

1 The mitotic spindle mediates nuclear migration through an extremely narrow infection  
2 structure of the rice blast fungus *Magnaporthe oryzae*

3

4 Mariel A. Pfeifer and Chang Hyun Khang<sup>#</sup>

5 Department of Plant Biology, University of Georgia, Athens, GA 30602, USA

6

7 Running head: Nuclear migration through the penetration peg

8

9 <sup>#</sup>Address correspondence to Chang Hyun Khang, ckhang@uga.edu

10

11 Abstract word count: 230 (Abstract) + 161 (Importance)

12 Text word count: 6505 (no spaces, excludes Materials and Methods,

13 Acknowledgements, References, and Figure Legends)

14

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

15

### Abstract

16         The blast fungus, *Magnaporthe oryzae*, causes severe destruction to rice and  
17         other crops worldwide. As the fungus infects rice, it develops unique cellular structures,  
18         such as an appressorium and a narrow penetration peg, to permit successful invasion of  
19         host rice cells. Fundamental knowledge about these cellular structures and how  
20         organelles, such as the nucleus, are positioned within them is still emerging. Previous  
21         studies show that a single nucleus becomes highly stretched during movement through  
22         the narrow penetration peg in an extreme nuclear migration event. Yet, the mechanism  
23         permitting this nuclear migration event remains elusive. Here, we investigate the role of  
24         the mitotic spindle in mediating nuclear migration through the penetration peg. We find  
25         that disruption of spindle function during nuclear migration through the penetration peg  
26         prevents development of invasive hyphae and virulence on rice. Furthermore, regulated  
27         expression of conserved kinesin motor proteins, MoKin5 and MoKin14, is essential to  
28         form and maintain the spindle, as well as, properly nucleate the primary hypha.  
29         Overexpression of MoKin5 leads to formation of aberrant microtubule protrusions, which  
30         contributes to formation of nuclear fragments within the appressorium and primary  
31         hypha. Conversely, overexpression of MoKin14 causes the spindle to collapse leading  
32         to the formation of monopolar spindles. These results establish a mechanistic model  
33         towards understanding the intricate subcellular dynamics of extreme nuclear migration  
34         through the penetration peg, a critical step in the development of rice blast disease.

35         **Importance.** *Magnaporthe oryzae*, also known as the blast fungus, is a  
36         formidable hinderance to global food production, including rice. The destructive fungal  
37         pathogen develops highly-specialized cells and structures, such as appressoria and

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

38 penetration pegs, to permit successful invasion of rice cells. Our understanding of *M.*  
39 *oryzae*'s fundamental biology during host cell invasion and colonization is still  
40 developing. For instance, it is not yet known how organelles, such as the nucleus,  
41 migrate through the narrow penetration peg. Moreover, few previous studies examine  
42 the role of motor proteins in *M. oryzae*. In this study, we determined that the mitotic  
43 spindle propels a single nucleus through the penetration peg to permit successful  
44 development of fungal hyphae inside the first-invaded rice cell. We also identified two  
45 conserved kinesin motor proteins, MoKin5 and MoKin14. Our analyses suggested that  
46 MoKin5 and MoKin14 exhibit canonical functions in *M. oryzae* during rice infection. This  
47 study addressed long-standing questions in rice blast biology, and our results offer  
48 opportunities for future research.

49 **Keywords.** rice blast, penetration peg, extreme nuclear migration, kinesin-5,  
50 kinesin-14, microtubule protrusions, nuclear fragmentation, mitosis

51

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

52

### Introduction

53 Nuclear migration and proper nuclear positioning are fundamental eukaryotic  
54 processes. Disruption of nuclear migration, which can lead to improper nuclear  
55 positioning, is linked to developmental defects in lower eukaryotes and disease states in  
56 humans and higher eukaryotic organisms (1). Seminal studies of nuclear migration and  
57 positioning in fungi revealed that cellular components, such as microtubules (MTs) and  
58 motor proteins (i.e., kinesins and dynein) are required for successful nuclear migration  
59 (2-4). Studies of nuclear migration in various organisms underscore that mechanisms of  
60 nuclear migration can be complex, involving the eloquent coordination of cytoskeletons  
61 and various motor proteins within the context of the cell cycle. Mechanisms of nuclear  
62 positioning vary in fungi (5). For example, in mature hyphae of the ascomycete  
63 *Neurospora crassa*, cytoplasmic bulk flow passively moves nuclei forward (6). Other  
64 fungi, like the basidiomycete *Ustilago maydis*, utilize a mitotic nuclear migration event to  
65 deliver a newly-divided nucleus to the bud (7). In nuclear migration events that occur  
66 during mitosis, the spindle is a key player. Spindles are elaborate cellular machines that  
67 ensure genetic information is equally divided between mother and daughter cells.  
68 Spindles are comprised of MTs, spindle pole bodies (SPBs), and condensed  
69 chromosomes called chromatids, along with motor and other MT-associated proteins.

70 One powerful framework used to explain the intricacy of spindle formation, as  
71 well as elongation and maintenance of the spindle throughout mitosis is the force-  
72 balance model (8). The force-balance model establishes that spindles are formed and  
73 maintained by motor proteins exerting antagonizing forces upon SPBs. In many fungi  
74 and other eukaryotes, these motor proteins are members of the kinesin-5 and kinesin-

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

75 14 superfamilies. Canonical functions of kinesin-5 and kinesin-14 motor proteins are  
76 defined. Kinesin-5 motor proteins walk towards the growing plus-ends of MTs and exert  
77 an outward force on SPBs (9). Kinesin-14 motor proteins walk towards the minus-ends  
78 of MTs and exert an inward force on SPBs (10). However, not all eukaryotes rely on  
79 kinesin-5 and kinesin-14 motor proteins to form and maintain a spindle. For example,  
80 kinesin-5 is dispensable in the human pathogenic fungus, *Candida albicans* (11). Within  
81 *Drosophila* embryos, dynein provides the antagonistic inward force instead of kinesin-14  
82 (12). While the mitotic roles of kinesin-5 and kinesin-14 are defined during development  
83 of a number of model organisms, much less is known about the functions of these  
84 proteins in spindle formation and function in diverse biological contexts. For instance,  
85 what are the roles of these motor proteins in forming a spindle within eukaryotic  
86 pathogens as pathogens infect hosts?

87 The blast fungus, *Magnaporthe oryzae* (anamorph *Pyricularia oryzae*), is a plant  
88 pathogen capable of grievous damage to cereal crops worldwide, including rice, wheat  
89 and finger millet (13-16). The *M. oryzae* and rice pathosystem serves as a valuable  
90 model towards understanding the nuclear migration dynamics of a pathogen during host  
91 infection. Rice blast infection is initiated when conidia of *M. oryzae* attach to rice leaves.  
92 Conidia germinate and develop appressoria. Appressoria are highly-melanized infection  
93 structures. Within appressoria, huge amounts of turgor pressure accumulate, and  
94 cytoskeletons, such as F-actins and septins, rearrange at the appressorial pore to give  
95 rise to the first fungal structure to enter the rice cell, the penetration peg (17, 18). The  
96 penetration peg is narrow (~0.7  $\mu$ m) (19). As the fungus continues to grow inside the  
97 first-invaded rice cell, bulbous invasive hyphae (IH) develop. Once the first-invaded rice

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

98 cell is completely colonized by the fungus, the fungus seeks pit fields, housing  
99 plasmodesmata, to continue proliferating within rice cells (20). At plasmodesmata in the  
100 first-invaded rice cell, the fungus develops another narrow structure called the IH peg  
101 (21). The IH peg serves as a conduit to connect IH within the first-invaded rice cell to IH  
102 growing within adjacent rice cells. Eventually disease lesions appear on the surface of  
103 rice leaves as the fungus spreads throughout the plant.

104 The nuclear migration dynamics of *M. oryzae* are best characterized during  
105 vegetative hyphal growth and during the early events of rice infection (22). *Magnaporthe*  
106 *oryzae* is mononuclear, i.e., each cell contains a single nucleus. During early rice  
107 infection, a single nucleus, referred to here as the mother nucleus, is located within the  
108 appressorium (23, 24). The newly formed migrating nucleus, here called the daughter  
109 nucleus, endures an extreme nuclear migration event, while the mother nucleus  
110 remains within the appressorium. (Fig. 1A). During this extreme nuclear migration event,  
111 the mother nucleus with a diameter of ~ 2  $\mu$ m begins to divide within the appressorium.  
112 Subsequently, the daughter nucleus becomes highly stretched (Fig. 1A, middle panel)  
113 as it transits the constricted penetration peg that has a diameter of ~ 0.7  $\mu$ m (23). The  
114 daughter nucleus then quickly moves to the apical region of the primary hypha located  
115 inside the first-invaded rice cell (23, 24). Typically, this process lasts ~5 minutes, with  
116 the daughter nucleus traveling over 20  $\mu$ m from the appressorium through the  
117 penetration peg into the primary hypha (23). Although the general behavior of the  
118 mother and daughter nucleus are characterized during this extreme nuclear migration  
119 event, the cytoskeletons involved in this process are unknown. Based on studies of  
120 subsequent *M. oryzae* infection stages, it is likely the spindle is involved. During

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

121 development of bulbous IH inside the first-invaded rice cell, the spindle nucleates newly-  
122 formed IH during mitotic nuclear migration (25, 26). The spindle also delivers a newly-  
123 formed nucleus to IH growing in adjacent rice cells through the narrow IH peg. During  
124 movement through the IH peg, the spindle can adopt a striking geometry to facilitate  
125 movement of the nucleus (26). Intriguingly, the migrating nucleus with a diameter of ~2  
126  $\mu\text{m}$  becomes highly elongated as it moves through the IH peg with a diameter of ~0.5,  
127 which is akin to the nuclear morphology of the migrating daughter nucleus during  
128 movement through the penetration peg at earlier stages of rice infection (25).

129 Despite evidence that the spindle is involved in nuclear migration at other *M.*  
130 *oryzae* infection stages, there is no direct evidence that the spindle mediates extreme  
131 nuclear migration through the penetration peg during initial rice cell colonization.  
132 Moreover, kinesin-5 and kinesin-14 motor proteins are yet to be discovered within *M.*  
133 *oryzae*. The goal of this study was twofold. First, we determined that the spindle is  
134 involved in nuclear migration through the penetration peg using confocal live-cell  
135 imaging of this remarkable cellular phenomenon. Second, we identified kinesin-5 and  
136 kinesin-14 motor proteins in *M. oryzae*. Identification of kinesin-5 and kinesin-14 in *M.*  
137 *oryzae* allowed us to develop an approach to genetically perturb spindle function  
138 specifically during extreme nuclear migration through the penetration peg. Our live-cell  
139 imaging observations coupled with experiments genetically perturbing spindle function  
140 demonstrate that the spindle mediates nuclear migration through the penetration peg.

141

## Results

### 143 Dynamics of the spindle and the nucleus during extreme nuclear migration

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

144 We determined that the spindle formed and elongated during nuclear migration  
145 through the penetration peg using confocal live-cell imaging of a fluorescent *M. oryzae*  
146 strain. In this strain, microtubules (MTs) were labeled with  $\beta$ -tubulin-GFP  
147 (pseudocolored cyan throughout figures), and the nucleus was labeled with histone H1-  
148 tdTomato (RFP). We inoculated the fungal strain onto susceptible rice sheaths and  
149 observed nuclear migration through the penetration peg (Fig. 1B). Prior to nuclear  
150 migration through the penetration peg, the spindle bisected the mother nucleus within  
151 the appressorium (Fig. 1B, 00:00). The spindle and the mother nucleus rotated to  
152 become aligned to the axis of the appressorial pore and penetration peg (Fig. 1B,  
153 comparing 00:00 to 03:52). During migration through the penetration peg, the daughter  
154 nucleus stretched and separated (Fig. 1B, 06:24; See *Fig. 3A*). The mother nucleus  
155 remained within the appressorium. The daughter nucleus was delivered to the apical  
156 region of the primary hypha as the spindle elongated (Fig. 1B, comparing 06:24 to  
157 10:12). During this nuclear migration event, the daughter nucleus traveled a total of 22  
158  $\mu\text{m}$  from the site where the spindle first bisected the mother nucleus in the  
159 appressorium to the primary hypha. Consequently, nuclei migrating through the  
160 penetration peg undergo a longer nuclear migration compared to nuclei migrating in  
161 other IH cells. For instance, during nuclear migration in leading IH in wild-type, the  
162 maximum spindle length is typically less than 14  $\mu\text{m}$  (See *Fig. 10E*). From these data,  
163 we concluded the spindle is involved in extreme nuclear migration through the  
164 penetration peg in wild-type.

165

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

### 166 **Identification of MoKin5-RFP as a maker for spindle pole bodies (SPBs) during** 167 **mitosis**

168        Since kinesin-5 plays an important role in formation and maintenance of spindles  
169    in other fungi, we identified the kinesin-5 homolog, *MoKin5*, in *M. oryzae*. *MoKin5*  
170    (MGG\_01175) was identified based on protein sequence homology to previously  
171    characterized kinesin-5 proteins in *Aspergillus nidulans*, *Schizosaccharomyces pombe*,  
172    and *Saccharomyces cerevisiae* (Fig. S1). *MoKin5* shared 62% global similarity to BimC  
173    (AN3363), which is kinesin-5 in *A. nidulans*. Importantly, *MoKin5* contained a predicted  
174    kinesin motor domain near its N-terminus. The location of this kinesin motor domain is  
175    characteristic of kinesin-5 motor proteins, and indicate that *MoKin5* likely walks towards  
176    the plus-ends of MTs (9). We cloned *MoKin5* to produce a *MoKin5*-tdTomato (RFP)  
177    construct driven by the native *MoKin5* gene promoter. We generated *M. oryzae*  
178    fluorescent strains to determine the subcellular localization of *MoKin5*-RFP in wild-type  
179    during interphase and mitosis.

180        The subcellular localization of *MoKin5*-RFP was first determined relative to MT-  
181    GFP during interphase in IH using live-cell confocal imaging. During interphase, MTs  
182    were arranged in a cage-like manner around a mass of *MoKin5*-RFP fluorescence (Fig.  
183    2A). We hypothesized that the mass of *MoKin5*-RFP fluorescence represented the  
184    nucleus. We confirmed that *MoKin5*-RFP localized within the nucleus during interphase  
185    in an additional *M. oryzae* strain. This strain expressed *MoKin5*-RFP and histone H1-  
186    GFP to label the nucleus. During interphase, *MoKin5*-RFP and histone H1-GFP co-  
187    localized (Fig. 2B). We concluded that when *MoKin5*-RFP is expressed from its native  
188    promoter it accumulates within the nucleus during interphase.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

189 During mitosis, the localization of MoKin5-RFP changed in wild-type strains.  
190 MoKin5-RFP accumulated at the ends of the spindle (MT-GFP) (Fig. 2A). We observed  
191 dividing nuclei (histone H1-GFP) and found MoKin5-RFP accumulated at the polar ends  
192 of the mitotic nucleus (Fig. 2B). These data suggested MoKin5-RFP localized at the  
193 spindle pole bodies (SPBs) during mitosis (Fig. 2). We corroborated this finding by  
194 comparing the subcellular localization of MoKin5-RFP to a known component of SPBs,  
195  $\gamma$ -tubulin. We identified *M. oryzae*  $\gamma$ -tubulin (MGG\_00961) based on protein homology to  
196 *A. nidulans*  $\gamma$ -tubulin (AN0676, MipA; Fig. S2). We generated a reporter strain  
197 expressing  $\gamma$ -tubulin-RFP and MT-GFP. Comparing the localization of MoKin5-RFP to  
198 the localization of  $\gamma$ -tubulin-RFP relative to the spindle during appressorium  
199 development revealed identical subcellular localization patterns at the ends of the  
200 spindle (Fig. S2). Taken together, these data showed that MoKin5-RFP accumulated at  
201 the SPBs during mitosis. MoKin5-RFP was subsequently utilized as a reporter for the  
202 SPBs during mitosis.

203

### 204 **The dynamics of spindle pole bodies (SPBs) relative to the nuclei and spindle** 205 **during extreme nuclear migration**

206 We investigated the arrangement of the mother and daughter nuclei in relation to  
207 the SPBs during extreme nuclear migration through the penetration peg using live-cell  
208 confocal microscopy of a fluorescent fungal strain infecting rice. In this *M. oryzae* strain,  
209 the nucleus was labeled with histone H1-GFP and SPBs were labeled with MoKin5-  
210 RFP. We observed that the mother nucleus remained within the appressorium, while the  
211 migrating daughter nucleus was delivered to the apical region of the primary hypha (Fig.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

212 3A). The daughter nucleus became highly elongated as it migrated through the  
213 penetration peg (Fig. 3A, 00:00, Lower Focal Plane). MoKin5-RFP, marking the SPB  
214 bound to the migrating daughter nucleus, was localized at the apical tip of the elongated  
215 daughter nucleus during movement through the penetration peg (Fig. 3A, 00:00, Lower  
216 Focal Plane, Inset). The SPB bound to the mother nucleus was not detectable in our  
217 microscopy, possibly due to relatively strong autofluorescence in the melanized  
218 appressorium. The y-dimension diameter of the daughter nucleus expanded throughout  
219 the nuclear migration event. The diameter of the apical tip of the daughter nucleus was  
220 ~0.8  $\mu$ m immediately following movement through the penetration peg (Fig. 3A, 00:00,  
221 Lower Focal Plane) but increased to ~1.8  $\mu$ m as it neared the apical region of the  
222 primary hypha (Fig. 3A; 03:30, Lower Focal Plane). We also followed the dynamics of  
223 the SPBs in relation to the spindle during extreme nuclear migration through the  
224 penetration peg in an additional fluorescent *M. oryzae* strain. The spindle (MT-GFP) and  
225 SPBs (MoKin5-RFP) first formed within the appressorium (Fig. 3B). As expected, the  
226 daughter bound SPB proceeded the spindle during movement through the penetration  
227 peg (Fig. 3C). These data established the typical wild-type dynamics of the nucleus,  
228 spindle, and SPBs during extreme nuclear migration through the penetration peg (Fig.  
229 3D; See *Fig. 11*).

230

231 **Development of an inducible promoter system to perturb spindle function during**  
232 **nuclear migration through the penetration peg**

233 Our observations in wild-type pointed to the importance of the spindle in  
234 mediating extreme nuclear migration through the penetration peg. We hypothesized that

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

235 genetically perturbing spindle function would impair nuclear migration at this infection  
236 stage. Yet we lacked an inducible promoter system to test this hypothesis. To overcome  
237 this limitation, we exploited the effector biology of *M. oryzae*. Effectors are small  
238 proteins secreted by pathogens to modulate their hosts during infection (27). We  
239 developed an inducible promoter system using the promoter of the *M. oryzae* effector  
240 gene, *Bas4*. *Bas4* is an apoplastic effector whose promoter activity is highly induced  
241 upon initial penetration into plant tissue (28, 29). We reasoned that we could generate  
242 an inducible overexpression construct by expressing a target gene with the *Bas4*  
243 promoter (*p*). The first inducible overexpression construct we generated contained the  
244 *Bas4p* fused to the *MoKin5* coding sequence and accompanying terminator region  
245 (*Bas4p-MoKin5*; Fig. 4A).

246 We conducted RT-qPCRs to determine the expression of *MoKin5* relative to *actin*  
247 in two fungal cell types: vegetative mycelia and within IH growing inside the first-invaded  
248 rice cell. In wild-type, the *MoKin5* expression level relative to *actin* was 1 in both mycelia  
249 ( $\pm 0.4$  margin of error) and IH ( $\pm 0.1$  margin of error) (Fig. 4B). In the fungal strain  
250 carrying the *Bas4p-MoKin5* construct, *MoKin5* expression relative to *actin* was 2.3 ( $\pm$   
251 0.6 margin of error) in mycelia. In the rice sheath samples infected by the same fungal  
252 strain, the relative expression of *MoKin5* to *actin* was 24.3 ( $\pm 2.7$  margin of error). The  
253 relatively high expression of *MoKin5* within IH validated the use of the *Bas4* promoter to  
254 induce overexpression of a gene during early rice infection. *Magnaporthe oryzae* strains  
255 carrying a *Bas4p-MoKin5* construct were therefore referred to as MoKin5  
256 overexpression (OE) strains.

257

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

### 258 **MoKin5 OE causes defects in nuclear morphology and positioning**

259 The development of the *Bas4p* inducible overexpression system allowed us to  
260 test our hypothesis that genetically perturbing spindle function would impair nuclear  
261 migration through the penetration peg. We reasoned that one consequence of impaired  
262 spindle function would be disruption in nuclear positioning within the appressorium and  
263 primary hypha relative to wild-type. We conducted live-cell confocal microscopy of  
264 fluorescent fungal strains expressing histone H1-RFP to label nuclei infecting a  
265 susceptible rice cultivar at two timepoints, ~28 hpi (early) and ~48 hpi (late). At the early  
266 timepoint, a majority of infection sites displayed a single nucleus within the  
267 appressorium and a single nucleus within the primary hypha in wild-type (Fig. 5A; Fig.  
268 S3). Nuclear positioning within the MoKin5 OE strain was highly disrupted. In the  
269 MoKin5 OE strain, only 2% (n=2) of infection sites displayed a single nucleus within the  
270 appressorium and a single nucleus within the primary hypha at the early time point (Fig.  
271 5A). In the MoKin5 OE strain, 25% (n=31) of infection sites displayed an anucleate  
272 appressorium with a single enlarged nucleus within the primary hypha at the early  
273 timepoint (Fig. 5A, Fig. S3A). This phenotype was especially striking because all the  
274 infection sites scored contained intact appressoria. That is, any infection site that  
275 showed a collapsed appressorium in the bright-field channel was excluded from  
276 analysis. Additional defects in nuclear morphology and positioning were observed in the  
277 MoKin5 OE strains at the early and late timepoints (Fig. S3). Prominent defects included  
278 nuclear fragments within the appressorium (Fig. 6B), nuclear fragments within the  
279 appressorium and primary hypha (Fig. 6C), nuclear fragments exclusively within the  
280 primary hypha (Fig. 7), and a single enlarged nucleus that appeared to be stuck within

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

281 the penetration peg (Fig. S3C). We concluded that MoKin5 OE caused failure in  
282 extreme nuclear migration through the penetration peg.

283

### 284 **MoKin5 OE causes defects in fungal development and virulence on rice**

285 Considering the dramatic defects in nuclear morphology and positioning in the  
286 MoKin5 OE strain, we determined the effect of MoKin5 OE on IH development and blast  
287 lesion development on whole rice plants. At the late timepoint (~48 hpi), MoKin5 OE  
288 strains typically failed to develop beyond the primary hyphal stage of development (Fig.  
289 S4). We conducted whole-plant spray inoculations to determine if MoKin5 OE strains  
290 retained virulence of rice. In whole-plant spray inoculations, the mean percentage of  
291 diseased tissue area was 68% ( $\pm 13\%$  margin of error) in wild-type. The mean  
292 percentage of diseased tissue was 0% in the MoKin5 OE strain (representative infected  
293 leaves in Fig. 5B). We concluded that MoKin5 OE strains failed to develop beyond the  
294 primary hyphal stage within the first-invaded rice cell, which caused a drastic reduction  
295 in virulence on rice.

296

### 297 **MoKin5 OE leads to the formation of MT protrusions and nuclear fragments**

298 The severe developmental defects caused by MoKin5 OE warranted a  
299 mechanistic explanation. We investigated the effect of MoKin5 OE upon the spindle  
300 during nuclear migration through the penetration peg using live-cell confocal imaging of  
301 a MoKin5 OE strain infecting rice sheaths. We initiated our investigation by examining  
302 the dynamics of the spindle (MT-GFP) relative to the nucleus (histone H1-RFP) in the  
303 appressoria of a MoKin5 OE strain at the start of mitosis. In these MoKin5 OE infection

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

304 sites, a bar of MT-GFP extended in an abnormal and persistent manner beyond the  
305 circumference of the nucleus, as recognized by histone H1-RFP fluorescence, in  
306 appressoria and primary hyphae (Fig. 6A). These persistent MT-GFP structures, which  
307 we refer to as MT protrusions, were not observed in wild-type. We quantified the  
308 frequency of single, double, and triple+ MT protrusions relative to the nucleus within  
309 appressoria (Fig. 6A, n=22). We found that 45% (n=10) of infection sites contained a  
310 single MT protrusion (Fig. 6A, top panel), 36% (n=8) of infection sites contained double  
311 MT protrusions (Fig. 6A, middle panel), and 18% (n=4) of infection sites contained three  
312 or more MT protrusions (Fig. 6A, bottom panel). We concluded that MoKin5 OE did  
313 impair spindle function by preventing formation of a typical spindle within the  
314 appressorium.

315 Additional MT protrusion and nuclear positioning phenotypes were observed in  
316 the MoKin5 OE strain within appressoria and primary hyphae. In appressoria, small  
317 nuclear fragments were distributed along the MT protrusions (Fig. 6B-C). We followed  
318 the relative position of the spindle/MT protrusions, and the nucleus/nuclear fragments  
319 during extreme nuclear migration through the penetration peg in the MoKin5 OE strain.  
320 In the MoKin5 OE strain, the MT protrusion proceeded the nuclear fragment (Fig. 6C-  
321 6D). This arrangement was in stark contrast to the arrangement of the spindle and  
322 nucleus in wild-type (Fig. 3C-3D). Nuclear fragments tended to occur more frequently  
323 within the primary hyphae of the MoKin5 OE strain. At the early timepoint, only 7% (n=9)  
324 of MoKin5 OE infection sites showed nuclear fragments in the appressorium, whereas  
325 12% (n=15) of MoKin5 OE infection sites showed nuclear fragments in the primary  
326 hypha exclusively (Group 2 vs Group 4 in Fig. S3A). We conducted time-lapse confocal

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

327 microscopy to further investigate the nature of the MT protrusions and nuclear  
328 fragments within the primary hyphae. Within primary hyphae, nuclear fragments  
329 separated and merged over time along the MT protrusion (Fig. 7). From these data, we  
330 concluded that MoKin5 OE caused formation of MT protrusions. These MT protrusions  
331 contributed to the formation of nuclear fragments beginning within the appressorium,  
332 and that the nuclear fragments merged together to form a single enlarged nucleus  
333 within the primary hypha.

334

### 335 **MoKin5 OE causes defects in spindle polarity**

336 We pursued a mechanistic understanding of how the MT protrusions observed in  
337 the MoKin5 OE strain contributed to formation of nuclear fragments within the  
338 appressorium. We conducted confocal microscopy of appressoria in an *M. oryzae* strain  
339 co-expressing three constructs: *MoKin5*-RFP driven from its native promoter, *Bas4p*-  
340 *MoKin5*, and  $\beta$ -tubulin-GFP to label the spindle. During mitosis in the appressoria of the  
341 MoKin5 OE strain, MoKin5-RFP localized along the spindle (Fig 8A; Fig S5). The  
342 MoKin5-RFP localization pattern in the MoKin5 OE strain differed dramatically from  
343 wild-type during mitosis (Fig. 2; Fig. 3B). In wild-type, MoKin5-RFP accumulated only at  
344 the SPBs. We concluded that during mitosis MoKin5 OE caused MoKin5-RFP to  
345 inappropriately localize along MTs within the spindle.

346 We continued to investigate the nature of the spindle and MoKin5-RFP in the  
347 MoKin5 OE strain by conducting time-lapse confocal microscopy of mitotic appressoria  
348 (Fig. 8C). In these appressoria we made several important observations. First, we  
349 observed that the MT-GFP and MoKin5-RFP signal displayed a relatively bright focus at

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

350 one end of the spindle (Fig. 8, filled arrowheads in the merge channel). Second, the  
351 spindle elongated from only a single end, which we call the growing plus-end (Fig. 8C,  
352 Fig. 8E, plus symbol). This spindle elongation followed the curvature of the  
353 appressorium. Third, at the very early stage of spindle elongation, MoKin5-RFP showed  
354 a brief accumulation at the growing plus-end (Fig. 8C, 00:00, arrow; Fig. 8D, arrow).  
355 Finally, we observed that the MoKin5 OE spindle continued to elongate and rotate  
356 within the appressorium for at least 32 minutes (Fig. 8C). These data suggested that the  
357 MoKin5 OE spindle displays aberrant polarity likely due to a combination of excessive  
358 outward forces acting on the spindle and excessive polymerization of MTs within the  
359 spindle. Recently, monomeric human kinesin-5 was found to act as a promoter of MT  
360 polymerization at the plus-ends of MTs (30).

361

### 362 **MoKin14 OE causes defects in fungal development and virulence on rice**

363 Due to the prominent defects in nuclear migration caused by MoKin5 OE, we  
364 investigated the effect of MoKin14 OE on extreme nuclear migration through the  
365 penetration peg. We identified a kinesin-14 motor protein in *M. oryzae* (*MoKin14*,  
366 MGG\_05350) through protein homology to other known kinesin-14 proteins (Fig. S6).  
367 MoKin14 shared 55.9% similarity to KlpA (AN6340), which is kinesin-14 in *A. nidulans*.  
368 MoKin14 also contained a predicted kinesin motor domain at the C-terminus. This C-  
369 terminal kinesin motor domain is a characteristic of the kinesin-14 superfamily, and  
370 indicates that MoKin14 likely walks towards the minus-end of MTs (10). Like the MoKin5  
371 OE strain, we generated several *M. oryzae* strains of MoKin14 OE (*MoKin14* under

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

372 control of the *Bas4* promoter; *Bas4p-MoKin14*) for subsequent analysis of nuclear  
373 positioning, IH development, and virulence on rice.

374 Our first step in the analysis of the MoKin14 OE strains was to confirm that  
375 expressing *MoKin14* from the *Bas4* promoter caused an increase in the relative  
376 expression of *MoKin14* within IH (Fig. 4A). We conducted RT-qPCRs. In both mycelia  
377 and IH of wild-type, the expression of *MoKin14* relative to *actin* was 1 ( $\pm 0.3$  in margin of  
378 error in mycelia and  $\pm 0.2$  margin of error in IH). In the *M. oryzae* strain carrying the  
379 *Bas4*—*MoKin14* construct, the expression of *MoKin14* relative to *actin* was 1.5 ( $\pm 0.6$   
380 margin of error) in mycelia and 15.2 ( $\pm 4.7$  margin of error) in IH (Fig. 4B). Because we  
381 validated that a strain carrying the *Bas4p-MoKin14* construct did, indeed, cause an  
382 overexpression of MoKin14 in the early stages of rice infection, we then determined the  
383 effect of MoKin14 overexpression (OE) on nuclear positioning in appressoria and  
384 primary hyphae. At the early timepoint (~28 hpi), 80% (n=68) of the MoKin14 OE sites  
385 displayed a single nucleus (histone H1-RFP) within the appressorium, which differed  
386 from both the wild-type and MoKin5 OE phenotypes (Fig. 5A; Fig. S3). The MoKin14 OE  
387 strains also showed a drastic arrest in IH development at ~48 hpi. At this timepoint,  
388 MoKin14 OE strains were typically arrested at the primary hyphal stage of development  
389 (Fig. S4). We conducted whole-plant spray inoculations and found that the MoKin14 OE  
390 strain did not display virulence on rice. The mean percentage of diseased tissue area  
391 was 0% in the MoKin14 OE strain compared to 68% ( $\pm 13\%$  margin of error) in wild-type  
392 (representative leaves in Fig. 5B). From these results, we concluded that MoKin14 OE  
393 caused a failure in extreme nuclear migration through the penetration peg. The failure in

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

394 extreme nuclear migration led to defects in IH development, which prevented virulence  
395 on rice.

396

### 397 **MoKin14 OE causes formation of monopolar spindles**

398 MoKin14 OE caused failure in extreme nuclear migration through the penetration  
399 peg, and resulted in a nuclear positioning phenotype that was unique relative to wild-  
400 type and MoKin5 OE strains. This observation suggested that MoKin14 OE induced a  
401 distinct effect upon the spindle. We hypothesized that if MoKin14 generated an inward  
402 force on SPBs within *M. oryzae*, overexpressing MoKin14 with the *Bas4* promoter would  
403 cause formation of monopolar spindles within the appressorium. We conducted live-cell  
404 confocal microscopy of *M. oryzae* strains expressing MT-GFP and histone H1-RFP to  
405 determine the dynamics of the spindle in relation to the nucleus within the  
406 appressorium. Within appressoria, the spindle phenotype of the MoKin14 OE strain  
407 differed from both wild-type and the MoKin5 OE strain (Fig. 9). In wild-type, a spindle  
408 bisected the nucleus (Fig. 9A, top panel). We also detected the asynchronous  
409 movement of chromatids towards the ends of the spindle in wild-type (Fig. 9A, bottom  
410 panel). In contrast, MoKin14 OE resulted in a single focus of MT-GFP overlapping with  
411 the nucleus within the appressorium (Fig. 9B, top panel). MTs emanated from this single  
412 focus and, at times, the mother nucleus appeared to be arrested in mitosis. For  
413 example, within the MoKin14 OE strain, a “butterfly” shaped nucleus was observed  
414 within the appressorium, in which chromatids appear to be arrested in the process of  
415 dividing (Fig. 9B, bottom panel). Consistent with our previous observations, the MoKin5  
416 OE spindle did not form a typical spindle, but instead appeared as a half spindle relative

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

417 to the nucleus within the appressorium (Fig. 9C). We concluded that MoKin14 OE  
418 caused formation of monopolar spindles within the appressorium.

419 Monopolar spindles can form in two conditions. The first condition is when  
420 duplicated SPBs fail to initially separate at mitotic onset. The second condition is when  
421 duplicated SPBs fail to maintain their placement at opposite ends of the spindle  
422 throughout mitosis. In order to determine the effect of MoKin14 OE on SPBs directly, we  
423 analyzed an additional MoKin14 OE strain. This strain contained three constructs:  $\beta$ -  
424 *tubulin*-GFP to label the spindle; *Bas4p-MoKin14*; and *MoKin5*-RFP driven off the native  
425 *MoKin5* promoter. This particular strain was unique compared to other MoKin14 OE  
426 strains because it developed IH within the first-invaded rice cell. In both wild-type and  
427 this MoKin14 OE strain, MoKin5-RFP accumulated at the SPBs during mitosis (Fig.  
428 10A, 10C, arrowheads). We followed the dynamics of MT-GFP and MoKin5-RFP, over  
429 time within IH of the MoKin14 OE strain, and observed a captivating pattern. The  
430 spindle experienced cycles of elongation and contraction relative to the wild-type (Fig.  
431 10A-10D). These spindle collapse events tended to occur more frequently when the  
432 spindle was less than  $\sim$ 5  $\mu$ m (Fig. 10E). Yet the SPBs rapidly separated at spindle  
433 lengths exceeding  $\sim$ 5  $\mu$ m (Fig. 10E). We concluded that MoKin14 OE induces  
434 monopolar spindle formation due to excessive inward forces acting upon duplicated  
435 SPBs, primarily in early mitosis when the spindle is at a shorter length. The excessive  
436 inward force generated by MoKin14 OE prevented formation and maintenance of a  
437 typical bipolar spindle.

438

439

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

440

### Discussion

441 In this study, we demonstrated that the spindle was involved in nuclear migration  
442 through the penetration peg by genetically perturbing spindle function using an inducible  
443 overexpression promoter. We characterized the effects of kinesin-5 and kinesin-14  
444 overexpression upon nuclear positioning, fungal development, and spindle function. Our  
445 results shed light on mechanisms permitting successful nuclear migration through the  
446 penetration peg, and the roles of kinesin-5 and kinesin-14 in the rice blast fungus, *M.*  
447 *oryzae*. In the following section, we discuss the mechanisms that permit nuclear  
448 migration through the penetration peg.

449

### 450 **Mechanisms permitting nuclear migration through the penetration peg**

451 Our results revealed that nuclear migration through the penetration peg is  
452 initiated at the onset of mitosis within the appressorium. We observed chromatids  
453 moving towards the polar ends of the spindle in an asynchronous manner, consistent  
454 with previous studies (31-33). In our study, the spindle rotated to become aligned for  
455 movement through the appressorial pore and penetration peg. We did not observe  
456 astral MTs emanating from the spindle within the appressorium or penetration peg,  
457 although we cannot rule out that astral MTs were present but not detectable. We found  
458 live-cell imaging within the appressorium to present unique challenges in terms of  
459 visualizing fluorescently-tagged proteins that are clearly visible in other cell types of *M.*  
460 *oryzae*. The challenge in visualizing these fusion proteins is likely due to the highly-  
461 melanized nature of the appressorium (34). Nonetheless, our data clearly demonstrated  
462 that during nuclear migration through the penetration peg, the SPB bound to the

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

463 migrating daughter nucleus proceeds the nucleus and the spindle through the  
464 penetration peg. The dynamics of the nucleus, spindle, and SPBs are summarized in  
465 Fig. 11. In migrating myoblasts from mice, the positioning of centromeres, a type of  
466 microtubule organizing centers like SPBs, is critical for effective nuclear movement (35).  
467 Interestingly, one consequence of MoKin5 OE was disruption to the arrangement of the  
468 DNA (nuclear fragments) in relation to the spindle, likely altering the position of the  
469 daughter bound SPB. The time required for the spindle to navigate towards the  
470 penetration peg was drastically increased in the MoKin5 OE strain relative to wild-type.

471 From these data, we propose that the daughter bound SPB plays an important  
472 role in guiding the spindle to the appressorial pore for subsequent movement through  
473 the penetration peg. The daughter bound SPB may display an enrichment of polarity  
474 determinants that help guide the spindle to the penetration peg. Similarly, the daughter  
475 bound SPB could be enriched in motor proteins, such as dynein or MoKin5, that may  
476 generate forces needed to propel the nucleus through the penetration peg. In yeast,  
477 dynein is asymmetrically distributed to one SPB, and this asymmetry is required for  
478 dynein-dependent spindle positioning at the bud neck (36). In *M. oryzae*, MoTea1 is  
479 associated with the septin and F-actin ring present near the appressorial pore where the  
480 penetration peg emerges (18). The spindle may be connecting to other cytoskeletons  
481 present at the appressorial pore via a Tea1-like mechanism as occurs in *S. pombe* (37).  
482 In *Ustilago maydis*, nuclear division defects were found in Tea1 knockout mutants in the  
483 yeast-like cells (38). More research is needed to elucidate the mechanisms that guide  
484 the daughter bound SPB efficiently to the appressorial pore in *M. oryzae*.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

485                   The stretched daughter nucleus observed during movement through the  
486 penetration peg in this and a previous study is highly intriguing (23). We interpret this  
487 nuclear morphology to represent the movement of individual chromatids or clusters of  
488 chromatids through the narrow penetration peg. Recent studies show that  
489 heterochromatin levels influence nuclear migration through constricted spaces (39).  
490 One advantage of undergoing a mitotic nuclear migration through the penetration peg  
491 could be that DNA is already highly compacted into chromatids. This would allow  
492 efficient and protected movement of the nucleus through a constricted space. In *M.*  
493 *oryzae*, the daughter nucleus expanded in diameter immediately following movement  
494 through the penetration peg. This suggests that regions of heterochromatin within the  
495 migrating daughter nucleus relax following transit through the penetration peg. In the  
496 future, experiments altering DNA condensation within the migrating daughter nucleus  
497 may offer insight into the role DNA condensation plays in extreme nuclear migration  
498 events in *M. oryzae*.

499                   In migratory cancer and immune cells, nuclei moving through constricted 3D  
500 spaces during interphase rely upon DNA and nuclear envelope repair mechanisms for  
501 survival (40, 41). In *M. oryzae*, which uses an intermediate form of mitosis, the outer  
502 nuclear envelope and core nucleoporins remain intact during appressorium  
503 development (42, 43), yet the behavior of the inner nuclear membrane remains  
504 undetermined. It could be that the inner nuclear membrane remains intact during  
505 nuclear migration through the penetration peg as a means to protect the nucleus.  
506 Moreover, our results suggest that nuclear migration through the penetration peg occurs  
507 during the later stages of mitosis. In other eukaryotes, ESCRT (endosomal sorting

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

508 complexes required for transport) machinery is known to remodel the nuclear envelope  
509 at the later stages of mitosis (44, 45). Snf7, a component of the ESCRT-III complex,  
510 was implicated in *M. oryzae* pathogenicity on rice (46). Yet the localization of Snf7  
511 during nuclear migration is not yet characterized. Undergoing mitosis during extreme  
512 nuclear migration through the penetration peg may allow transient nuclear envelope  
513 ruptures to be rapidly repaired by the ESCRT machinery already mobilized for mitotic  
514 function in *M. oryzae*.

515

### 516 **The roles of kinesin-5 and kinesin-14 in *M. oryzae***

517 While we provide *in vivo* evidence of MoKin5 and MoKin14 function within the  
518 spindle in *M. oryzae* during extreme nuclear migration through the penetration peg, we  
519 lack *in vitro* data to make definitive claims of the directionality of these motor proteins  
520 along MTs. In the future, *in vitro* experiments coupled with knockout experiments of  
521 MoKin5 and MoKin14 will fully elucidate whether the force-balance model of bipolar  
522 spindle formation applies to *M. oryzae*. Nonetheless, our results do provide information  
523 about the function of kinesin-5 and kinesin-14 in *M. oryzae* spindle formation and  
524 function during nuclear migration through the penetration peg. We begin this section of  
525 our discussion examining the likely roles of MoKin5 in *M. oryzae*.

526 **Kinesin-5 in *M. oryzae*.** We propose that when MoKin5 is highly overexpressed  
527 by the *Bas4* promoter, it can no longer be efficiently regulated during mitosis. This lack  
528 of regulation appears to promote excessive polymerization of MTs and excessive  
529 outward force generation, which leads to the formation of nuclear fragments. Within the  
530 appressoria of the MoKin5 OE strain, the length of the spindle continually increased in

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

531 length over time. This finding is consistent with other studies of kinesin-5  
532 overexpression. For example, overexpression of Cin8, one of two kinesin-5 motor  
533 proteins present in *S. cerevisiae*, resulted in extended spindles (47) as did kinesin-5  
534 overexpression in the spindles of *Drosophila* embryos (48). In mice, kinesin-5  
535 overexpression caused the formation of multipolar and monopolar spindles, and kinesin-  
536 5 overexpression was associated with polyploidy (49). In our study, MoKin5 OE caused  
537 formation of an anucleate appressorium with a single enlarged nucleus within the  
538 primary hypha. We believe it is likely this single enlarged nucleus represents a polyploid  
539 state. In mice, it is proposed that kinesin-5 overexpression prevented attachments of the  
540 chromatids to the spindle due to the generation of excessive outward forces (49). In our  
541 study, the nucleus and nuclear fragments appeared to be attached to the spindle,  
542 evident in the movement of nuclear fragments along the MT protrusions. We, therefore,  
543 favor a different mechanistic model to explain how aberrant nuclear phenotypes, and  
544 possible polyploidy, arises in the MoKin5 OE strain.

545 We favor a model that in the MoKin5 OE strains SPBs fail to separate. This  
546 failure in SPB separation coupled with excessive MT polymerization and excessive  
547 outward force causes the dramatic spindle and nuclear phenotypes observed in the  
548 MoKin5 OE strains. Key data from the early stages of mitosis in the appressoria support  
549 this model. We observed that a typical spindle fails to form within the MoKin5 OE strain.  
550 This was evident when a bar of MT-GFP signal spanned only approximately half the  
551 mother nucleus, and in the formation of single, double, and three or more MT  
552 protrusions. Moreover, we observed that the MoKin5 OE spindle elongates from a  
553 single plus end. If the MoKin5 OE spindle were a bipolar spindle, with each SPB

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

554 maintained at the opposite end of the spindle, we would anticipate nearly equal growth  
555 from both ends of the spindle. An additional prediction is that if the MoKin5 OE spindle  
556 was a true bipolar spindle, the chromatids would move towards both poles of the  
557 spindle. This is not the pattern we found. In the MoKin5 OE strain, nuclear fragments  
558 formed along the MT protrusions, and the fragments only moved towards the growing  
559 plus-end of the spindle. We speculate that the excessive polymerization of MTs in the  
560 MoKin5 OE strain causes kinetochores to become precociously attached to MTs within  
561 the spindle. The combination of excessive MT polymerization and outward force  
562 generation causes formation of nuclear fragments. Over time, the disrupted polarity of  
563 the spindle and excessive MoKin5 causes the entire nucleus and nuclear fragments to  
564 migrate to the primary hypha.

565 In sum, we conclude that MoKin5 in *M. oryzae* likely generates an outward  
566 pushing force upon the spindle. We also provide data that excessive MoKin5 causes  
567 consistent polymerization of MTs within the spindle. MoKin5 OE induced distinct defects  
568 in nuclear morphology and positioning, and in spindle function compared to MoKin14  
569 OE. We discuss the likely role of MoKin14 in the following section.

570 ***Kinesin-14 in M. oryzae.*** Our study revealed that when MoKin14 is  
571 overexpressed, spindles fail to form and maintain bipolarity throughout the early stages  
572 of mitosis. In *Aspergillus nidulans*, kinesin-14 overexpression prevents nuclear division  
573 and causes formation of monopolar spindles, consistent with our results (50).  
574 Overexpression of kinesin-14 proteins in *S. pombe* causes formation of monopolar  
575 spindles (51, 52), and overexpression of kinesin-14 in *S. cerevisiae* leads to shorter  
576 spindles (47). Given that MoKin14 OE resulted in similar spindle phenotypes, it is likely

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

577 that MoKin14 generates an inward force that acts upon duplicated SPBs in early mitosis  
578 in the appressorium and in IH. However, the later stages of mitosis were relatively  
579 unaffected by MoKin14 OE. This suggests that other motor proteins, such as dynein,  
580 may be generating the antagonizing force needed to maintain the spindle in the later  
581 stages of mitosis in *M. oryzae*. There is some evidence that supports this idea. While  
582 the function of dynein in *M. oryzae* is not yet determined, knocking out a homolog of  
583 Num1, the cortical anchor of dynein, impairs nuclear positioning in vegetative hyphae,  
584 conidia, and appressoria (53). Conducting a functional study of dynein is an important  
585 future direction towards illuminating further details of nuclear migration within *M. oryzae*.

586

### 587 Conclusion

588 The major contribution of this study is the direct evidence that the mitotic spindle  
589 mediates nuclear migration through the penetration peg in the blast fungus during  
590 colonization of the host rice cell. This knowledge is important because this is a critical  
591 step in the successful colonization of the fungus within rice tissue. Previously, the  
592 dynamics of the spindle were reported in *M. oryzae* during vegetative growth,  
593 appressorium development, IH growth, and during cell-to-cell movement through the IH  
594 peg (26, 31-33, 42, 54, 55). From these studies, we can see that delivery of a single  
595 daughter nucleus into incipient cells involves the spindle and likely occurs during the  
596 later stages of mitosis. While this finding may appear intuitive, not all fungi sync nuclear  
597 migration to nuclear division (5). Defining the contribution of the spindle during nuclear  
598 migration through the penetration peg provides fundamental knowledge about the  
599 biology of the rice blast fungus, establishes new avenues for research, and provides

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

600 insight that could be exploited in the development of new anti-fungal strategies to  
601 combat blast disease.

602

### 603 Materials and Methods

#### 604 Fungal and rice strains

605 Transgenic *M. oryzae* strains were generated by transforming wild-type O-137  
606 (CKF558) using *Agrobacterium*-mediated transformation (56). Fungal transformants  
607 were selected on media containing either: 200 µg/mL Hygromycin (Hyg, Hyg<sup>R</sup>), 800  
608 µg/mL G418 Sulfate (G418, NPTII<sup>R</sup>), 400 µg/mL Nourseothricin (NTC, Nat1<sup>R</sup>), and 200  
609 µM of cefotaxime (bactericide for *Agrobacterium*). Transformants were purified by single  
610 spore isolation and two to twelve independent transformants were analyzed per gene. A  
611 summary of the fungal strains, primers, constructs, and unique PCR fragments used in  
612 this study are provided in Supplemental Tables 1-4. Fungal strains were stored at -20  
613 °C and propagated on either oatmeal agar or tomato juice agar, using standard  
614 techniques, at 24 °C with continuous light. Rice (*Oryza sativa*) cultivar YT16 was grown  
615 in a Conviron PGW36 growth chamber with daytime temperature of 28°C and nighttime  
616 temperature of 24 °C under long day conditions (14 hours/day, 10 hours/night).

#### 617 RNA isolation and gene expression analysis

618 The expression of *MoKin5* and *MoKin14* relative to *actin* was determined in  
619 mycelia and infected YT16 rice sheaths in two independent reverse transcription  
620 quantitative (RT-q) PCRs of wild-type (CKF3578), *MoKin5* OE (CKF4108), and *MoKin14*  
621 OE (CKF4106) strains. Fungal mycelia were grown in 1% sucrose complete media at  
622 25°C for five days in a dark environment, snap frozen in liquid nitrogen, and stored at

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

623 -80°C until RNA extraction. Twenty infected rice sheaths for each biological replicate  
624 (n=60 sheaths per fungal strain) were hand-trimmed and snap frozen in liquid nitrogen  
625 at 30-31 hours post inoculation. We confirmed that each fungal strain had penetrated  
626 into the rice tissue by conducting confocal microscopy two hours prior to harvesting the  
627 sheath samples (data not shown). For mycelia and infected sheath samples, total RNAs  
628 were extracted using the Trizol method combined with the RNA Clean and Concentrator  
629 -5 kit (Zymo), according to manufacturer's instructions. Genomic DNA was removed  
630 using Turbo™ DNase (Ambion) using manufacturer's instructions. Complementary DNA  
631 (cDNA) was synthesized following manufacturer's instructions using the ImProm II  
632 Reverse Transcriptase system (Promega) from 500 ng of total RNAs for mycelial  
633 samples and 650 ng of total RNAs for sheath samples. Applied Biosystems SYBR  
634 Green qPCR 2X Master Mix (Thermo Fisher) was used to perform the RT-qPCRs with a  
635 CFX96 Touch Real-Time PCR Detection System (BioRad). Reactions contained 7 µL  
636 Applied Biosystems SYBR Green qPCR Master Mix, 1.5 µL each of the forward and  
637 reverse primer (3.3 nM concentration, Table S2), 1.5 µl cDNA, and 2.5 µL distilled  
638 water, for a final volume of 14 µL. Standard thermocycling conditions for primers  $\geq 60^{\circ}\text{C}$   
639 per the Applied Biosystems SYBR Green qPCR Master Mix manufacturer's instructions  
640 were used. Thermocycler conditions were: 2 minutes at 50°C, 2 minutes at 95°C, and  
641 40 cycles of 15 seconds at 95°C and 1 minute at 60°C. Relative expression levels of  
642 *MoKin5* and *MoKin14* were calculated using the *M. oryzae actin* gene (MGG\_03982) as  
643 reference (57). The  $2^{-\Delta\Delta\text{Ct}}$  was used to calculate relative expression levels (58).  
644 Average threshold cycle (Ct) values from three technical replicates were normalized to  
645 *actin* for each strain ( $\Delta\text{Ct}$ ). This value was subtracted from the calculated mean  $\Delta\text{Ct}$

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

646 value of the wild-type (CKF3578) in the respective mycelia or sheath condition, yielding  
647 the  $\Delta\Delta Ct$  value. These values were transformed using the equation  $2^{-\Delta\Delta Ct}$ . Mean  $2^{-\Delta\Delta Ct}$   
648 values, along with 95% confidence intervals, were calculated for each strain from three  
649 biological replicates.

### 650 **Pathogenicity assays and live-cell imaging**

651 **Rice sheath inoculations.** Susceptible rice cultivar YT16 was inoculated with  
652 fungal spores as described previously (59). Leaf sheaths 3-8 cm in length from 2 to 3-  
653 week old plants were inoculated with either  $3-4 \times 10^4$  spores per mL for ~48 hour post  
654 inoculation (hpi) observation, or  $7-10 \times 10^4$  spores per mL for ~28 hpi observation. All  
655 spore inoculum was filtered using Miracloth. Inoculated sheaths were prepared for  
656 microscopy by hand trimming with razor blades.

657 **Appressorium development assay.** Spores were harvested and diluted to a  
658 final concentration of  $2-4 \times 10^4$ . Spores were inoculated onto a hydrophobic coverslip  
659 and incubated for 3-4 hours at room temperature prior to microscopy.

660 **Whole-plant spray inoculations.** Spores were collected from 7 to 10-day old V8  
661 tomato juice agar plates and diluted to a final concentration of  $1 \times 10^5$  spores per mL in  
662 0.2% gelatin. 17-day old YT16 rice plants were sprayed with 5 mL of spores. Sprayed  
663 rice plants were placed in clear plastic bags overnight at room temperature. The next  
664 day sprayed plants were removed from the plastic bags and placed in a Conviron  
665 PGW36 growth chamber with daytime temperature of 28°C and nighttime temperature  
666 of 24 °C under long day conditions. Infected leaves were harvested 7 days after  
667 inoculation. Infected leaves were harvested and collected on notecards that were  
668 scanned with an Epson Perfection 4870 Photo Scanner to generate digital images for

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

669 analysis of lesion development. Lesion development was analyzed using ImageJ to  
670 determine the percentage of diseased tissue area. Briefly, scanned leaf images were  
671 color adjusted to find the total area of the leaf and then again adjusted to find the total  
672 area of the diseased tissue. The resulting ratio was converted to a percentage for each  
673 biological replicate, and mean values along with margins of error were calculated for  
674 each fungal strain. Figures of infected rice leaves were compiled with Adobe Photoshop  
675 and Adobe Illustrator.

676 **Confocal microscopy and analysis.** Live-cell confocal microscopy of  
677 developing appressoria and infected rice sheaths was conducted using a Zeiss 880  
678 confocal system equipped with a Plan-Neofluor 40 $\times$ /1.3 NA (oil) objective.  
679 Excitation/emission wavelengths were 488 nm/505–530 nm (GFP), and 543 nm/560–  
680 615 nm (RFP). Analyses of resulting micrographs were done using combinations of the  
681 Zen software (Black and Blue editions). Figures were compiled using Zen software  
682 (Black and Blue editions), Adobe Illustrator, and Microsoft PowerPoint.

683 **Quantification of nuclear phenotypes.** Informative micrographs collected from  
684 wild-type, MoKin5 overexpression (OE), and MoKin14 OE strains at approximately 28  
685 hours post inoculation and 48 hours post inoculation were analyzed. Only infection sites  
686 with an intact appressorium and developed primary hypha were considered for  
687 quantification. Observed patterns of nuclear positioning within the appressorium and  
688 primary hypha were quantified. Phenotype frequency was compiled and graphed using  
689 a combination of Microsoft Excel and Adobe Illustrator.

690 **Quantification of rate of mitosis.** Rate of mitosis in wild-type and MoKin14 OE  
691 strains was determined using the time the first micrograph in a time-lapse series was

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

692 acquired as the 00:00 timepoint. The spindle length was calculated by selecting a single  
693 informative focal plane, and measuring the length of the spindle from SPB to SPB  
694 (marked by MoKin5-RFP) using the line tool in Zen Black. In monopolar spindles, the  
695 length of spindle was measured using the MT-GFP fluorescence signal. The resulting  
696 time and spindle length intervals were analyzed and plotted in Microsoft Excel.

697 **Quantification of spindle length in the MoKin5 OE strain.** The length of the  
698 spindles observed in strain CKF4203 was determined using the Closed Bezier tool in  
699 Zen software (Black edition). The length of the spindle was measured from the minus-  
700 end to the plus-end.

### 701 **Sequence information**

702 Gene identification numbers, except for *actin* and *Bas4*, were determined using  
703 *Aspergillus nidulans* or *Schizosaccharomyces pombe* protein sequences as query  
704 sequences in NCBI BlastP searches of the non-redundant protein sequence database  
705 using the *Magnaporthe oryzae* 70-15 reference genome. Protein sequences were  
706 obtained from FungiDB. Gene identification numbers for *M. oryzae* were identified and  
707 gene sequence information along with 2 Kb upstream and downstream was downloaded  
708 from FungiDB and analyzed using Geneious Prime 2019.2.3. Reciprocal NCBI BlastP  
709 searches using the protein and gene sequences from *M. oryzae* to either *A. nidulans* or  
710 *S. pombe* were conducted as a quality control step. A list of resulting gene identification  
711 numbers is available in Supplemental Table 2. Sequence information is available from  
712 FungiDB.

### 713 **Statistical analysis and reproducibility**

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

714              Significance of gene expression levels was determined using a Student's two-  
715      tailed test assuming unequal variance in Microsoft Excel. Significance of nuclear  
716      positioning phenotypes at the early timepoint was determined using Fisher's exact test  
717      (60) in GraphPad QuickCalcs (accessed March 19, 2021). Confocal micrographs are  
718      representative of at least three biological replicates. Representative examples of each  
719      strain are presented throughout the figures.

720

### 721              **Data availability**

722              Data supporting the conclusions of this study are available upon reasonable  
723      request from the corresponding author. Key constructs generated in this study will be  
724      made available from Addgene. Mutant fungal strains are available from corresponding  
725      author with appropriate permits.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

726

### Acknowledgements

727

We thank current and past members of the Khang Lab for their support and feedback, especially Kathy Prado, Brandon Mangum, Jie Zhu, Kiersun Jones, and Dong Won Kim. We are grateful to the Devos lab at the University of Georgia for access to the equipment needed to complete the gene expression analyses. We also thank the

729

730

University of Georgia Fungal Group for iterative feedback over the lifetime of the project.

731

We acknowledge the assistance of the Biomedical Microscopy Core at the University of

732

733

Georgia with imaging using a Zeiss LSM 880 confocal microscope. This work was

734

supported by the National Science Foundation BREAD program under Grant No.

735

1543901 (CHK) and the National Science Foundation Graduate Research Fellowship

736

Program under Grant No. 1842396 (MAP). Any opinions, findings, and conclusions or

737

recommendations expressed in this material are those of the author(s) and do not

738

necessarily reflect the views of the National Science Foundation.

739

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

### 740 **Figure Legends**

741

742 **Fig. 1.** The spindle mediates nuclear migration through the penetration peg. (A)

743 Schematic representation of extreme nuclear migration in *M. oryzae* during movement

744 through the penetration peg (23, 24). The nucleus in the appressorium is referred to,

745 here, as the mother nucleus (left). The appressorium forms on the surface of the rice

746 leaf. The migrating nucleus, called the daughter nucleus, becomes elongated as it

747 moves through the penetration peg (middle). Note that the penetration peg spans the

748 rice cell wall, and does not protrude into the appressorium as shown in this depiction.

749 The daughter nucleus is then positioned at the apical region of the primary hypha

750 (right). The primary hypha forms inside the first-invaded rice epidermal cell. (B) Extreme

751 nuclear migration through the penetration peg in *M. oryzae* strain CKF3578. The

752 nucleus is shown in red (histone H1-RFP), and the spindle is shown in cyan (MT-GFP).

753 Times is in minutes: seconds. An overlay to outline the appressorium and the primary

754 hypha is provided in the merged channel. The GFP and RFP channel micrographs are

755 purposively left without an overlay to more clearly display annotations. (00:00) The

756 spindle (filled arrowhead) bisects the mother nucleus (open arrowhead) within the

757 appressorium (asterisk). (00:37) The spindle rotates to become aligned for movement

758 through the penetration peg. (03:52) Condensed chromosomes (chromatids) move

759 towards the polar edges of the spindle (open arrowheads) while the spindle continues to

760 become aligned for movement through the penetration peg. (05:00) the spindle (filled

761 arrowhead) and mother nucleus (open arrowhead) are positioned for movement through

762 the penetration peg. Due to the three-dimensional nature of the appressorium, the

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

763 mother nucleus and spindle appear to be co-localized at this point. (06:24) The mother  
764 nucleus remains within the appressorium (top open arrowhead), while the daughter  
765 nucleus begins to separate from the mother nucleus (bottom open arrowhead) in the  
766 penetration peg, and is stretched within the penetration peg (arrow). The spindle (filled  
767 arrowhead) propels the daughter nucleus forward. (10:12) The mother nucleus is  
768 located within the appressorium (top open arrowhead), the daughter nucleus is  
769 delivered to the apical region of the primary hypha (bottom open arrowhead) by the  
770 spindle (filled arrowhead). The daughter bound spindle pole body is evident (double  
771 filled arrow). Micrographs are single informative focal planes. Scale bar is 2  $\mu$ m.  
772

773 **Fig. 2.** The localization patterns of MoKin5-RFP within invasive hyphae during  
774 interphase and mitosis in wild-type. All micrographs are single informative focal planes.  
775 Scale bars are 2  $\mu$ m. Corresponding linescans quantify the fluorescence intensity in  
776 micrograph above. RFP intensity is displayed on primary vertical axis, GFP intensity is  
777 displayed on secondary vertical axis. Distance in  $\mu$ m is shown on horizontal axis. (A)  
778 The subcellular localization patterns of MoKin5-RFP relative to MT-GFP (cyan) in *M.*  
779 *oryzae* strain CKF4168. In interphase, MoKin5-RFP accumulates in the nucleus (left  
780 panel, arrow). During mitosis, MoKin5-RFP accumulates at the ends of the spindle (right  
781 panel, arrowheads). (B) The subcellular localization patterns of MoKin5-RFP relative to  
782 histone H1-GFP in *M. oryzae* strain CKF4208. In interphase, MoKin5-RFP co-localizes  
783 with histone H1-GFP (left panel). During mitosis, MoKin5-RFP accumulates at the ends  
784 of a dividing nucleus (right panel, arrowheads).

785

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

786 **Fig. 3.** Nuclear, spindle, and spindle pole body dynamics during nuclear migration  
787 through the penetration peg in wild-type. All micrographs are single informative focal  
788 planes. All scale bars are 2  $\mu$ m, except for the inset in panel 3A (far right; inset scale bar  
789 is 0.5  $\mu$ m). Asterisks indicate the appressorium. Time is in minutes: seconds. (A) The  
790 dynamics of the mother and daughter nucleus (histone H1-GFP) during extreme nuclear  
791 migration through the penetration peg in *M. oryzae* strain CKF4208. Two informative  
792 focal planes are shown. Micrographs show GFP and brightfield channels. Upper focal  
793 plane panels (left) show the localization of the mother nucleus (filled arrowhead) within  
794 the appressorium. The mother nucleus remains within the appressorium throughout the  
795 event. (00:00) The migrating daughter nucleus is localized within the penetration peg  
796 (open arrowhead). The lower focal planes show the dynamics of the daughter nucleus  
797 (open arrowhead). As the daughter nucleus moves towards the apical region of the  
798 primary hypha, it expands in the y-dimension diameter. The inset (far right) corresponds  
799 to the white box in the lower focal plane image. The inset is a merged micrograph  
800 showing both the GFP and RFP channels. MoKin5-RFP (magenta) localizes at the tip of  
801 the dividing nucleus (arrow) as it migrates through the penetration peg. (B) MoKin5-RFP  
802 marks the spindle pole bodies (arrows) at the ends of the spindle (MT-GFP (cyan))  
803 within the appressorium of *M. oryzae* strain CKF4168. (C) The daughter bound spindle  
804 pole body (marked by MoKin5-RFP; arrow) localizes at the tip of the spindle (MT-GFP)  
805 during movement through the penetration peg in *M. oryzae* strain CKF4168. (D)  
806 Schematic representation of the position of the nucleus, spindle, and daughter bound  
807 spindle pole body during movement through the penetration peg in wild-type.  
808

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

809 **Fig. 4.** Relative expression levels of *MoKin5* and *MoKin14* driven by the *Bas4* promoter.  
810 (A) Schematics of *MoKin5* and *MoKin14* overexpression (OE) constructs. (B) Relative  
811 expression of *MoKin5* (magenta) and *MoKin14* (green) in wild-type (CKF3578), *MoKin5*  
812 OE (CKF4108), and *MoKin14* OE (CKF4106) mycelia and YT16-infected rice sheaths.  
813 Data from two separate RT-qPCR experiments are shown. Samples were normalized  
814 relative to *actin* in each strain. Mycelia were harvested after 5 days growth in complete  
815 medium. Infected YT16 rice sheaths were harvested at 30-31 hours post inoculation.  
816 Significance was determined using a Student's t-test assuming unequal variance. P-  
817 value of *MoKin5* in *MoKin5* OE mycelia is 0.04. P-value of *MoKin5* in *MoKin5* OE  
818 sheaths is 0.003. P-value of *MoKin14* in *MoKin14* OE sheath is 0.03. Error bars are  
819 95% confidence intervals.

820

821 **Fig. 5.** *MoKin5* OE and *MoKin14* OE cause defects in nuclear positioning and  
822 morphology, and decreases in virulence on rice. (A) Frequency of most commonly  
823 observed nuclear positioning and morphology phenotypes at ~28 hours post inoculation  
824 in wild-type (CKF3578 and CKF3971, n=153), *MoKin5* OE (CKF4108, n=125), and  
825 *MoKin14* OE (CKF4106 and CKF4093, n=85) strains. Example micrographs on the left  
826 are single focal planes. Only histone-H1 and brightfield channels are shown in example  
827 micrographs. The inset shows a single focal plane depicting the position of the mother  
828 nucleus within the appressorium. Scale bar is 5  $\mu$ m. Top panel shows a single nucleus  
829 within the appressorium (arrowhead). The middle panel shows a single nucleus within  
830 the primary hypha (arrowhead). The bottom panel shows a single nucleus within the  
831 appressorium (arrowhead) and a single nucleus within the primary hypha (arrowhead).

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

832 Statistical significance of nuclear phenotype frequency was determined using two-tailed  
833 Fisher's exact tests. \*\*\* represent p-values less than 0.0001. Non-significant p-values  
834 are 0.22 for MoKin5 OE relative to MoKin14 OE in the wild-type category and 0.35 for  
835 wild-type relative to MoKin14 OE in the primary hypha category. The frequency of all  
836 observed nuclear phenotypes at the early timepoint is available in Fig. S3A. (B) Images  
837 of representative infected leaves from whole-plant spray inoculations. Wild-type is  
838 CKF3578, MoKin5 OE is CKF4108, and MoKin14 OE is CKF4106. Scale bar is 1 cm.

839

840 **Fig. 6.** Formation of microtubule (MT) protrusions and nuclear fragments within the  
841 MoKin5 OE strain CKF4108. All micrographs are informative single focal planes, except  
842 Fig. 6C (appressorium, left panels are maximum intensity projections). All scale bars are  
843 2  $\mu$ m. (A) Single (top), double (middle), and triple + (bottom) MT protrusions (filled  
844 arrowhead) within appressoria. (B) A nuclear fragment (open arrowhead) on a MT  
845 protrusion (filled arrowhead) within an appressorium. (C) The arrangement of the  
846 nucleus, nuclear fragments, and MT protrusions during extreme nuclear migration  
847 through the penetration peg. Within the appressorium (left panels) two nuclear  
848 fragments (open arrowheads) form along MT protrusions. A single MT protrusion is in  
849 focus (filled arrowhead), while another MT protrusion is out of focus (not marked). The  
850 micrograph on the right shows a lower single informative focal plane. Here, an MT  
851 protrusion (filled arrowhead) leads the nuclear fragment (open arrowhead) just  
852 emerging from the penetration peg. (D) A two-dimensional schematic representation of  
853 the dynamics presented in Fig. 6C.

854

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

855 **Fig. 7.** The behavior of small nuclear fragments (histone H1-RFP, open arrowheads)  
856 along the spindle and MT protrusion (MT-EGFP (cyan); filled arrowhead) in a primary  
857 hypha of the MoKin5 OE strain CKF4108. Each micrograph is a maximum intensity  
858 projection of informative single focal planes. The scale bar is 2  $\mu$ m. Asterisks indicate an  
859 anucleate appressorium. An overlay outlining the appressorium and primary hypha is  
860 present in the merged channel micrographs. Time is in minutes: seconds.

861

862 **Fig. 8.** The localization of MoKin5-RFP relative to MT-GFP (cyan) in spindles located  
863 within the appressoria of MoKin5 OE strain CKF4203. Maximum intensity projections of  
864 informative single focal planes are shown. Scale bars are 2  $\mu$ m. (A) A bright focus (filled  
865 arrowhead) of MT-GFP and MoKin5-RFP is found at one end of the MoKin5 OE spindle.  
866 (B) A schematic representation of the patterns shown in Fig. 8A. (C) Time-lapse  
867 micrograph series showing spindle elongation in the MoKin5 OE strain. Time is in  
868 minutes: seconds. (00:00) The bright focus of MT-GFP (cyan) and MoKin5-RFP (filled  
869 arrowhead) is opposite a small and transient accumulation of MoKin5-RFP at the other  
870 end of the spindle (arrow). The initial length of the MoKin5 OE spindle is 7  $\mu$ m. Over  
871 time, the spindle grows from a single end (plus symbol). The MoKin5 OE spindle  
872 elongates in a manner that follows the curvature of the appressorium, and the spindle  
873 rotates (compare 12:55 to 32:54). (D) Linescan quantifying fluorescence intensity of MT-  
874 GFP and MoKin5-RFP corresponding to timepoint 00:00 in Fig. 8C. MT-GFP and  
875 MoKin5-RFP signal shows an accumulation at one end of the spindle (black  
876 arrowhead). MoKin5-RFP shows a smaller accumulation at the opposite end of the  
877 spindle (black arrow). (E) Schematic representation of the MoKin5 OE spindle

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

878 elongating within the appressorium based on data presented in Fig. 8C. The focus of  
879 MoKin5-RFP and MT-GFP at the end of the spindle is shown by a purple circle, and  
880 corresponds to the white arrowheads in Fig. 8C. MoKin5-RFP shows a brief  
881 accumulation at the opposite end of the spindle at the start of spindle elongation (top  
882 image). The spindle grows from the end marked by the plus symbol.

883

884 **Fig. 9.** The arrangement of the spindle (MT-GFP (cyan)) relative to the mother nucleus  
885 (histone H1-RFP) within appressoria of wild-type, MoKin14 OE, and MoKin5 OE strains.  
886 All micrographs are single informative focal planes. Scale bar is 2  $\mu$ m. (A) In wild-type,  
887 CKF3578, the spindle bisects the nucleus within the appressorium. (Top panel) Filled  
888 arrowheads indicate the ends of the spindle. (Bottom panel) Chromatids move  
889 asynchronously towards the ends of the spindle. (B) In the MoKin14 OE strain,  
890 CKF4106, a monopolar spindle forms within the appressorium. In both panels a  
891 relatively bright focus of MT-GFP likely represent unseparated spindle pole bodies (filled  
892 arrowhead). MTs emanate from this bright MT-GFP focus (asterisks indicate prominent  
893 MTs emanating from the unseparated SPBs). (Bottom panel) The nucleus adopts a  
894 butterfly shape, suggesting a mitotic arrest. (C) In the MoKin5 OE strain, CKF4108, a  
895 typical bipolar does not form. The spindle does not span the entire diameter of the  
896 nucleus (spindle ends marked by filled arrowheads), and the nuclear fragmentation  
897 process appears to be beginning at one end of the nucleus where the spindle is located  
898 (arrow). (D) A schematic representation of the spindle and nuclear dynamics within the  
899 appressorium corresponding to data presented in Figs. 9A-C. When MoKin14 is  
900 overexpressed, the monopolar spindle persists over time.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

901

902 **Fig. 10.** MoKin14 OE causes the spindle (MT-GFP (cyan)) to collapse and form  
903 monopolar spindles. MoKin5-RFP accumulates at the spindle pole bodies (arrowheads).  
904 All micrographs are maximum intensity projections of informative single focal planes.  
905 Scale bars are 2  $\mu$ m. Time is in minutes: seconds. (A) Representative time-lapse of  
906 spindle and spindle pole body dynamics in a leading invasive hypha of wild-type *M.*  
907 *oryzae* strain, CKF4168. (B) Schematic representation of the spindle and spindle pole  
908 bodies dynamics as shown in Fig. 10A. (C) Time-lapse of spindle and spindle pole body  
909 dynamics in a leading invasive hypha of the MoKin14 OE strain, CKF4182. The spindle  
910 experiences several rounds of spindle collapse due to excessive MoKin14. (D)  
911 Schematic representation of the spindle and spindle pole bodies dynamics as shown in  
912 Fig. 10C. (E) Quantification of spindle length over time in invasive hyphae of the wild-  
913 type strain (CKF4168, n = 9) and the MoKin14 OE strain (CKF4182, n=24). Spindle  
914 length was determined by measuring the distance between MoKin5-tdTomato foci at  
915 the SPBs. Total time is calculated from the time the first image was acquired. The cell  
916 cycle was not synchronized, thus the spindle is not at the same spindle length at the  
917 00:00 timepoint for each time-lapse series.

918

919 **Fig. 11.** Proposed model of nuclear migration through the penetration peg. The early  
920 phases of mitosis occur within the appressorium (1-3). (1) In prophase, duplicated  
921 spindle pole bodies begin separation. (2) A bipolar spindle bisects the mother nucleus  
922 located in the appressorium in prometaphase. (3) Chromatids move asynchronously  
923 towards the spindle pole bodies in metaphase/anaphase A. (4) The spindle and divided

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

924 chromatids located at the spindle pole bodies rotate to become aligned to the axis of the  
925 penetration peg in anaphase A/B. (5) The daughter nucleus begins transiting the  
926 penetration peg with the daughter bound spindle pole body leading in anaphase B. The  
927 daughter nucleus becomes highly elongated during this event. (6-7) The spindle  
928 continues to elongate, propelling the daughter nucleus towards the apical region of the  
929 primary hypha in anaphase B. (8) The daughter nucleus is positioned at the tip of the  
930 primary hypha and the spindle has collapsed, indicating exit from mitosis. The inset  
931 shows MoKin5 generating an outward force on the spindle. MoKin5 also acts as a  
932 promoter of MT nucleation. MoKin14 generates an inward force on the spindle primarily  
933 during early mitosis.

934

### 935 **Supplemental Figure Legends**

936 **Fig. S1.** MoKin5 is a conserved kinesin-5. (A) Schematic of MoKin5 protein structure. A  
937 PFAM kinesin motor domain (PF00225) is predicted at positions 109 to 438. (B) Protein  
938 sequence alignment of MoKin5 and kinesin-5 in *Aspergillus nidulans* (AnBimC;  
939 AN3363). Dashes represent indels, and dots represent mismatched amino acids.  
940 Magenta box corresponds to predicted kinesin motor domain in Fig. S1A. (C) Protein  
941 sequence alignment of MoKin5 to select kinesin-5 proteins in other fungi, including *A.*  
942 *nidulans* (AnBimC), *Schizosaccharomyces pombe* (SpCut7), and *Saccharomyces*  
943 *cerevisiae* (ScKip1, ScCin8).

944

945 **Fig. S2.** Relative localization of MoKin5-RFP and Mo- $\gamma$ -tubulin-RFP in spindles (MT-  
946 GFP) spanning the germtube of developing appressoria (asterisks). Micrographs are

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

947 single informative focal planes. Scale bars are 2  $\mu$ m. (A) Localization of MoKin5-RFP  
948 (black arrowheads) relative to MT-GFP in a developing appressorium of *M. oryzae*  
949 strain CKF4168. Gray arrow shows red autofluorescence in micrograph. (B) Localization  
950 of Mo- $\gamma$ -tubulin-RFP (black arrowheads) relative to MT-GFP in a developing  
951 appressorium of *M. oryzae* strain CKF4117. CKF4117 displayed severe developmental  
952 defects and was not used for subsequent analysis. (C) Protein sequence alignment of  
953 Mo- $\gamma$ -tubulin (Mogamma; MGG\_00961) to  $\gamma$ -tubulin in *Aspergillus nidulans* (Angamma;  
954 MipA; AN0676). Dashes represent indels, and dots represent mismatched amino acids.

955

956 **Fig. S3.** Summary of observed nuclear positioning and morphology phenotypes. Only  
957 infection sites with intact appressoria were considered for analysis. For each strain, only  
958 micrographs with histone H1-RFP and brightfield channels were scored. (A) Frequency  
959 of all nuclear positioning and morphology phenotypes at ~28 hours post inoculation in  
960 wild-type (CKF3578, CKF3971, n=153), MoKin5 OE (CKF4108, n=125), and MoKin14  
961 OE (CKF4106; CKF4093, n=85) strains. Schematic representations of nuclear  
962 positioning and morphology for each group are found at the bottom of Fig. S3B. (B)  
963 Frequency of all nuclear positioning and morphology phenotypes at ~48 hours post  
964 inoculation in wild-type (CKF3971, n=26), MoKin5 OE (CKF4108, n=46), and MoKin14  
965 OE (CKF4093, n=56) strains. Schematic representations summarize key nuclear  
966 positioning and morphologies for each group. Group 1, Group 5, and Group 7 example  
967 micrographs can be found in Fig. 5A. A Group 2 example micrograph is found in Fig.  
968 6B. A Group 3 example micrograph is found in Fig. S3C. A Group 4 example  
969 micrograph is found in Fig. 7. A Group 6 example micrograph is found in Fig. 6C. (C) An

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

970 example micrograph of a Group 3 nuclear phenotype. Single focal planes are shown. A  
971 nucleus (arrow) appears to be stuck in the penetration peg. The appressorium is  
972 indicated by an arrowhead. Scale bar is 2  $\mu$ m.

973

974 **Fig. S4.** Representative examples of wild-type, MoKin5, and two independent MoKin14  
975 OE strains in infected rice sheaths at ~48 hours post inoculation. Micrographs are single  
976 focal planes. Scale bars are 10  $\mu$ m. Arrowheads point to appressoria.

977

978 **Fig. S5.** Representative example of localization of MoKin5-RFP and MT-GFP in a  
979 MoKin5 OE strain CKF4203. Arrowheads point to appressoria. The appressorium  
980 designated with "M" is in mitosis, the spindle is evident (arrow) and MoKin5-RFP fails to  
981 localize at the ends of the spindle, as occurs in wild-type. The appressorium designated  
982 with "I" is in interphase, and MoKin5-RFP localizes within the nucleus, as occurs in wild-  
983 type. Micrograph is a single informative focal plane. Scale bar is 5  $\mu$ m.

984

985 **Fig. S6.** MoKin14 is a conserved kinesin-14. (A) Schematic of MoKin14 protein  
986 structure. A PFAM kinesin motor domain (PF00225) is predicted at positions 554 to 881.  
987 (B) Protein sequence alignment of MoKin14 and kinesin-14 in *Aspergillus nidulans*  
988 (AnKlpA; AN6340). Dashes represent indels, and dots represent mismatched amino  
989 acids. Green box corresponds to predicted kinesin motor domain in Fig. S6A. (C)  
990 Protein sequence alignment of MoKin14 to select kinesin-14 proteins in other fungi  
991 including *A. nidulans* (AnKlpA), *Schizosaccharomyces pombe* (SpKlp2, ScPkl1), and  
992 *Saccharomyces cerevisiae* (ScKar3).

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

993

### References

- 994 1. Bone CR, Starr DA. 2016. Nuclear migration events throughout development. 129:1951-1961.
- 995 2. Xiang X, Beckwith SM, Morris NR. 1994. Cytoplasmic dynein is involved in 996 nuclear migration in *Aspergillus nidulans*. 91:2100-2104.
- 997 3. Plamann M, Minke PF, Tinsley JH, Bruno KS. 1994. Cytoplasmic dynein and 998 actin-related protein Arp1 are required for normal nuclear distribution in 999 filamentous fungi. *The Journal of Cell Biology* 127:139-149.
- 1000 4. Eshel D, Unrestarazu LA, Vissers S, Jauniaux JC, van Vliet-Reedijk JC, Planta 1001 RJ, Gibbons IR. 1993. Cytoplasmic dynein is required for normal nuclear 1002 segregation in yeast. 90:11172-11176.
- 1003 5. Gladfelter A, Berman J. 2009. Dancing genomes: fungal nuclear positioning. 1004 *Nature Reviews Microbiology* 7:875-886.
- 1005 6. Ramos-García SL, Roberson RW, Freitag M, Bartnicki-García S, Mouriño-Pérez 1006 RR. 2009. Cytoplasmic Bulk Flow Propels Nuclei in Mature Hyphae of 1007 *Neurospora crassa*. 8:1880-1890.
- 1008 7. Straube A, Weber I, Steinberg G. 2005. A novel mechanism of nuclear envelope 1009 break-down in a fungus: nuclear migration strips off the envelope. 24:1674-1685.
- 1010 8. Blackwell R, Edelmaier C, Sweezy-Schindler O, Lamson A, Gergely ZR, O'Toole 1011 E, Crapo A, Hough LE, McIntosh JR, Glaser MA, Betterton MD. 2017. Physical 1012 determinants of bipolar mitotic spindle assembly and stability in fission yeast. 1013 3:e1601603.
- 1014 9. Waitzman JS, Rice SE. 2014. Mechanism and regulation of kinesin-5, an 1015 essential motor for the mitotic spindle. 106:1-12.
- 1016 10. She Z-Y, Yang W-X. 2017. Molecular mechanisms of kinesin-14 motors in 1017 spindle assembly and chromosome segregation. 130:2097-2110.
- 1018 11. Shoukat I, Frazer C, Allingham JS. 2019. Kinesin-5 Is Dispensable for Bipolar 1019 Spindle Formation and Elongation in *Candida albicans*, but Simultaneous Loss of 1020 Kinesin-14 Activity Is Lethal. 4:e00610-19.
- 1021 12. Sharp DJ, Brown HM, Kwon M, Rogers GC, Holland G, Scholey JM. 2000. 1022 Functional coordination of three mitotic motors in *Drosophila* embryos. *Molecular 1023 Biology of the Cell* 11:241-253.
- 1024 13. Takan J, Akello B, Esele P, Manyasa EO, Obilana AB, Audi PO. 2004. Finger 1025 millet blast pathogen diversity and management in East Africa: A summary of 1026 project activities and outputs. *International Sorghum and Millets Newsletter* 1027 45:66-69.
- 1028 14. Islam MT, Kim K-H, Choi J. 2019. Wheat Blast in Bangladesh: The Current 1029 Situation and Future Impacts. *Plant Pathol J* 35:1-10.
- 1030 15. Tembo B, Mulenga RM, Sichilima S, M'siska KK, Mwale M, Chikoti PC, Singh 1031 PK, He X, Pedley KF, Peterson GL, Singh RP, Braun HJ. 2020. Detection and 1032 characterization of fungus (*Magnaporthe oryzae* pathotype *Triticum*) causing 1033 wheat blast disease on rain-fed grown wheat (*Triticum aestivum L.*) in Zambia. 1034 *PLOS ONE* 15:e0238724.
- 1035 16. Skamnioti P, Gurr SJ. 2009. Against the grain: Safeguarding rice from rice blast 1036 disease. 27:141-150.
- 1037

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

1038 17. Howard RJ, Ferrari MA, Roach DH, Money NP. 1991. Penetration of hard  
1039 substrates by a fungus employing enormous turgor pressures. 88:11281-11284.  
1040 18. Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ.  
1041 2012. Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus,  
1042 *Magnaporthe oryzae*. 336:1590-1595.  
1043 19. Howard RJ, Valent BJ. 1996. Breaking and entering: host penetration by  
1044 the fungal rice blast pathogen *Magnaporthe grisea*. 50:491-513.  
1045 20. Kankanala P, Czymbek K, Valent B. 2007. Roles for Rice Membrane Dynamics  
1046 and Plasmodesmata during Biotrophic Invasion by the Blast Fungus. 19:706-  
1047 724.  
1048 21. Sakulkoo W, Osés-Ruiz M, Oliveira Garcia E, Soanes DM, Littlejohn GR, Hacker  
1049 C, Correia A, Valent B, Talbot NJ. 2018. A single fungal MAP kinase controls  
1050 plant cell-to-cell invasion by the rice blast fungus. 359:1399-1403.  
1051 22. Pfeifer MA, Khang CH. 2018. A nuclear contortionist: the mitotic migration of  
1052 *Magnaporthe oryzae* nuclei during plant infection. Mycology 9:202-210.  
1053 23. Jenkinson CB, Jones K, Zhu J, Dorhmi S, Khang CH. 2017. The appressorium of  
1054 the rice blast fungus *Magnaporthe oryzae* remains mitotically active during post-  
1055 penetration hyphal growth. Fungal Genetics and Biology 98:35-38.  
1056 24. Shipman EN, Jones K, Jenkinson CB, Kim DW, Zhu J, Khang CH. 2017. Nuclear  
1057 and structural dynamics during the establishment of a specialized effector-  
1058 secreting cell by *Magnaporthe oryzae* in living rice cells. BMC Cell Biology 18:11.  
1059 25. Jones K, Jenkinson CB, Borges Araújo M, Zhu J, Kim RY, Kim DW, Khang CH.  
1060 2016. Mitotic stopwatch for the blast fungus *Magnaporthe oryzae* during invasion  
1061 of rice cells. Fungal Genetics and Biology 93:46-49.  
1062 26. Pfeifer MA, Jones K, Khang CH. 2019. A strikingly-angled spindle mediates  
1063 nuclear migration during colonization of rice cells infected by *Magnaporthe*  
1064 *oryzae*. Fungal Genetics and Biology 126:56-60.  
1065 27. Giraldo MC, Valent B. 2013. Filamentous plant pathogen effectors in action.  
1066 Nature Reviews Microbiology 11:800-814.  
1067 28. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park S-Y, Czymbek K, Kang  
1068 S, Valent B. 2010. Translocation of *Magnaporthe oryzae* Effectors into Rice Cells  
1069 and Their Subsequent Cell-to-Cell Movement. 22:1388-1403.  
1070 29. Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B. 2009. Interaction  
1071 Transcriptome Analysis Identifies *Magnaporthe oryzae* BAS1-4 as Biotrophy-  
1072 Associated Secreted Proteins in Rice Blast Disease. 21:1273-1290.  
1073 30. Chen G-Y, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa  
1074 H, Hancock WO. 2019. Kinesin-5 Promotes Microtubule Nucleation and  
1075 Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin. Current  
1076 Biology 29:2259-2269.e4.  
1077 31. Row KK, Aist J, Crill JJC. 1985. Mitosis in the rice blast fungus and its  
1078 possible implications for pathogenic variability. 63:1129-1134.  
1079 32. Shah H, Rawat K, Ashar H, Patkar R, Manjrekar J. 2019. Dual role for fungal-  
1080 specific outer kinetochore proteins during cell cycle and development in  
1081 *Magnaporthe oryzae*. 132:jcs224147.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

1082 33. Yadav V, Yang F, Reza MH, Liu S, Valent B, Sanyal K, Naqvi NI. 2019. Cellular  
1083 Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus.  
1084 10:e01581-19.

1085 34. Howard RJ, Ferrari MA. 1989. Role of melanin in appressorium function.  
1086 Experimental Mycology 13:403-418.

1087 35. Chang W, Antoku S, Östlund C, Worman HJ, Gundersen GG. 2015. Linker of  
1088 nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent  
1089 nuclear positioning orients centrosomes in migrating myoblasts. Nucleus 6:77-88.

1090 36. Grava S, Schaeerer F, Fatty M, Philippson P, Barral Y. 2006. Asymmetric  
1091 Recruitment of Dynein to Spindle Poles and Microtubules Promotes Proper  
1092 Spindle Orientation in Yeast. Developmental Cell 10:425-439.

1093 37. Mata J, Nurse P. 1997. tea1 and the Microtubular Cytoskeleton Are Important for  
1094 Generating Global Spatial Order within the Fission Yeast Cell. Cell 89:939-949.

1095 38. Woraratanadham T, Kmosek S, Banuett F. 2018. UmTea1, a Kelch and BAR  
1096 domain-containing protein, acts at the cell cortex to regulate cell morphogenesis  
1097 in the dimorphic fungus *Ustilago maydis*. Fungal Genetics and Biology 121:10-  
1098 28.

1099 39. Gerlitz G. 2020. The Emerging Roles of Heterochromatin in Cell Migration. 8.

1100 40. Denais CM, Gilbert RM, Isermann P, McGregor AL, te Lindert M, Weigelin B,  
1101 Davidson PM, Friedl P, Wolf K, Lammerding J. 2016. Nuclear envelope rupture  
1102 and repair during cancer cell migration. 352:353-358.

1103 41. Raab M, Gentili M, de Belly H, Thiam H-R, Vargas P, Jimenez AJ,  
1104 Lautenschlaeger F, Voituriez R, Lennon-Duménil A-M, Manel N, Piel M. 2016.  
1105 ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA  
1106 damage and cell death. 352:359-362.

1107 42. Pfeifer MA, Khang CH. 2021. Nup84 persists within the nuclear envelope of the  
1108 rice blast fungus, *Magnaporthe oryzae*, during mitosis. Fungal Genetics and  
1109 Biology 146:103472.

1110 43. Saunders DGO, Dagdas YF, Talbot NJ. 2010. Spatial Uncoupling of Mitosis and  
1111 Cytokinesis during Appressorium-Mediated Plant Infection by the Rice Blast  
1112 Fungus *Magnaporthe oryzae*. 22:2417-2428.

1113 44. Gu M, LaJoie D, Chen OS, von Appen A, Ladinsky MS, Redd MJ, Nikolova L,  
1114 Bjorkman PJ, Sundquist WI, Ullman KS, Frost A. 2017. LEM2 recruits CHMP7 for  
1115 ESCRT-mediated nuclear envelope closure in fission yeast and human cells.  
1116 114:E2166-E2175.

1117 45. Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen  
1118 SB, Brech A, Raiborg C, Stenmark H. 2015. Spastin and ESCRT-III coordinate  
1119 mitotic spindle disassembly and nuclear envelope sealing. Nature 522:231-235.

1120 46. Cheng J, Yin Z, Zhang Z, Liang Y. 2018. Functional analysis of MoSnf7 in  
1121 *Magnaporthe oryzae*. Fungal Genetics and Biology 121:29-45.

1122 47. Saunders W, Lengyel V, Hoyt MA. 1997. Mitotic spindle function in  
1123 *Saccharomyces cerevisiae* requires a balance between different types of kinesin-  
1124 related motors. 8:1025-1033.

1125 48. Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM. 2009. Kinesin-5-  
1126 dependent Poleward Flux and Spindle Length Control in *Drosophila* Embryo  
1127 Mitosis. 20:1749-1762.

## NUCLEAR MIGRATION THROUGH THE PENETRATION PEG

1128 49. Castillo A, Morse HC, Godfrey VL, Naeem R, Justice MJ. 2007. Overexpression  
1129 of Eg5Causes Genomic Instability and Tumor Formation in Mice. 67:10138-  
1130 10147.

1131 50. O'Connell MJ, Meluh PB, Rose MD, Morris NR. 1993. Suppression of the bimC4  
1132 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related  
1133 kinesin-like protein in *Aspergillus nidulans*. Journal of Cell Biology 120:153-162.

1134 51. Pidoux AL, LeDizet M, Cande WZ. 1996. Fission yeast pkl1 is a kinesin-related  
1135 protein involved in mitotic spindle function. Molecular Biology of the Cell 7:1639-  
1136 1655.

1137 52. Yukawa M, Yamada Y, Yamauchi T, Toda T. 2018. Two spatially distinct kinesin-  
1138 14 proteins, Pkl1 and Klp2, generate collaborative inward forces against kinesin-  
1139 5 Cut7 in *S. pombe*. 131:jcs210740.

1140 53. Jeon J, Rho H, Kim S, Kim KS, Lee Y-H. 2014. Role of MoAND1-mediated  
1141 nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus,  
1142 *Magnaporthe oryzae*. Fungal Genetics and Biology 69:43-51.

1143 54. Czymbek KJ, Bourett TM, Shao Y, DeZwaan TM, Sweigard JA, Howard RJ.  
1144 2005. Live-cell imaging of tubulin in the filamentous fungus *Magnaporthe grisea*  
1145 treated with anti-microtubule and anti-microfilament agents. Protoplasma 225:23-  
1146 32.

1147 55. Saunders DGO, Aves SJ, Talbot NJ. 2010. Cell Cycle–Mediated Regulation of  
1148 Plant Infection by the Rice Blast Fungus. 22:497-507.

1149 56. Khang CH, Park S-Y, Lee Y-H, Kang S. 2005. A dual selection based, targeted  
1150 gene replacement tool for *Magnaporthe grisea* and *Fusarium oxysporum*. Fungal  
1151 Genetics and Biology 42:483-492.

1152 57. Che Omar S, Bentley MA, Morieri G, Preston GM, Gurr SJ. 2016. Validation of  
1153 Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice  
1154 Blast Fungus *Magnaporthe oryzae*. PLOS ONE 11:e0160637.

1155 58. Livak KJ, Schmittgen TD. 2001. Analysis of Relative Gene Expression Data  
1156 Using Real-Time Quantitative PCR and the 2- $\Delta\Delta CT$  Method. Methods 25:402-  
1157 408.

1158 59. Jones K, Khang CH. 2018. Visualizing the movement of *Magnaporthe oryzae*  
1159 effector proteins in rice cells during infection, p 103-117, Plant Pathogenic Fungi  
1160 and Oomycetes. Springer.

1161 60. McDonald JH. 2009. Handbook of biological statistics, vol 2. Sparky House  
1162 Publishing Baltimore, MD.

1163

Fig. 1

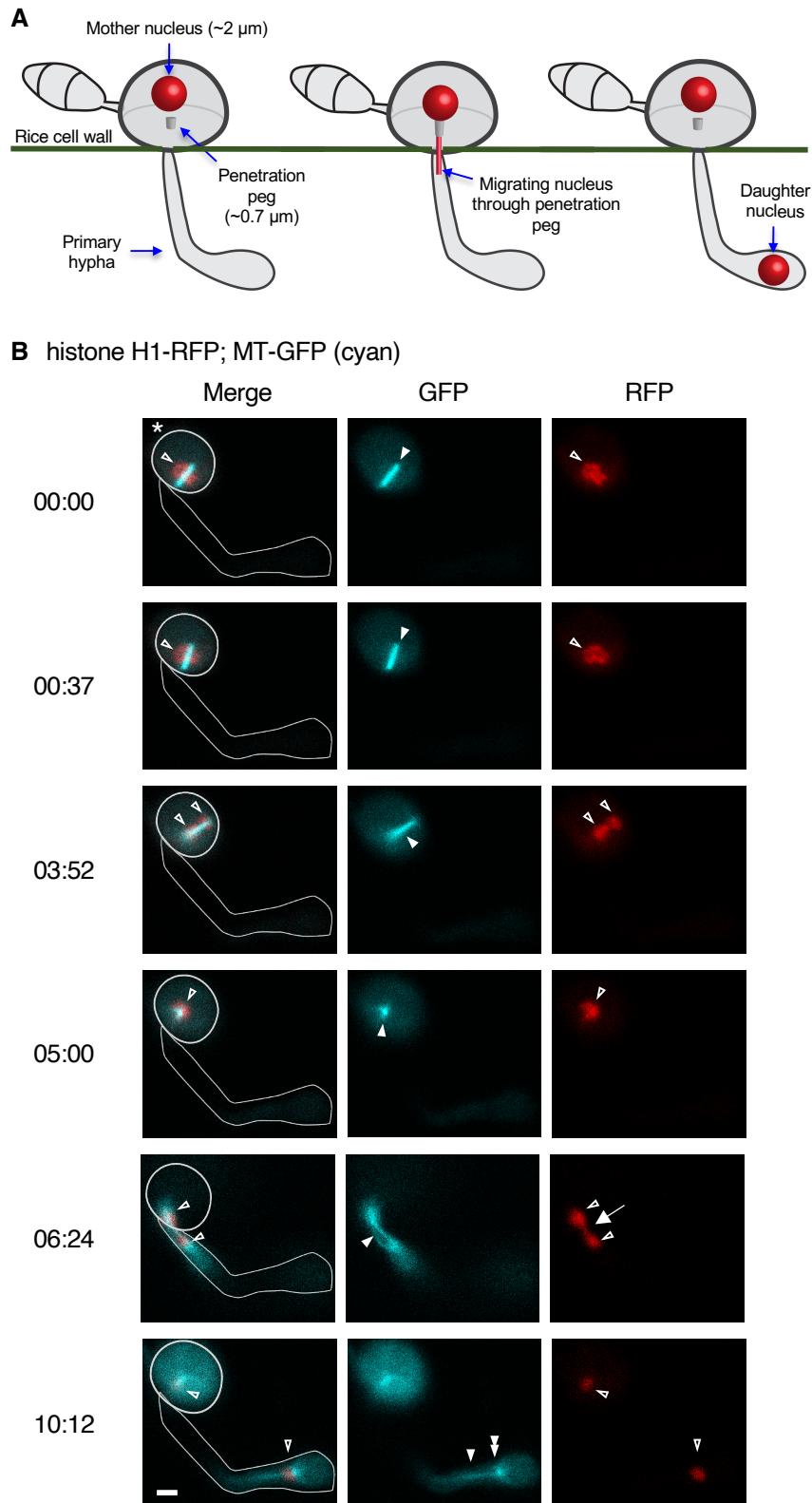
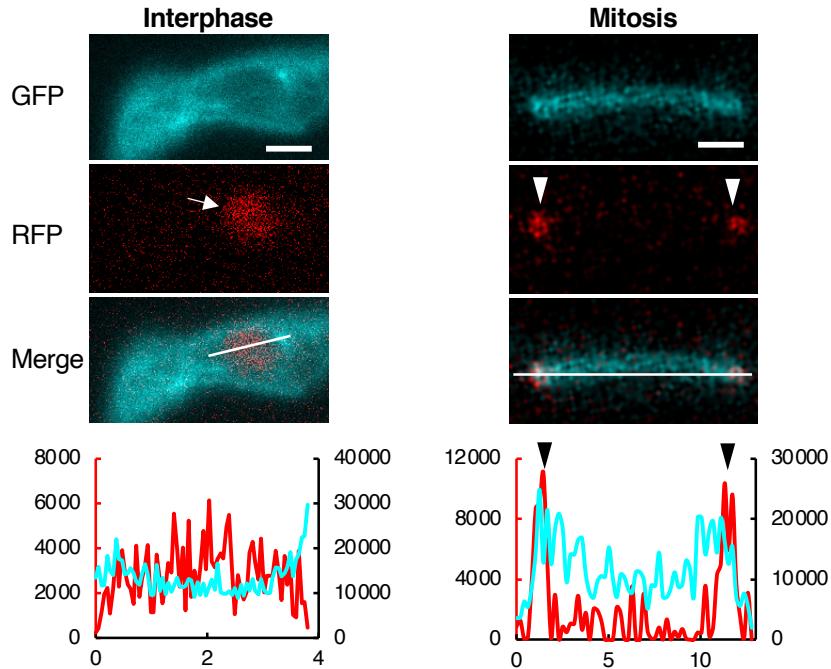




Fig. 2

**A** MT-GFP (cyan); MoKin5-RFP



**B** histone H1-GFP; MoKin5-RFP (magenta)

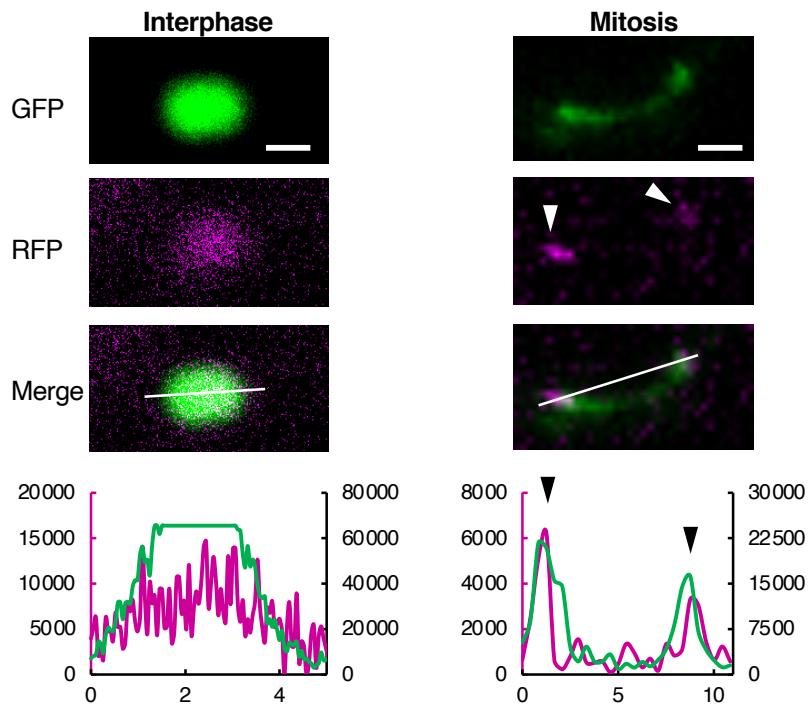
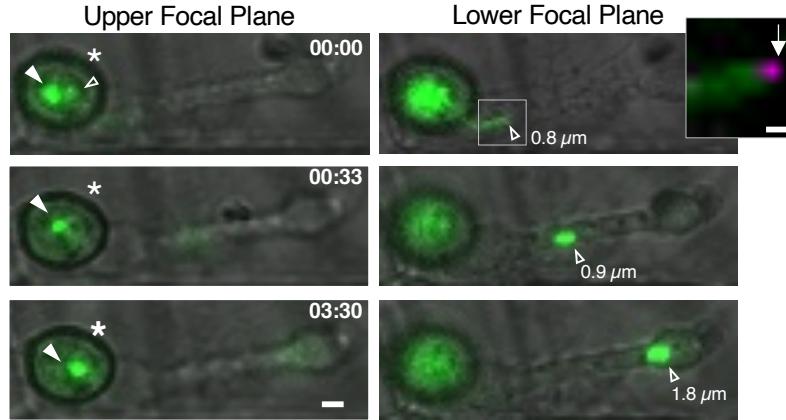
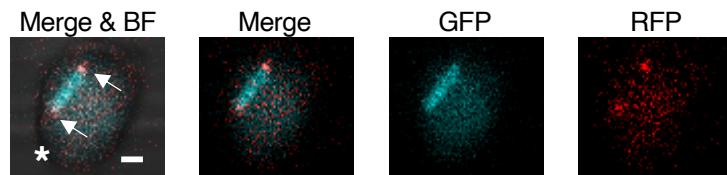
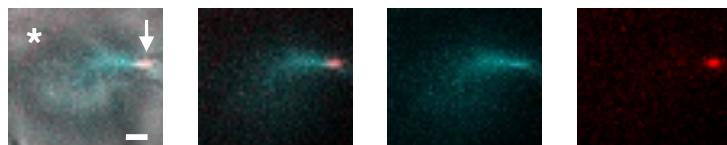





Fig. 3


**A** histone H1-GFP; MoKin5-RFP (magenta)



**B** MT-GFP (cyan); MoKin5-RFP



**C** MT-GFP (cyan); MoKin5-RFP



**D** Schematic

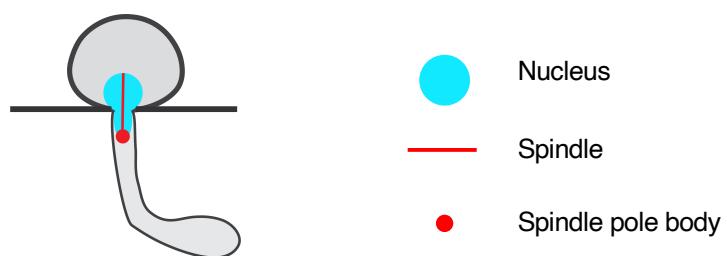
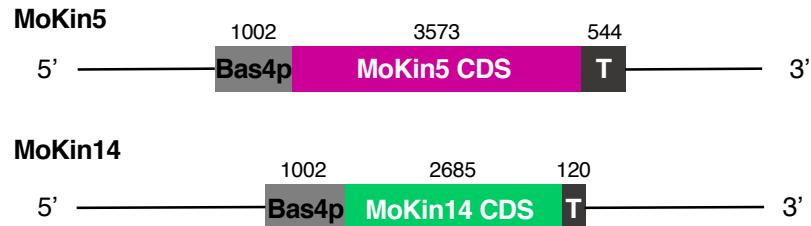




Fig. 4

**A Schematic of overexpression constructs**



**B**

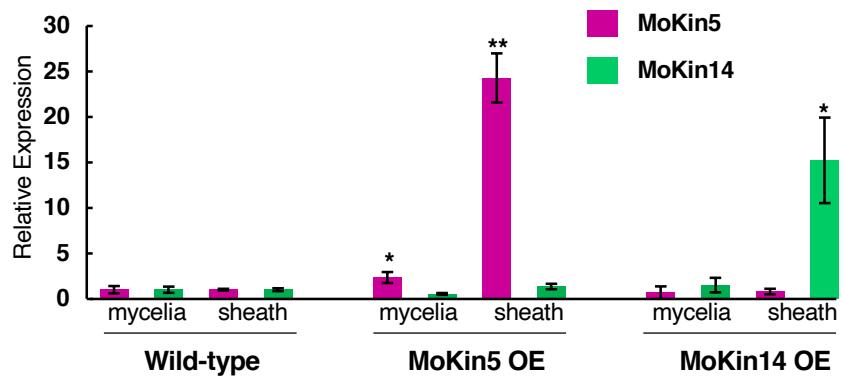
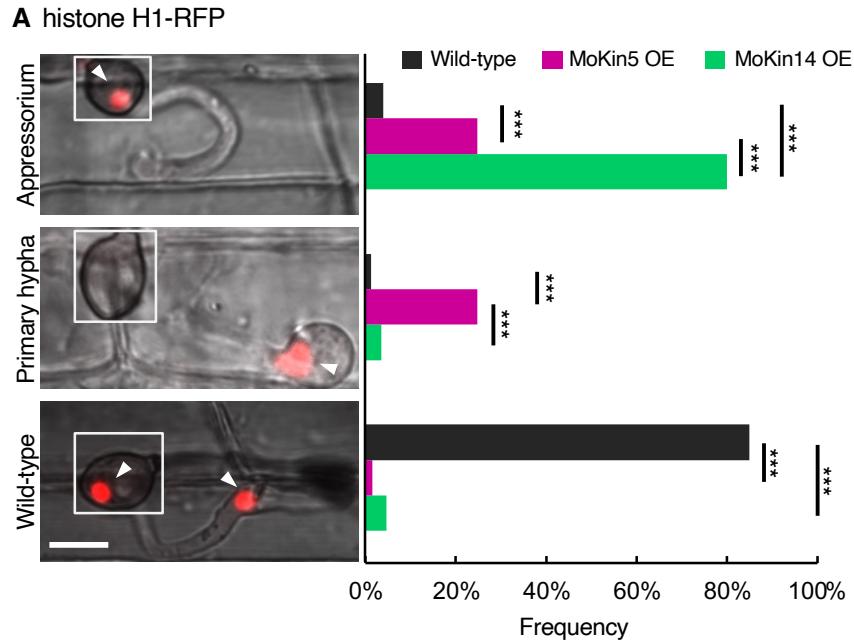




Fig. 5



**B**



Fig. 6

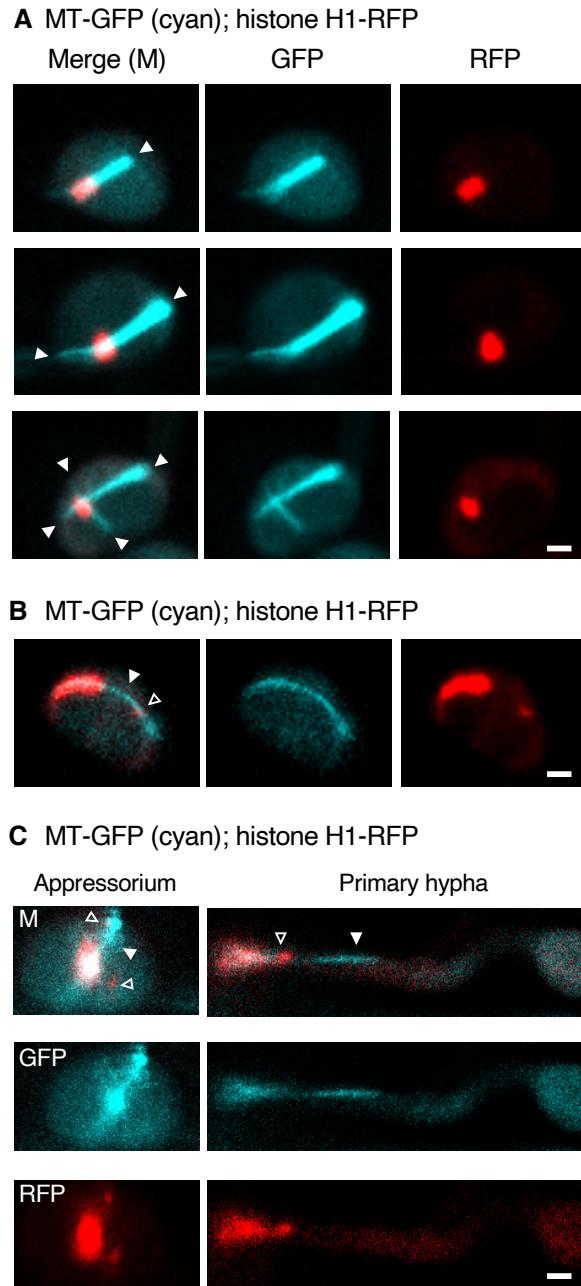



Fig. 7

MT-GFP (cyan); histone H1-RFP

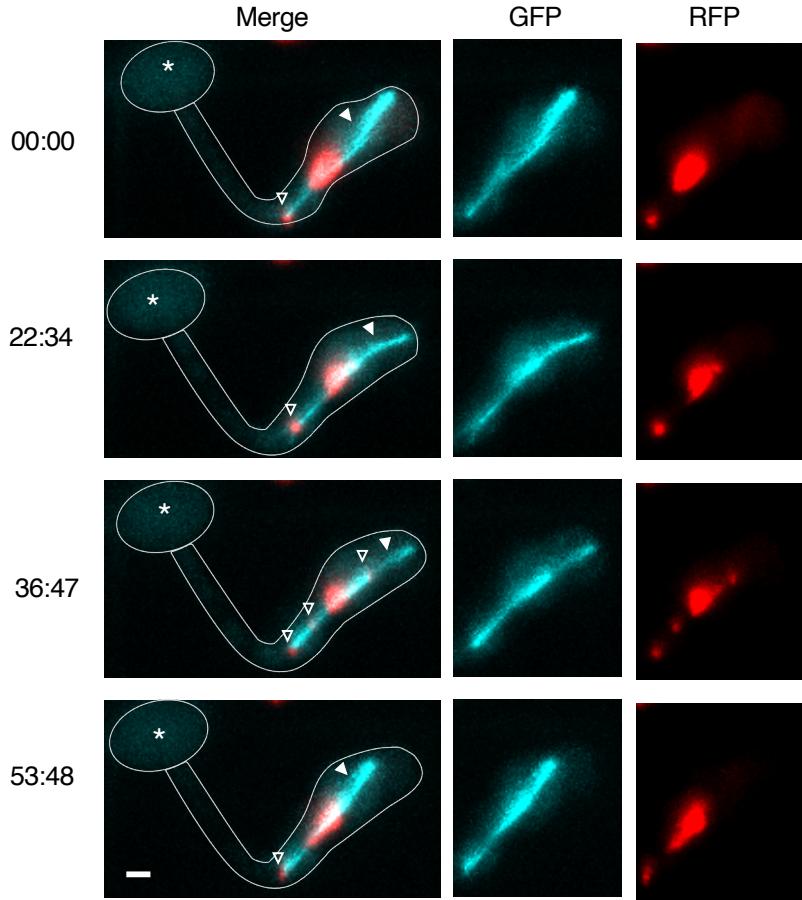



Fig. 8

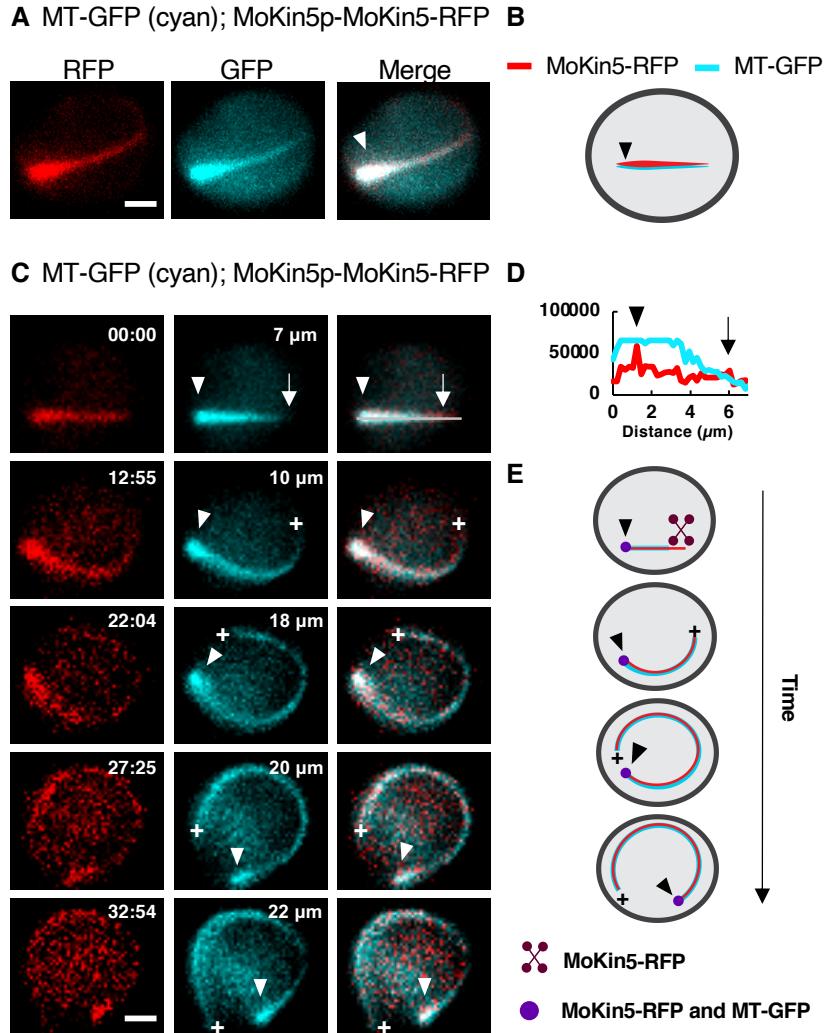
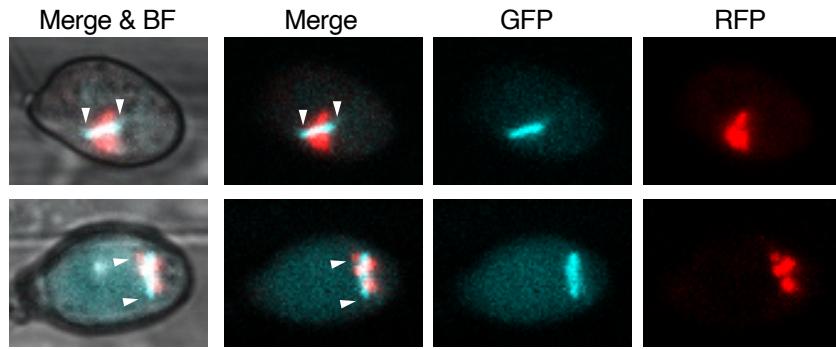
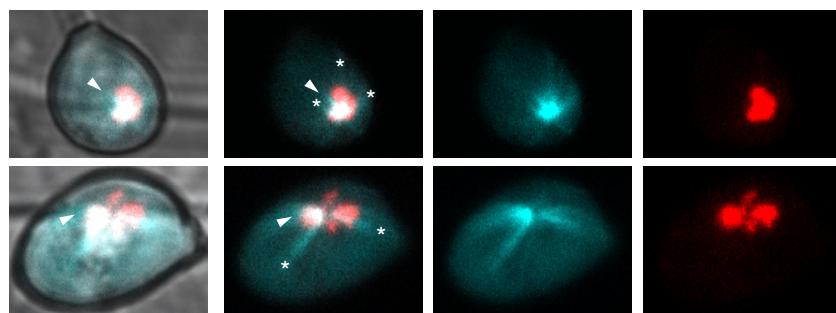
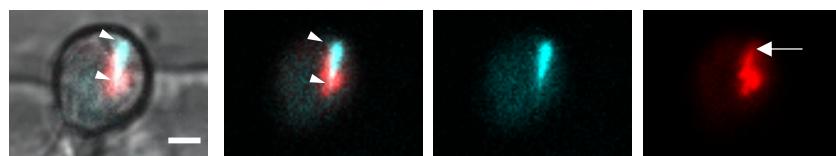





Fig. 9


**A Wild-type; MT-GFP (cyan); histone H1-RFP**



**B MoKin14 OE; MT-GFP (cyan); histone H1-RFP**



**C MoKin5 OE; MT-GFP (cyan); histone H1-RFP**



**D Schematic**

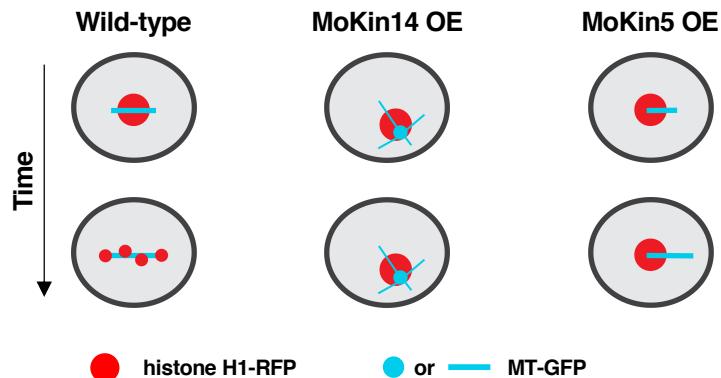



Fig. 10

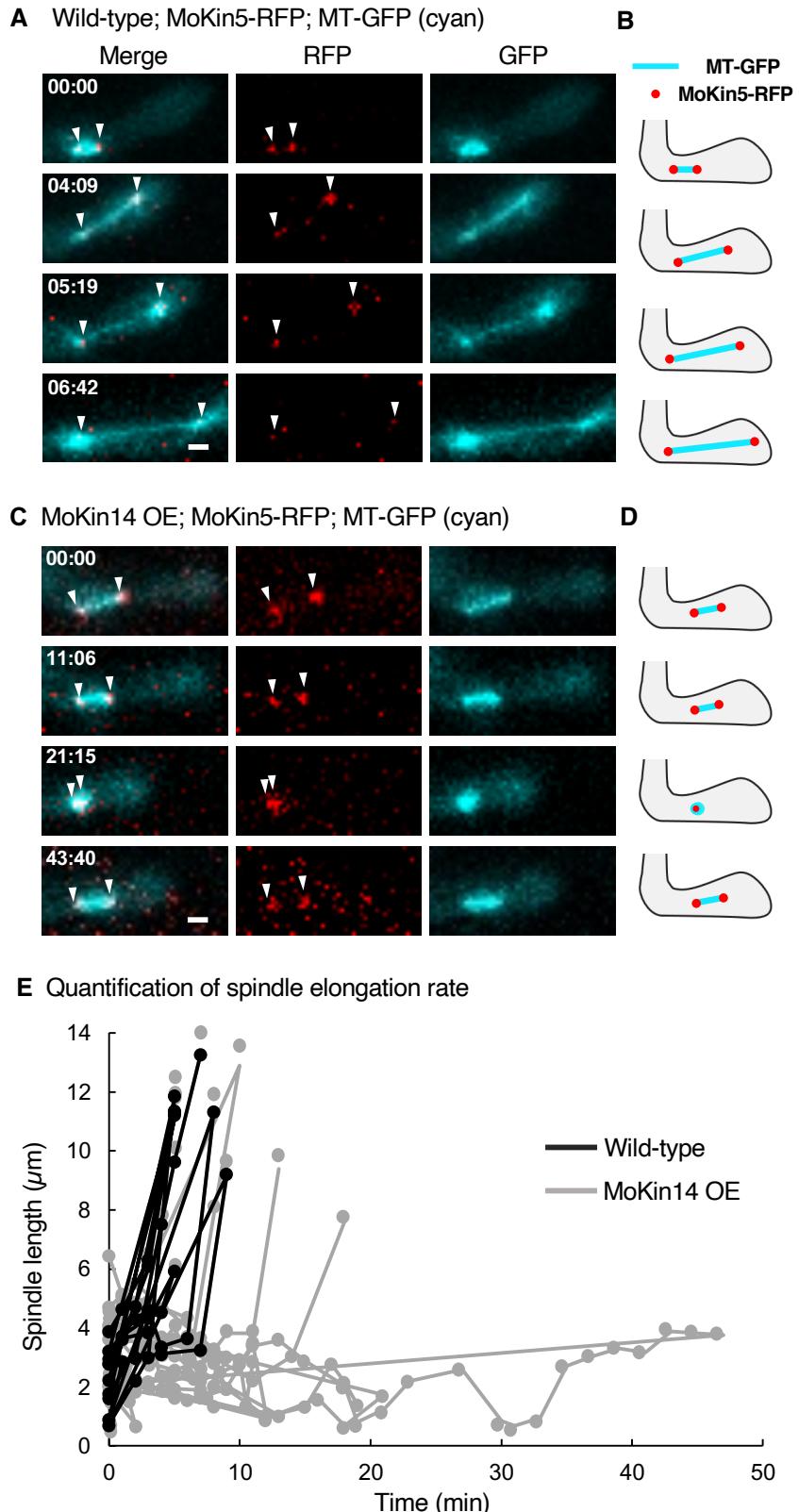
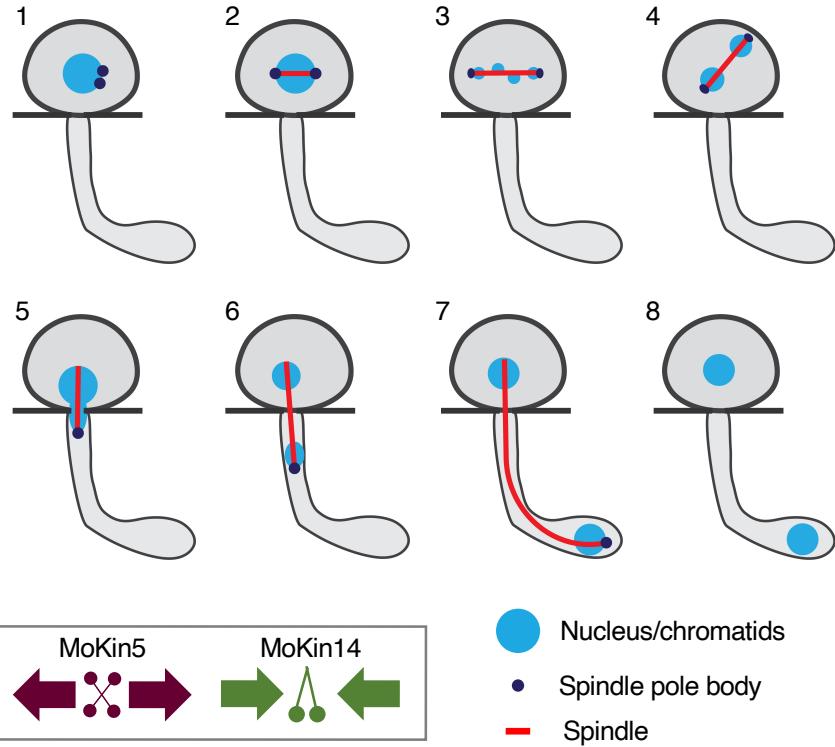




Fig. 11

Nuclear migration through the penetration peg

