

The Evolutionary History of Wild, Domesticated, and Feral *Brassica oleracea* (Brassicaceae)

Makenzie E. Mabry¹, Sarah D. Turner-Hissong², Evan Y. Gallagher¹, Alex C. McAlvay³, Hong An¹,
Patrick P. Edger⁴, Jonathan D. Moore⁵, David A. C. Pink⁶, Graham R. Teakle⁷, Chris J. Stevens^{8,9},
Guy Barker⁷, Joanne Labate¹⁰, Dorian Q. Fuller^{9,11,12}, Robin G. Allaby⁷, Timothy Beissinger¹³,
Jared E. Decker¹⁴, Michael A. Gore¹⁵, & J. Chris Pires¹

¹Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, U.S.A.

²Department of Plant Biology, University of California Davis, Davis, CA, U.S.A.

³Institute of Economic Botany, The New York Botanical Garden, Bronx, NY, U.S.A.

⁴Department of Horticulture, Michigan State University, MI, USA

⁵Systems Biology Centre, University of Warwick, UK

⁶Agriculture and Environment Department, Harper Adams University, UK

⁷School of Life Science, University of Warwick, UK

⁸School of Archaeology and Museology, Peking University, Beijing, China

⁹Institute of Archaeology, University College London, London, UK

¹⁰USDA, ARS Plant Genetic Resources Unit, Cornell AgriTech, Geneva, NY USA

¹¹School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, China

¹²Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany

¹³Division of Plant Breeding Methodology, Department of Crop Sciences, University of Goettingen, Goettingen, Germany

¹⁴Division of Animal Sciences, University of Missouri, Columbia, USA.

¹⁵Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A.

CORRESPONDING AUTHORS

Makenzie E. Mabry; Email: mmabry44@gmail.com

J. Chris Pires; Email: piresjc@missouri.edu

1 **ABSTRACT**

2 Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide
3 insight for designing new approaches in crop breeding efforts. Cultivated *Brassica oleracea* has intrigued
4 researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower,
5 kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied.
6 With such different vegetables produced from a single species, *B. oleracea* is a model organism for
7 understanding the power of artificial selection. Persistent challenges in the study of *B. oleracea* include
8 conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using a
9 diversity panel of 224 accessions, which represents 14 different *B. oleracea* crop types and nine potential
10 wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche
11 modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives
12 to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic *B.*
13 *cretica* as the closest living relative of cultivated *B. oleracea*, supporting an origin of cultivation in the
14 Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated
15 plants of this species are able to revert to a wild-like state with relative ease. By expanding our
16 understanding of the evolutionary history in *B. oleracea*, these results contribute to a growing body of
17 knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to
18 changing environmental conditions.

19
20 **KEYWORDS** cabbage, domestication, crop wild relatives, Mediterranean, origin, ecological niche
21

22 **INTRODUCTION**

23 “Greek legend has it that the cabbage sprung from where Zeus' sweat hit the ground.”

24 -N. D. Mitchell (1976)

25
26 A key tenet of evolutionary and plant biology is understanding how plants respond and adapt to changes in
27 environmental conditions, which requires leveraging genotypic diversity and understanding the connections
28 between genotype and phenotype. Crop wild relatives (CWRs) provide pools of allelic diversity that at one
29 time were shared through a common ancestor with cultivated relatives. Although Vavilov recognized the
30 potential of CWRs in the early 1900s (Vavilov 1926), advances in genomics and genome editing techniques
31 have enabled scientists to better realize the potential of CWRs as a source of diversity and novel traits for
32 the improvement of cultivated populations (Prohens et al. 2017; Li et al. 2018; Fernie and Yan 2019;
33 Khouri et al. 2020; Turner-Hissong et al. 2020). Yet these scientific advancements are hindered in that we
34 still have not identified the CWRs of many important crop species. One such species, *Brassica oleracea* L.,
35 has an unclear evolutionary history due to taxonomic confusion and the lack of genetic and archaeological
36 evidence.

37
38 The horticultural crop *B. oleracea* has played an important role in global food systems for centuries,
39 providing a source of leaf and root vegetables, fodder, and forage (Shyam et al. 2012). When first introduced
40 to the species, Darwin drew many parallels between his theory of natural selection and the cultivation
41 practices that led to the varied forms of this plant (Darwin and Gray 1868). While many people may
42 recognize that various dog breeds are descended from wolves, most people are surprised to learn that the
43 domesticated forms of *B. oleracea*, broccoli (var. *italica*), Brussels sprouts (var. *gemmifera*), cabbage (var.
44 *capitata*), cauliflower (var. *botrytis*), kale (var. *acephala*), and kohlrabi (var. *gongylodes*) are the same

1 species. Although just six major crop types comprise the majority of the U.S. market (Agricultural
2 Marketing Service, Market News Reports; www.ams.usda.gov), the global market for *B. oleracea* crops
3 was around 70.1 million metric tons, in terms of production for 2019 (The Food and Agriculture
4 Organization; www.fao.org). Outside these six major cultivars there exists at least 12 additional cultivated
5 crop types (*SI Appendix, Table S1*). These include lesser known varieties such as Chinese white kale or
6 Cantonese gai-lan (Mandarian Mandarin *Jiè lán* 芥蓝; *var. alboglabra*), a leafy vegetable with florets,
7 romanesco (*var. botrytis*) with unique fractal patterned curds, and walking stick kale (*var. longata*), which
8 grows 6-12 feet in height.
9

10 Compared to other crops, surprisingly little is known about the progenitor species and origin of
11 domesticated *B. oleracea*. Primary challenges in identifying the progenitor species include the number of
12 wild species that share a single cytodeeme and are interfertile with *B. oleracea* ($2n = 18$ chromosomes;
13 similar genomic organization; referred to as the “C genome”), the corresponding confusion surrounding
14 taxonomic relationships, and conflicting evidence regarding the center of origin. Wild relatives that share
15 the C genome with domesticated *B. oleracea* include *Brassica bourgeaui*, *Brassica cretica*, *Brassica*
16 *hilarionis*, *Brassica incana*, *Brassica insularis*, *Brassica macrocarpa*, *Brassica montana*, *Brassica*
17 *rupestris*, and *Brassica villosa*. Throughout the literature, many of these species have been referred to by
18 alternative names or have multiple subspecies. For example, *B. cretica* is described as having either three
19 subspecies (*subsp. aegea*, *cretica*, and *laconica*) (Snogerup et al. 1990) or only two (*subsp. cretica* and
20 *nivea* (Gustafsson et al. 1976)). The taxonomic confusion is perhaps best highlighted by L. H. Bailey, who
21 stated that “*Some of these plants appear to be more confused in literature than in nature*” (Bailey 1930)).
22 The progenitor species of *B. oleracea* is further obscured by the presence of weedy, cabbage-like plants
23 along the coastline of western Europe (England, France, and Spain), which are sometimes referred to as *B.*
24 *oleracea* var. *sylvestris*. The role of these weedy populations in the domestication of *B. oleracea* is unclear,
25 with some studies suggesting these coastal wild populations represent the progenitor species (Snogerup et
26 al. 1990; Song et al. 1990), and others identifying these wild forms as plants that escaped cultivation
27 (Mitchell 1976; Mitchell and Richards 1979).
28

29 Given the uncertainty surrounding wild relatives and weedy populations, researchers have proposed
30 numerous hypotheses for the progenitor species of *B. oleracea* (**Table 1**). Hypotheses range from a single
31 domestication with a single progenitor species (Song et al. 1990; Allender et al. 2007) to multiple
32 domestications arising from multiple progenitor species (de Candolle 1855; Neutrofal 1927; Lizgunova
33 1959; Helm 1963; Snogerup 1980; Heaney et al. 1987; Song et al. 1988; Swarup and Brahmi 2005).
34 Findings that point to a single origin of domestication have proposed different wild species as the progenitor
35 (Snogerup et al. 1990; Song et al. 1990; Hodgkin 1995; Maggioni et al. 2018). For instance, (Neutrofal
36 1927) suggested that *B. montana* was the progenitor of cabbages and that *B. rupestris* was the progenitor
37 of kohlrabi, while (Schulz 1936) identified *B. cretica* as the progenitor of only cauliflower and broccoli.
38 (Helm 1963) proposed a triple origin in which a single progenitor species gave rise to cauliflower, broccoli,
39 and sprouting broccoli, while kale and Brussels sprouts were derived from another unknown wild species,
40 and that all other crop forms were derived from a third unknown wild species. (Snogerup 1980) proposed
41 that cabbages were derived from wild *B. oleracea*, kales were derived from both *B. rupestris* and *B. incana*,
42 and that Chinese white kale was derived specifically from *B. cretica* subsp. *nivea*.
43

1 Due to the lack of consensus on the progenitor species, the center of origin for *B. oleracea* has also remained
2 obscure. One hypothesis is that domesticated *B. oleracea* originated in England from weedy *B. oleracea*
3 populations, with early cultivated forms brought to the Mediterranean, where selection for many of the
4 early crop types occurred (Hodgkin 1995). Other studies point specifically to Sicily, which boasts a large
5 diversity of wild relatives, as the center of domestication (Schiemann 1932; Lizgunova 1959). This
6 conforms with the observations of Nikolai Vavilov (Vavilov 1951) that plants tended to be domesticated in
7 a finite number of global centers of diversity, which include the Mediterranean. Most recently, linguistic
8 and literary evidence provided support for domestication in the Eastern Mediterranean, where there is a rich
9 history of expressions related to the usage and cultivation of *B. oleracea* crop types in early Greek and Latin
10 literature (Maggioni et al. 2018).

11
12 Using a diversity panel of 224 accessions that includes 14 cultivar types and nine wild relatives,
13 representing the largest and most diverse collection of this species and its wild relatives to date, we integrate
14 phylogenomics, population genomics, species distribution modeling, archaeological, and literary sources
15 to clarify the taxonomy, identify the closest living wild relative, and provide insight on the origin of
16 domestication for *B. oleracea*.

17

18 RESULTS

19 **Phylogeny and population clustering distinguish wild and feral populations.** Sampling of *B. oleracea*
20 cultivars included eight types of kales, five types of cabbages, Brussels sprouts, broccoli, cauliflower,
21 Romanesco (var. *botrytis*), and kohlrabi (*SI Appendix, Table S2*). Together, these cultivated types
22 accounted for 188 of the 224 total samples. The remaining 36 samples included previously identified wild
23 relatives: putatively wild *B. oleracea*, *B. cretica*, *B. incana*, *B. montana*, *B. hilarionis*, *B. insularis*, *B.*
24 *macrocarpa*, *B. rupestris*, and *B. villosa*. The phylogenetic reconstruction of all 224 samples using SNPhylo
25 (Lee et al. 2014) recovered several well-supported clades with greater than 70% bootstrap support, although
26 overall support was generally poor (less than 70% bootstrap support), especially along the backbone.
27 Chinese white kale, broccoli, cauliflower, romanesco, kohlrabi, curly kale, Brussels sprouts, *B. rupestris*,
28 *B. macrocarpa*, and *B. insularis* were all recovered as monophyletic. Cabbages were also monophyletic,
29 but with only 55% bootstrap support. Seven cultivars (collards, tronchuda kale, savoy cabbage, perpetual
30 kale, red cabbage, and marrow cabbage) were found throughout the tree as polyphyletic assemblages.
31 Several wild samples were recovered within the cultivar clade, including two samples of *B. cretica* (196,
32 199), one sample of *B. montana* (222), and all samples of putatively wild *B. oleracea* (175, 176, 177; sample
33 names in red; **Fig. 1**). We also recovered a monophyletic group in the cultivar clade consisting of five
34 samples of three wild species, *B. incana* (205, 208, 209), *B. villosa* (233), and *B. cretica* (195), labeled
35 ‘wild C - clade 2’ (for wild samples with the C genome). Many of these “wild” samples also share most or
36 all of their ancestry with cultivars. At $K = 2$, in our fastSTRUCTURE analyses (Raj et al. 2014), where the
37 marginal likelihood is maximized, samples clustered together as either cultivars or wild individuals (**Fig.**
38 **1**). We find that two samples of *B. incana* (204, 207), which are sister to all cultivated samples, share 100%
39 of their ancestry with cultivated types, as do two samples of *B. cretica* (196, 199), one sample of *B. montana*
40 (222), and all three samples of putatively wild *B. oleracea* (175, 176, 177). Together with the placement in
41 the phylogeny, these analyses indicate that these are not truly wild samples, but represent feral types. Our
42 newly identified wild C - clade 2 also shows mixed wild and cultivar ancestry, which was also observed for
43 one sample of tronchuda kale (30). At $K = 3$, clusters of broccoli, cauliflower, and Chinese white kale

1 separate from other cultivated types and at $K = 4$, Chinese white kale separates from broccoli and
2 cauliflower.

3
4 Principal component analysis (PCA) also separated cultivars from most wild samples (**Fig. 2A & B; SI**
5 **Appendix, Fig. S1A**). The PC1 axis distinguishes wild species from cultivars and the PC2 axis separates
6 wild C - clade 2 from all other wild species (triangles with black outlines). While one sample of *B. cretica*
7 (198) clusters closest to cultivated types, samples of *B. incana*, not in wild C - clade 2, along with one
8 sample of *B. montana* (222), two samples of *B. cretica* (196, 199), and all three samples of *B. oleracea*
9 (175, 176, 177) cluster with the cultivars, corroborating the phylogenetic analyses. To further investigate
10 the clustering patterns of *B. cretica* to cultivars, we included four additional wild-collected samples of two
11 *B. cretica* subspecies (A and B = subsp. *nivea*, C and D = subsp. *cretica*; **Fig. 2A & B; SI Appendix, Fig.**
12 **S1A**; labeled SRA in figure legend; (Kioukis et al. 2020)). Adding these samples supports the results of
13 other studies that *B. cretica*, as a species, is very diverse. While sample C does not group with other *B.*
14 *cretica* samples using the PC1 axis, the PC2, PC3, and PC4 axes show much tighter clustering among the
15 four wild-collected samples and one of our samples of *B. cretica* (198), indicating that our *B. cretica* (198)
16 sample is an informative representative of wild-collected *B. cretica* (**Fig. 2A & B; SI Appendix, Fig. S1A**).
17

18 For crop samples, estimates of inbreeding coefficients from PCAngsd (Meisner and Albrechtsen 2018)
19 roughly matched expectations for the frequency of heterozygotes under Hardy-Weinberg equilibrium, while
20 inbreeding coefficients for wild species suggest excess homozygosity (**SI Appendix, Fig. S2**), possibly
21 reflecting cultivation practices for germplasm management and the relative isolation of wild populations
22 (i.e. small effective population size), respectively. Identified feral samples (*B. cretica* -196, 199; *B. incana*
23 - 204, 207; *B. montana* - 222; and wild *B. oleracea* -175, 176, 177) show patterns of heterozygosity similar
24 to crop samples, as does the four samples of *B. cretica* from (Kioukis et al. 2020). Our wild C - clade 2 is
25 found with patterns of excess homozygosity more similar to other wild taxa.
26

27 **Domestication is also reflected in the transcriptome.** Using expression profiles (transcript abundances)
28 of 51,438 genes for our original 224 samples, we tested if cultivars and wild samples would still cluster
29 separately based on the transcriptome. Overall, results and clustering patterns were similar to analyses using
30 SNPs, with the axes of PC1 and PC2 separating most wild species from cultivars (**Fig. 2C; SI Appendix,**
31 **Fig. S1B & C**). We again found the same samples of *B. incana* (204, 207), *B. cretica* (196, 199), *B. montana*
32 (222), and *B. oleracea* (175, 176, 177) clustering with the cultivars, but in expression analyses wild C -
33 clade 2 clustered with the other wild samples (**SI Appendix, Fig. S3**). While most cultivar groups were
34 not recovered as unique clusters, there were a few exceptions. Brussels sprouts, Chinese white kale, and
35 curly kale all formed fairly distinct clades, which corresponds to what we know about their growth habit.
36 Since RNA was collected at the 7th leaf-stage, before substantial morphological differentiation occurs
37 between cultivars, it is not too surprising that they do not cluster distinctively by cultivar. However, curly
38 kale is almost immediately visually distinguishable from other cultivars in that the first true leaves are
39 already curly. Brussels sprouts are also identifiable at this early growing stage as they have orbicular leaves
40 rather than the more lanceolate leaves of other cultivars. While Chinese white kale leaves look more similar
41 to other cultivars, they are annuals and grow much more rapidly which may be responsible for its clustering
42 separately.
43

1
2 To identify modules of genes that might be driving the observed clustering patterns, we used WGCNA
3 (Langfelder and Horvath 2008). We found that 48 modules, ranging in size from 35,981 to 34 genes,
4 provided the best fit for the data (*SI Appendix, Table S3*). To assess what types of biological processes
5 were overrepresented in these modules, we used syntenic *Arabidopsis thaliana* genes and performed a GO
6 analysis through PANTHER v. 16.0 (Mi et al. 2021). Overlap of *B. oleracea* with *A. thaliana* genes ranged
7 from 17% to 98.3%, perhaps indicating that either some modules are more conserved while others are
8 unique to *B. oleracea*. Modules which were more conserved between the two species included genes related
9 to herbivory defense compound production (secondary metabolite biosynthetic process, phenylpropanoid
10 biosynthetic and metabolic processes), wound formation (suberin biosynthetic processes), and wax
11 formation (wax biosynthetic and metabolic processes) likely correlated to the characteristic glaucous leaves
12 of cultivated *B. oleracea* (*SI Appendix, Table S4*).
13

14 **Species tree and admixture inference indicate *Brassica cretica* is the closest living wild relative.** Given
15 the results of population clustering using both SNPs and expression profiles, we further interrogated the
16 species level relationships between wild relatives and cultivar groups by resolving the backbone of the
17 phylogeny. Using the PoMo model (Schrempf et al. 2016) as implemented in IQ-Tree (Nguyen et al. 2015)
18 and only including samples representing monophyletic groups as determined in the sample-level phylogeny,
19 we found strong support for *B. cretica* as the closest living wild relative to cultivated *B. oleracea* (Fig. 3A).
20 The current distribution of *B. cretica* occurs throughout the Eastern Mediterranean, primarily in Greece,
21 highlighting a potential origin of domestication (Fig. 3B). Another suggested wild relative, *B. incana*, is
22 strongly supported as belonging to the cultivar clade, sister to lacinato kale. This result supports our other
23 findings that *B. incana* is not a wild assemblage, but rather feral. Within cultivars, several expected
24 relationships were recovered: collards and cabbage as sister lineages (Song et al. 1988; Farnham 1996),
25 with Brussels sprouts sister to both; cauliflower and broccoli as sister clades (Song et al. 1988; Stansell et
26 al. 2018), with romanesco sister to both; and Chinese white kale as sister to all other cultivars, agreeing
27 with recent literature (Cheng et al. 2016; Stansell et al. 2018).
28

29 With the overall species relationships resolved, we aimed to tease apart the evolutionary history of the wild
30 samples that clustered within the cultivar clade. Specifically, we asked if any of the identified feral samples
31 were the products of admixture using TreeMix (Pickrell and Pritchard 2012). While the tree model without
32 any migration edges explained 87.3% of the variance in the dataset, sequentially adding migration events
33 to the tree resulted in five migrations events explaining 92% of the variation (Fig. 4A; *SI Appendix, Fig.*
34 *S4*). Adding a single migration edge resulted in an admixture event from *B. cretica* (198) to a clade of
35 [Chinese white kale + tronchuda cabbage]. To further test this event, we used four-population (*f4*) tests for
36 treeness as implemented in TreeMix, where a significant non-zero value indicates the presence of gene flow
37 (Reich et al. 2009; Pickrell and Pritchard 2012); Fig. 4B). While the tree [[tronchuda cabbage, kohlrabi],[*B.*
38 *cretica* (198), *B. hilarionis*]] showed no significant evidence of gene flow (*f4* = 0.0008, *Z* = 1.094),
39 replacing tronchuda cabbage with Chinese white kale indicated significant gene flow from *B. cretica* (198)
40 to Chinese white kale (*f4* = -0.0055, *Z* = -5.113). This result was further verified when adding a second
41 migration edge, as the migration edge only included Chinese white kale, but the direction was reversed
42 (from Chinese white kale to *B. cretica* (198)). The second event, from kohlrabi to a presumably feral sample
43 of *B. cretica* (199), was supported by *f4* tests, with the tree [[kohlrabi, *B. cretica* (196)],[*B. cretica* (199),
44 marrow cabbage]] indicating significant evidence of gene flow from kohlrabi to *B. cretica* (199) (*f4* =

1 0.012, $Z = 10.5$). This migration event is also seen phenotypically, as *B. cretica* (199) has a swollen stem
2 when grown to maturity. No significant evidence of gene flow was found when substituting *B. cretica* (199)
3 with *B. oleracea* (175), which is not expected to be involved in the admixture event ($f_4 = 0.00023$, $Z =$
4 2.68). Two admixture events provide evidence of potential exoferal origins for at least two samples, *B.*
5 *oleracea* (175) and *B. cretica* (199). The four-population tree of [[*B. montana* (222), curly kale],[*B.*
6 *oleracea* (175), broccoli]] suggests significant gene flow from *B. montana* (222) to *B. oleracea* (175) (f_4
7 = 0.315, $Z = 15.77$), as does the tree of [[tronchuda cabbage, Chinese white kale],[*B. cretica* (199), broccoli]]
8 for gene flow from Chinese white kale to *B. cretica* (199) ($f_4 = -0.009$, $Z = -7.98$). The fifth added migration
9 edge from *B. rupestris* to wild C - clade 2 explains the shared ancestry recovered in the fastSTRUCTURE
10 results. The test for treelessness with [[curly kale, wild C - clade 2],[*B. rupestris*, *B. macrocarpa*]] indicated
11 significant admixture from *B. rupestris* to Wild C - clade 2 ($f_4 = -0.006$, $Z = -6.50$), but was non-significant
12 when substituting wild C - clade 2 with cauliflower ($f_4 = -0.0003$, $Z = -0.338$). Overall, these analyses
13 highlight that the evolutionary history of *B. oleracea* is characterized by many admixture events and
14 lineages of exoferal origins.

15

16 **Archaeological and literary evidence point to a late-Holocene domestication.** To further investigate the
17 origins of domesticated *B. oleracea*, we surveyed archaeological, literary, and artistic evidence (**SI**
18 **Appendix, Table S5 & S6**). The earliest reported claim of *B. oleracea* comes from an archaeological
19 collection from the Austrian Alps. This collection comprises three seeds dated to the Middle Bronze Age
20 (ca. 3550-3350 years before present; BP (Schmidl and Oegg 2005)). However, the lack of illustrations and
21 discussion of separation criteria from other *Brassica* species makes us question the reliability of this
22 species-level identification, as seeds of *Brassica* are difficult to tell apart. The only other find of similar
23 antiquity is *B. oleracea* seeds from the Late Bronze Age/Early Iron Age, identified by scanning electron
24 microscopy and radiocarbon dated directly between ca. 3250-2970 BP (Kaniewski et al. 2011). These finds
25 are associated with destruction levels at Gibala, Tell Tweini in western Syria on the Mediterranean coast.
26 While most of the archaeological finds are of seeds (**SI Appendix, Table S5**), there is at least one
27 documentation of pottery residues where lipids of *Brassica* leaf waxes were identified and dated to 850-
28 750 BP (Evershed et al. 1992; Evershed et al. 1994). The authors attribute this to the boiling of leaves of *B.*
29 *oleracea*, and given the lack of evidence for other commonly eaten *Brassica* leaves in England at this time,
30 this would appear a likely identification.

31

32 The earliest literary references to *B. oleracea* date to Greek scholars 2500-2000 BP (**SI Appendix, Table**
33 **S6**). Hipponax's writing refers to a seven-leaf cabbage in an iambic verse (West 2011), while Hippocrates
34 *On the Nature of Women*, written around 2410-2320 BP, refers to the use of cabbage, or krambe, in a few
35 recipes (Totelin 2009). As early as 2330 BP, there is evidence that the cultivar diversity that we are presently
36 familiar with also existed historically. Eudermus refers to three kinds of cabbage: a smooth-leaved type, a
37 curly-leaved type, and a salt variety, the latter he states has a delicate taste and appears to be distributed
38 mainly in the eastern Aegean and on the modern Turkish coast (Yonge 1854). Theophrastus also refers to
39 three varieties: a curly-leaved type, a smooth-leaved type, and a wild type with a bitter taste, many branches,
40 and many small round leaves (Yonge 1854). Pliny in his *Natural History* writing some 200 years later
41 describes at least an additional ten varieties than those seen in the previous classical works ((the Elder.) and
42 Rackham 1950). However, while most scholars accept that the translations of Greek or Latin of cabbage
43 refers to *B. oleracea*, it is important to note that both in the Greek-English Lexicon (Liddell and Scott 1940)
44 and in Hort's (Hort 1916) translation of Theophrastus' *Historia Plantarum*, cabbage is translated as *B.*

1 *cretica*, not *B. oleracea*. Certainly there are differences between the subspecies of *B. cretica* that might be
2 reflective of such differences in the past and the diversity we see in our PCA plots. Further, the description
3 by Niciander (quoted by Athenaeus; (Yonge 1854); p. 582) indicates that wild or at least feral forms of *B.*
4 *cretica* were known in Ionia, the western coast of present day Turkey, ca. 2150-2050 BP.

5
6 **Late-Holocene environmental niche modeling highlights wild relatives' ranges.** Using information
7 from archaeology and literature, we can infer that *B. oleracea* was under cultivation as early as 3550-3350
8 BP, around the late-Holocene. To predict what would be a suitable habitat for the wild relatives during the
9 late-Holocene, we compiled occurrence records from GBIF (www.gbif.org) and (Snogerup et al. 1990),
10 along with environmental data, to perform environmental niche modeling using MaxEnt 3.4.1 (Phillips et
11 al. 2017). Notably, we find that *B. cretica* has an expanded Eastern Mediterranean habitat suitability (**Fig.**
12 **3C**) that includes Cyprus, where only *B. hilarionis* is known presently. The only other species with a
13 current day Eastern Mediterranean distribution is *B. hilarionis* (**Fig. 3B**), which also has expanded habitat
14 suitability to the surrounding mainland coastal regions (**Fig. 3D**). However, since most of these wild species
15 are narrow island endemics ((Snogerup et al. 1990), species are estimated to have little change from current
16 day distributions (**SI Appendix, Fig. S5 and Table S7**).

17

18 DISCUSSION

19 **Multiple lines of evidence support a single Eastern Mediterranean origin.** Our evidence from genome-
20 scale, multilocus data along with archeology, literature, and environmental niche modeling best supports a
21 single Eastern Mediterranean domestication origin for *B. oleracea*, corroborating the conclusions of
22 (Maggioni et al. 2018) based on literary sources alone. When modeling phylogeny and population structure,
23 two Eastern Mediterranean species, *B. cretica* and *B. hilarionis*, are found as sister species to cultivars and
24 are assigned ancestry from all populations for values of K from 2 to 4 (**Fig. 1**), consistent with these species
25 being likely parental species of *B. oleracea* domesticates. In our species tree reconstructions, we find just
26 *B. cretica* as sister to all cultivars, specifically sample 198, which also clusters with wild-collected *B. cretica*
27 samples from (Kioukis et al. 2020) in our PCA (Fig. 2A-B), lending further support for *B. cretica* as the
28 progenitor species. This same sample of *B. cretica* (198) as well as our sample of *B. hilarionis* are recovered
29 as fairly homozygous, therefore they would likely be good starting material for future research related to
30 genome editing using wild relatives such as de novo domestication.

31

32 While we do recover evidence of admixture between *B. cretica* (198) and both wild and cultivated taxa, the
33 placement of *B. cretica* (198) as the closest living wild relative does not change. However, an inferred
34 admixture event from *B. cretica* (198) to *B. hilarionis* does result in a topological change in the placement
35 of *B. hilarionis* as sister to *B. montana* (224; originally collected in Spain) (**SI Appendix, Fig. S4**). This
36 novel relationship has not been identified before and warrants additional study with greater taxon sampling.
37 The second migration event involving *B. cretica* (198) is from Chinese white kale. This event lends further
38 evidence of admixture with wild germplasm during the domestication process, consistent with other
39 examples demonstrating that domestication is not a single event, but a series of events characterized by
40 continuous gene flow between wild and cultivated populations (Beebe et al. 1997; Wang et al. 2017).
41 Together with the phylogeographic discontinuity of wild *B. oleracea* samples and their Eastern
42 Mediterranean progenitors (**Fig. 3B**), the more distant phylogenetic placement of *B. insularis*, *B.*
43 *macrocarpa*, and *B. villosa* (**Fig. 3A**), and strong patterns of shared ancestry between *B. incana* and

1 cultivars (**Fig. 1**), these results lead us to support the hypothesis of domestication in the Eastern
2 Mediterranean with *B. cretica* as the closest living wild relative.
3

4 **The role of ferality in the domestication of *Brassica oleracea*.** Multiple lines of evidence highlight the
5 role of wild and feral populations as pools of diversity that contributed to crop diversification during
6 domestication (Beebe et al. 1997; Allaby 2010; Fuller et al. 2014; Wang et al. 2017). Our data supports a
7 similar phenomenon in the domestication of *B. oleracea*: it appears that introgression from wild or feral
8 populations contributed to the genetic composition of particular crops, and vice versa, which is revealed by
9 in-depth analyses of admixture using population structure and tree-based methods (**Fig. 1**; **Fig. 4**; **SI**
10 **Appendix**, **Fig. S4**). Several wild relatives, including *B. cretica*, as well as wild *B. oleracea*, *B. incana*, and
11 samples of *B. montana*, and *B. villosa*, are recovered as feral in all analyses.
12

13 While we find one sample of *B. cretica* (198) as the closest living wild relative, we also identify two samples
14 of *B. cretica* (196 and 199; **SI Appendix**, **Fig. S6**) are likely feral and fall within the cultivar clade (**Fig. 1**).
15 Interestingly, (Song et al. 1988) also recovered a polyphyletic *B. cretica* using RFLPs. Results presented
16 here support previous findings that *B. cretica* was at one point domesticated. (Snogerup et al. 1990) state
17 that wild *B. cretica* was consumed as late as 1962 and, as noted in our literary results, some early references
18 to *B. oleracea* in the literature could be translated as *B. cretica*, meaning the vast amount of described
19 morphology in these works, which may be the result of cultivation, could now be reflected in the multiple
20 named subspecies and described genetic diversity of modern *B. cretica* (Snogerup et al. 1990; Widén et al.
21 2002; Allender et al. 2007; Edh et al. 2007). Further, the fact that feral forms of *B. cretica* were known in
22 at least Ionia (western coast of present day Turkey) ca. 2150-2050 BP and the evidence of feral *B. cretica*
23 populations today in Lebanon, which are morphologically similar to *B. cretica* subsp. *nivea*, suggests
24 widespread trade of these species by the earliest Mediterranean civilizations (Dixon 2006). Previous
25 researchers have also noted that *B. cretica* populations are typically found in coastal locations associated
26 with ancient seaports, occupying their preferred ecological niche on chalk cliffs undisturbed by grazing
27 (Mitchell 1976; Snogerup et al. 1990). We believe that these early forms of *B. cretica* may have played
28 underappreciated roles in the domestication of *B. oleracea* crops and to fully understand the evolutionary
29 history of *B. oleracea*, the domestication story of *B. cretica* must be resolved.
30

31 Sources have hypothesized wild populations of *B. oleracea* in England (Snogerup et al. 1990; Song et al.
32 1990) are the progenitor(s) for modern cultivars, while others have proposed that these are escaped cultivars
33 (Mitchell 1976; Mitchell and Richards 1979). Consistent with these hypotheses, we find that the three wild
34 *B. oleracea* samples in our study cluster with cultivars both phylogenetically and in PCA for both SNP data
35 and expression profiles. Although these samples are from Canada (175), Denmark (176), and Germany
36 (177) (**SI Appendix**, **Fig. S6**), and notably do not include sampling of *B. oleracea* populations in England,
37 one of the hypothesized geographic origins (**Table 1**), we suggest that an origin in England is unlikely given
38 the archeological and literary data. Although the oldest archaeobotanical record for *B. oleracea* (Middle
39 Bronze Age; ca. 3550 -3350 BP) is from Austria, we regard this evidence with caution as wild populations
40 of *B. oleracea* are not presently found in Austria and the major *Brassica* crops in this region include *B. nigra*
41 (Tutin 1964) or potentially cultivated turnip (*B. rapa*). Additionally, there is no compelling
42 archaeological evidence to suggest the possible cultivation of cabbages in Europe prior to the Late Iron Age
43 (2350-2050 BP) and Roman periods (1950-1650 BP), but there is evidence for knowledge of *B. oleracea*
44 in Greece during this time ((Maggioni et al. 2018); **SI Appendix**, **Tables S5 and S6**). Overall, there are no

1 records for *B. oleracea* from before this period within databases relating to the Eastern Mediterranean
2 (Reihl 2014), Europe (Kroll 2001; Kroll 2005), Britain (Tomlinson and Hall 1996), the Czech Republic
3 (Kreuz and Schäfer 2002), or within pre-dynastic and Pharaonic Egypt (Murray 2000), despite having
4 documentation for other *Brassica* species. Evidence for *B. oleracea* in Europe does not start appearing until
5 ca. 1850 BP, when the appearance of seeds increased and can be attributed to the spread of crops both
6 within and on the periphery of the Roman Empire (Van der Veen 2011). Additionally, several studies that
7 sampled wild *B. oleracea* populations in the British Isles (Mitchell 1976; Mitchell and Richards 1979),
8 South West England (Raybould et al. 1999), Northern Spain (Gómez-Campo et al. 2005), Iberian Peninsula
9 (Sánchez-Yélamo 2014), Atlantic coasts of western Europe (Mittell et al. 2020), and Atlantic coast of
10 France (Maggioni et al. 2020) support that these wild *B. oleracea* populations are feral populations,
11 typically with low levels of genetic diversity and some degree of isolation from other populations. (Lanner-
12 Herrera et al. 1996) sampled populations across Spain, France, and Great Britain, concluding that each
13 population evolved independently, while more recently (Mittell et al. 2020) found that geographically close
14 populations were more genetically different than distant populations. Our results provide additional
15 evidence that feralization is commonplace for *B. oleracea* crops and that references to wild *B. oleracea*
16 likely represent multiple, independent feralization events. Additional sampling of wild populations will
17 enable opportunities to further investigate the relationships among these feral populations and cultivated
18 crops.

19
20 *Brassica incana*, another suggested progenitor species (Snogerup 1980), is also supported as feral by our
21 analyses. Two of our five samples (204 and 207; **SI Appendix, Fig. S6**) are recovered as sister to all cultivars
22 in our individual level phylogeny, but are found to share 100% of their ancestry with cultivars rather than
23 other wild taxa using fastSTRUCTURE when K = 2 (**Fig. 1**). Further, these two samples were resolved as
24 sister to lacinato kale in our species tree analysis, providing additional evidence that these samples represent
25 a feral lineage, possibly of lacinato kale. This result may provide insight to why previous studies have found
26 *B. incana* as sister to *B. oleracea* (Lázaro and Aguinagalde 1998; Mei et al. 2010) and the observation by
27 (Snogerup et al. 1990) that some samples of *B. incana* are more interfertile with cultivated *B. oleracea* than
28 others. Although (Snogerup et al. 1990) suggested that *B. incana* was more interfertile due to historical
29 introgression, we do not find evidence for this for samples 204 and 207. However, the three other samples
30 of *B. incana* (205, 208, 209), which are found belonging to the newly identified wild C - clade 2, do show
31 evidence of admixture with *B. rupestris*. These three samples were collected in Italy, while the two other
32 samples found in this clade, *B. cretica* (195) and *B. villosa* (233), were collected in Greece and Italy,
33 respectively (**SI Appendix, Fig. S7**). All five wild C - clade 2 samples share an introgression event from *B.*
34 *rupestris* (**Fig. 1**; **Fig. 4**; **SI Appendix, Fig. S4**), but come from different germplasm collections (IPK-
35 gatersleben and USDA National Plant Germplasm System), ruling out the inferred migration being the
36 result of current cultivation practices. It is possible that these samples are related to the wild kale of Crimea,
37 which is posited as a *B. rupestris*-*incana* hybrid which was transferred to the Crimea via trade (Dixon
38 2006). This suggests that there was early widespread cultivation of these *B. rupestris*-*incana* types (Dixon
39 2006) and provides a plausible explanation for why *B. incana* and *B. rupestris* are closely related in previous
40 studies (Lannér et al. 1997; Mei et al. 2010).

41
42 The last feral identification is that of *B. montana*, for which we find one sample as more closely related to
43 wild taxa (224) and one more closely related to cultivars (222) (**SI Appendix, Fig. S6**). The feral sample
44 (222) is of unknown origin, but again the literature indicates that this may not be a surprising result. Many

1 studies have previously indicated a close relationship between *B. montana* and *B. oleracea*. For example,
2 (Panda et al. 2003) concluded that *B. montana* may be a subspecies of *B. oleracea*, while (Lannér et al.
3 1997) found that *B. montana* and *B. oleracea* clustered together using chloroplast data. Furthermore, several
4 authors have suggested that some populations of *B. montana* were feral *B. oleracea* (Paolucci 1890; Onno
5 1933; Snogerup et al. 1990), which may be reflected in the overlapping ranges produced by our niche
6 modeling of these two species (*SI Appendix, Fig. S5*). Therefore, in combination with results from previous
7 studies, our results support that at least some *B. montana* populations are of feral origin.

8
9 Taken together, it is clear that the current taxonomy of *B. oleracea* and its wild relatives is confounded by
10 gene flow between wild and cultivated populations, resulting in confusion between wild and feral lineages
11 and obscuring the true evolutionary history of this species. Additionally, while there is much interest in
12 crop improvement using CWRs (Meyer et al. 2012; Khoury et al. 2020), feral lineages offer another,
13 potentially more direct route to reintroducing genetic diversity into cultivated populations, as gene flow is
14 less likely to be impeded by barriers such as reproductive isolation (Mabry et al. 2021). These feral
15 populations may also provide additional avenues to explore the evolutionary capacity for range expansion
16 and phenotypic plasticity.

17
18 **Post-domestication cultivar relationships.** While our knowledge of the spread and diversification of *B.*
19 *oleracea* crops after domestication is compounded by both the difficulties of identifying seeds of individual
20 crop types and frequent introgression between crop types, we can infer some patterns using the species
21 phylogeny. Like other studies (Cheng et al. 2016; Stansell et al. 2018), we find Chinese white kale sister to
22 all other cultivars, representing the only Asian clade of crop types (**Fig. 3A**). While the spread of *B. oleracea*
23 to eastern Asia is still undocumented archaeologically, recent pollen analysis has provided evidence for
24 cultivation of other *Brassica* species, including *B. rapa*, in the Yangtze valley 3250 - 3350 BP, likely
25 corresponding to movement across “Silk Road” trade routes (Zhang 2009). However, this only provides
26 identification criteria, not archaeological evidence (Yang et al. 2018). A review of Chinese historical
27 sources concluded that *B. oleracea* may have been introduced to China 1450 -1350 BP and had evolved
28 into Chinese white kale in Southern China by the period of the Tang Dynasty (1350 - 1250 BP; (Zhang
29 2009)). Due to both its position as sister to all other cultivars and as the only Asian *B. oleracea* crop type,
30 this taxon warrants additional study to understand its own unique domestication story.

31
32 The dispersal of *B. oleracea* by human translocation westward, ultimately to the Atlantic coast of Europe,
33 appears to have established both regional feral populations and the variety of modern crop types.
34 Archaeological evidence suggests that this process may have begun with Late Bronze Age seafaring (3000-
35 3300 years ago), when the whole Mediterranean became linked in trade perhaps for the first time
36 (Broodbank 2015), and continued to provide a corridor for introgression and varietal diversification through
37 the Iron Age (up to 2000 years ago). Trade links along the Atlantic seaboard from North Africa and Iberia
38 through Britain and Ireland are clearly indicated in archaeology (Cunliffe 2004), and are associated with
39 the first peopling of the Canary Islands from the north, where walking stick kale is endemic. Notably, many
40 cultivars do not form monophyletic groups in our sample level phylogeny, likely indicative of admixture
41 between crop types. This is supported by previous findings that broccoli is paraphyletic (Song et al. 1988;
42 Stansell et al. 2018), as well as collards (Pelc et al. 2015), and by our findings that kale types such as
43 tronchuda kale and perpetual kale are highly polyphyletic, suggesting that the kale-phenotype has been
44 selected for multiple times independently.

1
2 In conclusion, we confirm a single Eastern Mediterranean origin for *B. oleracea* and find *B. cretica* as the
3 closest living wild relative. We highlight several feral lineages that are not reflected by the current
4 taxonomy but likely reflect important aspects of the domestication history for *B. oleracea*. Moving forward,
5 it will be important to collect, study, and preserve these feral lineages as pools of allelic diversity, which
6 may play an important role in future crop improvement, e.g. as a source of potential pest and pathogen
7 resistance (Mithen et al. 1987; Mithen and Magrath 1992; Mohammed et al. 2010). In clarifying the
8 evolutionary history of *B. oleracea* and its wild relatives, we hope to enable this model system for
9 additional studies on evolutionary phenomena such as parallel selection, polyploidy, and ferality.
10 Additionally, since many of these wild species are very narrow endemics and are valuable for both crop
11 improvement and for nature conservation, their identification and preservation is urgent. We hope this study
12 can serve as a stepping stone, as the work before us has, for all those who, like Darwin, are intrigued by
13 this group of plants and wish to further its study.
14

15 MATERIALS AND METHODS

16 **Taxon sampling.** Samples from cultivars accounted for 188 of the 224 total samples with the remaining
17 36 samples included being previously identified wild relatives (*SI Appendix, Table S2*). These include
18 accessions from the United States Department of Agriculture, Agriculture Research Service (USDA-ARS)
19 Plant Genetic Resources Unit (PGRU; 114 accessions), The Leibniz Institute of Plant Genetics and Crop
20 Plant Research (IPK; 71 accessions), Universidad Politécnica de Madrid (UPM; 4 accessions), The Nordic
21 Genetic Resource Centre (NordGen; 2 accessions), Gomez Campo Collection (2 accessions), John Innes
22 Center (1 accession), doubled haploid lines (17 samples, some accessions sampled twice), or from the Pires'
23 personal collection (13 accessions). Four replicates of each accession were grown from seed in a sterile
24 growth chamber at the University of Missouri (MU; Columbia, MO) Bond Life Sciences Center in a
25 randomized complete block design across two independent outgrowths. At the seventh leaf stage, leaf four
26 was collected from each plant and immediately flash-frozen in liquid nitrogen for RNA extraction.
27 Morphotype identity was validated in mature plants by growing all accessions twice over the span of two
28 years (*SI Appendix, Table S2*).
29

30 Whole-genome resequencing data for an additional four samples from (Kioukis et al. 2020) of two varieties
31 of *B. cretica* (var. *cretica* and var. *nivea*) was downloaded from the National Center for Biotechnology
32 Information (NCBI) Sequence Read Archive (SRA) to supplement our sampling of *B. cretica*. These
33 samples are under the SRA accession as follows: A = SRR9331103, B = SRR9331104, C = SRR9331105
34 , and D = SRR9331106). Samples of A and B are *B. cretica* var. *nivea* from mainland Greece and C and D
35 are *B. cretica* var. *cretica*, one from the mainland (C) and one from the island of Crete (D).
36

37 **RNA isolation and sequencing.** RNA was isolated using the ThermoFisher Invitrogen PureLink RNA
38 mini kit (Invitrogen, Carlsbad, CA, USA) followed by TruSeq library preparation (Illumina, San Diego,
39 CA, USA) and sequencing on the NextSeq platform (Illumina, San Diego, CA, USA) for 2 X 75 bp reads.
40 Library preparation and sequencing were performed through the MU DNA Core Facility. For eight flow
41 cells, 24 samples were multiplexed and sequenced in a single flow-cell, followed by a ninth flow cell with
42 17 samples, and a tenth flow-cell with 16 samples.
43

1 **Mapping and SNP calling.** Short reads were mapped to the *B. oleracea* TO1000 genome (Chinese white
2 kale; (Parkin et al. 2014); release-41) by first using the STAR v. 2.5.2 (Dobin et al. 2013) two-pass
3 alignment to identify splice junctions, which were then used in the second pass to improve mapping
4 (Engström et al. 2013). The TO1000 genome of Chinese white kale was chosen due to wild relatives having
5 a more kale-like phenotype and its placement as sister to the other cultivars in recent studies (Cheng et al.
6 2016; Stansell et al. 2018). Mapped reads (BAM format) were then processed following the GATK v. 3.8
7 best practices for RNA-seq reads (McKenna et al. 2010; Van der Auwera et al. 2013; Poplin et al. 2017).
8 To ensure that reads were mapping correctly, the GATK ‘Split’N’Trim’ function was used to split reads
9 into exon segments and trim any overhanging reads in intron segments. In total, 7,564,168 variants were
10 called before any filtering was performed. The resulting variants were filtered to exclude those with a Fisher
11 strand (FS) value greater than 30 and quality depth (QD) less than 2.0. This recovered 942,357 variants in
12 total, with 879,865 variants on chromosomes 1-9 and 62,492 variants on scaffolds. Only variants aligning
13 to chromosomes were used in downstream analyses. The remaining variants were then filtered using
14 vcftools v. 0.1.17 (Danecek et al. 2011) to exclude sites with greater than 60% missing data (--max-missing
15 0.4), sites with mean depth values less than 5 (--min-meanDP 5), and indels (--remove-indels;) resulting in
16 a total of 103,525 SNPs. Finally, SNPs were filtered for linkage disequilibrium (LD) using using PLINK v.
17 1.90 with a window size of 50 Kb, or about two times the estimated length for 80% LD decay (Cheng et al.
18 2016), a step size of 5 kb, and a variance inflation factor of 2 (--indep 80kb 5 2; (Purcell et al. 2007), for a
19 final dataset of 30,014 SNPs). The four *B. cretica* genome resequencing samples (Kioukis et al. 2020) were
20 also mapped to the *B. oleracea* TO1000 genome (Chinese white kale; (Parkin et al. 2014); release-41),
21 using BWA (Li and Durbin 2009). For all samples no mapping bias was detected when comparing the
22 percentage of uniquely mapped reads across cultivar groups, species, and sequencing lane (**SI Appendix**,
23 **Fig. S8**).
24

25 **Phylogenetic and Introgression Inference.** To test how the different populations are related to one another
26 and which wild relative is most closely related to the cultivated types, we used three different phylogenetic
27 programs; SNPhylo v. 20160204 (Lee et al. 2014) to assess individual sample relationships, IQ-Tree v. 1.6
28 (Nguyen et al. 2015) to test species level relationships, and TreeMix v. 1.13 (Pickrell and Pritchard 2012)
29 to assess introgression. For SNPhylo (Lee et al. 2014), **we ran analyses using 0.1 for LD, minor**
30 **allele frequency ≥ 0.01 , proportion of missing sites ≤ 0.4 , 1000 bootstrap**
31 **replicates, and rooted with sample 238 (*B. villosa*)**. For IQ-Tree, we used the Polymorphism-
32 aware phylogenetic Models (PoMo) software (Schrempf et al. 2016; -m GTR+P) to perform phylogenetic
33 comparisons using population genetic data, using 1000 bootstrap replicates via the ultrafast bootstrap
34 approximation method (Hoang et al. 2018) and *B. villosa* to root the tree. For our IQ-Tree analysis, we
35 subsampled data to include only those samples which were recovered as monophyletic in our SNPhylo tree
36 (**SI Appendix, Table S2; sample # with asterisks**). To test both the topology of relationships and for gene
37 flow between populations, we used TreeMix with the following parameters: no sample size correction (-
38 noSS), rooted with *B. villosa* (-root *villosa*), bootstrapping over blocks of 500 SNPs (-bootstrap -k 500), and
39 to incorporate between 2-10 migration events (-m). TreeMix (Pickrell and Pritchard 2012) was run with
40 samples of *B. cretica*, *B. incana*, *B. montana*, and *B. oleracea* as individuals, but used samples found in
41 wild C- clade 2, cultivars, and wild relatives as populations. Four-population (*f4*) tests for treeness (Reich
42 et al. 2009; Pickrell and Pritchard 2012) were used to test the support of the inferred migration edges from
43 Treemix (Pickrell and Pritchard 2012) via the fourpop method.
44

1 **Population Structure and Variation.** To test ancestry proportions and identify the likely genetic structure
2 of described populations we used fastSTRUCTURE v. 1.0 (Raj et al. 2014). We tested K values from 2 to
3 4 using default convergence criteria and priors followed by the *chooseK.py* script to determine the
4 appropriate number of model components that best explain structure in the dataset.

5
6 Angsd v. 0.925 (Korneliussen et al. 2014) was used to calculate genotype likelihoods for all samples, plus
7 the four additional *B. cretica* samples from (Kioukis et al. 2020), using the parameters *-doGlf 2 -doMajorMinor 1 -doMaf 2 -minMapQ 30 -SNP_pval 1e-6*, followed by analysis with PCAangsd v. 0.97
8 (Meisner and Albrechtsen 2018) to visualize population structure, estimate allele frequencies, and calculate
9 individual inbreeding coefficients using the parameters *-admix -selection 1 -inbreed 2*.

10
11
12 **Clustering based on Expression Profiles.** First, Salmon v. 1.2.1 (Patro et al. 2015) was used to acquire
13 transcript abundances for each sample and the estimated number of reads originating from transcripts. The
14 input for expression profile analysis was prepared using tximport (Soneson et al. 2015) with design =
15 ~plantout + cultivar type. Correction for library size (*estimateSizeFactors*) and variance-stabilizing
16 transformation (*vst*) was performed in DESeq2 v. 1.28.1 (Love et al. 2014). To test for clustering based on
17 expression profiles, we ran a PCA on the normalized expression values and performed clustering based on
18 Euclidean distance using the ‘prcomp’ and ‘hclust’ functions, respectively, in the ‘stats’ v. 3.6.2 package
19 for R v. 3.6.0 (R Core Team 2018). To assess networks of genes driving differences observed in the PCA,
20 we used WGCNA v. 1.68 (Langfelder and Horvath 2008). Following (Zhang and Horvath 2005), we found
21 that a soft-thresholding power of nine was best as it was the lowest power that satisfied the approximate
22 scale-free topology criterion, resulting in 48 modules of genes.

23
24 To determine biological processes which were overrepresented in the resulting modules, *Arabidopsis*
25 *thaliana* orthologs of *B. oleracea* were determined using both synteny and BLAST. Synteny-based
26 annotations were extracted from Table S7 in (Parkin et al. 2014) while the BLAST annotation was
27 performed using blastn in BLAST v. 2.10.0+ (Camacho et al. 2009). The *B. oleracea* CDS database was
28 downloaded from https://plants.ensembl.org/Brassica_oleracea/Info/Index, and the *A. thaliana* CDS
29 database from Araport11_genes.201606.cds.fasta from <https://www.arabidopsis.org/>. The blastn
30 parameters were *-evaluate 1E-6 -max_target_seqs 1*. Genes determined using synteny were then used to
31 perform a GO analysis through PANTHER v. 16.0 (Mi et al. 2021).

32
33 **Environmental niche modeling.** We compiled occurrence records for wild relatives from the Global
34 Biodiversity Information Facility (GBIF, www.gbif.org) data portal and data from (Snogerup et al. 1990).
35 From the GBIF data, we omitted records that were duplicated, lacked location data and/or vouchers, were
36 collected from the grounds of botanical gardens, and that were clearly outside of the native range. From the
37 (Snogerup et al. 1990) data, we omitted records that could not be georeferenced to <5km spatial uncertainty.
38 Populations of *B. cretica* in Lebanon and Israel and of *B. incana* in Crimea are thought to be likely early
39 human introductions (Snogerup et al. 1990) and records from these areas were omitted. Occurrences above
40 1200m altitude were also omitted, as these species rarely occur above 1000m and observations above these
41 altitudes may represent anthropogenic dispersals to disturbed areas or misidentifications. To minimize
42 sampling bias due to clustered observations (Beck et al. 2014; Boria et al. 2014), we thinned the filtered
43 occurrences to records greater than or equal to 10km apart using the ‘spThin’ package in R (Aiello-
44 Lammens et al. 2015). After filtering and thinning, 172 records remained for *B. cretica*, 65 for *B. incana*,

1 57 for *B. insularis*, 101 *B. montana*, 15 for *B. villosa*, and 7 and 6 for the narrow endemics *B. macrocarpa*
2 and *B. hilarionis* respectively. Next, we obtained rasters for 19 bioclimatic variables at 2.5 minutes
3 resolution based on contemporary climate data from WorldClim v. 2.0 (Fick and Hijmans 2017) and rasters
4 for 19 bioclimatic variables at 2.5 minutes resolution based on late-Holocene climate projections using data
5 derived from PaleoClim (Fordham et al. 2017; Brown et al. 2018). Rasters were clipped using QGIS v. 3.83
6 (Open Source Geospatial Foundation Project) to constrain the geographical background to windows slightly
7 larger than the area circumscribed by contemporary observational data (Phillips et al. 2009; Acevedo et al.
8 2012). While it is common practice to eliminate collinear environmental variables to avoid overfitting
9 (Braunisch et al. 2013), recent simulations have shown that removing highly collinear variables has an
10 insignificant impact on maximum entropy model performance (Feng et al. 2019) so all original variables
11 were included. Projections for late-Holocene habitat suitability were generated using MaxEnt v. 3.4.1
12 (Phillips et al. 2017). Linear, quadratic, product, and hinge features and jackknife resampling was used to
13 measure variable importance. Relative model performance was evaluated with the adjusted area under
14 receiver operating characteristic (ROC) curve (AUC; (DeLong et al. 1988)). While optimal performance
15 cannot be determined with this approach using presence-only data, relative performance can still be
16 assessed (Phillips et al. 2006).

17

18 **DATA AVAILABILITY** The sequences reported in this paper have been deposited in the Sequence Read
19 Archive database (accession no. PRJNA544934).

20

21 **AUTHOR CONTRIBUTIONS**

22 MEM, SDTH, ACM, HA, PPE, JDM, DACP, GRT, CJS, GB, JL, DQF, TB, RGA, JED, MAG, and JCP
23 designed the project. MEM, EYG, HA, and SDTH grew plants and collected tissue. MEM and EYG
24 extracted and isolated RNA. MEM analyzed the genetic data. ACM produced the species distribution
25 models. CS, DQF, and RGA researched archeology and written data. SDTH, HA, and JED assisted with
26 processing and analyzing the data. MEM wrote the original manuscript. PPE, JDM, DACP, GRT, CJS, GB,
27 JL, TB, MAG, and JCP provided critical feedback on manuscript drafts.

28

29

30 **ACKNOWLEDGMENTS**

31 We thank Drs. Bob Schnabel, Troy Rowan, Harly Durbin, and Paul Blischak for their assistance with
32 computational analyses, the Mizzou DNA core, Nathan Bivens, Ming-Yi Zhou, and Karen Bromert, for
33 their assistance in getting quality data for sequencing, and our computing resources, specifically the
34 Research Computing Support Services (RCSS) and Informatics Research Core Facility (IRCF) at the
35 University of Missouri. We thank Sarah Unruh for valuable feedback on early versions of this manuscript
36 and Dr. Jeff Ross-Ibarra for his help with interpreting admixture statistics. Finally, we thank our funding
37 USDA-ARS Project No. 8060-21000-024-00D and the National Science Foundation Postdoctoral
38 Fellowship in Biology (Award No. 1711347, S.T-H).

39

40

41

42

43

44

1 **TABLE LEGENDS**

2 **Table 1.** Wild species which have been proposed as progenitor species for *B. oleracea* crop types. Specific
3 location is included in parentheses if indicated by the author.

5 **FIGURE LEGENDS**

6 **Figure 1: Demographics and population structure for 224 samples of cultivated *Brassica oleracea***
7 (**n=188**) **and wild C genome species (n = 36).** (Left) Individual sample phylogeny with putatively wild
8 samples labeled in red and black dots indicating bootstrap values less than 70%. (Middle) Ancestry
9 proportions for K = 2 to K = 4 as inferred from fastSTRUCTURE; K=2 maximizes marginal likelihood (+)
10 and K=3 best explains structure in the data (++) (Right) Major clades and illustrations of corresponding
11 crop types. Illustrations by Andi Kur.

12
13 **Figure 2: Principal Component Analysis (PCA) of SNPs and expression profiles.** **A)** Genetic variation
14 PCA of PC1 vs PC2, **B)** Genetic variation PC2 vs PC3, and **C)** Expression profile PCA for PC1 vs PC2 of
15 wild and cultivar samples. Triangles = wild samples, circles = cultivars. Triangles with black outlines =
16 wild C - clade 2 samples with species identification indicated by color. Wild-collected *B. cretica* samples
17 from (Kioukis et al. 2020) indicated by asterisks, labeled as SRA.

18
19 **Figure 3:** Species tree with current distribution and historical environmental niche modeling. **A)** Species
20 tree of wild and cultivar samples. Bootstrap support indicated above branches. **B)** Current species
21 distribution of wild relatives. **C)** Suitable habitat for *B. cretica* and **D)** *B. hilarionis* during the late-
22 Holocene.

23
24 **Figure 4:** Inferred Admixture events. **A)** Phylogeny five migrations labeled a-f. **B)** Corresponding four-
25 population tests for tree-ness.

26 **SUPPLEMENTARY MATERIAL**

27 **Table S1:** *Brassica oleracea* crop types with common name, species name, Kew cultivar group, and other
28 used names. Illustrations by Andi Kur.

29
30 **Table S2:** Sample information with species, variety, cultivar, accession/collection, sample #, and SRA #.
31 Asterisks (*) next to sample # indicate those samples that were recovered as monophyletic and used in
32 species tree reconstruction.

33
34 **Table S3:** WGCNA predicted gene modules with number of genes in each module, the number of annotated
35 *Arabidopsis thaliana* genes using blast and synteny, and the percent of syntenic genes represented in the
36 module. Module number with asterisks (*) represent the five modules with the largest percent of syntenic
37 genes in the module.

38
39 **Table S4:** Top five WGCNA modules with largest percent of syntenic genes represented in the module
40 with corresponding annotated GO biological process with the largest fold enrichment, and p-value.

41
42 **Table S5:** Archaeological *Brassica* reports from Europe and the Eastern Mediterranean.

1 **Table S6:** Literary and artistic sources covering the Classical Greek, Roman, and medieval and post-
2 medieval sources.

3
4 **Table S7:** Area under the receiver operating characteristic curve (AUC) values for Maxent environmental
5 niche model runs for putative wild relatives of *Brassica oleracea* crops.

6
7 **Figure S1:** PCAs of SNPs and Expression profiles. **A)** Genetic variation PCA of PC3 vs PC4, **B)** Expression
8 profile PCA for PC2 vs PC3, and **C)** Expression profile PCA for PC3 vs PC4 of wild and cultivar samples.
9 Triangles = wild samples, circles = cultivars. Triangles with black outlines = wild C - clade 2 samples with
10 species identification indicated by color. Wild-collected *B. cretica* samples from (Kioukis et al. 2020)
11 indicated by asterisks, labeled as SRA.

12
13 **Figure S2:** Inbreeding coefficients for wild, cultivar, and feral samples.

14
15 **Figure S3:** *Brassica oleracea* cultivars and wild relative dendrogram based on expression profiles. Wild
16 species indicated by color below. Cultivars in grey below. Wild C - clade 2 indicated by black outlines for
17 the corresponding bar chart below. Sample names in red = putatively wild samples.

18
19 **Figure S4:** TreeMix analysis of wild, cultivar, and feral samples. **A-F)** Phylogeny with 0-5 migrations
20 indicated.

21
22 **Figure S5:** The current wild relatives distribution and modeled late-Holocene suitable habitat. Middle -
23 current species distribution of wild relatives. Suitable habitat for **A)** *B. montana*, **B)** *B. insularis*, **C)** *B.*
24 *macrocarpa*, **D)** *B. rupestris*, **E)** *B. villosa*, **F)** *B. incana*, and **G)** *B. oleracea*, during the late-Holocene

25
26 **Figure S6:** Leaf scans of feral samples. Leaf used for RNA collection with biological replicate indicated.

27
28 **Figure S7:** Leaf scans of wild C - clade 2 samples. Leaf used for RNA collection with biological replicate
29 indicated.

30
31 **Figure S8:** Mapping percentage of unique reads for **A)** wild and cultivated samples, **B)** cultivar groups,
32 and **C)** sequencing lane.

33
34
35
36
37
38
39
40
41
42
43
44

1 REFERENCES

2 Acevedo P, Jiménez-Valverde A, Lobo JM, Real R. 2012. Delimiting the geographical background in
3 species distribution modelling. *Journal of Biogeography* [Internet] 39:1383–1390. Available from:
4 <http://dx.doi.org/10.1111/j.1365-2699.2012.02713.x>

5 Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. 2015. spThin: an R package
6 for spatial thinning of species occurrence records for use in ecological niche models. *Ecography*
7 [Internet] 38:541–545. Available from: <http://dx.doi.org/10.1111/ecog.01132>

8 Allaby R. 2010. Integrating the processes in the evolutionary system of domestication. *Journal of*
9 *Experimental Botany* [Internet] 61:935–944. Available from: <http://dx.doi.org/10.1093/jxb/erp382>

10 Allender CJ, Allainguillaume J, Lynn J, King GJ. 2007. Simple sequence repeats reveal uneven
11 distribution of genetic diversity in chloroplast genomes of *Brassica oleracea* L. and (n = 9) wild
12 relatives. *Theor. Appl. Genet.* 114:609–618.

13 Bailey LH. 1930. The Cultivated Brassicas Second Paper. *Gentes Herbarum*.

14 Beck J, Böller M, Erhardt A, Schwanghart W. 2014. Spatial bias in the GBIF database and its effect on
15 modeling species' geographic distributions. *Ecol. Inform.* 19:10–15.

16 Beebe S, Toro Ch O, Gonza'lez AV, Chaco'n MI, Debouck DG. 1997. Wild-weed-crop complexes of
17 common bean (*Phaseolus vulgaris* L., Fabaceae) in the Andes of Peru and Colombia, and their
18 implications for conservation and breeding. *Genet. Resour. Crop Evol.* 44:73–91.

19 Boria RA, Olson LE, Goodman SM, Anderson RP. 2014. Spatial filtering to reduce sampling bias can
20 improve the performance of ecological niche models. *Ecol. Modell.* 275:73–77.

21 Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K. 2013. Selecting from correlated
22 climate variables: a major source of uncertainty for predicting species distributions under climate
23 change. *Ecography* 36:971–983.

24 Broodbank C. 2015. The Making of the Middle Sea: A History of the Mediterranean from the Beginning
25 to the Emergence of the Classical World. Thames & Hudson

26 Brown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM. 2018. PaleoClim, high spatial resolution
27 paleoclimate surfaces for global land areas. *Sci Data* 5:180254.

28 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+:
29 architecture and applications. *BMC Bioinformatics* 10:421.

30 de Candolle A. 1855. Géographie botanique raisonnée ou exposition des faits principaux et des lois
31 concernant la distribution géographique des plantes de l'époque actuelle. V. Masson

32 Cheng F, Sun R, Hou X, Zheng H, Zhang F, Zhang Y, Liu B, Liang J, Zhuang M, Liu Y, et al. 2016.
33 Subgenome parallel selection is associated with morphotype diversification and convergent crop
34 domestication in *Brassica rapa* and *Brassica oleracea*. *Nat. Genet.* 48:1218–1224.

35 Cunliffe B. 2004. Facing the Ocean: The Atlantic and Its Peoples, 8000 BC-AD 1500. Oxford University
36 Press

37 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth

1 GT, Sherry ST, et al. 2011. The variant call format and VCFtools. *Bioinformatics* [Internet]
2 27:2156–2158. Available from: <http://dx.doi.org/10.1093/bioinformatics/btr330>

3 Darwin C, Gray A. 1868. The variation of animals and plants under domestication / by Charles Darwin ;
4 authorized edition, with a preface by Asa Gray. Available from:
5 <http://dx.doi.org/10.5962/bhl.title.37659>

6 DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated
7 receiver operating characteristic curves: a nonparametric approach. *Biometrics* 44:837–845.

8 Dixon GR. 2006. Origins and diversity of Brassica and its relatives. *Vegetable brassicas and related*
9 *crucifers*:1–33.

10 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR.
11 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29:15–21.

12 Edh K, Widén B, Ceplitis A. 2007. Nuclear and chloroplast microsatellites reveal extreme population
13 differentiation and limited gene flow in the Aegean endemic *Brassica cretica* (Brassicaceae). *Mol.*
14 *Ecol.* 16:4972–4983.

15 Engström PG, Steijger T, Sipos B, Grant GR, Kahles A, Rätsch G, Goldman N, Hubbard TJ, Harrow J,
16 Guigó R, et al. 2013. Systematic evaluation of spliced alignment programs for RNA-seq data. *Nat.*
17 *Methods* 10:1185–1191.

18 Evershed RP, Arnot KI, Collister J, Eglinton G, Charters S. 1994. Application of isotope ratio monitoring
19 gas chromatography–mass spectrometry to the analysis of organic residues of archaeological origin.
20 *The Analyst* [Internet] 119:909–914. Available from: <http://dx.doi.org/10.1039/an9941900909>

21 Evershed RP, Heron C, Charters S, Goad LJ. 1992. The survival of food residues: new methods of
22 analysis, interpretation and application. In: *Proceedings of the British Academy*. Vol. 77. p. 2.

23 Farnham MW. 1996. Genetic variation among and within United States collard cultivars and landraces as
24 determined by randomly amplified polymorphic DNA markers. *J. Am. Soc. Hortic. Sci.* 121:374–
25 379.

26 Feng X, Park DS, Liang Y, Pandey R, Papeş M. 2019. Collinearity in ecological niche modeling:
27 Confusions and challenges. *Ecology and Evolution* [Internet] 9:10365–10376. Available from:
28 <http://dx.doi.org/10.1002/ece3.5555>

29 Fernie AR, Yan J. 2019. De Novo Domestication: An Alternative Route toward New Crops for the
30 Future. *Mol. Plant* 12:615–631.

31 Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land
32 areas. *Int. J. Climatol.* [Internet]. Available from:
33 <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086>

34 Fordham DA, Saltré F, Haythorne S, Wigley TML, Otto-Bliesner BL, Chan KC, Brook BW. 2017.
35 PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at
36 regional and global scales. *Ecography* 40:1348–1358.

37 Fuller DQ, Denham T, Arroyo-Kalin M, Lucas L, Stevens CJ, Qin L, Allaby RG, Purugganan MD. 2014.
38 Convergent evolution and parallelism in plant domestication revealed by an expanding
39 archaeological record. *Proceedings of the National Academy of Sciences* [Internet] 111:6147–6152.

1 Available from: <http://dx.doi.org/10.1073/pnas.1308937110>

2 Gómez-Campo C, Aguinagalde I, Ceresuela JL, Lázaro A, Martínez-Laborde JB, Parra-Quijano M,
3 Simonetti E, Torres E, Tortosa ME. 2005. An exploration of wild *Brassica oleracea* L. germplasm in
4 Northern Spain. *Genet. Resour. Crop Evol.* 52:7–13.

5 Gustafsson M, Bentzer B, Von Bothmer B, Snogerup. 1976. Meiosis in Greek *Brassica* of the oleracea
6 group. Available from: <https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCAL7637010832>

7 Heaney RK, Roger Fenwick G, Mithen RF, Lewis BG. 1987. Glucosinolates of wild and cultivated
8 *Brassica* species. *Phytochemistry* [Internet] 26:1969–1973. Available from:
9 [http://dx.doi.org/10.1016/s0031-9422\(00\)81740-9](http://dx.doi.org/10.1016/s0031-9422(00)81740-9)

10 Helm J. 1963. Morphologisch-taxonomische Gliederung der Kultursippen von *Brassica oleracea* L. *Die
11 Kulturpflanze* [Internet] 11:92–210. Available from: <http://dx.doi.org/10.1007/bf02136113>

12 Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the Ultrafast
13 Bootstrap Approximation. *Molecular Biology and Evolution* [Internet] 35:518–522. Available from:
14 <http://dx.doi.org/10.1093/molbev/msx281>

15 Hodgkin T. 1995. Cabbages, kales, etc. *Brassica oleracea*:76–82.

16 Hort A. 1916. *Theophrastus: enquiry into plants*. Cambridge (Mass.) and.

17 Kaniewski D, Van Campo E, Van Lerberghe K, Boiy T, Vansteenhuyse K, Jans G, Nys K, Weiss H,
18 Morhange C, Otto T, et al. 2011. The Sea Peoples, from cuneiform tablets to carbon dating. *PLoS
19 One* 6:e20232.

20 Khoury CK, Carver D, Greene SL, Williams KA, Achicanoy HA, Schori M, León B, Wiersema JH,
21 Frances A. 2020. Crop wild relatives of the United States require urgent conservation action. *Proc.
22 Natl. Acad. Sci. U. S. A.* 117:33351–33357.

23 Kioukis A, Michalopoulou VA, Briers L, Pirintsos S, Studholme DJ, Pavlidis P, Sarris PF. 2020.
24 Intraspecific diversification of the crop wild relative *Brassica cretica* Lam. using demographic model
25 selection. *BMC Genomics* 21:48.

26 Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: Analysis of Next Generation Sequencing
27 Data. *BMC Bioinformatics* 15:356.

28 Kreuz A, Schäfer E. 2002. A new archaeobotanical database program. *Veg. Hist. Archaeobot.* 11:177–
29 180.

30 Kroll H. 2001. Literature on archaeological remains of cultivated plants (1999/2000). *Vegetation History
31 and Archaeobotany* [Internet] 10:33–60. Available from: <http://dx.doi.org/10.1007/pl00013368>

32 Kroll H. 2005. Literature on archaeological remains of cultivated plants 1981–2004. Available at
33 *archaeobotany.de/database.html*. Accessed January 2:2016.

34 Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. *BMC
35 Bioinformatics* 9:559.

36 Lannér C, Bryngelsson T, Gustafsson M. 1997. Relationships of wild *Brassica* species with chromosome

1 number 2 n= 18, based on RFLP studies. *Genome* 40:302–308.

2 Lanner-Herrera C, Gustafson M, Filt AS, Bryngelsson T. 1996. Diversity in natural populations of wild
3 *Brassica oleracea* as estimated by isozyme and RAPD analysis. *Genet. Resour. Crop Evol.* 43:13–23.

4 Lázaro A, Aguinagalde I. 1998. Genetic Diversity in *Brassica oleracea* L. (Cruciferae) and Wild Relatives
5 (2 n= 18) using Isozymes. *Ann. Bot.* 82:821–828.

6 Lee T-H, Guo H, Wang X, Kim C, Paterson AH. 2014. SNPhylo: a pipeline to construct a phylogenetic
7 tree from huge SNP data. *BMC Genomics* 15:162.

8 Liddell HG, Scott R. 1940. A Greek-English Lexicon Perseus.

9 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
10 *Bioinformatics* [Internet] 25:1754–1760. Available from:
11 <http://dx.doi.org/10.1093/bioinformatics/btp324>

12 Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. 2018. Domestication of wild tomato
13 is accelerated by genome editing. *Nature Biotechnology* [Internet] 36:1160–1163. Available from:
14 <http://dx.doi.org/10.1038/nbt.4273>

15 Lizgunova TV. 1959. The history of botanical studies of the cabbage, *Brassica oleracea* L. *Bulletin of
16 Applied Botany, Genetics and Plant Breeding* 32:37–70.

17 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq
18 data with DESeq2. *Genome Biol.* 15:550.

19 Mabry ME, Rowan TN, Pires JC, Decker JE. 2021. Feralization: Confronting the Complexity of
20 Domestication and Evolution. *Trends Genet.* [Internet]. Available from:
21 <http://dx.doi.org/10.1016/j.tig.2021.01.005>

22 Maggioni L, von Bothmer R, Poulsen G, Aloisi KH. 2020. Survey and genetic diversity of wild *Brassica*
23 *oleracea* L. germplasm on the Atlantic coast of France. *Genetic Resources and Crop Evolution*
24 [Internet] 67:1853–1866. Available from: <http://dx.doi.org/10.1007/s10722-020-00945-0>

25 Maggioni L, von Bothmer R, Poulsen G, Lipman E. 2018. Domestication, diversity and use of *Brassica*
26 *oleracea* L., based on ancient Greek and Latin texts. *Genetic Resources and Crop Evolution*
27 [Internet] 65:137–159. Available from: <http://dx.doi.org/10.1007/s10722-017-0516-2>

28 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D,
29 Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for
30 analyzing next-generation DNA sequencing data. *Genome Res.* 20:1297–1303.

31 Mei J, Li Q, Yang X, Qian L, Liu L, Yin J, Frauen M, Li J, Qian W. 2010. Genomic relationships
32 between wild and cultivated *Brassica oleracea* L. with emphasis on the origination of cultivated
33 crops. *Genet. Resour. Crop Evol.* 57:687–692.

34 Meisner J, Albrechtsen A. 2018. Inferring Population Structure and Admixture Proportions in Low-Depth
35 NGS Data. *Genetics* 210:719–731.

36 Meyer RS, DuVal AE, Jensen HR. 2012. Patterns and processes in crop domestication: an historical
37 review and quantitative analysis of 203 global food crops. *New Phytol.* 196:29–48.

1 Mi H, Ebert D, Muruganujan A, Mills C, Albou L-P, Mushayamaha T, Thomas PD. 2021. PANTHER
2 version 16: a revised family classification, tree-based classification tool, enhancer regions and
3 extensive API. *Nucleic Acids Res.* 49:D394–D403.

4 Mitchell ND. 1976. The status of *Brassica oleracea* L. subsp. *oleracea* (wild cabbage) in the British Isles.
5 *Watsonia* 11:97–103.

6 Mitchell ND, Richards AJ. 1979. *Brassica Oleracea* L. ssp. *Oleracea* (B. *sylvestris* (L.) Miller). *J. Ecol.*
7 67:1087–1096.

8 Mithen RF, Lewis BG, Heaney RK, Fenwick GR. 1987. Resistance of leaves of *Brassica* species to
9 *Leptosphaeria maculans*. *Trans. Br. Mycol. Soc.* 88:525–531.

10 Mithen RF, Magrath R. 1992. Glucosinolates and Resistance to *Leptosphaeria maculans* in Wild and
11 Cultivated *Brassica* Species. *Plant Breeding* [Internet] 108:60–68. Available from:
12 <http://dx.doi.org/10.1111/j.1439-0523.1992.tb00100.x>

13 Mittell EA, Cobbold CA, Ijaz UZ, Kilbride EA, Moore KA, Mable BK. 2020. Feral populations of
14 *Brassica oleracea* along Atlantic coasts in western Europe. *Ecol. Evol.* 10:11810–11825.

15 Mohammed A, Addo-Quaye A, Asare-bediako E. 2010. Control of Diamond back Moth (*Plutella*
16 *xylostella*) on Cabbage (*Brassica oleracea* var *capitata*) using Intercropping with Non-Host Crops“ E.
17 Asare-Bediako,” AA Addo-Quaye and“ A. Mohammed” Department of Crop Science, University of
18 Cape Coast, Cape Coast, Ghana. *Am. J. Food Technol.* 5:269–274.

19 Murray MA. 2000. Fruits, vegetables, pulses and condiments. In: Cambridge University Press.

20 Neutrofal F. 1927. Zytologische Studien über die Kulturrassen von *Brassica oleracea*. *Oesterr. Bot. Z.*
21 76:105–115.

22 Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic
23 algorithm for estimating maximum-likelihood phylogenies. *Mol. Biol. Evol.* 32:268–274.

24 Onno M. 1933. Die Wildformen aus dem Verwandtschaftskreis „*Brassica oleracea* L.“. *Österreichische*
25 *Botanische Zeitschrift* 82:309–334.

26 Open Source Geospatial Foundation Project. QGIS Geographic Information System. *QGIS.org* [Internet].
27 Available from: <http://qgis.org>

28 Panda S, Martin J, Aguinagalde I. 2003. Chloroplast and nuclear DNA studies in a few members of the
29 *Brassica oleracea* L. group using PCR-RFLP and ISSR-PCR markers: a population genetic analysis.
30 *Theor. Appl. Genet.* 106:1122–1128.

31 Paolucci L. 1890. Flora marchigiana. Stab. tipo-lit. Federici

32 Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V,
33 Bidwell SL, et al. 2014. Transcriptome and methylome profiling reveals relics of genome dominance
34 in the mesopolyploid *Brassica oleracea*. *Genome Biol.* 15:R77.

35 Patro R, Duggal G, Kingsford C. 2015. Salmon: Accurate, Versatile and Ultrafast Quantification from
36 RNA-seq Data using Lightweight-Alignment. *Cold Spring Harbor Laboratory* [Internet]:021592.
37 Available from: <https://www.biorxiv.org/content/10.1101/021592v1.abstract>

1 Pelc SE, Couillard DM, Stansell ZJ, Farnham MW. 2015. Genetic Diversity and Population Structure of
2 Collard Landraces and their Relationship to Other *Brassica oleracea* Crops. *Plant Genome*
3 8:eplantgenome2015.04.0023.

4 Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-
5 source release of Maxent. *Ecography* [Internet] 40:887–893. Available from:
6 <http://dx.doi.org/10.1111/ecog.03049>

7 Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic
8 distributions. *Ecol. Modell.* 190:231–259.

9 Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S. 2009. Sample selection
10 bias and presence-only distribution models: implications for background and pseudo-absence data.
11 *Ecol. Appl.* 19:181–197.

12 Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele
13 frequency data. *PLoS Genet.* 8:e1002967.

14 Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE,
15 Gauthier LD, Levy-Moonshine A, Roazen D, et al. 2017. Scaling accurate genetic variant discovery
16 to tens of thousands of samples. *Cold Spring Harbor Laboratory* [Internet]:201178. Available from:
17 <https://www.biorxiv.org/content/10.1101/201178v2.abstract>

18 Prohens J, Gramazio P, Plazas M, Dempewolf H, Kilian B, Díez MJ, Fita A, Herraiz FJ, Rodríguez-
19 Burruzeo A, Soler S, et al. 2017. Introgressomics: a new approach for using crop wild relatives in
20 breeding for adaptation to climate change. *Euphytica* [Internet] 213. Available from:
21 <http://dx.doi.org/10.1007/s10681-017-1938-9>

22 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker
23 PIW, Daly MJ, et al. 2007. PLINK: a tool set for whole-genome association and population-based
24 linkage analyses. *Am. J. Hum. Genet.* 81:559–575.

25 Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: variational inference of population structure
26 in large SNP data sets. *Genetics* 197:573–589.

27 Raybould AF, Mogg RJ, Clarke RT, Gliddon CJ, Gray AJ. 1999. Variation and population structure at
28 microsatellite and isozyme loci in wild cabbage (*Brassica oleracea* L.) in Dorset (UK). *Genet.*
29 *Resour. Crop Evol.* 46:351–360.

30 R Core Team. 2018. R: A language and environment for statistical computing. Available from:
31 <https://www.R-project.org/>.

32 Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009. Reconstructing Indian population history.
33 *Nature* 461:489–494.

34 Reihl S. 2014. Archaeobotanical database of Eastern Mediterranean and Near Eastern sites. Available
35 from: <http://www.ademnes.de/>

36 Sánchez-Yélamo MD. 2014. Characterisation of wild cabbage (*Brassica oleracea* L.) based on isoenzyme
37 data. Considerations on the current status of this taxon in Spain. *Genet. Resour. Crop Evol.* 61:1295–
38 1306.

39 Schiemann E. 1932. Entstehung der kulturpflanzen. Borntraeger

1 Schmidl A, Oegg K. 2005. Subsistence strategies of two Bronze Age hill-top settlements in the eastern
2 Alps—Friaga/Bartholomäberg (Vorarlberg, Austria) and Ganglegg/Schluderns (South Tyrol, Italy).
3 *Veg. Hist. Archaeobot.* 14:303–312.

4 Schrempf D, Minh BQ, De Maio N, von Haeseler A, Kosiol C. 2016. Reversible polymorphism-aware
5 phylogenetic models and their application to tree inference. *J. Theor. Biol.* 407:362–370.

6 Schulz OE. 1936. Cruciferae. In: Engler A, Harms H, editors. *Die natürlichen Pflanzenfamilien*, 2nd
7 edn. p. 176: 227±658.

8 Shyam P, Wu XM, Bhat SR. 2012. History, evolution, and domestication of Brassica crops. *Plant Breed. Rev.* [Internet]. Available from: <https://www.cabdirect.org/cabdirect/abstract/20123077074>

10 Snogerup S. 1980. The wild forms of the *Brassica oleracea* group ($2n=18$) and their possible relations to
11 the cultivated ones. *Brassica crops and wild allies*. [I].:121–132.

12 Snogerup S, Gustafsson M, Von Bothmer R. 1990. *Brassica* sect. *Brassica* (Brassicaceae) I. Taxonomy
13 and Variation. *Willdenowia* 19:271–365.

14 Soneson C, Love MI, Robinson MD. 2015. Differential analyses for RNA-seq: transcript-level estimates
15 improve gene-level inferences. *F1000Res.* 4:1521.

16 Song KM, Osborn TC, Williams PH. 1988. Brassica taxonomy based on nuclear restriction fragment
17 length polymorphisms (RFLPs). *Theor. Appl. Genet.* 75:784–794.

18 Song K, Osborn TC, Williams PH. 1990. Brassica taxonomy based on nuclear restriction fragment length
19 polymorphisms (RFLPs). *Theor. Appl. Genet.* 79:497–506.

20 Stansell Z, Hyma K, Fresnedo-Ramírez J, Sun Q, Mitchell S, Björkman T, Hua J. 2018. Genotyping-by-
21 sequencing of *Brassica oleracea* vegetables reveals unique phylogenetic patterns, population
22 structure and domestication footprints. *Hortic Res* 5:38.

23 Swarup V, Brahmi P. 2005. Cole crops. *Plant Genetic Resources: Horticultural Crops*:75–88.

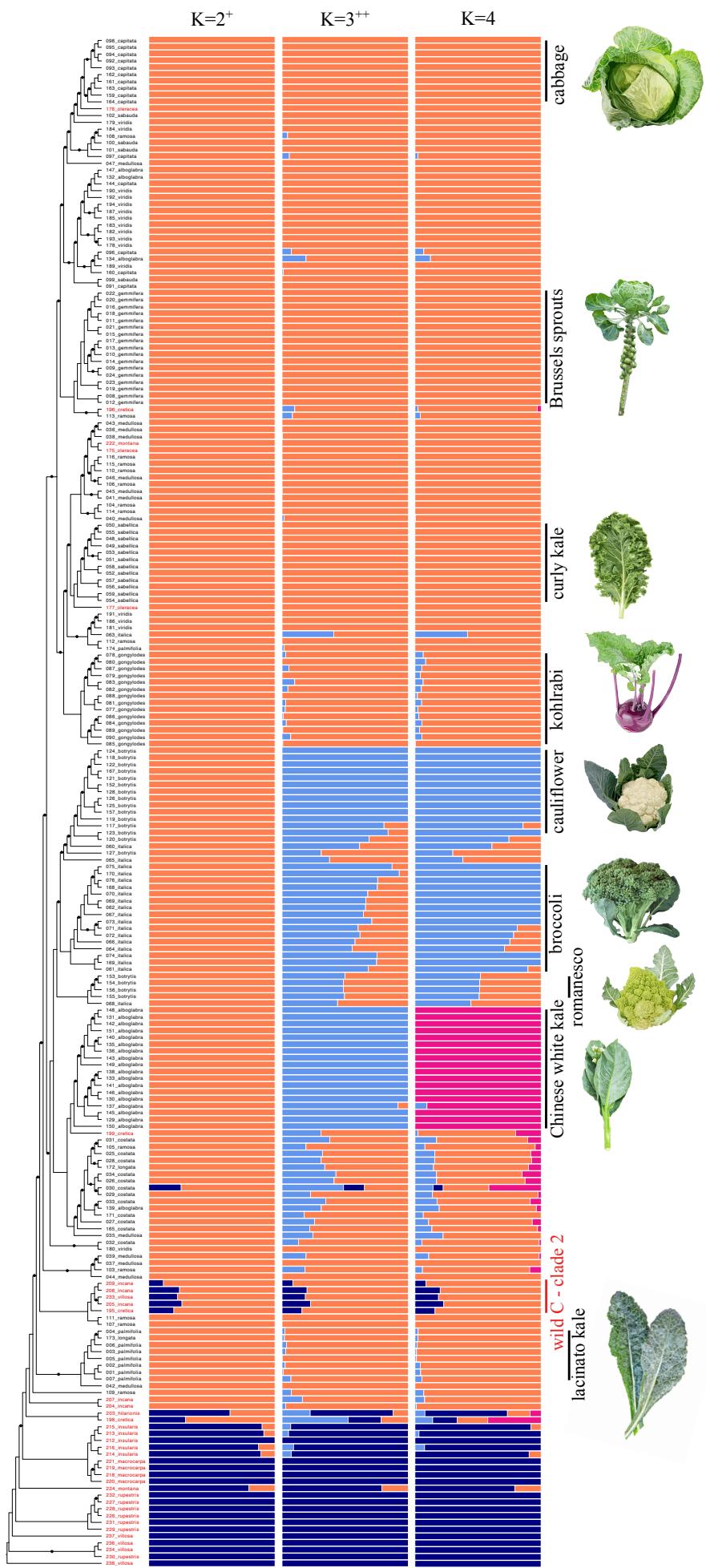
24 (the Elder.) P, Rackham H. 1950. *Natural History with an English Translation*: Vol 5: Libri XVII-XIX.
25 Harvard University Press

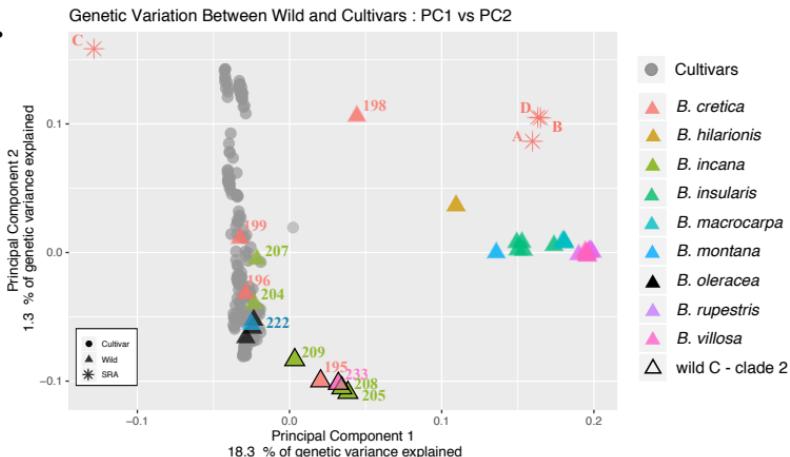
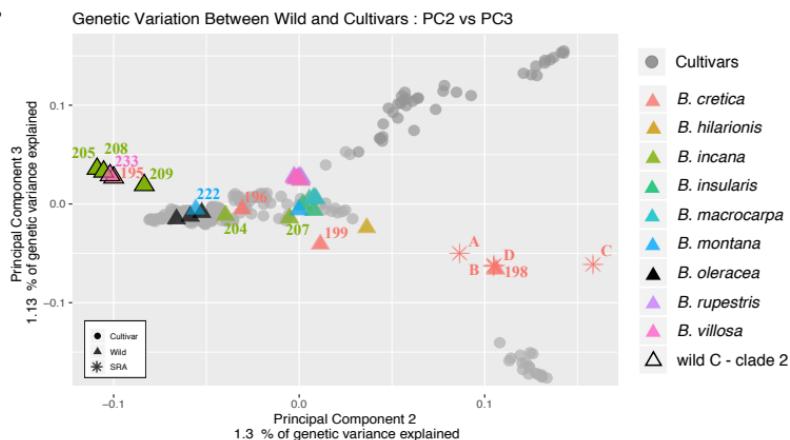
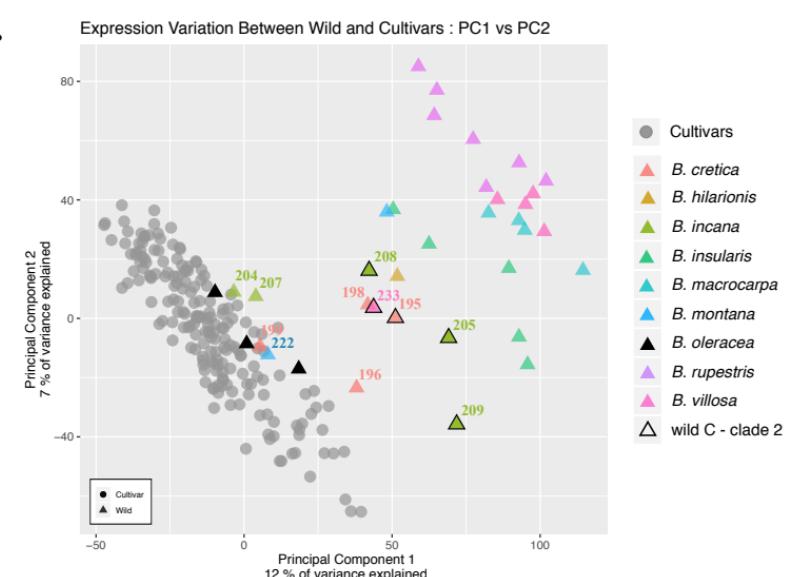
26 Tomlinson P, Hall A. 1996. A review of the archaeological evidence for food plants from the British
27 Isles: an example of the use of the Archaeobotanical Computer Database (ABCD). *Internet
28 Archaeology* 1.

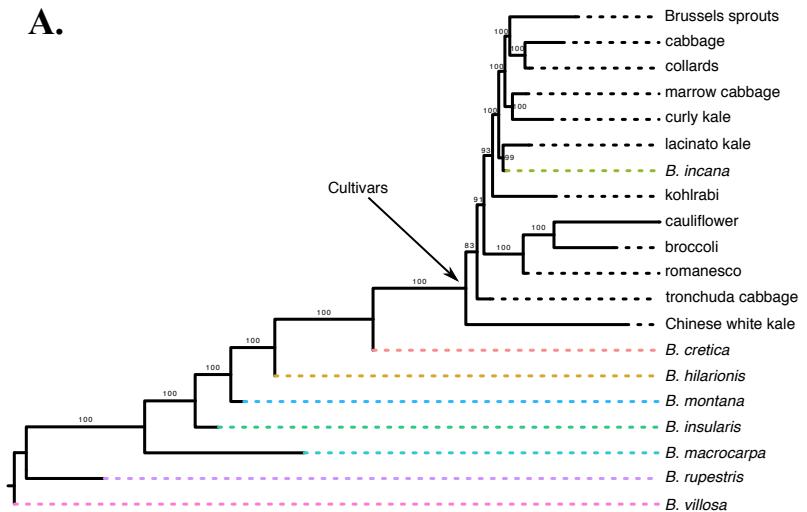
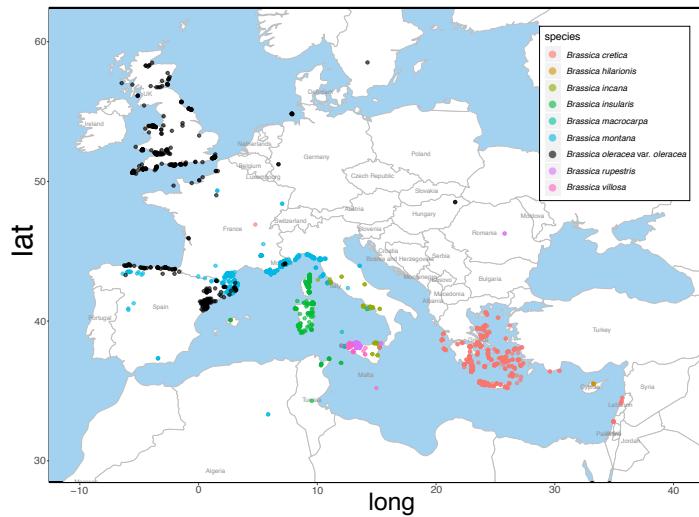
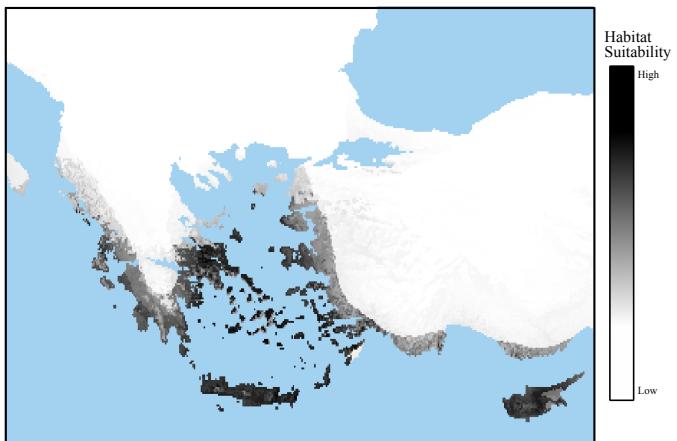
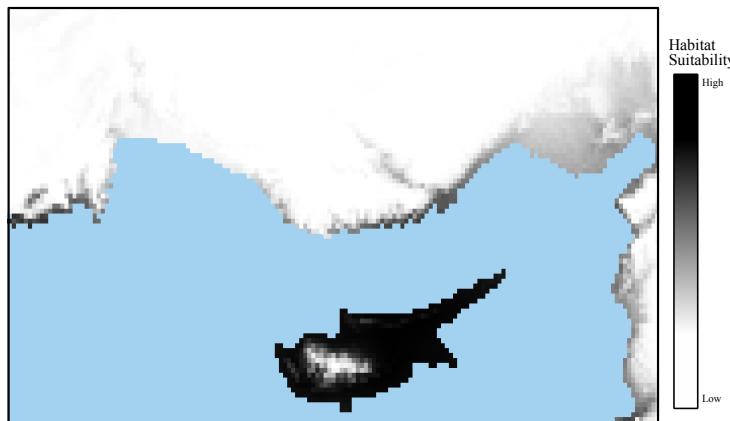
29 Totelin LMV. 2009. *Hippocratic Recipes: Oral and Written Transmission of Pharmacological Knowledge*
30 in Fifth- And Fourth-Century Greece. BRILL

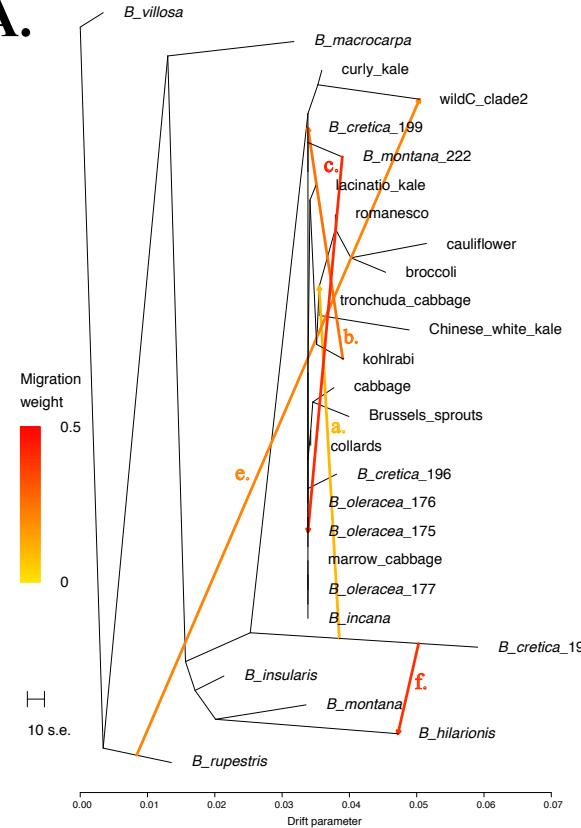
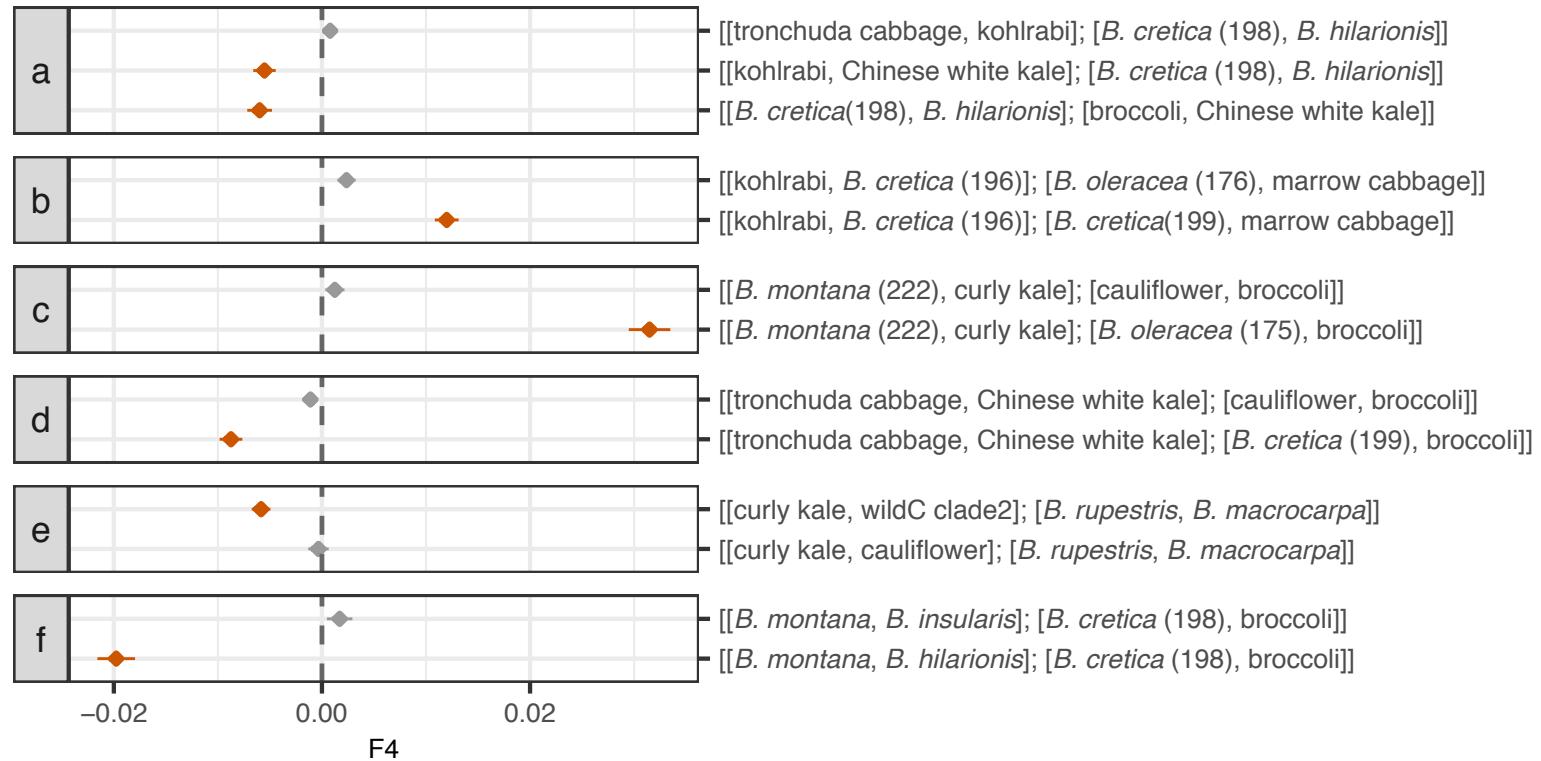
31 Turner-Hissong SD, Mabry ME, Beissinger TM, Ross-Ibarra J, Chris Pires J. 2020. Evolutionary insights
32 into plant breeding. *Current Opinion in Plant Biology* [Internet] 54:93–100. Available from:
33 <http://dx.doi.org/10.1016/j.pbi.2020.03.003>

34 Tutin TG. 1964. *Flora Europaea: Lycopodiaceae to Platanaceae*. University Press


35 Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T,
36 Shakir K, Roazen D, Thibault J, et al. 2013. From FastQ data to high-confidence variant calls: the
37 genome analysis toolkit best practices pipeline. *Curr. Protoc. Bioinformatics* 43:11–10.




- 1 Van der Veen M. 2011. Consumption, Trade and Innovation. Africa Magna Verlag
- 2 Vavilov. 1926. On the Origin of Cultivated Plants. *Food History: Critical and Primary Sources*
3 [Internet]. Available from: <http://dx.doi.org/10.5040/9781474220095.ch-004>
- 4 Vavilov. 1951. The Origin, Variation, Immunity and Breeding of Cultivated Plants. *Soil Science* [Internet]
5 72:482. Available from: <http://dx.doi.org/10.1097/00010694-195112000-00018>
- 6 Wang H, Vieira FG, Crawford JE, Chu C, Nielsen R. 2017. Asian wild rice is a hybrid swarm with
7 extensive gene flow and feralization from domesticated rice. *Genome Res.* 27:1029–1038.
- 8 West ML. 2011. Studies in Greek Elegy and Iambus. Walter de Gruyter
- 9 Widén B, Andersson S, Rao G-Y, Widén M. 2002. Population divergence of genetic (co)variance
10 matrices in a subdivided plant species, *Brassica cretica*: G matrix variation in *Brassica cretica*. *J. Evol.*
11 *Biol.* 15:961–970.
- 12 Yang S, Zheng Z, Mao L, Li J, Chen B. 2018. Pollen morphology of selected crop plants from southern
13 China and testing pollen morphological data in an archaeobotanical study. *Veg. Hist. Archaeobot.*
14 27:781–799.
- 15 Yonge CD. 1854. Athenaeus of Naucratis. *The deipnosophists, or, Banquet of the learned of Athenaeus*.
16 London: Henry G. Bohn.
- 17 Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. *Stat.*
18 *Appl. Genet. Mol. Biol.* 4:Article17.
- 19 Zhang P. 2009. Studies on the origin of *Brassica alboglabra* Bailey. *China Vegetables*:62–65.





Table 1. Wild species which have been proposed as progenitor species for *B. oleracea* crop types. Specific location in parentheses if indicated by the author.



Cultivar	Wild relative	Author
Broccoli	<i>B. oleracea</i>	Linnaeus
	<i>B. oleracea</i>	Hedrick (1919) *
	<i>B. oleracea</i>	Giles (1941) **
	<i>B. montana</i>	Hegi (1919)
	<i>B. oleracea</i> (from Italy)	Giles (1941)
	<i>B. cretica</i>	Gates (1953)
Brussels sprouts	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)
	<i>B. oleracea</i>	Linnaeus
	<i>B. oleracea</i> (western Europe)	Gates (1953)
	<i>B. oleracea</i> (western Europe)	Snogerup (1980)
Cabbage	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)
	<i>B. oleracea</i>	Linnaeus
	<i>B. oleracea</i>	de Candolle (1824)
	<i>B. oleracea</i>	Hedrick (1919) *
	<i>B. oleracea</i>	Bailey (1930)
	<i>B. montana</i>	Hegi (1919)
	<i>B. oleracea</i> (western Europe)	Gates (1953)
	<i>B. oleracea</i> (western Europe)	Snogerup (1980)
Cauliflower	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)
	<i>B. oleracea</i>	Linnaeus
	<i>B. oleracea</i>	de Candolle (1824)
	<i>B. oleracea</i>	Bailey (1930)
	<i>B. montana</i>	Hegi (1919)
	<i>B. cretica</i>	Schulz (1936)
	<i>B. oleracea</i> (from Cyprus)	Giles (1941)
	<i>B. cretica</i>	Gates (1953)
	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)
Kale	<i>B. cretica</i>	Tutin et al. (1964)
	<i>B. oleracea</i>	Linnaeus
	<i>B. oleracea</i>	Hedrick (1919) *
	<i>B. oleracea</i>	Bailey (1930)
	<i>B. montana</i>	Hegi (1919)
	<i>B. montana</i>	Netroufal (1927)
	<i>B. oleracea</i> (western Europe)	Gates (1953)
	<i>B. cretica</i> , <i>B. incana</i> , <i>B. rupestris</i>	Snogerup (1980)
Kohlrabi	<i>B. incana</i> and <i>B. insularia</i>	Hosaka et al. (1990)
	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)
	<i>B. oleracea</i>	Linnaeus
	<i>B. rupestris</i>	Netroufal (1927)
	Unknown Mediterranean species	Gates (1953)
	<i>B. oleracea</i> and <i>B. alboglabra</i>	Song et al. (1990)

* edited observations by Sturtevant in the late 19th century, ** referring to Prof Buckman's experiment

A.**B.****C.**

A.**B.****C.****D.**

A.**B.**