

1 **TITLE**

2

3 **Keratin dynamics govern the establishment of the maternal-fetal interface.**

4

5 **AUTHORS**

6

7 Wallis Nahaboo¹, Sema Elif Eski¹, Marjorie Vermeersch², Bechara Saykali^{1, 7}, Daniel
8 Monteyne², Thomas M. Magin³, Nicole Schwarz⁴, An Zwijsen⁵, David Perez-Morga^{2, 6},
9 Sumeet Pal Singh¹, Isabelle Migeotte^{1, 8}

10

11 ¹IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium

12 ²Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles,
13 Belgium

14 ³Division of Cell & Developmental Biology, Institute of Biology, Leipzig University,
15 Germany

16 ⁴Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Germany

17 ⁵KU Leuven B-3000, Belgium

18 ⁶Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Belgium

19 ⁷Present address: Laboratory of Genome Integrity, National Cancer Institute, NIH,
20 Bethesda, MD 20892, USA

21

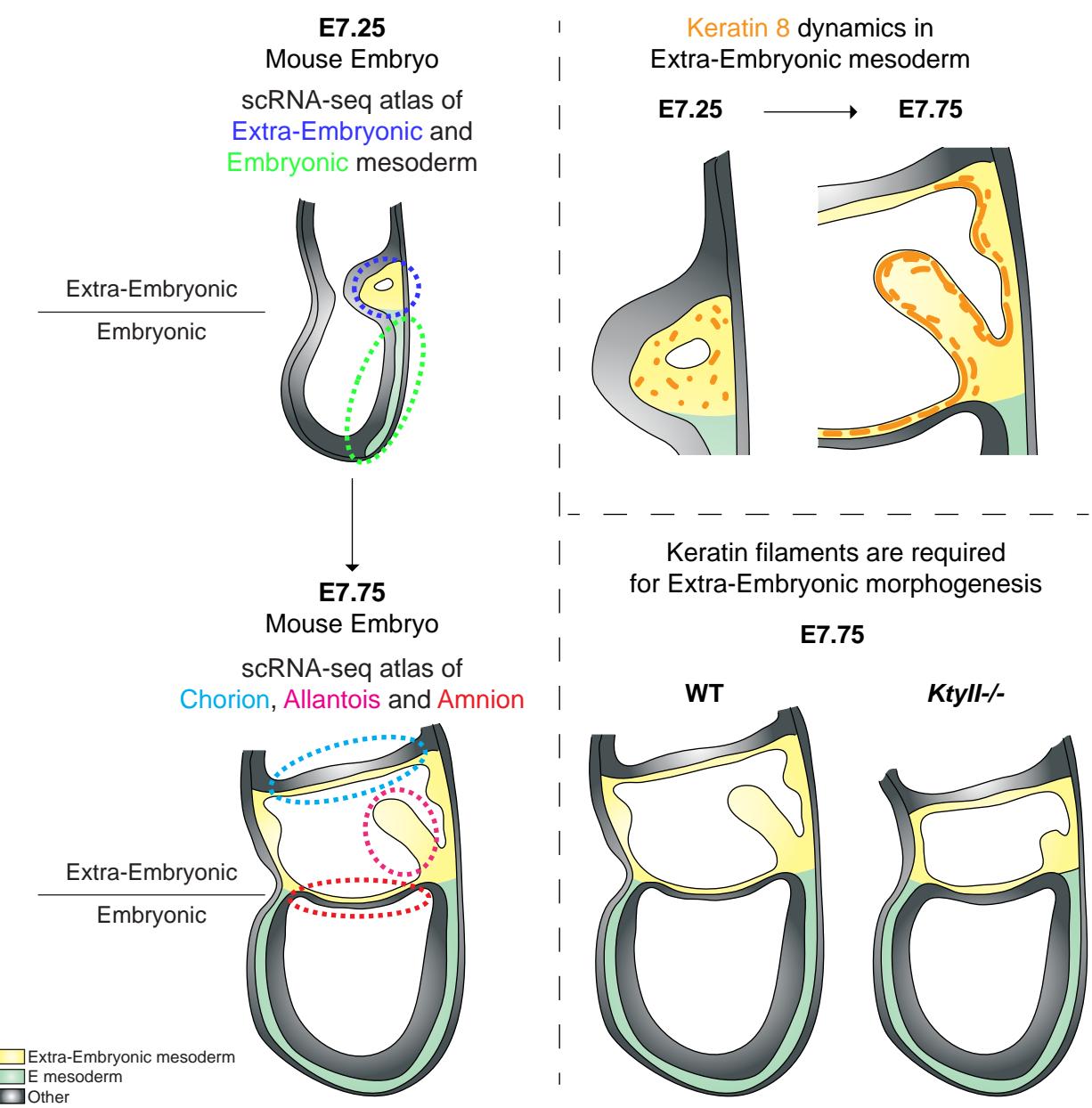
22 ⁸Correspondence should be addressed to I.M. (e-mail: imigeott@ulb.ac.be).

23 **SUMMARY**

24

25 After implantation, the mouse embryo undergoes gastrulation and forms mesoderm
26 and endoderm. Mesoderm participates in embryonic and extra-embryonic tissues
27 including the amnion, yolk sac, chorion and allantois, the umbilical cord precursor.

28


29 Extra-embryonic mesoderm is rich in intermediate filaments. Two-photon live imaging
30 of keratin 8-eYFP knock-in embryos allowed recording nucleation and elongation of
31 keratin filaments, which formed apical cables coordinated across multiple cells in
32 amnion, allantois, and blood islands. Embryos lacking all keratins displayed a deflated
33 exocoelomic cavity, a narrow thick amnion, and a short allantois, indicating a hitherto
34 unknown role for keratin filaments in post-implantation extra-embryonic membranes
35 morphogenesis.

36

37 Single-cell RNA sequencing of mesoderm cells, microdissected amnion, chorion, and
38 allantois provided an interactive atlas of transcriptomes with germ layer and regional
39 information. Keratin 8^{high} mesenchymal cells in contact with the exocoelom shared a
40 cytoskeleton and adhesion expression profile that might explain the adaptation of
41 extra-embryonic structures to the increasing mechanical pressure.

42

GRAPHICAL ABSTRACT

43 INTRODUCTION

44 Placenta was defined as the “apposition or fusion of the fetal membranes to the uterine
45 mucosa for physiological exchange” by H.W. Mossman in 1937. The placenta supports
46 the developing embryo through provision of water, nutrients, and gas exchange ¹. Early
47 lethality in the mouse is almost always associated with severe placental malformations
48 ^{2,3}. Placenta is also a major determinant of post-natal health ^{4,5}.

49
50 At early stages, mammalian embryos absorb nutrients through endocytosis. Post-
51 gastrulation, embryo development relies on proper morphogenesis of extra-embryonic
52 (ExE) envelopes (Figure 1A). The fetal portion of the placenta comprises trophoblast,
53 mesenchymal and vascular cells, derived from distinct germ layers. Trophoblast (from
54 the Greek words for “feed” and “embryo”) originates from trophectoderm, the external
55 layer of the blastocyst stage embryo, that solely contributes to extra-embryonic
56 structures including ectoplacental cone and ExE ectoderm ^{6,7}. Mesenchymal and
57 vascular cells originate from the epiblast, a germ layer derived from the blastocyst inner
58 cell mass. During mouse embryo gastrulation, posterior epiblast cells delaminate at
59 the primitive streak to become endoderm and mesoderm. ExE mesoderm emerges
60 from the most posterior part of the streak and accumulates between ExE ectoderm and
61 visceral endoderm to create the amniochorionic fold, in which fusion of multiple lumens
62 generates the exocoelomic cavity ⁸. Amnion, the innermost ExE tissue, is a thin bilayer
63 formed at embryonic day (E) 7 from epiblast and ExE mesoderm; it separates
64 exocoelomic and amniotic cavities ⁹. In primates and rodents, placenta arises from the
65 fusion of ectoplacental cone, chorion and allantois ¹⁰. When the amniochorionic fold is
66 fully expanded, chorionic walls formed of ExE ectoderm and mesoderm fuse anteriorly
67 ⁸. Chorion then detaches from amnion and comes in contact with the ectoplacental
68 cone. The allantois (Greek word for “sausage”) is the precursor for the umbilical cord
69 and the vessels of the placental labyrinth ¹¹. It appears at E7.5 as an ExE mesoderm
70 bud continuous with the primitive streak and grows through cell migration and division
71 ¹² in the exocoelom towards the chorion, to which it attaches around E8.5. The fetus
72 becomes dependent on the interaction of maternal and fetal circulations in the
73 placental labyrinth from E10.5 ^{4,5}.

74

75 We recently identified differences in morphology, migration pattern, and gene
76 expression between embryonic and ExE mesoderm ¹³. In particular, intermediate
77 filament components keratins (Krt or K) 8 and 18 are highly abundant in ExE
78 mesoderm. Keratin intermediate filaments (KF) are formed of obligatory heterodimers
79 of type I and type II monomers assembled into tetramers in an antiparallel manner,
80 which associate laterally and longitudinally to generate 8-12 nm filaments ¹⁴. KF display
81 high tensile strength and toughness, as well as remarkable elasticity, which may allow
82 cells to sustain and recover from large deformations. In epithelial tissues, desmosome-
83 anchored KF form a mechanically resilient transcellular network that is modulated by
84 and protects against physical stress ¹⁵. In the mouse embryo, K8 and 18 are already
85 detected in a subset of cells at the eight-cell stage ¹⁶, and it was suggested that they
86 function as asymmetrically inherited factors that specify the first trophectoderm cells
87 ¹⁷. Establishment of a knock-in K8-eYFP fusion mouse line allowed tracking KF
88 network formation and dynamics in live embryos without functional alteration ¹⁸. K8-
89 eYFP accumulates as dots at cell borders during the morula stage ¹⁵. At the blastocyst
90 stage, there is a dense KF network in trophectoderm, and no K8/18 expression in inner
91 cell mass. At E7, immunostaining for K8 marks ExE ectoderm and mesoderm, as well
92 as visceral endoderm ¹³. An important role for KF in mesenchymal tissue was
93 uncovered in the frog embryo, where KF mechanically connect mesendodermal cells
94 and are therefore required for efficient collective migration ¹⁹.

95
96 To adapt to the embryo's growth and needs, ExE structures need to rapidly expand
97 and change morphology. At E8.5 the U-shaped embryo turns along its dorsoventral
98 axis and becomes enclosed in the amniotic sac in which it matures and moves
99 protected from traumas, infections and toxins. Embryo and amnion are surrounded by
100 the yolk sac that provides nutrition and gas exchange until the placenta is ready to take
101 over. The umbilical cord must accommodate fetal movements and ensure
102 maintenance of blood flow between fetus and mother. Collectively, this requires that
103 amnion, yolk sac and allantois must be both resistant and elastic. As we found high
104 expression of intermediate filament components in ExE mesoderm, we set up to
105 explore keratins' function in the post-implantation mouse embryo and its supporting
106 tissues.

107

108 Because of high and ubiquitous K8 expression in ExE cells, the K8-eYFP line allowed
109 recording both dynamics of KF and morphogenesis of ExE structures through two-
110 photon live microscopy. At late gastrulation stage, live imaging identified KF nucleation
111 and elongation in ExE mesoderm as well as in amnion, allantois, chorion and blood
112 islands. Areas in contact with the rapidly expanding exocoelom, presumably exposed
113 to the highest mechanical constraint, displayed long KF cables spanning several cells.
114 Mutant embryos devoid of all keratins had a collapsed ExE cavity, a short thick amnion
115 and a small allantois, suggesting KF play a major role in shaping ExE envelopes. As
116 profiles of early ExE tissues at cellular resolution were lacking from mouse embryo
117 single-cell atlas, we performed single-cell RNA sequencing analysis (scRNA-seq) of
118 E7.25 mesoderm cells as well as E7.75 microdissected amnion, allantois and chorion,
119 thereby identifying the expression landscape of KF-rich epithelial and mesenchymal
120 cells and providing a detailed atlas of ExE structures.

121 **RESULTS**

122

123 ***KF nucleate and elongate in ExE mesoderm, forming a network continuous***
124 ***across cells.***

125 To record KF dynamics in the post-implantation mouse embryo, we performed two-
126 photon static and live imaging of Early Streak (ES, E6.25) to Late Bud/Neural Plate
127 (LB/NP, E7.75) stages²⁰ *ex vivo* cultured K8-eYFP embryos¹⁸ (Figure 1A, Sup1A). As
128 expected, eYFP was present in visceral endoderm, ExE ectoderm, and ExE mesoderm
129 (Sup1B, C). 3D-reconstruction of LB embryos stained for F-actin showed that, similar
130 to E7.25 ExE mesoderm¹³, ExE mesenchyme in amnion, chorion and allantois had
131 low F-actin, compared to embryonic mesoderm (Sup1D and Video 1). From Late
132 Streak (LS)/Zero Bud (0B) stages, eYFP positive dots ($5,34 \pm 0,62 \mu\text{m}^2$, n=24 from 6
133 embryos) could be detected specifically in ExE, but not in embryonic, mesoderm cells
134 (Figure 1B, Sup1C and Video 2). Dots subsequently elongated into filamentous
135 particles up to 25 μm ($24,76 \pm 2,47 \mu\text{m}$, n=19 from 8 embryos) in length, and organized
136 a reticular web (Figure 1C and Video 3). Higher resolution imaging of Early Bud (EB)
137 to NP fixed samples showed that K8 containing filaments could form linear structures
138 up to 75 μm in length ($65 \pm 11,92 \mu\text{m}$, n=11 from 6 embryos) continuous across multiple
139 cells, in particular in the walls of the expanding ExE envelop as well as in the
140 developing amnion (Figure 1D and Video 4).

141

142 ***Stretchable KF-rich cables connect amnion, exocoelomic wall, and chorion.***

143 Live imaging of K8-eYFP embryos recorded the global morphogenetic events that
144 shape ExE structures (Figure 2). The amnion displayed small excrescences
145 perpendicular to its ExE surface. We noticed the formation of stable (> 3 hours) K8
146 containing “cables”, mostly in the anterior part of the embryo, bridging the mesoderm-
147 derived part of the amnion and the wall of the exocoelomic cavity (Figure 2A and Video
148 5). Those cables stretched progressively (initial length $52,61 \pm 15,37 \mu\text{m}$ and width
149 $9,69 \pm 5,8 \mu\text{m}$, final length $130,5 \pm 48,98 \mu\text{m}$ and width $5 \pm 3,41 \mu\text{m}$, n=5) and finally
150 snapped as the cavity grew; they likely represent remnants of connections between
151 amnion mesoderm and blood islands that break upon amnion closure. Cables linking
152 amnion and wall were not detected in fixed samples, suggesting they might be unstable
153 and lost upon fixation. In a subset of embryos (n=6 with the adequate stage and

154 orientation), a larger KF-rich structure was visible in the anterior region (Figure 2B and
155 Video 6), corresponding to the chorion portion of the amniochorionic fold. It grew longer
156 and thinner before rupturing at the Anterior Separation Point (Sup1A)⁸, allowing full
157 expansion of the exocoelom and positioning of the chorion close to the ectoplacental
158 cone. Higher resolution imaging of fixed samples highlighted a dense KF network on
159 the amnion ExE side and within the retracting chorion (Figure 2E, E').

160

161 ***KF form a shell around the allantois.***

162 Allantois growth towards the chorion was recorded on the posterior side of the embryo.
163 The allantois had an irregular shape and expanded through formation of smooth blebs
164 and bulges. The directionality of extension appeared stable. K8-eYFP uncovered a
165 striking difference between the external layer of the allantois, which has been referred
166 to as “mesothelium”²¹ and is called “cortex” in this study, and the inner allantois cells.
167 The cortex displayed a rich KF network, while the inner allantois cells had a lower KF
168 content (Figure 2C, D and Video 7). 3D reconstruction from whole-mount imaging of
169 fixed samples illustrated the reticular network covering the entire allantois (Figure 2E-
170 E” and Videos 8a, b). Interestingly, the allantois cortex displayed KF-rich cell blebs (as
171 described in²¹), some of which were directed towards reciprocal bubbles in chorion
172 mesenchyme (Figure 2E). Comparing sections from K8-eYFP embryos (Figure 2F-F”)
173 and wild-type embryo sections immunostained for K8 (Figure 2G-G”) confirmed that
174 K8-eYFP fusion protein recapitulates native K8 expression pattern.

175

176 ***ExE cell populations have distinct morphological characteristics.***

177 Scanning electron microscopy (SEM) of LB/NP embryos provided valuable insights on
178 ExE tissue and cell morphology (Figure 3A). Blood islands were distinguished on the
179 cavity wall, notably through the emergence of tubular structures (Figure 3B). The
180 allantois had a “cotton candy” appearance with multiple blebs (Figure 3C-C’)²¹.
181 Opening the allantois confirmed distinct cellular shapes between cortex and
182 mesenchyme (Figure 3D). Allantois cortex consisted of a cohesive layer of apically
183 concave stretched cells with short villi (Figure 3C-C’). In contrast, inside cells were
184 rounder; they displayed long entangled filopodia mostly concentrated at cell-cell
185 junctions and a network of twisty, branched filaments (Figure 3E-E’). In the amnion,
186 SEM highlighted the difference between flat epiblast-derived cells on the embryonic
187 side (Figure 3F) and mesoderm-derived cells forming a hilly landscape on the ExE side

188 (Figure 3G-G'). Transmission electron microscopy (TEM) uncovered subcellular
189 details, such as filaments and adhesion complexes. In blastocyst trophectoderm, KF
190 nucleation sites were shown to co-localize with nascent desmosomes ¹⁵. In the
191 allantois (Figure 3H-J), we found tight and adherent junctions in inner cells (Figure 3I-
192 I'), whereas external cells were predominantly connected by adherent junctions (Figure
193 3J). Microfilaments adjacent to adherent junctions were detected at higher
194 magnification (Figure 3J'). In the amnion (Figure 3K-M), tight and adherent junctions
195 were found in epiblast (Figure 3L) and mesoderm (Figure 3M-M')-derived cells. In
196 addition, atypical, possibly immature, desmosome-like junctions were observed
197 (Figure 3L'). Filaments bundles and desmosomes were abundant in chorion (Figure
198 3N-N'). Interestingly, TEM unveiled the presence of primary cilia specifically in cuboidal
199 cells on the posterior side of the allantois base, where high and localized Hedgehog
200 signaling was previously identified through a *Ptc1:lacZ* reporter ²² (Figure 3O-O').
201 Those cells displayed nascent desmosomes (Figure 3O''), compatible with their lower
202 permeability to dextran ²¹.

203

204 ***The nuclear membrane composition of ExE cells suggests an elastic behavior.***
205 The shape and membrane composition of the nucleus are correlated to the physical
206 properties of the cell ²³. A high Lamin A/C over Lamin B1 ratio reflects a viscous
207 environment whereas a low ratio is associated to an elastic environment ^{24,25}. In the
208 EB/NP mouse embryo, the only cells with high Lamin A/C were in visceral endoderm,
209 suggesting that most tissues, in particular ExE mesoderm-derived structures, have low
210 stiffness and high deformability (Figure 3P-P'').

211

212 ***Embryos lacking keratin display major defects in ExE structures***
213 ***morphogenesis.***

214 Due to redundancy among keratins, it is difficult to interpret phenotypes resulting from
215 knocking-out individual genes. Deletion of *K8* caused an embryonic lethal phenotype
216 at E12.5 associated with a placental defect ²⁶. Combined deletions of *K18/K19* ²⁷ or
217 *K8/K19* ²⁸ caused fragility of giant trophoblast cells and extensive hemorrhages, which
218 led to death at E10. As KF assembly relies on obligate heterodimerization of members
219 of each of the two families, deletion of the whole keratin family cluster II plus the
220 flanking type I *K18* (*KtyII^{-/-}*) allowed to fully overcome redundancy and led to growth
221 retardation from E8.5. Mutant embryos arrested around E9.5 due to defective energy

222 metabolism resulting from abnormal intracellular distribution of glucose transporters in
223 the yolk sac²⁹. To explore the function of keratin in morphogenesis of ExE mesoderm-
224 derived structures, we investigated earlier stages of development.

225
226 *KtyII*^{-/-} embryos displayed specific phenotypes as early as E7.5 (Figure 4A): their ExE
227 region was collapsed, with a narrow cavity and scrambled tissue architecture.
228 Immunostaining for K8 at E8.5 confirmed absence of the protein (Figure 4B). Mutant
229 embryos arrested around E9, as previously described (Figure 4C)²⁹. The severity of
230 the phenotype was variable at earlier stages. We quantified the size of ExE structures
231 (Figure 4D) and normalized values by the length of the embryonic region, which was
232 unaffected in mutants (Figure 4E). In EB/NP *KtyII*^{-/-} mutants, the exocoelomic cavity
233 expansion was impaired (Figure 4F), the allantois was smaller (Fig4G), and the amnion
234 was shorter and thicker (Figure 4H, I). The phenotype of E7.5 embryos lacking keratin
235 argues for a predominant function of KF in ExE mesenchymal tissues, in addition to
236 epithelia. Aligned KF in the exocoelomic wall and amnion are likely to support elasticity,
237 while KF might preserve tissue rigidity of the allantois cortex during elongation.

238
239 **Temporal and spatial dynamics of the transcriptional landscape in *K8*^{high} cells**
240 Despite the deformations associated with keratin loss, most mutant embryos
241 successfully completed turning and displayed allantois elongation, indicating that other
242 factors might compensate for the lack of KF in order to allow amnion rapid stretch and
243 allantois growth. To get a global view of ExE mesenchymal cells diversity in time and
244 space, we turned to scRNA-seq. An interactive atlas was created to facilitate usage of
245 the clustered data for the community. We previously performed bulk mRNA analysis of
246 Mid/Late Streak (M/LS) stage mesoderm cells recovered from *Brachyury*-Cre; mTmG
247 transgenic embryos, in which Cre-recombination in cells expressing *Brachyury*
248 activates a membrane GFP reporter while non-recombined cells express membrane
249 Tomato (Figure 5A). Here M/LS Embryos from the same genetic background were
250 manually cut at the embryonic-ExE boundary, GFP+ cells from each population were
251 sorted by flow cytometry (Sup2A), and single cells were sequenced. RNA velocity,
252 which reveals the stream from immature to mature cell state³⁰, assisted in cluster
253 identification.

254

255 Embryonic mesoderm cells were relatively homogeneous, as expected at this stage of
256 gastrulation. Based on gene expression and RNA velocity streams, we defined six
257 clusters (Sup2B, C). Five of those were adjacent: Primitive Streak, Nascent Mesoderm,
258 Lateral Plate/Paraxial Mesoderm, Cranial/Heart Mesoderm, and ExE Mesoderm. A
259 small independent cluster corresponded to Node precursors. Among the genes
260 previously identified as enriched in embryonic mesoderm, single cell analysis showed
261 particularly interesting profiles for guidance molecules (Sup2D). *Epha1* and *Ntn1*, for
262 example, were found predominantly in the streak and node precursors, suggesting a
263 role in transitions between epithelial and mesenchymal stages, while *EphA4* was
264 expressed in Nascent and Paraxial/Lateral Mesoderm, but not in Anterior and ExE
265 mesoderm, compatible with its later function in somitogenesis³¹. For ExE mesoderm
266 cells, we distinguished three clusters (Sup2E-G): Primitive Streak,
267 Endothelial/Erythroid Progenitors, and ExE mesenchyme. Apart from blood and
268 vessels precursors, it was difficult to predict cell fate based on expression profiles.
269 Indeed, cells from different origins can become undistinguishable once they either
270 acquire a particular fate, such as gut endoderm which derives from both definitive and
271 visceral endoderm³², or migrate to a particular region, as illustrated by high K8
272 expression in all ExE layers.

273
274 To better understand cell differentiation trajectories, we characterized ExE populations
275 at later stages and combined spatial and germ layer information. We manually isolated
276 amnion, allantois, and chorion from *T*-Cre; mTmG embryos dissected at LB/NP stages
277 (Figure 5, 6, 7). All cells were sequenced to obtain a comprehensive atlas of each
278 tissue. In addition to previously described expression profiles, each cluster was
279 validated by immunostaining for at least one specific marker.

280
281 Amnion cells segregated in 5 clusters regrouped in 2 major populations (Fig5C). One
282 had high eGFP, *Krt8* and *Cdh2* and comprised Nascent Mesoderm (*Cdx2*, *Mesp1*) and
283 Amnion Mesenchyme (*Acta2*, *Tagln*, *Col1a1*, *Dlk1*, *Nrp1*, *Vcan*). The low eGFP
284 population represented Posterior Epiblast (*Cdh1*, *Fst*, *Pst*) and Amnion Ectoderm
285 (*Epcam*, *Cldn7*, *Krt8*, *Lrp2*, *Wnt6*) (Figure 5D-F, Sup3A, B). Amnion also comprised a
286 population of Erythroid Progenitors (*Lmo2/Runx1*) (Sup3C). A small ExE ectoderm
287 cluster (*Elf5*, *Rhox5*) was likely formed by non-amnion cells that came along during
288 dissection. Immunostaining showed a distinct pattern for K8 in E-cadherin (*Cdh1*)

289 positive epiblast-derived cells, where it appeared as apical dots, compared to
290 mesoderm-derived cells where K8 was more abundant and formed filaments (Figure
291 5E). Cdx2 marked nascent mesoderm exiting the streak to become amnion mesoderm,
292 with a posterior to anterior gradient (Figure 5G). Amnion mesoderm showed high
293 expression of Col1a1 and Nrp1, similar to exocoelomic cavity walls and chorion
294 mesenchyme (Figure 5H, Sup3A). Amnion ectoderm, compared to epiblast, had similar
295 Epcam, lower E-cadherin and Claudin7, and higher K8 (Figure 5E, F and I, Sup3B).
296 Specific markers included *Wnt6* and *Lrp2* (Figure 5F). Immunostaining for Lrp2 showed
297 a punctate pattern in amnion ectoderm (Figure 5I, Sup3B), compatible with its function
298 in endocytosis.

299

300 In chorion, we defined 5 clusters (Figure 6B-D): Chorion Ectoderm/Labyrinth
301 Progenitors, Trophoblast Progenitors, Proximal Chorion Ectoderm, Blood Islands, and
302 Chorion Mesenchyme. eGFP+ cells formed a discrete *Cdh2* positive mesenchymal
303 cluster, and additional cells were scattered among the *Cdh1* positive population,
304 compatible with *Brachyury* expression in ExE ectoderm ¹² (Figure 6C). *Krt8* was
305 present in both epithelial and mesenchymal cells (Figure 6C). *Cdx2* and *Eif5* were
306 present in most cells, except mesenchyme and blood islands (Fig6D and E, Sup4A).
307 RNA Velocity (Figure 6B) suggested two streams. One started from trophoblast
308 progenitors (*Sox2* (Figure 5E, Sup4A), *Eomes*) and one from a chorion ectoderm
309 population (*Rhox6* ³³, *Cebpb* ³⁴) comprising labyrinth progenitors (*Gcm1*, found on the
310 tip of villi in the chorion-derived component of labyrinth ³⁴ (Sup4B)). Both converged
311 on a population displaying a gene profile close to ectoplacental cone (*Ascl2*, an
312 imprinted gene expressed in trophectoderm then mostly restricted to ectoplacental
313 cone ³⁵, and *Dlx3*, predominantly detected in ectoplacental cone ³⁴ and required for
314 labyrinth morphogenesis ³⁶ (Sup4B)). *Dlx3* and *Gcm1* were essentially mutually
315 exclusive (Sup4B), consistent with *Dlx3* inhibition of *Gcm1* transcriptional activity ³⁷.
316 *Gcm1*+ cells already had a distinctive transcriptomic profile at that early stage (Sup4B).
317 Mesoderm-derived cells (*Fn1*) were subdivided according to their prospective
318 endothelial (*Dlk1*, *Acta2*) or erythroid (*Hbb-bh1*) identities (Figure 6D and F, Sup4C).
319 Imprinted genes were found in all chorion populations independent of their germ layer
320 of origin. There were also multiple genes involved in transmembrane transport
321 (*Slc38a4* ³⁸), endocytosis (*Vamp8*) and metal metabolism (*Mt1*, *Mt2*, *Fthl17a*),
322 reflecting chorion's prospective role in embryo nutrition.

323
324 Allantois, as expected, was essentially composed of mesenchymal (*eGFP*, *Cdh2*) cells
325 with high *Krt8* expression (Figure 7B, C). Based on known gene expression profiles
326 and RNA velocity streams, 6 clusters were individualized (Figure 7B, D): Primitive
327 Streak (*T* (Fig7E, Sup5A ¹²), *Fgf8*), Allantois Base (*Cdx4*, *T*, *Ifitm3* (Figure 7E, F),
328 Allantois Cortex (*Krt8* and *18*, *Stard8*, *Cdh11*, *Nrp1* (Figure 7G, Sup5B)), Allantois
329 Mesenchyme (*Tbx4*, *Vcan*, *Pitx1* (Figure 7H, Sup5C)), Endothelial Progenitors (*Tal1*,
330 *Hhex*, *Kdr* (Figure 7I, Sup5D)) and Erythroid Progenitors (*Runx1* (Fig7J), *Lmo2*). Using
331 a polygenic score, we defined a small subpopulation of Primordial Germ Cells (PGC)
332 within the Primitive Streak cluster (Sup5E), providing a snapshot of the PGC
333 expression profile while in the allantois and highlighting the need to combine multiple
334 markers, as none appeared PGC-specific. Allantois mesenchyme had high *Versican*
335 (*Vcan*) expression, compatible with the importance of proteoglycans in protecting blood
336 vessels in the umbilical cord ³⁹. Vasculogenesis has been described to start at the
337 distal end of the allantois and to progress proximally ¹². We were able to identify early
338 expression profiles of specific endothelial populations, such as potential artery
339 progenitors expressing *Dll4* ⁴⁰ (Sup5F). Although KF in allantois cortex appeared
340 continuous across several cells, we could not visualize mature desmosomes by
341 electron microscopy; scRNA-seq detected desmosome components (such as *Dsp*,
342 *Dsc2* or *Pkp4*) in allantois cells, without cluster specificity. Compatible with TEM data,
343 tight junction constituents *Cldn12*, *Tjp1* and 2 were present in cells from multiple
344 clusters. Among cadherins, *Cdh11* stood out as being more abundant in external
345 allantois cells. Similar to amnion and chorion mesoderm, allantois cortex expressed
346 *Acta2* and *Tagln*. It was also enriched for transcripts of genes associated with apical
347 identity, such as *Podxl*, endosomal transport (*Stard8*, also called *Dlc3* ⁴¹), as well as
348 transmembrane transport of nutrients (*Scl2a1*), ions (*Fth1*) and gases (*Car4*),
349 suggesting that outer allantois cells start acquiring functions that will be essential for
350 the functionality of the labyrinth even prior to attachment to the chorion.

351 **DISCUSSION**

352

353 KF have a higher elasticity than actin and microtubules filaments; they can stretch
354 several times their initial length before reaching the yield point. They play a major role
355 in cell resistance to external mechanical stress, as illustrated by the lower elasticity
356 and higher deformability of keratinocytes lacking keratin ^{42,43}. Here, live imaging of
357 mouse embryos with a knock-in K8-eYFP fusion allele identified KF containing cables
358 in all tissues facing the exocoelomic cavity (yolk sac, amnion and chorion
359 mesenchyme, allantois cortex), reminding of the supracellular actomyosin network
360 described in wound healing ⁴⁴, *Drosophila* germ band expansion ⁴⁵, and mouse embryo
361 neural tube closure ⁴⁶. Embryos devoid of keratin had a small exocoelom, a short and
362 thick amnion, as well as defective allantois elongation. In keratinocytes, keratin loss
363 did not obviously affect actin and microtubular networks ⁴³. We previously showed that
364 in E7.25 embryos actin filaments were less abundant in ExE, compared to embryonic,
365 mesoderm. At later stages, we did not detect supracellular F-actin cables around the
366 exocoelomic cavity or at amnion borders. Altogether, these observations suggest that
367 the KF network is a prominent cytoskeletal determinant of cell resistance to mechanical
368 challenges during ExE membranes formation. Similarly, human fetal mesenchyme and
369 amniotic epithelium co-express keratin and vimentin ^{47,48}. Cytoskeletal networks in
370 amniochorion participate to fetal membranes' capacity to withstand increase in
371 intrauterine pressure during contractions, and recover from mechanical trauma such
372 as amniocentesis ⁴⁹.

373

374 Smooth muscle alpha-2 actin (*Acta2*), transgelin (*Tagln*, also called *SM22alpha*), and
375 cadherin-11 were co-expressed with K8 in amnion and chorion mesenchyme as well
376 as in allantois cortex. *Acta2*, *Tagln* and *Cdh11* are TGF β -inducible genes, compatible
377 with high BMP signaling in the ExE region. *Acta2* is a marker for myofibroblasts and
378 smooth muscle cells. It plays an essential role in vascular contractility, and *ACTA2*
379 mutations in human cause a variety of vascular diseases ⁵⁰. Transgelin binds directly
380 to actin filaments and was shown *in vitro* to cause actin gelation due to conversion of
381 loose filaments into a tangle meshwork ⁵¹. Cadherin-11 is a type II classical cadherin
382 predominantly expressed in mesenchymal tissues ⁵². During embryonic development,
383 it is required for neural crest survival and migration ⁵³. Its expression in fibroblasts is
384 correlated with mechanical stress; switching from cadherin-2 to 11 is associated with

385 transition from low contractile migratory fibroblast to highly contractile myofibroblast ⁵⁴.
386 In frog mesendoderm, local forces applied to C-cadherin result in recruitment of KF to
387 cadherin complexes via plakoglobin ⁵⁵. It is therefore conceivable that cadherin-11
388 might act as a mechanosensor and mediate reorganization of KF at sites of higher
389 tension. Lineage analysis showed that amnion, chorion and allantois mesenchymal
390 cells derive from common mixed fate progenitors in the posterior epiblast ⁹. Single cell
391 transcriptome of MS/LS ExE mesoderm cells revealed that *Acta2*, *Tagln* and *Cdh11*
392 were already detectable at lower levels. Collectively, this suggests that mesenchymal
393 cells lining the exocoelom have a common origin and differentiation program and are
394 equipped to sustain rapid massive morphology changes.

395
396 A series of remarkable scRNA-seq studies have provided very valuable insight into
397 embryo development and offered detailed reference atlases to the community ^{32,56,57}.
398 The highly useful mouse gastrulation single-cell atlas currently lacks some ExE tissues
399 ⁵⁶. Furthermore, identification of cell location is based solely on gene expression and
400 can thus be confounded by similarity in transcription profiles. A RNA sequencing study
401 of single nuclei from E9.5 to E14.5 mouse embryo placenta resolved all populations of
402 the mature labyrinth, including fetal mesenchyme clusters characterized by *Acta2*
403 expression ⁵⁷. Here we provide an additional database that includes spatial and germ
404 layer information for early ExE structures that had not been previously individualized
405 due to absence of specific markers. Fate maps of Pre/Early Streak mouse embryos
406 showed that amniotic ectoderm is derived from mixed fate progenitors mostly in the
407 proximal anterior and anterolateral epiblast ⁹. Through scRNA-seq of micro-dissected
408 amnion, we found a series of genes differentially expressed between epiblast and
409 amnion ectoderm, including *Krt8*, *Lrp2* and *Wnt6*. *Wnt6* is a conserved amnion
410 ectoderm marker in mouse ⁵⁸, non-human primate ⁵⁹, and human ⁶⁰ embryos. *WNT6*
411 and *LRP2* were co-expressed in a subset of human embryo ectoderm cells ⁶⁰, similar
412 to what we observed in amnion epithelium. As *Wnt6* has been shown to regulate
413 epithelial-mesenchymal transitions in other contexts ^{61,62}, it may be compatible with an
414 intermediate epithelial-mesenchymal state favorable for the rapid amnion expansion
415 required upon embryo turning.

416
417 Placental defects are found in more than 50% of embryonically lethal mouse mutants
418 ³. For a proportion of those genes, epiblast-specific mutants identified the germ layer

419 responsible for lethality. *Bap1* phenotype, for example, was partially rescued by wild
420 type trophectoderm; interrogating our atlas showed *Bap1* expression in chorion and
421 allantois. *Crb2* phenotype however was not rescued in epiblast-specific mutants,
422 compatible with its specific transcription in allantois. A number of mouse mutants have
423 been shown to display defective chorio-allantoic union^{10,11}, notably through deletion of
424 *Vcam-1* (expressed in allantois⁶³) or its partner alpha 4 integrin (*Itga4*, expressed in
425 chorion mesoderm⁶⁴). Most described mutants have incomplete penetrance,
426 suggesting there might be functional redundancy. Based on single cell profiles in
427 allantois and chorion, we interrogated CellPhone DB⁶⁵ to look for ligand-receptor
428 couples that could play a role in allantois directional growth towards chorion. To
429 increase specificity, we focused on allantois cortex and mesenchyme versus chorion
430 mesoderm and ectoderm (Sup5G). Significant interactions included previously
431 described actors of chorio-allantoic fusion such as BMP2, 4, 5 and 7, FGFR2, or Wnt7b
432^{10,11} as well as an array of potential new targets either within the BMP, FGF and Wnt
433 pathways or belonging to other pathways, such as Neuropilin, Ephrin and Notch.

434
435 Although the human embryo displays a different geometry at that stage, cell
436 populations involved in formation of amnion, placenta and umbilical cord are conserved
437 and likely to rely on similar molecular modules. Single-cell analyses of first trimester
438 placentas identified placental and decidual cell types at the maternal-fetal interface
439^{66,67}. Fibroblasts of both maternal⁶⁶ and fetal⁶⁷ origins had high *ACTA2* and *TAGLN*.
440 Fetal fibroblasts were the primary source of *DLK1*⁶⁷, similar to mouse in which *Dlk1* is
441 abundant in ExE mesoderm as well as allantois and amnion mesenchyme. Time and
442 space resolved atlases of mouse embryo and placenta are precious tools to guide
443 interpretation of data from rare human samples.

444
445 Here we captured cytoskeleton, cell and tissue dynamics during formation of mouse
446 embryo support organs, uncovered a major role for keratin intermediate filaments in
447 expansion of ExE tissues, and provided a regional single cell transcriptome for
448 mesoderm, amnion, chorion and allantois. Higher time and space resolution imaging
449 through lattice light sheet microscopy⁶⁸ of K8-eYFP embryos bearing fluorescent
450 markers for nuclei and cytoskeletal components would be very valuable to better
451 comprehend keratins' subcellular dynamics and interplay with actomyosin and
452 microtubules. In order to decipher the role of KF in ExE mesenchyme at the molecular

453 and physical level, one could take advantage of *ex vivo* explant systems for mesoderm
454 cells⁶⁹ or mesoderm-derived organs such as allantois^{40,70} from wild-type and mutant
455 embryos. Cells could then be challenged by varying substrate rigidity and composition
456 or knocking down potential partners within adhesion complexes. Similar studies could
457 be undertaken on appropriate mouse and human stem cells-derived germ layer and
458 embryo models to help decipher essential steps in the establishment of the maternal-
459 fetal interface in human.

460 **ACKNOWLEDGMENTS**

461 We wish to thank the Université Libre de Bruxelles/Erasme animal and flow cytometry
462 facilities. We gratefully acknowledge the Université Libre de Bruxelles light microscopy
463 (LiMiF) core facility (in particular M. Martens and J-M. Vanderwinden) for help with
464 confocal and two-photon imaging, as well as the genomic facility for help with
465 sequencing (A. Lefort and F. Libert). We thank Achim Gossler and Shankar Srinivas
466 for sharing mouse lines, and Kirstie Lawson, Evangéline Despin-Guitard, Susana
467 Chuva de Sousa Lopes, Eneko Urizar, and Joaquim Grego-Bessa for fruitful
468 discussions.

469

470 W.N. was supported by WELBIO (SGR2015), the Université Libre de Bruxelles (ULB),
471 and the Fonds de la Recherche Scientifique (FNRS) (PDR T.0084.16). B.S. received
472 a FRIA fellowship of the FNRS. S.P.S. is supported by the FNRS under grant number
473 34772792 (MISU). I.M. is a FNRS research associate. The CMMI is supported by the
474 European Regional Development Fund and the Walloon Region. Work in the Magin
475 lab is supported by the Deutsche Forschungsgemeinschaft (DFG), grants MA1316/19-
476 1 and MA1316/21-2 to T.M.M. N. S. is supported by Deutsche
477 Forschungsgemeinschaft (DFG) grant 363055819/GRK2415. WELBIO, the FNRS,
478 and the Fondation Erasme supported this work.

479

480 **AUTHOR CONTRIBUTIONS**

481 W. N. and I. M. conceptualized the study, analysed and interpreted data. W.N.
482 performed most experiments, data quantification and presentation. I. M. wrote the
483 manuscript. S. E. E. and S. P. S participated to scRNA-seq data analysis and
484 visualization. M. V. and D. M. performed the TEM and SEM experiments, M. V., D. M.
485 and D.P.M. analysed and interpreted the EM data. B. S. isolated E7.25 mesoderm cells
486 for scRNA-seq. N. S. and T. M. M. provided the K8-eYFP and *Krt7II* mouse lines,
487 respectively, and assisted with data interpretation. A. Z. was involved in
488 conceptualization and data interpretation and reviewed the manuscript.

489

490 **DATA AVAILABILITY**

491 The single-cell RNA sequencing data discussed in this publication have been
492 deposited in GEO under reference GSE167958. A shiny application is upon request.
493 Differential gene expression is available in Embryonic GFP positive, ExE GFP positive,

494 allantois, amnion, chorion, and combined allantois/chorion/amnion. No graph
495 visualization means the gene was not detected in the sample.

496

497 **DECLARATION OF INTERESTS**

498 The authors declare no conflict of interests.

499 **METHODS**

500

501 *Mouse breeding and embryo collection*

502 Mouse colonies were maintained in a certified animal facility in accordance with
503 European guidelines. Experiments were approved by the local ethics committee
504 (CEBEA). Mouse genomic DNA was isolated from ear biopsies treated for 1h at 95°C
505 in NaOH in order to simultaneously genotype and identify animals. Mouse lines were
506 K8-eYFP¹⁸, mTmG⁷¹ (Jackson laboratory), *Brachyury (T)*-Cre⁷², Hex-GFP⁷³, all bred
507 on a CD1 background, and *Krt4II*^{+/−}²⁹, bred on a Black6 background. Embryos were
508 recovered at the appropriate time point after observation of a vaginal plug at day 0.
509 Embryos were dissected in Dulbecco's modified Eagle medium (DMEM) F-12 (Gibco)
510 supplemented with 10% Fetal Bovine Serum (FBS), 1% Penicillin/Streptomycin and L-
511 glutamine, and 15 mM HEPES, using #5 forceps and tungsten needles under a
512 transmitted light stereomicroscope. Bright-field pictures of the litter or single embryo
513 were taken before any other manipulation to ensure adequate staging. Genotyping of
514 mutant embryos was performed after a lysis step (Lysis Buffer (Viagen)) with 1,5%
515 Proteinase K (Qiagen).

516

517 *scRNA-seq sample preparation*

518 *T-Cre; mTmG* embryos were collected from multiple pregnant females at E7.5, and
519 embryos at the appropriate stage were pooled. Embryonic and ExE portions were
520 separated by manually cutting the embryo with finely sharpened forceps. For
521 embryonic and ExE mesoderm cells samples, MS/LS embryos were digested in
522 dissociation buffer (1% 100 mM EDTA + 4% of 2,5% Trypsin in Phosphate Buffer saline
523 (PBS)), and the two pure GFP positive populations were sorted through flow cytometry
524 (FACSARIA III, BD), directly in DMEM F-12 supplemented with 10% FBS and 15 mM
525 HEPES. For ExE structures samples, LB embryos were pooled and incubated at 4°C
526 in pancreatic/trypsin solution (2,5% of pancreatic enzymes + 0,5% Trypsin in PBS) for
527 18min then washed in DMEM supplemented with 10% FBS and 1% penicillin-
528 streptomycin. For ExE structures, allantois, amnion, and chorion were manually
529 dissected in PBS supplemented with 0,04% BSA with finely sharpened forceps and
530 tungsten needles. ExE structures were then incubated at 37°C in accutase (Sigma,
531 A6964)/0,25% trypsin (Gibco, 1509-046) for 20 min (with gentle agitation at 10 min).
532 30% DMEM/F-12 with HEPES, 20% FBS, and 50% 4mM EDTA were added to the mix.

533 Clumps were triturated by mouth pipetting and the solution was filtered in a non-binding
534 Eppendorf tube with Flow MI cell 40 μ m to remove debris. The solution was centrifuged
535 at 450g for 4 min. Cells were resuspended in 50 μ L in FHM (Merck, MR-024-D). For
536 both approaches, cells were checked for viability and counted using a
537 haemocytometer.

538

539 *scRNA-seq analysis*

540 Single cell transcriptomics was performed with the Chromium Single Cell microfluidic
541 device (10X Genomics). Loaded cells were individually barcoded with a 10X Chromium
542 controller according to the manufacturer's recommendations. The libraries were
543 prepared using the Chromium Single Cell 3' Library Kit (V3-chemistry, 10X Genomics),
544 and sequenced on NovaSeq 6000 (Illumina) sequencing platform. Each sample
545 sequenced was obtained from one experiment except for amnion that is a combination
546 of two samples sequenced separately. 2.742 and 1.159 cells were sequenced for
547 embryonic and ExE GFP positive cells, respectively, with a mean number of 24.619
548 and 56.514 reads per cell and 3.294 and 4.505 genes per cell. For the two amnion
549 samples, 314 and 503 cells were sequenced, with a mean number of 214.164 and
550 133.664 reads per cell and 5.956 and 5.173 genes per cell. 3.732 and 912 cells were
551 sequenced for chorion and allantois, respectively, with a mean number of 25.613 and
552 70.891 reads per cell and 3.065 and 4.747 genes per cell.

553

554 Sequencing reads were aligned and annotated with the mm10 reference dataset
555 provided by 10X Genomics. *Cre*, *eGFP* and *tdTomato* sequences were added by
556 following 10X Genomics instructions. Sequencing reads were demultiplexed using
557 CellRanger (version 3.0.2) with default parameters. Number of genes, total counts of
558 UMI and the percentage of mitochondrial genes were utilized for quality control.
559 Expression value scaling and normalization, PCA and UMAP dimensionality reductions
560 and clustering were performed using the Seurat R package (version 3.0.1)⁷⁴. Clusters
561 were defined using Seurat at multiple resolutions (0.2, 0.3, 0.5) and marker gene
562 discovery was performed using the FindAllMarkers function of the Seurat package
563 using the Wilcoxon Ranked Sum test. Markers were then selected by setting the
564 threshold to all genes with an adjusted *p*-value lower than 0.25. Two output graphs
565 were generated: UMAP and Dot plot. On UMAP, each point represents a cell, and its
566 position is based on the cell embeddings determined by the PCA. Color depends on

567 the cluster attribution. On Dot plot, the size of the dot encodes the percentage of cells
568 expressing the gene within a cluster and the color encodes the average expression
569 level across all cells within the cluster. Blue means high expression and grey means
570 low expression. RNA velocity was performed on dataset processed as previously
571 described with Seurat. Velocyto ³⁰ and scvelo ⁷⁵ packages were run on Python 3 by
572 following the described on-line pipelines. The stochastic model was used for the RNA
573 velocity models based on the balance of unspliced and spliced mRNA levels and their
574 covariation. Receptor-ligand interaction analysis was performed utilizing CellPhoneDB
575 package ⁶⁵. As outlined in CellPhoneDB guidelines, the input data was prepared after
576 extracting from Seurat object. Mouse gene names were converted to orthologues of
577 human gene names which were retrieved from BioMart ⁷⁶. The statistical method was
578 run using the default parameters (10% threshold). Dot plot was plotted using the entire
579 list of significant interaction pairs in the following comparisons: allantois cortex vs.
580 chorion mesoderm, allantois mesenchyme vs. chorion mesoderm, allantois cortex vs.
581 chorion ectoderm and allantois mesenchyme vs. chorion ectoderm. For a detailed
582 description of the terms, please refer to the documentation of CellPhoneDB package.
583

584 *Whole-mount and section immunostaining*

585 For immunofluorescence, embryos were fixed in PBS containing 4%
586 paraformaldehyde for 2h at 4°C. For sagittal sections, fixed embryos were
587 cryopreserved in 30% sucrose, embedded in OCT, and cryosectioned at 7-10 µm.
588 Staining was performed in PBS containing 0.5% Triton X-100, 0.1% BSA, and 5% heat-
589 inactivated horse serum. Primary antibodies were incubated overnight, and secondary
590 antibodies were incubated for 2h at RT. Sections and whole-mount embryos were
591 imaged on a Zeiss LSM 780 microscope equipped with Plan Apochromat 20x/0,8 M27
592 and an LD C Apochromat 40x/1,1 W Korr M27 objectives with 1, 3 or 5 µm Z-intervals.
593 Image processing was done on ImageJ, Icy, or Arivis.

594

595 *Antibodies*

596 The following primary antibodies were used: anti-Cdh1 (rabbit, 1:500, Cell Signaling,
597 877-616), anti-Cdh11 (rabbit, 1:200, Cell Signaling, 442S), anti-Cdx2 (rabbit, 1:200
598 Abcam, ab76541), anti-Cldn7 (rabbit, 1:50, ThermoFisher, 34-9100), anti-Col1a1
599 (rabbit, 1:50, ThermoFisher, PA1-85319), anti-Dlk1 (rat, 1:250, MBL, D187-3), anti-
600 Epcam (rat, 1:100, Biolegende, 1182020), anti-Fn1 (rabbit, 1:1500, Sigma, F3648),

601 anti-Ifitm3 (rabbit, 1:50, Abcam, ab15592), anti-GFP (goat, 1:500, Abcam, ab6673),
602 anti-GFP (rabbit, 1:500, Life technology, A11122), anti-Kdr (rabbit, 1:100, Cell
603 Signaling, 55B11), anti-Krt-8 (rat, 1:100, TROMA-I-S, DSHB, AB_531826), anti-
604 LamA/C (chicken, 1:100, Novus, NBP2-25152SS), anti-LamB1 (rabbit, 1:250, Abcam,
605 ab229025), anti-Lrp2 (rabbit, 1:50, Abcam, ab76969), anti-Nrp1 (goat, 1:50, R&D,
606 AF566-SP), anti-Pitx1 (rabbit, 1:100, Novus, NBP1-88644), anti-Runx1 (rabbit, 1:200,
607 Sigma, HPA004176), anti-Sox2 (rabbit, 1:100, Abcam, ab92492), anti-Stard8 (rabbit,
608 1:50, Biorbyt, orb101873), anti-T (rabbit, 1:100, R&D, AF2085), and anti-Vim (rabbit,
609 1:200, Abcam, ab92547). The following secondary antibodies were used at 1:500: anti-
610 chicken conjugated to Alexa647 (Jackson Immunoresearch, 703-605-155), anti-goat
611 conjugated to Alexa488 (Thermofisher, A20990) and 647 (Thermofisher A32814), anti-
612 rabbit conjugated to Alexa488 (Thermofisher, A21206), and anti-rat conjugated to
613 Alexa647 (Thermofisher, A21472). Alexa568 conjugated phalloidin (Invitrogen,
614 A12380) was used at 1:200 in blocking buffer to visualize F-actin microfilaments and
615 highlight cell membranes. Nuclei were stained with DAPI (1:1000, Sigma, D9542).

616

617 *Live Imaging*

618 For live imaging, ectoplacental cones were conserved. Embryos were cultured in 50%
619 DMEM-F12 with L-glutamine without phenol red, 50% rat serum (Janvier), at 37°C and
620 5% CO₂. Embryos were observed in suspension in individual conical wells (μ-slide
621 angiogenesis, Ibidi) to limit drift, under a Zeiss LSM 780 microscope equipped with a
622 two-photon laser (Coherent) at 950 nm, and an LD C Apochromat 40x/ 1.1 objective.
623 Stacks were acquired every 20 min with 5 μm Z-intervals for up to 6 h. Embryos were
624 cultured for an additional 6-12 h after imaging to check for fitness. 3D views were
625 processed using Arivis Vision4D v3.0 (Arivis, Germany). Registration was performed
626 after video generation using the StackReg ImageJ plugin.

627

628 *Spectral Imaging & Image Processing*

629 Whole-mount fixed K8-eYFP embryos were stained with DAPI for 2h in PBS containing
630 0.5% Triton X-100, 0.1% BSA, and 5% heat-inactivated horse serum. Spectral mode
631 on Zeiss was used with a wavelength interval of 9 nm with a two-photon laser of 950
632 nm and a Z interval of 1 μm. Images were unmixed through ZEN software based on
633 prior spectral analysis of K8-eYFP and DAPI signals alone. For big samples, the Zeiss

634 tile option was used during acquisition and unmixed images were mounted through
635 Huygens Professional software (Deconvolution and Stitching widget).

636

637 *Image Quantification*

638 Quantification from confocal images was performed using the Icy software ⁷⁷ (v2.1.0.1),
639 ImageJ (v1.52h) and Arivis (Vision4D v3.0). Data analysis was handled through
640 homemade Python scripts and GraphPad software (v8.4.3). Student t-tests or Mann-
641 Whitney tests were used according to the nature of the data sets. Ns: non-significant,
642 *p-value<0,05, **p-value<0,005, *** p-value<0,0005, and ****p-value<0,00005.

643

644 To measure the ratio of signal intensity of LamA/C over LamB1, the threshold HK
645 means from Icy (<http://icy.bioimageanalysis.org/>) ⁷⁷ on LamB1 channel was applied on
646 several spots within specific areas. This mask was applied on the LamA/C channel.
647 Mean intensity signals were extracted from the two channels, and the ratio LamA/C
648 over LamB1 was calculated.

649

650 *Electron Microscopy*

651 For Scanning Electron Microscopy, embryos were fixed with glutaraldehyde 2,5 % over
652 night and rinsed in cacodylate buffer 0.1 M, pH 7.0. After serial dehydration in
653 increasing concentrations of ethanol and finally acetone, samples were dried at CO₂
654 critical point, then opened and mounted on Scanning Electron Microscopy stubs.
655 Observations were performed with an ESEM Quanta F200 (FEI-ThermoFisher)
656 microscope and secondary electron images captured with an Everhart-Thornley
657 detector. Images were analyzed and processed by iTEM software. For Transmission
658 Electron Microscopy analyses of thin sections, embryos were fixed with glutaraldehyde
659 2,5% (EM grade, Electron Microscopy Sciences) and postfixed twice in 1% OsO₄ (with
660 1,5% ferrocyanide). Samples were stained with uranyl acetate (UA), serially
661 dehydrated in increasing ethanol concentrations, and embedded in epoxy-resin (Agar
662 100 resin, Agar Scientific Ltd, UK). Sectioning was done on a Leica EM UC7
663 ultramicrotome and ultrathin (50-70nm thick) sections were further stained with UA and
664 lead citrate by electron microscopy standard procedures. Observations were made on
665 a Tecnai 10 electron microscope (FEI-ThermoFisher) and images were captured with
666 a Vela CCD camera and processed with SIS iTEM software (Olympus).

667 **VIDEO LEGENDS**

668

669 **Video1:** 3D reconstruction in the ExE region of a fixed whole-mount embryo stained
670 for F-actin (Phalloidin) (n=4). Z interval is 1 μ m.

671

672 **Video2:** Z-projection from two-photon live imaging of one K8-eYFP (yellow) LS
673 embryos, when YFP becomes detectable in ExE mesoderm (n=9). Time interval is 15
674 min, scale bar represents 25 μ m.

675

676 **Video3:** Z-projection from two-photon live imaging of a K8-eYFP (yellow) 0B embryos
677 at 40X magnification showing whole ExE region (n=10). Time interval is 15 min, scale
678 bar represents 25 μ m.

679

680 **Video4:** Z-stack of a whole-mount fixed K8-eYFP (yellow) LB embryo stained for nuclei
681 (DAPI, cyan) focused on ExE region (n=15). Z interval is 1 μ m, scale bar represents
682 20 μ m.

683

684 **Video5:** Z-projection from two-photon live imaging of 5 K8-eYFP (yellow) EB/LB
685 embryos focusing on ExE region at 40X magnification highlighting K8 containing
686 cables (n=10). Time interval is 15 min and scale bars represent 25 μ m.

687

688 **Video6:** Z-projection from two-photon live imaging of 2 K8-eYFP (yellow) LB embryos
689 focusing on ExE region at 40X magnification and showing the amnio-chorionic fold at
690 the anterior separation point (n=6). Time interval is 15 min and scale bars represent
691 25 μ m.

692

693 **Video7:** Z-projection from two-photon live imaging of 3 K8-eYFP (yellow) LB embryos
694 focusing on ExE region at 40X magnification showing allantois in lateral (a, b) (n=12)
695 and posterior (c) views (n=3). Time interval is 15 min and scale bars represent 25 μ m.

696

697 **Video8 a, b:** 3D reconstructions in the ExE region of 2 fixed whole-mount K8-eYFP
698 (yellow) embryos stained with DAPI (cyan) (n=15). Z interval is 1 μ m.

699 **REFERENCES**

- 700 1. Roberts, R. M., Green, J. A. & Schulz, L. C. The evolution of the placenta.
701 *Reproduction* **152**, R179–R189 (2016).
- 702 2. Rossant, J. & Cross, J. C. Placental development: Lessons from mouse
703 mutants. *Nat. Rev. Genet.* **2**, 538–548 (2001).
- 704 3. Perez-Garcia, V. *et al.* Placentation defects are highly prevalent in embryonic
705 lethal mouse mutants. *Nature* **555**, 463–468 (2018).
- 706 4. Burton, G. J., Fowden, A. L. & Thornburg, K. L. Placental origins of chronic
707 disease. *Physiol. Rev.* **96**, 1509–1565 (2016).
- 708 5. Soares, M. J., Varberg, K. M. & Iqbal, K. Hemochorial placentation:
709 Development, function, and adaptations. *Biol. Reprod.* **99**, 196–211 (2018).
- 710 6. Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation
711 and axis patterning in the early mouse embryo. *Nat. Rev. Mol. Cell Biol.* **10**,
712 91–103 (2009).
- 713 7. Nahaboo, W. & Migeotte, I. Cleavage and Gastrulation in the Mouse Embryo.
714 *eLS* 1–6 (2018). doi:doi:10.1002/9780470015902.a0001068.pub3
- 715 8. Pereira, P. N. *et al.* Amnion formation in the mouse embryo: the single
716 amniochorionic fold model. *BMC Dev. Biol.* **11**, 48 (2011).
- 717 9. Dobreva, M. P. *et al.* Amniotic ectoderm expansion in mouse occurs via distinct
718 modes and requires SMAD5-mediated signalling. *Development* **145**, (2018).
- 719 10. Watson, E. D. & Cross, J. C. Development of structures and transport functions
720 in the mouse placenta. *Physiology (Bethesda)*. **20**, 180–193 (2005).
- 721 11. Inman, K. E. & Downs, K. M. The murine allantois: emerging paradigms in
722 development of the mammalian umbilical cord and its relation to the fetus.
723 *genesis* **45**, 237–258 (2007).
- 724 12. Inman, K. E. & Downs, K. M. Brachyury is required for elongation and
725 vasculogenesis in the murine allantois. *Development* **133**, 2947–2959 (2006).
- 726 13. Saykali, B. *et al.* Distinct mesoderm migration phenotypes in extra-embryonic
727 and embryonic regions of the early mouse embryo. *Elife* **8**, e42434 (2019).
- 728 14. Loschke, F., Seltmann, K., Bouameur, J. E. & Magin, T. M. Regulation of
729 keratin network organization. *Curr. Opin. Cell Biol.* **32**, 56–64 (2015).
- 730 15. Moch, M., Schwarz, N., Windoffer, R. & Leube, R. E. The keratin–desmosome
731 scaffold: pivotal role of desmosomes for keratin network morphogenesis. *Cell.*
732 *Mol. Life Sci.* **77**, 543–558 (2020).

733 16. Lu, H., Hesse, M., Peters, B. & Magin, T. M. Type II keratins precede type I
734 keratins during early embryonic development. *Eur. J. Cell Biol.* **84**, 709–718
735 (2005).

736 17. Lim, H. Y. G. *et al.* Keratins are asymmetrically inherited fate determinants in
737 the mammalian embryo. *Nature* **585**, 404–409 (2020).

738 18. Schwarz, N., Windoffer, R., Magin, T. M. & Leube, R. E. Dissection of keratin
739 network formation, turnover and reorganization in living murine embryos. *Sci.
740 Rep.* **5**, 1–8 (2015).

741 19. Sonavane, P. R. *et al.* Mechanical and signaling roles for keratin intermediate
742 filaments in the assembly and morphogenesis of mesendoderm tissue at
743 gastrulation. *Development* dev.155200 (2017). doi:10.1242/dev.155200

744 20. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by
745 morphological landmarks in the dissecting microscope. *Development* **118**,
746 1255–1266 (1993).

747 21. Daane, J. M., Enders, A. C. & Downs, K. M. Mesothelium of the murine
748 allantois exhibits distinct regional properties. *J. Morphol.* **272**, 536–556 (2011).

749 22. Daane, J. M. & Downs, K. M. Hedgehog signaling in the posterior region of the
750 mouse gastrula suggests manifold roles in the fetal-umbilical connection and
751 posterior morphogenesis. *Dev. Dyn. an Off. Publ. Am. Assoc. Anat.* **240**,
752 2175–2193 (2011).

753 23. Kirby, T. J. & Lammerding, J. Emerging views of the nucleus as a cellular
754 mechanosensor. *Nat. Cell Biol.* **20**, 373–381 (2018).

755 24. Swift, J. *et al.* Nuclear Lamin-A Scales with Tissue Stiffness and Enhances
756 Matrix-Directed Differentiation. *Science* (80-). **341**, 1240104 (2013).

757 25. González-Cruz, R. D., Dahl, K. N. & Darling, E. M. The emerging role of Lamin
758 C as an important LMNA isoform in mechanophenotype. *Front. Cell Dev. Biol.*
759 **6**, 1–7 (2018).

760 26. Baribault, H., Price, J., Miyai, K. & Oshima, R. G. Mid-gestational lethality in
761 mice lacking keratin 8. *Genes Dev.* **7**, 1191–1202 (1993).

762 27. Hesse, M., Franz, T., Tamai, Y., Taketo, M. M. & Magin, T. M. Targeted
763 deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic
764 lethality. *Embo J* **19**, 5060–5070 (2000).

765 28. Tamai, Y. *et al.* Cytokeratins 8 and 19 in the mouse placental development. *J.
766 Cell Biol.* **151**, 563–572 (2000).

767 29. Vijayaraj, P. *et al.* Keratins regulate protein biosynthesis through localization of
768 GLUT1 and -3 upstream of AMP kinase and Raptor. *J. Cell Biol.* **187**, 175–184
769 (2009).

770 30. La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

771 31. Nieto, M. A., Gilardi-Hebenstreit, P., Charnay, P. & Wilkinson, D. G. A receptor
772 protein tyrosine kinase implicated in the segmental patterning of the hindbrain
773 and mesoderm. *Development* **116**, 1137–1150 (1992).

774 32. Nowotschin, S. *et al.* The emergent landscape of the mouse gut endoderm at
775 single-cell resolution. *Nature* (2019). doi:10.1038/s41586-019-1127-1

776 33. Chun, J. Y., Han, Y. J. & Ahn, K. Y. Psx homeobox gene is X-linked and
777 specifically expressed in trophoblast cells of mouse placenta. *Dev. Dyn. an
778 Off. Publ. Am. Assoc. Anat.* **216**, 257–266 (1999).

779 34. Simmons, D. G. *et al.* Early patterning of the chorion leads to the trilaminar
780 trophoblast cell structure in the placental labyrinth. *Development* **135**, 2083–
781 2091 (2008).

782 35. Guillemot, F., Nagy, A., Auerbach, A., Rossant, J. & Joyner, A. L. Essential role
783 of Mash-2 in extraembryonic development. *Nature* **371**, 333–336 (1994).

784 36. Morasso, M. I., Grinberg, A., Robinson, G., Sargent, T. D. & Mahon, K. A.
785 Placental failure in mice lacking the homeobox gene Dlx3. *Proc. Natl. Acad.
786 Sci. U. S. A.* **96**, 162–167 (1999).

787 37. Li, S. & Roberson, M. S. DLX3 interacts with GCM1 and inhibits its
788 transactivation-stimulating activity in a homeodomain-dependent manner in
789 human trophoblast-derived cells. *Sci. Rep.* **7**, 1–13 (2017).

790 38. Matoba, S. *et al.* Paternal knockout of Slc38a4/SNAT4 causes placental
791 hypoplasia associated with intrauterine growth restriction in mice. *Proc. Natl.
792 Acad. Sci. U. S. A.* **116**, 21047–21053 (2019).

793 39. Nandadasa, S. *et al.* Vascular dimorphism ensured by regulated proteoglycan
794 dynamics favors rapid umbilical artery closure at birth. *Elife* **9**, 1–30 (2020).

795 40. Arora, R. & Papaioannou, V. E. The murine allantois: A model system for the
796 study of blood vessel formation. *Blood* **120**, 2562–2572 (2012).

797 41. Noll, B. *et al.* DLC3 suppresses MT1-MMP-dependent matrix degradation by
798 controlling RhoB and actin remodeling at endosomal membranes. *J. Cell Sci.*
799 **132**, (2019).

800 42. Seltmann, K., Fritsch, A. W., Käs, J. A. & Magin, T. M. Keratins significantly

801 contribute to cell stiffness and impact invasive behavior. *Proc. Natl. Acad. Sci.*
802 *U. S. A.* **110**, 18507–18512 (2013).

803 43. Ramms, L. *et al.* Keratins as the main component for the mechanical integrity
804 of keratinocytes. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 18513–18518 (2013).

805 44. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic
806 wound healing. *Nature* **360**, 179–183 (1992).

807 45. Fernandez-Gonzalez, R., Simoes, S. M., Roper, J. C., Eaton, S. & Zallen, J. A.
808 Myosin II dynamics are regulated by tension in intercalating cells. *Dev Cell* **17**,
809 736–743 (2009).

810 46. Galea, G. L. *et al.* Biomechanical coupling facilitates spinal neural tube closure
811 in mouse embryos. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E5177–E5186 (2017).

812 47. Khong, T. Y., Lane, E. B. & Robertson, W. B. An immunocytochemical study of
813 fetal cells at the maternal-placental interface using monoclonal antibodies to
814 keratins, vimentin and desmin. *Cell Tissue Res.* **246**, 189–195 (1986).

815 48. Beham, A., Denk, H. & Desoye, G. The distribution of intermediate filament
816 proteins, actin and desmoplakins in human placental tissue as revealed by
817 polyclonal and monoclonal antibodies. *Placenta* **9**, 479–492 (1988).

818 49. Ockleford, C. *et al.* Confocal and conventional immunofluorescence and
819 ultrastructural localisation of intracellular strength-giving components of human
820 amnionchorion. *J. Anat.* **183**, 483–505 (1993).

821 50. Guo, D.-C. *et al.* Mutations in smooth muscle alpha-actin (ACTA2) lead to
822 thoracic aortic aneurysms and dissections. *Nat. Genet.* **39**, 1488–1493 (2007).

823 51. Shapland, C., Hsuan, J. J., Totty, N. F. & Lawson, D. Purification and
824 properties of transgelin: a transformation and shape change sensitive actin-
825 gelling protein. *J. Cell Biol.* **121**, 1065–1073 (1993).

826 52. Hoffmann, I. & Balling, R. Cloning and expression analysis of a novel
827 mesodermally expressed cadherin. *Developmental Biology* **169**, 337–346
828 (1995).

829 53. Manohar, S., Camacho-Magallanes, A., Echeverria, C. & Rogers, C. D.
830 Cadherin-11 Is Required for Neural Crest Specification and Survival. *Front.*
831 *Physiol.* **11**, (2020).

832 54. Pittet, P., Lee, K., Kulik, A. J., Meister, J. J. & Hinz, B. Fibrogenic fibroblasts
833 increase intercellular adhesion strength by reinforcing individual OB-cadherin
834 bonds. *J. Cell Sci.* **121**, 877–886 (2008).

835 55. Weber, G. F., Bjerke, M. A. & DeSimone, D. W. A Mechanoresponsive
836 Cadherin-Keratin Complex Directs Polarized Protrusive Behavior and
837 Collective Cell Migration. *Dev. Cell* **22**, 104–115 (2012).

838 56. Pijuan-Sala, B. *et al.* A single-cell molecular map of mouse gastrulation and
839 early organogenesis. *Nature* (2019). doi:10.1038/s41586-019-0933-9

840 57. Marsh, B. & Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth
841 development. *Elife* **9**, 1–27 (2020).

842 58. Parr, B. A., Cornish, V. A., Cybulsky, M. I. & McMahon, A. P. Wnt7b regulates
843 placental development in mice. *Dev. Biol.* **237**, 324–332 (2001).

844 59. Yang, R. *et al.* Amnion signals are essential for mesoderm formation in
845 primates. *bioRxiv* 2020.05.28.118703 (2021). doi:10.1101/2020.05.28.118703

846 60. Tyser, R. C. V. *et al.* A spatially resolved single cell atlas of human gastrulation.
847 *bioRxiv* (2020). doi:10.1101/2020.07.21.213512

848 61. Schmidt, C. *et al.* Wnt 6 regulates the epithelialisation process of the segmental
849 plate mesoderm leading to somite formation. *Dev. Biol.* **271**, 198–209 (2004).

850 62. Krawetz, R. & Kelly, G. M. Wnt6 induces the specification and epithelialization
851 of F9 embryonal carcinoma cells to primitive endoderm. *Cell. Signal.* **20**, 506–
852 517 (2008).

853 63. Gurtner, G. C. *et al.* Targeted disruption of the murine VCAM1 gene: Essential
854 role of VCAM-1 in chorioallantoic fusion and placentation. *Genes Dev.* **9**, 1–14
855 (1995).

856 64. Yang, J. T., Rayburn, H. & Hynes, R. O. Cell adhesion events mediated by $\alpha 4$
857 integrins are essential in placental and cardiac development. *Development*
858 **121**, 549–560 (1995).

859 65. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
860 CellPhoneDB: inferring cell–cell communication from combined expression of
861 multi-subunit ligand–receptor complexes. *Nat. Protoc.* **15**, 1484–1506 (2020).

862 66. Vento-Tormo, R. *et al.* Single-cell reconstruction of the early maternal–fetal
863 interface in humans. *Nature* **563**, 347–353 (2018).

864 67. Suryawanshi, H. *et al.* A single-cell survey of the human first-trimester placenta
865 and decidua. *Sci. Adv.* **4**, 1–13 (2018).

866 68. Chen, B.-C. *et al.* Lattice light-sheet microscopy: imaging molecules to
867 embryos at high spatiotemporal resolution. *Science* **346**, 1257998 (2014).

868 69. Burdsal, C. A., Damsky, C. H. & Pedersen, R. A. The role of E-cadherin and

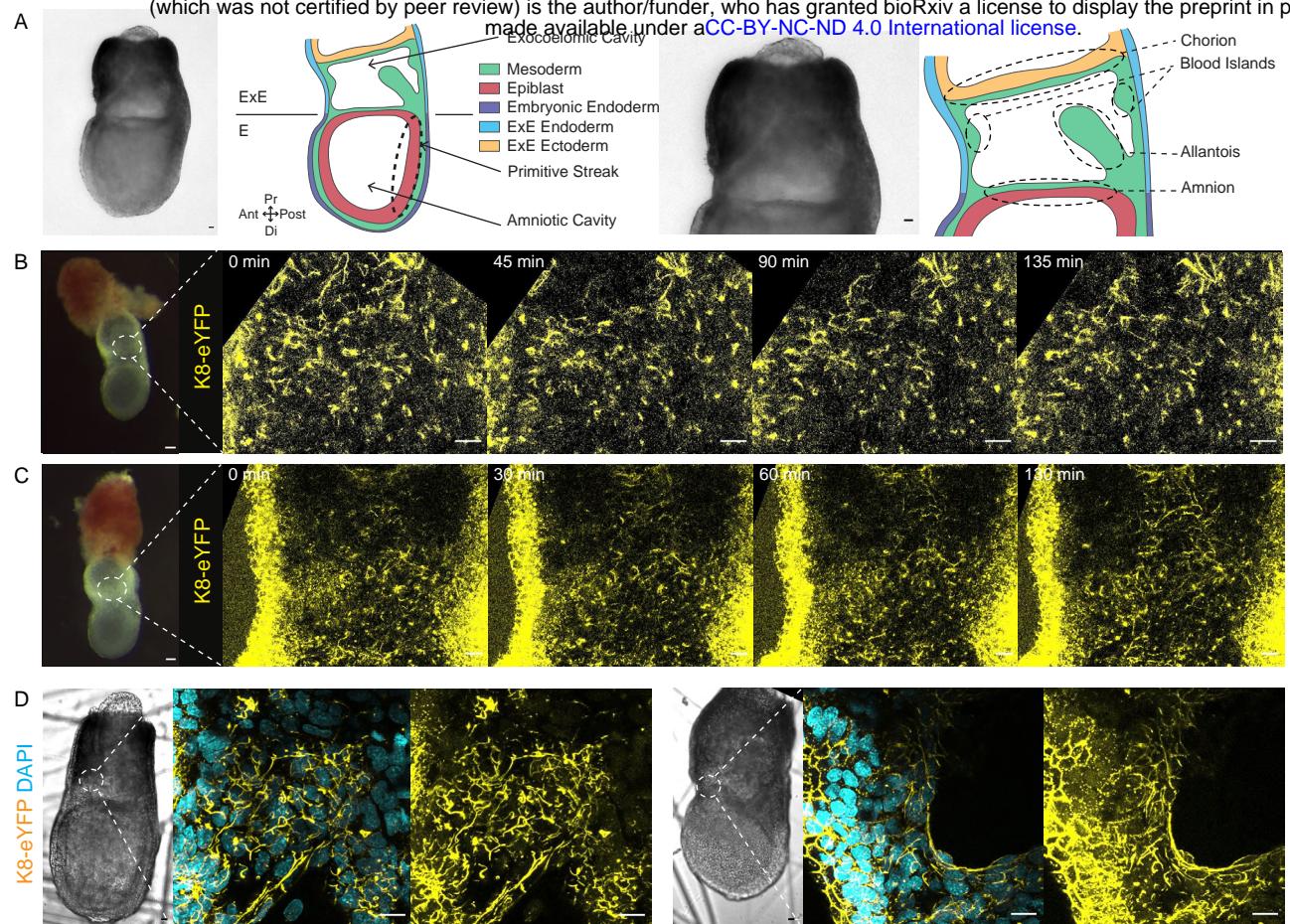
869 integrins in mesoderm differentiation and migration at the mammalian primitive
870 streak. *Development* **118**, 829–844 (1993).

871 70. Downs, K. M., Temkin, R., Gifford, S. & McHugh, J. Study of the murine
872 allantois by allantoic explants. *Dev. Biol.* **233**, 347–364 (2001).

873 71. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-
874 fluorescent Cre reporter mouse. *genesis* **45**, 593–605 (2007).

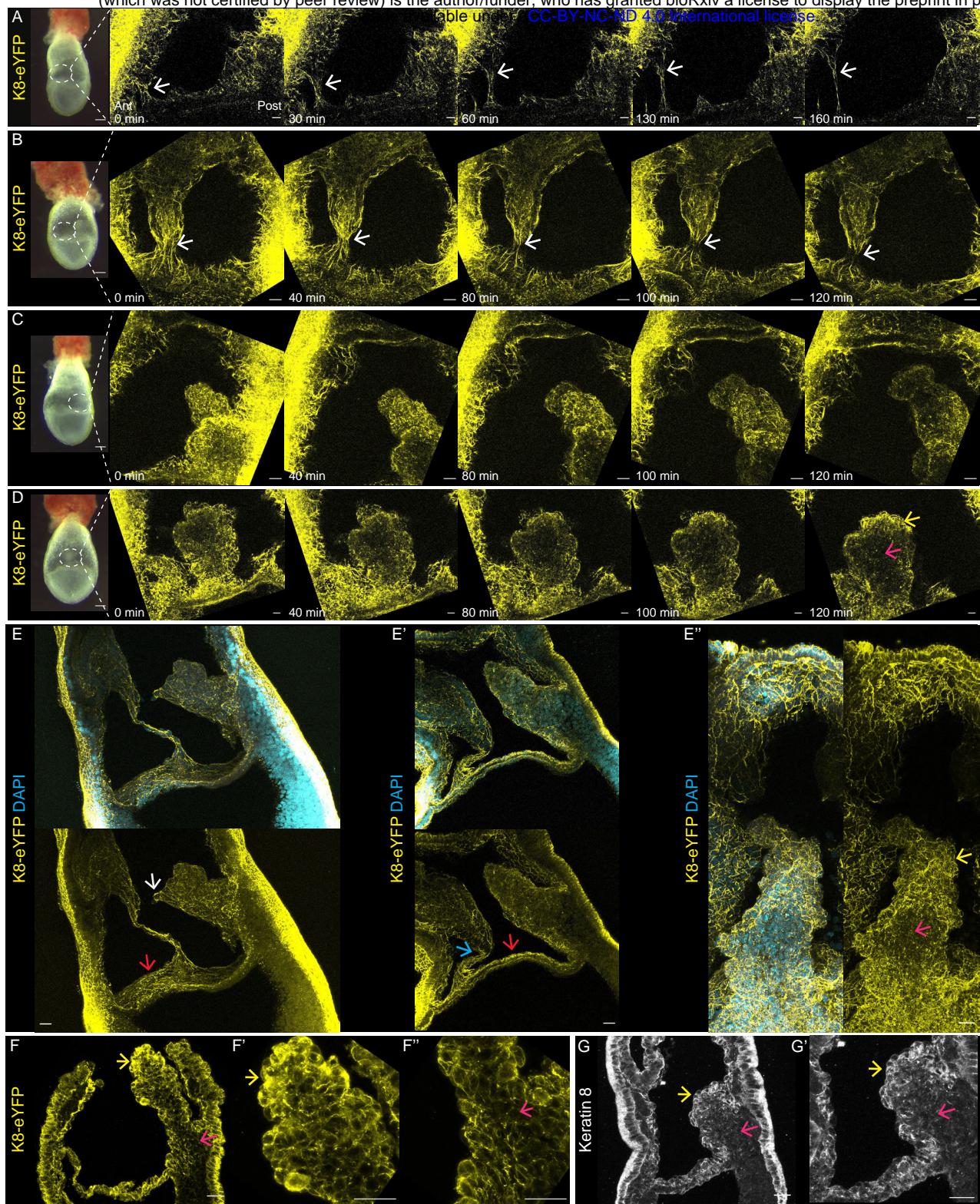
875 72. Feller, J., Schneider, A., Schuster-Gossler, K. & Gossler, A. Noncyclic Notch
876 activity in the presomitic mesoderm demonstrates uncoupling of somite
877 compartmentalization and boundary formation. *Genes Dev.* **22**, 2166–2171
878 (2008).

879 73. Srinivas, S., Rodriguez, T., Clements, M., Smith, J. C. & Beddington, R. S. P.
880 Active cell migration drives the unilateral movements of the anterior visceral
881 endoderm. *Development* **131**, 1157–1164 (2004).

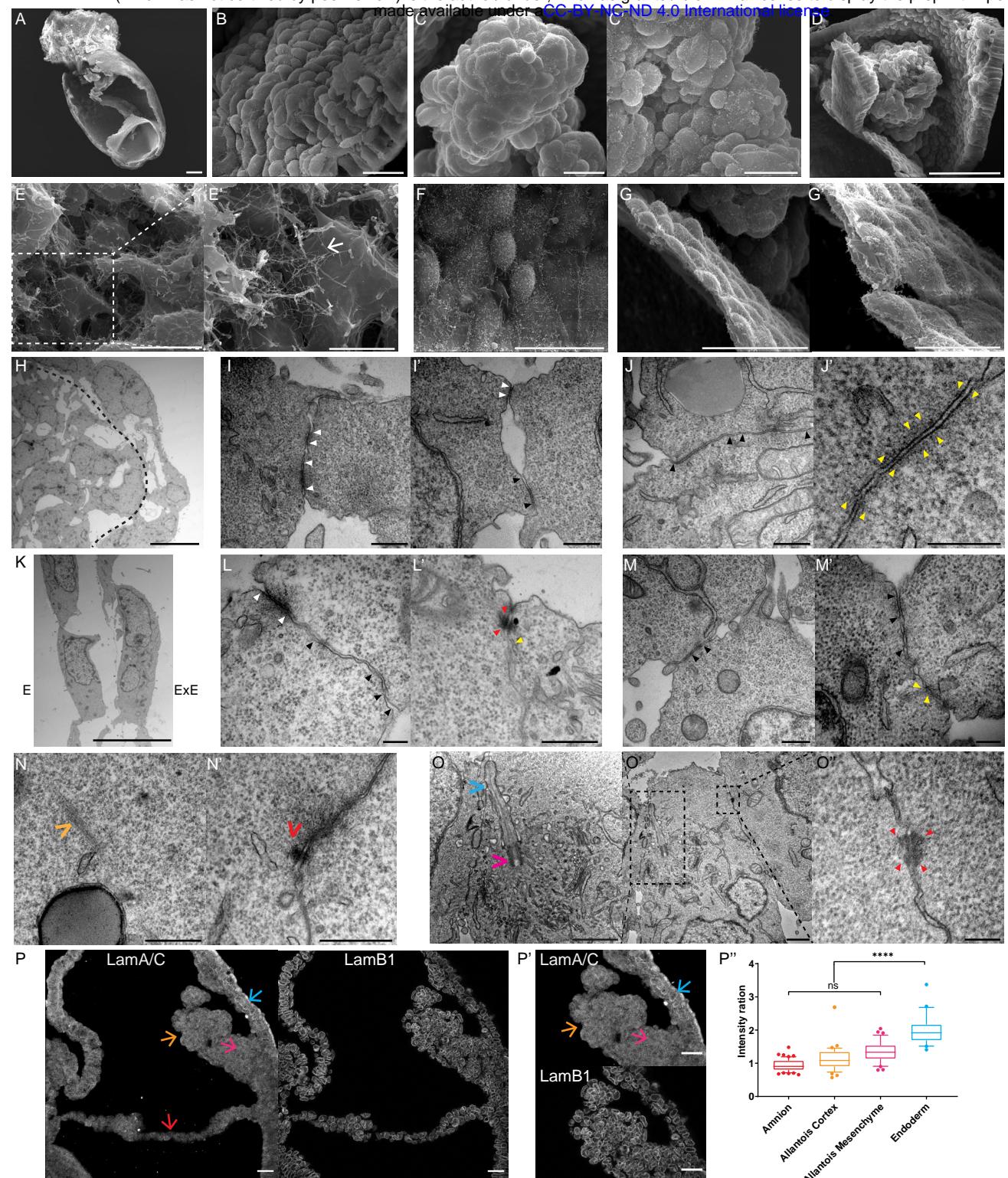

882 74. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
883 cell transcriptomic data across different conditions, technologies, and species.
884 *Nat. Biotechnol.* **36**, 411–420 (2018).

885 75. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA
886 velocity to transient cell states through dynamical modeling. *Nat. Biotechnol.*
887 **38**, 1408–1414 (2020).

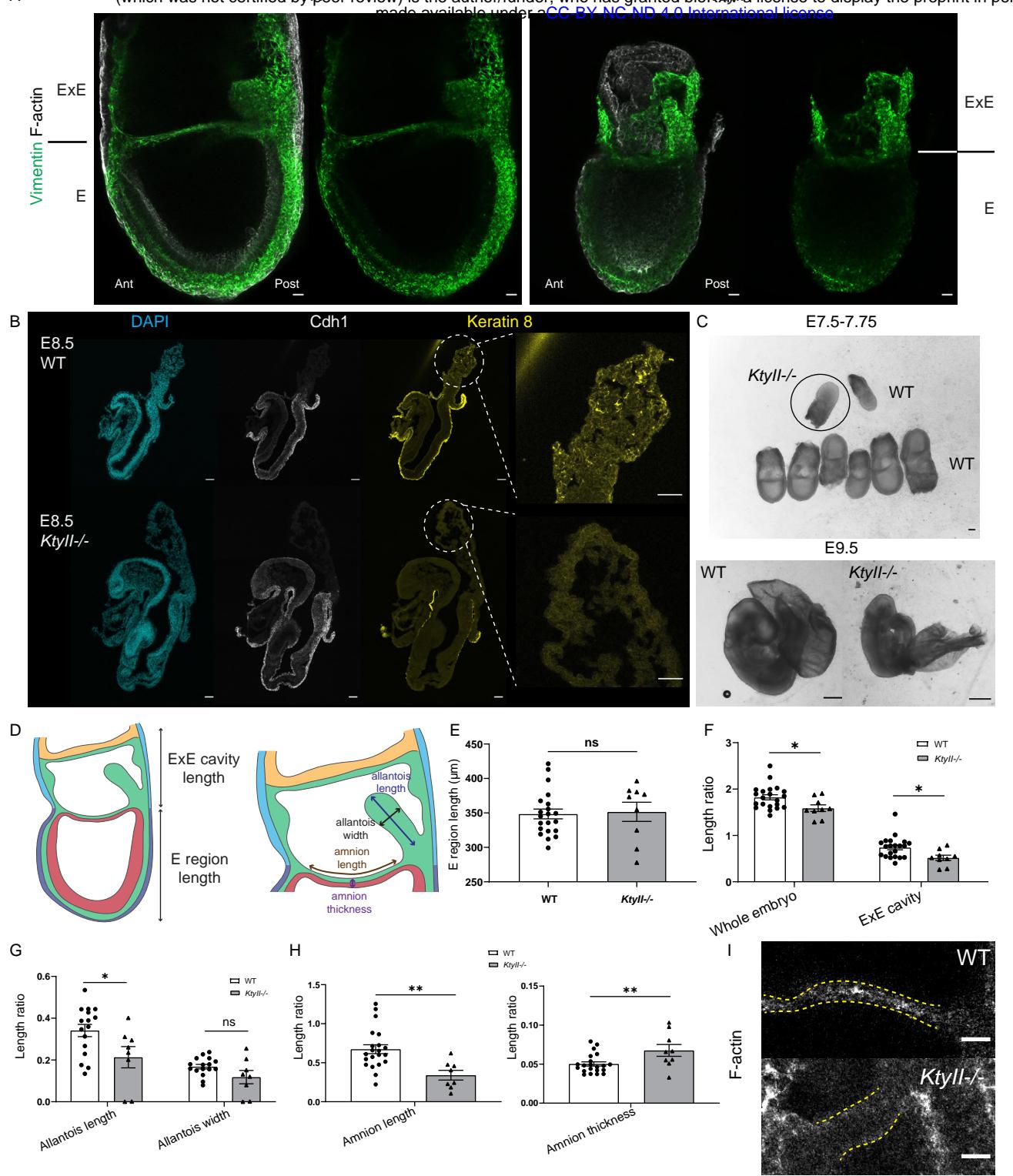
888 76. Smedley, D. *et al.* BioMart - Biological queries made easy. *BMC Genomics* **10**,
889 1–12 (2009).


890 77. de Chaumont, F. *et al.* Icy: an open bioimage informatics platform for extended
891 reproducible research. *Nat Meth* **9**, 690–696 (2012).

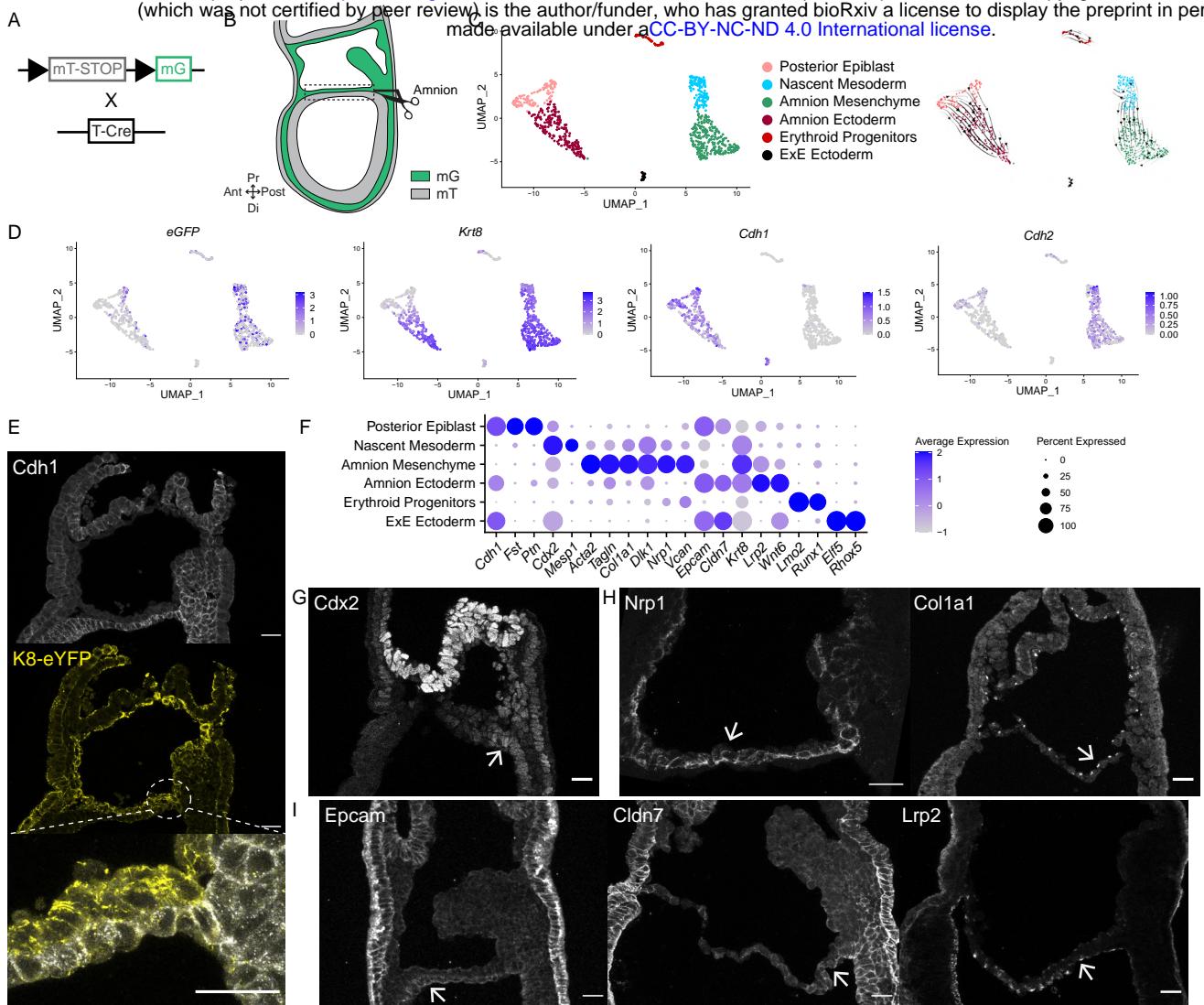
892


Figure 1: Nucleation of K8 filaments in E7.5 mouse embryo

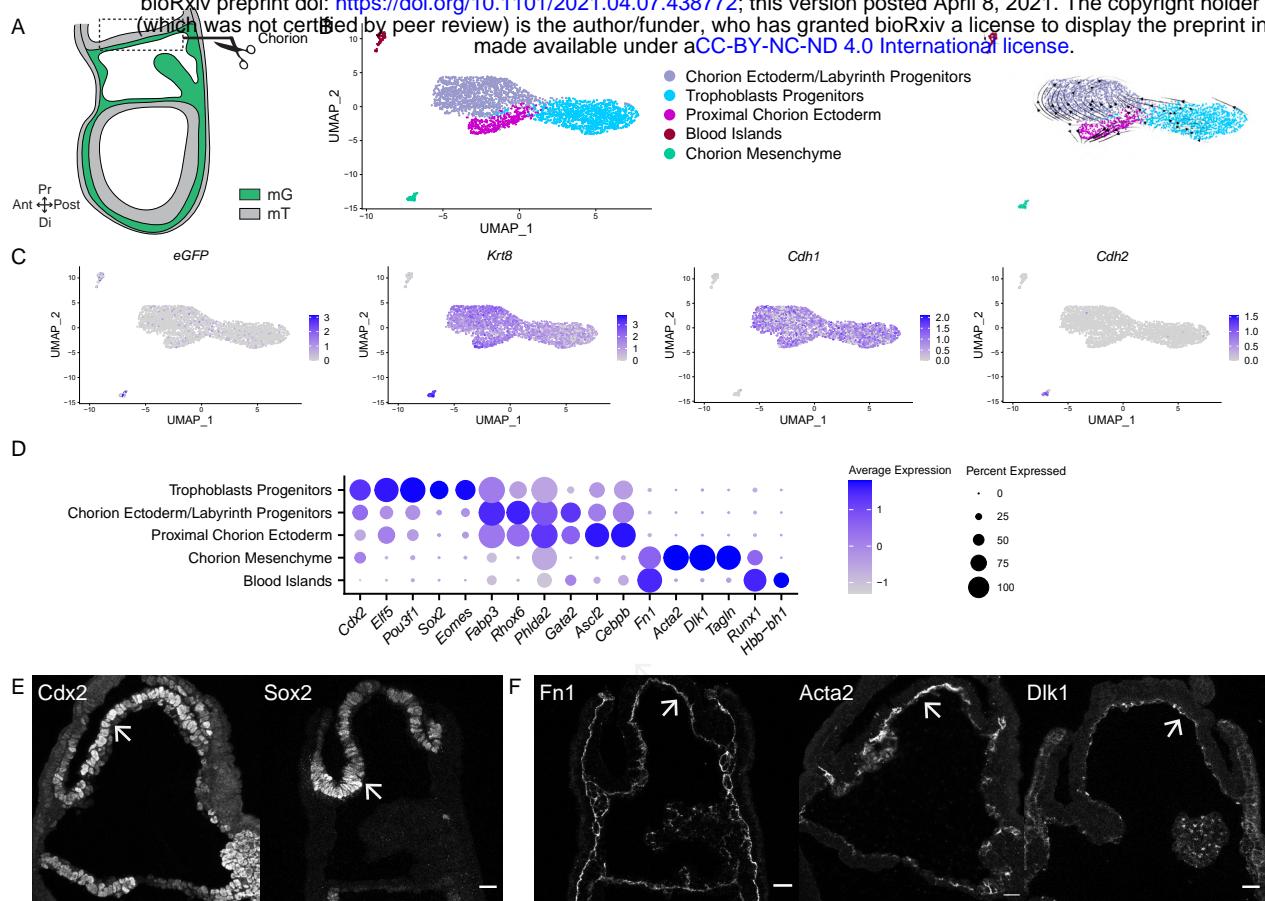
A. Bright-field picture and scheme of an E7.5 Late Bud (LB) embryo showing germ layers in Embryonic (E) and Extra-Embryonic (ExE) regions (Left). Zoom on ExE region with annotations of ExE structures (Right). B. Bright-field picture of a 0B K8-eYFP embryo (Left) and time series of two-photon live imaging of ExE region (Right) (n=9). C. Bright-field picture of EB K8-eYFP embryo (Left) and time series of two-photon live imaging of ExE region (Right) (n=8). D. Bright-field pictures of K8-eYFP LB embryos (n=30), and high magnification spectral acquisition of areas of ExE mesoderm corresponding to dashed white areas. K8-eYFP and DAPI appear in yellow and cyan, respectively. Scale bars represent 25 μ m, except for bright-field pictures in B-C where scale bars show 50 μ m.


Figure 2: K8 filaments extend in ExE region

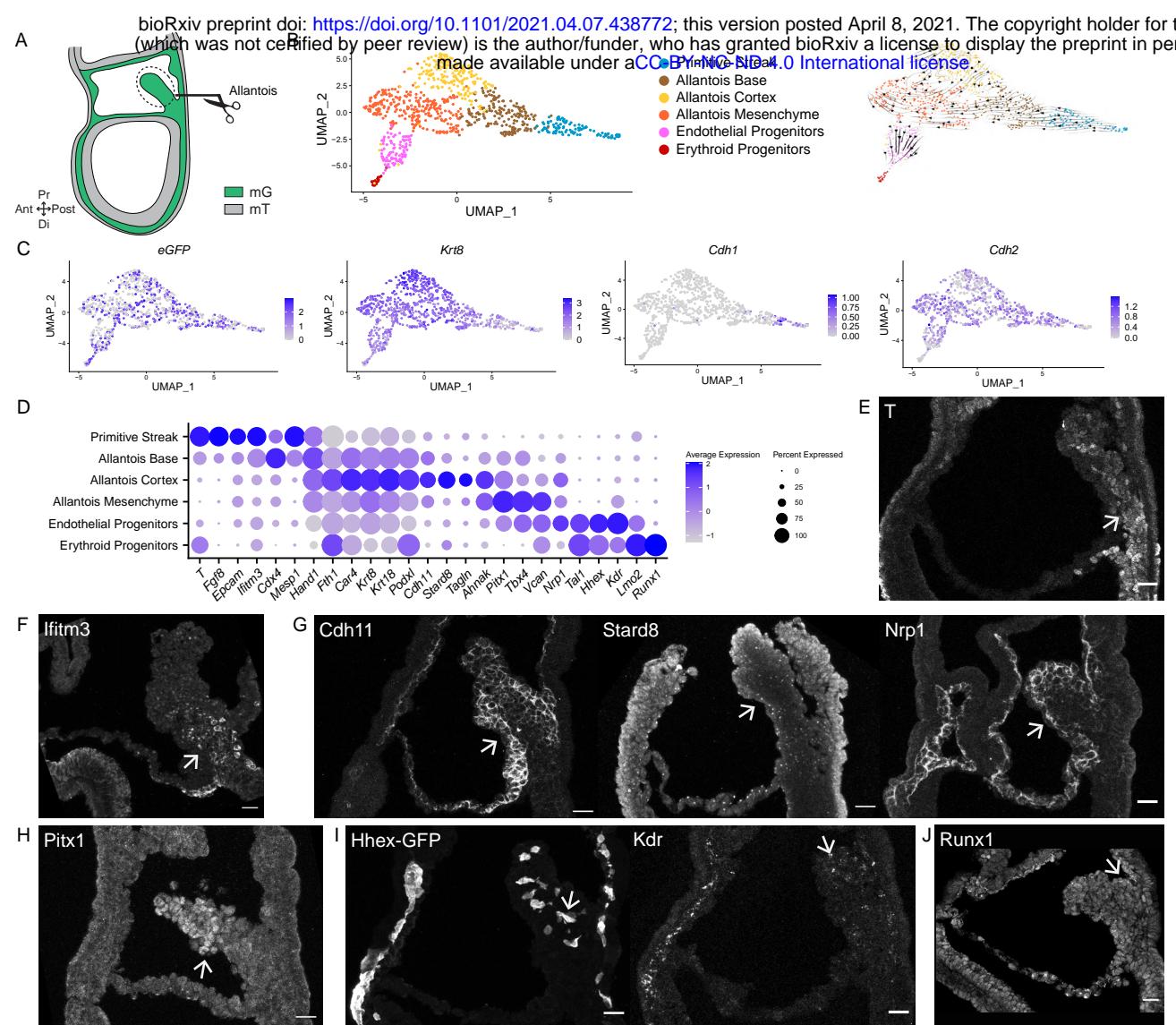
A-D. Bright-field pictures of K8-eYFP (Left) and Z-projections of time series (Right) of live LB K8-eYFP embryos imaged using two-photon laser with time intervals between 20 and 30 min focusing on regions corresponding to dashed white areas. A. Lateral view showing extension of K8 containing cables (white arrows) attached to amnion and ExE wall (n=10). B. Anterior view showing chorion retraction at the Anterior Separation Point (white arrows) (n=6). C. Lateral and D. Posterior views showing allantois growth over time (n=12 and 3). Allantois cortex and mesenchyme are indicated with yellow and magenta arrows, respectively. E. Spectral images at high magnification of ExE region from fixed K8-eYFP LB/NP embryos (n=20). E: lateral view where white and red arrows point to allantois edge and amnion. E': lateral view where blue and red arrows show Anterior Separation Point and amnion. E'': posterior view focused on allantois where yellow and magenta arrows indicate allantois cortex and mesenchyme. K8-eYFP and DAPI appear in yellow and cyan. F. Immunostaining on sagittal section (anterior to the left) of a LB K8-eYFP embryo (n=20) with anti-eGFP antibody (yellow) focusing on the ExE region (F); higher magnification images of allantois edge (F', yellow arrow) and base (F'', magenta arrow). G-G''. Immunostaining on sagittal section of a LB wild-type embryo (n=32) with anti-Krt8 antibody (white) (G); higher magnification acquisition centred on allantois (G') where yellow and magenta arrows indicate allantois cortex and mesenchyme. Scale bars represent 25 μ m, except for bright-field pictures in A-D where scale bars show 100 μ m.


Figure 3: Electron microscopy of the ExE region at LB/NP stage.

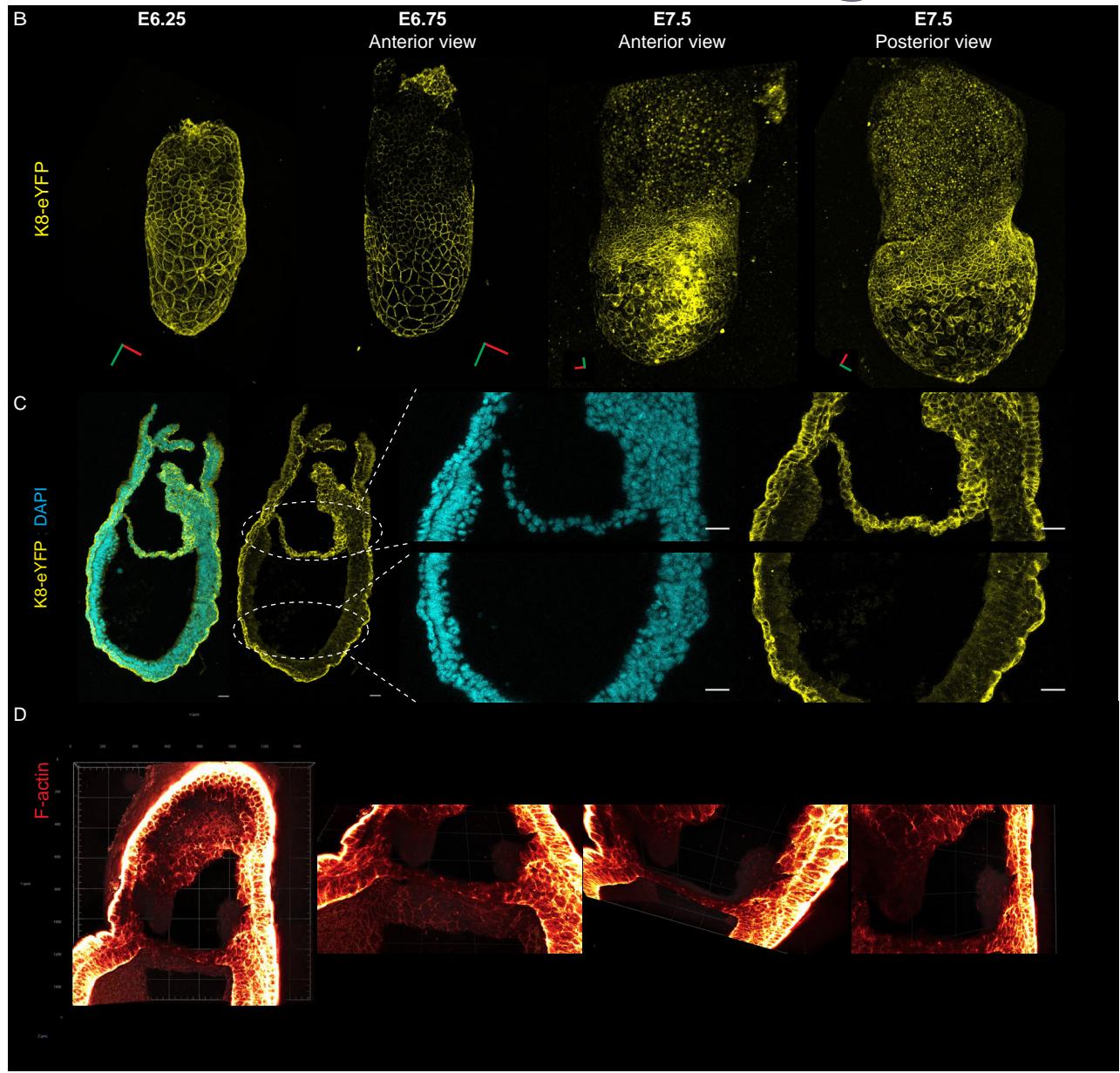
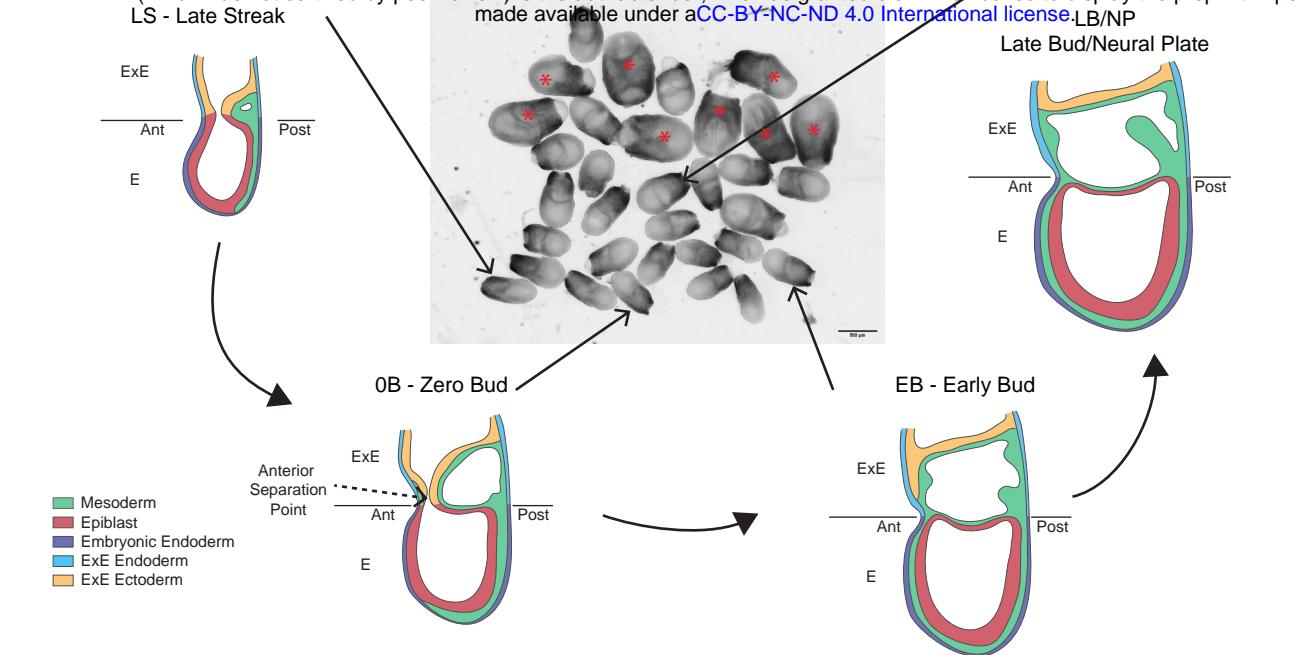
A-H. SEM images of an opened embryo (A), the ExE cavity wall (B), the allantois surface (C-C'), an opened allantois (D) and its zooms (E-E') where filaments are indicated by white arrows, the epiblast-derived side of the amnion (F), the mesoderm-derived side of the amnion (G) and its zoom (G'). H-O. TEM pictures in allantois (H-J), amnion (K-M), chorion (N) and allantois base (O). In H, allantois mesenchyme (Left) and cortex (Right) are separated by a black dashed line. I-J. Junctions in internal (I-I') and external (J-J') allantois cells. In K, the embryonic side of the amnion is on the left, and the ExE side on the right. L-M. Junctions in the epiblast-derived side (L-L') and the mesoderm-derived side (M-M') of the amnion. White and black dashed rectangles represent zoomed regions. Arrowheads point towards tight junctions (white), adherent junctions (black), desmosome-like junctions (red), and filaments (yellow). In chorion, the orange arrow indicates intermediate filaments (N) and the red arrow a desmosome (N'). In O, axonem (cyan arrow) and basal body (magenta arrow) are annotated. Scale bars represent 100 μ m (A, D), 50 μ m (G), 25 μ m (B, C, E, F), 20 μ m (G') 10 μ m (H, K, P), 5 μ m (E'), 1 μ m (O, O'), 500 nm (I, J, L', M, N), and 200 nm (J', L, M', O'). P. Sagittal sections of a NP embryo immunostained for LamA/C and LamB1 (P-P'). Quantification (P'') of the ratio of LamA/C over LamB1 signal intensity in amnion (red), allantois cortex (yellow), allantois mesenchyme (magenta), and visceral endoderm (cyan) (P') (n=6 embryos). Boxes extend from the 25th to 75th percentiles, and whiskers are drawn down to the 10th percentile and up to the 90th. Points below and above the whiskers are indicated as individual points. Scale bars represent 25 μ m. P-values were calculated using the Mann-Whitney-Wilcoxon test.


Figure 4: Loss of keratin results in defective ExE region morphogenesis

A. Z-projections of whole-mount wild-type (WT, Left) and Ktyll-/- (Right) embryos at LB stage stained for vimentin (green) and F-actin (Phalloidin, white). B. Sagittal sections of wild-type (WT, n=6) and Ktyll-/- (n=2) E8.5 embryos stained for nuclei (DAPI, cyan), Cdh1 (white) and Krt8 (yellow). There is some non-specific staining on the section edges but none in allantois (zoom). C. Bright-field images of E7.5-7.75 LB litter (top) and E9.5 (bottom) WT (left) and Ktyll-/- (right) embryos. Scale bars represent 100 μm. E. Scheme for measurements. E-H. Quantification of embryo morphology in wild-type (white boxes/ black dots, n=22 including 16 in which allantois could be measured) and Ktyll-/- embryos (grey boxes/ black triangles, n=9 including 8 in which allantois could be measured) at LB stage. (E) Embryonic region length. Ratios of whole embryo and ExE cavity lengths (F), allantois length and width (G) and amnion length and thickness (H), over embryonic region length. P-values were calculated using the Mann-Whitney-Wilcoxon test. Error bars represent SD. I. Z-projections of wild-type (Top) and Ktyll-/- (Bottom) embryos at LB stage stained for F-actin (Phalloidin, white). Amnion is delimited by yellow dashed lines. Scale bars represent 25 μm.

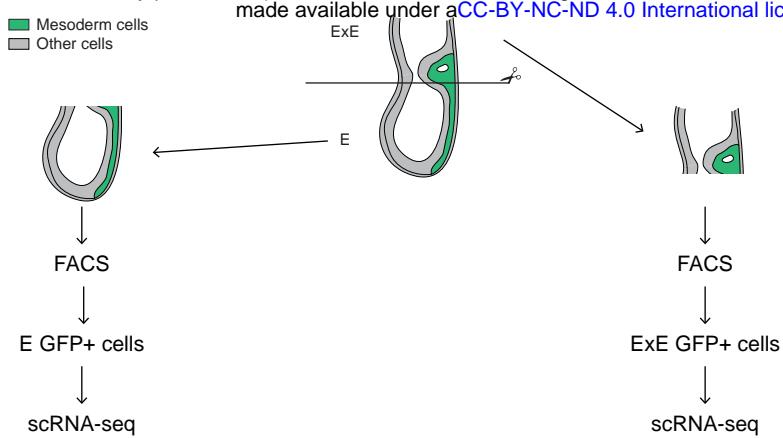

Figure 5: Amnion single cell transcriptome

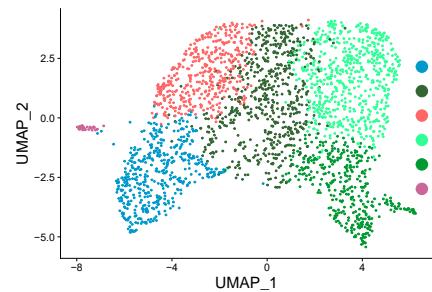
A. In Brachyury (T)-Cre; mTmG embryos, mesoderm-derived cells express membrane eGFP (mG, green) and the other cells membrane tdTomato (mT, grey). B. Scheme of amnion isolation. C. Uniform Manifold Approximation and Projection (UMAP) (Left, color-coded) and RNA velocity (Right, black arrows show streaming directions from unspliced to spliced RNA) of amnion cells where 6 unsupervised clusters were identified. D. UMAP of eGFP, Krt-8, Cdh1 and Cdh2. E. EB K8-eYFP embryo stained for eYFP (yellow) and Cdh1 (white) ($n=7$). Dashed white area zoom on an amnion region which highlights the two cell layers (Bottom). F. Dot plot of specific gene expression in amnion clusters. G. Immunostaining for Cdx2 ($n=20$). H. Immunostaining for Nrp1 ($n=8$) and Col1a1 ($n=7$), primarily expressed in Amnion Mesenchyme. I. Immunostaining for Epcam ($n=12$), Cldn7 ($n=7$), and Lrp2 ($n=6$), primarily expressed in Amnion Ectoderm. White arrows point toward signal in amnion. In (E) and (G-I), sagittal sections with anterior to the left. Scale bars represent 25 μ m.



Figure 6: Chorion single cell transcriptome

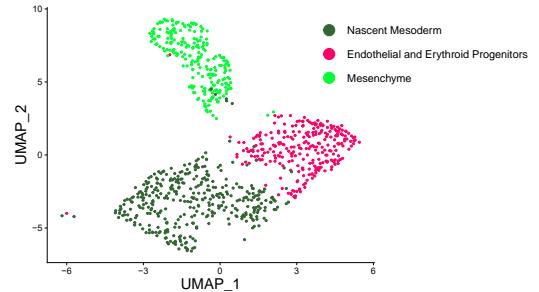
A. Scheme of chorion isolation where mesoderm is in green (mG) and the other cells are in grey (mT). B. UMAP (Left) and RNA velocity (Right) of chorion cells where 5 unsupervised clusters were identified. C. UMAP of eGFP, Krt-8, Cdh1 and Cdh2. D. Dot plot of specific gene expression in chorion clusters. E. Immunostaining for Cdx2 (n=20), Sox2 (n=10), primarily expressed in Trophoblasts Progenitors. F. Immunostaining for Fn1 (n=22), Acta2 (n=12), and Dlk1 (n=8), primarily expressed in Chorion Mesenchyme. White arrows point toward signal in chorion. Sagittal sections with anterior to the left. Scale bars represent 25 μ m.

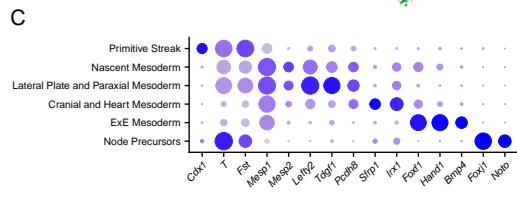
Figure 7: Allantois single cell transcriptome

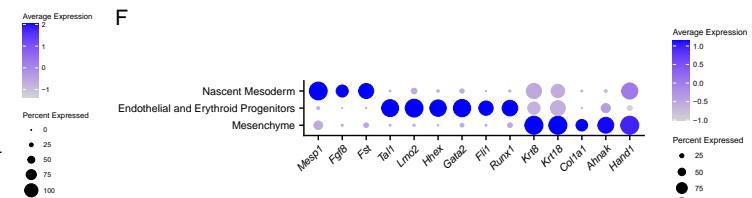

A. Scheme of allantois isolation where mesoderm is in green (mG) and the other cells are in grey (mT). B. UMAP (Left) and RNA velocity (Right) of allantois cells where 6 unsupervised clusters were identified. C. UMAP of eGFP, Krt-8, Cdh1, and Cdh2. D. Dot plot of specific gene expression in allantois clusters. E. Immunostaining for T (n=5) (Primitive Streak and Allantois Base). F. Immunostaining for Ifitm3 (n=7) (Allantois Base). G. Immunostaining for Cdh11 (n=9), Stard8 (n=4) and Nrp1 (n=8) (Allantois Cortex). H. Immunostaining for Pitx1 (n=4) (Allantois Mesenchyme). I. Hhex-GFP (n=5) and immunostaining for Kdr (n=8) (Endothelial Progenitors). White arrows point toward signal in allantois. Sagittal sections with anterior to the left. Scale bars represent 25 μ m.

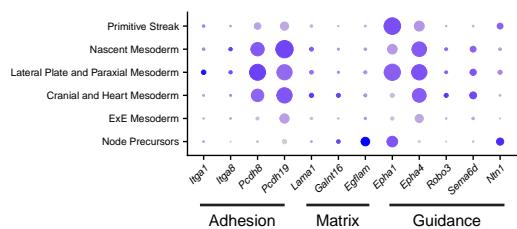

Supplementary Figure 1-related to Figures 1 and 2: Embryo staging and cytoskeletal markers

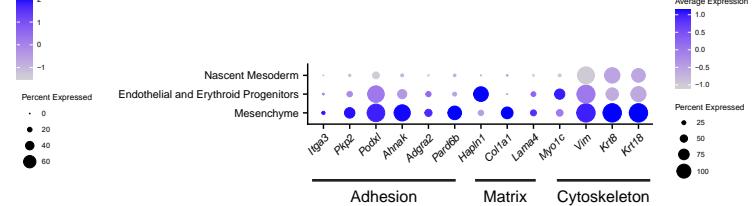
Classification of embryos as Late Streak (LS), Zero Bud (0B), Early Bud (EB), and Late Bud/Neural Plate (LB/NP) stages based on bright-field image of two litters dissected at late E7.5. Head fold stage embryos (red stars) were not used. B. 3D reconstructions from two-photon stacks of fixed K8-eYFP embryo dissected at E6.25, E6.75, E7.5 showing visceral endoderm labelling. Green and red bars represent 40 μ m in the X and Y axis, respectively. C. Z-projections of sagittal sections from a LB K8-eYFP embryo (n=30) with zooms on embryonic (Bottom) and ExE (Top) regions showing expression in endoderm as well as ExE ectoderm and mesoderm. K8-eYFP and DAPI appear in yellow and cyan. Scale bars represent 25 μ m. D. 3D reconstructions of whole-mount LB embryo stained for F-actin (Phalloidin, red). Grid squares represents 200 μ m.


A

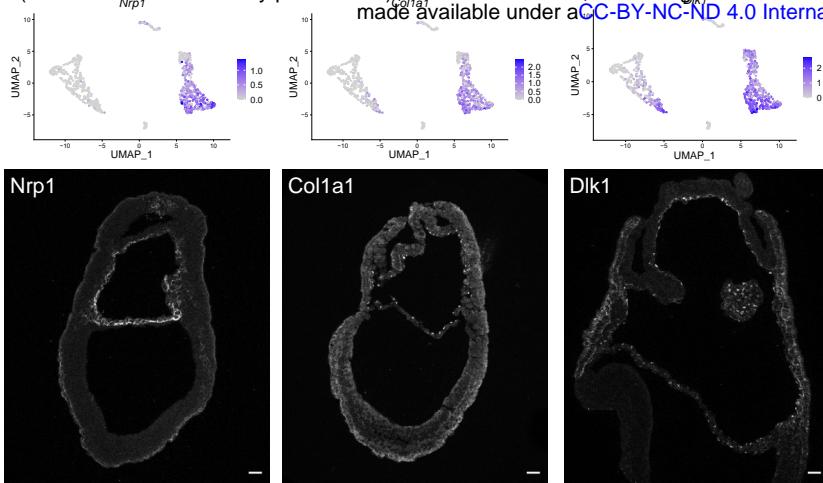

B

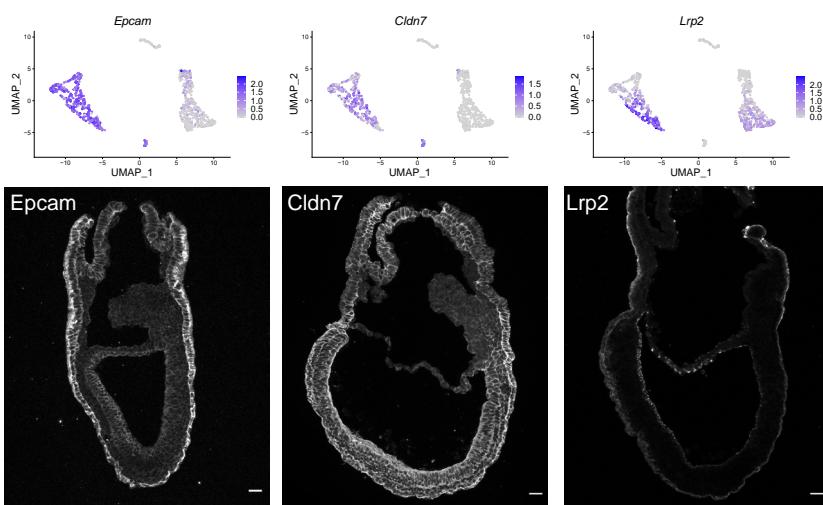

E


C

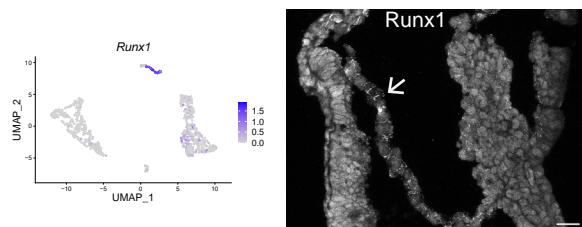

F

D

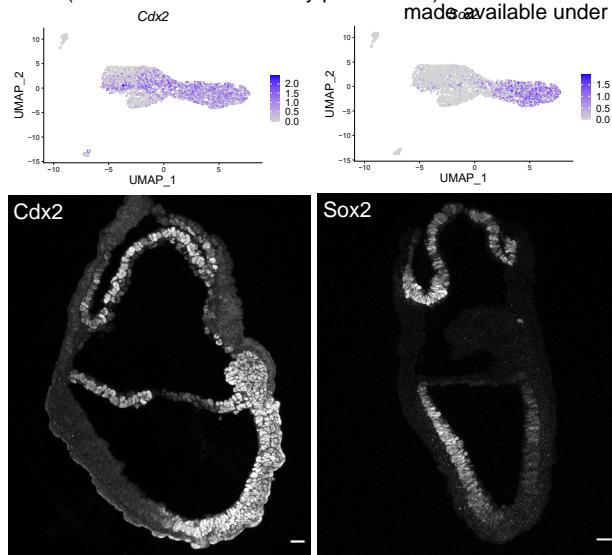

G

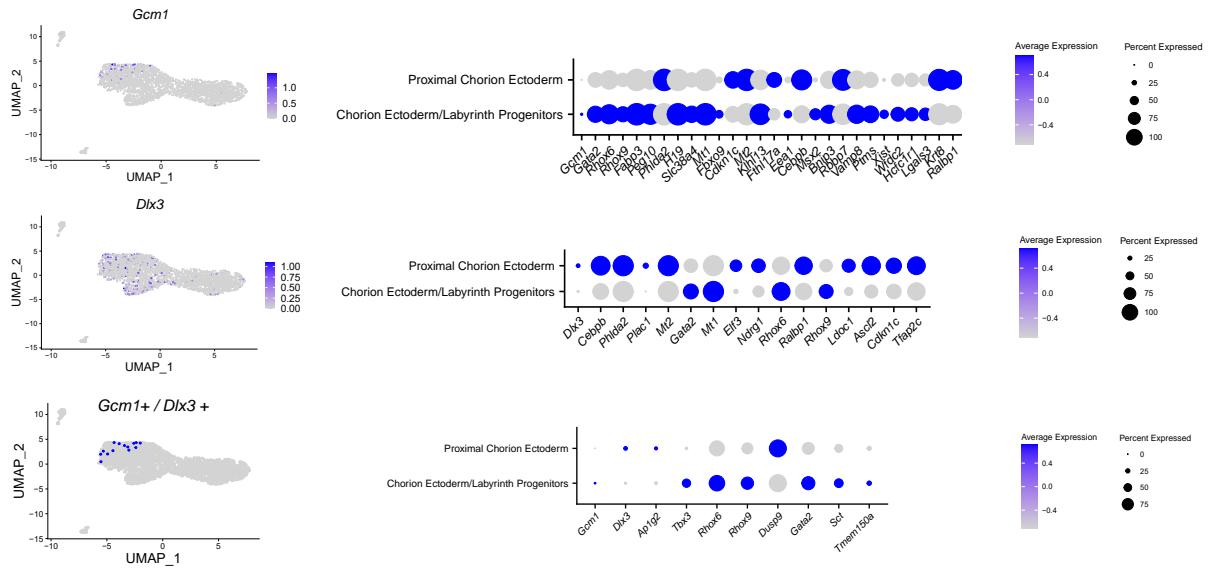

Supplementary Figure 2-related to Figure 5: Embryonic and ExE mesoderm single cell transcriptome

A. Strategy for isolation of mesoderm cells from M/LS mTmG; T-Cre embryos. Embryos were cut manually at the embryonic/ExE border and GFP positive cells were sorted by flow cytometry. B. UMAP (Top) and RNA velocity (Bottom) of embryonic mesoderm cells where 6 unsupervised clusters were identified. C. Dot plot of specific gene expression in clusters in E region. D. Dot plot of genes previously found to have higher expression in embryonic, compared to ExE, mesoderm with roles in adhesion (Itga1, Itga8, Pcdh9, Pcdh19), matrix (Lama1, Galnt16, Egflam), and guidance (Epham, Ephb1, Ephb4, Robo3, Sema6d, Ntn1). E. UMAP (Top) and RNA velocity (Bottom) of ExE mesoderm cells where 3 unsupervised clusters were identified. F. Dot plot of specific gene expression in clusters in ExE region. G. Dot plot of genes previously found to have higher expression in ExE, compared to embryonic, mesoderm with roles in adhesion (Itga3, Pkp2, Podxl, Ahnak, Pard6b), matrix (Hapl1, Col1a1, Lama4), and cytoskeleton (Myoc1c, Vim, Krt8, Krt18).

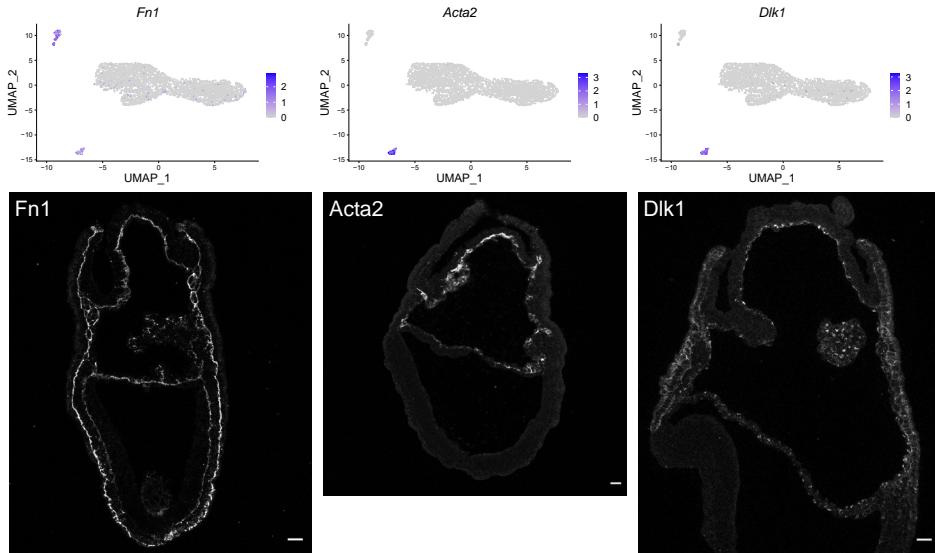

A

B

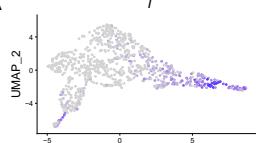

C

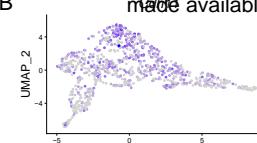

Supplementary Figure 3-related to Figure 5: Amnion populations

A-C. UMAP and immunostaining for selected markers representing distinct clusters: Amnion Mesenchyme (A), Amnion Ectoderm (B), Erythroid Progenitors (C). Scale bars represent 25 μ m.

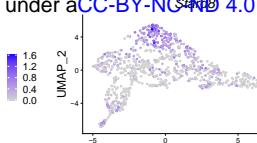

A

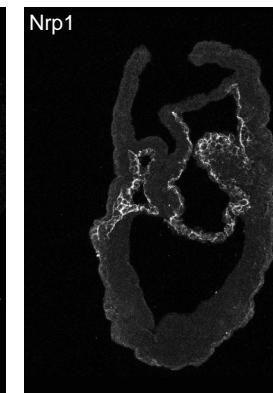
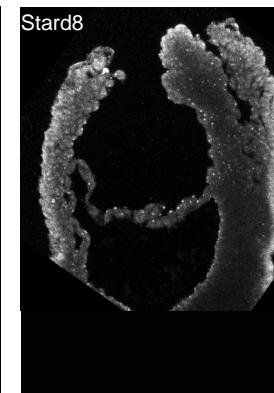
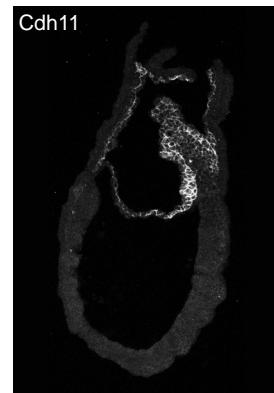
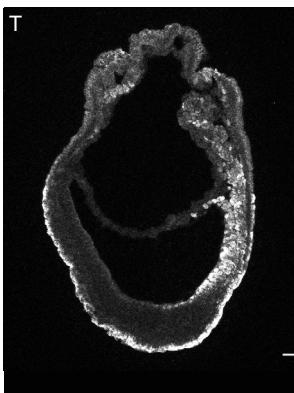
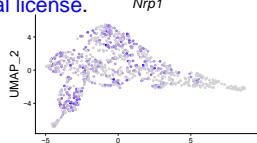
B


C

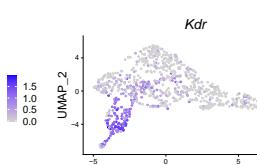
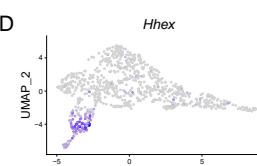

Supplementary Figure 4-related to Figure 6: Chorion populations

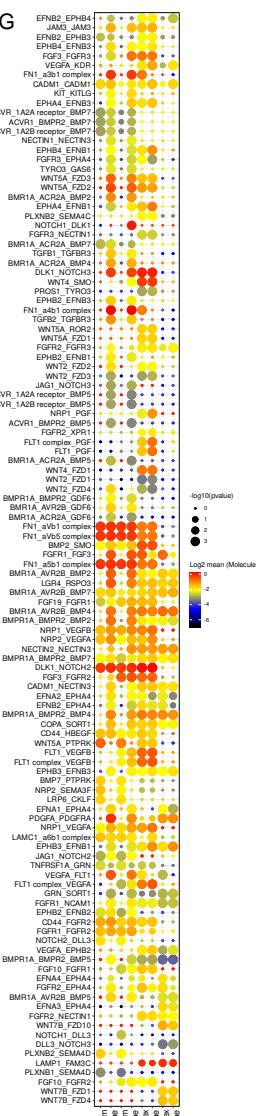
A, C. UMAP and immunostaining for selected markers representing distinct clusters: Chorion Ectoderm / Labyrinth Progenitors and Trophoblasts Progenitors (A), Chorion Mesenchyme (C). B. UMAP (Left) and Dot plot of genes differentially expressed (Right) in *Gcm1+* (Top, n=74), *Dlx3+* (Middle, n=219), and *Dlx3+/Gcm1+* (Bottom, n=14) cells.

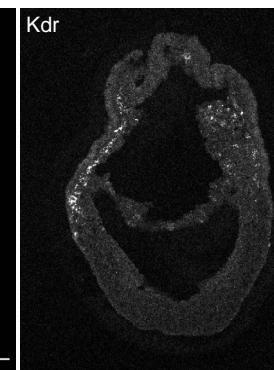
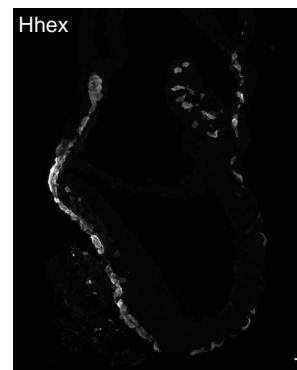
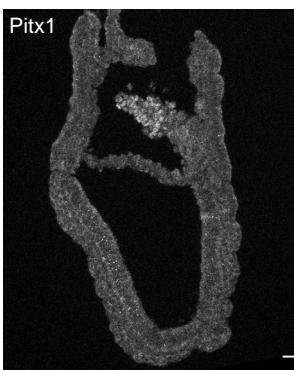

A

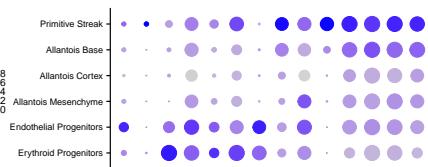
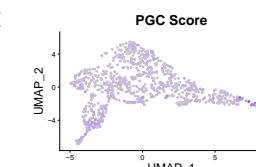





B

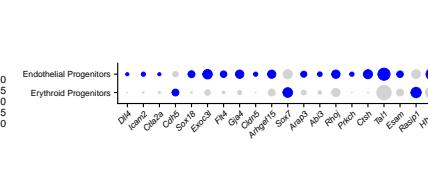
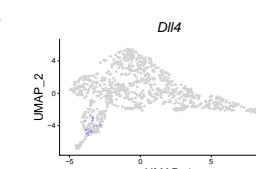
C



D


C




D



G



Pitx1

E

F

Supplementary Figure 5-related to Figure 7: Allantois populations

A-D. UMAP and immunostaining for selected markers representing distinct clusters: Primitive Streak (A), Allantois Cortex (B), Allantois Mesenchyme (C), and Endothelial Progenitors (D). Scale bars represent 25 μ m. E. UMAP of Primordial Germ Cells (PGC) score (composed of Nanog, Tfap2c, Dppa3, Sox17, Prdm1 and Nanos3) (Left) and Dot plot (Right) of genes differentially expressed in PGC. F. UMAP of DII4 (left) and Dot plot (right) of genes differentially expressed in DII4 positive cells among endothelial and erythroid progenitors. G. CellPhoneDB analysis revealing potential ligand-receptor pairs between chorion and allantois. Each dot's colour intensity represents \log_2 of mean expression of ligand-receptor pair between the two cell types, while size of the dots indicates log of p-value. The order of interaction pair annotations is considered with respect to expression in the corresponding cell cluster. A-B pair in the vertical axis indicates interaction between clusters X|Y: the expression of partner A is considered within the first cell type (X), and the expression of partner B within the second cell type (Y). In case of more than two interaction pairs, the first two partners are considered within the first cell cluster, and the third partner within the second cell cluster.

Allantois mesenchyme/Chorion ectoderm
Allantois mesenchyme/Chorion mesoderm
Allantois mesenchyme/Chorion ectoderm
Allantois mesenchyme/Chorion mesoderm
Chorion ectoderm/Allantois mesoderm
Chorion ectoderm/Allantois mesoderm