

1 **Tracing patterns of evolution and acquisition of drug resistant *Aspergillus fumigatus*
2 infection from the environment using population genomics**

3
4 Johanna Rhodes^{1*}, Alireza Abdolrasouli^{2,3}, Katie Dunne⁴, Thomas R. Sewell¹, Yuyi Zhang¹,
5 Eloise Ballard⁵, Amelie P. Brackin¹, Norman van Rhijn⁶, Alexandra Tsitsopoulou⁷, Raquel B.
6 Posso⁷, Sanjay H Chotirmall^{8**}, Noel G McElvaney⁸, Philip G Murphy^{4,9}, Alida Fe Talento⁴,
7 Julie Renwick⁴, Paul S. Dyer¹⁰, Adrien Szekely¹¹, Michael J. Bromley⁶, Elizabeth M.
8 Johnson^{11,12}, P. Lewis White⁷, Adilia Warris^{5,12}, Richard C. Barton¹³, Silke Schelenz¹⁴, Thomas
9 R. Rogers⁴, Darius Armstrong-James², Matthew C. Fisher^{1±}

10
11 **Affiliations**

12
13 1 – MRC Centre for Global Disease Analysis, Imperial College London, London, UK
14 2 – Department of Infectious Diseases, Imperial College London, London, UK
15 3 – Department of Medical Microbiology, King's College University Hospital, London, UK
16 4 – Department of Clinical Microbiology, Trinity College Dublin, Dublin, Republic of Ireland
17 5 – Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, UK
18 6 – Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The
19 University of Manchester, Manchester Academic Health Science Centre, Core Technology
20 Facility, Manchester, UK
21 7 – Public Health Wales Microbiology, Cardiff, UK
22 8 – Respiratory Research Division, Department of Medicine, Royal College of Surgeons in
23 Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
24 9 – Department of Medical Microbiology, Tallaght University Hospital, Dublin, Ireland
25 10 – School of Life Sciences, University of Nottingham, Nottingham, UK
26 11 – National Mycology Reference Laboratory, Public Health England, Bristol, UK
27 12 – MRC Centre for Medical Mycology, University of Exeter, UK
28 13 – Mycology Reference Centre, Leeds Teaching Hospitals National Health Service Trust,
29 Leeds, UK
30 14 – Infection Sciences, Kings College University Hospital, London, UK
31 **current affiliation: Lee Kong Chian School of Medicine, Nanyang Technological University,
32 Singapore

33
34 **Corresponding authors**

35 *Johanna Rhodes – johanna.rhodes@imperial.ac.uk
36 ±Matthew Fisher – matthew.fisher@imperial.ac.uk

40 **Abstract**

41

42 Infections caused by opportunistic fungal pathogens are increasingly resistant to first-line
43 azole antifungal drugs. However, despite its clinical importance, little is known about the
44 extent to which susceptible patients acquire infection from drug resistant genotypes in the
45 environment. Here, we present a population genomic analysis of the mould *Aspergillus*
46 *fumigatus* from across the United Kingdom and Republic of Ireland. First, we show
47 occurrences where azole resistant isolates of near identical genotypes were obtained from
48 both environmental and clinical sources, indicating with high confidence the infection of
49 patients with resistant isolates transmitted from the environment. Second, we find that the
50 fungus is structured into two clades ('A' and 'B') with little interclade recombination and the
51 majority of environmental azole resistance genetically clustered inside Clade A. Genome-
52 scans show the impact of selective sweeps across multiple regions of the genome. These
53 signatures of positive selection are seen in regions containing canonical genes encoding
54 fungicide resistance in the ergosterol biosynthetic pathway, whilst other regions under
55 selection have no defined function. Phenotyping identified genes in these regions that could
56 act as modifiers of resistance showing the utility of reverse genetic approaches to dissect
57 the complex genomic architecture of fungal drug resistance. Understanding the
58 environmental drivers and genetic basis of evolving fungal drug resistance needs urgent
59 attention, especially in light of increasing numbers of patients with severe viral respiratory
60 tract infections who are susceptible to opportunistic fungal superinfections.

61

62

63 **Introduction**

64

65 Fungal infections are often neglected, yet affect more than a billion people worldwide;
66 mortality caused by fungal diseases matches that found for malaria or tuberculosis¹.
67 *Aspergillus fumigatus* is a globally ubiquitous environmental mould, which may
68 opportunistically cause fungal lung disease. Although healthy human lungs clear inhaled
69 inocula, invasive aspergillosis (IA) can occur in the ever increasing at-risk population with
70 severe neutropenia, haematopoietic stem cell or solid organ transplants, those receiving
71 immunosuppressive therapy (e.g. autoimmune diseases), and is emerging as an important
72 pathogen as an influenza- and COVID-19 associated infection^{2,3}. Patients who suffer chronic
73 infection by *A. fumigatus* include those with pulmonary conditions such as cystic fibrosis
74 (CF) and severe asthma. CF patients are particularly at high risk, with 30% developing
75 *Aspergillus*-related bronchitis and 18% developing allergic bronchopulmonary aspergillosis
76 (ABPA) in adulthood⁴. Collectively, millions of individuals suffer from aspergillosis
77 worldwide, with over 2.25 million occurring in the European Union alone⁵ testifying to the
78 broad scale nature of the problem.

79

80 Triazole antifungal drugs are usually effective against *A. fumigatus* and comprise firstline
81 therapy for prophylaxis and treatment of IA⁶. However, emerging resistance to azoles has
82 been reported⁷ worldwide for both environmental and clinical isolates^{8,9}. Triazole antifungal
83 drug resistance has serious clinical implications, with retrospective studies of patients
84 infected with IA-associated azole-resistant *A. fumigatus* showing a 25% increase in mortality
85 at day 90 when compared with patients with wild-type-infections¹⁰. While *in vivo*
86 emergence of resistance during extended azole therapy is well documented^{11,12}, *ex vivo*

87 evolution of resistance in the environment as a result of exposure to sterol 14 α -
88 demethylation inhibitor (DMI) fungicides has also been postulated^{13,14}. These agricultural
89 chemicals have been increasingly and widely used since their development in the 1970's and
90 affect pan-fungal sterol and related membrane biosynthesis by targeting the enzyme 14 α -
91 sterol demethylase. Azole resistance in *A. fumigatus* is thought to occur *via* the unintended
92 selection by DMIs for isolates with reduced sensitivity due to polymorphisms in the *cyp51A*
93 gene that encodes this membrane-building enzyme. Broadly, azole-resistance in *A.*
94 *fumigatus* occurring in the environment is characterised by signature mechanisms involving
95 expression-upregulating tandem repeats (TR) in the promoter region of *cyp51A*
96 accompanied by point mutations within this gene which decrease the affinity of azoles for
97 the target protein; the most commonly occurring alleles are known as TR₃₄/L98H and
98 TR₄₆/Y121F/T289A and are associated with high level itraconazole and voriconazole
99 resistance respectively both inside and outside of the clinic¹⁵⁻¹⁷. The spatially widespread
100 occurrence of these canonical alleles alongside increasing reports of more complex *cyp51A*
101 resistance-associated polymorphisms¹⁸⁻²⁰ underpin the hypothesis that the broad
102 application of agricultural azole fungicides is driving natural selection, amplification and
103 ultimately acquisition of azole-resistant airborne *A. fumigatus* conidia by susceptible
104 patients²¹. Furthermore, the potential for global spread of these resistance mechanisms
105 through floriculture products, especially plant bulbs, has been demonstrated²², while the
106 global dispersal of conidia on air-currents is impossible to contain.

107
108 There is a need to explore the potential link between the increasing clinical incidence of
109 azole-resistant aspergillosis and the increasingly broad range of azole resistant genotypes
110 that are being reported in the environment²³ using modern genomic epidemiological
111 methods. The rate at which environmental resistance develops will be determined by the
112 strength of natural selection by azole fungicides acting on beneficial mutations, a process
113 that is further influenced by recombination, gene flow, and dispersal with the latter likely
114 being substantial for *A. fumigatus* given its ubiquitous presence in nature and airborne
115 buoyancy of conidia. Whilst azole-resistant alleles can potentially segregate into diverse
116 genetic backgrounds through sex²⁴, the majority of *A. fumigatus* reproduction in the
117 environment is thought to occur asexually²⁶ producing clones with high genetic similarity.
118 Therefore, *a priori* expectations are that the genomes of azole-resistant *A. fumigatus* will
119 exhibit the genetic signatures of linkage, selective sweeps, and divergence of selected loci
120 from the wild-type population that is predicated on the amount of population-wide
121 recombination. Ultimately, clonality will cause high genetic similarity between clinical
122 isolates and their near-contemporaneous environmental progenitors, discovery of which
123 constitutes epidemiological evidence for the acquisition of azole resistant aspergillosis.
124 Evidence for these expectations comes from a recent global study by our laboratory
125 demonstrating the non-random distribution of azole resistance in *A. fumigatus* multilocus
126 microsatellite genotypes worldwide, compatible with selective sweeps caused by genetic
127 hitchhiking alongside azole-resistance polymorphisms²⁷.

128
129 Here, we used whole genome sequencing to interrogate the spatial and molecular
130 epidemiology and population genomics of a broad panel of *A. fumigatus* isolates collected
131 from medical centres and environmental sites across England, Wales, Scotland and the
132 Republic of Ireland. The aim of our study was to understand the genetic architecture of *A.*

133 *fumigatus* populations in this region in order to prove, or disprove, the proposed link
134 between azole-resistance found in the environment and patients.

135

136 **Methods**

137

138 Fungal isolates

139

140 A total of 218 isolates were included in this study. 153 clinical *A. fumigatus* isolates from five
141 participating centres were included. Patients either had respiratory colonisation with *A.*
142 *fumigatus* or were suffering from different manifestations of aspergillosis and had the
143 following underlying disorders (Table S1): cystic fibrosis (64%), other conditions (11%),
144 unknown (25%). Environmental isolates ($n = 65$) were collected as described in Sewell *et al.*,
145 Dunne *et al.*, and Tsitsopoulou *et al.*^{22,28,29}, and collected from the following sources: soil
146 (72%), plant bulbs (12%), air (3%), compost (2%), and unknown (11%). Many isolates from
147 both clinical and environmental sources were specifically selected for whole genome
148 sequencing because they displayed phenotypic azole resistance (raised minimum inhibitory
149 concentrations (MICs) to at least one triazole drug using EUCAST or CLSI) and do not
150 constitute a randomised sample.

151

152 All referred isolates were identified by phenotypic morphology as *A. fumigatus* species
153 complex based on colonial morphology and microscopic characteristics. Isolates were
154 cultured on Sabouraud dextrose agar (Oxoid, Basingstoke, UK) and malt extract agar (Sigma
155 Aldrich) at $37^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 5-7 days in the dark. Adhesive tape technique was used for
156 microscopic examination of fungal cultures. Slides were prepared with lactophenol-cotton
157 blue as mounting and staining fluid. The Atlas of Clinical Fungi
158 (<https://www.clinicalfungi.org>) was consulted as an identification reference. In addition,
159 growth at 45°C was used to exclude most cryptic species within section *Fumigati*. Isolates
160 with elevated azole MICs were confirmed to be *A. fumigatus* by matrix-assisted laser
161 desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), performed with a
162 Microflex LT system (Bruker Daltonics, Bremen, Germany) using Biotyper 3.0 software with
163 the additional fungi library (Bruker Daltonics, Bremen, Germany) according to the
164 manufacturer's recommendations, or as described by Dunne *et al.*²². Exact identification of
165 azole-resistant *A. fumigatus* isolates from two participating centres in London, UK, was
166 confirmed by sequencing the partial calmodulin gene (*CaM* locus) as previously described³⁰.
167 Antifungal susceptibility testing was completed as part of the original sampling studies, or
168 determined according to the standard EUCAST³¹ or CLSI M38-A2 broth microdilution
169 methods³². MICs for itraconazole and voriconazole were determined for 92% of isolates ($n =$
170 200 and 201 respectively). MICs for posaconazole were determined for 81% of isolates ($n =$
171 177). Seventeen isolates (8%) were not tested for susceptibility and therefore have no
172 recorded MICs for any antifungal drug.

173

174 DNA preparation and whole-genome sequencing

175

176 High molecular weight DNA was extracted from all 218 isolates and quantified as described
177 in Abdolrasouli *et al.*²¹. Genomic DNA libraries were constructed with the Illumina TruSeq
178 Nano kit (Illumina, San Diego, CA) at NERC Biomolecular Analysis Facility (NBAF), University
179 of Edinburgh, Scotland, UK (<http://genomics.ed.ac.uk/>). Prepared whole-genome libraries

180 were sequenced on an Illumina HiSeq 2500 sequencer at NBAF, generating 150-bp paired
181 end reads in high output mode. All raw reads have been submitted to the European
182 Nucleotide Archive (ENA) under project accession number PRJEB27135. Six isolates
183 (ARAF001-6) were sequenced as part of Abdolrasouli *et al.*²¹, with reads deposited under
184 project accession number PRJEB8623.

185

186 Bioinformatic analyses

187

188 All raw Illumina paired-end reads were quality checked using FastQC (v0.11.5; Babraham
189 Institute) and aligned to the reference genome Af293³³ using Burrows-Wheeler Aligner
190 (BWA v0.7.8)³⁴ mem and converted to sorted BAM format using SAMtools v1.3.1³⁵. Variant
191 calling was performed using GATK^{36,37} HaplotypeCaller v3.6, excluding repetitive regions
192 identified using RepeatMaster³⁸ v4.0.6. Low confidence variants were filtered out providing
193 they met at least one of the parameters “DP < 10 || MQ < 40.0 || QD < 2.0 || FS > 60.0 ||
194 ABHom < 0.9”. All variant calls with a minimum genotype quality of less than 50 were also
195 removed using a custom script. Single nucleotide polymorphisms (SNPs) were mapped to
196 genes using VCF-annotator (Broad Institute, Cambridge, MA).

197

198 Phylogenetic analysis

199

200 Whole genome single nucleotide polymorphism (SNP) data were converted into
201 presence/absence of a SNP with respect to the reference. SNPs identified as low confidence
202 in the variant filtration step were converted to missing data. These binary data were
203 converted into relaxed interleaved Phylip format, and maximum-likelihood phylogenies
204 were constructed to assess sequence similarity between isolates using rapid bootstrap
205 analysis over 1000 replicates using the BINCAT model of rate heterogeneity in RAxML³⁹
206 v8.2.9. Phylogenies were visualised in FigTree v1.4.2.

207

208 Analysis of genetic diversity and population inference

209

210 Genetic similarity and population allocation was investigated *via* hypothesis free
211 approaches. Principal Component Analysis (PCA) and Discriminant Analysis of Principal
212 Components (DAPC)⁴⁰ was performed to interrogate the relationship between clinical and
213 environmental isolates based on SNP data using the R package adegenet⁴¹ version 2.1.1.
214 Genetic clusters were allocated based on identifying the optimal number of clusters (k)
215 corresponding to the lowest Bayesian Information Criterion (BIC). STRUCTURE v2.3.4⁴² was
216 used to independently investigate the population structure assignments that were
217 predicted by DAPC and PCA.

218

219 We analysed a coancestry matrix based on whole-genome SNP data to assign individuals to
220 populations *via* model-based clustering using *fineStructure*⁴³ v2.0.7. *FineStructure* uses
221 chromosome painting to identify important haplotypes and describe shared ancestry within
222 a recombining population. These analyses were performed using a pan-clade genome-wide
223 SNP matrix to infer recombination, population structure and assignment, and ancestral
224 relationships of all lineages. ChromoPainter reduced the SNP matrix to a pairwise similarity
225 matrix under a linked model, using information on linkage decay and reducing the within-
226 population variance of the coancestry matrix relative to the between-population variance.

227
228 Sliding-window population genetic statistics (Tajima's D , nucleotide diversity π and F_{ST}) were
229 calculated for non-overlapping windows of 10 kb using vcftools⁴⁴ v0.1.13, with resulting
230 graphics produced in R v3.5.3 using ggplot2.

231
232 The index of association and rBarD are commonly used to estimate linkage disequilibrium.
233 These two statistics were calculated using Poppr v2.8.5⁴⁵ in R v3.5.3 using 999 resamplings
234 of the data under the null hypothesis of recombination.

235
236 Identifying loci associated with itraconazole resistance using genome-wide association
237

238 Loci associated with itraconazole resistance were identified using *treeWAS*⁴⁶, a method that
239 was recently developed to address challenges specific to microbial genome-wide association
240 studies (GWAS). *TreeWAS* uses phylogenetic information to correct for the microbial
241 population structure; we therefore used the phylogeny presented in this study along with a
242 nucleotide alignment for all 218 isolates. *TreeWAS* was performed for all isolates with MIC
243 information with a p -value cut-off of 0.01 for three tests of association (subsequent,
244 simultaneous and terminal) between azole susceptibility phenotype and genotype. The
245 phenotype information was encoded as a discrete vector based on above the MIC
246 breakpoint for itraconazole (and therefore resistant) or below (susceptible). Significant SNPs
247 common to all three tests were combined and were mapped to their respective genes *via*
248 FungiDB (release 50 beta)⁴⁷.

249
250 Drug sensitivity screening
251

252 Null mutants were obtained from the COFUN genome wide knockout collection⁴⁸ and the
253 COFUN transcription factor knockout library⁴⁹. MFIG001 (A1160p+) was used as the parental
254 isolate⁵⁰. Strains were inoculated in 25 cm² tissue culture flasks containing Sabouraud
255 Dextrose Agar (Oxoid, Basingstoke, UK) + 100 µM hygromycin and cultured for 3 days at 37
256 °C. Conidia were harvested in phosphate buffered saline (PBS) + 0.01% Tween-20 (Sigma
257 Aldrich, UK) by filtration through Miracloth (VWR, UK). Spore concentrations were
258 determined by haemocytometer. Spores were inoculated in a CytoOne 96-well plate
259 (StarLab, Milton Keynes, UK) containing RPMI-1640 medium 2% glucose and 165 mM MOPS
260 buffer (pH 7.0) with 16-0.06 mg/L itraconazole. MICs were determined visually after 48
261 hours as outlined by EUCAST⁵¹. Each strain was assessed in biological triplicate. Heatmaps
262 were generated in Graphpad PRISM (version 9).

263
264 **Results**
265

266 Whole genome sequencing of 218 isolates
267

268 Our collection spans a period of 12 years (2005-2017), covering a spatial range of 63,497
269 miles² in England, Wales, Scotland and Republic of Ireland (Figure 1). Whole genome
270 sequencing of 218 isolates of *A. fumigatus* isolated in England, Wales, Scotland and Republic
271 of Ireland was performed (Table S1).

273 Of these 218 sequenced isolates, 153 (70%) were clinical in origin, and the remaining 65
274 (30%) originated from environmental sources in the UK and Ireland. All reads mapped to
275 >93.4% of the Af293 reference genome with an average 38x coverage (Supplementary
276 Information Table 1). Within this dataset, just over a third of isolates (34%; $n = 79$) were
277 found to contain the *MAT1-1* mating type idiomorph (Table S2). Mating type was reported
278 for all isolates; a chi-square test showed a significant bias towards the *MAT1-2* idiomorph (P
279 $< 4.82983e^{-05}$), primarily seen in the environmental ($P < 1.00183e^{-05}$), and to a lesser extent
280 the clinical ($P < 0.04396$), populations (Table S2). The genomic dataset can be browsed as a
281 Microreact project⁵² at <https://microreact.org/project/6KR8996ywtVRV5wm233YhP>
282 (Figure S1).

283
284 EUCAST clinical antifungal breakpoints (www.eucast.org) were used to determine the
285 susceptibility of isolates, with the exception of Irish isolates, where susceptibility was
286 determined using CLSI methodology as described by Dunne *et al.*²². As clinical breakpoints
287 from EUCAST and CLSI were broadly similar for *A. fumigatus* they were pooled in our
288 analyses. Other studies have also found CLSI and EUCAST MICs to be similar^{53,54}. We report
289 (Table S3) minimum inhibitory concentrations (MICs) for itraconazole ($n = 200$), voriconazole
290 ($n = 201$) and posaconazole ($n = 178$). Of the isolates tested, 106 (49%) showed resistance to
291 at least one of the test antifungal drugs. Regarding specific azoles, 48% ($n = 96$) exceeded
292 MIC breakpoints to itraconazole (≥ 2 mg/L), 29% ($n = 64$) to voriconazole (≥ 2 mg/L), and 21%
293 ($n = 44$) to posaconazole (≥ 0.5 mg/L). We found 26 isolates (12%) that exceeded MIC
294 breakpoints to two or more azole drugs from both clinical ($n = 23$) and environmental ($n = 3$)
295 sources. Seventeen isolates were not tested for antifungal susceptibility *via* EUCAST or CLSI;
296 of these, 14 contained drug resistance polymorphisms (TR₃₄/L98H or TR₄₆/Y121F/T289A)
297 and three contained no known drug resistance polymorphism. Thirteen isolates reported
298 raised MICs but displayed no known drug resistance polymorphisms. These isolates are
299 summarised in Table 3.

300
301 Among the 218 genomes, 329,261 sites along the 30 Mb genome were found to be
302 polymorphic (~1.1%), similar to that seen in our previous study using a small number of
303 isolates recovered across a global-scale²¹. Pairwise identities show that, on average, each
304 isolate of *A. fumigatus* in this dataset differs from all others by 11,828 single nucleotide
305 polymorphisms (SNPs) testifying to the highly-discriminatory nature of this genotyping
306 method. Tandem repeats and SNPs causing non-synonymous amino acid substitutions in
307 *cyp51A* encoding 14- α lanesterol demethylase, the target of triazole antifungals, are
308 summarised in Table S1 for all isolates where present. Identified polymorphisms were
309 compared to known polymorphisms conferring resistance using the MARDy database⁵⁵. The
310 majority of clinical isolates ($n = 91$ (59.5%)) exhibited wildtype *cyp51A*, whilst TR₃₄/L98H was
311 predominant in environmental ($n = 41$ (63.1%)) isolates. The TR₃₄/L98H polymorphism was
312 the drug resistance allele found to occur with highest frequency in both clinical ($n = 44$
313 (28.8%)) and environmental populations ($n = 41$ (63.1%)) respectively; a second published
314 polymorphism, TR₄₆/Y121F/T289A, was only found in the environmental population ($n = 7$).
315 Other *cyp51A* nonsynonymous polymorphisms known to be associated with azole resistance
316 were also present within this dataset including: P216L ($n = 2$), G54W ($n = 9$), G54E ($n = 1$),
317 G54R ($n = 3$) (Figure 1). These genotypes and their relative frequencies are presented in
318 Table 2. The TR₄₆/Y121F/T289A genotype and a single TR₃₄ only (without the L98H
319 substitution) were only recovered from environmental isolates. Alongside known resistance

320 polymorphisms we found a novel *cyp51A* genotype associated with azole-resistance within
321 the UK, the TR-associated polymorphism, TR₃₄/L98H/T289A/I364V/G448S, which was
322 detected in four isolates (C155-C158) collected in 2016 from a sputum sample of one
323 patient with necrotising aspergillosis; these four isolates were found to contain this novel
324 polymorphism, manifesting a multi-azole resistant phenotype (Table S2), demonstrated by
325 high MIC values for itraconazole, voriconazole (both ≥ 16 mg/L) and posaconazole (4 mg/L).
326 These isolates (with the exception of C155) were phenotypically distinct from classical *A.*
327 *fumigatus* displaying slower growth rates with less pigmentation and fewer or no conidia
328 compared to classical *A. fumigatus*, yet were confirmed to be *A. fumigatus* by mass
329 spectrometry and the subsequent genome sequencing. All four isolates were *MAT1-2*, and
330 were only separated by 145 SNPs on average, compared to over 11,000 SNPs that on
331 average separate any pair of isolates in this dataset. This allele was only recovered in-
332 patient and was not found in the environment (Table 2). Known non-TR-associated
333 resistance markers P216L, G54W and G54E were only recovered in clinical isolates in this
334 study despite having been isolated from environmental samples in previous studies^{25,56,57}
335 (Table 2).

336
337 A single environmental isolate (C365) was found to contain only the 34-bp tandem repeat in
338 the *cyp51A* promoter region, uncoupled from L98H. This is the first time that these two
339 polymorphisms have been found unlinked in nature, and the isolate shows hallmarks of
340 recombination with Clade B (see below) suggesting a mechanism by which these
341 polymorphism have become unlinked. This isolate was resistant to itraconazole,
342 voriconazole and posaconazole (MIC ≥ 16 mg/L; 4 mg/L; 1 mg/L respectively) showing that
343 the tandem repeat alone is sufficient to confer resistance in this genetic background.
344 Intriguingly, genome analysis of 17 isolates with raised MICs to one of more of the azole test
345 drugs (i.e. 16% of total resistant strains) failed to detect any known resistance mechanism or
346 polymorphism with the *cyp51A* gene, indicating the presence of non-*cyp51A*-based azole
347 resistance mechanisms among the UK and Ireland sample collection (Table 3). All of these
348 isolates were obtained from clinical sources.

349
350 Phylogenomics and signatures of directional selection associated with azole-resistance
351

352 Phylogenetic analysis showed a distinctive 'dumbbell' shape in the unrooted phylogeny
353 similar to that reported by Abdolrasouli *et al.*²¹, and also identified two broadly divergent
354 clades (Figures 1 and S2) with high (100%) bootstrap support. 'Clade A' contained 123
355 isolates, whereas 'Clade B' contained 95 isolates; Table 1 contains the breakdown of
356 frequencies within both of these clades. The majority (99/123; 80%) of resistance-associated
357 genotypes were clustered within Clade A of the phylogeny, in which 80% of isolates ($n =$
358 99/123) exhibited polymorphisms in *cyp51A* resulting in an azole resistant phenotype
359 (Figures 1 and S2; Table 1). Conversely, the majority of isolates with no azole-associated
360 resistance polymorphisms within *cyp51A* and an azole-susceptible phenotype clustered into
361 the second clade, Clade B in which 86% of isolates ($n = 82/95$) exhibited an azole-susceptible
362 phenotype.

363
364 Whole genome SNP data were transformed using Principal Component Analysis (PCA) to
365 identify the optimal number of clusters (k) corresponding to the lowest Bayesian
366 Information Criterion (BIC). Here, we identified three clusters, containing a mix of

367 environmental and clinical isolates in each, which broadly corresponded to the previous
368 phylogeny (Figure S3): the first cluster corresponded to a subset of Clade A containing a
369 broad selection of *cyp51A* polymorphisms (henceforth referred to as Cluster 1); the second
370 cluster corresponded to Clade B (Cluster 2), and the third cluster overlapped with isolates
371 within Clade A containing TR₃₄/L98H only (henceforth referred to as Cluster 3). These
372 genetic clusters displayed no geographical or temporal clustering (Figure S3). Discriminant
373 Principal Component Analysis (DAPC) was used to examine the extent of divergence
374 between genetic groups, whilst minimising variation within groups; this analysis confirmed
375 the three genetically distinct clusters (Figure 2b). These three clusters were also confirmed
376 using STRUCTURE and $k = 3$ (Figure 2c).

377
378 Minimum inhibitory concentrations (MICs) for the three test azole antifungal drugs, as well
379 as the occurrence of polymorphisms associated with the *cyp51A* gene, were significantly
380 higher in Clade A overall than in Clade B (χ^2 test p -value = 3.27308e⁻¹⁴, df = 1). For tandem-
381 repeat associated polymorphisms, 100% of the TR₃₄ and 71% ($n = 5$) of the TR₄₆-associated
382 alleles occurred within Clade A, strikingly showing a complete absence of the commonly
383 occurring TR₃₄ genotype from Clade B).

384
385 We found that less than a quarter (23%; $n = 75,317$ SNPs) of the total *A. fumigatus* diversity
386 seen in the whole dataset occurs within Clade A, despite this clade comprising 56% of the
387 total isolates sampled. Of this nucleotide diversity within Clade A, no SNPs were uniquely
388 associated with TR₃₄/L98H or TR₄₆ polymorphisms (the latter are distributed across Clades A
389 and B). These data mirror those found by STRAf microsatellite analysis, illustrating that
390 isolates harbouring drug resistance polymorphisms display reduced genetic diversity and are
391 genetically depauperate in comparison to randomly-selected wild-type isolates²⁷.

392
393 We estimated the index of association (I_A) and the modified statistic rBarD⁴⁵ in order to
394 determine whether a signal of recombination is present within Clusters 1, 2 and 3. We
395 assumed the null hypothesis of no linkage disequilibrium, meaning therefore that no
396 recombination would not be rejected if the resulting values of both statistics were not
397 significantly different from the distribution of values obtained from 999 samplings. For all
398 three clusters, the null hypothesis could not be rejected, implying no significant linkage
399 among the loci, and therefore that all three clusters are recombining with each other. In
400 order to further explore recombination within *A. fumigatus* in the context of its population
401 structure, we implemented a chromosome painting approach using *fineStructure*⁴³, which
402 identified shared genomic regions between individuals and populations. The linked
403 coancestry model found the highest level of sharing within clades (Figure 3). Individual
404 isolates C4, C54 and C178 within Clade B displayed evidence for strong haplotype sharing.
405 These three isolates are all *MAT1-2* idiomorph. C4 was isolated from a soil sample in South
406 Wales, C178 in a London hospital (a clinical isolate) and C54 is a clinical isolate from Dublin,
407 Republic of Ireland (Supplementary Table 1). Overall, however, strong haplotype donation
408 occurred mostly within clades; an exception to this observation was the strong haplotype
409 donation between C178, C4, C54 (Clade B isolates) and C365 (a Clade A isolate). C365 is an
410 environmental itraconazole resistant isolate (MIC ≥ 16 mg/L) with only TR₃₄ present within
411 *cyp51A*, and *MAT1-1* mating idiomorph.

412

413 We next performed further population-level genome-wide analyses in order to investigate
414 whether local regions of the genome were differentially associated with respect to clade
415 and resistance phenotype. We measured signatures of genome-wide population
416 differentiation *via* the fixation index (F_{ST}) analysis of non-overlapping 10 kb windows by
417 comparing isolates within Clade A against those isolates from Clade B (Figure 4b). The
418 average F_{ST} value was 0.1312 (range: from 0 to 0.944035; standard deviation 0.0823);
419 average F_{ST} values and ranges for each chromosome are detailed in Table S3. Regions of
420 extremely variable F_{ST} values were observed in Chromosome I (range 0 to 0.9440). In
421 particular a region of 590 kbp on the right arm of this chromosome displayed an average F_{ST}
422 value of 0.2273, but with a range in F_{ST} values from 0 to 0.944035, suggesting near panmixis
423 in some parts of this region between Clades A and B. Across this region 184 genes are found
424 (gene ID Afu1g15860 to Afu1g17640 (Supplementary Data 4)). Of these genes, 9 contained
425 SNPs which were found to be significantly associated with itraconazole resistance using
426 treeWAS. Also within this region in Chromosome I, three extremely high outlier F_{ST} values
427 were observed where the average F_{ST} value was 0.9321 (range: 0.9238-0.9440) with the
428 spanned regions containing 9 genes (Table S4).
429
430 Regions of higher than average F_{ST} (around 0.5) were also observed in Chromosomes IV and
431 7 (Figure 4b). The average F_{ST} value for the *cyp51A* region, found in Chromosome IV, was
432 0.1193, slightly less than the average F_{ST} value for the whole dataset (0.1312).
433
434 In order to investigate whether a signature of selection was observed across the genome of
435 UK *A. fumigatus*, we used Tajima's D ⁵⁸ statistic to measure departures from neutral
436 expectations in non-overlapping 10 kb windows in order to measure evidence for selection
437 when subsetting the dataset into Clade A and B populations. Across our dataset, we found
438 highly variable positive and negative D values for both Clades (Figure 4a) that are suggestive
439 of different patterns of demography and natural selection. Strikingly, on average, Tajima's D
440 was 0.4766 for Clade A and -0.3839 for Clade B, and observation was apparent per
441 chromosome across Clades A and B (Table S3). The region in Chromosome IV containing
442 *cyp51A* appeared to have a lower than average D value (-1.02123; Figure 4a) when
443 compared against the rest of Clade A.
444
445 In order to determine the extent that variation in Tajima's D and F_{ST} owe to intra-clade
446 population substructure, we subset the dataset into the three clusters that were defined by
447 PCA, DAPC and STRUCTURE. As before, we used non-overlapping 10 kb sliding windows to
448 estimate the two statistics. Three-way F_{ST} (Figure S4) between the three clusters (Cluster 1
449 and Cluster 3, and Clade B (Cluster 2)) shows regions in Chromosome I that are approaching
450 F_{ST} of 1, showing that these highly-diverged alleles are present across Clade A. There were
451 highly variable F_{ST} values when comparing Clusters 1 and 3 (range: from 0 to 0.786203;
452 average: 0.1309), Clusters 1 and 2 (range: 0 to 0.9322; average: 0.1577), and Clusters 2 and
453 3 (range: 0 to 1; average: 0.1424). Estimating Tajima's D in Clusters 1, 2 and 3 also found
454 highly variable positive and negative values of D across all three clusters (Figure S4). The
455 average value of D for all three clades was around zero, a marked departure from the
456 previous analysis of solely Clade A (Cluster 1: -0.089152, range -2.40694 to 4.68301; Cluster
457 3: 0.01773, range -2.62465 to 4.901) suggesting that the positive signature of selection in
458 Clade A is largely owed to population substructure.
459

460 Identifying loci significantly associated with itraconazole resistance

461
462 *treeWAS* is a microbe-specific approach that utilises a phylogeny-aware approach to
463 performing genome-wide association whilst being robust to the confounding effects of
464 clonality and genetic structure. We applied *treeWAS* to all sequenced isolates with reported
465 itraconazole MICs and a binary phenotype (205 out of 218 isolates). The binary phenotype
466 was categorised according to the itraconazole MIC defining susceptibility as MIC < 2 mg/L
467 and resistant as MIC \geq 2 mg/L. A phylogeny for these isolates was reconstructed as
468 previously described with 281,874 SNPs common to one or more isolates with reported
469 itraconazole MIC.

470

471 Analysis of this dataset led to the identification of 2,179 significant loci using the subsequent
472 test; this test has been previously defined by Collin & Didelot⁴⁶ as most effective at
473 detecting subtle patterns of association. Sixty-four percent of significant loci ($n = 1,391$)
474 were found to be intergenic. The three most significant loci ($p < 2.03 \times 10^{-6}$) were all located on
475 Chromosome IV: one was intergenic (position 1779747), one was a non-synonymous SNP
476 (S237F) in Afu4g07010 (position 1816171) and the third was the L98H substitution in *cyp51A*
477 (position 1784968 on chromosome IV; Supplementary Data 1). Of the significant loci
478 identified on other chromosomes, some mapped to genes involved in secondary
479 metabolism, including fumitremorgin. There were also loci within Afu8g00230, encoding
480 verruculogen synthase, which is associated with *A. fumigatus* hyphae and conidia modifying
481 the properties of human nasal epithelial cells⁵⁹. A single significant SNP was also identified in
482 *Aspf2* (Afu4g09580), a gene which is involved in immune evasion and cell damage⁶⁰.

483

484 A striking pattern was observed whereby peaks of gene-phenotype associations on
485 Chromosomes I, IV and VII mirrored regions of high F_{ST} when comparing Clades A and B
486 (Figure 4b) likely reflecting the impact of azole selection upon these alleles. Of these
487 regions, 1,385 out of the 2,179 significant loci were located within Chromosome 4. An
488 exception to this was observed in Chromosome VIII, where F_{ST} values did not peak above
489 0.370951, but *treeWAS* p-values were significant. Significant loci within Chromosome VIII
490 are located in genes such as verruculogen synthase, PKS-NRPS synthetase *psoA*
491 (Afu8g00540) and brevianamide F prenyltransferase (Afu8g00210). Out of the 356
492 significant loci in Chromosome VIII, the majority ($n = 354$) were located within 500,000 bp of
493 the start of the chromosome, and 62% were intergenic.

494

495 In order to determine whether there was an observable link between the significant loci
496 identified by *treeWAS* and azole-resistance, preliminary investigations were undertaken
497 using 28 gene deletion mutants from the COFUN knockout collection in which the
498 corresponding loci were deleted. These mutants were screened for growth on media
499 containing itraconazole relative to the parental control (strain A1160). As expected, null
500 mutant Δ AFUB_063960 (*cyp51A*) was not able to fully grow in media containing >0.06 mg/L
501 of itraconazole; in addition null mutant Δ AFUB_016810 (*abcA*) was unable to grow in media
502 containing >0.25 mg/L of itraconazole (Figure 4c). The control strain and all other null
503 mutants were unable to grow in media containing >1 mg/L (Figure 4c, Table 4).

504

505 Clinical and environmental *A. fumigatus* consist of genotypes with high relatedness

506

507 We subset our dataset into genotypes from clinical and environmental sources, then applied
508 PCA and DAPC. Both metrics showed a lack of genetic differentiation amongst isolates from
509 clinical and environmental origins showing, importantly, that clinical isolates are drawn from
510 the wider environmental population (Figure 2a). On average, any pair of isolates within the
511 dataset were separated by 11,828 SNPs. Within the phylogeny, out of 218 isolates, 6 pairs or
512 groups of *A. fumigatus* contained both clinical and environmental isolates that were
513 genetically very highly related (Table S5), with bootstrap support of 65% or higher (range:
514 65-100%: median: 100%), from both Clades A and B. For these paired or grouped
515 environmental and clinical isolates, average pairwise diversity was 297 SNPs (compared to
516 an average pairwise diversity of 11,828 SNPs observed for the complete dataset). Out of
517 these highly-related pairs and groups that share both clinical and environmental isolates,
518 four contained TR₃₄/L98H. On average, any clinical/environmental pair or group of the
519 azole-resistant isolates were separated by 247 SNPs (range: 227-270 SNPs; standard
520 deviation: 19).

521
522 The pair or group showing the highest identity were Group 5 in Clade B, containing isolates
523 C42, 43, 44, 48 (isolated from a CF patient in Dublin, Republic of Ireland) and 96 (isolated
524 from a plant bulb in Dublin, Republic of Ireland). The isolates within Group 5 were separated
525 by only 217 SNPs (1.8% of the total diversity seen in this dataset), were all *MAT1-2* mating
526 type, and did not contain any polymorphisms within *cyp51A* associated with drug
527 resistance, nor had raised MICs (Table S2).

528
529 We discovered a further cluster of very highly related *A. fumigatus* isolates consisting of 14
530 clinical and 14 environmental isolates that all harboured the TR₃₄/L98H *cyp51A*
531 polymorphism. These isolates were also all *MAT1-2* mating type. This clonal clade sits within
532 the larger Clade A and within Cluster 3, and will henceforth be referred to as Clade A_A
533 (Figure 1). Isolates within Clade A_A were found to be broadly distributed across England,
534 Wales, Scotland and the Republic of Ireland (Figure 1b), covering a spatial distance
535 equivalent to that observed across the whole dataset (Figure 1b). The clonal Clade A_A cluster
536 appears with high frequency, comprising 13% of the total dataset and 23% of the isolates
537 found within Clade A. Clade A_A isolates display low genetic diversity and high bootstrap
538 support (100%) within the phylogeny; The average number of SNPs separating Clade A_A
539 isolates is 294 SNPs and contains 0.09% of total genetic diversity observed in the whole
540 dataset. Isolation by Distance (IBD) was examined *via* a MANTEL test implemented in
541 adegenet⁴¹ in R, and showed no significant correlation (Observation = 0.0379 with a
542 simulated *p*-value of 0.01) between genetic and geographical distances suggesting that the
543 Clade A_A clone will have a broader extent than just the British Isles.

544
545 Clade A_A is significantly overrepresented (χ^2 test *p*-value = 2.75e⁻¹³, df = 1) for drug-resistant
546 environmental isolates, as all isolates contain TR₃₄/L98H, compared to only 63% of
547 environmental isolates in the rest of the dataset. In comparison, only 54% of clinical isolates
548 within the dataset as a whole contain the TR₃₄/L98H polymorphism. There were two
549 instances within Clade A_A where pairs of isolates from clinical and environmental sources
550 showed high genetic identity between clinical and environmental isolates, Pairs 1 and 2. Of
551 these two pairs, Pair 1 showed the highest identity, with just 227 SNPs separating
552 environmental isolate C21 (isolated from soil in a potato field in Pembrokeshire, Wales) and
553 clinical isolate C112 (isolated from a CF patient and supplied by the Public Health England

554 National Mycology Reference Laboratory – location of original patient unknown). Previous
555 studies have used nucleotide diversity (π) as a metric to test whether pairs of isolates are
556 epidemiologically linked in order to infer transmission^{61,62}. Here, nucleotide diversity (π)
557 tests implemented in vcftools⁴⁴ showed that the genetic diversity separating the isolates in
558 Pair 1 were significant different to the mean nucleotide diversity within the rest of the
559 isolates within Clade A_A (one-tailed t-test $p < 3.0473e-252$, Table S5), showing that these
560 isolates are genealogically tightly linked and that this shared identity could not have
561 occurred by chance occurrence alone.

562

563 Discussion

564

565 Emerging resistance to antifungal drugs is compromising our ability to prevent and treat
566 fungal diseases⁷. Breakthrough infections by azole-resistant *A. fumigatus* phenotypes have
567 been observed with striking increases across northern Europe where the incidence has
568 increased from negligible levels pre-1999 up to measured prevalences of 3-40% in the
569 present day^{11,63}. Further, the advent of COVID-19 has created a large and growing global
570 cohort of patients that are at risk of azole-resistant *A. fumigatus* coinfections⁶⁴. Our UK-
571 wide genomic analysis of environmentally- and clinically-sourced *A. fumigatus* yielded two
572 main findings. Firstly, *A. fumigatus* showed strong genetic structuring into two Clades 'A'
573 and 'B', with the majority of environmentally-occurring azole-resistance alleles segregating
574 inside Clade A and showing signatures of selection at multiple loci, some of which are
575 known to adapt in response to selection by fungicides. Secondly, we observed multiple
576 exemplars of drug-resistant genotypes in the clinic that matched those in the environment
577 with very high identity. As patients have never convincingly been shown to transmit their *A.*
578 *fumigatus* to the environment, this finding demonstrates that at-risk patients were infected
579 by isolates that have pre-acquired their resistance to azoles in the environment.

580

581 Phylogenomic analysis confirmed that the population of *A. fumigatus* was not panmictic,
582 and is structured into a characteristic 'dumbbell' phylogeny marked by two clades with
583 limited inter-clade recombination. We used four hypothesis-free population genetic
584 methods, PCA, DAPC, STRUCTURE and *fineStructure* to independently confirm the existence
585 of the two clades, as well as the occurrence of strong genetic subclustering within Clade A
586 and evidence of widely occurring clonal genotypes (eg. Clade A_A). Azole resistance was
587 defined both genetically, by the occurrence of known resistance alleles, as well as
588 phenotypically using MICs and mapped onto the phylogenetic structure. This analysis
589 showed that Clade A contained the majority of isolates (88%) harbouring polymorphisms in
590 *cyp51A* associated with drug resistance compared to Clade B, which was predominantly
591 wildtype for *cyp51A*. Phenotypically-defined resistance recovered a similar pattern with 78%
592 of itraconazole MICs above clinical breakpoints being compartmentalised into Clade A.
593 Further analysis using PCA, DAPC and STRUCTURE showed Clade A is divided into two
594 subclusters, Clusters 1 and 3. All TR₃₄/L98H polymorphisms were found within Cluster 3
595 while Cluster 1 contained isolates with a variety of *cyp51A* polymorphisms. Interestingly,
596 isolates containing the TR₄₆/Y121F/T289A polymorphism were found in both Clade B and
597 Clade A Cluster 1, but not Clade A Cluster 3. Similarly, the novel polymorphisms
598 TR₃₄/L98H/T289A/I364V/G448S and the unlinked TR₃₄ were found only in Clade A Cluster 3.
599 These analyses suggest that TR-associated azole resistance has evolved a limited number of
600 times and recombination has not yet had the impact of homogenising these alleles across

601 the wider *A. fumigatus* phylogeny. Similar conclusions were drawn by Camps *et al.* based on
602 microsatellite and CSP marker analysis of European isolates, who also suggested that the TR-
603 resistance form had developed from a common ancestor or restricted set of genetically
604 related isolates²⁴. However, the allocation of these novel polymorphisms could also be due
605 to not sampling the entire ecological space available. Future work on global collections of *A.*
606 *fumigatus* that have been collected across longer periods of time than in the current study
607 will however be needed to trace and date the spatiotemporal origins of these alleles.
608

609 Our dataset revealed new insights into the emerging complexity of *cyp51A*-encoded
610 resistance polymorphism. By characterising the genotypes of *cyp51A* for all isolates we
611 identified a novel *cyp51A* polymorphism TR₃₄/L98H/T289A/I364V/G448S in four clinical
612 isolates, which appears to be the result of recombination between genotypes containing the
613 TR₃₄/L98H, TR₄₆/Y121F/T289A, and G448S polymorphisms. This polymorphism confers a
614 pan-azole resistant phenotype, and is similar to the TR₄₆³/Y121F/M172I/T289A/G448S
615 polymorphism recently discovered in clinical isolates in the Netherlands¹⁸. Although this
616 genotype has not yet been discovered in the environment, the occurrence of these alleles
617 separately in environmental isolates suggests that it could have formed as a consequence of
618 meiosis, and may be recovered given further surveillance. The counterargument, that this
619 polymorphism evolved *de novo* in patient as a consequence of recombination *in vivo* is not
620 impossible, but is considered rare. Such *de novo* evolution has been observed at other
621 regions of the *A. fumigatus* genome⁶⁵. We further identified, for the first time, a single
622 environmental isolate in Scotland containing the TR₃₄ tandem repeat by itself in *cyp51A*.
623 This significant finding demonstrates that the tandem repeat in itself can confer azole-
624 resistance as shown by its resistance to itraconazole (MIC 16 mg/L; Table S2 – isolate C365).
625 It also suggests that either de-linkage from the L98H amino acid substitution occurs through
626 recombination (in this case with the Clade B genetic background) or that parallel origin of
627 the tandem repeat can occur through chance processes. While 86% of resistance to
628 itraconazole defined using MICs was associated with known resistance alleles, we observed
629 12 cases where isolates were resistant to itraconazole yet without any known *cyp51A*
630 polymorphisms associated with drug resistance (Table 3). Six of these isolates were also
631 resistant to voriconazole and posaconazole, with two additional isolates displaying
632 resistance to voriconazole and posaconazole only (Table 3). This finding, together with the
633 identification of the TR₃₄/L98H/T289A/I364V/G448S polymorphism, shows that we have not
634 yet characterised the full spectrum of azole-resistance in *A. fumigatus* occurring in the
635 environment posing a risk to the susceptible patient populations^{18,66}.
636

637 Utilising the chromosome painting approach *fineStructure* enabled the confirmation of
638 three subpopulations within this dataset, which corresponded to Clades A, B and A_A, and the
639 presence of a subtle population substructure. Strong donation of haplotypes between Clade
640 B isolates C4, C54 and C178 and the Clade A TR₃₄-only isolate C365 is indicative of recent
641 recombination between these two clades, highlighting the potential for recombination-
642 driven resistance alleles to manifest. Previous studies have confirmed that asexual
643 reproduction facilitates the emergence of TR₃₄/L98H within *A. fumigatus*⁶⁷, so it is likely this
644 mechanism is also facilitating the emergence of new resistance alleles across the
645 population, such as the novel alleles observed in this study. However, it remains to be seen
646 whether sexual recombination is a mechanism responsible for facilitating the emergence
647 and/or spread of resistance alleles within their clades. The lack of a reliable molecular clock

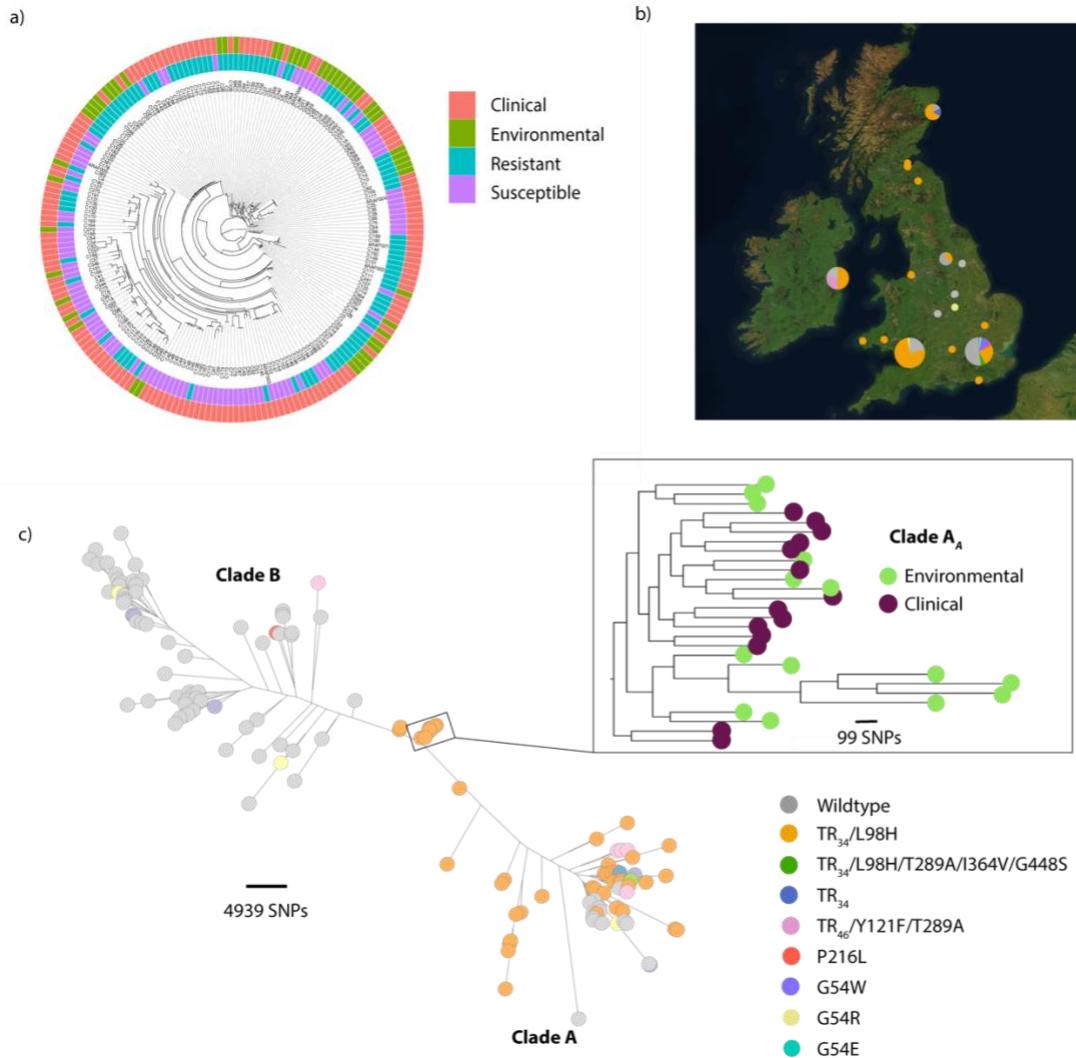
648 for *A. fumigatus*, combined with evidence of recombination between the clades, currently
649 hinders the dating of the time of emergence of resistance alleles.

650
651 Previous studies in bacteria, fungi and other eukaryotes have shown the advantages of using
652 whole genome sequencing for investigating the effects of selection^{68–70}. Calculating the
653 population differentiation index F_{ST} on non-overlapping sliding windows between
654 populations using genome-wide SNPs can detect regions of the genome that have been
655 subject to stabilising or diversifying selection⁷¹, the impact of which can ultimately lead to
656 the divergence of populations if recombination is rare. Our genome-scans show that Clade A
657 and B explain ~13% ($F_{ST} = 0.13$) of the observed genetic structure (per chromosome range
658 10% - 16%). This shows that, while the dumbbell phylogeny is not due to the presence of
659 two sister and cryptic species (which would be marked by levels of differentiation
660 approaching $F_{ST} \sim 1$) the barrier to gene-flow is strong enough to allow these populations to
661 experience the effects of selection differently. This is demonstrated by Tajima's D , which
662 switches sign between the two clades from $D = 0.4766$ for Clade A to $D = -0.3839$ for Clade
663 B. The positive value for Clade A suggests an excess of intermediate-frequency SNPs, a
664 distribution that is expected under a model of multiple clonal expansions of fit variants that
665 are under directional selection. However, an excess of intermediate-frequency SNPs could
666 also be explained by a mixture of populations; PCA, DAPC and STRUCTURE confirmed the
667 presence of two clusters within Clade A; Cluster 1 which contains a variety of *cyp51A*
668 polymorphisms, and Cluster 3, which contains isolates with the TR₃₄/L98H polymorphism
669 only. The positive value of Tajima's D within clade A is largely dependent on the internal
670 TR₃₄/L98H – associated population structure and reduces to ~0 when the clusters are
671 analysed independently (Cluster 1 $D: -0.089152$, Cluster 3 $D: 0.01773$). Accordingly, it
672 appears that the effects of fungicide selection upon the genetic background that these
673 resistance alleles are found, combined with low rates of recombination, is driving much of
674 the observed population genetic structure.

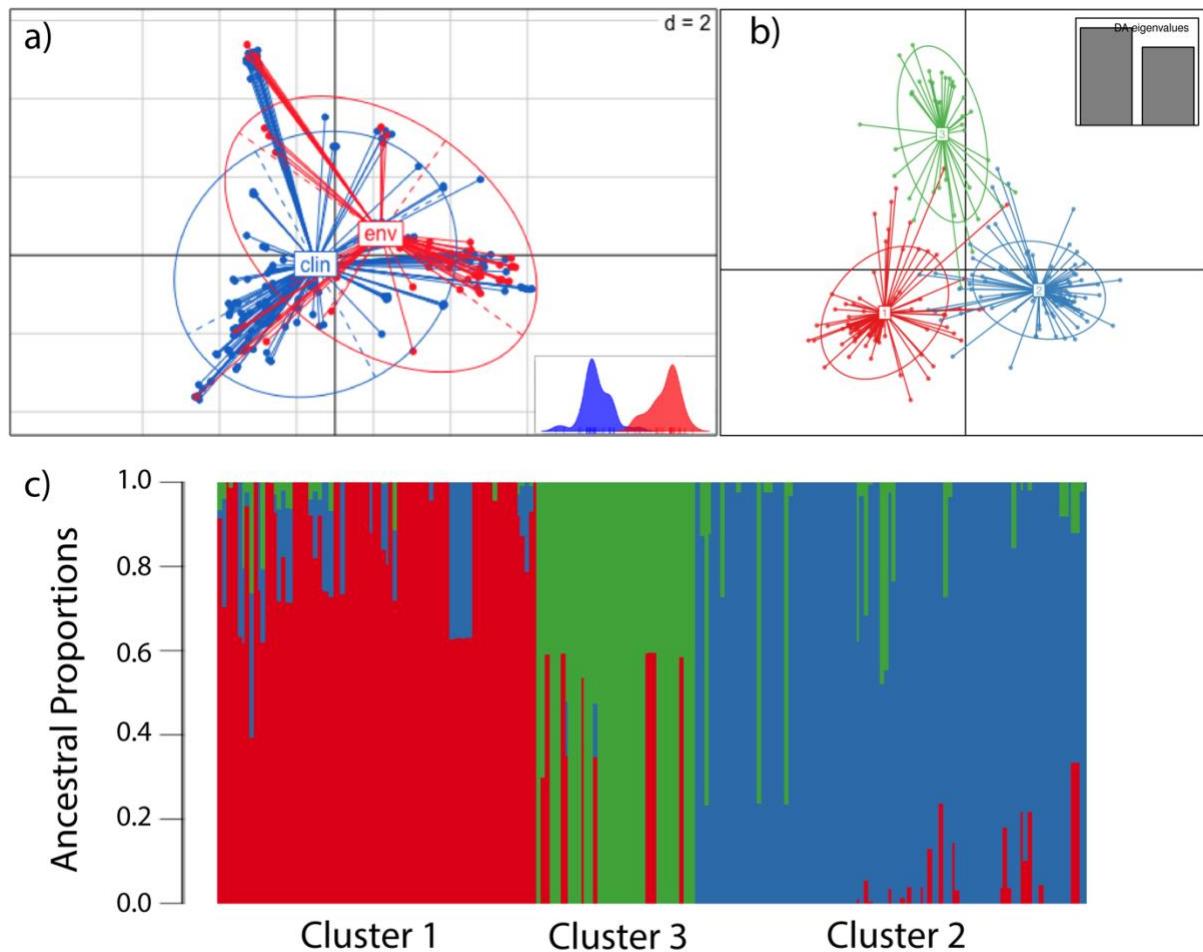
675
676 We challenged this observation by using a GWAS approach using the recently-developed
677 microbe-specific tool *treeWAS*. This method maintains high statistical power while being
678 robust to the confounding effects of clonality, population structure and recombination,
679 which we find in this population of *A. fumigatus*. We found a striking congruence where
680 significant peaks of gene-phenotype associations on Chromosomes I, IV and VII mirrored
681 regions of high F_{ST} when compared to Clades A and B (Figure 5a). This finding therefore links
682 the phenotypes that we have measured (itraconazole breakpoints) to the regions of the
683 genome that are under selection (chromosome IV *cyp51A* and other regions) and to the
684 genetic structure that we observe (islands of divergence between Clade A and B containing
685 significance *treeWAS* subsequent scores). Accordingly, it appears that fungicide-associated
686 resistance is driving the patterns of evolution and is the most likely explanation for much of
687 the observed genetic architecture.

688
689 Yet, there remains much to understand about how these genomic regions of divergence and
690 signatures of selection govern azole resistance in chromosomes with no immediately
691 obvious resistance functions. For instance *treeWAS* also identified significant SNPs in genes
692 involved in secondary metabolism. Recent research has shown that secondary metabolites
693 combat the host immune system and aid growth in the host (human) environment⁷². Our
694 results identified four SNPs in the gene encoding fumitremorgin C monooxygenase

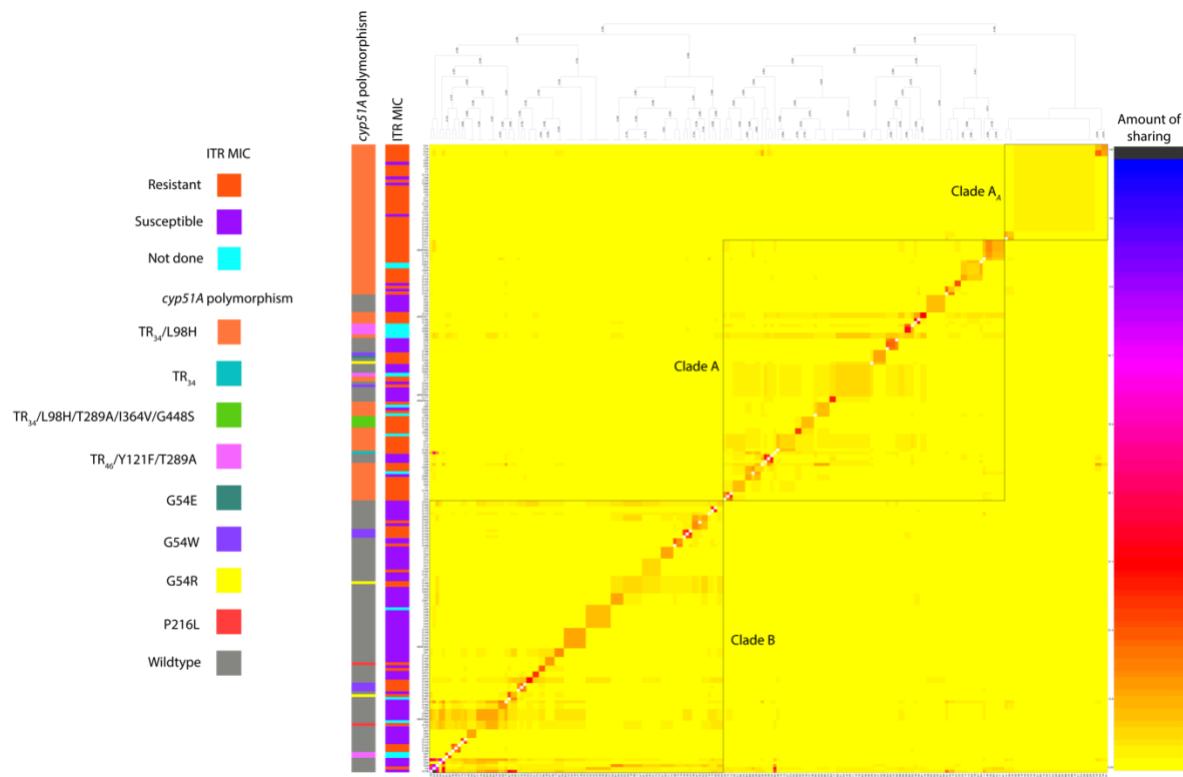
695 (Afu8g00240), which part of the pathway for secondary metabolite fumitremorgin C, a
696 mycotoxin that acts as a potent ABCG2/BCRP inhibitor that reverses multidrug resistance⁷³.
697 This pathway has also been suggested as regulating the brevianamide F gene cluster⁷⁴; two
698 non-synonymous SNPs in the gene encoding brevianamide F prenyltransferase
699 (Afu8g00210) were also identified as significant in our *treeWAS* analysis. Further complexity
700 is observed in Chromosome VIII, where F_{ST} values did not peak above 0.370951, but
701 *treeWAS* *p*-values were highly significant. Significant loci within Chromosome VIII are
702 located in genes such as verruculogen synthase, PKS-NRPS synthetase *psoA* (Afu8g00540)
703 and brevianamide F prenyltransferase (Afu8g00210). Out of the 356 significant loci in
704 Chromosome VIII, the majority ($n = 354$) were located within 500,000 bp of the start of the
705 chromosome, and 62% were intergenic. Relative growth of $\Delta cyp51A$ and $\Delta abcA$ null
706 mutants were effected even at >0.06 mg/L and >0.25 mg/L respectively showing that these
707 two genes have a key role in azole resistance and directly confirming the utility of *treeWAS*
708 to identify loci associated with itraconazole resistance. Future work now needs to widen our
709 search and to focus on the use of reverse functional genomic approaches to interrogate the
710 function of these genes within the context of their potentially epistatic inter-relationships
711 with the canonical ergosterol biosynthesis *cyp51A* azole-resistance alleles on Chromosome
712 IV.

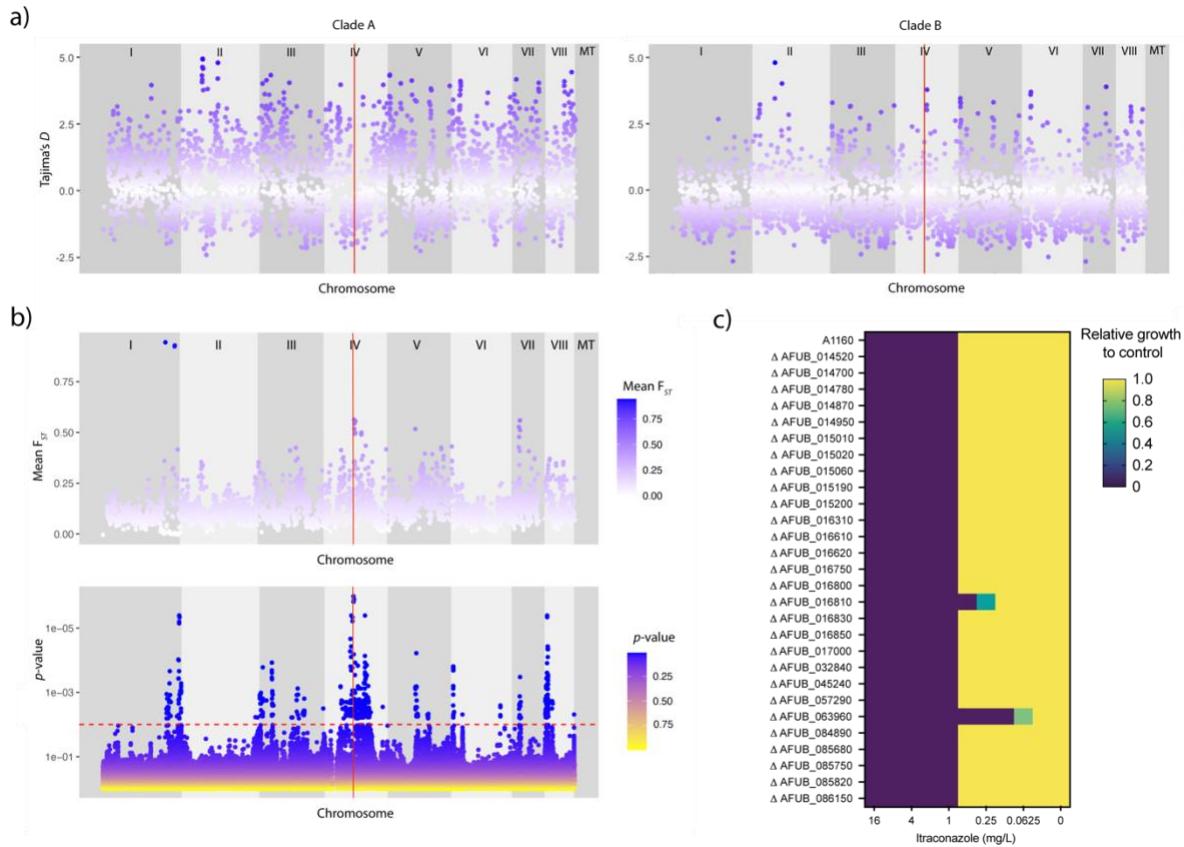

713
714 The ability of fungal pathogens to dispense with sex and to reproduce clonally through
715 mitosis is an important biological feature that enables genotypes of high fitness to rapidly
716 colonise new environments⁷⁵. Examples include the invasion of North America by the fungus
717 *Pseudogymnoascus destructans* causing bat white-nose syndrome⁷⁶, *Cryptococcus gattii*
718 invading the Pacific North West⁷⁷, and panzootic amphibian chytridiomycosis globally. We
719 identified a highly supported clade of 28 isolates of *A. fumigatus* demonstrating low genetic
720 diversity within Clade A, Clade A_A, which were all azole-resistant. These isolates were
721 spatially unstructured and recovered from an area covering 63,497 miles² across England,
722 Wales, Scotland and Republic of Ireland, confirming finding from previous studies that
723 azole-resistant *A. fumigatus* is capable of dispersing over wide geographical regions,
724 perhaps even at a global level^{21,27}. That clinical and environmental isolates within Clade A_A
725 are genetically depauperate not only shows the impact of the genetic sweep that has
726 accompanied the selection of these beneficial mutations, but also suggests that these
727 isolates are highly fit in both clinical and environmental settings. These data indirectly
728 corroborate previous findings that there are no obvious costs associated with the TR-related
729 polymorphisms that might impact the virulence of these isolates^{78,79}.

730
731 Importantly, genetic similarity of paired isolates recovered from environment and clinical
732 sources shows that acquisition of both wildtype and azole-resistant *A. fumigatus* has
733 occurred widely across this dataset. The statistically significant association between the
734 azole resistant isolates C354, C355 and C357, two clinical isolates and an environmental
735 isolate respectively, isolated within the same city, coupled with their very high genetic
736 similarity suggests an environment-to-patient acquisition of azole resistant *A. fumigatus*
737 with very high confidence. The low number of SNPs separating the isolates, coupled with
738 nucleotide diversity tests showed that these isolates are genealogically tightly linked, and
739 were strongly supported phylogenetically with 100% bootstrap support also. This shared
740 identity could not have occurred by chance alone, as this shared identity was found to be
741 statistically significant ($p < 3.0473 \times 10^{-252}$). Our PCA analysis showed that clinical isolates are


742 drawn from a wider environmental diversity, with a lack of genetic differentiation amongst
743 isolates in these populations (Figure 2a). The presence of other significant shared identity
744 between clinical and environmental isolates (Table S5) demonstrates that this
745 environmental to clinical acquisition *via* inhalation of fungal spores is not a rare occurrence.
746

747 Our study supports the hypothesis that the widespread use of azoles as fungicides in
748 agriculture is coupled to the increasing isolation of azole-resistant *A. fumigatus* from
749 environmental sources¹⁴. That these isolates bear hallmark multi-locus genotypes that are
750 indistinguishable to those recovered from patients supports our conclusion that adaptation
751 to fungicides in the environment is leading to acquisition of *A. fumigatus* bearing azole-
752 resistance genotypes^{26,80}. Here, we also identify spatially widespread clones of *A. fumigatus*
753 that are not only resistant to azoles but are also highly represented in both the environment
754 and the clinic, suggesting that that there are few fitness costs associated with this
755 phenotype. Respiratory viruses such as H1N1 influenza and Severe Acute Respiratory
756 Syndrome (SARS) are known to predispose critically-ill patients to secondary mould
757 infections², and early reports suggest that similar infections will be experienced by patients
758 with COVID-19⁶⁴. The growing numbers of susceptible individuals underscores the need for
759 further surveillance, which is acutely needed to more fully understand the risk posed by
760 environmental reservoirs of pathogenic fungi that, through the use of agricultural
761 antifungals, have evolved resistance to first-line clinical azoles.


762
763 **Figures**


764
765 Figure 1 – Phylogeographic and phenotypic variation of 218 *A. fumigatus* isolates in the
766 United Kingdom and Republic of Ireland a) Unrooted maximum likelihood phylogenetic tree
767 (constructed in RAxML using genome-wide SNPs) showing the itraconazole MIC breakpoint
768 (defined as above or below 2 mg/L for resistance or susceptibility, respectively) and clinical
769 or environmental source of isolation. b) Map showing the location of isolation for isolates
770 included in this study, with the legend (bottom right) indicating *cyp51A* polymorphisms
771 present. c) Unrooted maximum likelihood phylogeny of all 218 isolates showing the genetic
772 relationship between the isolates. 'Clade A' and 'Clade B' indicate the clustered nature of
773 triazole resistance polymorphisms. The subclade in the midpoint of the phylogeny indicates
774 a clonal clade, Clade A_A, that is rich in clinical and environmental *A. fumigatus* isolates which
775 contain the drug resistance polymorphism TR₃₄/L98H, highlighted in the inset phylogeny.
776

777
778 Figure 2 – Occurrence of three subclusters within the *A. fumigatus* population, and clinical
779 and environmental isolates are drawn from a single population a) Scatterplot of the PCA of
780 *A. fumigatus* genotypes using the first two principal components illustrating genetic identity
781 for clinical and environmental isolates b) DAPC and PCA broadly identify three clusters,
782 Clusters 1, 2 and 3, corresponding to the lowest Bayesian Information Criterion (BIC) c)
783 Three subclusters are confirmed using STRUCTURE and $k = 3$
784

785
786 Figure 3 – Genome sharing fineStructure analysis of *A. fumigatus* using genome-wide SNPs
787 confirms the presence of three populations within the dataset. Population averaged
788 coancestry matrix for the linked model dataset with associated cyp51A polymorphism and
789 itraconazole MIC (defined as above or below 2 mg/L for resistance or susceptibility,
790 respectively, or not done). The righthand scale bar represents the amount of genomic
791 sharing, with blue/black representing the largest amount of sharing of genetic material, and
792 yellow representing the least amount of shared genetic material.

794
795 **Figure 4 – Loci associated with itraconazole resistance linked to regions of high FST and**
796 **selection** a) Scatterplot of Tajima's D estimates for each chromosome for all isolates within
797 Clade A (left) and scatterplot of Tajima's D estimates for each chromosome for all isolates
798 within Clade B (right). The position of *cyp51A* is highlighted in red. b) Scatterplot of sliding
799 10-kb non-overlapping window estimates of F_{ST} for each chromosome between isolates
800 within Clade A and B (top panel). Manhattan plot (bottom panel) for treeWAS subsequent
801 test (bottom panel) showing p -values for all loci, a significant threshold of 0.01 (dashed red
802 line), above which points indicate significant associations. The vertical red line in both plots
803 denotes the position of *cyp51A*. c) Relative growth of null mutants (compared to A1160) of
804 genes with significant loci identified in treeWAS on media containing itraconazole.

805
806 **Tables**

807
808 **Table 1: Relative frequencies of metadata associated with Clades A and B within this dataset**
809

	Clade A (total 123 isolates)	Clade B (total 95 isolates)
Number of clinical isolates	71 (58%)	82 (86%)
Number of environmental isolates	52 (42%)	13 (14%)
<i>MAT1-1</i>	48 (39%)	31 (33%)
<i>MAT1-2</i>	75 (61%)	64 (66%)
<i>Cyp51A</i> wildtype	24 (20%)	82 (86%)
<i>Cyp51A</i> AMR polymorphisms	99 (80%)	13 (14%)

810
811
812
813

Table 2: Relative frequencies of *cyp51A* genotypes and mating-type idiomorphs for clinical and environmental *A. fumigatus* isolates in this study

<i>Cyp51A</i> genotype	Number of clinical isolates (% of clinical isolates)	Number of environmental isolates (% of environmental isolates)
TR ₃₄ /L98H	44 (28.8%)	41 (63.1%)
TR ₃₄	0	1 (1.5%)
TR ₃₄ /L98H/T289A/I364V/G448S	4 (2.6%)	0
TR ₄₆ /Y121F/T289A	0	7 (10.8%)
P216L	2 (1.3%)	0
G54W	9 (5.9%)	0
G54E	1 (0.6%)	0
G54R	2 (1.3%)	1 (1.5%)
Wildtype	91 (59.5%)	15 (23.1%)
<i>MAT1-1</i>	64 (41.8%)	15 (23.1%)
<i>MAT1-2</i>	89 (56.2%)	50 (76.9%)

814
815
816
817
818
819

Table 3: *A. fumigatus* isolates presented in this study with raised MICs to antifungal azole drugs, yet with no known resistance polymorphism within *cyp51A*. ND = not done; Minimum Inhibitory Concentrations above EUCAST (2018) clinical breakpoints, and therefore resistant, to itraconazole (ITC), voriconazole (VOR) and Posaconazole (POS) are shaded in grey.

Isolate	ITC MIC (mg/litre)	VOR MIC (mg/litre)	POS MIC (mg/litre)
C117	1	2	ND
C118	8	1	ND
C127	>16	0.25	0.125
C128	>16	2	1
C129	8	2	0.5
C136	>16	2	2
C137	>16	2	2
C139	>16	2	1
C148	2	0.125	0.03
C162	2	2	1
C164	2	1	0.125
C165	2	0.5	0.125
C168	2	0.25	0.03

820
821
822
823

Table 4: MIC that null mutants of genes identified as being statistically significant loci by treeWAS stop growing at, against control A1160

A1160 gene ID	Af293 gene ID	MIC (mg/L)	treeWAS p-value	Gene description	Loci
AFUB_063960	AFUA_4G06890	>0.0625	<2.03 ^{e-06}	<i>cyp51A</i>	L98H
AFUB_016810	AFUA_1G17440	>0.25	0.001546976	<i>abcA</i>	Y1149N

AFUB_014520	AFUA_1G14960	>1	0.001546976	Has domain(s) with predicted actin binding activity	A820V
AFUB_014700	AFUA_1G15150	>1	0.003190639	Ortholog(s) have hydrolase activity	L100F
AFUB_014780	AFUA_1G15230	>1	0.004462783	Ortholog(s) have role in conidiophore development	Synonymous SNP
AFUB_014950	AFUA_1G15410	>1	0.000502209	Has domain(s) with predicted zinc ion binding activity	S109P
AFUB_015010	AFUA_1G15460	>1	0.000200224	Ortholog of <i>A. nidulans</i> FGSC A4: AN0892	Synonymous SNP
AFUB_015020	AFUA_1G15470	>1	0.005395385	Ortholog(s) have RNA polymerase II transcription factor activity	Synonymous SNP
AFUB_015060	AFUA_1G15520	>1	0.001956814	Ortholog(s) have allophanate hydrolase activity	F2S
AFUB_015190	AFUA_1G15660	>1	0.005395385	Ortholog of NRRL 181: NFIA_009670	L71S
AFUB_015200	AFUA_1G15670	>1	0.001956814	Putative laccase	Synonymous SNP
AFUB_016310	AFUA_1G16920	>1	0.005567187	Beta-xylosidase	Synonymous SNP
AFUB_016610	AFUA_1G17220	>1	0.0000936	Putative secreted polygalacturonase GH-28	Intron
AFUB_016620	AFUA_1G17230	>1	0.000359083	Ortholog(s) have carbon-oxygen lyase activity	P466T
AFUB_016750	AFUA_1G17380	>1	0.000200224	Has domain(s) with predicted oxidoreductase activity	I68V
AFUB_016800	AFUA_1G17430	>1	0.00000228	Ortholog(s) have monophenol monooxygenase activity	E586D
AFUB_016830	AFUA_1G17470	>1	0.00000305	<i>nrtB</i>	Intron
AFUB_016850	AFUA_1G17490	>1	0.001152366	Has domain(s) with predicted carbohydrate binding	G298S
AFUB_017000	AFUA_1G17620	>1	0.000887684	Ortholog of RIB40: AO90011000197	Synonymous SNP

AFUB_032840	AFUA_2G17190	>1	0.005886174	Has domain(s) with predicted ATP binding	P1013A
AFUB_045240	AFUA_3G03010	>1	0.000887684	Putative phosphate-repressible phosphate permease	Synonymous SNP
AFUB_057290	AFUA_5G09740	>1	0.004617329	Ortholog(s) have role in conidiophore development	E432K
AFUB_084890	AFUA_8G01700	>1	0.003128212	Has domain(s) with predicted catalytic activity	Synonymous SNP
AFUB_085680	AFUA_8G00900	>1	0.002175055	Ortholog of FGSC A4: AN8368	T47M
AFUB_085750	AFUA_8G00820	>1	0.000397402	Ortholog of RIB40: AO90138000119	H16R
AFUB_085820	AFUA_8G00750	>1	0.0000406	Has domain(s) with predicted DNA binding	Synonymous SNP
AFUB_086150	AFUA_8G00420	>1	0.001260979	C6 finger transcription factor <i>fumR</i>	N305D

824

825

826 **Acknowledgments**

827 This study was partially supported by an unrestricted education grant from Gilead Science
828 Ltd. through their investigator sponsored research programme. JR, TS, APB, PSD, DAJ and
829 MCF were supported by grants from Natural Environmental Research Council (NERC;
830 NE/P001165/1 and NE/P000916/1), the UK Medical Research Council (MRC; MR/R015600/1)
831 and the Wellcome Trust (219551/Z/19/Z). MCF is a CIFAR Fellow in the 'Fungal Kingdom'
832 programme. KD was supported by a PhD studentship awarded by the School of Medicine,
833 Trinity College Dublin. PGM and JR (Dublin) received a project grant from the National
834 Children's Hospital, Tallaght University Hospital, which in part supported this work. AW and
835 EB are supported by the Wellcome Trust Strategic Award (grant 097377), the MRC Centre
836 for Medical Mycology (grant MR/N006364/2) at the University of Exeter, and the BBSRC
837 EASTBIO grant (BB/M010996/1).

838 **References**

839

840 1. Brown, G. D. *et al.* Hidden killers: human fungal infections. *Science Translational Medicine*
841 4, 165rv13 (2012).

842 2. Schauwvlieghe, A. F. A. D. *et al.* Invasive aspergillosis in patients admitted to the intensive
843 care unit with severe influenza: a retrospective cohort study. *Lancet Respir Medicine* **6**, 782–
844 792 (2018).

845 3. Arastehfar, A. *et al.* COVID-19 Associated Pulmonary Aspergillosis (CAPA)—From
846 Immunology to Treatment. *J Fungi* **6**, 91 (2020).

847 4. Baxter, C. G. *et al.* Novel immunologic classification of aspergillosis in adult cystic fibrosis.
848 *J Allergy Clin Immunol* **132**, 560–566.e10 (2013).

849 5. Control, E. C. for D. P. and. Risk assessment on the impact of environmental usage of
850 triazoles on the development and spread of resistance to medical triazoles in *Aspergillus*
851 species. *ECDC* (2013).

852 6. Ullmann, A. J. *et al.* Diagnosis and management of *Aspergillus* diseases: executive
853 summary of the 2017 ESCMID-ECMM-ERS guideline. *Clinical Microbiology and Infection* **24**,
854 e1–e38 (2018).

855 7. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance
856 to antifungal drugs challenges human health and food security. *Science* **360**, 739–742
857 (2018).

858 8. Wiederhold, N. P. *et al.* First Detection of TR34/L98H and TR46/Y121F/T289A Cyp51
859 Mutations in *Aspergillus fumigatus* isolates in the United States. *Journal of clinical
860 microbiology* JCM.02478-15-18 (2015) doi:10.1128/jcm.02478-15.

861 9. Leonardelli, F. *et al.* First itraconazole resistant *Aspergillus fumigatus* clinical isolate
862 harbouring a G54E substitution in Cyp51Ap in South America. *Revista iberoamericana de
863 micología* **34**, 46–48 (2017).

864 10. Meis, J. F., Chowdhary, A., Rhodes, J. L., Fisher, M. C. & Verweij, P. E. Clinical implications
865 of globally emerging azole resistance in *Aspergillus fumigatus*. *Philosophical Transactions B*
866 **371**, 1–10 (2016).

867 11. Howard, S. J. *et al.* Frequency and Evolution of Azole Resistance in *Aspergillus fumigatus*
868 Associated with Treatment Failure. *Emerging infectious diseases* **15**, 1068–1076 (2009).

869 12. Arendrup, M. C. *et al.* Development of Azole Resistance in *Aspergillus fumigatus* during
870 Azole Therapy Associated with Change in Virulence. *Plos One* **5**, e10080 (2010).

871 13. Snelders, E. *et al.* Possible Environmental Origin of Resistance of *Aspergillus fumigatus* to
872 Medical Triazoles. *Applied and environmental microbiology* **75**, 4053–4057 (2009).

873 14. Verweij, P. E. *et al.* The one health problem of azole resistance in *Aspergillus fumigatus*:
874 current insights and future research agenda. *Fungal Biol Rev* **34**, 202–214 (2020).

875 15. Verweij, P. E., Mellado, E. & Melchers, W. J. G. Multiple-Triazole-Resistant Aspergillosis.
876 *New Engl J Medicine* **356**, 1481–1483 (2007).

877 16. Seyedmousavi, S., Mouton, J. W., Melchers, W. J. G., Brüggemann, R. J. M. & Verweij, P.
878 E. The role of azoles in the management of azole-resistant aspergillosis: From the bench to
879 the bedside. *Drug Resist Update* **17**, 37–50 (2014).

880 17. Linden, J. W. M. van der *et al.* Aspergillosis due to Voriconazole Highly Resistant
881 Aspergillus fumigatus and Recovery of Genetically Related Resistant Isolates From
882 Domiciles. *Clin Infect Dis* **57**, 513–520 (2013).

883 18. Zhang, J. *et al.* A Novel Environmental Azole Resistance Mutation in Aspergillus
884 fumigatus and a Possible Role of Sexual Reproduction in Its Emergence. *mBio* **8**, e00791-17–
885 17 (2017).

886 19. Alvarez-Moreno, C. *et al.* Azole-resistant Aspergillus fumigatus harboring TR34/L98H,
887 TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. *Scientific
Reports* 1–8 (2017) doi:10.1038/srep45631.

889 20. Macedo, D. *et al.* A Novel Combination of CYP51A Mutations Confers Pan-Azole
890 Resistance in Aspergillus fumigatus. *Antimicrob Agents Ch* **64**, (2020).

891 21. Abdolrasouli, A. *et al.* Genomic Context of Azole Resistance Mutations in Aspergillus
892 fumigatus Determined Using Whole-Genome Sequencing. *mBio* **6**, e00536-15 (2015).

893 22. Dunne, K., Hagen, F., Pomeroy, N., Meis, J. F. & Rogers, T. R. Inter-country transfer of
894 triazole-resistant Aspergillus fumigatus on plant bulbs. *Clinical Infectious Diseases* (2017)
895 doi:10.1093/cid/cix257.

896 23. Cao, D. *et al.* Prevalence of Azole-Resistant Aspergillus fumigatus is Highly Associated
897 with Azole Fungicide Residues in the Fields. *Environ Sci Technol* (2021)
898 doi:10.1021/acs.est.0c03958.

899 24. Camps, S. M. T. *et al.* Molecular Epidemiology of Aspergillus fumigatus Isolates
900 Harboring the TR34/L98H Azole Resistance Mechanism. *J Clin Microbiol* **50**, 2674–2680
901 (2012).

902 25. Sharma, C., Hagen, F., Moroti, R., Meis, J. F. & Chowdhary, A. Triazole-resistant
903 Aspergillus fumigatus harbouring G54 mutation: Is it de novo or environmentally acquired? *J
904 Glob Antimicrob Re* **3**, 69–74 (2015).

905 26. Zhang, J. *et al.* Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus
906 through selection pressure of environmental fungicides. *Proceedings Biological sciences /
907 The Royal Society* **284**, 20170635–9 (2017).

908 27. Sewell, T. R. *et al.* Nonrandom Distribution of Azole Resistance across the Global
909 Population of Aspergillus fumigatus. *mBio* **10**, 209–11 (2019).

910 28. Sewell, T. *et al.* Elevated prevalence of azole resistant Aspergillus fumigatus in urban
911 versus rural environments in the United Kingdom. *bioRxiv* 1–27 (2019) doi:10.1101/598961.

912 29. Tsitsopoulou, A. *et al.* Determination of the Prevalence of Triazole Resistance in
913 Environmental *Aspergillus fumigatus* Strains Isolated in South Wales, UK. *Frontiers in*
914 *microbiology* **9**, 4356–8 (2018).

915 30. Samson, R. A. *et al.* Phylogeny, identification and nomenclature of the genus *Aspergillus*.
916 *Studies in mycology* **78**, 141–173 (2014).

917 31. Arendrup, M., Hope, W. & Howard, S. EUCAST Definitive Document E.Def 9.2 Method for
918 the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal
919 Agents for Conidia Forming Moulds. https://www.eucast.org/ast_of_fungi/ (n.d.).

920 32. Rex, J. H., Alexander, B. D., Andes, D. & Arthington-Skaggs, B. *Reference method for*
921 *broth dilution antifungal susceptibility testing of yeasts; Approved standard—third edition*
922 (*M27-A3*). (Clinical and Laboratory Standards Institute (CLSI), 2008).

923 33. Nierman, W. C. *et al.* Genomic sequence of the pathogenic and allergenic filamentous
924 fungus *Aspergillus fumigatus*. *Nature* **438**, 1151–1156 (2005).

925 34. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
926 (2013).

927 35. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
928 2078–2079 (2009).

929 36. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for analyzing
930 next-generation DNA sequencing data. *Genome Research* **20**, 1297–1303 (2010).

931 37. Auwera, G. A. *et al.* From FastQ Data to High-Confidence Variant Calls: The Genome
932 Analysis Toolkit Best Practices Pipeline. *Current Protocols in Bioinformatics* 11.10. 1-11.10.
933 33 (2013).

934 38. Smit, A., Hubley, R., Green, P. & 2015. *RepeatMasker Open-4.0. 2013–2015*. (n.d.).

935 39. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
936 thousands of taxa and mixed models. *Bioinformatics* **22**, 2688–2690 (2006).

937 40. Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a
938 new method for the analysis of genetically structured populations. *BMC Genetics* **11**, 94
939 (2010).

940 41. Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP
941 data. *Bioinformatics* **27**, 3070–3071 (2011).

942 42. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using
943 multilocus genotype data: linked loci and correlated allele frequencies. *Genetics* **164**, 1567–
944 1587 (2003).

945 43. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of Population Structure
946 using Dense Haplotype Data. *PLoS Genetics* **8**, e1002453 (2012).

947 44. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–8
948 (2011).

949 45. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of
950 populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* **2**, e281 (2014).

951 46. Collins, C. & Didelot, X. A phylogenetic method to perform genome-wide association
952 studies in microbes that accounts for population structure and recombination. *PLoS*
953 *Computational Biology* **14**, e1005958-21 (2018).

954 47. Basenko, E. *et al.* FungiDB: An Integrated Bioinformatic Resource for Fungi and
955 Oomycetes. *J Fungi* **4**, 39 (2018).

956 48. Zhao, C. *et al.* High-Throughput Gene Replacement in *Aspergillus fumigatus*. *Curr Protoc*
957 *Microbiol* **54**, e88 (2019).

958 49. Furukawa, T. *et al.* The negative cofactor 2 complex is a key regulator of drug resistance
959 in *Aspergillus fumigatus*. *Nat Commun* **11**, 427 (2020).

960 50. Bertuzzi, M. *et al.* On the lineage of *Aspergillus fumigatus* isolates in common laboratory
961 use. *Med Mycol* **59**, myaa075- (2020).

962 51. Arendrup, M. C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. W. & (EUCAST-AFST), E. C.
963 on A. S. T. S. on A. S. T. EUCAST Technical Note on *Aspergillus* and amphotericin B,
964 itraconazole, and posaconazole. *Clin Microbiol Infect* **18**, E248–E250 (2012).

965 52. Argimón, S. *et al.* Microreact: visualizing and sharing data for genomic epidemiology and
966 phylogeography. *Microb Genom* **2**, e000093 (2016).

967 53. Arendrup, M. C., Prakash, A., Meletiadis, J., Sharma, C. & Chowdhary, A. Comparison of
968 EUCAST and CLSI Reference Microdilution MICs of Eight Antifungal Compounds for *Candida*
969 auris and Associated Tentative Epidemiological Cutoff Values. *Antimicrobial agents and*
970 *chemotherapy* **61**, e00485-17 (2017).

971 54. Al-Hatmi, A. M. S. *et al.* Comparative Evaluation of Etest, EUCAST, and CLSI Methods for
972 Amphotericin B, Voriconazole, and Posaconazole against Clinically Relevant *Fusarium*
973 Species. *Antimicrob Agents Ch* **61**, e01671-16 (2017).

974 55. Nash, A. *et al.* MARDy: Mycology Antifungal Resistance Database. *Bioinformatics* **34**,
975 3233–3234 (2018).

976 56. Camps, S. M. T. *et al.* Rapid induction of multiple resistance mechanisms in *Aspergillus*
977 *fumigatus* during azole therapy: a case study and review of the literature. *Antimicrob Agents*
978 *Ch* **56**, 10–6 (2011).

979 57. Bader, O. *et al.* Environmental isolates of azole-resistant *Aspergillus fumigatus* in
980 Germany. *Antimicrob Agents Ch* **59**, 4356–9 (2015).

981 58. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA
982 polymorphism. *Genetics* **123**, 585–95 (1989).

983 59. Khoufache, K. *et al.* Verruculogen associated with *Aspergillus fumigatus* hyphae and
984 conidia modifies the electrophysiological properties of human nasal epithelial cells. *Bmc*
985 *Microbiol* **7**, 5 (2007).

986 60. Dasari, P. *et al.* Aspf2 From *Aspergillus fumigatus* Recruits Human Immune Regulators
987 for Immune Evasion and Cell Damage. *Front Immunol* **9**, 1635 (2018).

988 61. Nelson, C. W. & Hughes, A. L. Within-host nucleotide diversity of virus populations:
989 Insights from next-generation sequencing. *Infect Genetics Evol* **30**, 1–7 (2015).

990 62. Walker, T. M. *et al.* Whole-genome sequencing to delineate *Mycobacterium tuberculosis*
991 outbreaks: a retrospective observational study. *Lancet Infect Dis* **13**, 137–146 (2013).

992 63. Paassen, J. van, Russcher, A., Wingerden, A. W. in 't V. van, Verweij, P. E. & Kuijper, E. J.
993 Emerging aspergillosis by azole-resistant *Aspergillus fumigatus* at an intensive care unit in
994 the Netherlands, 2010 to 2013. *Eurosurveillance* **21**, 789–9 (2016).

995 64. Armstrong-James, D. *et al.* Confronting and mitigating the risk of COVID-19 associated
996 pulmonary aspergillosis. *Eur Respir J* **56**, 2002554 (2020).

997 65. Camps, S. M. T. *et al.* Discovery of a hapE Mutation That Causes Azole Resistance in
998 *Aspergillus fumigatus* through Whole Genome Sequencing and Sexual Crossing. *PLoS ONE* **7**,
999 e50034 (2012).

1000 66. Verweij, P. E., Chowdhary, A., Melchers, W. J. G. & Meis, J. F. Azole resistance in
1001 *Aspergillus fumigatus*: can we retain the clinical use of mold-active antifungal azoles?
1002 *Clinical Infectious Diseases* civ885 (2015) doi:10.1093/cid/civ885.

1003 67. Klaassen, C. H. W., GIBBONS, J. G., Fedorova, N. D., Meis, J. F. & Rokas, A. Evidence for
1004 genetic differentiation and variable recombination rates among Dutch populations of the
1005 opportunistic human pathogen *Aspergillus fumigatus*. *Molecular Ecology* **21**, 57–70 (2011).

1006 68. Eschenbrenner, C. J., Feurtey, A. & Stukenbrock, E. H. Methods in Molecular Biology.
1007 *Methods Mol Biology Clifton NJ* **2090**, 337–355 (2020).

1008 69. Gurgul, A. *et al.* A genome-wide scan for diversifying selection signatures in selected
1009 horse breeds. *Plos One* **14**, e0210751 (2019).

1010 70. Doolittle, W. F. Population genomics: how bacterial species form and why they don't
1011 exist. *Curr Biology Cb* **22**, R451-3 (2012).

1012 71. Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for
1013 both dominant and codominant markers: a Bayesian perspective. *Genetics* **180**, 977–993
1014 (2008).

1015 72. Raffa, N. & Keller, N. P. A call to arms: Mustering secondary metabolites for success and
1016 survival of an opportunistic pathogen. *PLoS pathogens* **15**, e1007606-9 (2019).

1017 73. González-Lobato, L., Real, R., Prieto, J. G., Álvarez, A. I. & Merino, G. Differential
1018 inhibition of murine Bcrp1/Abcg2 and human BCRP/ABCG2 by the mycotoxin fumitremorgin
1019 C. *Eur J Pharmacol* **644**, 41–48 (2010).

1020 74. Maiya, S., Grundmann, A., Li, S.-M. & Turner, G. The Fumitremorgin Gene Cluster of
1021 *Aspergillus fumigatus*: Identification of a Gene Encoding Brevianamide F Synthetase.
1022 *ChemBioChem* **7**, 1062–1069 (2006).

1023 75. Taylor, J., Jacobson, D. & Fisher, M. THE EVOLUTION OF ASEXUAL FUNGI: Reproduction,
1024 Speciation and Classification. *Phytopathology* **37**, 197–246 (1999).

1025 76. Blehert, D. S. *et al.* Bat White-Nose Syndrome: An Emerging Fungal Pathogen? *Science*
1026 **323**, 227–227 (2009).

1027 77. Fraser, J. A. *et al.* Same-sex mating and the origin of the Vancouver Island Cryptococcus
1028 gattii outbreak. *Nature* **437**, 1360–1364 (2005).

1029 78. Verweij, P. E. *et al.* In-host adaptation and acquired triazole resistance in *Aspergillus*
1030 *fumigatus*: a dilemma for clinical management. *The Lancet infectious diseases* **16**, e251–
1031 e260 (2016).

1032 79. Verweij, P. E., Kema, G. H., Zwaan, B. & Melchers, W. J. Triazole fungicides and the
1033 selection of resistance to medical triazoles in the opportunistic mould *Aspergillus fumigatus*.
1034 *Pest Manag Sci* **69**, 165–170 (2012).

1035 80. Verweij, P. E., Snelders, E., Kema, G. H., Mellado, E. & Melchers, W. J. Azole resistance in
1036 *Aspergillus fumigatus*: a side-effect of environmental fungicide use? *The Lancet infectious*
1037 *diseases* **9**, 789–795 (2009).

1038
1039 **Supplementary Information**

1040
1041 Supplementary Tables

1042
1043 **Table S1**

1044 Clinical and environmental isolates of *A. fumigatus* used in this study, and details of whole-
1045 genome alignments. Patient cohort details for clinical isolates is provided, when available.
1046 Location information provided, where available. More accurate latitude and longitude
1047 details provided in the Microreact project. CF = cystic fibrosis; COPD = chronic obstructive
1048 pulmonary disease; RLL = right lower lobe; ABPA = allergic bronchopulmonary aspergillosis.
1049

1050

Isolate	Source	Location	<i>Cyp51A</i> polymorphisms	No. of reads aligned (millions)	Depth of coverage (x)	% reference genome covered
ARAF001	Clinical (CF)	Leeds, England	TR ₃₄ /L98H	51.9	174	94.4
ARAF002	Clinical (CF)	Leeds, England	TR ₃₄ /L98H	48.3	162	95.0
ARAF003	Clinical (CF)	Leeds, England	Wildtype	43.6	147	95.2
ARAF004	Clinical (CF)	Leeds, England	Wildtype	43.7	146	93.1
ARAF005	Clinical (CF)	Leeds, England	Wildtype	47.4	159	95.4
ARAF006	Clinical (CF)	Leeds, England	Wildtype	50.1	169	93.2
C1	Environmental	Cardiff, Wales	TR ₃₄ /L98H	6.1	31	91.1
C2	Environmental	Cardiff, Wales	TR ₃₄ /L98H	7.2	36	89.6
C3	Environmental	Cardiff, Wales	TR ₃₄ /L98H	6.5	33	91.1
C4	Environmental	Cardiff, Wales	Wildtype	7.5	37	91.9
C5	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.7	33	91.1
C6	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.3	37	89.2
C7	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.4	32	88.6
C8	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.8	34	91.2
C10	Environmental	Carmerthenshire, Wales	TR ₃₄ /L98H	7.0	35	88.9
C11	Environmental	Carmerthenshire, Wales	TR ₃₄ /L98H	7.4	37	89.1
C12	Environmental	Carmerthenshire, Wales	TR ₃₄ /L98H	6.0	34	91.1
C13	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.1	36	90.9
C14	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.6	38	90.8
C15	Environmental	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.4	37	90.7

C16	Environment al	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.8	34	90.8
C17	Environment al	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.5	37	91.2
C18	Environment al	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.4	32	90.6
C19	Environment al	Vale of Glamorgan, Wales	TR ₃₄ /L98H	6.5	32	89.0
C20	Environment al	Vale of Glamorgan, Wales	TR ₃₄ /L98H	7.0	35	91.1
C21	Environment al	Pembrokeshire, Wales	TR ₃₄ /L98H	6.9	34	91.1
C22	Environment al	Newport, Wales	TR ₃₄ /L98H	7.4	37	91.1
C23	Environment al	Newport, Wales	TR ₃₄ /L98H	7.4	37	91.2
C24	Environment al	Newport, Wales	TR ₃₄ /L98H	6.1	31	90.5
C25	Environment al	Cardiff, Wales	TR ₃₄ /L98H	7.0	35	87.7
C26	Environment al	Cardiff, Wales	G54R	5.3	26	87.9
C27	Environment al	Cardiff, Wales	TR ₃₄ /L98H	6.2	31	88.3
C28	Environment al	Cardiff, Wales	TR ₃₄ /L98H	5.8	29	90.7
C29	Environment al	Cardiff, Wales	TR ₃₄ /L98H	5.8	29	90.9
C30	Environment al	Cardiff, Wales	TR ₃₄ /L98H	5.9	29	90.7
C31	Environment al	Monmouthshire, Wales	TR ₃₄ /L98H	6.4	32	90.8
C32	Clinical (CF)	Cardiff, Wales	TR ₃₄ /L98H	6.6	33	91.1
C33	Clinical (CF)	Cardiff, Wales	TR ₃₄ /L98H	6.1	30	91.1
C34	Clinical (CF)	Cardiff, Wales	Wildtype	6.5	32	90.9
C35	Clinical (CF)	Cardiff, Wales	Wildtype	6.6	33	88.8
C36	Clinical (CF)	Cardiff, Wales	Wildtype	6.6	33	88.9
C37	Clinical (CF)	Cardiff, Wales	Wildtype	7.1	36	90.7
C38	Clinical (CF)	Cardiff, Wales	Wildtype	7.1	35	89.3

C39	Clinical (CF)	Cardiff, Wales	Wildtype	6.9	35	88.6
C40	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.3	37	89.3
C41	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.7	39	89.4
C42	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.7	33	91.8
C43	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.6	33	91.8
C44	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.1	31	91.7
C45	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.0	30	93.4
C46	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.5	33	91.2
C47	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.1	35	92.2
C48	Clinical (CF)	Dublin, of Ireland	Wildtype	7.1	36	91.8
C49	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.6	38	88.9
C50	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	8.4	42	88.8
C51	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	0.5	37	93.3
C52	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.5	37	89.9
C53	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.0	35	91.3
C54	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.6	33	92.4
C55	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	8.0	40	91.6
C56	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.3	36	91.3
C57	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.6	38	91.4
C58	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.1	31	90.6
C59	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.3	37	90.1
C60	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.5	33	90.1
C61	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.9	35	90.4

C62	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.0	35	90.1
C63	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.1	35	90.1
C64	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.1	35	89.8
C65	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	7.4	37	89.6
C66	Clinical (CF)	Dublin, Rep. of Ireland	Wildtype	6.6	33	89.5
C67	Clinical	Dublin, Rep. of Ireland	Wildtype	6.2	31	91.1
C68	Clinical (CF)	Dublin, Rep. of Ireland	TR ₃₄ /L98H	6.3	32	91.1
C69	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	6.9	35	91.2
C70	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	6.4	32	91.2
C71	Clinical	Dublin, Rep. of Ireland	Wildtype	6.5	32	90.0
C72	Clinical	Dublin, Rep. of Ireland	Wildtype	7.4	37	90.0
C73	Clinical	Dublin, Rep. of Ireland	Wildtype	7.3	37	90.4
C74	Clinical	Dublin, Rep. of Ireland	Wildtype	7.7	38	89.3
C75	Clinical	Dublin, Rep. of Ireland	Wildtype	8.5	42	89.7
C76	Clinical	Dublin, Rep. of Ireland	Wildtype	7.4	37	88.9
C77	Clinical	Dublin, Rep. of Ireland	Wildtype	7.5	37	89.0
C78	Environmental	Dublin, Rep. of Ireland	TR ₃₄ /L98H	8.1	40	89.1
C79	Environmental	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y121F	8.1	40	91.9
C80	Environmental	Dublin, Rep. of Ireland	TR ₃₄ /L98H	7.8	39	89.5
C81	Clinical	Dublin, Rep. of Ireland	Wildtype	8.7	43	91.7
C82	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	6.6	33	88.2
C83	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	8.2	41	91.3
C84	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	6.8	34	91.2

C85	Environment al	Dublin, Rep. of Ireland	TR ₃₄ /L98H	7.1	35	90.9
C86	Environment al	Dublin, Rep. of Ireland	TR ₃₄ /L98H	7.2	36	92.0
C87	Environment al	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y12 1F	8.0	40	90.1
C88	Environment al	Dublin, Rep. of Ireland	TR ₃₄ /L98H	7.4	37	93.3
C89	Environment al	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y12 1F	7.2	36	90.4
C91	Environment al	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y12 1F	6.8	34	90.1
C92	Environment al	Dublin, Rep. of Ireland	TR ₃₄ /L98H	7.3	37	90.8
C93	Environment al	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y12 1F	6.6	33	90.7
C95	Environment al	Dublin, Rep. of Ireland	Wildtype	7.3	36	89.7
C96	Environment al	Dublin, Rep. of Ireland	Wildtype	7.6	38	91.9
C99	Clinical	Scotland	TR ₃₄ /L98H	5.8	28	96.0
C100	Clinical (CF)	England	TR ₃₄ /L98H	6.3	31	96.2
C103	Clinical	England	TR ₃₄ /L98H	5.8	28	96.5
C104	Clinical	Scotland	TR ₃₄ /L98H	5.7	28	95.9
C105	Clinical	Scotland	TR ₃₄ /L98H	5.6	27	95.6
C106	Clinical	England	TR ₃₄ /L98H	6.0	29	96.5
C107	Clinical	England	TR ₃₄ /L98H	6.5	32	95.7
C108	Clinical	England	TR ₃₄ /L98H	6.8	33	96.6
C109	Clinical	England	TR ₃₄ /L98H	6.1	29	96.5
C110	Clinical (CF)	England	TR ₃₄ /L98H	6.3	31	95.7
C111	Clinical (COPD)	England	TR ₃₄ /L98H	6.6	32	96.6
C112	Clinical (CF)	England	TR ₃₄ /L98H	6.5	32	96.2
C113	Clinical	England	Wildtype	6.2	30	96.1

C114	Clinical (Bronchiectasis)	Scotland	TR ₃₄ /L98H	6.6	32	96.0
C115	Clinical (Liver failure)	England	TR ₃₄ /L98H	6.5	30	96.5
C117	Clinical	England	Wildtype	6.2	30	94.6
C118	Clinical	England	Wildtype	6.6	31	95.1
C119	Clinical (respiratory illness/TB)	England	TR ₃₄ /L98H	6.2	30	95.6
C120	Clinical (Lung lesion)	England	G54R	6.4	31	96.6
C121	Clinical	England	G54E	6.1	31	94.9
C122	Clinical (RLL cavity)	England	TR ₃₄ /L98H	6.3	31	95.7
C123	Clinical	England	Wildtype	6.2	29	96.2
C124	Clinical	London, England	G54W	6.3	29	96.8
C125	Clinical (CF)	London, England	Wildtype	6.3	27	96.2
C126	Clinical (Aortic valve replacement)	London, England	G54W	6.5	28	96.8
C127	Clinical (CF)	London, England	Wildtype	6.0	29	96.6
C128	Clinical (CF)	London, England	Wildtype	5.5	27	97.1
C129	Clinical (CF)	London, England	Wildtype	5.6	27	96.1
C130	Clinical (CF)	London, England	G54W	5.8	28	96.4
C131	Clinical (CF)	London, England	G54W	6.0	29	96.4
C132	Clinical (CF)	London, England	G54W	6.5	32	96.4
C133	Clinical	London, England	TR ₃₄ /L98H	5.9	29	96.2
C134	Clinical (CF)	London, England	TR ₃₄ /L98H	6.1	30	96.7
C135	Clinical (CF)	London, England	G54W	6.4	31	96.4
C136	Clinical (CF)	London, England	Wildtype	5.8	28	97.0

C137	Clinical (CF)	London, England	Wildtype	5.9	29	97.1
C138	Clinical (ABPA)	London, England	P216L	6.3	31	96.4
C139	Clinical (CF)	London, England	Wildtype	6.3	31	96.2
C140	Clinical (Bronchiectasis)	London, England	G54W	6.5	32	96.8
C141	Clinical (CF)	London, England	TR ₃₄ /L98H	6.4	31	96.8
C142	Clinical (Bronchiectasis)	London,	G54W	6.5	31	99.6
C143	Clinical (CF)	London, England	TR ₃₄ /L98H	6.4	31	96.2
C144	Clinical (CF)	London,	TR ₃₄ /L98H	6.3	30	95.8
C145	Clinical (CF)	London, England	P216L	6.2	30	96.9
C146	Clinical (CF)	Leeds, England	Wildtype	6.9	34	96.9
C147	Clinical (CF)	Leeds, England	Wildtype	7.2	35	96.9
C148	Clinical (CF)	Leeds, England	Wildtype	7.3	35	96.7
C149	Clinical (CF)	Leeds, England	TR ₃₄ /L98H	6.9	34	96.7
C150	Clinical (CF)	Leeds, England	TR ₃₄ /L98H	7.2	35	96.7
C151	Clinical (CF)	Leeds,	TR ₃₄ /L98H	6.8	33	96.7
C152	Clinical (CF)	Leeds, England	Wildtype	7.0	34	96.9
C153	Clinical (CF)	Leeds, England	Wildtype	6.9	34	96.9
C154	Clinical (CF)	Leeds, England	Wildtype	7.0	34	96.9
C155	Clinical	London, England	TR ₃₄ /L98H/T289A/I364V/G448S	7.0	34	95.4
C156	Clinical	London, England	TR ₃₄ /L98H/T289A/I364V/G448S	6.4	31	95.4
C157	Clinical	London, England	TR ₃₄ /L98H/T289A/I364V/G448S	6.3	31	95.4

C158	Clinical	London, England	TR ₃₄ /L98H/T289A/I364V/G448S	6.2	31	95.4
C159	Clinical (Asthma and bronchiectasis)	London, England	TR ₃₄ /L98H	6.3	31	95.7
C160	Clinical (Asthma and bronchiectasis)	London, England	TR ₃₄ /L98H	6.3	31	95.7
C161	Clinical (trauma)	London, England	TR ₃₄ /L98H	6.3	31	96.5
C162	Clinical	London, England	Wildtype	6.6	32	94.9
C163	Clinical	London, England	G54W	6.6	32	95.0
C164	Clinical (CF)	London, England	Wildtype	6.4	31	96.6
C165	Clinical (CF)	London, England	Wildtype	6.4	32	95.4
C166	Clinical (CF)	London, England	Wildtype	6.6	32	96.2
C167	Clinical (CF)	London, England	Wildtype	6.5	32	96.5
C168	Clinical (CF)	London, England	Wildtype	6.5	32	96.0
C169	Clinical (CF)	London, England	Wildtype	6.4	31	96.2
C170	Clinical (CF)	London, England	Wildtype	6.4	32	96.3
C171	Clinical (CF)	London, England	TR ₃₄ /L98H	7.3	36	96.9
C172	Clinical (CF)	London, England	Wildtype	7.4	34	96.0
C173	Clinical (CF)	London, England	Wildtype	7.3	36	95.1
C174	Clinical (CF)	London, England	Wildtype	7.7	38	95.1
C175	Clinical (CF)	London, England	Wildtype	7.1	35	97.0
C176	Clinical (CF)	London, England	Wildtype	7.0	34	97.0
C177	Clinical (CF)	London, England	Wildtype	7.6	37	94.9
C178	Clinical (CF)	London, England	Wildtype	7.2	35	97.9

C179	Clinical (CF)	London, England	Wildtype	7.5	37	95.9
C180	Clinical (CF)	London, England	Wildtype	5.8	28	97.0
C181	Clinical (CF)	London, England	Wildtype	6.6	32	96.1
C182	Clinical (CF)	London, England	Wildtype	7.2	35	96.2
C183	Clinical (CF)	London, England	Wildtype	6.8	33	96.3
C184	Clinical (CF)	London, England	Wildtype	6.9	33	96.9
C185	Clinical (CF)	London, England	Wildtype	6.8	33	96.9
C186	Clinical (CF)	London, England	Wildtype	7.0	34	96.6
C187	Clinical (CF)	London, England	Wildtype	6.7	33	96.2
C188	Clinical (CF)	London, England	Wildtype	7.1	35	94.8
C189	Clinical (CF)	London, England	G54R	6.6	32	96.9
C190	Clinical (CF)	London, England	Wildtype	6.5	32	96.5
C191	Clinical (CF)	London, England	Wildtype	6.8	33	97.2
C220	Environment al	Dublin, Rep. of Ireland	Wildtype	6.6	30	95.1
C221	Environment al	Dublin, Rep. of Ireland	Wildtype	7.0	31	94.7
C222	Environment al	Dublin, Rep. of Ireland	Wildtype	10.3	37	95.2
C223	Environment al	Dublin, Rep. of Ireland	Wildtype	7.8	35	94.9
C246	Environment al	Nottingham, England	Wildtype	9.7	42	94.7
C272	Environment al	Nottingham, England	Wildtype	9.4	42	95.9
C275	Environment al	Yorkshire, England	Wildtype	8.1	36	96.8
C341	Environment al	Didcot, England	TR ₃₄ /L98H	8.5	42	96.7
C342	Environment al	Hyde Park, England	TR ₃₄ /L98H	9.9	48	95.4
C343	Environment al	Hyde Park, England	Wildtype	9.0	44	96.3

C344	Environment al	Hyde Park, England	Wildtype	9.1	45	96.0
C345	Environment al	Hyde Park, England	Wildtype	8.9	44	96.6
C346	Environment al	Hyde Park, England	Wildtype	8.6	42	96.1
C354	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	9.1	45	96.0
C355	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	9.9	48	96.0
C356	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	8.9	44	96.7
C357	Environment al	Dublin, Rep. of Ireland	TR ₃₄ /L98H	8.9	44	96.0
C358	Environment al	Dublin, of Ireland	TR ₄₆ /T289A/Y12 1F	9.3	45	96.3
C359	Clinical	Dublin, Rep. of Ireland	TR ₃₄ /L98H	10.3	50	97.0
C360	Environment al	Dublin, Rep. of Ireland	TR ₄₆ /T289A/Y12 1F	8.7	42	96.2
C361	Clinical	Dublin, Rep. of Ireland	Wildtype	9.0	44	96.4
C362	Clinical	Dublin, Rep. of Ireland	Wildtype	8.4	41	96.4
C363	Clinical	Dublin, Rep. of Ireland	Wildtype	9.2	45	96.5
C364	Environment al	Aberdeen, Scotland	TR ₃₄ /L98H	8.8	43	96.9
C365	Environment al	Aberdeen, Scotland	TR ₃₄	10.0	49	96.8
C366	Environment al	Aberdeen, Scotland	TR ₃₄ /L98H	10.3	49	96.3
C367	Environment al	Aberdeen, Scotland	Wildtype	10.2	50	95.8
C368	Environment al	Aberdeen, Scotland	TR ₃₄ /L98H	10.4	48	96.3
C369	Environment al	Aberdeen, Scotland	TR ₃₄ /L98H	9.2	45	96.3

1051

1052 **Table S2**

1053 In vitro antifungal susceptibility profiles of *A. fumigatus* isolates and corresponding
 1054 resistance markers in *cyp51A*, mating type idiomorph and Clade membership as detected by
 1055 whole genome sequencing. Minimum Inhibitory Concentrations above EUCAST (2018)
 1056 clinical breakpoints, therefore indicating resistance, are shaded in grey. ND = not
 1057 determined.

1058

Isolate	MIC (mg/litre) of ^a :			Resistance marker	Matin g type	Clade membershi p
	ITC	VOR	POS			
ARAF00 1	>16	1	0.5	TR ₃₄ /L98H	MAT1-1	A
ARAF00 2	>16	1	0.5	TR ₃₄ /L98H	MAT1-1	A
ARAF00 3	1	0.25	0.06	Wildtype	MAT1-2	B
ARAF00 4	1	0.5	0.25	Wildtype	MAT1-1	A
ARAF00 5	0.5	0.12	0.06	Wildtype	MAT1-2	B
ARAF00 6	0.5	0.5	0.06	Wildtype	MAT1-1	A
C1	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C2	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C3	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C4	>16	8	<0.5	Wildtype	MAT1-2	B
C5	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C6	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C7	>16	4	0.25	TR ₃₄ /L98H	MAT1-2	A
C8	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C10	>16	8	0.5	TR ₃₄ /L98H	MAT1-2	A
C11	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C12	>16	4	0.25	TR ₃₄ /L98H	MAT1-2	A
C13	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C14	>16	>8	0.5	TR ₃₄ /L98H	MAT1-2	A

C15	>16	8	<0.5	TR ₃₄ /L98H	MAT1-2	A
C16	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C17	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C18	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C19	>16	1	0.25	TR ₃₄ /L98H	MAT1-2	A
C20	>16	2	<0.25	TR ₃₄ /L98H	MAT1-2	A
C21	>16	2	0.025	TR ₃₄ /L98H	MAT1-2	A
C22	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C23	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C24	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C25	>16	4	0.25	TR ₃₄ /L98H	MAT1-2	A
C26	>16	0.25	1	G54R	MAT1-2	A
C27	>16	1	0.25	TR ₃₄ /L98H	MAT1-2	A
C28	>16	4	0.25	TR ₃₄ /L98H	MAT1-1	A
C29	>16	4	0.5	TR ₃₄ /L98H	MAT1-2	A
C30	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C31	>16	2	0.12	TR ₃₄ /L98H	MAT1-2	A
C32	>16	0.5	0.5	TR ₃₄ /L98H	MAT1-2	A
C33	>16	1	0.5	TR ₃₄ /L98H	MAT1-2	A
C34	<0.03	0.06	0.03	Wildtype	MAT1-1	B
C35	0.06	0.06	0.06	Wildtype	MAT1-1	A
C36	0.06	0.25	0.06	Wildtype	MAT1-1	A
C37	0.25	0.125	0.06	Wildtype	MAT1-1	B

C38	0.125	0.25	0.06	Wildtype	MAT1-1	A
C39	0.06	0.25	0.06	Wildtype	MAT1-2	B
C40	0.06	0.25	0.03	Wildtype	MAT1-1	B
C41	0.25	0.25	0.25	Wildtype	MAT1-1	B
C42	0.25	0.25	0.12	Wildtype	MAT1-2	B
C43	0.03	0.12	0.015	Wildtype	MAT1-2	B
C44	0.03	0.12	0.015	Wildtype	MAT1-2	B
C45	0.03	0.12	0.015	Wildtype	MAT1-2	B
C46	0.03	0.12	0.015	Wildtype	MAT1-2	B
C47	0.03	0.015	0.015	Wildtype	MAT1-2	B
C48	0.03	0.015	0.015	Wildtype	MAT1-2	B
C49	0.12	0.25	0.06	Wildtype	MAT1-1	B
C50	0.25	0.12	0.06	Wildtype	MAT1-1	B
C51	0.06	0.25	0.03	Wildtype	MAT1-2	B
C52	<0.015	0.12	0.03	Wildtype	MAT1-2	B
C53	0.25	0.12	0.06	Wildtype	MAT1-2	B
C54	0.06	0.25	0.03	Wildtype	MAT1-2	B
C55	0.03	0.25	0.015	Wildtype	MAT1-2	B
C56	0.12	0.12	0.015	Wildtype	MAT1-1	B
C57	0.06	0.06	0.03	Wildtype	MAT1-1	B
C58	0.03	0.12	0.015	Wildtype	MAT1-1	A
C59	0.25	0.12	0.06	Wildtype	MAT1-1	A
C60	0.12	0.12	0.03	Wildtype	MAT1-1	A

C61	0.03	0.25	0.01 5	Wildtype	MAT1- 1	A
C62	0.03	0.25	0.01 5	Wildtype	MAT1- 1	A
C63	0.03	0.12	0.01 5	Wildtype	MAT1- 1	A
C64	0.25	0.25	0.12	Wildtype	MAT1- 1	A
C65	0.03	0.12	0.01 5	Wildtype	MAT1- 1	A
C66	0.03	0.12	0.01 5	Wildtype	MAT1- 1	A
C67	0.03	0.25	0.01 5	Wildtype	MAT1- 2	B
C68	0.25	0.25	0.06	TR ₃₄ /L98H	MAT1- 2	A
C69	1	0.5	0.25	TR ₃₄ /L98H	MAT1- 2	A
C70	1	1	0.25	TR ₃₄ /L98H	MAT1- 2	A
C71	0.12	0.03	0.00 8	Wildtype	MAT1- 1	B
C72	0.03	0.12	0.01 5	Wildtype	MAT1- 1	B
C73	0.03	0.12	0.01 5	Wildtype	MAT1- 2	B
C74	0.03	0.12	0.01 5	Wildtype	MAT1- 2	B
C75	0.25	0.25	0.12	Wildtype	MAT1- 1	A
C76	0.03	0.12	0.01 5	Wildtype	MAT1- 2	B
C77	0.06	0.25	0.03	Wildtype	MAT1- 2	B
C78	ND	ND	ND	TR ₃₄ /L98H	MAT1- 1	A
C79	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1- 2	A
C80	ND	ND	ND	TR ₃₄ /L98H	MAT1- 2	A
C81	0.25	0.25	0.06	Wildtype	MAT1- 1	B
C82	4	2	1	TR ₃₄ /L98H	MAT1- 2	A
C83	16	2	0.5	TR ₃₄ /L98H	MAT1- 2	A

C84	4	4	0.5	TR ₃₄ /L98H	MAT1-2	A
C85	ND	ND	ND	TR ₃₄ /L98H	MAT1-2	A
C86	ND	ND	ND	TR ₃₄ /L98H	MAT1-1	A
C87	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-1	B
C88	ND	ND	ND	TR ₃₄ /L98H	MAT1-2	A
C89	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-2	A
C91	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-1	B
C92	ND	ND	ND	TR ₃₄ /L98H	MAT1-2	A
C93	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-2	A
C95	ND	ND	ND	Wildtype	MAT1-1	B
C96	ND	ND	ND	Wildtype	MAT1-2	B
C99	2	2	0.5	TR ₃₄ /L98H	MAT1-1	A
C100	16	4	ND	TR ₃₄ /L98H	MAT1-2	A
C103	1	2	ND	TR ₃₄ /L98H	MAT1-2	A
C104	>16	0.5	1	TR ₃₄ /L98H	MAT1-1	A
C105	>16	4	ND	TR ₃₄ /L98H	MAT1-2	A
C106	2	4	ND	TR ₃₄ /L98H	MAT1-2	A
C107	1	4	ND	TR ₃₄ /L98H	MAT1-2	A
C108	16	1	ND	TR ₃₄ /L98H	MAT1-2	A
C109	>16	1	ND	TR ₃₄ /L98H	MAT1-1	B
C110	>16	1	ND	TR ₃₄ /L98H	MAT1-2	A
C111	16	2	ND	TR ₃₄ /L98H	MAT1-1	A
C112	16	2	ND	TR ₃₄ /L98H	MAT1-2	A

C113	ND	0.25	ND	Wildtype	MAT1-1	B
C114	>16	2	ND	TR ₃₄ /L98H	MAT1-1	A
C115	4	1	0.25	TR ₃₄ /L98H	MAT1-1	A
C117	1	2	ND	Wildtype	MAT1-2	B
C118	8	1	ND	Wildtype	MAT1-2	B
C119	16	1	ND	TR ₃₄ /L98H	MAT1-2	A
C120	>16	0.12 5	ND	G54R	MAT1-1	B
C121	>16	0.25	0.5	G54E	MAT1-1	A
C122	>16	2	ND	TR ₃₄ /L98H	MAT1-2	A
C123	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C124	>16	0.12 5	4	G54W	MAT1-1	B
C125	>16	2	2	TR ₃₄ /L98H	MAT1-2	A
C126	>16	0.03	2	G54W	MAT1-1	B
C127	>16	0.25	0.12 5	Wildtype	MAT1-2	B
C128	>16	2	1	Wildtype	MAT1-2	B
C129	8	2	0.5	Wildtype	MAT1-2	B
C130	>16	0.12 5	8	G54W	MAT1-2	B
C131	>16	0.12 5	16	G54W	MAT1-2	B
C132	>16	0.12 5	8	G54W	MAT1-2	B
C133	>16	2	2	TR ₃₄ /L98H	MAT1-2	A
C134	16	2	1	TR ₃₄ /L98H	MAT1-1	B
C135	>16	0.12 5	16	G54W	MAT1-2	B
C136	>16	2	2	Wildtype	MAT1-2	B

C137	>16	2	2	Wildtype	MAT1-2	B
C138	>16	0.25	2	P216L	MAT1-1	B
C139	>16	2	1	Wildtype	MAT1-2	B
C140	>16	0.125	16	G54W	MAT1-1	B
C141	16	1	0.25	TR ₃₄ /L98H	MAT1-1	B
C142	>16	0.06	0.25	G54W	MAT1-1	A
C143	16	2	0.5	TR ₃₄ /L98H	MAT1-2	A
C144	>16	2	0.25	TR ₃₄ /L98H	MAT1-2	A
C145	>16	0.125	0.5	P216L	MAT1-2	B
C146	0.5	0.125	0.03	Wildtype	MAT1-2	B
C147	1	0.125	0.03	Wildtype	MAT1-2	B
C148	2	0.125	0.03	Wildtype	MAT1-2	B
C149	>16	0.25	0.125	TR ₃₄ /L98H	MAT1-1	A
C150	16	0.25	0.125	TR ₃₄ /L98H	MAT1-1	A
C151	>16	0.25	0.125	TR ₃₄ /L98H	MAT1-1	A
C152	0.5	0.125	0.03	Wildtype	MAT1-2	B
C153	1	0.125	0.03	Wildtype	MAT1-2	B
C154	1	0.125	0.03	Wildtype	MAT1-2	B
C155	16	>16	4	TR ₃₄ /L98H/T289A/I364V/G448S	MAT1-2	A
C156	16	>16	4	TR ₃₄ /L98H/T289A/I364V/G448S	MAT1-2	A
C157	16	>16	4	TR ₃₄ /L98H/T289A/I364V/G448S	MAT1-2	A
C158	16	>16	4	TR ₃₄ /L98H/T289A/I364V/G448S	MAT1-2	A
C159	>16	2	0.5	TR ₃₄ /L98H	MAT1-2	A

C160	>16	2	0.5	TR ₃₄ /L98H	MAT1-2	A
C161	4	0.5	0.125	TR ₃₄ /L98H	MAT1-1	A
C162	2	2	1	Wildtype	MAT1-1	A
C163	>16	1	>16	G54W	MAT1-1	A
C164	2	1	0.125	Wildtype	MAT1-2	B
C165	2	0.5	0.125	Wildtype	MAT1-1	B
C166	1	0.25	0.06	Wildtype	MAT1-2	B
C167	0.06	0.06	0.03	Wildtype	MAT1-1	B
C168	2	0.25	0.03	Wildtype	MAT1-1	B
C169	0.06	0.06	0.015	Wildtype	MAT1-2	B
C170	0.06	0.06	0.015	Wildtype	MAT1-2	B
C171	16	0.5	0.25	TR ₃₄ /L98H	MAT1-2	A
C172	0.06	0.06	0.03	Wildtype	MAT1-2	B
C173	0.06	0.06	0.015	Wildtype	MAT1-1	B
C174	0.06	0.06	0.03	Wildtype	MAT1-1	B
C175	0.06	0.06	0.03	Wildtype	MAT1-2	B
C176	0.06	0.06	0.03	Wildtype	MAT1-1	B
C177	0.06	0.125	0.03	Wildtype	MAT1-1	A
C178	0.06	0.06	0.03	Wildtype	MAT1-2	B
C179	0.06	0.06	0.03	Wildtype	MAT1-1	B
C180	0.06	0.06	0.03	Wildtype	MAT1-2	B
C181	0.06	0.125	0.06	Wildtype	MAT1-1	B
C182	0.125	0.125	0.03	Wildtype	MAT1-2	B

C183	0.125	0.06	0.03	Wildtype	MAT1-2	B
C184	0.06	0.06	0.03	Wildtype	MAT1-2	B
C185	0.06	0.06	0.03	Wildtype	MAT1-1	B
C186	0.06	0.06	0.03	Wildtype	MAT1-1	A
C187	0.06	0.06	0.03	Wildtype	MAT1-2	B
C188	0.125	0.06	0.03	Wildtype	MAT1-1	A
C189	>16	0.06	0.25	G54R	MAT1-2	B
C190	0.06	0.03	0.03	Wildtype	MAT1-1	B
C191	0.06	0.06	0.015	Wildtype	MAT1-2	B
C220	0.06	0.06	0.06	Wildtype	MAT1-1	A
C221	0.125	0.06	0.06	Wildtype	MAT1-2	A
C222	0.06	0.06	0.03	Wildtype	MAT1-2	B
C223	0.125	0.06	0.06	Wildtype	MAT1-1	A
C246	0.125	0.125	0.06	Wildtype	MAT1-2	A
C272	0.125	0.125	0.03	Wildtype	MAT1-2	B
C275	0.125	0.125	0.06	Wildtype	MAT1-2	B
C341	>16	0.5	0.25	TR ₃₄ /L98H	MAT1-1	A
C342	>16	0.5	0.25	TR ₃₄ /L98H	MAT1-2	A
C343	0.06	0.06	0.03	Wildtype	MAT1-2	B
C344	0.125	0.06	0.03	Wildtype	MAT1-1	B
C345	0.25	0.06	0.03	Wildtype	MAT1-2	B
C356	0.25	0.06	0.03	Wildtype	MAT1-2	B
C354	4	2	0.5	TR ₃₄ /L98H	MAT1-2	A

C355	2	2	0.5	TR ₃₄ /L98H	MAT1-1	A
C356	0.5	2	0.5	TR ₃₄ /L98H	MAT1-2	A
C357	ND	ND	ND	TR ₃₄ /L98H	MAT1-1	A
C358	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-2	A
C359	32	2	0.5	TR ₃₄ /L98H	MAT1-2	A
C360	ND	ND	ND	TR ₄₆ /Y121F/T289A	MAT1-2	A
C361	ND	ND	ND	Wildtype	MAT1-2	A
C362	0.75 5	0.12	0.25	Wildtype	MAT1-2	A
C363	0.03	0.12	0.25	Wildtype	MAT1-2	A
C364	4	0.5	ND	TR ₃₄ /L98H	MAT1-1	A
C365	16	2	ND	TR ₃₄	MAT1-1	A
C366	4	0.25	ND	TR ₃₄ /L98H	MAT1-1	A
C367	1	0.5	ND	Wildtype	MAT1-2	A
C368	4	0.5	ND	TR ₃₄ /L98H	MAT1-2	A
C369	1	0.5	ND	TR ₃₄ /L98H	MAT1-1	A

1059

1060 **Table S3**

1061 Average value of Tajima's *D* statistic per chromosome for isolates within Clades A and B, and
1062 average and F_{ST} values per chromosome. Range of values are shown in brackets.

Chromosome	Clade A	Clade B	F_{ST}
I	0.4047 (-1.9766- 3.9560)	-0.5535 (-2.6785-2.6761)	0.1022 (0-0.9440)
II	0.5241 (-2.4022- 5.5133)	-0.3028 (-2.0764-4.8010)	0.1156 (0.0069-0.3539)
III	0.3267 (-2.1441- 4.3288)	-0.3422 (-2.5142-3.2920)	0.1273 (0.0092-0.4244)

IV	0.2774 (-2.1356-3.9701)	-0.4883 (-2.4272-3.7844)	0.1622 (0.0115-0.5633)
V	0.3775 (-2.26076-4.3397)	-0.3317 (-2.2117-3.4575)	0.1616 (0.0168-0.5171)
VI	0.7591 (-2.0187-4.1077)	-0.5145 (-2.5173-3.6985)	0.1055 (0.0131-0.4314)
VII	0.7888 (-2.0023-4.1684)	-0.2754 (-2.6883-3.8941)	0.1530 (0.0208-0.5591)
VIII	0.6067 (-2.0557-4.4425)	-0.0396 (-2.2204-3.1474)	0.1530 (0.0202-0.3710)
Mitochondria (MT)	0.5311 (-1.0274-2.6496)	-0.7255 (-0.9931--0.2730)	0.1520 (0.0682-0.2765)

1063

1064

1065 **Table S4**

1066 Genes found within regions of high F_{ST} in Chromosome 1 when performing fixation index
1067 analysis between Clades A and B in non-overlapping windows of 10 kb

Gene ID	Genomic Location	Product Description
Afu1g15000	4,029,090 – 4,031,693	Putative isopropylmalate synthase
Afu1g15010	4,031,939 – 4,038,777	Ortholog of <i>A. flavus</i> putative AMP binding domain protein AFLA_084630
Afu1g15020	4,039,173 – 4,040,722	40S ribosomal protein S5
Afu1g16860	4,598,911 – 4,600,377	Ortholog of <i>A. flavus</i> conserved hypothetical protein ALFA_082490
Afu1g16870	4,600,954 – 4,602,774	Ortholog of <i>A. flavus</i> conserved hypothetical protein AFLA_016260
Afu1g16880	4,603,153 – 4,608,184	Ortholog of <i>A. flavus</i> putative ABC multidrug transporter AFLA_082400
Afu1g16890	4,608,535 – 4,609,830	Ortholog of <i>A. flavus</i> putative transesterase LovD AFLA_063440

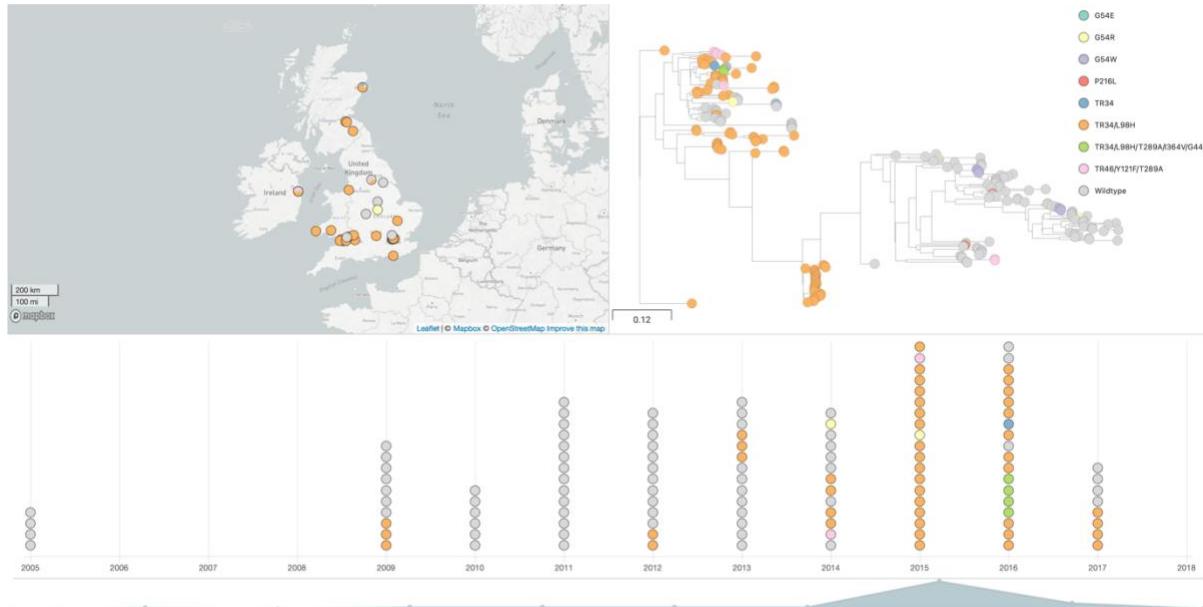
Afu1g16900	4,615,099 – 4,617,349	Ortholog of <i>A. fumigatus</i> A1163 AFUB_016290 (protein of unknown function)
Afu1g16910	4,617,552 – 4,619,374	Has domain with predicted role in transmembrane transport

1068

1069 **Table S5**

1070 Pairs or groups of *A. fumigatus* isolates from both environmental and clinical sources with
1071 high genetic relatedness.

Pair/ Group	Isolates included (Clade)	Mating idiomorph	Source	<i>cyp51A</i> allele	Bootstrap support	Average SNPs separating isolates	t-test <i>p</i> - value
1	C21 (A _A) C112 (A _A)	MAT1-2 MAT1-2	Environmental Clinical	TR ₃₄ /L98H TR ₃₄ /L98H	100%	227	<3.0473 ^{e-252}
2	C133 (A _A) C23 (A _A)	MAT1-2 MAT1-2	Clinical Environmental	TR ₃₄ /L98H TR ₃₄ /L98H	65%	270	<3.0473 ^{e-252}
3	C354 (A) C355 (A) C357 (A)	MAT1-2 MAT1-1 MAT1-1	Clinical Clinical Environmental	TR ₃₄ /L98H TR ₃₄ /L98H TR ₃₄ /L98H	100%	237	<3.0473 ^{e-252}
4	C191 (B) C275 (B)	MAT1-2 MAT1-2	Clinical Environmental	Wildtype Wildtype	100%	581	<3.0473 ^{e-252}
5	C96 (B) C42 (B) C43 (B) C44 (B) C48 (B)	MAT1-2 MAT1-2 MAT1-2 MAT1-2 MAT1-2	Environmental Clinical Clinical Clinical Clinical	Wildtype Wildtype Wildtype Wildtype Wildtype	79%	217	3.0473 ^{e-252}
6	C7 (A) C25 (A) C82 (A)	MAT1-2 MAT1-2 MAT1-2	Environmental Environmental Clinical	TR ₃₄ /L98H TR ₃₄ /L98H TR ₃₄ /L98H	100%	252	1.7857 ^{e-112}

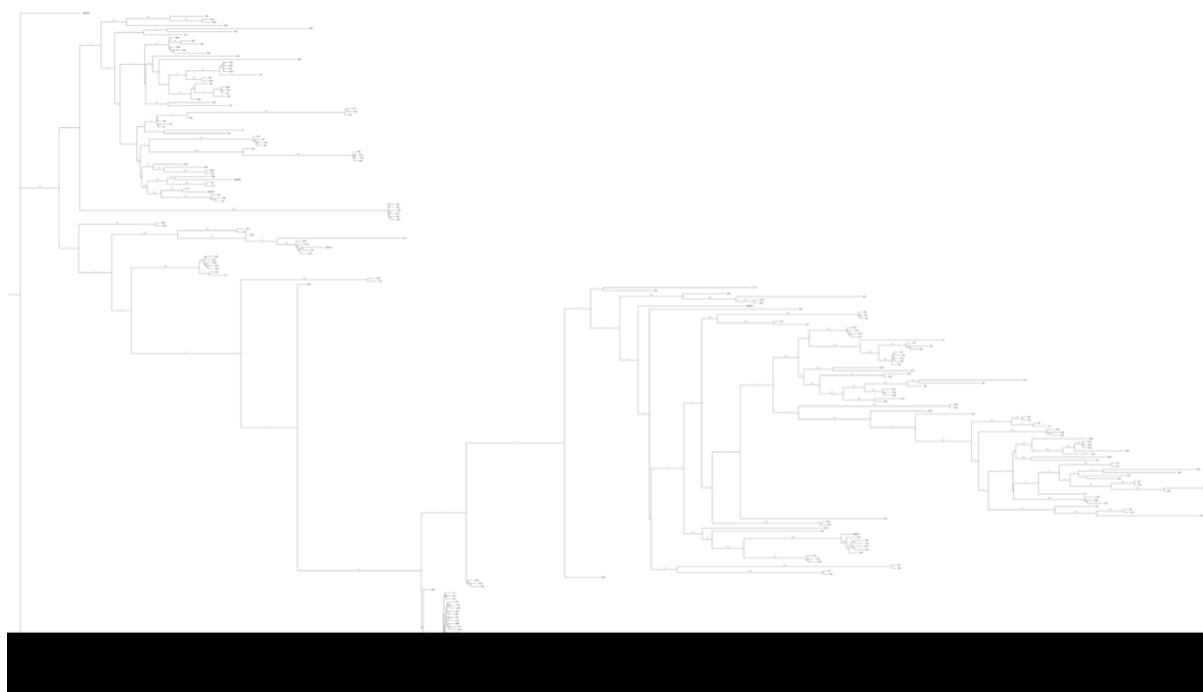

1072

1073

1074

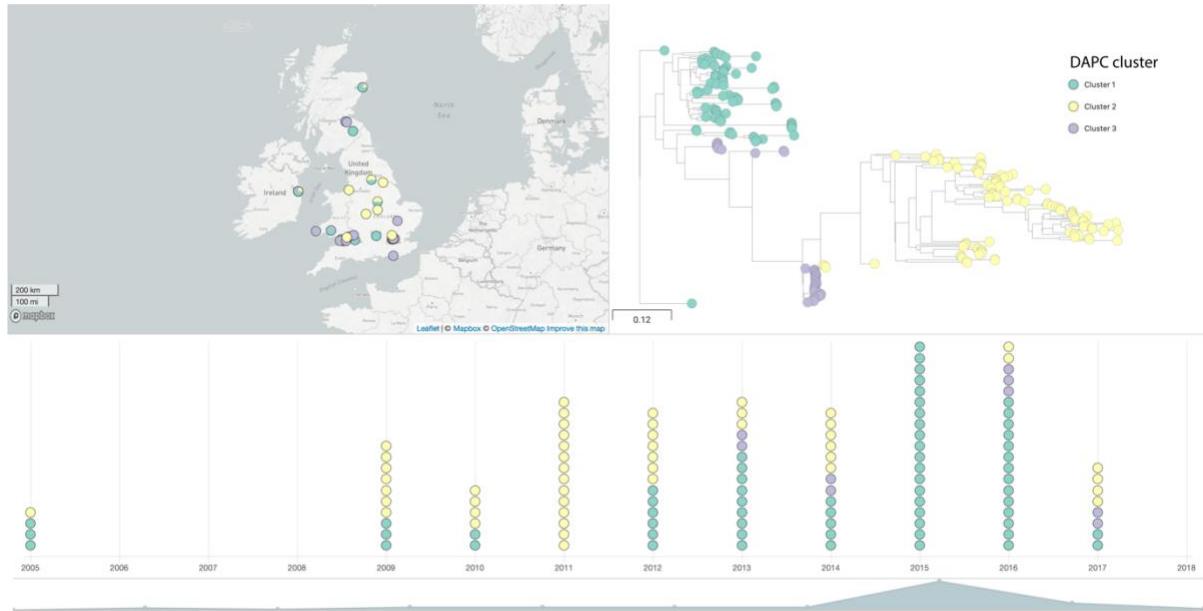
1075 Supplementary Figures

1076

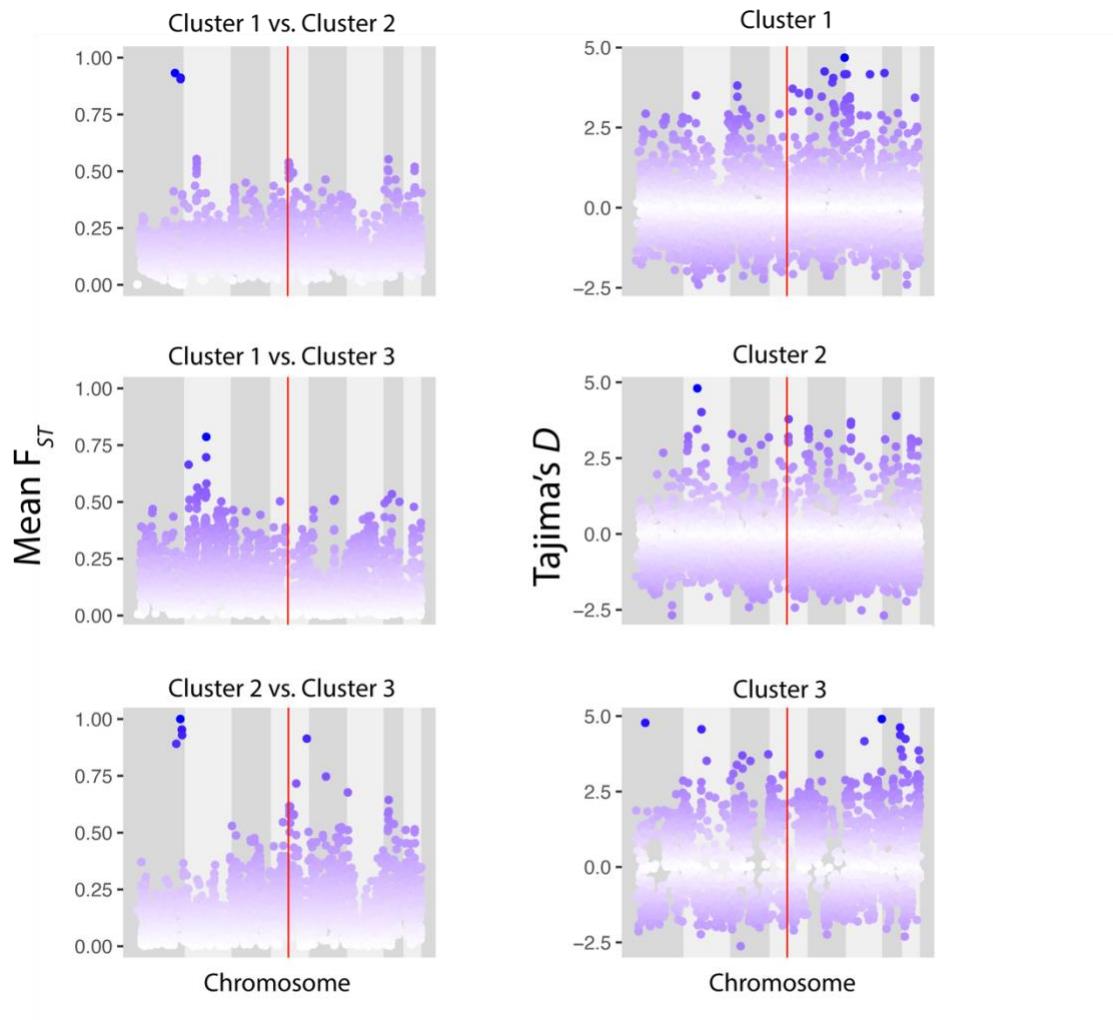


1077 **Figure S1:** Microreact project screenshot of the dataset

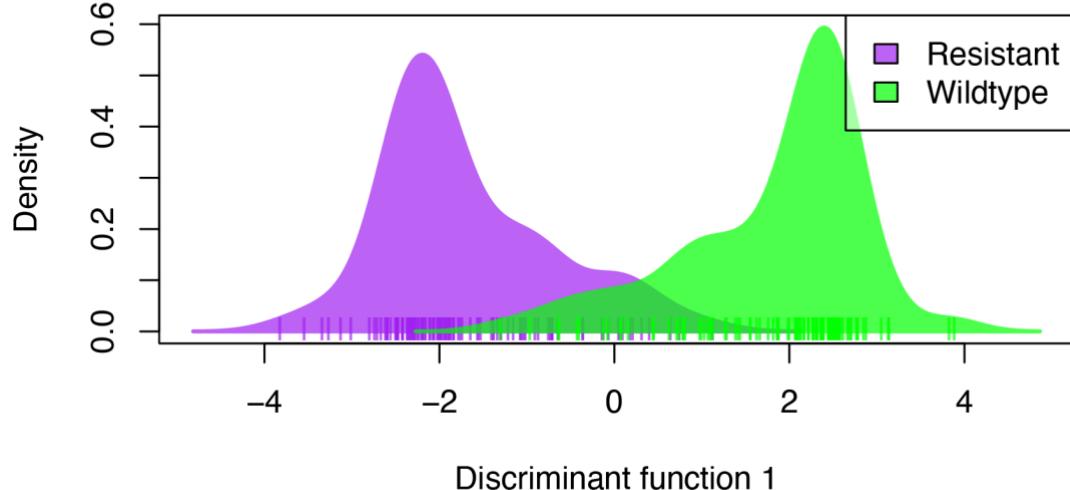
1078 <https://microreact.org/project/viUDBzrCmTNKmY9Fu6Zhx>


1079

1080


1081

1082 **Figure S2:** Phylogenetic analysis of all 218 *A. fumigatus* isolates with bootstrap support over
1083 1000 replicates performed on WGS SNP data to generate maximum-likelihood phylogeny.
1084 Branch lengths represent average number of SNPs.


1085

1086 **Figure S3:** Microreact project screenshot of the dataset with DAPC clusters showing lack of
1087 geographic and temporal clustering.

1088

1089 **Figure S4:** Scatterplots of sliding 10-kb non-overlapping window estimates of F_{ST} for each
1090 chromosome between isolates within Clusters 1 and 2, Clusters 1 and 3, and Clusters 2 and
1091 3 (top to bottom, left panel). Scatterplots of Tajima's D estimates for each chromosome for
1092 all isolates within Clusters 1, 2 and 3 (right panel). The position of *cyp51A* is highlighted in
1093 red.

1094

1095 **Figure S5:** Azole-resistant and azole-sensitive *A. fumigatus* isolates form different, distinct
1096 clusters Discriminant Analysis of Principal Components (DAPC) on all azole-resistant and -
1097 sensitive (wildtype for *cyp51A*) *A. fumigatus* isolates using the first two principal
1098 components. This analysis illustrates slight genetic identity between azole-resistant and -
1099 sensitive isolates, with the overlap illustrating some similar genetic backgrounds have been
1100 observed.

1101

1102 Supplementary Data

1103 **Supplementary Data 1 (Excel format):** Significant SNPs for itraconazole resistance using the
1104 TreeWAS subsequent association test, in order of ascending p-value for all *A. fumigatus*
1105 isolates in this study with known itraconazole MICs. Chromosome, SNP position and gene
1106 loci listed along with gene description and type of SNP (synonymous or non-synonymous).

1107

1108 **Supplementary Data 2 (Excel format):** Significant SNPs for itraconazole resistance using the
1109 TreeWAS terminal association test, in order of ascending p-value for all *A. fumigatus* isolates

1110 in this study with known itraconazole MICs. Chromosome, SNP position and gene loci listed
1111 along with gene description and type of SNP (synonymous or non-synonymous).

1112

1113 **Supplementary Data 3 (Excel format):** Significant SNPs for itraconazole resistance using the
1114 TreeWAS simultaneous association test, in order of ascending p-value for all *A. fumigatus*
1115 isolates in this study with known itraconazole MICs. Chromosome, SNP position and gene
1116 loci listed along with gene description and type of SNP (synonymous or non-synonymous).

1117

1118 **Supplementary Data 4 (Excel format):** Summary of 184 genes found in region of high F_{ST} in
1119 chromosome 1 when comparing clades A and B. Associated p-values from TreeWAS for
1120 genes containing SNPs that are statistically significant for itraconazole resistance are also
1121 included.

1122
1123