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Abstract

Realistic fitness landscapes generally display a redundancy-fitness trade-off:
highly fit trait configurations are inevitably rare, while less fit trait configu-
rations are expected to be more redundant. The resulting sub-optimal patterns
in the fitness distribution are typically described by means of effective formula-
tions. However, the extent to which effective formulations are compatible with
explicitly redundant landscapes is yet to be understood, as well as the con-
sequences of a potential miss-match. Here we investigate the effects of such
trade-off on the evolution of phenotype-structured populations, characterised
by continuous quantitative traits. We consider a typical replication-mutation
dynamics, and we model redundancy by means of two dimensional landscapes
displaying both selective and neutral traits. We show that asymmetries of the
landscapes will generate neutral contributions to the marginalised fitness-level
description, that cannot be described by effective formulations, nor disentangled
by the full trait distribution. Rather, they appear as effective sources, whose
magnitude depends on the geometry of the landscape. Our results highlight
new important aspects on the nature of sub-optimality. We discuss practical
implications for rapidly mutant populations such as pathogens and cancer cells,
where the qualitative knowledge of their trait and fitness distributions can drive

disease management and intervention policies.
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Introduction

Understanding the interplay between neutrality and selection is considered
one of the major challenges in the contemporary theory of biological evolu-
tion [T}, 2], B, 4, [5], aiming to bridge the gap between two historically antipodal

s theories [6]. When neutrality is considered concomitantly with selection, sub-
optimal behaviours, that cannot be captured by purely neutralist or selectionist
approaches, are expected to emerge due to their interplay [7, 8, [0} [10] [I1]. Less
fit phenotypes are able to outperform the fittest ones, if they are endowed with
higher ‘mutational robustness’ due to some degree of neutrality. This effect is

10 sometimes referred to as the ‘survival-of-the-flattest’ effect, in iconic opposition
to the standard ‘survival-of-the-fittest’ paradigm [12, [13]. Although the occur-
rence of such behaviours is ubiquitous in biology, its characterisation depends
crucially both on the genetic architecture and on the mutational topology of the

evolving system under investigation [14] [15] [16] [17].

These features have been well documented in the field of molecular pheno-
type evolution, where the interplay between neutrality and selection is typically
described by the redundancy of genotype-phenotype maps [18, 19, 20]. The rate
at which mutations occur delineates a major distinction between two possible

2 scenarios, and consequently the kind of mathematical tool suitable for their de-
scription. When the mutation rate is low, also known as the ‘weak-mutation’ or
monomorphic regime, a complete theory accounting also for neutral effects due

to redundancy has been developed in [21].

2 The complementary, polymorphic, case is generally studied in a deterministic
framework. Polymorphic populations are characterised by genetic heterogeneity

due to the high mutation rate, so that most of the types are continuously pop-
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ulated (and not the fittest one only). In the polymorphic regime, it is possible
to map the low-level genotype dynamics onto the high-level phenotype dynam-
w0 ics only if mutations satisfy a specific condition [22], that is when their rates
depend only on the resulting (mutant) phenotype, regardless of the starting
(parent) genotype. Although this demanding condition holds for many models

of molecular phenotypes, the implications of its violation are much less clear [23].

3 Phenotype-structured populations belong to the polymorphic category. In
such populations, individuals are characterised by (typically) one quantitative
trait which is related to reproductive success (fitness) [24]. A common way to
model phenotype-structured populations is to describe the quantitative trait of
interest by a continuous variable (although discrete versions are possible). Then,

0 mutations are often described by diffusion operators acting on the space of phe-
notypes. Such properties allow the deterministic mutation-selection dynamics

of the population to be described by means of integro-differential equations.

However, diffusion-like mutations do not generally satisfy the special con-
s dition [22]; hence, in presence of a degenerate mapping, the two levels of de-
scription (phenotypes and fitness) cannot be disentangled and are likely to be
different, thus conveying potentially different information about the evolution-
ary state of the system. In this work, we will study the interplay between
neutrality and selection in such rapidly mutating systems.
50
Phenotypes will be composed of both selective traits (on which fitness de-
pends) and neutral traits (on which it does not), so that the dynamics will be
captured by simple fitness landscapes featuring redundancy. Redundancy will
be minimally modelled by considering two-dimensional landscapes, where a se-
55 lective and a neutral trait interact by virtue of a universal redundancy-selection
trade-off. Nonetheless, the nature of such trade-offs will be mechanistically dif-
ferent: in the symmetric case, neutrality stems from the property that fitness

is given by a combination of the traits composing the phenotype, such combi-
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nation being degenerate; instead, in the asymmetric case neutrality stems from
e explicitly considering a completely neutral trait concomitantly with a completely
selective trait. Then, redundancy is due to the inherent geometry of the result-
ing phenotype space, rather than to the degeneracy of the fitness function. For
these reasons, we consider the two cases to be suited to qualitatively distinct
biological contexts: for instance, the symmetric landscape dates back to the
¢s Fisher Geometric Model and has been widely employed in the field of molecu-
lar evolution, where the existence of a target optimal configuration of traits is

assumed, and any mutation away from it is deleterious [25] 26] [27].

In this work, we will compare phenotype and fitness distributions of popu-
70 lations evolving on both symmetric and asymmetric landscapes. We will derive
exact equations governing the resulting fitness dynamics, and compare them to
effective formulations. We will show that, despite the fitness distribution on
asymmetric landscapes resembling that on symmetric ones, the nature of the
two marginal dynamics is crucially different. Particularly, we will demonstrate
7 that in presence of asymmetries between selective and neutral traits, the land-
scape’s geometry generates contributions that cannot be captured by effective
formulations. Finally, we will discuss some biological contexts, where a proper
characterisation of neutral contributions to marginal dynamics may be of crucial
importance.

80

Models and methods

Redundant fitness landscapes.

In molecular evolution, redundancy of genotype-phenotype maps stems from

the basic fact that the number of possible genotypes is much larger than that

s of observed phenotypes, so that such maps must be degenerate. These map-
pings are also generally strongly biased: some phenotypes are encoded by very

few genotypes, whereas most genotypes are organised in networks (that is sets
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of genotypes connected by a single mutation) that are neutral (i.e. uniformly
equally fit), as they map onto the same few phenotypes [28] 29]. It has been
o argued that this bias should be regarded as a universal feature of any kind of fit-
ness landscapes [30]: ultimately, highly fit individuals are so because they have
a phenotype better suited than others to their environment, but such higher
functionality will stem from a ‘specific’ (possibly rare) genomic configuration.
Hence, a trade-off holds between redundancy and fitness, so that very fit phe-

s notypes would typically not be also highly redundant.

Indeed, in their iconic two-dimensional representation introduced by Wright

[31], smooth fitness landscapes exhibit a hill-shaped topography: every phe-
notype is assigned a height proportional to its fitness, hence the optimum is

o represented by the top of the hill (see panel a of Fig. [I} adapted from [32]).
Neutrally related phenotypes, i.e. those sharing the same fitness value, are lo-
cated at the same height, so that a height contour represents a neutral subset.
Since the length of a contour (i.e. the size of the neutral subset) grows with
distance from the summit, very fit phenotypes are rare, whereas less fit ones

105 tend to be more abundant. Hence a redundancy-fitness trade-off occurs, akin

to that of genotype-phenotype maps.

In order to account for the redundancy-fitness trade-off, we shall consider
two-dimensional landscapes, but generalisations to higher dimensions are pos-

uo  sible. Let P2 be the phenotype space, and its elements p = (z,y) € Pa be
the possible phenotypes; the components x,y represent respectively the value

of the two quantitative traits defining the phenotype. Each phenotype p maps
into its corresponding fitness value f = F(p) according to the smooth fitness
function F(p); the particular choice of F'(p) determines the fitness landscape

us  of the system. Two phenotypes p and q are defined to be neutrally related if
they share the same fitness, that is if F(p) = F(q). Then, a neutral subset
with fitness value f is the collection of all neutrally related phenotypes p with
fitness F'(p) = f. For the sake of simplicity we will consider only single-peak
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landscapes, which have been employed in a variety of biological contexts [33],

120 the study of more complex topographies going beyond the scope of this work.

Redundancy of the landscape is ultimately due to the degeneracy of the
fitness function F. Here, we shall compare two possible versions of such degen-
eracy, symmetric (panel b Fig. 1)) and asymmetric (panel ¢ Fig. . In panel b of
Fig. |1}, phenotypes are identified by the trait coordinates p = (x,y). However,
their fitness F'(p) depends only on the distance r(x,y) from the centre. Pheno-
types lying on the circle of radius r will share the same fitness value regardless
of their angular position €, thus forming neutral subsets. Hence, from the pair
of trait variables  and y, we can construct a pair of (respectively) selective and
neutral variables (r, §), with which both the phenotype and the fitness dynamics
can be described. The phenotype distribution of a population evolving on the
symmetric landscape is described by the function n(x,y) in the original traits
coordinates, or equivalently by n(r,6) in the corresponding polar coordinates.
Given the circular symmetry, the marginal fitness distribution A/*(r) is obtained

by integrating the phenotype distribution over the angular coordinate 6,

/\/S(T)z/o 7T71(7’,9)7“0!9, (1)

that is the radial distribution. We remark that the landscape exhibits the afore-
mentioned redundancy-fitness trade-off, as the size of neutral subsets varies (lin-
early in our minimal model) in opposition to fitness.
125

In the asymmetric case, we assume that the traits x and y directly express,
respectively, selective and neutral effects. So the x axis will represent the selec-
tive direction, and the y axis the neutral direction (panel c of Fig. [1f), with the
fitness function F' depending on x only. The trait space is then closed by the
boundary curve B(z). Neutral subsets are given by vertical lines, that are the
collections of points with equal value of the selective trait z. From the pheno-
type distribution n(z,y) in the original trait coordinates, the marginal fitness

distribution N%(z) in the asymmetric landscape is given by integration over the
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neutral variable y,

B(x)
N””:A n(z, ) dy. 2)

The size of neutral subsets depends on the choice of B(z): taking a monoton-
ically decreasing function of x leads to the desired redundancy-fitness trade-off,

equivalent to the symmetric landscape.

Replicator-Mutator Equation (RME).

130 The deterministic integro-differential formulation of the mutation-selection
dynamics dates back to the ‘continuum-of-alleles’ model introduced by Crow
and Kimura [34] [35], and can be derived from stochastic mechanistic models via
appropriate continuum limits [24], [36]. Throughout the work, with the generic
term ‘individuals’ we refer to the replicating units displaying phenotypic hetero-

135 genity, upon which natural selection and mutations act, be they RNA sequences,

bacteria or more complex forms of life.

We consider an infinite asexual population. Finite size effects, leading to

genetic drift, are thus neglected. The state of the population at time ¢ is de-

o termined by the phenotype distribution n(p;t). Individuals change their phe-

notype due to mutation and selection: changes due to mutations are modelled

by the Laplacian operator V2, that is the local diffusion operator acting on

the phenotype space P2, with mutation coefficient p; concomitantly, changes

due to selection occur at rate v, and are modelled by the usual replicator term

us  popular in Evolutionary Game Theory [37]. The deterministic temporal evolu-

tion of the phenotype distribution n(p;t) for a large population is given by the
Replicator-Mutator Equation (RME henceforth):

g%%Q:“WMEQ+VM50@@%j%@wD, (3)
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subject to the conditions,

Jp, n(pit)dp = 1

- v, (4)

n - Vn(p;t) |Bea'p2: 0

and with F[n(p;t)] denoting the average fitness of the population at time ¢:

Fln(p;t)] = ; F(p)n(p;t) dp. (5)

The conditions 4] correspond to the two physical constraints satisfied by the

10 system: conservation of the total population at every time, because neither mu-
tations nor competition alter the number of individuals; and zero flux across the
boundaries of the phenotype space, due to reflecting nature of mutations close

to the boundary (1 being the unit vector normal to the boundary 9Ps).

155 The mathematical conditions for which the RME has stationary solutions
have been extensively studied [38, [39]. However, explicit analytical solutions
are rare because they are hard to obtain (see e.g. [40], [41l 42]). Moreover,
multidimensional cases have generally been treated numerically [43]. In order
to find the stationary solutions, we employ a self-consistent technique (detailed

o in the Supplementary Information, section A) that has been applied in similar

contexts [25] [44] [45].

Note that, although Eq. [3| contains the timescale v~! and the diffusive co-
efficient p, the stationary solution will depend on only one relevant parameter

65 0 = %, that determines the relative importance of selection and mutation. In the
following, we will make simplifying assumptions for the space Py and the fitness
function F'(p), in order to facilitate analytical calculations on the model. This
will allow us to derive useful forms for both the phenotype and the marginal
fitness distributions, and compare the differences between symmetric and asym-

o metric landscapes.
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Simulations

All the analytical results are confirmed by simulating the corresponding fi-
nite size stochastic agent-based dynamics. As expected, consistency with the
deterministic description is obtained when the population size is very large (or-

s der of 10° individuals). The study of finite size effects is possible [46], although
it goes beyond the scope of the paper. Simulations have been performed with
Java-based language “Processing”, and detailed information can be found in
the Supplementary Material, section E. The Processing codes are freely avail-

able lhere.

10  Results

Trait distribution on non-redundant landscapes.

Let us first consider a simple one-dimensional case where the fitness land-
scape is not redundant. This case will provide the baseline results for compari-
son with the dynamics on redundant landscapes, to elucidate the effects of the

15 redundancy-fitness trade-off.

Let the variable x € P; = [0,1] be the single quantitative trait of inter-

est. Let F'(x) be a non-degenerate monotonically increasing function, such that

x = 1 represents the optimal trait, while x = 0 the least fit one. Clearly, since

wo F(x) is not degenerate, the corresponding fitness landscape is not redundant;
each phenotype z is uniquely determined by its fitness value. For the sake of
simplicity, we shall consider the linear fitness function F'(z) = =z, for which
analytical stationary solutions can be found (mathematical details in the Sup-
plementary Information). However, any monotonic fitness function will produce

105 qualitatively equivalent distributions.

In Fig. [2l we plot the analytical distribution n(x) for different values of &
(solid lines), and compare it with results from numerical simulation (circles and

squares). For § = 0, that is in the purely neutral scenario, the distribution is
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20 flat since every phenotype is equally likely to survive competition, regardless of
their fitness value. For § > 0, the distribution is monotonic, always showing an
absolute maximum at x = 1 (the optimal phenotype), as well as an absolute min-
imum at = 0 (the least fit one). On increasing J (that is, increasing selection
strength or decreasing mutation coefficient), the distribution becomes narrower

20s around the maximum. These profiles represent qualitatively the prediction of
the standard survival-of-the-fittest paradigm: the most successful phenotype is
always the one with the fittest trait, and the population is distributed around
the peak of the landscape.

Trait distribution on redundant landscapes.

210 In redundant landscapes, the phenotype distribution n(z, y; t) evolves in time
according to the two-dimensional RME. In general, it is not possible to find an
exact closed solution for the stationary distribution. However, in some cases
it is possible to obtain spectral solutions. In the following, we shall consider
an asymmetric landscape with triangular shape, that is for B(z) = 1 — = (with

25 0 < a <1). This specific choice is made in order to facilitate the mathematical
tractability of the asymmetric problem. This choice also facilitates the com-
parison with the symmetric landscape, since the redundancy-selection trade-off
decreases linearly with fitness in both cases (see Supplementary Material, sec-
tions C and D for mathematical details). However, the same qualitative results

20 are expected to hold for any choice of monotonically decreasing boundary B(z).

In Fig. we explore the differences between the phenotype distributions
n(z,y) and the marginal fitness distributions N**(f), at stationarity. The for-
mer describes the full distribution of traits over the two-dimensional space Ps.

25 By contrast, the latter describes the one-dimensional distribution of fitness val-

ues f, and is obtained by integrating the former over the neutral variables.

In panels a-d of Fig. ] we plot the analytically obtained phenotype dis-

tributions on the trait plane (x,y): for the asymmetric case, the iso-density

10


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

20 contour lines (a and c); for the symmetric case, the color-map projection (b
and d). Color code represents the density of n(x,y), according to the respective
color-bars. With the exception of the purely neutral case § = 0, for which the
distribution is trivially flat (not shown), the phenotype distributions increase
monotonically in the selective direction, i.e. the x direction for the asymmetric

235 case, and the radial direction for the symmetric one. In all cases, the distribu-
tions display an absolute maximum located at the phenotype with the optimal
trait. Similarly to the one-dimensional model, these results again indicate a
survival-of-the-fittest paradigm, where fitter individuals are more abundant in
the population, and the other types are distributed around the optimal with a

a0 steepness that increases as 0 increases.

Let us now consider the behaviour of the marginal fitness distribution A/*(f)
and N(f) for, respectively, symmetric and asymmetric landscapes. In panels
e-f of Fig. [3l we compare analytical (solid lines) and numerical (circles and
25 squares) profiles of the stationary marginal fitness distributions, for the same
values used in the one-dimensional model § = 0, 10, 30.
For 6 = 0, the purely neutral case, the flat uniform distribution in the two-
dimensional phenotype space results in the monotonically decreasing linear pro-
file. Hence, for § = 0 the absolute maximum is found at x = 0, which is the
0 most redundant fitness value. Thus, in the absence of selection pressure, fitness
values belonging to larger neutral subsets are rewarded, and a scenario consis-
tent with the survival-of-the-flattest effect is obtained [47].
For small values of §, the profiles are still monotonically decreasing yet consider-
ably different from the purely neutral case, displaying an increase in the density
255 for intermediate fitness values (see § = 10 case).
For larger values of d, the fitness profile becomes non-monotonic; the previously
absolute maximum is now a local one, with the emergence of a new local min-
imum and of a new absolute maximum. This new absolute peak is located at
an intermediate fitness value (see § = 30 case).

260

11
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In Fig. [d] the positions of the extrema of the fitness profile are shown for a
wide range of effective selection pressure values, for asymmetric landscape (the
symmetric case is not shown, as it provides the same qualitative result). For § <
14, the profiles are all monotonically decreasing and have an absolute maximum
at f = 0; we call this regime redundancy-dominated, because the most redundant
trait is the most abundant in the population. When 0 crosses a threshold
value &, monotonicity is broken, with the emergence of a new peak, that then
becomes the absolute maximum at higher ¢; we call this the sub-optimal regime,
since the new maximum is located at an intermediate fitness value instead of
the optimal one. Increasing selection pressure, the maximum approaches the
optimal value f = 1, recovering the survival-of-the-fittest scenario in the limit
of infinite selection pressure. For small values of § in the asymmetric case with
linear fitness and triangular shape, a closed analytical approximation of the
marginal fitness distribution AN*(f) can be obtained. In the Supplementary
material, section C, we show that performing a linear perturbation expansion

on 4, we get:

NU() =201 1) + AH() +0 (5) )
with
N4 =30 0B (§) = 585 () + 580, g

where By(z) is the k'® Bernoulli polynomial of the variable 2. This approxima-
tion then predicts that the average fitness of the population ¢ at stationarity

increases linearly with selection pressure, according to:

_1. 1 2
0= 5+ 1550+ 0 (). (8)

This approximation also predicts the emergence of intermediate local max-
265 ima and minima in the marginal fitness distribution for &, ~ 14 (see Sup-
plementary Figure 1), which is consistent with the results obtained with the

spectral solution.

12
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Marginal fitness dynamics
For the symmetric landscape, the marginal fitness distribution A*(f) is ob-

tained performing the temporal derivative of Eq. and replacing the corre-

spondent RME (details in the Supplementary Information, section D). We find

(recall that f=1—r):

UG (FNAEY | D

dt BIE +af[v(f)/\/s(f;t)]}+7Ns(f;t)(F(f)F[ S(fit)]) =0,
(9)

with
o(f) = 10 (10)
1-f
For an asymmetric landscape of general boundary B(z), the marginal fitness
distribution N%(f;t) is obtained performing the temporal derivative of Eq.
and replacing the correspondent RME (details in the Supplementary Informa-
tion, section C). In this case, we obtain (recall that f = z):
dN“(f:t) d* N(f3t)
a “{ df?

LR+ fz(f;t)} LN 0) () — FIN(f: ) = 0,
(1)
with

Fifst) = [B*(f) —1-2B'(f)] le—m.ﬂ

(12)
Fa(fit) = =B"(f)n(f,y;t)ly=8(s),

where the prime notation indicates the derivative with respect to the selective
variable f. The dynamics of the marginal fitness distribution in the symmetric
(Eq.[9) and asymmetric (Eq.[L1)) landscape, display significant differences, which

are discussed in detail below.

Discussion

In this work, we have considered both symmetric (Fig.[l} panel b) and asym-
metric (Fig. [1} panel ¢) fitness landscapes. Both cases display selective degrees

13
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of freedom (namely = and r), and neutral degrees of freedom (namely y and
), which are entwined by a general redundacy-fitness trade-off. However, the
different nature of the trade-off generates differences, that are detectable at the
0 marginal fitness dynamics level. Here we shall discuss the consequent analogies

and differences, as well as their practical implications.

Contrary to their non redundant counterpart (Fig. [2)), we have shown that
redundant landscapes display a dual behaviour, depending on the dynamics’

s level of description: full phenotype distributions exhibit survival-of-the-fittest
patterns (Fig. |3, panels a-d), where most of the population lies in proximity of
the landscape optimum; on the other hand, their correspondent marginal fitness
distributions may exhibit sub-optimal patterns (Fig. 3] panels e-f), where most
of the population displays less fit but more redundant traits (Fig. [4)).

20 For triangular geometry, we have calculated the marginal fitness distribution
(Eq. @ and the average fitness value (Eq. @, in the weak selection approxi-
mation. We observe that the above formulae provide a good estimate of the
state of the system up to § ~ 30, above which they break down due to second
order selective effects (for details, see Supplementary Material, section C and

25 Supplementary Figure 2). This approximation might also be used as a baseline

result to measure landscape’s geometric deviations from the triangular shape.

Acknowledging this duality of behaviours, can help improving the fields in

evolutionary epidemiology [48][49] and cancer dynamics [50,51], where pathogens

w0 are modelled as phenotype-structured populations, and the information on the
state of the distributions can be used to design treatment policies.

For example, in a viral or bacterial population, suppose that x quantifies the

resistance to a drug or antibiotic, so that larger x confers higher fitness to

its carriers [52]. Then, one might expect the population to be dominated by

305 individuals with highest resistance (i.e. optimal fitness), and a therapy would

be developed to counter ‘survival-of-the-fittest’ distributions, hence maximising

the intervention on the traits carrying the maximal resistance value. However,
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if such a selective trait is entwined with another, neutral one (i.e. not affect-
ing the resistance) via a redundancy-fitness trade-off, then the distribution will
si0 very likely be dominated by individuals with sub-optimal resistance, and the
therapy would erroneously target non-redundant traits, with the possibility of
unwittingly helping sub-optimal strains to mutate and become fitter.
On the other hand, suppose that an experimentalist measures the growth rates
in a rapidly mutant population as a function of x, and obtains a profile simi-
ais  lar to panels e-f of Fig. [3] with a peak in the distribution at an intermediate
value ¢ = & with 0 < £ < 1. Then they might erroneously conclude that =
confers the optimal fitness value, whereas, in fact, the trait £ dominates the
population due to its redundancy, rather than due to a selective advantage. In
the ‘worst case’, by confusing a redundancy-dominated fitness profile with a
a0 one-dimensional survival-of-the-fittest distribution, one would infer a direction
of selection opposite to the true one, and conclude that trait £ = 0 has optimal

fitness.

In light of the above practical examples, a proper characterisation of neu-

»s  tral contributions is crucial to understand the dual behaviour between full and
marginal trait distributions. Neutral information featuring redundant land-
scapes is often modelled with an effective ‘mutational robustness’ term, where
the redundancy-selection trade-off is implicitly accounted for, by introducing
some bias to mutations [10] 16} 63, 54, [55]. In these effective formulations, the

s marginal fitness distribution A (f) would be governed by some effective RME

dynamics depending only on the selective variable f, such as

% = Mg IN(f: )] N(f 1) + N(fit) (Fea(f) — FegN(£38)]) , (13)

where the interplay between neutrality and selection would be described by ei-
ther/both a modified ‘mutational operator’ Mg N(f;t)], and/or a modified
‘effective fitness’ function Feg(f) (which is also similar to the case of slowly mu-

35 tant populations). However, the above effective formulation is not general, and
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is not appropriate unless the landscape is symmetric.
In this work we have derived the marginal fitness dynamics, by explicit in-
tegration over the landscape’s neutral degrees of freedom. In the symmetric
landscape, marginalisation leads to a new drift term % v(f), where v(f) plays
a0 the role of a velocity field pushing individuals away from the optimum. This
contribution is referred as a ‘mutational entropy’ biasing mutations due to re-
dundancy of the landscape [25, 27]. Thus, the marginal dynamics Eq. |§| is
consistent with the effective RME formulation Eq. with:

Mo W ()] = o {aaf ; Effvm} (14)

being the new effective mutational operator.

us  However, in asymmetric landscapes with generic boundary profile B(x), marginal
isation generates contributions of different nature. In Eq. mutations and
competition are still captured by, respectively, a local diffusion term and a repli-
cator term. However, marginalisation generates the new contributions F(f;t)
and F5(f;t). The magnitude of such terms depends on the landscape’s geome-
30 try, that is on the slope B'(f) and curvature B”(f) of the boundary profile.
Moreover, from Eq. we observe that these contributions depend on the full
phenotype distribution n(f, y;t), thus making the marginal dynamics Eq. [11{an
inohomogeneous differential equation. Indeed, the effective formulation Eq. [I3]
relies on homogeneous differential equations, and it cannot be equivalent to the
s inhomogeneous one Eq. derived by marginalisation. Therefore, neutral con-
tributions deriving from asymmetric landscapes cannot be identified as ‘effective
operators’ acting on the fitness level of description.
This imposes severe limitations on the utility and exactness of effective formu-
lations, for phenotype-structured populations. Indeed, our calculations have
w0 shown that solving the high-level fitness dynamics still requires the knowledge
of the underlying low-level trait details, and that this issue will occur whenever

asymmetries in the trait-space are present.
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The new terms due to asymmetry, Fi (x;t) and Fa(x;t), have the appearance

w5 of effective source contributions to the dynamics, analogous to a spontaneous
generation of individuals, if interpreted in the context of a lower-dimensional
(non-redundant) fitness landscape. Note that the marginal one-dimensional
profiles, shown in Fig. [3| panels e-f, display a non-zero gradient at the boundaries

of the fitness domain, which would require a flux to be present in a truly one-

s dimensional system. This feature cannot be present in profiles generated by
one-dimensional RME models, due to the physical constraints (as, we recall,
the total population size is conserved and the system has no flux boundary
conditions), unless they are introduced ad hoc. We call these emerging sources
effective because they are generated by the asymmetry in the neutral degrees

ss  of freedom, that are unobserved at the marginalised fitness level.

Conclusions

In this work, we have investigated the RME dynamics of phenotype-structured
populations, on minimally redundant landscapes. This kind of dynamics is
widely employed in many biological (and other) research areas: population ge-

s netics [56], pathogenic evolution [52, 57, 58], RNA evolution [25], game theory
[42] [59], language evolution [60]. Its application depends on the identification
of rapidly mutating quantitative traits, responsible for phenotypic heterogene-
ity in the individuals composing the population. Examples of such traits are
cytotoxic-drug resistance [61], pathogenic virulence [52] 58] and transmission

w5 [57], antigenic types [62] [63] and hosts’ resistance to infection [64].

Concomitantly with such potential selective traits, accounting for neutral
traits is expected to result into asymmetric fitness landscapes, featuring redundancy-
selection trade-offs. Particularly, asymmetric landscapes are expected to be

s found whenever metabolic trade-offs occurs between traits. For instance, the
MacArthur’s consumer-resource model [65], is employed to investigate the co-

existence of communities competing for a common pool of resources [66, [67].
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When multiple resource types are present, the different rates of consumption
can be modelled as mutating quantitative traits. If an energetic constraint lim-
35 its cells’ ability of consumption due to metabolic trade-offs, then the population
will evolve on a asymmetric trait space [68].
Similar mechanisms are expected to lead to asymmetric landscapes, in presence
of life-history trade-offs. An ideal pathogen would be characterised by high infec-
tion transmission, and low induced mortality. In practice, such super-pathogens
w0 are rarely observed, whereas milder strains are more frequent. This observation
is generally explained by acknowledging the existence of a life-history trade-off
between transmission and virulence [69], that, in fitness terms, might relate to
trade-offs akin to the redundancy-selection one.
Asymmetric landscapes also emerge whenever the phenotype space effectively
w5 available is bounded by Pareto-like fronts, outside of which lie all those phe-
notypic configurations that long-term evolution has excluded, due to their sys-
tematic inefficiency [70} [71]. Such trait-spaces have been proposed to explain
observed patterns in gene regulation [72], and bacterial growth [73]. Triangular-
shaped landscapes, that herein have been used to facilitate calculations, have
a0 actually been observed in animal morphology [74] [75] [76]. In game theory, tri-
angular geometries also characterise three-strategies games [77], and have been
recently observed to emerge in a numerical study of a rapidly mutant version
of the Ultimatum Game [7§]. Ultimately, the experimental quantification of
the landscape’s asymmetries in the neutral directions is as important as that of

a5 selective traits.

In our theoretical work, selection has been introduced by explicitly consider-
ing a fitness landscape F', and an arbitrary competition rate . However, in ap-
plied contexts, the fitness landscape emerges from the mechanistic interactions

a0 associated with the quantitative trait under analysis, whose measurable param-
eters combine to form effective competition rates [79, [80]. On the other hand,
mutations have been modelled by local diffusion over the trait space, charac-

terised by a diffusion coefficient p. Mutations are intended as a global, effective
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representation of genetic (or higher level) changes that induce phenotypic mod-
w5 ification, ignoring the extensive knowledge of the underlying molecular details
[81]. This term is appropriate when mutations induce small perturbations on
the quantitative traits, i.e. when the components mutate into 'phenotypically
close’ variants. This is not necessarily the case; for instance, when mutations
induce a major disruption of the original phenotype, they cannot be modelled

a0 by a local diffusion operator (as is the case in the house-of-cards model [82]).

To conclude, we consider our qualitative results to be general and to be
relevant whenever rapidly mutant populations evolve on asymmetric redundant
fitness landscape. They do not depend on the specifics of the model (which here

s have been chosen in order to facilitate the mathematical analysis). Our results
convey an important message: in general, neutral effects will not be properly
captured by effective formulations of mutational robustness; rather, they will
generate effective sources at the marginalised fitness-level description. In gen-
eral, these new contributions will depend on the geometry of the landscape, and

w0 the phenotype composition of the population, so that all the microscopic trait
information (even for the neutral traits) must be retained in order to properly

derive the observable fitness dynamics.

The mathematical procedure herein presented allows the explicit calculation

ws of the trait distribution at stationarity and could be employed to straightfor-
wardly implement redundancy in previous one-dimensional models, so as to
include neutral effects. Moreover, it could improve the accuracy of models in
evolutionary epidemiology, and the consequent predictions in terms of disease
management. As a result, the most effective interventions might not be those

w0 that focus on the extremes of the sole fitness-related traits. To interpret such
a study, it will be important to consider the relationship between the relevant
selective components of traits, as well as their the degree of redundancy in all

of the other, neutral, components.

19


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Acknowledgments

455 LM is grateful to Robert West and Fabio Peruzzo for fruitful discussion
and comments on an earlier version of the manuscript, to Lorenzo Metilli for
help with figures, and to Gabriele Lobbia and Giovanni Solda for computational
support. LM, RMLE and SA thank Mauro Mobilia for his co-supervision and
feedback. LM thanks the NERC SPHERES DTP (NE/L002574/1) for funding

w0 his studentship.

References

[1] A. Wagner, Redundant gene functions and natural selection, Journal of

evolutionary biology 12 (1) (1999) 1-16.

[2] S. Ciliberti, O. C. Martin, A. Wagner, Innovation and robustness in com-
465 plex regulatory gene networks, Proceedings of the National Academy of

Sciences 104 (34) (2007) 13591-13596.

[3] A. Wagner, Neutralism and selectionism: a network-based reconciliation,

Nature Reviews Genetics 9 (12) (2008) 965.

[4] N. Barghi, J. Hermisson, C. Schlotterer, Polygenic adaptation: a unify-
470 ing framework to understand positive selection, Nature Reviews Genetics

(2020) 1-13.

[5] S. Manrubia, J. A. Cuesta, J. Aguirre, S. E. Ahnert, L. Altenberg, A. V.
Cano, P. Catalan, R. Diaz-Uriarte, S. F. Elena, J. A. Garcia-Martin, et al.,
From genotypes to organisms: State-of-the-art and perspectives of a cor-

a7 nerstone in evolutionary dynamics, arXiv preprint arXiv:2002.00363.
[6] M. Nei, Mutation-driven evolution, OUP Oxford, 2013.

[7] M. A. Huynen, P. F. Stadler, W. Fontana, Smoothness within ruggedness:
the role of neutrality in adaptation, Proceedings of the National Academy

of Sciences 93 (1) (1996) 397-401.

20


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w0 [8] D. C. Krakauer, J. B. Plotkin, Redundancy, antiredundancy, and the ro-
bustness of genomes, Proceedings of the National Academy of Sciences

99 (3) (2002) 1405-1409.

[9] J. Aguirre, E. Lazaro, S. C. Manrubia, A trade-off between neutrality and
adaptability limits the optimization of viral quasispecies, Journal of theo-

485 retical biology 261 (1) (2009) 148-155.

[10] R. E. Beardmore, I. Gudelj, D. A. Lipson, L. D. Hurst, Metabolic trade-
offs and the maintenance of the fittest and the flattest, Nature 472 (7343)
(2011) 342.

[11] S. Schaper, A. A. Louis, The arrival of the frequent: how bias in genotype-

490 phenotype maps can steer populations to local optima, PloS one 9 (2).

[12] C. O. Wilke, J. L. Wang, C. Ofria, R. E. Lenski, C. Adami, Evolution of
digital organisms at high mutation rates leads to survival of the flattest,

Nature 412 (6844) (2001) 331.

[13] J. Sardanyés, S. F. Elena, R. V. Solé, Simple quasispecies models for the
405 survival-of-the-flattest effect: The role of space, Journal of Theoretical Bi-

ology 250 (3) (2008) 560-568.

[14] M. A. Huynen, Exploring phenotype space through neutral evolution, Jour-
nal of molecular evolution 43 (3) (1996) 165-169.

[15] E. Van Nimwegen, J. P. Crutchfield, M. Huynen, Neutral evolution of muta-
500 tional robustness, Proceedings of the National Academy of Sciences 96 (17)

(1999) 9716-9720.

[16] J. A. Draghi, T. L. Parsons, G. P. Wagner, J. B. Plotkin, Mutational
robustness can facilitate adaptation, Nature 463 (7279) (2010) 353.

[17] J. Aguirre, J. M. Buldd, M. Stich, S. C. Manrubia, Topological structure of

505 the space of phenotypes: the case of rna neutral networks, PloS one 6 (10).

21


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[18] M. Shackleton, R. Shipma, M. Ebner, An investigation of redundant
genotype-phenotype mappings and their role in evolutionary search, in:
Proceedings of the 2000 Congress on Evolutionary Computation. CEC00
(Cat. No. 00TH8512), Vol. 1, IEEE, 2000, pp. 493-500.

so [19] F. M. Codoner, J.-A. Dards, R. V. Solé, S. F. Elena, The fittest versus the
flattest: experimental confirmation of the quasispecies effect with subviral

pathogens, PLoS pathogens 2 (12) (2006) e136.

[20] A. Wagner, The origins of evolutionary innovations: a theory of transfor-

mative change in living systems, OUP Oxford, 2011.

si5 [21] B. S. Khatri, R. A. Goldstein, A coarse-grained biophysical model of se-
quence evolution and the population size dependence of the speciation rate,

Journal of theoretical biology 378 (2015) 56-64.

[22] K. Sato, K. Kaneko, Evolution equation of phenotype distribution: General
formulation and application to error catastrophe, Physical Review E 75 (6)

o0 (2007) 061909.

[23] B. Khatri, Survival of the frequent at finite population size and mutation
rate: filing the gap between quasispecies and monomorphic regimesdoi :

10.1101/375147.

[24] R. H. Chisholm, T. Lorenzi, L. Desvillettes, B. D. Hughes, Evolution-
525 ary dynamics of phenotype-structured populations: from individual-level
mechanisms to population-level consequences, Zeitschrift fiir angewandte

Mathematik und Physik 67 (4) (2016) 100.

[25] L. S. Tsimring, H. Levine, D. A. Kessler, Rna virus evolution via a fitness-

space model, Physical review letters 76 (23) (1996) 4440.

s [26] H. A. Orr, The distribution of fitness effects among beneficial mutations
in fisher’s geometric model of adaptation, Journal of theoretical biology

238 (2) (2006) 279-285.

22


http://dx.doi.org/10.1101/375147
http://dx.doi.org/10.1101/375147
http://dx.doi.org/10.1101/375147
https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[27] U. Gerland, T. Hwa, On the selection and evolution of regulatory dna
motifs, Journal of molecular evolution 55 (4) (2002) 386—-400.

s [28] J. M. Smith, Natural selection and the concept of a protein space, Nature

225 (5232) (1970) 563-564.

[29] A. Wagner, The role of robustness in phenotypic adaptation and innovation,
Proceedings of the Royal Society B: Biological Sciences 279 (1732) (2012)
1249-1258.

so0 [30] B. S. Khatri, R. A. Goldstein, Biophysics and population size constrains
speciation in an evolutionary model of developmental system drift, PLoS

computational biology 15 (7) (2019) e1007177.

[31] S. Wright, The roles of mutation, inbreeding, crossbreeding, and selection

in evolution, Vol. 1, na, 1932.

ss [32] F. J. Poelwijk, D. J. Kiviet, D. M. Weinreich, S. J. Tans, Empirical fitness
landscapes reveal accessible evolutionary paths, Nature 445 (7126) (2007)
383.

[33] M.-E. Gil, F. Hamel, G. Martin, L. Roques, Dynamics of fitness distri-
butions in the presence of a phenotypic optimum: an integro-differential

550 approach, Nonlinearity 32 (10) (2019) 3485.

[34] J. F. Crow, M. Kimura, The theory of genetic loads, in: Proceedings of the
XIth International Congress of Genetics, Vol. 2, Pergamon Press Oxford,

1964, pp. 495-505.

[35] M. Kimura, A stochastic model concerning the maintenance of genetic vari-
555 ability in quantitative characters., Proceedings of the National Academy of

Sciences of the United States of America 54 (3) (1965) 731.

[36] N. Champagnat, R. Ferriere, S. Méléard, Unifying evolutionary dynamics:
from individual stochastic processes to macroscopic models, Theoretical

population biology 69 (3) (2006) 297-321.

23


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

so0  [37] P. Schuster, K. Sigmund, Replicator dynamics, Journal of theoretical biol-
ogy 100 (3) (1983) 533-538.

[38] R. Biirger, I. M. Bomze, Stationary distributions under mutation-selection
balance: structure and properties, Advances in applied probability 28 (1)
(1996) 227-251.

s [39] R. Biirger, Mathematical properties of mutation-selection models, Genetica

102 (1998) 279.

[40] M. Alfaro, R. Carles, Replicator-mutator equations with quadratic fitness,
Proceedings of the American Mathematical Society 145 (12) (2017) 5315
5327.

so  [41] M. Alfaro, M. Veruete, Evolutionary branching via replicator-mutator
equations, Journal of Dynamics and Differential Equations 31 (4) (2019)
2029-2052.

[42] M. Ruijgrok, T. W. Ruijerok, An effective replicator equation for games
with a continuous strategy set, Dynamic Games and Applications 5 (2)

575 (2015) 157-179.

[43] Y. Cohen, Evolutionary distributions, Evolutionary Ecology Research
11 (4) (2009) 611-635.

[44] I. M. Rouzine, J. Wakeley, J. M. Coffin, The solitary wave of asexual evo-
lution, Proceedings of the National Academy of Sciences 100 (2) (2003)
580 587-592.

[45] O. Hallatschek, The noisy edge of traveling waves, Proceedings of the Na-
tional Academy of Sciences 108 (5) (2011) 1783-1787.

[46] A. Ardaseva, A. R. Anderson, R. A. Gatenby, H. M. Byrne, P. K. Maini,
T. Lorenzi, Comparative study between discrete and continuum models
585 for the evolution of competing phenotype-structured cell populations in

dynamical environments, Physical Review E 102 (4) (2020) 042404.

24


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[47] C. O. Wilke, Quasispecies theory in the context of population genetics,
BMC evolutionary biology 5 (1) (2005) 44.

[48] A.P. Galvani, Epidemiology meets evolutionary ecology, Trends in Ecology
590 & Evolution 18 (3) (2003) 132-139.

[49] T. Day, T. Parsons, A. Lambert, S. Gandon, The price equation and evo-
lutionary epidemiology, Philosophical Transactions of the Royal Society B
375 (1797) (2020) 20190357.

[50] R. V. Solé, T. S. Deisboeck, An error catastrophe in cancer?, Journal of

505 Theoretical Biology 228 (1) (2004) 47-54.

[51] J. Clairambault, An evolutionary perspective on cancer, with applications
to anticancer drug resistance modelling and perspectives in therapeutic

control, J. Math. Study 52 (4) (2019) 470-496.

[52] T. Day, S. R. Proulx, A general theory for the evolutionary dynamics of
600 virulence, The American Naturalist 163 (4) (2004) E40-E63.

[63] D. De Martino, F. Capuani, A. De Martino, Growth against entropy in
bacterial metabolism: the phenotypic trade-off behind empirical growth

rate distributions in e. coli, Physical biology 13 (3) (2016) 036005.

[54] A. De Martino, T. Gueudré, M. Miotto, Exploration-exploitation tradeoffs
60 dictate the optimal distributions of phenotypes for populations subject to

fitness fluctuations, Physical Review E 99 (1) (2019) 012417.

[65] E. Rigato, G. Fusco, Effects of phenotypic robustness on adaptive evolu-
tionary dynamics, Evolutionary Biology 47 (3) (2020) 233-239.

[56] J. Y. Wakano, T. Funaki, S. Yokoyama, Derivation of replicator-mutator
610 equations from a model in population genetics, Japan Journal of Industrial

and Applied Mathematics 34 (2) (2017) 473-488.

25


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[57] A. Korobeinikov, C. Dempsey, A continuous phenotype space model of
rna virus evolution within a host, Mathematical Biosciences & Engineering

11 (4) (2014) 919.

a5 [58] L. Bolzoni, G. A. De Leo, Unexpected consequences of culling on the erad-
ication of wildlife diseases: the role of virulence evolution, The American

Naturalist 181 (3) (2013) 301-313.

[59] I. M. Bomze, R. Burger, Stability by mutation in evolutionary games,
Games and Economic Behavior 11 (2) (1995) 146-172.

e20 [60] K. M. Page, M. A. Nowak, Unifying evolutionary dynamics, Journal of
theoretical biology 219 (1) (2002) 93-98.

[61] T. Lorenzi, R. H. Chisholm, J. Clairambault, Tracking the evolution of can-
cer cell populations through the mathematical lens of phenotype-structured

equations, Biology direct 11 (1) (2016) 43.

s [62] A. Sasaki, Evolution of antigen drift/switching: continuously evading

pathogens, Journal of Theoretical Biology 168 (3) (1994) 291-308.

[63] A. Sasaki, Y. Haraguchi, Antigenic drift of viruses within a host: a finite
site model with demographic stochasticity, Journal of Molecular Evolution

51 (3) (2000) 245-255.

00 [64] T. Lorenzi, A. Pugliese, M. Sensi, A. Zardini, Evolutionary dynamics in
an si epidemic model with phenotype-structured susceptible compartment,

arXiv preprint arXiv:2010.10443.

[65] R. MacArthur, Species packing and competitive equilibrium for many
species, Theoretical population biology 1 (1) (1970) 1-11.

s  [66] L. Pacciani-Mori, A. Giometto, S. Suweis, A. Maritan, Dynamic metabolic
adaptation can promote species coexistence in competitive communities,

PLoS computational biology 16 (5) (2020) e1007896.

26


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[67] D. Gupta, S. Garlaschi, S. Suweis, S. Azaele, A. Maritan, An effective
resource-competition model for species coexistence (2021). jarXiv:2104.

640 01256.

[68] M. Amicone, I. Gordo, Molecular signatures of resource competition: clonal

interference drives the emergence of ecotypes, bioRxiv.

[69] S. Alizon, A. Hurford, N. Mideo, M. Van Baalen, Virulence evolution and
the trade-off hypothesis: history, current state of affairs and the future,

645 Journal of evolutionary biology 22 (2) (2009) 245-259.

[70] O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel,
K. Kavanagh, U. Alon, Evolutionary trade-offs, pareto optimality, and the
geometry of phenotype space, Science 336 (6085) (2012) 1157-1160.

[71] B. Xue, P. Sartori, S. Leibler, Environment-to-phenotype mapping and
650 adaptation strategies in varying environments, Proceedings of the National

Academy of Sciences 116 (28) (2019) 13847-13855.

[72] A. Y. Weile, D. A. Oyarztin, V. Danos, P. S. Swain, Mechanistic links
between cellular trade-offs, gene expression, and growth, Proceedings of

the National Academy of Sciences 112 (9) (2015) E1038-E1047.

s [73] S. Klumpp, T. Hwa, Bacterial growth: global effects on gene expression,
growth feedback and proteome partition, Current opinion in biotechnology

28 (2014) 96-102.

[74] G. R. McGhee, The geometry of evolution: adaptive landscapes and theo-

retical morphospaces, Cambridge University Press, 2006.

0 [75] E. O. Wilson, Caste and division of labor in leaf-cutter ants (hymenoptera:
Formicidae: Atta), Behavioral ecology and sociobiology 7 (2) (1980) 157—
165.

[76] U. M. Norberg, J. M. Rayner, Ecological morphology and flight in bats

(mammalia; chiroptera): wing adaptations, flight performance, foraging

27


http://arxiv.org/abs/2104.01256
http://arxiv.org/abs/2104.01256
http://arxiv.org/abs/2104.01256
https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

665 strategy and echolocation, Philosophical Transactions of the Royal Society

of London. B, Biological Sciences 316 (1179) (1987) 335-427.

[77] A. Boccabella, R. Natalini, L. Pareschi, On a continuous mixed strategies
model for evolutionary game theory, Kinetic & Related Models 4 (1) (2011)
187.

s [78] R. Evans, Pay-off scarcity causes evolution of risk-aversion and extreme

altruism, Scientific reports 8 (1) (2018) 1-10.

[79] T. Day, S. Gandon, Insights from price’s equation into evolutionary, Disease

evolution: models, concepts, and data analyses 71 (2006) 23.

[80] T. Day, S. Gandon, Applying population-genetic models in theoretical evo-
675 lutionary epidemiology, Ecology Letters 10 (10) (2007) 876—888.

[81] G. Martin, S. F. Elena, T. Lenormand, Distributions of epistasis in mi-
crobes fit predictions from a fitness landscape model, Nature genetics 39 (4)

(2007) 555-560.

[82] J. F. Kingman, A simple model for the balance between selection and

680 mutation, Journal of Applied Probability 15 (1) (1978) 1-12.

28


https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.04.08.439005; this version posted April 9, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figures

symmetric case asymmetric case

C

>
P g
0
0]
C
-
= I
trait x
0 y
1
c
8
r=1
Q
2
T I
> © 1
=
>
X 2 I
c I
1

0 selective direction 4 X

Figure 1: Minimal redundant fitness landscapes. Panel a, typical two-dimensional
representation of fitness landscapes, exhibiting the redundancy-fitness trade-off: regardless of
the topographic details, the size of the neutral subsets decreases as one moves towards the top
(adapted from [32]). Panels b - c: respectively, symmetric and asymmetric redundant fitness
landscapes, and projections of the correspondent phenotype spaces, in the trait coordinates
(z,y). For the symmetric case, fitness depends on the radial distance r from the optimum,
regardless of the angular position 6. For the asymmetric case, fitness is proportional to the
trait « determining the direction, while the trait y is neutral. Dashed black lines represents
examples of neutral subsets. Red dots identify the optimum of the respective landscapes. In

both cases, the size of the neutral subsets decreases in the selective direction, by virtue of the

redundancy-fitness trade-off.
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Figure 2: Stationary phenotype distribution on non redundant landscape. Solid

lines refer to the analytical solution of the one-dimensional RME, while circles and squares
correspond to agent-based numerical simulation of N = 10° individuals. With the exception
of the neutral case 6 = 0 (dashed line), the distribution is always monotonically increasing
towards the optimal trait £ = 1, indicating the standard survival-of-the-fittest scenario. Inset:

simple fitness landscape for the sole selective variable x.
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Figure 3: Stationary phenotype distributions and marginal fitness distributions
for redundant landscapes. Phenotype distributions: contour lines of iso-density are shown
for the asymmetric case (a and c), while colormaps are shown for the symmetric case (b
and d). In both cases and for every value of § > 0, the distribution has maximum density
in correspondence of the optimal trait (that with max fitness), exhibiting a survival-of-the-
fittest behaviour. However, the corresponding marginal fitness distributions (e-f) display
rather different behaviours depending on the value of §. Particularly, we distinguish the
redundancy-dominated profile (squares § = 10), where the most redundant fitness values are
favoured; and the sub-optimal profile (circles § = 30), where the fitness distributions exhibit
maximum at an value, smaller than the optimal one. Solid lines refer to analytical solutions

of the RME, while scatter plots to agent-based simulations with N = 10° individuals.
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Figure 4: Marginal fitness behaviour. The different regimes of the marginal fitness distri-
bution N(f) are identified by tracking the extrema of its spectral solution at the variation of
selective pressure §. Diamonds (circles) refer to maxima (minima). Filled (empty) symbols
refer to absolute (local) extrema. A threshold value dy), ~ 14, estimated with the perturba-
tive solution, separates the two qualitative behaviours. Below d&;},, the fitness distribution is
dominated by the most redundant fitness value (redundancy-dominated regime). Above gy,
the distributions exhibit sub-optimality, as they are dominated by intermediate fitness val-
ues. Then, the survival-of-the-fittest scenario is recovered in the limit of very large selection

(6 — o0).
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