transformer model
is trained to predict the parameters of a Potts model energy function defined by the MSA of each input
sequence. This approach builds on the ideas in the emerging field of protein language models (Alley
etal., 2019; Rives et al., 2019; Heinzinger et al., 2019), which proposes to fit a single model with
unsupervised learning across many evolutionarily diverse protein sequences. We extend this core
idea to train a model to output an explicit energy landscape for every sequence.
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Figure 1: (a) Standard Potts model requires constructing an MSA and optimizing parameters .
(b) Neural Potts Model (NPM) predicts W in a single feedforward pass from a single sequence.

To evaluate the approach, we focus on the problem setting of unsupervised contact prediction for
proteins with low-depth MSAs. Unsupervised structure learning with Potts models performs poorly
when few related sequences are available (Jones et al., 2011; Kamisetty et al., 2013; Moult et al., 2016).
Since larger protein families are likely to have structures available, the proteins of greatest interest for
unsupervised structure prediction are likely to have lower depth MSAs (Tetchner et al., 2014). This is
especially a problem for higher organisms, where there are fewer related genomes (Tetchner et al.,
2014). The hope is that for low-depth MSAs, the parameter sharing in the neural model will improve
results relative to fitting an independent Potts model to each family.

We investigate the NPM objective in a controlled ablation experiment on a group of related protein
families in PFAM (Finn et al., 2016). In this artificial setting, information can be generalized by the
pre-trained shared parameters to improve unsupervised contact prediction on a subset of the MSAs
that have been artificially truncated to reduce their number of sequences. We then study the model in
the setting of a large dataset without artificial reduction, training the model on MSAs for UniRef50
sequences. In this setting there is also an improvement on average for low depth MSAs both for
sequences in the training set as well as for sequences not in the training set.

2 BACKGROUND

Multiple sequence alignments An MSA is a set of aligned protein sequences that are evolutionarily
related. MSAs are constructed by retrieving related sequences from a sequence database and aligning
the returned sequences using a heuristic. An MSA can be viewed as a matrix where each row is a
sequence, and columns contain aligned positions after removing insertions and replacing deletions
with gap characters.

Potts model The generalized Potts model defines a Gibbs distribution over a protein sequence
(z1,...,2r) of length L with the negative energy function:

—E(x) = th‘(%‘) + Z Jij (@i, ;) (1)

Which defines potentials h; for each position in the sequence, and couplings J;; for every pair of
positions. The parameters of the model are W = {h, J} the set of fields and couplings respectively.
The distribution p(a; W) is obtained by normalization as exp{—E(x; W)}/Z(W).

Since the normalization constant is intractable, pseudolikelihood is commonly used to fit the parame-
ters (Balakrishnan et al., 2011; Ekeberg et al., 2013). Pseudolikelihood approximates the likelihood

of a sequence « as a product of conditional distributions: {py,(x; W) = — >, log p(z;|x_;; W). To
estimate the Potts model, we take the expectation:
L, (W) = IEM [pr,(z; W)] 2

over an MSA M. In practice, we have a finite set of sequences M in the MSA to estimate Eq. (2).

Ly regularization p(W) = A ||J||> + A ||h]|” is added, and sequences are reweighted to account
for redundancy (Morcos et al., 2011). We write the regularized finite sample estimator as:

M
Lon(W) = 21— 3" w™[for (@™ W)] 4 (V) G)

Mg
m

Which sums over all the M sequences of the finite MSA M, weighted with w™ summing collectively
to Meg. The finite sample estimate of the parameters W* is obtained by minimizing Lpy,.
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Idealized MSA Notice how in Eq. (2), we idealized the MSA M as a distribution, defined by the
protein family. We consider the set of sequences actually retrieved in the MSA M in Eq.(3)asa
finite sample from this underlying idealized distribution. For some protein families this sample will
contain more information than for others, depending on what sequences are present in the database.
We will refer to W* as a hypothetical idealized estimate of the parameters to explain how the Neural

Potts Model can improve on the finite sample estimate W™ for low-depth MSAs.

2.1 AMORTIZED OPTIMIZATION

We review amortized optimization (Shu, 2017), a generalization of amortized variational inference
(Kingma & Welling, 2013; Rezende et al., 2014) that uses learning to predict the solution to continuous
optimization problems to make the computation more tractable and potentially generalize across
problem instances. We are interested in repeatedly solving expensive optimization problems

W*(x) = argmin L(W; ), 4)
w

where W € R™ is the optimization variable, z € R" is the input or conditioning variable to the
optimization problem, and £ : R™ x R™ — R is the objective. We assume W*(x) is unique. We
consider the setting of having a distribution over optimization problems with inputs 2 ~ p(x), and
the arg min of those optimization problems W*(z).

Amortization uses learning to leverage the shared structure present across the distribution, e.g. a
solution W*(z) is likely correlated with another solution W*(z’). Assuming an underlying regularity
of the data and loss £, we can imagine learning to predict the outcome of the optimization problem
with an expressive model Wy (x) such that hopefully Wy ~ W*. Modeling and learning Wy(z) are
the key design decisions when using amortization.

Modeling approaches. In this paper we consider models Wy(z) that directly predict the solution
to Eq. (4) with a neural network, an approach which follows fully amortized variational inference
models and the meta-learning method (Mishra et al., 2017). The model can also leverage the objective
information £(W; z) and gradient information Vy, L(W; ), e.g. by predicting multiple candidate
solutions W and selecting the most optimal one. This is sometimes referred to as semi-amortization
or unrolled optimization-based models and is considered in Gregor & LeCun (2010) for sparse coding,
Li & Malik (2016); Andrychowicz et al. (2016); Finn et al. (2017) for meta-learning, and Marino
et al. (2018); Kim et al. (2018) for posterior optimization.

Learning approaches. There are two main classes of learning approaches for amortization:

argmin E L(Wy(z);x) ) arg min I(E) [We(z) — W*(x)”; (6)
2 p(z

6  px)

Gradient-based approaches leverage gradient information of the objective £ and optimize Eq. (5)
whereas regression-based approaches optimize a distance to ground-truth solutions W*, such as the
squared L? distance in Eq. (6). Prior work has shown that models trained with these objectives can
learn to predict the optimal W* directly as a function of z. Given enough regularity of the domain, if
we observe new (test) samples 2’ ~ p(z) we expect the model to generalize and predict the solution
to the original optimization problem Eq. (4). Gradient-based approaches have the computational
advantage of not requiring the expensive ground-truth solution W* while regression-based approaches
are less susceptible to poor local optima in £. Gradient-based approaches are used in variational
inference (Kingma & Welling, 2013), style transfer (Chen & Schmidt, 2016), meta learning (Finn
et al., 2017; Mishra et al., 2017), and reinforcement learning, e.g. for the policy update in model-free
actor-critic methods (Sutton & Barto, 2018). Regression-based approaches are more common in
control for behavioral cloning and imitation learning (Duriez et al., 2017; Ratliff et al., 2007; Bain &
Sammut, 1995).

3 NEURAL POTTS MODEL

In Eq. (2) we introduced the Potts model for a single MSA M (aligned set of sequences x), to
optimize W* = {h*, J*} = arg miny, Ezm[¢pL(Z; W)]. As per Eq. (5) We will now introduce a
neural network to estimate Potts model parameters from a single sequence: {hg(x), Jo(x)} = Wy(x)
with a single forward pass.
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Figure 2: Inductive generalization gain (illustration with a 1D loss landscape). W* is the standard
Potts model, estimated on the finite observed MSA M. Though it minimizes the training objective, it
does not achieve perfect generalization performance. However the Neural Potts Model Wy () can
generalize better than W through transfer learning from related samples, guided by the inductive

bias of the model. We expect this especially when the estimate W is far from W*, e.g. on small or
biased MSAs.

We propose minimizing the following objective for the NPM parameters 6, which directly minimizes
the Potts model losses in expectation over our data distribution & ~ D and their MSAs & ~ M(x):

£NPM(0) = E E EPL(-%;WG("E)) (7)
z~D | E~M(x)

To compute the loss for a given sequence  we compute the Potts model parameters Wy (), and
evaluate its pseudo-likelihood loss ¢p1, on a set of sequences & from the MSA constructed with x as
query sequence. This fits exactly in “amortized optimization” in Section 2.1 Eq. (5): we train a model
to predict the outcome of a set of highly related optimization problems. One key extension to the
described amortized optimization setup is that the model Wy estimates the Potts Model parameters
from only the MSA query sequence x as input rather than the full MSA M (x). Thus, our model
must learn to distill the protein energy landscape into its parameters, since it cannot look up related
proteins during runtime. A full algorithm is given in Appendix A.

Similar to the original Potts model, we need to add a regularization penalty p(W) to the main
objective. For a finite sample of N different query sequences {x,, }, and a corresponding sample of
Nx M aligned sequences {Z"'} from MSA M(mn), the finite sample regularized loss, i.e. NPM
training objective, becomes:

N M
Lxom(0) = 3 |G 2wl e (@75 Wo(@,)] + p(Wo(a) ®)

Inductive generalization gain (see Fig. 2) is when the Neural Potts Model improves over the
individual Potts model. Intuitively this is possible because the individual Potts Models are not perfect
estimates (finite/biased MSAs), while the shared parameters of Wy can transfer information between
related protein families and from pre-training with another objective like masked language modeling
(MLM).

Let us start with the normal amortized optimization setting, where we expect an amortization gap
(Cremer et al., 2018). The amortization gap means that Wy () will be behind the optimal W* for
the objective £: L(Wy(x)) > L(W™*). This is closely related to underfitting: the model Wy is
not flexible enough to capture W*(z). However, recall that in the Potts model setting, there is a
finite-sample training objective L (Eq. (8)), with minimizer W*. We can expect an amortization
gap in the training objective; however this amortization gap can now be advantageous. Even if the
amortized solution Wy () is near-optimal on L, it can likely find a more generalizable region of the
overparametrized domain W by parameter sharing of 6, allowing it to transfer information between
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related instances. The inductive bias of Wy () can allow the neural amortized estimate to generalize

better, especially when the finite sample M is poor. This inductive bias depends on the choice of
model class for Wy, its pre-training, as well as the shared structure between the protein families in
the dataset. Concretely we will consider for the generalization loss £ not just the pseudo-likelihood
loss on test MSA sequences, but also the performance on downstream validation objectives like
predicting contacts, a proxy for the model’s ability to capture the underlying structure of the protein.
We will show that for some samples £(Wy(x)) < L(W*), i.e. there is an inductive generalization
gain. This is visually represented in Fig. 2; and Table | compares amortized optimization and NPM,
making a connection to multi-task learning (Caruana, 1998). Additionally, we could frame NPM as a
hypernetwork, a neural network that predicts the weights of second network (in this case the Potts
model) as in, e.g., Gomez & Schmidhuber (2005); Ha et al. (2016); Bertinetto et al. (2016).

Table 1: Comparison between (A) “standard” amortized optimization, (B) Neural Potts Model,
and (C) Multi-task learning. From row (A) amortized optimization to (B) Neural Potts Model, a
finite-sample training loss is introduced which comes with considerations of generalization and
regularization. This is related to multi-task learning, but with a major difference that (B) the solo
optimization is over a single tensor W in the Potts model, but (C) a function fy in a learning problem.
In the amortized/multi-task setting, the distribution over query sequences x in (B) NPM plays the
role that different related tasks play in (C) MTL. In the NPM setting (B), Wy takes x explicitly as
argument, versus (C) MTL typically just has a separate output head per task.

Solo objective Solo objective | Amortized / Parametrization
Training Generalization | Multi-task + model choices
(A) ] ] . .. | Solo: W ¢ R"
Optim— LisW) (L—(ST}ZE;)in ) gmortlllz(zq g[l/)tl(?) ) Amor: Wy : R — R"
Amortized - 8 p(s) =A% 0 +learner class
B) PLL, finite MSA | Distr L(W) = | Neural Potts Solo: W € R
Potts  — | M: L(W) = Ellpr(Z;W)] | EelLM (Wy(x))] | +regularization
NPM Z EPL(:im; W) or Amor: Wg : Rd — R™
m Contact pred +learner class
© ERM: L(f) = L(fs) = Multi-task Solo: fy : R - R
ML — MTL | > 4(fo(xm),ym) | EL(fo(z),y) | learning: +regularization
(Multi-task m i 23—1 (L4 (fD)] +learner class
learning) for T related | MTL: f§ : R - R
tasks + param sharing f}

In summary, the goal for the NPM is to “distill” an ensemble of Potts models into a single feedforward
model. From a self-supervised learning perspective, rather than supervising the model with the input
directly, we use supervision from an energy landscape around the input.

4 EXPERIMENTS

In Section 4.1 we present results on a small set of related protein domain families from Pfam, where
we artificially reduce the MSA depth for a few families to study the inductive generalization gain
from the shared parameters. In Section 4.2 we present results on a large Transformer trained on
MSAs for all of UniRef50.

For the main representation gy () we use a bidirectional transformer model (Vaswani et al., 2017).
To compute the four-dimensional pairwise coupling tensor Jy () from sequence embedding gg ()
we introduce the multi-head bilinear form (mhbf) in Appendix B. One can think of the multi-head
bilinear form as the L x L self-attention maps of the Transformer’s multi-head attention module, but
without softmax normalization. When using mhbf for direct prediction, there are K 2 heads, one for
every amino acid pair k, [. For the Pfam experiments, we extend the architecture with convolutional
layers after the mhbf, where the final convolutional layer has K2 output channels. We initialize gg ()
with a Transformer pre-trained with masked language modeling following (Rives et al., 2019).
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To evaluate Neural Potts Model energy landscapes, we will focus on proteins with structure in the
Protein Data Bank (PDB), using the magnitude of the couplings after APC correction to rank contacts.
The protocol is described in Appendix C.2.

4.1 PFAM CLANS
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Figure 3: Contact prediction precision on Pfam families from the NADP Rossmann clan, at different
levels of depth reduction. Columns show (from left to right) short, medium and long-range precision
for top-L threshold. Across the metrics, NPM outperforms the independent Potts model trained on
the shallowest MSAs, as well as the Nearest Neighbor Potts model baseline.
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Figure 4: Trajectory of training on the NADP Rossman clan, averaged over five-fold cross-evaluation.

To study generalization in a controlled setting, we investigate a small set of structurally-related MSAs
from the Pfam domain family database (Finn et al., 2016) belonging to the same Pfam clan. We
expect that on a collection of related MSAs, information could be generalized to improve performance
on low-depth MSAs. Families within a Pfam clan are linked by a distant evolutionary relationship,
giving them related but not trivially-similar structure. We obtain contact maps for the sequences in
each of the families where a structure is available in the PDB. At test time we input the sequence and
compare the generated couplings under the model to the corresponding structure.

We compare the NPM to two baselines. The first direct comparison is to an independent Potts model
trained directly on the MSA. For the second baseline we construct the “nearest neighbor” Potts model,
by aligning each test sequence against all families in the training set, and using the Potts model from
the closest matching family.

We perform the experiment using a five-fold cross-evaluation scheme, in which we partition the
clan’s families into five equally-sized buckets. As in standard cross-validation, each bucket will
eventually serve as an evaluation set. However, we do not remove the evaluation bucket. Instead,
we artificially reduce the number of sequences in the MSAs in the evaluation bucket to a smaller
fixed MSA depth. MSAs in the remaining buckets remain unaltered. The goal of this setup is to
check the model’s ability to infer contacts on artificially limited sets of sequences. Both NPM and
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the baseline independent Potts model are fit on the reduced set of sequences. Note that while the
baseline Potts model uses the reduced MSA of the target directly, NPM is trained on the reduced
MSA but evaluated using only the target sequence as input. We train a separate NPM on each of the
five cross-evaluation rounds, evaluate on the structures corresponding to the bucket with reduced
MSAs, and show averages and standard deviations across rounds. Further details are provided for
model training in Appendix C.1 and for the Pfam dataset in Appendix C.3.

Figure 3 shows the resulting contact prediction performance on the 181 families in the NADP
Rossmann clan, with additional results on the P-loop NTPase, HTH, and AB hydrolase clans in
Appendix D Fig. 9. We initialize a 12-layer Transformer with protein language modeling pre-training.
Because of the small dataset size, we keep the weights of the base Transformer gy frozen and only
finetune the final layers. As a function of increasing MSA depth, contact precision improves for
both NPM and independent Potts models. For the shallowest MSAs, NPM has a higher precision
relative to the independent Potts models. The advantage at low MSA depth is most pronounced
for long range contacts, outperforming independent Potts models up to MSA depth 1000. These
experiments suggest NPM is able to realize an inductive gain by sharing parameters in the pre-trained
base model as well as the fine-tuned final layers and output head. Figure 4 shows training trajectories.
We observe near-monotonic decrease of the amortized pseudo-likelihood loss (Eq. (7)) on the MSAs
in the evaluation set, and increase of the top-L long range contact precision. This indicates that
improving the NPM objective improves the unsupervised contact precision across the reduced-depth
MSAs. Furthermore we see expected overfitting for smaller MSA depth: better training loss but
worse contact precision.

Additionally, we assess performance of different architecture variants: direct prediction with the
multi-head bilinear form (always using symmetry), with or without tied projections, and addition
of convolutional layers after the multi-head bilinear form. The variants are described in detail in
Appendix B. We find in Appendix D Fig. 8 that addition of convolutional layers after the multi-head
bilinear form performs best; for the variant without convolutional layers, the head without weight
tying performs best.

4.2 UNIREF50
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Figure 5: UniRef50: contact prediction precisions (higher is better) with 95% bootstrapped confi-
dence intervals, on medium range (left), long range (middle), binned by MSA depth M,g. Top row:
sequences from the train set; bottom row: sequences from the test set. For shallow MSAs, average
performance of NPM is higher than the independent Potts model. Right: scatter plot comparing long
range precision from NPM vs independent Potts model, each point is a protein. More metrics are
presented in Appendix D Fig. 10.

We now perform an evaluation in the more realistic setting of the UniRef50 dataset (Suzek et al.,
2007). First we examine MSA depth across UniRef50 (Suzek et al., 2007). Appendix C.4 Fig. 7
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finds that 19% of sequences in UniRef50 have MSAs with fewer than 10 sequences. (38% when a
minimum query sequence coverage of 80% is specified).

We ask whether an amortization gain can be realized in two different settings: (i) for sequences the
model has been trained on; (ii) for sequences in the test set. We partition the UniRef50 representative
sequences into 90% train and 10% test sets, constructing an MSA for each of the sequences. During
training, the model is given a sequence from the train set as input, and the NPM objective is minimized
using a sample from the MSA of the input sequence. In each training epoch, we randomly subsample
a different set of 30 sequences from the MSA to fit the NPM objective. We use ground-truth structures
to evaluate the NPM couplings and independent Potts model couplings for contact precision. The
dataset is further described in Appendix C.4; and details on the model and training are given in
Appendix C.1.

The independent Potts model baseline is trained on the full MSA. This means that in setting (i) the
NPM and independent Potts models have access to the same underlying MSAs during training. In
setting (ii) the independent Potts model is afforded access to the full MSA; however the NPM has not
been trained on this MSA and must perform some level of generalization to estimate the couplings.

Figure 5 shows a comparison between the NPM predictions and individual Potts models fit from the
MSA. The Neural Potts Model is given only the query sequence as input. On top-L/5 long range
precision, NPM has better precision than independent Potts models for 22.3% of train and 22.7% of
test proteins. We visualize in Fig. 6 example proteins with low MSA-depth where NPM does better
than the individual Potts model. For shallow MSAs, the average performance of NPM is higher than
the Potts model, suggesting an inductive generalization gain.

To contextualize the results let us consider the setting where the amortized Neural Potts Model (i)
matches the independent Potts model on training data: this means the NPM can predict good quality
couplings from a single feedforward pass without access to the full MSA at inference time; (ii)
surpasses the independent model on training data: the amortization helps the NPM to improve over
independent Potts models, i.e. it realizes inductive generalization gain; (iii) matches the independent
model on test sequences: indicates the model is able to synthesize a good Potts model for sequences
not in its training data; (iv) surpasses the independent model on test sequences: the model actually
improves over an independent Potts model even for sequences not in its training data. In combination
these results indicate a non-trivial generalization happens when NPM is trained on UniRef50.

Train Sample, PDB ID: 3a0u. Test Sample, PDB ID: 2ejx.
0 20 40 60 80 100 0 20 40 60 80 100 120
0 FELR W TE NN ] 0
204 .. . . X, 20
by :
- 40
104"
My .- 60 « NPM True Positive
60 .' x  NPM False Positive
80 e Indep. Potts True Positive
80 x  Indep. Potts False Positive
100
1004 X 120
S : K |
NPM Top-L/5 LR: 0.87 NPM Top-L/5 LR: 0.56
Indep. Potts Top-L/5 LR: 0.48 Indep. Potts Top-L/5 LR: 0.11
M_eff: 68 M_eff: 1087

Figure 6: Examples where NPM outperforms the independent Potts model fit directly on the MSA.
NPM top-L/5 LR contact prediction (lower diagonal, red) compared to the independent Potts model
prediction (upper diagonal, blue). All ground truth contacts are indicated in black. True and false hits
are indicated with dots and crosses, respectively.

5 RELATED WORK

Recently, protein language modeling has emerged as a promising direction for learning representations
of protein sequences that are useful across a variety of tasks. Rives et al. (2019) and Rao et al. (2019)
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trained protein language models with the masked language modeling (MLM) objective originally
proposed for natural languge processing by Devlin et al. (2019). Alley et al. (2019), Heinzinger et al.
(2019), and Madani et al. (2020) trained models with autoregressive objectives. Transformer protein
language models trained with the MLM objective learn information about the underlying structure
and function of proteins including long range contacts (Rives et al., 2019; Vig et al., 2020). This paper
builds on the ideas in the protein language modeling literature, introducing the following new ideas:
the first is supervision with an energy landscape (defined by a set of sequences) rather than objectives
which are defined by a single sequence; the second is to use amortized optimization to fit a single
model across many different energy landscapes with parameter sharing; the final is the consideration
of the unsupervised contact prediction problem setting rather than the use of representations in a
supervised pipeline.

Unsupervised structure learning is reviewed in the introduction. The main approach has been to learn
a set of constraints from a family of related sequences by fitting a Potts model energy function to the
sequences. Our work builds on this idea, but rather than fitting a Potts model to a single family of
related sequences, proposes through amortized optimization to fit Potts models across many sequence
families with parameter sharing in a deep neural network.

Supervised learning has produced breakthrough results for protein structure prediction (Xu, 2018;
Senior et al., 2019; Yang et al., 2019). State-of-the-art methods use supervised learning with
deep residual networks on co-evolutionary features derived from the unsupervised structure learning
pipeline. While Xu et al. (2020) show that reasonable predictions can be made without co-evolutionary
features, their work also shows that these features contribute significantly to the performance of
state-of-the-art pipelines.

Prior work studying protein language models for contact prediction focuses on the supervised setting.
Bepler & Berger (2019) studied pre-training an LSTM on protein sequences and fine-tuning on
contact data. Rives et al. (2019) and Rao et al. (2019) studied supervised contact prediction from
Transformer protein language models. Vig et al. (2020) found that contacts are represented in
Transformer self-attention maps. Our work differs from prior work on structure prediction using
protein language models by focusing on the unsupervised structure learning setting. It would be a
logical extension of this work to integrate the Neural Potts model into the supervised pipeline.

6 DISCUSSION

This paper explores how a protein sequence model can be trained to produce a local energy landscape
that is defined by a set of evolutionarily related sequences for each input. The training objective is
cast as an amortized optimization problem. By learning to output the parameters for a Potts model
energy function across many sequences, the model may learn to generalize across the sequences.

We also formally and empirically investigate the generalization capability of models trained through
amortized optimization. We consider the setting of training independent Potts models on the MSA of
each sequence, in comparison with training a single model using the amortized objective to predict
Potts model parameters for many inputs. Empirically the amortized objective provides an inductive
gain when few related sequences are available in the MSA for training the independent Potts model.

A number of direct extensions exist for future work, including further investigation of model ar-
chitecture and parameterization of the energy function by the deep network, use of the amortized
models in a supervised pipeline, and combining independent Potts models with amortized couplings.
The hidden representations could also be investigated for structure prediction and other tasks using
the approaches in the protein language modeling literature. The main contribution of this work
is to directly incorporate information from a set of sequences related to the input in the learning
objective. It would be interesting to investigate other possible approaches for incorporating this type
of supervision into models that aim to learn underlying structure from sequence data.
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Appendix

A LEARNING THE NEURAL POTTS MODEL

Algorithm 1 Learning the Neural Potts Model
Initialize the amortized model Wy
while unconverged do
Sample N sequences x,, ~ D and M MSA sequences Z" ~ M(x,,)
grad_update(6, Vo Lxpnm(0; {z,}, {27}) > Optimize the regularized loss in Eq. (8)
end while

B MODEL ARCHITECTURE: MULTI-HEAD BILINEAR FORM FOR PAIRWISE
COUPLINGS

In this Section, we describe the model architecture to compute a four-dimensional pairwise coupling
tensor Jp(x) from sequence embedding gy ().

B.1 MULTI-HEAD BILINEAR FORM

We write sequence length L and amino acid vocabulary K = 21. The single site potentials b € RE* X
and the pairwise couplings are a four-dimensional tensor: J € RE*E*EXK indexed as J;;(k, ).

We start with a sequence-level model to produce the embedding e of the sequence (typically final
hidden layer output): e = go(x) € RE*4. The estimator for single-site potential hy(x) is a linear
projection layer on the embedding; hg(x) = go(x)P" with P" € R Now we discuss how to
parametrize the estimator Jp () € REXEXLxK,

Multi-head bilinear form for direct prediction We introduce a multi-head bilinear form (mhbf)
on the embedding e; i.e. for every pair k, [ of amino acids we have a bilinear form, parametrized with
a learned interaction matrix B* € R%*? connecting the hidden states at positions e;, e; € R4,
So we compute the K? bilinear forms for amino acid pairs (k,) between L x L position pairs
(i,7): Jij(k,1) = e;B*e]. We always use a low-rank decomposition B* = UK V*T with both
UM Y ¢ R4*d" g0 the bilinear form becomes the inner product in the lower-dimensional space
with d’ the projection dimension: (e;U*")(e;V*!)T. We can interpret this as an inner product of
embeddings i, j after linear projection to a space specific to amino acid pair (k, ). This low-rank
multi-head bilinear form is similar to the multi-head attention mechanism introduced in Vaswani et al.
(2017), but without softmax normalization.

Notation-wise, our parameters 6 include the parameters of the transformer that produces the embed-
ding and the components of the interaction matrix {U*, V*}.

Direct prediction: tied projection One way to reduce the number of parameters in the multi-head
bilinear form, is for the low-rank decompositions of the K2 heads B*' to share their decomposition
per k,l. Instead we can share/tie the projection matrices between amino acids k,l: UK = U
and V¥ = V! such that head B¥ = U*V'T. Note that the dot product in this case is after
a linear projection specific to single-site amino acid k and [ separately; J;;(k,l) = e;B*e] =
(eiUk)(ele)T.

Direct prediction: Symmetry We can or should parametrize the estimator of J to be symmetrical
against interchanging both i,j and k,1: J;;(k, 1) = J;;(l, k), i.e. no difference between the order of
considering interaction between AA k at position ¢ with AA [ at position j. This does not mean
symmetry of each interaction matrix! We ask that

ki, T lk T kT
Jij(k,l):eiB €, :ejB €; =e;B e;
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The second equality is the symmetry, the last equality by transposing the bilinear form. From
B* = BT it follows that

Uklvk:lT _ VlkUlkT
Ukl _ Vlk

The last equality is the obvious choice. In the tied parametrization, this simply becomes U* =
Uk = V¥ = VI such that Wy, = U*U'". Once again, note that the dot product now becomes
Jij(k,1) = (eiU%)(e;U')T. We present a Tensor decomposition perspective on this multi-head
bilinear form in Appendix B.2.

Convolutional layers after multi-head bilinear form As an extended model architecture, we
consider having convolutional layers after the multi-head bilinear form (only used for the Pfam
experiments). parametrized with a learned interaction matrix B*" € R%*? In this case, rather than
having K2 heads B*!, we now have an arbitrary number of heads F' which will become the number
of channels in the consecutive convolutional layers: B = U”V T, We add 1 x 1 convolutional
layers having also F’ channels, and finally K2 output channels for the last convolutional layer. Weight
tying and symmetry considerations of the mhbf do not apply in this model variation.

B.2 TENSOR DECOMPOSITION VIEW ON MULTI-HEAD BILINEAR FORM

We can see the multi-head bilinear form as a tensor decomposition of .J, for which we will use
Einstein notation to indicate that any pair of indices appearing both in subscript and superscript are
summed over their range. Let us write the tensor collecting the U matrices as i € RE*Kxdxd’,
and index into ¢/ in the same notation as for U: U*. = UKL Witha, 3 € [1...d], r € [1...d'] The
same for V. Now the J estimate in the full untied asymmetric case, written as tensor, becomes

kl _ kl yoklr B
Jij =€ Ua Vg ' €
or the symmetric (U*. = V¥ ) and tied (U € RE xdxd"y version:

JE = e ul Ul €’

Note that the U, V are shared across proteins, while the embeddings e = gy(o) are specific per
protein, based on a high-capacity sequence level model.

C EXPERIMENT DETAILS

C.1 TRAINING DETAILS

We summarize the precise model architecture and optimization settings in Table 2. During each
NPM training step, for a given input , M sequences £ are randomly sampled (M=100 or 30,
see Table 2), for the pseudo-likelihood loss evaluation in Eq. (8). Each sequence is selected with
probability according to its sequence weight w™. One can think of these M sampled sequences as
similar to a minibatch. Note that to compute the independent Potts model baseline, the Potts model
is computed without any downsampling of the MSA. Additionally, in the Pfam experiments the
loss term for family n in Eq. (8) is upweighted with a factor \/ Mg (n), which places more weight
on the well-formed, deep MSAs and discounts the shallower MSAs. In both the Pfam and UniRef
experiments, we enforce a max sequence length of 512 via random contiguous crops of positions.

C.2 VALIDATION DETAILS

To compute precisions, we convert the pairwise couplings J € REXEXLXE (o an [, x L pairwise
coupling score by (1) zeroing all positions in J corresponding to gap characters, (2) computing the
magnitude via Frobenius norm over the K x K matrix J;; for every pair of positions %, 7, and (3)
applying the Average Product Correction (Dunn et al., 2008). True contacts are defined as pairwise
distances less than or equal to 8 Angstroms. Precision is calculated as the true positive fraction
of the top L, |L/2], or | L/5] predicted contacts. Additional to precision, the Area Under the
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Pfam UniRef50
Parameters 111M (frozen: 519M
26M trained)
Number of layers 12 32
. Embed dim 768 1024
Model details Attention heads b 16
mhbf U, V projection di- | 128 512
mension
mhbf number of heads 128 K? =441
Conv after mhbf 1 x 1 (3 layers) No
mhbf tied N/A No
s # of epochs 21 50
ML(I\[/[JIErlgeg‘(l)I;mg # of gradient updates 175k 449k
Learning rate 4e-4 3e-5
Number of updates 10k 135k
Adam learning rate le-4 3e-5
L. p(W) multipliers Ay, A\p, | le-3, le-2 le-3, le-2
NPM training 1\/& (sgmples%er MSA) [ 100 30
Batch size (# seqs) 64 2048
Max sequence length 512 512
Base model frozen Yes No

Table 2: Hyperparameters

Precision-Recall Curve (AUC) is computed, summing over thresholds stepwise per L/10 increment
up to L. Precision and AUC metrics are computed at sequence separations s of short (6 < s < 12),
medium (12 < s < 24), and long (24 < s) ranges.

For the independent Potts model baselines in all experiments, we use CCMpred (Seemayer et al.,
2014), a GPU implementation of pseudolikelihood maximization (Balakrishnan et al., 2011). The
coupling matrix J from the independent Potts model is processed in the same way following steps
(1-3) described above.

C.3 PFAM TRAINING DATA AND SETUP

Data Selection. We use the Pfam database (Finn et al., 2016) version 28.0. All MSAs in the HTH
(n=217), P-loop NTPase (n=198), NADP Rossmann (n=181), and AB hydrolase (n=67) clans were
parsed from the multiple alignment file Pfam-A full. We apply two preprocessing steps to all MSAs.
First, for speed, we only load up to a maximum of 100k sequences from each MSA. Next, we apply
HHfilter, from the HHSuite3 (Steinegger et al., 2019) toolset, with all default settings, to each MSA.
We find that filtering improves contact prediction accuracy of the independent Potts model baseline.

Dataset splits. We perform the experiment using a five-fold cross-evaluation scheme, in which we
partition the clan’s families into five equally-sized buckets. As in standard cross-validation, each
bucket will eventually serve as an evaluation set. However, we do not remove the evaluation bucket,
but artificially reduce the number of sequences in the MSAs in the evaluation bucket to a small fixed
MSA depth (=purging the MSA). All Pfam experiments are repeated 5 times, each with a different
selection for the reduced bucket. In our figures, we plot average results, with confidence interval
bounds defined by the standard deviation across the five-fold cross-evaluation.

During NPM training, we iterate over the the set of MSAs in the four buckets that have not been
reduced, as well as the reduced bucket. At a given training step, we randomly select a sequence x
within an MSA for use as input to NPM. This selection is likely to return a sequence with inserted
gap characters. We drop these gap characters and their corresponding columns in the MSA. Then
we randomly subsample 100 sequences & from the MSA to fit the NPM objective. The procedure is
described in more detail in Appendix C.1.

Evaluation During evaluation, we assess the NPM and the independent Potts model via a contact
prediction task (described in previous subsection), on the families in the evaluation bucket. For
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Figure 7: A random sample of 1000 MSAs for 1000 sequences in UniRef50 were analyzed. The
graph shows cumulative density plots with MSA depth in log-scale on the x axis, for different query
sequence coverage requirements (—cov [20, 801]) specified by a call to HHfilter, applied to each
MSA. The fraction of MSAs with depth < 10 is 19% (38% when a coverage of 80% is specified),
while the fraction of MSAs with depth < 100 is 30% (55% when a coverage of 80% is specified) .

each family, a single structure is selected as target, using the pdbmap included in Pfam. NPM’s
contact predictions are made using only the sequence belonging to the target structure. To compute
the independent Potts model for a given family in the evaluation bucket, the depth-reduced MSA is
aligned to the sequence from the target structure, and the Potts model is computed without further
downsampling.

As an additional baseline, we predict contacts for validation sequences using the Potts model of the
"Nearest Neighbor" family in the train set. For a given validation sequence, we calculate "nearness" to
all train families via calls to HHalign given the sequence and the train family’s Pfam seed alignment
as input. We select the family with the highest HHalign probability score as the nearest neighbor.
The nearest neighbor prediction is generated as follows: (1) the validation sequence is aligned to
the selected train family’s MSA; (2) an independent Potts model is fit to the selected train family’s
MSA, using a random member sequence as reference, yielding a predicted contact map for the train
family; (3) the rows and columns of the predicted contact map that align to the validation sequence
are extracted to construct a prediction for the validation sequence.

C.4 UNIREF50 TRAINING DATA AND SETUP

For the experiments in Section 4.2, we retrieve the UniRef-50 (Suzek et al., 2007) database dated 2018-
03. The UniRef50 clusters are partitioned randomly in 90% train and 10% test sets. For all sequences,
we construct MSAs using HHblits (Steinegger et al., 2019) against the UniClust30_2017_10 database.
HHblits is run using the default settings, for 3 iterations with an e-value of 0.001.

It is important to note that given this MSA generation procedure, validation sequences can be included
in MSAs of train sequences. However, we are guaranteed that validation sequences are not trained on
as input to NPM.

Evaluation of contact precision

We use contact precision as a proxy to measure unsupervised structure learning in the underlying
Potts model. To define a set of structures for evaluation, we collect structures from the PDB, and
assign them to either the training sequences or test sequences. This allows us to separately examine
performance of NPM on sequences from its training set, and sequences from its test set. Note, that

16


https://doi.org/10.1101/2021.04.08.439084
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439084; this version posted April 11, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.
Appeared at MLCB 2020

the structures are used only to evaluate unsupervised contact prediction performance of the model;
the model is never trained on structures.

We query the Protein Data Bank (PDB) to obtain a list of all protein structures with a resolution less
than 2.5 A, a length greater than 40 residues, and a submission date before May 1, 2020. We search
each pdb entry for hits against the sequences in the training and test sets for NPM respectively. If the
PDB entry retrieves hits only to training sequences we assign it to the training-sequences group. If
the PDB entry retrieves hits only to test sequences we assign it to the test-sequences group. Any PDB
entry which hits both training and test sequences or neither, is discarded. To perform the search we
use the MMSeqs2 software suite (Steinegger & Soding, 2018) using the default settings with 50%
sequence identity at 80% target coverage. We then cluster each of the two groups of PDB entries at
50% sequence similarity, resulting in a dataset of 11040 structures assigned to train sequences and
211 structures assigned to validation sequences. MSA construction for the PDB entries precisely
follows the procedure for UniRef50 (first paragraph); the method for contact prediction from the
model couplings (for NPM or the independent Potts model) is described in Appendix C.2.

D ADDITIONAL EXPERIMENTS
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Figure 8: Comparison of the main NPM model architecture choices, evaluated using the Pfam
experimental setup. We show precisions at fixed top-L threshold, while on the x-axis we vary sequence
separation range and two levels of MSA depth reduction (10 and 1000). Standard deviations over
the five-fold cross-evaluation are shown. For the direct multi-head bilinear form (mhbf) prediction
(tied or untied), we found an improvement from using U, V projection dimension 512 rather than
128. Other hyper-parameters follow Table 2.
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Figure 9: Contact prediction precision on Pfam families at different levels of depth reduction. Three
approaches are compared: (1) the Neural Potts Model, (2) independent Potts Model, (3) Nearest
Neighbor Potts. On shallow MSAs, NPM outperforms both independent Potts and Nearest Neighbor
Potts for all four of the clans. On deep MSAs NPM matches the independent Potts baseline for 3 of
the 4 clans. Clans are noted on the right hand side.
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Figure 10: Additional metrics for the UniRef50 results. We show the sequence separation range as
columns. On each row, we vary over cutoff thresholds L, L/5 and AUC defined in Appendix C.2. The
top 3 rows are for train sequences, bottom 3 rows for test sequences.
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