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Abstract

Realistic fitness landscapes generally display a redundancy-fitness trade-off:

highly fit trait configurations are inevitably rare, while less fit trait configu-

rations are expected to be more redundant. The resulting sub-optimal patterns

in the fitness distribution are typically described by means of effective formula-

tions. However, the extent to which effective formulations are compatible with

explicitly redundant landscapes is yet to be understood, as well as the con-

sequences of a potential miss-match. Here we investigate the effects of such

trade-off on the evolution of phenotype-structured populations, characterised

by continuous quantitative traits. We consider a typical replication-mutation

dynamics, and we model redundancy by means of two dimensional landscapes

displaying both selective and neutral traits. We show that asymmetries of the

landscapes will generate neutral contributions to the marginalised fitness-level

description, that cannot be described by effective formulations, nor disentangled

by the full trait distribution. Rather, they appear as effective sources, whose

magnitude depends on the geometry of the landscape. Our results highlight

new important aspects on the nature of sub-optimality. We discuss practical

implications for rapidly mutant populations such as pathogens and cancer cells,

where the qualitative knowledge of their trait and fitness distributions can drive

disease management and intervention policies.

1Corresponding author: mmlm@leeds.ac.uk

Preprint submitted to Elsevier April 8, 2021

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords: Phenotype-structured populations, Redundancy, Fitness

Landscape, Trait space, Replication-Mutation, Mathematical modelling

Introduction

Understanding the interplay between neutrality and selection is considered

one of the major challenges in the contemporary theory of biological evolu-

tion [1, 2, 3, 4, 5], aiming to bridge the gap between two historically antipodal

theories [6]. When neutrality is considered concomitantly with selection, sub-5

optimal behaviours, that cannot be captured by purely neutralist or selectionist

approaches, are expected to emerge due to their interplay [7, 8, 9, 10, 11]. Less

fit phenotypes are able to outperform the fittest ones, if they are endowed with

higher ‘mutational robustness’ due to some degree of neutrality. This effect is

sometimes referred to as the ‘survival-of-the-flattest’ effect, in iconic opposition10

to the standard ‘survival-of-the-fittest’ paradigm [12, 13]. Although the occur-

rence of such behaviours is ubiquitous in biology, its characterisation depends

crucially both on the genetic architecture and on the mutational topology of the

evolving system under investigation [14, 15, 16, 17].

15

These features have been well documented in the field of molecular pheno-

type evolution, where the interplay between neutrality and selection is typically

described by the redundancy of genotype-phenotype maps [18, 19, 20]. The rate

at which mutations occur delineates a major distinction between two possible

scenarios, and consequently the kind of mathematical tool suitable for their de-20

scription. When the mutation rate is low, also known as the ‘weak-mutation’ or

monomorphic regime, a complete theory accounting also for neutral effects due

to redundancy has been developed in [21].

The complementary, polymorphic, case is generally studied in a deterministic25

framework. Polymorphic populations are characterised by genetic heterogeneity

due to the high mutation rate, so that most of the types are continuously pop-
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ulated (and not the fittest one only). In the polymorphic regime, it is possible

to map the low-level genotype dynamics onto the high-level phenotype dynam-

ics only if mutations satisfy a specific condition [22], that is when their rates30

depend only on the resulting (mutant) phenotype, regardless of the starting

(parent) genotype. Although this demanding condition holds for many models

of molecular phenotypes, the implications of its violation are much less clear [23].

Phenotype-structured populations belong to the polymorphic category. In35

such populations, individuals are characterised by (typically) one quantitative

trait which is related to reproductive success (fitness) [24]. A common way to

model phenotype-structured populations is to describe the quantitative trait of

interest by a continuous variable (although discrete versions are possible). Then,

mutations are often described by diffusion operators acting on the space of phe-40

notypes. Such properties allow the deterministic mutation-selection dynamics

of the population to be described by means of integro-differential equations.

However, diffusion-like mutations do not generally satisfy the special con-

dition [22]; hence, in presence of a degenerate mapping, the two levels of de-45

scription (phenotypes and fitness) cannot be disentangled and are likely to be

different, thus conveying potentially different information about the evolution-

ary state of the system. In this work, we will study the interplay between

neutrality and selection in such rapidly mutating systems.

50

Phenotypes will be composed of both selective traits (on which fitness de-

pends) and neutral traits (on which it does not), so that the dynamics will be

captured by simple fitness landscapes featuring redundancy. Redundancy will

be minimally modelled by considering two-dimensional landscapes, where a se-

lective and a neutral trait interact by virtue of a universal redundancy-selection55

trade-off. Nonetheless, the nature of such trade-offs will be mechanistically dif-

ferent: in the symmetric case, neutrality stems from the property that fitness

is given by a combination of the traits composing the phenotype, such combi-
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nation being degenerate; instead, in the asymmetric case neutrality stems from

explicitly considering a completely neutral trait concomitantly with a completely60

selective trait. Then, redundancy is due to the inherent geometry of the result-

ing phenotype space, rather than to the degeneracy of the fitness function. For

these reasons, we consider the two cases to be suited to qualitatively distinct

biological contexts: for instance, the symmetric landscape dates back to the

Fisher Geometric Model and has been widely employed in the field of molecu-65

lar evolution, where the existence of a target optimal configuration of traits is

assumed, and any mutation away from it is deleterious [25, 26, 27].

In this work, we will compare phenotype and fitness distributions of popu-

lations evolving on both symmetric and asymmetric landscapes. We will derive70

exact equations governing the resulting fitness dynamics, and compare them to

effective formulations. We will show that, despite the fitness distribution on

asymmetric landscapes resembling that on symmetric ones, the nature of the

two marginal dynamics is crucially different. Particularly, we will demonstrate

that in presence of asymmetries between selective and neutral traits, the land-75

scape’s geometry generates contributions that cannot be captured by effective

formulations. Finally, we will discuss some biological contexts, where a proper

characterisation of neutral contributions to marginal dynamics may be of crucial

importance.

80

Models and methods

Redundant fitness landscapes.

In molecular evolution, redundancy of genotype-phenotype maps stems from

the basic fact that the number of possible genotypes is much larger than that

of observed phenotypes, so that such maps must be degenerate. These map-85

pings are also generally strongly biased: some phenotypes are encoded by very

few genotypes, whereas most genotypes are organised in networks (that is sets
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of genotypes connected by a single mutation) that are neutral (i.e. uniformly

equally fit), as they map onto the same few phenotypes [28, 29]. It has been

argued that this bias should be regarded as a universal feature of any kind of fit-90

ness landscapes [30]: ultimately, highly fit individuals are so because they have

a phenotype better suited than others to their environment, but such higher

functionality will stem from a ‘specific’ (possibly rare) genomic configuration.

Hence, a trade-off holds between redundancy and fitness, so that very fit phe-

notypes would typically not be also highly redundant.95

Indeed, in their iconic two-dimensional representation introduced by Wright

[31], smooth fitness landscapes exhibit a hill-shaped topography: every phe-

notype is assigned a height proportional to its fitness, hence the optimum is

represented by the top of the hill (see panel a of Fig. 1, adapted from [32]).100

Neutrally related phenotypes, i.e. those sharing the same fitness value, are lo-

cated at the same height, so that a height contour represents a neutral subset.

Since the length of a contour (i.e. the size of the neutral subset) grows with

distance from the summit, very fit phenotypes are rare, whereas less fit ones

tend to be more abundant. Hence a redundancy-fitness trade-off occurs, akin105

to that of genotype-phenotype maps.

In order to account for the redundancy-fitness trade-off, we shall consider

two-dimensional landscapes, but generalisations to higher dimensions are pos-

sible. Let P2 be the phenotype space, and its elements p = (x, y) ∈ P2 be110

the possible phenotypes; the components x, y represent respectively the value

of the two quantitative traits defining the phenotype. Each phenotype p maps

into its corresponding fitness value f = F (p) according to the smooth fitness

function F (p); the particular choice of F (p) determines the fitness landscape

of the system. Two phenotypes p and q are defined to be neutrally related if115

they share the same fitness, that is if F (p) = F (q). Then, a neutral subset

with fitness value f is the collection of all neutrally related phenotypes p with

fitness F (p) = f . For the sake of simplicity we will consider only single-peak

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


landscapes, which have been employed in a variety of biological contexts [33],

the study of more complex topographies going beyond the scope of this work.120

Redundancy of the landscape is ultimately due to the degeneracy of the

fitness function F . Here, we shall compare two possible versions of such degen-

eracy, symmetric (panel b Fig. 1) and asymmetric (panel c Fig. 1). In panel b of

Fig. 1, phenotypes are identified by the trait coordinates p = (x, y). However,

their fitness F (p) depends only on the distance r(x, y) from the centre. Pheno-

types lying on the circle of radius r will share the same fitness value regardless

of their angular position θ, thus forming neutral subsets. Hence, from the pair

of trait variables x and y, we can construct a pair of (respectively) selective and

neutral variables (r, θ), with which both the phenotype and the fitness dynamics

can be described. The phenotype distribution of a population evolving on the

symmetric landscape is described by the function n(x, y) in the original traits

coordinates, or equivalently by n(r, θ) in the corresponding polar coordinates.

Given the circular symmetry, the marginal fitness distribution N s(r) is obtained

by integrating the phenotype distribution over the angular coordinate θ,

N s(r) =

∫ 2π

0

n(r, θ) r dθ, (1)

that is the radial distribution. We remark that the landscape exhibits the afore-

mentioned redundancy-fitness trade-off, as the size of neutral subsets varies (lin-

early in our minimal model) in opposition to fitness.

125

In the asymmetric case, we assume that the traits x and y directly express,

respectively, selective and neutral effects. So the x axis will represent the selec-

tive direction, and the y axis the neutral direction (panel c of Fig. 1), with the

fitness function F depending on x only. The trait space is then closed by the

boundary curve B(x). Neutral subsets are given by vertical lines, that are the

collections of points with equal value of the selective trait x. From the pheno-

type distribution n(x, y) in the original trait coordinates, the marginal fitness

distribution N a(x) in the asymmetric landscape is given by integration over the
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neutral variable y,

N a(x) =

∫ B(x)

0

n(x, y) dy. (2)

The size of neutral subsets depends on the choice of B(x): taking a monoton-

ically decreasing function of x leads to the desired redundancy-fitness trade-off,

equivalent to the symmetric landscape.

Replicator-Mutator Equation (RME).

The deterministic integro-differential formulation of the mutation-selection130

dynamics dates back to the ‘continuum-of-alleles’ model introduced by Crow

and Kimura [34, 35], and can be derived from stochastic mechanistic models via

appropriate continuum limits [24, 36]. Throughout the work, with the generic

term ‘individuals’ we refer to the replicating units displaying phenotypic hetero-

genity, upon which natural selection and mutations act, be they RNA sequences,135

bacteria or more complex forms of life.

We consider an infinite asexual population. Finite size effects, leading to

genetic drift, are thus neglected. The state of the population at time t is de-

termined by the phenotype distribution n(p; t). Individuals change their phe-140

notype due to mutation and selection: changes due to mutations are modelled

by the Laplacian operator ∇2, that is the local diffusion operator acting on

the phenotype space P2, with mutation coefficient µ; concomitantly, changes

due to selection occur at rate γ, and are modelled by the usual replicator term

popular in Evolutionary Game Theory [37]. The deterministic temporal evolu-145

tion of the phenotype distribution n(p; t) for a large population is given by the

Replicator-Mutator Equation (RME henceforth):

dn(p; t)

dt
= µ∇2n(p; t) + γ n(p; t)

(
F (p)− F [n(p; t)]

)
, (3)

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


subject to the conditions, ∫
P2

n(p; t) dp = 1

n̂ · ∇n(p; t) |p∈∂P2
= 0

 ∀ t, (4)

and with F [n(p; t)] denoting the average fitness of the population at time t:

F [n(p; t)] =

∫
P2

F (p)n(p; t) dp. (5)

The conditions 4 correspond to the two physical constraints satisfied by the

system: conservation of the total population at every time, because neither mu-150

tations nor competition alter the number of individuals; and zero flux across the

boundaries of the phenotype space, due to reflecting nature of mutations close

to the boundary (n̂ being the unit vector normal to the boundary ∂P2).

The mathematical conditions for which the RME has stationary solutions155

have been extensively studied [38, 39]. However, explicit analytical solutions

are rare because they are hard to obtain (see e.g. [40, 41, 42]). Moreover,

multidimensional cases have generally been treated numerically [43]. In order

to find the stationary solutions, we employ a self-consistent technique (detailed

in the Supplementary Information, section A) that has been applied in similar160

contexts [25, 44, 45].

Note that, although Eq. 3 contains the timescale γ−1 and the diffusive co-

efficient µ, the stationary solution will depend on only one relevant parameter

δ = γ
µ , that determines the relative importance of selection and mutation. In the165

following, we will make simplifying assumptions for the space P2 and the fitness

function F (p), in order to facilitate analytical calculations on the model. This

will allow us to derive useful forms for both the phenotype and the marginal

fitness distributions, and compare the differences between symmetric and asym-

metric landscapes.170
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Simulations

All the analytical results are confirmed by simulating the corresponding fi-

nite size stochastic agent-based dynamics. As expected, consistency with the

deterministic description is obtained when the population size is very large (or-

der of 105 individuals). The study of finite size effects is possible [46], although175

it goes beyond the scope of the paper. Simulations have been performed with

Java-based language “Processing”, and detailed information can be found in

the Supplementary Material, section E. The Processing codes are freely avail-

able here.

Results180

Trait distribution on non-redundant landscapes.

Let us first consider a simple one-dimensional case where the fitness land-

scape is not redundant. This case will provide the baseline results for compari-

son with the dynamics on redundant landscapes, to elucidate the effects of the

redundancy-fitness trade-off.185

Let the variable x ∈ P1 = [0, 1] be the single quantitative trait of inter-

est. Let F (x) be a non-degenerate monotonically increasing function, such that

x = 1 represents the optimal trait, while x = 0 the least fit one. Clearly, since

F (x) is not degenerate, the corresponding fitness landscape is not redundant;190

each phenotype x is uniquely determined by its fitness value. For the sake of

simplicity, we shall consider the linear fitness function F (x) = x, for which

analytical stationary solutions can be found (mathematical details in the Sup-

plementary Information). However, any monotonic fitness function will produce

qualitatively equivalent distributions.195

In Fig. 2, we plot the analytical distribution n(x) for different values of δ

(solid lines), and compare it with results from numerical simulation (circles and

squares). For δ = 0, that is in the purely neutral scenario, the distribution is

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://github.com/LeonardoMiele/Redundancy-Selection-RME
https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


flat since every phenotype is equally likely to survive competition, regardless of200

their fitness value. For δ > 0, the distribution is monotonic, always showing an

absolute maximum at x = 1 (the optimal phenotype), as well as an absolute min-

imum at x = 0 (the least fit one). On increasing δ (that is, increasing selection

strength or decreasing mutation coefficient), the distribution becomes narrower

around the maximum. These profiles represent qualitatively the prediction of205

the standard survival-of-the-fittest paradigm: the most successful phenotype is

always the one with the fittest trait, and the population is distributed around

the peak of the landscape.

Trait distribution on redundant landscapes.

In redundant landscapes, the phenotype distribution n(x, y; t) evolves in time210

according to the two-dimensional RME. In general, it is not possible to find an

exact closed solution for the stationary distribution. However, in some cases

it is possible to obtain spectral solutions. In the following, we shall consider

an asymmetric landscape with triangular shape, that is for B(x) = 1− x (with

0 ≤ x ≤ 1). This specific choice is made in order to facilitate the mathematical215

tractability of the asymmetric problem. This choice also facilitates the com-

parison with the symmetric landscape, since the redundancy-selection trade-off

decreases linearly with fitness in both cases (see Supplementary Material, sec-

tions C and D for mathematical details). However, the same qualitative results

are expected to hold for any choice of monotonically decreasing boundary B(x).220

In Fig. 3, we explore the differences between the phenotype distributions

n(x, y) and the marginal fitness distributions N a,s(f), at stationarity. The for-

mer describes the full distribution of traits over the two-dimensional space P2.

By contrast, the latter describes the one-dimensional distribution of fitness val-225

ues f , and is obtained by integrating the former over the neutral variables.

In panels a-d of Fig. 3, we plot the analytically obtained phenotype dis-

tributions on the trait plane (x, y): for the asymmetric case, the iso-density
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contour lines (a and c); for the symmetric case, the color-map projection (b230

and d). Color code represents the density of n(x, y), according to the respective

color-bars. With the exception of the purely neutral case δ = 0, for which the

distribution is trivially flat (not shown), the phenotype distributions increase

monotonically in the selective direction, i.e. the x direction for the asymmetric

case, and the radial direction for the symmetric one. In all cases, the distribu-235

tions display an absolute maximum located at the phenotype with the optimal

trait. Similarly to the one-dimensional model, these results again indicate a

survival-of-the-fittest paradigm, where fitter individuals are more abundant in

the population, and the other types are distributed around the optimal with a

steepness that increases as δ increases.240

Let us now consider the behaviour of the marginal fitness distribution N s(f)

and N a(f) for, respectively, symmetric and asymmetric landscapes. In panels

e-f of Fig. 3, we compare analytical (solid lines) and numerical (circles and

squares) profiles of the stationary marginal fitness distributions, for the same245

values used in the one-dimensional model δ = 0, 10, 30.

For δ = 0, the purely neutral case, the flat uniform distribution in the two-

dimensional phenotype space results in the monotonically decreasing linear pro-

file. Hence, for δ = 0 the absolute maximum is found at x = 0, which is the

most redundant fitness value. Thus, in the absence of selection pressure, fitness250

values belonging to larger neutral subsets are rewarded, and a scenario consis-

tent with the survival-of-the-flattest effect is obtained [47].

For small values of δ, the profiles are still monotonically decreasing yet consider-

ably different from the purely neutral case, displaying an increase in the density

for intermediate fitness values (see δ = 10 case).255

For larger values of δ, the fitness profile becomes non-monotonic; the previously

absolute maximum is now a local one, with the emergence of a new local min-

imum and of a new absolute maximum. This new absolute peak is located at

an intermediate fitness value (see δ = 30 case).

260
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In Fig. 4, the positions of the extrema of the fitness profile are shown for a

wide range of effective selection pressure values, for asymmetric landscape (the

symmetric case is not shown, as it provides the same qualitative result). For δ .

14, the profiles are all monotonically decreasing and have an absolute maximum

at f = 0; we call this regime redundancy-dominated, because the most redundant

trait is the most abundant in the population. When δ crosses a threshold

value δth, monotonicity is broken, with the emergence of a new peak, that then

becomes the absolute maximum at higher δ; we call this the sub-optimal regime,

since the new maximum is located at an intermediate fitness value instead of

the optimal one. Increasing selection pressure, the maximum approaches the

optimal value f = 1, recovering the survival-of-the-fittest scenario in the limit

of infinite selection pressure. For small values of δ in the asymmetric case with

linear fitness and triangular shape, a closed analytical approximation of the

marginal fitness distribution N a(f) can be obtained. In the Supplementary

material, section C, we show that performing a linear perturbation expansion

on δ, we get:

N a(f) = 2(1− f) + δN a
I(f) +O

(
δ2
)
, (6)

with

N a
I(f) =

4

3
(1− f)B4

(
f

2

)
− 8

15
B5

(
f

2

)
+

4

15
B5 (f) , (7)

where Bk(z) is the kth Bernoulli polynomial of the variable z. This approxima-

tion then predicts that the average fitness of the population φ at stationarity

increases linearly with selection pressure, according to:

φ =
1

3
+

1

189
δ +O

(
δ2
)
. (8)

This approximation also predicts the emergence of intermediate local max-

ima and minima in the marginal fitness distribution for δth ' 14 (see Sup-265

plementary Figure 1), which is consistent with the results obtained with the

spectral solution.
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Marginal fitness dynamics

For the symmetric landscape, the marginal fitness distribution N s(f) is ob-

tained performing the temporal derivative of Eq. 1, and replacing the corre-

spondent RME (details in the Supplementary Information, section D). We find

(recall that f = 1− r):

dN s(f ; t)

dt
= µ

{
∂2N s(f ; t)

∂f2
+

∂

∂f
[v(f)N s(f ; t)]

}
+ γN s(f ; t) (F (f)− F [N s(f ; t)]) = 0,

(9)

with

v(f) =
1

1− f
. (10)

For an asymmetric landscape of general boundary B(x), the marginal fitness

distribution N a(f ; t) is obtained performing the temporal derivative of Eq. 2,

and replacing the correspondent RME (details in the Supplementary Informa-

tion, section C). In this case, we obtain (recall that f = x):

dN a(f ; t)

dt
= µ

{
d2N a(f ; t)

df2
+ F1(f ; t) + F2(f ; t)

}
+ γN a(f ; t) (F (f)− F [N a(f ; t)]) = 0,

(11)

with

F1(f ; t) =
[
B′2(f)− 1− 2B′(f)

] ∂n(f, y; t)

∂f
|y=B(f)

(12)

F2(f ; t) = −B′′(f)n(f, y; t)|y=B(f),

where the prime notation indicates the derivative with respect to the selective270

variable f . The dynamics of the marginal fitness distribution in the symmetric

(Eq. 9) and asymmetric (Eq. 11) landscape, display significant differences, which

are discussed in detail below.

Discussion

In this work, we have considered both symmetric (Fig. 1, panel b) and asym-275

metric (Fig. 1, panel c) fitness landscapes. Both cases display selective degrees

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


of freedom (namely x and r), and neutral degrees of freedom (namely y and

θ), which are entwined by a general redundacy-fitness trade-off. However, the

different nature of the trade-off generates differences, that are detectable at the

marginal fitness dynamics level. Here we shall discuss the consequent analogies280

and differences, as well as their practical implications.

Contrary to their non redundant counterpart (Fig. 2), we have shown that

redundant landscapes display a dual behaviour, depending on the dynamics’

level of description: full phenotype distributions exhibit survival-of-the-fittest285

patterns (Fig. 3, panels a-d), where most of the population lies in proximity of

the landscape optimum; on the other hand, their correspondent marginal fitness

distributions may exhibit sub-optimal patterns (Fig. 3, panels e-f), where most

of the population displays less fit but more redundant traits (Fig. 4).

For triangular geometry, we have calculated the marginal fitness distribution290

(Eq. 6) and the average fitness value (Eq. 7), in the weak selection approxi-

mation. We observe that the above formulae provide a good estimate of the

state of the system up to δ ' 30, above which they break down due to second

order selective effects (for details, see Supplementary Material, section C and

Supplementary Figure 2). This approximation might also be used as a baseline295

result to measure landscape’s geometric deviations from the triangular shape.

Acknowledging this duality of behaviours, can help improving the fields in

evolutionary epidemiology [48, 49] and cancer dynamics [50, 51], where pathogens

are modelled as phenotype-structured populations, and the information on the300

state of the distributions can be used to design treatment policies.

For example, in a viral or bacterial population, suppose that x quantifies the

resistance to a drug or antibiotic, so that larger x confers higher fitness to

its carriers [52]. Then, one might expect the population to be dominated by

individuals with highest resistance (i.e. optimal fitness), and a therapy would305

be developed to counter ‘survival-of-the-fittest’ distributions, hence maximising

the intervention on the traits carrying the maximal resistance value. However,
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if such a selective trait is entwined with another, neutral one (i.e. not affect-

ing the resistance) via a redundancy-fitness trade-off, then the distribution will

very likely be dominated by individuals with sub-optimal resistance, and the310

therapy would erroneously target non-redundant traits, with the possibility of

unwittingly helping sub-optimal strains to mutate and become fitter.

On the other hand, suppose that an experimentalist measures the growth rates

in a rapidly mutant population as a function of x, and obtains a profile simi-

lar to panels e-f of Fig. 3, with a peak in the distribution at an intermediate315

value x = x̃ with 0 < x̃ < 1. Then they might erroneously conclude that x̃

confers the optimal fitness value, whereas, in fact, the trait x̃ dominates the

population due to its redundancy, rather than due to a selective advantage. In

the ‘worst case’, by confusing a redundancy-dominated fitness profile with a

one-dimensional survival-of-the-fittest distribution, one would infer a direction320

of selection opposite to the true one, and conclude that trait x = 0 has optimal

fitness.

In light of the above practical examples, a proper characterisation of neu-

tral contributions is crucial to understand the dual behaviour between full and325

marginal trait distributions. Neutral information featuring redundant land-

scapes is often modelled with an effective ‘mutational robustness’ term, where

the redundancy-selection trade-off is implicitly accounted for, by introducing

some bias to mutations [10, 16, 53, 54, 55]. In these effective formulations, the

marginal fitness distribution N (f) would be governed by some effective RME330

dynamics depending only on the selective variable f , such as

dN (f ; t)

dt
= M̂eff [N (f ; t)] N (f ; t) + N (f ; t)

(
Feff(f)− F eff[N (f ; t)]

)
, (13)

where the interplay between neutrality and selection would be described by ei-

ther/both a modified ‘mutational operator’ M̂eff [N (f ; t)], and/or a modified

‘effective fitness’ function Feff(f) (which is also similar to the case of slowly mu-

tant populations). However, the above effective formulation is not general, and335
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is not appropriate unless the landscape is symmetric.

In this work we have derived the marginal fitness dynamics, by explicit in-

tegration over the landscape’s neutral degrees of freedom. In the symmetric

landscape, marginalisation leads to a new drift term ∂
∂f v(f), where v(f) plays

the role of a velocity field pushing individuals away from the optimum. This340

contribution is referred as a ‘mutational entropy’ biasing mutations due to re-

dundancy of the landscape [25, 27]. Thus, the marginal dynamics Eq. 9 is

consistent with the effective RME formulation Eq. 13, with:

M̂eff [N (f ; t)] = µ

{
∂2

∂f2
+

∂

∂f
v(f)

}
(14)

being the new effective mutational operator.

However, in asymmetric landscapes with generic boundary profile B(x), marginal-345

isation generates contributions of different nature. In Eq. 11, mutations and

competition are still captured by, respectively, a local diffusion term and a repli-

cator term. However, marginalisation generates the new contributions F1(f ; t)

and F2(f ; t). The magnitude of such terms depends on the landscape’s geome-

try, that is on the slope B′(f) and curvature B′′(f) of the boundary profile.350

Moreover, from Eq. 12 we observe that these contributions depend on the full

phenotype distribution n(f, y; t), thus making the marginal dynamics Eq. 11 an

inohomogeneous differential equation. Indeed, the effective formulation Eq. 13

relies on homogeneous differential equations, and it cannot be equivalent to the

inhomogeneous one Eq. 11 derived by marginalisation. Therefore, neutral con-355

tributions deriving from asymmetric landscapes cannot be identified as ‘effective

operators’ acting on the fitness level of description.

This imposes severe limitations on the utility and exactness of effective formu-

lations, for phenotype-structured populations. Indeed, our calculations have

shown that solving the high-level fitness dynamics still requires the knowledge360

of the underlying low-level trait details, and that this issue will occur whenever

asymmetries in the trait-space are present.
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The new terms due to asymmetry, F1(x; t) and F2(x; t), have the appearance

of effective source contributions to the dynamics, analogous to a spontaneous365

generation of individuals, if interpreted in the context of a lower-dimensional

(non-redundant) fitness landscape. Note that the marginal one-dimensional

profiles, shown in Fig. 3 panels e-f, display a non-zero gradient at the boundaries

of the fitness domain, which would require a flux to be present in a truly one-

dimensional system. This feature cannot be present in profiles generated by370

one-dimensional RME models, due to the physical constraints (as, we recall,

the total population size is conserved and the system has no flux boundary

conditions), unless they are introduced ad hoc. We call these emerging sources

effective because they are generated by the asymmetry in the neutral degrees

of freedom, that are unobserved at the marginalised fitness level.375

Conclusions

In this work, we have investigated the RME dynamics of phenotype-structured

populations, on minimally redundant landscapes. This kind of dynamics is

widely employed in many biological (and other) research areas: population ge-

netics [56], pathogenic evolution [52, 57, 58], RNA evolution [25], game theory380

[42, 59], language evolution [60]. Its application depends on the identification

of rapidly mutating quantitative traits, responsible for phenotypic heterogene-

ity in the individuals composing the population. Examples of such traits are

cytotoxic-drug resistance [61], pathogenic virulence [52, 58] and transmission

[57], antigenic types [62, 63] and hosts’ resistance to infection [64].385

Concomitantly with such potential selective traits, accounting for neutral

traits is expected to result into asymmetric fitness landscapes, featuring redundancy-

selection trade-offs. Particularly, asymmetric landscapes are expected to be

found whenever metabolic trade-offs occurs between traits. For instance, the390

MacArthur’s consumer-resource model [65], is employed to investigate the co-

existence of communities competing for a common pool of resources [66, 67].
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When multiple resource types are present, the different rates of consumption

can be modelled as mutating quantitative traits. If an energetic constraint lim-

its cells’ ability of consumption due to metabolic trade-offs, then the population395

will evolve on a asymmetric trait space [68].

Similar mechanisms are expected to lead to asymmetric landscapes, in presence

of life-history trade-offs. An ideal pathogen would be characterised by high infec-

tion transmission, and low induced mortality. In practice, such super-pathogens

are rarely observed, whereas milder strains are more frequent. This observation400

is generally explained by acknowledging the existence of a life-history trade-off

between transmission and virulence [69], that, in fitness terms, might relate to

trade-offs akin to the redundancy-selection one.

Asymmetric landscapes also emerge whenever the phenotype space effectively

available is bounded by Pareto-like fronts, outside of which lie all those phe-405

notypic configurations that long-term evolution has excluded, due to their sys-

tematic inefficiency [70, 71]. Such trait-spaces have been proposed to explain

observed patterns in gene regulation [72], and bacterial growth [73]. Triangular-

shaped landscapes, that herein have been used to facilitate calculations, have

actually been observed in animal morphology [74, 75, 76]. In game theory, tri-410

angular geometries also characterise three-strategies games [77], and have been

recently observed to emerge in a numerical study of a rapidly mutant version

of the Ultimatum Game [78]. Ultimately, the experimental quantification of

the landscape’s asymmetries in the neutral directions is as important as that of

selective traits.415

In our theoretical work, selection has been introduced by explicitly consider-

ing a fitness landscape F , and an arbitrary competition rate γ. However, in ap-

plied contexts, the fitness landscape emerges from the mechanistic interactions

associated with the quantitative trait under analysis, whose measurable param-420

eters combine to form effective competition rates [79, 80]. On the other hand,

mutations have been modelled by local diffusion over the trait space, charac-

terised by a diffusion coefficient µ. Mutations are intended as a global, effective
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representation of genetic (or higher level) changes that induce phenotypic mod-

ification, ignoring the extensive knowledge of the underlying molecular details425

[81]. This term is appropriate when mutations induce small perturbations on

the quantitative traits, i.e. when the components mutate into ’phenotypically

close’ variants. This is not necessarily the case; for instance, when mutations

induce a major disruption of the original phenotype, they cannot be modelled

by a local diffusion operator (as is the case in the house-of-cards model [82]).430

To conclude, we consider our qualitative results to be general and to be

relevant whenever rapidly mutant populations evolve on asymmetric redundant

fitness landscape. They do not depend on the specifics of the model (which here

have been chosen in order to facilitate the mathematical analysis). Our results435

convey an important message: in general, neutral effects will not be properly

captured by effective formulations of mutational robustness; rather, they will

generate effective sources at the marginalised fitness-level description. In gen-

eral, these new contributions will depend on the geometry of the landscape, and

the phenotype composition of the population, so that all the microscopic trait440

information (even for the neutral traits) must be retained in order to properly

derive the observable fitness dynamics.

The mathematical procedure herein presented allows the explicit calculation

of the trait distribution at stationarity and could be employed to straightfor-445

wardly implement redundancy in previous one-dimensional models, so as to

include neutral effects. Moreover, it could improve the accuracy of models in

evolutionary epidemiology, and the consequent predictions in terms of disease

management. As a result, the most effective interventions might not be those

that focus on the extremes of the sole fitness-related traits. To interpret such450

a study, it will be important to consider the relationship between the relevant

selective components of traits, as well as their the degree of redundancy in all

of the other, neutral, components.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.08.439005doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.08.439005
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments

LM is grateful to Robert West and Fabio Peruzzo for fruitful discussion455

and comments on an earlier version of the manuscript, to Lorenzo Metilli for

help with figures, and to Gabriele Lobbia and Giovanni Soldà for computational
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Figures

Figure 1: Minimal redundant fitness landscapes. Panel a, typical two-dimensional

representation of fitness landscapes, exhibiting the redundancy-fitness trade-off: regardless of

the topographic details, the size of the neutral subsets decreases as one moves towards the top

(adapted from [32]). Panels b - c: respectively, symmetric and asymmetric redundant fitness

landscapes, and projections of the correspondent phenotype spaces, in the trait coordinates

(x, y). For the symmetric case, fitness depends on the radial distance r from the optimum,

regardless of the angular position θ. For the asymmetric case, fitness is proportional to the

trait x determining the direction, while the trait y is neutral. Dashed black lines represents

examples of neutral subsets. Red dots identify the optimum of the respective landscapes. In

both cases, the size of the neutral subsets decreases in the selective direction, by virtue of the

redundancy-fitness trade-off.
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Figure 2: Stationary phenotype distribution on non redundant landscape. Solid

lines refer to the analytical solution of the one-dimensional RME, while circles and squares

correspond to agent-based numerical simulation of N = 105 individuals. With the exception

of the neutral case δ = 0 (dashed line), the distribution is always monotonically increasing

towards the optimal trait x = 1, indicating the standard survival-of-the-fittest scenario. Inset:

simple fitness landscape for the sole selective variable x.
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Figure 3: Stationary phenotype distributions and marginal fitness distributions

for redundant landscapes. Phenotype distributions: contour lines of iso-density are shown

for the asymmetric case (a and c), while colormaps are shown for the symmetric case (b

and d). In both cases and for every value of δ > 0, the distribution has maximum density

in correspondence of the optimal trait (that with max fitness), exhibiting a survival-of-the-

fittest behaviour. However, the corresponding marginal fitness distributions (e-f) display

rather different behaviours depending on the value of δ. Particularly, we distinguish the

redundancy-dominated profile (squares δ = 10), where the most redundant fitness values are

favoured; and the sub-optimal profile (circles δ = 30), where the fitness distributions exhibit

maximum at an value, smaller than the optimal one. Solid lines refer to analytical solutions

of the RME, while scatter plots to agent-based simulations with N = 105 individuals.
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Figure 4: Marginal fitness behaviour. The different regimes of the marginal fitness distri-

bution N (f) are identified by tracking the extrema of its spectral solution at the variation of

selective pressure δ. Diamonds (circles) refer to maxima (minima). Filled (empty) symbols

refer to absolute (local) extrema. A threshold value δth ' 14, estimated with the perturba-

tive solution, separates the two qualitative behaviours. Below δth, the fitness distribution is

dominated by the most redundant fitness value (redundancy-dominated regime). Above δth,

the distributions exhibit sub-optimality, as they are dominated by intermediate fitness val-

ues. Then, the survival-of-the-fittest scenario is recovered in the limit of very large selection

(δ → ∞).
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