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ABSTRACT 16 

Many adaptive traits are polygenic and frequently more loci contributing to the phenotype than 17 

needed are segregating in populations to express a phenotypic optimum. Experimental evolution 18 

provides a powerful approach to study polygenic adaptation using replicated populations adapting 19 

to a new controlled environment. Since genetic redundancy often results in non-parallel selection 20 

responses among replicates, we propose a modified Evolve and Resequencing (E&R) design that 21 

maximizes the similarity among replicates. Rather than starting from many founders, we only use 22 

two inbred Drosophila melanogaster strains and expose them to a very extreme, hot temperature 23 

environment (29°C). After 20 generations, we detect many genomic regions with a strong, highly 24 

parallel selection response in 10 evolved replicates. The X chromosome has a more pronounced 25 

selection response than the autosomes, which may be attributed to dominance effects. Furthermore, 26 

we find that the median selection coefficient for all chromosomes is higher in our two-genotype 27 

experiment than in classic E&R studies. Since two random genomes harbor sufficient variation for 28 

adaptive responses, we propose that this approach is particularly well-suited for the analysis of 29 

polygenic adaptation.  30 
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INTRODUCTION 31 

Many adaptive traits have a polygenic basis (Barton and Etheridge, 2018; Barghi et al, 2019; 32 

Hoffman et al, 2003), where typically more contributing loci are segregating in a population than 33 

needed to reach the trait optimum (Yeaman, 2015). For highly polygenic traits, the contribution of a 34 

single locus during adaptation to a new environment, i.e. a new phenotypic optimum, will be small, 35 

usually too small to be detected by classic population genetic tests (Pritchard et al, 2010; Pritchard 36 

and Di Rienzo, 2010). Thus, tests for polygenic adaptation aggregate signals across multiple loci to 37 

gain statistical power (Turchin et al, 2012; Berg and Coop, 2014; Sella and Barton, 2019). 38 

However, distinguishing the contributions of demography and selection in these aggregated signals 39 

can be challenging in natural populations because of residual population structure (Barton et al, 40 

2019; Sohail et al, 2019; Berg et al, 2019). Hence, experimental evolution has been proposed as an 41 

alternative approach to study polygenic adaptation (Barghi et al, 2020; Lou et al, 2020; Vlachos and 42 

Kofler, 2019). Laboratory natural selection within the Evolve and Re-sequencing (E&R) framework 43 

(Garland and Rose, 2009; Turner et al, 2011; Long et al, 2015; Schlötterer et al, 2015) has been 44 

successfully used to study adaptation in controlled environments, combining experimental evolution 45 

and Pool-sequencing on replicated populations (Schlötterer et al, 2014).  46 

 47 

Simulation studies (Baldwin-Brown et al, 2014; Kofler and Schlötterer, 2014; Kessner and 48 

Novembre, 2015) recommend optimizing different design parameters to obtain a good mapping 49 

resolution. An established strategy is to use a large number of founder genotypes. Maximizing the 50 

number of founders provides the advantage that the contributing alleles segregating at intermediate 51 

frequency will be located on multiple haplotypes, which facilitates their identification (e.g. Kelly 52 

and Hughes, 2019). However, for highly polygenic traits, increasing the number of founders also 53 

increases the number of available contributing alleles, which may either trigger competition 54 

between the present haplotypes if they interfere with each other (Hill and Robertson, 1968), or 55 

inflate genotypic redundancy making evolution less repeatable (Láruson et al, 2020). Additionally, 56 

increasing the number of founders lowers their starting frequency, which in turn increases their 57 

chance to be lost by drift.  58 

 59 

As a consequence, a (highly) heterogeneous response between replicates is expected and has been 60 

seen in several E&R studies (e.g. Seabra et al, 2017; Griffin et al, 2017; Hardy et al, 2018; Barghi et 61 

al, 2019; Rêgo et al, 2019) – even when the same founder population is used, and in particular in 62 

small populations where stochastic sampling effects have a strong impact on allele frequencies. 63 

Nevertheless, various E&R studies displayed (highly) parallel selection signatures despite using a 64 

large number of founders (e.g. Martins et al, 2014; Burke et al, 2014; Graves et al, 2017; Phillips et 65 
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al, 2018; Kelly and Hughes, 2019). These conflicting observations imply that our understanding of 66 

the adaptive response, i.e. the adaptive architecture, in E&R studies is not yet complete and more 67 

data are required to evaluate which factors contribute to (non-)parallel selection responses (Barghi 68 

and Schlötterer, 2020; Otte et al, 2020; Matos et al, 2015). 69 

 70 

Parallel genomic responses are a key factor determining the power of many statistical tests to detect 71 

selection at a given locus in E&R studies (reviewed in Vlachos et al, 2019). The degree of 72 

parallelism depends on the probability that a particular favorable allele from standing genetic 73 

variation will respond to selection, with loci of large effect showing more parallel signatures 74 

(Hermisson and Pennings, 2017; Castro et al, 2019). Various experimental design parameters 75 

determine how concordant the selection responses are (Vlachos and Kofler, 2019; Baldwin-Brown 76 

et al, 2014; Kofler and Schlötterer, 2014; Kessner and Novembre, 2015). First, higher starting 77 

frequencies and larger population size reduce the probability of stochastic loss and help to 78 

consistently detect not only large-effect but also moderate-effect loci. Second, depending on the 79 

distance to the new phenotypic optimum, either more sweep-like (distant) or shift-like (less distant) 80 

responses are favored (Matuszewski et al, 2015; Christodoulaki et al, 2019; Hayward and Sella, 81 

2019). Third, with increasing redundancy, the selection response is becoming less parallel (Láruson 82 

et al, 2020).  83 

 84 

In this study, we designed an experiment which aims to achieve a highly parallel selection response 85 

across replicates by accounting for all three factors outlined above. Given that many adaptive 86 

variants are present in natural Drosophila populations, we drastically reduced the amount of 87 

segregating variation in the founder population by using only two founder genotypes. We first 88 

created 10 replicate populations from two parental inbred D. melanogaster strains, Samarkand and 89 

Oregon-R. We then exposed the replicate populations to an extreme temperature regime (constant 90 

29°C), which is only slightly below the maximum temperature at which D. melanogaster are viable 91 

and fertile (Fig 1, Hoffmann, 2010). Eventually, all contributing alleles that start at intermediate 92 

frequency in the founder population will be measured after 20 generations.  93 

 94 

By analyzing the genomic responses in the 10 replicate populations maintained for 20 generations 95 

at a hot temperature, we find that two founder genotypes harbor enough natural variation to ensure a 96 

selective response. A very strong and highly parallel selection signature is seen in all replicates. 97 

This demonstrates that even for temperature adaptation, which is highly polygenic, an adequate 98 

experimental design, i.e. a reduced founder diversity and a distant trait optimum, results in 99 

reproducible selection signals.   100 
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RESULTS 101 

Parallel response after 20 generations of evolution at high temperature  Using two genotypes to 102 

set up the founder population provides the advantage that all parental alleles start from the same 103 

frequency across the entire genome. A simple genome-wide allele frequency plot along the genome 104 

provides an intuitive visualization of the selection targets (Fig 1A): the pronounced allele frequency 105 

increase of the putatively selected alleles, either Oregon-R (AF>30%) or Samarkand (AF<30%), 106 

generates a “hill-valley-like” landscape. Since recombination rate a priori determines the width of 107 

the genomic region affected by a selected site (Felsenstein, 1974; Barton, 1995; Otto and 108 

Lenormand, 2002; Roze and Barton, 2006), we scaled the chromosomes in cM unit (for a base-pair 109 

scaling, see Fig SI 4). Throughout the entire genome, we observe a fast and strong response after 20 110 

generations (Fig 1A) where in all replicates, large, linked genomic regions experience very similar 111 

changes in frequency.  112 

 113 

The high level of parallelism among the empirical replicates is reflected in highly correlated allele 114 

frequencies between replicates, higher than 0.8 (t-test on pairwise Spearman correlation coefficient 115 

ρ per arm; mean ρ2=0.89 (t(40)=200, adjusted (adj.) p<1.7⨉10-65), mean ρ3=0.80 (t(40)=100, adj. 116 

p<6.4⨉10-55), mean ρX=0.92 (t(40)=200, adj. p<3.9⨉10-67)). Such high correlations are not 117 

observed among replicate populations in neutral simulations (t-test on pairwise ρ per arm; mean 118 

ρ2=0.04 (t(40)=0.8, adj. p>0.57), mean ρ3=0.07 (t(40)=2, adj. p>0.37), mean ρX=0.0 (t(40)=0.09, 119 

adj. p>0.95)). We visualized the difference between the empirical and simulated replicates by 120 

projecting the pairwise correlation matrix in a two-dimensional multidimensional scaling plot (Fig 121 

1B), which highlights the similarity between the empirical replicates for each major arm, whereas in 122 

the neutral simulations no clustering of replicates was apparent.  123 
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124 

Figure 1. Strong parallel response after 20 generations of evolution at 29°C.  125 

A) Smoothed Oregon-R (O) allele frequency (y-axis) at F20 in all replicates colored by major chromosome 126 

in cM unit (x-axis). The same color code applies to all figures (from dark to light: chromosomes 2, 3 and X). 127 

The median O allele frequency (AF) is computed over non-overlapping windows of 250 SNPs. The bold line 128 

represents the median O AF per window over the 10 replicates and the horizontal dotted line the starting O 129 

AF (0.3). B) 2D Multidimensional Scaling (MDS) projection of the pairwise ρ Spearman correlation matrix 130 

between empirical (colored) and neutral (gray) allele frequencies per major chromosome. The correlation 131 

coefficient values were transformed to distances (2√(1-ρ)) prior to projection.  132 

 133 

While it is difficult to provide a statistically sound estimate of the number of selection targets, it is 134 

apparent that reducing the genetic variation to two genotypes still leaves a considerable reservoir of 135 

favorably selected alleles. This strong selection response is also reflected in effective population 136 

size (Ne) estimates based on allele frequency changes. For the X chromosome, Ne barely reaches 25137 

with a median of 21 and is also rather small on the autosomes (median of 55, SI Table 2), given a 138 

census size of 1,500 flies in each replicate. The effective population size on the X chromosome is 139 
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much lower than the expected 3/4 reduction relative to the autosomes (Charlesworth, 2009). This 140 

implies that the efficacy of selection differed between the autosomes and X and that selection was 141 

considerably stronger on the X chromosome (see discussion for possible explanations).  142 

 143 

The experiment started from two genotypes and in 20 generations the number of recombination 144 

events that can uncouple contiguous blocks of Oregon-R/Samarkand alleles which experience a 145 

strong frequency increase is limited. This non-independence of neighboring sites translates into the 146 

“hilly” landscape of allele frequency changes. In the absence of haplotype data from the evolved 147 

flies, we used the loss of autocorrelation in allele frequency as a proxy for the decay of linkage 148 

disequilibrium to quantify the association between genomic sites (Fig 2A). The correlation between 149 

increasingly distant windows decayed faster on the autosomes (with a median of 5.9Mb and 4.7Mb 150 

over the 10 replicates for chromosomes 2 and 3) compared to the X chromosome (median of 151 

6.6Mb) (Fig 2B), implying less LD on the autosomes. We attribute the independence of neighboring 152 

windows at a lower distance on the autosomes (correlation outside 95% confidence interval) to 153 

differences in selection intensities: stronger selection reduces the effective population sizes beyond 154 

the 3/4 expected from the ratio of X chromosomes to autosomes, which results in less opportunity 155 

for recombination on the X chromosome.  156 

 157 

At 29°C the two separated parental lines suffered similarly from the high temperature regime and 158 

produced low numbers of offspring (data not shown). When the two strains were combined in the 159 

experimental evolution cage, the Oregon-R alleles clearly outcompeted the Samarkand genotypes 160 

(Fig 1A, Fig 2C,D): the median Oregon-R AFC was significantly higher than 0 (0.15, 0.15, 0.30 for 161 

chromosomes 2, 3 and X; adj. p<3.5⨉10-89, adj. p<7.7⨉10-110,  adj. p<4.6⨉10-18 on each sign test; 162 

Fig 2D). Although some heterogeneity can be observed along the chromosome arms (Fig 1A; 163 

median coefficient of variation is 0.10, 0.11, 0.14 for chromosomes 2, 3 and X), the median 164 

Oregon-R allele frequency increased on each chromosome, ranging from 40% to 65% (Fig 2C), 165 

which suggests a genome-wide rather than an isolated footprint of selection.  166 
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 167 

Figure 2. Quantification of the evolutionary response at F20.  168 

A) and B) Loss of correlation at the major chromosomes. A) Example of a scatterplot of ρ Spearman 169 

correlation against distance between two windows measured in the number of windows separating them. The 170 

blue dotted lines represents +/-1.96/√m, with m number of windows. B) Jittered boxplots of physical 171 

distance in Mb where Linkage Equilibrium (LE) is reached at a 5% threshold  (vertical black line in the A 172 

panel). C) Jittered boxplots of median O allele frequency (AF) on the major chromosomes in each replicate. 173 

D) Boxplots overlaid with violin plots of AFC. A positive (negative) allele frequency change (AFC) 174 

indicates that the O genotype increases (decreases) in the window relative to the starting frequency of 0.3. 175 

The horizontal dark red dashed line indicates no change in frequency after 20 generations.  176 

 177 

Exceptionally strong, genome-wide selection signatures With all alleles occurring at similar178 

frequency throughout the entire genome, the comparison of allele frequency changes provides a 179 

direct readout of the selective force operating on each SNP - either directly or through linkage to 180 

selection targets. To compare the selection experienced in this two-genotype experiment to two 181 

other short-term Drosophila E&R studies (Table 1) that differ in the number of founders (>200) and 182 

consequently in the distribution of starting allele frequencies, we transformed the allele frequency 183 
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changes into selection coefficients, s, which allows the comparison of alleles with different starting 184 

frequencies. The pronounced differences in median absolute s  between the X chromosome and 185 

autosomes were specific to the two-genotype experiment (Fig 3, estimates on x-axis). Across all 186 

chromosomes the median absolute s was significantly higher for this study compared to the two 187 

other studies (Fig 3, estimates on x-axis and adj. p). This clearly indicates that the two E&R studies 188 

experienced less selection, not only on the X chromosome, but genome-wide which may reflect the 189 

lower temperature (23°C and 25°C) during their maintenance. The differences in selection intensity 190 

between the two-genotype experiment and E&R studies with many founder genotypes are also 191 

reflected in effective population size (Ne) estimates. With Ne estimates not higher than 60 and 26 for 192 

the autosomes and X in all replicates (SI Table 3), Ne of this study was considerably lower than for 193 

the two other E&R studies (see Fig 3 legend), suggesting that a much larger fraction of the genome 194 

experienced drastic allele frequency changes.  195 

 196 

Table 1. E&R datasets information. 197 

Number 

founders 
Census size Pressure Species 

Generation 

picked 

Sequencing 

information 
Publication  

2 1,500 
LNS 

constant 29°C 

D. 

melanogaster 

20 

non 

overlapping 

Pool-seq of 

1500 mixed 

males and 

females 

this study 

202 1,000  

LNS 

Fluctuating 

temperature 

(28°C/18°C, 

mean 23°C) 

D. simulans 

20 

non 

overlapping 

Pool-seq of 

1000 mixed 

males and 

females 

Barghi et al, 

2019 

500 

mean = 1,187 

range = 963–1,620 

for the used 

replicate 

LNS  

Constant 

temperature  

(25°C) 

D. simulans 
15 

overlapping 

Pool-seq of 

500 males and 

females 

Kelly and 

Hughes, 2019 

 198 
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 199 
Figure 3. Distribution of absolute selection coefficients s per SNP across empirical E&R studies for the 200 

autosomes (A, 248,886 SNPs) and the X chromosome (B, 42,386 SNPs).  201 

Boxplots overlaid with violin plots per study (x-axis) where the median absolute s is reported. Adjusted p-202 

values from pairwise Wilcoxon tests are indicating. Population size estimates of the autosomes (X) were 55203 

(14), 243 (227), 393 (359) for the three studies.  204 

 205 

DISCUSSION 206 

The idea to start an experimental evolution study with only two genotypes is radically different 207 

from current E&R designs, but has already been used before in experimental evolution (Barnes, 208 

1968; Kearsey and Barnes, 1970; Nuzhdin et al, 1998). While strong responses were observed, the 209 

link between genotypes and phenotypes the small population sizes used for example in the mouse 210 

selection experiments can result in considerable genetic heterogeneity among replicates which 211 

limits the power to detect loci with small/moderate effects. An interesting modification of the two 212 

genotype design has been used in fruit flies. From a polymorphic population two haplotype classes 213 

were identified with moderate number of linked allozyme markers, but each haplotype class 214 

harbored considerable variation which was not surveyed (Clegg et al, 1976). Evolving populations 215 

founded by these two haplotype classes showed very strong selection signatures, but the genomic 216 

response between the replicates was heterogeneous, which was attributed to genetic heterogeneity at 217 

the unmonitored part of the haplotype classes (Clegg et al, 1976). Overall, previous two genotype 218 

experimental evolution studies were primarily designed to study the phenotypic response, but not to 219 

obtain highly parallel genomic selection signatures among replicate populations. 220 

 221 

he 

-

5 

nt 

s, 

he 

se 

h 

o 

es 

ss 

ns 

ic 

 at 

pe 

to 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 8, 2021. ; https://doi.org/10.1101/2021.04.06.438598doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438598
http://creativecommons.org/licenses/by/4.0/


 

10 

In contrast, this study obtained a highly parallel selection signature which can be attributed to the 222 

use of two high frequency genotypes in the founder populations in combination with large census 223 

sizes (1,500 individuals). Such a highly parallel selection response provides an excellent tool to 224 

study adaptation because selection responses can be reliably distinguished from stochastic patterns - 225 

even with a small number of replicates. We propose that two-haplotype E&R studies can be used to 226 

experimentally confirm candidate alleles that were previously identified - similar to a secondary 227 

E&R experiment (Burny et al, 2020). One further advantage of the highly parallel selection 228 

signature seen in this two-haplotype E&R study is that it offers the opportunity to explore epistatic 229 

interactions when only a small number of loci are selected. Crossing one inbred strain to at least 230 

two other inbred strains (in separate pairwise crosses) provides an excellent system to study 231 

epistasis by contrasting the selection response of a candidate locus in different genomic 232 

backgrounds. The highly parallel response provides sufficient power to detect even small 233 

differences, i.e. changes in frequency of the same selection target, due to the genetic background.  234 

 235 

For a highly polygenic architecture the selection response of a two haplotype E&R reflects the net 236 

effect of multiple contributing alleles in a selected haplotype block. A similar scenario has been 237 

modelled where an admixed genotype is broken up into haplotype blocks, which could introgress 238 

when the net effect of all loci in the haplotype block was positive (Sachdeva and Barton, 2018). If 239 

our two-genotype experiment is extended for more generations, the high parallelism of this set up 240 

can be used to study the breaking haplotype blocks of contributing alleles by stochastic 241 

recombination. This has been done in a recent E&R study in budding yeast, which also started from 242 

two inbred founder genotypes, but with a much larger population size and for 960 generations 243 

(Koshelava and Desai, 2018). Consistent with a highly polygenic architecture, the fitness of sexual 244 

populations continuously increased throughout the entire experiment, possibly by the creation of 245 

favorable allelic combinations during the experiment (Hickey and Golding, 2018). More 246 

generations are needed for the Drosophila experiment to determine whether fitness continues to 247 

increase as in the yeast study or plateaus when the trait optimum is reached (Franssen et al, 2017, 248 

Höllinger et al, 2019).  249 

 250 

Strong selection responses in populations derived from two founder genotypes imply that one allele 251 

provides an advantage relative to the other. While it is tempting to speculate that the fitness 252 

advantage is related to the temperature stress imposed during the experiment, we cannot rule out 253 

that the selection response is caused by a deleterious allele that was acquired during the long-term 254 

maintenance, since Samarkand and Oregon-R isofemale lines have been collected more than 90 255 

years ago (Lindsley and Grell, 1968). Isofemale lines are typically maintained at small population 256 
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sizes, which renders most mutations effectively neutral (Ohta, 1973; Kimura, 1983) and could lead 257 

to the accumulation of deleterious alleles that are fixed in the parental strains. Consistent with the 258 

presence of deleterious alleles, we noticed that heterozygous F1 flies produced a larger number of 259 

eggs at 29°C than the inbred strains which had difficulties to sustain the next generation. If 260 

deleterious alleles are the primary driver of the observed allele frequency changes, the predominant 261 

increase of Oregon alleles would suggest that Samarkand has accumulated more deleterious alleles 262 

than Oregon. This conclusion is not supported by obvious fitness differences of the two parental 263 

genotypes at 29°C. Alternatively, the lack of clear fitness differences in the parental lines could be 264 

explained by overdominance, but the reason for the predominant frequency increase of Oregon 265 

allele frequencies remains unclear. Additional generations at 29°C would help to distinguish 266 

between both explanations. Deleterious alleles would be ultimately purged while overdominance 267 

would result in a stable equilibrium frequency. A third interpretation of the data is based on 268 

epistatic interactions between Samarkand and Oregon alleles. If a few Samarkand alleles interact 269 

with many Oregon alleles, this could account for the advantage of heterozygotes and the 270 

predominance of Oregon alleles among the selectively favored ones. Epistatic interactions could be 271 

further tested when the Oregon genotype is competed with other genotypes in separate pairwise 272 

competition experiments. 273 

 274 

A particularly interesting result was the different selection signature on the X chromosome 275 

compared to the autosomes. More pronounced allele frequency changes, and hence higher selection 276 

coefficients, were found on the X chromosome translating in lower Ne estimate than expected, i.e. 277 

lower than ¾ of the Ne on the autosomes. We propose two not mutually exclusive explanations for 278 

this observation: 1) the selected loci may be (partially) recessive which allows for a more efficient 279 

selection on the X chromosome (Charlesworth et al, 1987; Mank et al, 2010; Meisel and Connallon, 280 

2013); 2) the X chromosome has either more contributing loci or they may have larger effects. 281 

Although it is hard to hypothesize about the distribution (number and location) of the selection 282 

targets after only 20 generations, we favor the dominance explanation because it is not apparent 283 

why the number of selection targets or their effect sizes should be different between the X 284 

chromosome and the autosomes.  285 
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MATERIAL AND METHODS  286 

Experimental set-up We used the Oregon-R and Samarkand strains inbred by (Chen et al, 2015), 287 

and maintained since then at room temperature. The experiment started with 10 replicates, each 288 

with a census size of 1500 flies and a starting frequency of 0.3 for the Oregon-R genotype. The 10 289 

replicates were then maintained in parallel at a constant 29°C temperature in dark conditions for 20 290 

generations before sequencing.  291 

 292 

DNA extraction, library preparation, sequencing Whole-genome sequence data for the parental 293 

Oregon-R and Samarkand strains are available from Chen et al. (2015). The 10 evolved replicates in 294 

generation F20 were sequenced using Pool-Seq: genomic DNA was prepared after pooling and 295 

homogenizing all available individuals of a given replicate in extraction buffer, followed by a 296 

standard high-salt extraction protocol (Miller et al. 1988). Barcoded libraries with a mean insert size 297 

of 480 bp were prepared using the NEBNext Ultra II DNA Library Prep Kit (E7645L, New England 298 

Biolabs, Ipswich, MA) and sequenced on a HiSeq 2500 using a 2 x 125 bp paired-end protocol. 299 

 300 

Establishment of a parental SNPs catalogue After quality control with FastQC 301 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), the raw reads have been 302 

demultiplexed and trimmed using ReadTools (Gómez-Sánchez and Schlötterer 2018; version 1.5.2; 303 

--mottQualityThreshold 18, --minReadLength 50, --disable5pTrim true). The processed paired-end 304 

rends were mapped using NovoAlign (http://novocraft.com; version 3.09; -i 250,75 -F STDFQ -r 305 

RANDOM) on the combined D. melanogaster reference genome v6.03 (Thurmond et al, 2019). 306 

From the processed BAM files, i.e. without duplicates (using PICARD MarkDuplicates; 307 

http://broadinstitute.github.io/picard/; version 2.21.6; REMOVE_DUPLICATES=true 308 

VALIDATION_STRINGENCY=SILENT), quality filtered (using samtools (Li et al. 2009); version 309 

1.10; -b -q 20 -f 0x002 -F 0x004 -F 0x008) and re-headed, multi-sample variants calling was done 310 

with Freebayes (Garrison and Marth, 2012; version 1.3.1; --use-best-n-alleles 4 --min-alternate-311 

count 3 --ploidy 2 --pooled-continuous --pooled-discrete; version 1.332). Bi-allelic SNPs in regions 312 

outside repeats (identified by RepeatMasker, http://www.repeatmasker.org) were extracted from the 313 

raw VCF file (Danecek et al, 2011) and filtered using a QUAL value of 1,000 and the 99th 314 

percentile averaged coverage as thresholds, leading to a total of 912,289 processed SNPs. A 315 

parental SNP was defined as (nearly) fixed difference between parents with a 0/0 (1/1) genotype in 316 

the Samarkand parent and 1/1 (0/0) genotype in the Oregon-R parent at the marker position, 317 

conditioning for a frequency of the alternate allele lower than 0.01 (if 0/0) or higher than 0.99 (if 318 

1/1). We obtained a final list of 360,517 and 59,280 SNPs on the autosomes and the X 319 

chromosome, respectively, equivalent to 1 SNP every 302 bp (397 bp). The frequency of these 320 
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alleles was measured at F20 (see Table SI 2 for a detailed count of markers at each filtering step) by 321 

extracting the number of reads supporting the alternate and reference allele using bcftools (query -H 322 

-f '%CHROM %POS %REF %ALT %QUAL[ %DP][ %AO][ %RO][ %GT]\n'; version 1.9; Li, 323 

2011; piped with sed). The subsequent analyses have been performed with R (version 3.5.0; R Core 324 

Team, 2018) and most panels have been done with the ggplot2 R package (Wickham, 2016). For 325 

the parental strains, we used the frequency of inversion-diagnostic SNPs to check the inversion 326 

status of common cosmopolitan inversions as inversions would impede recombination (Kapun et al, 327 

2014). Both parental strains are homosequential (Fig SI 1). We also checked the density of 328 

heterozygous SNPs per parent prior to QUAL filtering (Fig SI 2, top). Both parental strains harbor 329 

similar levels of residual variation (Fig SI 2, bottom, bootstrapped Kolmogorov-Smirnov test from 330 

Matching R package (Sekhon, 2011) on parental heterozygosity levels; D=0.02, p=0.25). 331 

 332 

Allele frequency tracking At each SNP we obtained counts for both parental alleles from the VCF 333 

file. We polarized allele frequency (AF) for the Oregon-R allele. The frequency of the Samarkand 334 

allele is obtained by subtracting the Oregon-R AF from 1. The allele frequency change (AFC) of a 335 

given marker is signed; if the Oregon-R AF at F20 is higher (lower) than 30%, the Oregon-R 336 

(Samarkand) allele increased in frequency and the AFC is positive (negative). The genome was 337 

partitioned in 1,682 non-overlapping genomic windows of 250 parental SNPs (1,444 on the 338 

autosomes, 238 on the X chromosome), spanning on average 75 kb (97 kb on the X) where the AF 339 

per window was summarized as the median over 250 SNPs. A window position i is defined by its 340 

center ((right bound-left bound)/2). Markers along the genome are positioned in cM unit, to adjust 341 

for heterogeneity in recombination rate along the chromosome. The recombination map of Comeron 342 

et al, 2012 was updated to version 6 of the reference genome using the Flybase online Converter 343 

(accessed in July 2020). Physical chromosome positions were converted to genetic positions by 344 

interpolation (DOQTL R package, Gatti et al, 2014) to avoid SNPs located in the same 345 

recombination rate interval to overlap at the cM scale (cf Marey map in Fig SI 3, Mb unit in Fig SI 346 

4). The effective population size, Ne, was estimated per replicate for the autosomes and X separately 347 

using the poolSeq::estimateNe R function (Taus et al, 2017) from 10,000 randomly picked SNPs 348 

and summarized as the median over 1,000 trials, similarly as in Vlachos et al, 2019 (Table SI 3).  349 

 350 

Quantification of the response For each replicate, we reported the median AF of the Oregon-R 351 

allele in each window. We also reported the median coefficient of variation (CV) per chromosome 352 

to quantify the deviation around the average AF value per window. We additionally computed the 353 

autocorrelation (ACF) in AF between windows using the acf R function. ACF at a given step k is 354 

defined as the correlation between windows at positions i and i+k, where k is called the lag. We 355 
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used the distance in Mb at which a significant decrease in ACF was noted (α=5%, below 1.96/√m, 356 

m the number of windows) as a rough proxy for linkage disequilibrium (LD). We performed neutral 357 

simulations mimicking our empirical design (starting frequency of 0.3 for the Oregon-R alleles, 10 358 

replicates, 20 generations, unbiased sex-ratio, census size of 1,500 flies) using MimicrEE2 (Vlachos 359 

and Kofler, 2018). From the simulated sync files, we then drew the coverage per SNP from a 360 

Poisson distribution  (mean=125 reads, estimated from the empirical reads counts) and performed 361 

binomial sampling with the sample size equal to the coverage as suggested in Taus et al, 2017, to 362 

reproduce Pool-seq sampling noise. To contrast our empirical results with neutral expectations, we 363 

computed the pairwise ρ Spearman correlation matrix between all neutral and empirical replicates 364 

(10 replicates times 2) per arm (3 major chromosomes), leading to a 10⨉2⨉3 entry-matrix. The ρ 365 

values were converted to distances (2√(1-ρ)) prior to projecting the distance matrix in two 366 

dimensions with Multi-Dimensional Scaling (MDS; Gower, 1966). The significance of the pairwise 367 

correlations was assessed with t-tests separately for empirical and neutral replicates, where p-values 368 

were adjusted with a Benjamini-Hochberg correction. We performed a sign test for the median AFC 369 

to test if the median AFC per major chromosome is higher than 0, where p-values were adjusted 370 

with a Benjamini-Hochberg correction. 371 

Comparisons to other datasets We qualitatively contrasted our study with two additional E&R 372 

studies (Table 1) that are similar in terms of duration and lack inversions but start with hundreds of 373 

founder genotypes, and thus heterogeneous starting allele frequencies. To compare studies, we 374 

computed the absolute selection coefficient per SNP in one randomly picked replicate; replicate 2 in 375 

this study, replicate C from Kelly and Hughes, 2019 (between F0 and F15) and replicate 8 from 376 

Barghi et al, 2019 (between F0 and F20) using the same number of SNPs for each study; 248,886 377 

(42,386) sampled SNPs for the autosomes (X). The selection coefficient s of each SNP was 378 

estimated using the poolSeq::estimateSH R function (Taus et al, 2017) from pseudo-counts; we 379 

subtracted (added) a pseudo-count of 1 to fixed (lost) SNPs, as Vlachos et al, 2019. Ne was 380 

estimated as described above. We eventually performed pairwise bilateral Wilcoxon-tests between 381 

the three s distributions for the autosomes and X, where p-values were adjusted with a Benjamini-382 

Hochberg correction.  383 
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