

1 **Highly parallel genomic selection response in replicated *Drosophila melanogaster* populations**
2 **with reduced genetic variation**

3

4 Burny Claire^{1,2*}, Nolte Viola^{1*}, Dolezal Marlies³, Schlötterer Christian^{1#}

5 1 Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria,

6 2 Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria,

7 3 Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna, Austria, Wien, Austria

8 *equal contribution

9 #Corresponding author:

10 Christian Schlötterer: christian.schloetterer@vetmeduni.ac.at

11

12 **KEYWORDS**

13 experimental evolution, evolve and resequence, inbred strains, polygenic trait, parallelism,

14 *Drosophila melanogaster*

15

16 **ABSTRACT**

17 Many adaptive traits are polygenic and frequently more loci contributing to the phenotype than
18 needed are segregating in populations to express a phenotypic optimum. Experimental evolution
19 provides a powerful approach to study polygenic adaptation using replicated populations adapting
20 to a new controlled environment. Since genetic redundancy often results in non-parallel selection
21 responses among replicates, we propose a modified Evolve and Resequencing (E&R) design that
22 maximizes the similarity among replicates. Rather than starting from many founders, we only use
23 two inbred *Drosophila melanogaster* strains and expose them to a very extreme, hot temperature
24 environment (29°C). After 20 generations, we detect many genomic regions with a strong, highly
25 parallel selection response in 10 evolved replicates. The X chromosome has a more pronounced
26 selection response than the autosomes, which may be attributed to dominance effects. Furthermore,
27 we find that the median selection coefficient for all chromosomes is higher in our two-genotype
28 experiment than in classic E&R studies. Since two random genomes harbor sufficient variation for
29 adaptive responses, we propose that this approach is particularly well-suited for the analysis of
30 polygenic adaptation.

31 **INTRODUCTION**

32 Many adaptive traits have a polygenic basis (Barton and Etheridge, 2018; Barghi et al, 2019;
33 Hoffman et al, 2003), where typically more contributing loci are segregating in a population than
34 needed to reach the trait optimum (Yeaman, 2015). For highly polygenic traits, the contribution of a
35 single locus during adaptation to a new environment, *i.e.* a new phenotypic optimum, will be small,
36 usually too small to be detected by classic population genetic tests (Pritchard et al, 2010; Pritchard
37 and Di Rienzo, 2010). Thus, tests for polygenic adaptation aggregate signals across multiple loci to
38 gain statistical power (Turchin et al, 2012; Berg and Coop, 2014; Sella and Barton, 2019).
39 However, distinguishing the contributions of demography and selection in these aggregated signals
40 can be challenging in natural populations because of residual population structure (Barton et al,
41 2019; Sohail et al, 2019; Berg et al, 2019). Hence, experimental evolution has been proposed as an
42 alternative approach to study polygenic adaptation (Barghi et al, 2020; Lou et al, 2020; Vlachos and
43 Kofler, 2019). Laboratory natural selection within the Evolve and Re-sequencing (E&R) framework
44 (Garland and Rose, 2009; Turner et al, 2011; Long et al, 2015; Schlötterer et al, 2015) has been
45 successfully used to study adaptation in controlled environments, combining experimental evolution
46 and Pool-sequencing on replicated populations (Schlötterer et al, 2014).

47

48 Simulation studies (Baldwin-Brown et al, 2014; Kofler and Schlötterer, 2014; Kessner and
49 Novembre, 2015) recommend optimizing different design parameters to obtain a good mapping
50 resolution. An established strategy is to use a large number of founder genotypes. Maximizing the
51 number of founders provides the advantage that the contributing alleles segregating at intermediate
52 frequency will be located on multiple haplotypes, which facilitates their identification (e.g. Kelly
53 and Hughes, 2019). However, for highly polygenic traits, increasing the number of founders also
54 increases the number of available contributing alleles, which may either trigger competition
55 between the present haplotypes if they interfere with each other (Hill and Robertson, 1968), or
56 inflate genotypic redundancy making evolution less repeatable (Láruson et al, 2020). Additionally,
57 increasing the number of founders lowers their starting frequency, which in turn increases their
58 chance to be lost by drift.

59

60 As a consequence, a (highly) heterogeneous response between replicates is expected and has been
61 seen in several E&R studies (e.g. Seabra et al, 2017; Griffin et al, 2017; Hardy et al, 2018; Barghi et
62 al, 2019; Rêgo et al, 2019) – even when the same founder population is used, and in particular in
63 small populations where stochastic sampling effects have a strong impact on allele frequencies.
64 Nevertheless, various E&R studies displayed (highly) parallel selection signatures despite using a
65 large number of founders (e.g. Martins et al, 2014; Burke et al, 2014; Graves et al, 2017; Phillips et

66 al, 2018; Kelly and Hughes, 2019). These conflicting observations imply that our understanding of
67 the adaptive response, *i.e.* the adaptive architecture, in E&R studies is not yet complete and more
68 data are required to evaluate which factors contribute to (non-)parallel selection responses (Barghi
69 and Schlötterer, 2020; Otte et al, 2020; Matos et al, 2015).

70

71 Parallel genomic responses are a key factor determining the power of many statistical tests to detect
72 selection at a given locus in E&R studies (reviewed in Vlachos et al, 2019). The degree of
73 parallelism depends on the probability that a particular favorable allele from standing genetic
74 variation will respond to selection, with loci of large effect showing more parallel signatures
75 (Hermisson and Pennings, 2017; Castro et al, 2019). Various experimental design parameters
76 determine how concordant the selection responses are (Vlachos and Kofler, 2019; Baldwin-Brown
77 et al, 2014; Kofler and Schlötterer, 2014; Kessner and Novembre, 2015). First, higher starting
78 frequencies and larger population size reduce the probability of stochastic loss and help to
79 consistently detect not only large-effect but also moderate-effect loci. Second, depending on the
80 distance to the new phenotypic optimum, either more sweep-like (distant) or shift-like (less distant)
81 responses are favored (Matuszewski et al, 2015; Christodoulaki et al, 2019; Hayward and Sella,
82 2019). Third, with increasing redundancy, the selection response is becoming less parallel (Láruson
83 et al, 2020).

84

85 In this study, we designed an experiment which aims to achieve a highly parallel selection response
86 across replicates by accounting for all three factors outlined above. Given that many adaptive
87 variants are present in natural *Drosophila* populations, we drastically reduced the amount of
88 segregating variation in the founder population by using only two founder genotypes. We first
89 created 10 replicate populations from two parental inbred *D. melanogaster* strains, Samarkand and
90 Oregon-R. We then exposed the replicate populations to an extreme temperature regime (constant
91 29°C), which is only slightly below the maximum temperature at which *D. melanogaster* are viable
92 and fertile (Fig 1, Hoffmann, 2010). Eventually, all contributing alleles that start at intermediate
93 frequency in the founder population will be measured after 20 generations.

94

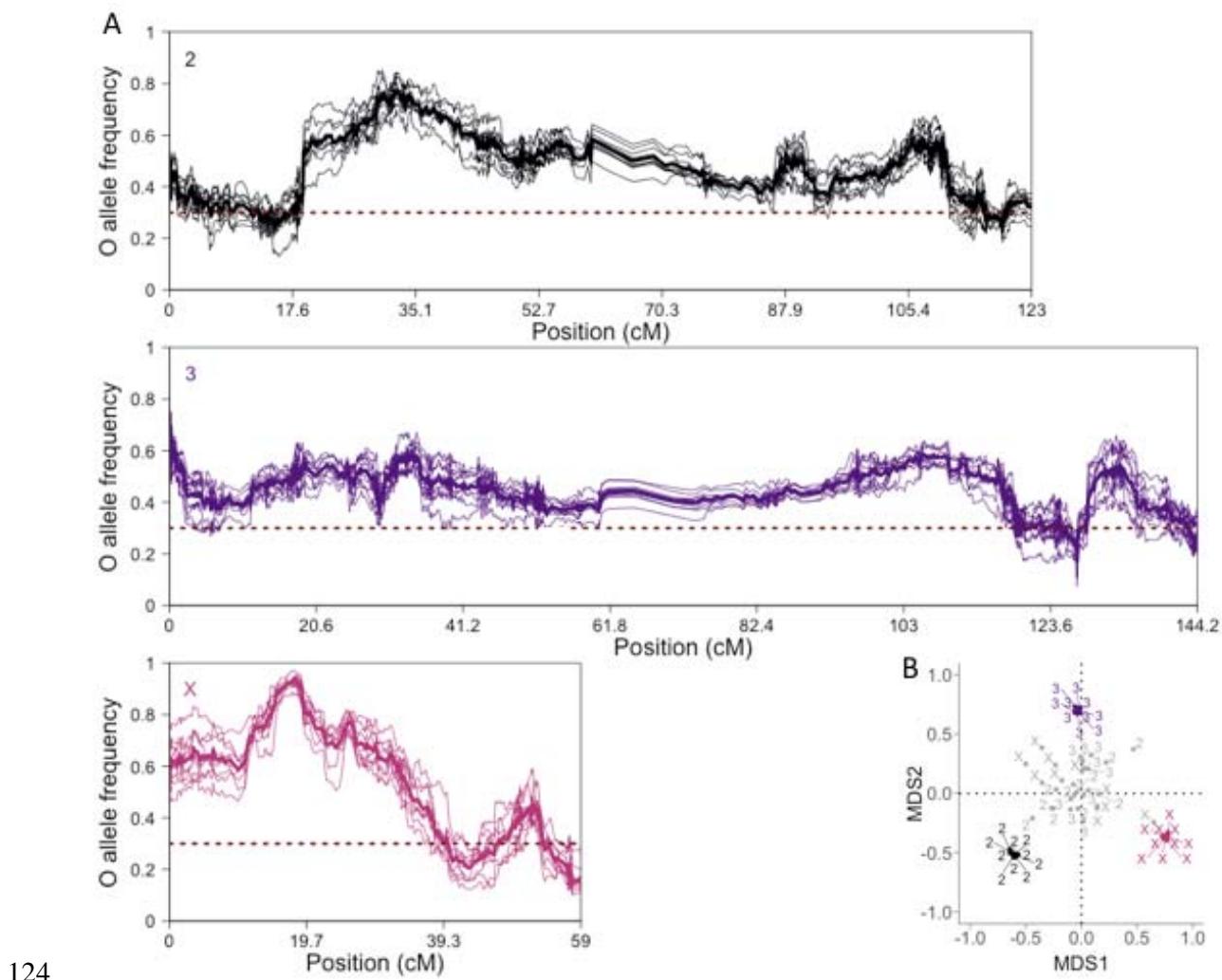
95 By analyzing the genomic responses in the 10 replicate populations maintained for 20 generations
96 at a hot temperature, we find that two founder genotypes harbor enough natural variation to ensure a
97 selective response. A very strong and highly parallel selection signature is seen in all replicates.
98 This demonstrates that even for temperature adaptation, which is highly polygenic, an adequate
99 experimental design, *i.e.* a reduced founder diversity and a distant trait optimum, results in
100 reproducible selection signals.

101 **RESULTS**

102 **Parallel response after 20 generations of evolution at high temperature** Using two genotypes to
103 set up the founder population provides the advantage that all parental alleles start from the same
104 frequency across the entire genome. A simple genome-wide allele frequency plot along the genome
105 provides an intuitive visualization of the selection targets (Fig 1A): the pronounced allele frequency
106 increase of the putatively selected alleles, either Oregon-R (AF>30%) or Samarkand (AF<30%),
107 generates a “hill-valley-like” landscape. Since recombination rate *a priori* determines the width of
108 the genomic region affected by a selected site (Felsenstein, 1974; Barton, 1995; Otto and
109 Lenormand, 2002; Roze and Barton, 2006), we scaled the chromosomes in cM unit (for a base-pair
110 scaling, see Fig SI 4). Throughout the entire genome, we observe a fast and strong response after 20
111 generations (Fig 1A) where in all replicates, large, linked genomic regions experience very similar
112 changes in frequency.

113

114 The high level of parallelism among the empirical replicates is reflected in highly correlated allele
115 frequencies between replicates, higher than 0.8 (t-test on pairwise Spearman correlation coefficient
116 ρ per arm; mean $\rho_2=0.89$ ($t(40)=200$, adjusted (adj.) $p<1.7\times10^{-65}$), mean $\rho_3=0.80$ ($t(40)=100$, adj.
117 $p<6.4\times10^{-55}$), mean $\rho_X=0.92$ ($t(40)=200$, adj. $p<3.9\times10^{-67}$)). Such high correlations are not
118 observed among replicate populations in neutral simulations (t-test on pairwise ρ per arm; mean
119 $\rho_2=0.04$ ($t(40)=0.8$, adj. $p>0.57$), mean $\rho_3=0.07$ ($t(40)=2$, adj. $p>0.37$), mean $\rho_X=0.0$ ($t(40)=0.09$,
120 adj. $p>0.95$)). We visualized the difference between the empirical and simulated replicates by
121 projecting the pairwise correlation matrix in a two-dimensional multidimensional scaling plot (Fig
122 1B), which highlights the similarity between the empirical replicates for each major arm, whereas in
123 the neutral simulations no clustering of replicates was apparent.



124 **Figure 1.** Strong parallel response after 20 generations of evolution at 29°C.
125
126 A) Smoothed Oregon-R (O) allele frequency (y-axis) at F20 in all replicates colored by major chromosome
127 in cM unit (x-axis). The same color code applies to all figures (from dark to light: chromosomes 2, 3 and X).
128 The median O allele frequency (AF) is computed over non-overlapping windows of 250 SNPs. The bold line
129 represents the median O AF per window over the 10 replicates and the horizontal dotted line the starting O
130 AF (0.3). B) 2D Multidimensional Scaling (MDS) projection of the pairwise ρ Spearman correlation matrix
131 between empirical (colored) and neutral (gray) allele frequencies per major chromosome. The correlation
132 coefficient values were transformed to distances ($2\sqrt{1-\rho}$) prior to projection.

133
134 While it is difficult to provide a statistically sound estimate of the number of selection targets, it is
135 apparent that reducing the genetic variation to two genotypes still leaves a considerable reservoir of
136 favorably selected alleles. This strong selection response is also reflected in effective population
137 size (N_e) estimates based on allele frequency changes. For the X chromosome, N_e barely reaches 25
138 with a median of 21 and is also rather small on the autosomes (median of 55, SI Table 2), given a
139 census size of 1,500 flies in each replicate. The effective population size on the X chromosome is

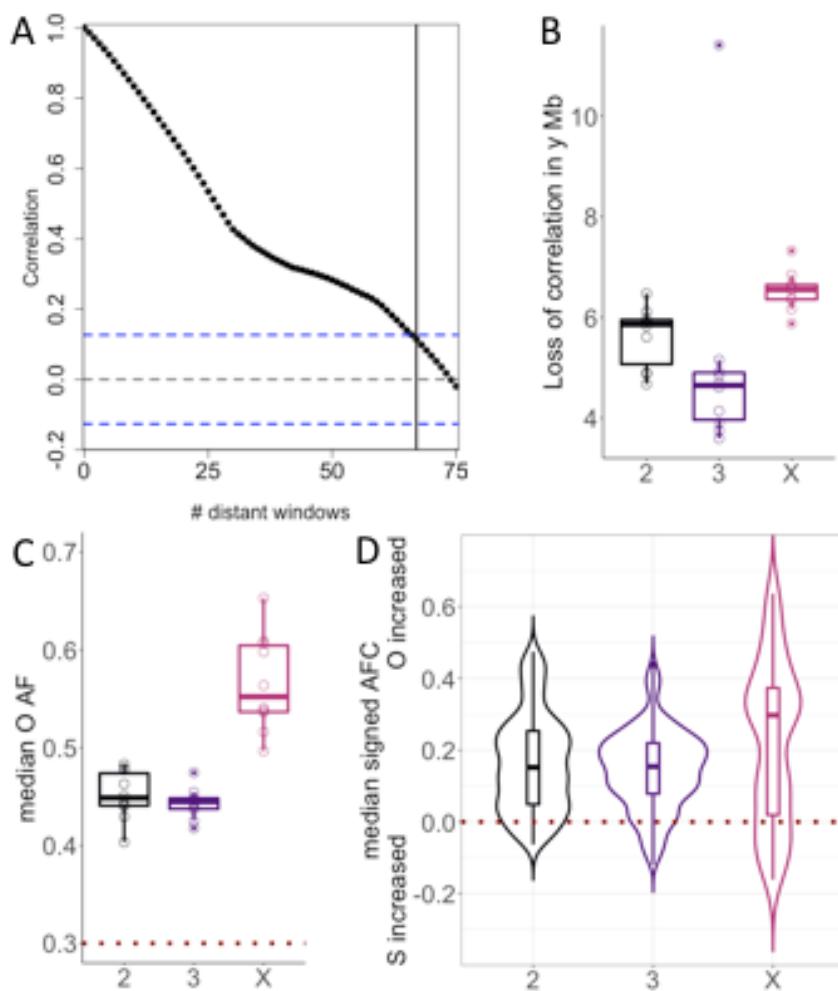
140 much lower than the expected 3/4 reduction relative to the autosomes (Charlesworth, 2009). This
141 implies that the efficacy of selection differed between the autosomes and X and that selection was
142 considerably stronger on the X chromosome (see discussion for possible explanations).

143

144 The experiment started from two genotypes and in 20 generations the number of recombination
145 events that can uncouple contiguous blocks of Oregon-R/Samarkand alleles which experience a
146 strong frequency increase is limited. This non-independence of neighboring sites translates into the
147 “hilly” landscape of allele frequency changes. In the absence of haplotype data from the evolved
148 flies, we used the loss of autocorrelation in allele frequency as a proxy for the decay of linkage
149 disequilibrium to quantify the association between genomic sites (Fig 2A). The correlation between
150 increasingly distant windows decayed faster on the autosomes (with a median of 5.9Mb and 4.7Mb
151 over the 10 replicates for chromosomes 2 and 3) compared to the X chromosome (median of
152 6.6Mb) (Fig 2B), implying less LD on the autosomes. We attribute the independence of neighboring
153 windows at a lower distance on the autosomes (correlation outside 95% confidence interval) to
154 differences in selection intensities: stronger selection reduces the effective population sizes beyond
155 the 3/4 expected from the ratio of X chromosomes to autosomes, which results in less opportunity
156 for recombination on the X chromosome.

157

158 At 29°C the two separated parental lines suffered similarly from the high temperature regime and
159 produced low numbers of offspring (data not shown). When the two strains were combined in the
160 experimental evolution cage, the Oregon-R alleles clearly outcompeted the Samarkand genotypes
161 (Fig 1A, Fig 2C,D): the median Oregon-R AFC was significantly higher than 0 (0.15, 0.15, 0.30 for
162 chromosomes 2, 3 and X; adj. $p < 3.5 \times 10^{-89}$, adj. $p < 7.7 \times 10^{-110}$, adj. $p < 4.6 \times 10^{-18}$ on each sign test;
163 Fig 2D). Although some heterogeneity can be observed along the chromosome arms (Fig 1A;
164 median coefficient of variation is 0.10, 0.11, 0.14 for chromosomes 2, 3 and X), the median
165 Oregon-R allele frequency increased on each chromosome, ranging from 40% to 65% (Fig 2C),
166 which suggests a genome-wide rather than an isolated footprint of selection.



167

168 **Figure 2.** Quantification of the evolutionary response at F20.

169 A) and B) Loss of correlation at the major chromosomes. A) Example of a scatterplot of ρ Spearman
170 correlation against distance between two windows measured in the number of windows separating them. The
171 blue dotted lines represents $\pm 1.96/\sqrt{m}$, with m number of windows. B) Jittered boxplots of physical
172 distance in Mb where Linkage Equilibrium (LE) is reached at a 5% threshold (vertical black line in the A
173 panel). C) Jittered boxplots of median O allele frequency (AF) on the major chromosomes in each replicate.
174 D) Boxplots overlaid with violin plots of AFC. A positive (negative) allele frequency change (AFC)
175 indicates that the O genotype increases (decreases) in the window relative to the starting frequency of 0.3.
176 The horizontal dark red dashed line indicates no change in frequency after 20 generations.

177

178 **Exceptionally strong, genome-wide selection signatures** With all alleles occurring at similar
179 frequency throughout the entire genome, the comparison of allele frequency changes provides a
180 direct readout of the selective force operating on each SNP - either directly or through linkage to
181 selection targets. To compare the selection experienced in this two-genotype experiment to two
182 other short-term *Drosophila* E&R studies (Table 1) that differ in the number of founders (>200) and
183 consequently in the distribution of starting allele frequencies, we transformed the allele frequency

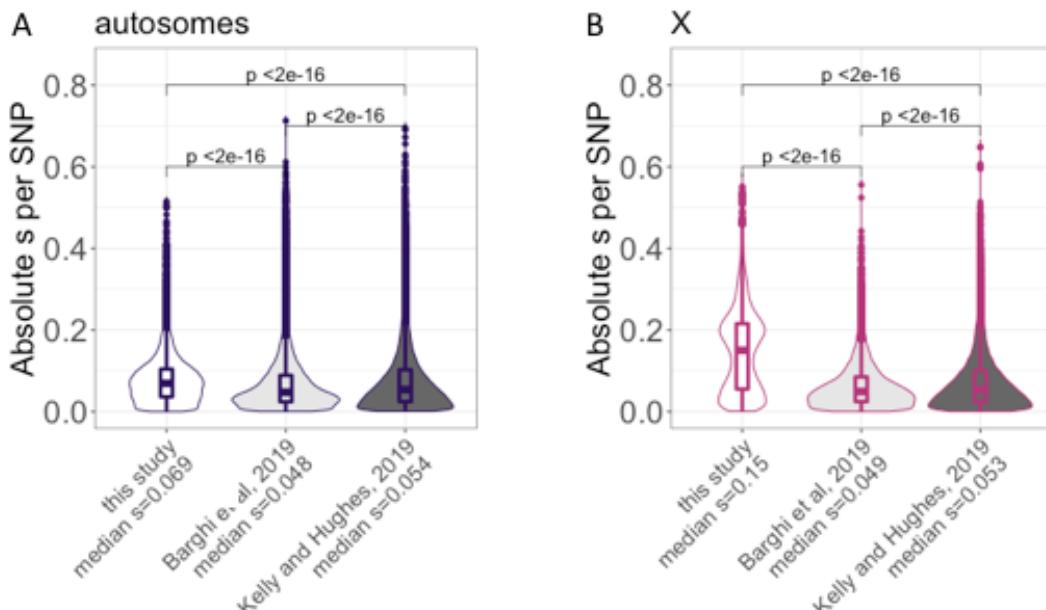
184 changes into selection coefficients, s , which allows the comparison of alleles with different starting
185 frequencies. The pronounced differences in median absolute s between the X chromosome and
186 autosomes were specific to the two-genotype experiment (Fig 3, estimates on x-axis). Across all
187 chromosomes the median absolute s was significantly higher for this study compared to the two
188 other studies (Fig 3, estimates on x-axis and adj. p). This clearly indicates that the two E&R studies
189 experienced less selection, not only on the X chromosome, but genome-wide which may reflect the
190 lower temperature (23°C and 25°C) during their maintenance. The differences in selection intensity
191 between the two-genotype experiment and E&R studies with many founder genotypes are also
192 reflected in effective population size (N_e) estimates. With N_e estimates not higher than 60 and 26 for
193 the autosomes and X in all replicates (SI Table 3), N_e of this study was considerably lower than for
194 the two other E&R studies (see Fig 3 legend), suggesting that a much larger fraction of the genome
195 experienced drastic allele frequency changes.

196

197 **Table 1.** E&R datasets information.

Number founders	Census size	Pressure	Species	Generation picked	Sequencing information	Publication
2	1,500	LNS constant 29°C	<i>D. melanogaster</i>	20 non overlapping	Pool-seq of 1500 mixed males and females	this study
202	1,000	LNS Fluctuating temperature (28°C/18°C, mean 23°C)	<i>D. simulans</i>	20 non overlapping	Pool-seq of 1000 mixed males and females	Barghi et al, 2019
500	mean = 1,187 range = 963–1,620 for the used replicate	LNS Constant temperature (25°C)	<i>D. simulans</i>	15 overlapping	Pool-seq of 500 males and females	Kelly and Hughes, 2019

198



199

200 **Figure 3.** Distribution of absolute selection coefficients s per SNP across empirical E&R studies for the
201 autosomes (A, 248,886 SNPs) and the X chromosome (B, 42,386 SNPs).
202 Boxplots overlaid with violin plots per study (x-axis) where the median absolute s is reported. Adjusted p-
203 values from pairwise Wilcoxon tests are indicating. Population size estimates of the autosomes (X) were 55
204 (14), 243 (227), 393 (359) for the three studies.

205

206 DISCUSSION

207 The idea to start an experimental evolution study with only two genotypes is radically different
208 from current E&R designs, but has already been used before in experimental evolution (Barnes,
209 1968; Kearsey and Barnes, 1970; Nuzhdin et al, 1998). While strong responses were observed, the
210 link between genotypes and phenotypes the small population sizes used for example in the mouse
211 selection experiments can result in considerable genetic heterogeneity among replicates which
212 limits the power to detect loci with small/moderate effects. An interesting modification of the two
213 genotype design has been used in fruit flies. From a polymorphic population two haplotype classes
214 were identified with moderate number of linked allozyme markers, but each haplotype class
215 harbored considerable variation which was not surveyed (Clegg et al, 1976). Evolving populations
216 founded by these two haplotype classes showed very strong selection signatures, but the genomic
217 response between the replicates was heterogeneous, which was attributed to genetic heterogeneity at
218 the unmonitored part of the haplotype classes (Clegg et al, 1976). Overall, previous two genotype
219 experimental evolution studies were primarily designed to study the phenotypic response, but not to
220 obtain highly parallel genomic selection signatures among replicate populations.

221

222 In contrast, this study obtained a highly parallel selection signature which can be attributed to the
223 use of two high frequency genotypes in the founder populations in combination with large census
224 sizes (1,500 individuals). Such a highly parallel selection response provides an excellent tool to
225 study adaptation because selection responses can be reliably distinguished from stochastic patterns -
226 even with a small number of replicates. We propose that two-haplotype E&R studies can be used to
227 experimentally confirm candidate alleles that were previously identified - similar to a secondary
228 E&R experiment (Burny et al, 2020). One further advantage of the highly parallel selection
229 signature seen in this two-haplotype E&R study is that it offers the opportunity to explore epistatic
230 interactions when only a small number of loci are selected. Crossing one inbred strain to at least
231 two other inbred strains (in separate pairwise crosses) provides an excellent system to study
232 epistasis by contrasting the selection response of a candidate locus in different genomic
233 backgrounds. The highly parallel response provides sufficient power to detect even small
234 differences, *i.e.* changes in frequency of the same selection target, due to the genetic background.
235

236 For a highly polygenic architecture the selection response of a two haplotype E&R reflects the net
237 effect of multiple contributing alleles in a selected haplotype block. A similar scenario has been
238 modelled where an admixed genotype is broken up into haplotype blocks, which could introgress
239 when the net effect of all loci in the haplotype block was positive (Sachdeva and Barton, 2018). If
240 our two-genotype experiment is extended for more generations, the high parallelism of this set up
241 can be used to study the breaking haplotype blocks of contributing alleles by stochastic
242 recombination. This has been done in a recent E&R study in budding yeast, which also started from
243 two inbred founder genotypes, but with a much larger population size and for 960 generations
244 (Koshelava and Desai, 2018). Consistent with a highly polygenic architecture, the fitness of sexual
245 populations continuously increased throughout the entire experiment, possibly by the creation of
246 favorable allelic combinations during the experiment (Hickey and Golding, 2018). More
247 generations are needed for the *Drosophila* experiment to determine whether fitness continues to
248 increase as in the yeast study or plateaus when the trait optimum is reached (Franssen et al, 2017,
249 Höllinger et al, 2019).
250

251 Strong selection responses in populations derived from two founder genotypes imply that one allele
252 provides an advantage relative to the other. While it is tempting to speculate that the fitness
253 advantage is related to the temperature stress imposed during the experiment, we cannot rule out
254 that the selection response is caused by a deleterious allele that was acquired during the long-term
255 maintenance, since Samarkand and Oregon-R isofemale lines have been collected more than 90
256 years ago (Lindsley and Grell, 1968). Isofemale lines are typically maintained at small population

257 sizes, which renders most mutations effectively neutral (Ohta, 1973; Kimura, 1983) and could lead
258 to the accumulation of deleterious alleles that are fixed in the parental strains. Consistent with the
259 presence of deleterious alleles, we noticed that heterozygous F1 flies produced a larger number of
260 eggs at 29°C than the inbred strains which had difficulties to sustain the next generation. If
261 deleterious alleles are the primary driver of the observed allele frequency changes, the predominant
262 increase of Oregon alleles would suggest that Samarkand has accumulated more deleterious alleles
263 than Oregon. This conclusion is not supported by obvious fitness differences of the two parental
264 genotypes at 29°C. Alternatively, the lack of clear fitness differences in the parental lines could be
265 explained by overdominance, but the reason for the predominant frequency increase of Oregon
266 allele frequencies remains unclear. Additional generations at 29°C would help to distinguish
267 between both explanations. Deleterious alleles would be ultimately purged while overdominance
268 would result in a stable equilibrium frequency. A third interpretation of the data is based on
269 epistatic interactions between Samarkand and Oregon alleles. If a few Samarkand alleles interact
270 with many Oregon alleles, this could account for the advantage of heterozygotes and the
271 predominance of Oregon alleles among the selectively favored ones. Epistatic interactions could be
272 further tested when the Oregon genotype is competed with other genotypes in separate pairwise
273 competition experiments.

274

275 A particularly interesting result was the different selection signature on the X chromosome
276 compared to the autosomes. More pronounced allele frequency changes, and hence higher selection
277 coefficients, were found on the X chromosome translating in lower N_e estimate than expected, *i.e.*
278 lower than $\frac{3}{4}$ of the N_e on the autosomes. We propose two not mutually exclusive explanations for
279 this observation: 1) the selected loci may be (partially) recessive which allows for a more efficient
280 selection on the X chromosome (Charlesworth et al, 1987; Mank et al, 2010; Meisel and Connallon,
281 2013); 2) the X chromosome has either more contributing loci or they may have larger effects.
282 Although it is hard to hypothesize about the distribution (number and location) of the selection
283 targets after only 20 generations, we favor the dominance explanation because it is not apparent
284 why the number of selection targets or their effect sizes should be different between the X
285 chromosome and the autosomes.

286 **MATERIAL AND METHODS**

287 **Experimental set-up** We used the Oregon-R and Samarkand strains inbred by (Chen et al, 2015),
288 and maintained since then at room temperature. The experiment started with 10 replicates, each
289 with a census size of 1500 flies and a starting frequency of 0.3 for the Oregon-R genotype. The 10
290 replicates were then maintained in parallel at a constant 29°C temperature in dark conditions for 20
291 generations before sequencing.

292

293 **DNA extraction, library preparation, sequencing** Whole-genome sequence data for the parental
294 Oregon-R and Samarkand strains are available from Chen et al. (2015). The 10 evolved replicates in
295 generation F20 were sequenced using Pool-Seq: genomic DNA was prepared after pooling and
296 homogenizing all available individuals of a given replicate in extraction buffer, followed by a
297 standard high-salt extraction protocol (Miller et al. 1988). Barcoded libraries with a mean insert size
298 of 480 bp were prepared using the NEBNext Ultra II DNA Library Prep Kit (E7645L, New England
299 Biolabs, Ipswich, MA) and sequenced on a HiSeq 2500 using a 2 x 125 bp paired-end protocol.

300

301 **Establishment of a parental SNPs catalogue** After quality control with FastQC
302 (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>), the raw reads have been
303 demultiplexed and trimmed using ReadTools (Gómez-Sánchez and Schlötterer 2018; version 1.5.2;
304 --mottQualityThreshold 18, --minReadLength 50, --disable5pTrim true). The processed paired-end
305 rends were mapped using NovoAlign (<http://novocraft.com>; version 3.09; -i 250,75 -F STDFQ -r
306 RANDOM) on the combined *D. melanogaster* reference genome v6.03 (Thurmond et al, 2019).
307 From the processed BAM files, *i.e.* without duplicates (using PICARD MarkDuplicates;
308 <http://broadinstitute.github.io/picard/>; version 2.21.6; REMOVE_DUPLICATES=true
309 VALIDATION_STRINGENCY=SILENT), quality filtered (using samtools (Li et al. 2009); version
310 1.10; -b -q 20 -f 0x002 -F 0x004 -F 0x008) and re-headed, multi-sample variants calling was done
311 with Freebayes (Garrison and Marth, 2012; version 1.3.1; --use-best-n-alleles 4 --min-alternate-
312 count 3 --ploidy 2 --pooled-continuous --pooled-discrete; version 1.332). Bi-allelic SNPs in regions
313 outside repeats (identified by RepeatMasker, <http://www.repeatmasker.org>) were extracted from the
314 raw VCF file (Danecek et al, 2011) and filtered using a QUAL value of 1,000 and the 99th
315 percentile averaged coverage as thresholds, leading to a total of 912,289 processed SNPs. A
316 parental SNP was defined as (nearly) fixed difference between parents with a 0/0 (1/1) genotype in
317 the Samarkand parent and 1/1 (0/0) genotype in the Oregon-R parent at the marker position,
318 conditioning for a frequency of the alternate allele lower than 0.01 (if 0/0) or higher than 0.99 (if
319 1/1). We obtained a final list of 360,517 and 59,280 SNPs on the autosomes and the X
320 chromosome, respectively, equivalent to 1 SNP every 302 bp (397 bp). The frequency of these

321 alleles was measured at F20 (see Table SI 2 for a detailed count of markers at each filtering step) by
322 extracting the number of reads supporting the alternate and reference allele using bcftools (query -H
323 -f '%CHROM %POS %REF %ALT %QUAL[%DP][%AO][%RO][%GT]\n'; version 1.9; Li,
324 2011; piped with sed). The subsequent analyses have been performed with R (version 3.5.0; R Core
325 Team, 2018) and most panels have been done with the ggplot2 R package (Wickham, 2016). For
326 the parental strains, we used the frequency of inversion-diagnostic SNPs to check the inversion
327 status of common cosmopolitan inversions as inversions would impede recombination (Kapun et al,
328 2014). Both parental strains are homosequential (Fig SI 1). We also checked the density of
329 heterozygous SNPs per parent prior to QUAL filtering (Fig SI 2, top). Both parental strains harbor
330 similar levels of residual variation (Fig SI 2, bottom, bootstrapped Kolmogorov-Smirnov test from
331 Matching R package (Sekhon, 2011) on parental heterozygosity levels; D=0.02, p=0.25).
332

333 **Allele frequency tracking** At each SNP we obtained counts for both parental alleles from the VCF
334 file. We polarized allele frequency (AF) for the Oregon-R allele. The frequency of the Samarkand
335 allele is obtained by subtracting the Oregon-R AF from 1. The allele frequency change (AFC) of a
336 given marker is signed; if the Oregon-R AF at F20 is higher (lower) than 30%, the Oregon-R
337 (Samarkand) allele increased in frequency and the AFC is positive (negative). The genome was
338 partitioned in 1,682 non-overlapping genomic windows of 250 parental SNPs (1,444 on the
339 autosomes, 238 on the X chromosome), spanning on average 75 kb (97 kb on the X) where the AF
340 per window was summarized as the median over 250 SNPs. A window position i is defined by its
341 center ((right bound-left bound)/2). Markers along the genome are positioned in cM unit, to adjust
342 for heterogeneity in recombination rate along the chromosome. The recombination map of Comeron
343 et al, 2012 was updated to version 6 of the reference genome using the Flybase online Converter
344 (accessed in July 2020). Physical chromosome positions were converted to genetic positions by
345 interpolation (DOQTL R package, Gatti et al, 2014) to avoid SNPs located in the same
346 recombination rate interval to overlap at the cM scale (cf Marey map in Fig SI 3, Mb unit in Fig SI
347 4). The effective population size, N_e , was estimated per replicate for the autosomes and X separately
348 using the poolSeq::estimateNe R function (Taus et al, 2017) from 10,000 randomly picked SNPs
349 and summarized as the median over 1,000 trials, similarly as in Vlachos et al, 2019 (Table SI 3).
350

351 **Quantification of the response** For each replicate, we reported the median AF of the Oregon-R
352 allele in each window. We also reported the median coefficient of variation (CV) per chromosome
353 to quantify the deviation around the average AF value per window. We additionally computed the
354 autocorrelation (ACF) in AF between windows using the acf R function. ACF at a given step k is
355 defined as the correlation between windows at positions i and $i+k$, where k is called the lag. We

356 used the distance in Mb at which a significant decrease in ACF was noted ($\alpha=5\%$, below $1.96/\sqrt{m}$,
357 m the number of windows) as a rough proxy for linkage disequilibrium (LD). We performed neutral
358 simulations mimicking our empirical design (starting frequency of 0.3 for the Oregon-R alleles, 10
359 replicates, 20 generations, unbiased sex-ratio, census size of 1,500 flies) using MimicrEE2 (Vlachos
360 and Kofler, 2018). From the simulated sync files, we then drew the coverage per SNP from a
361 Poisson distribution (mean=125 reads, estimated from the empirical reads counts) and performed
362 binomial sampling with the sample size equal to the coverage as suggested in Taus et al, 2017, to
363 reproduce Pool-seq sampling noise. To contrast our empirical results with neutral expectations, we
364 computed the pairwise ρ Spearman correlation matrix between all neutral and empirical replicates
365 (10 replicates times 2) per arm (3 major chromosomes), leading to a $10 \times 2 \times 3$ entry-matrix. The ρ
366 values were converted to distances ($2\sqrt{1-\rho}$) prior to projecting the distance matrix in two
367 dimensions with Multi-Dimensional Scaling (MDS; Gower, 1966). The significance of the pairwise
368 correlations was assessed with t-tests separately for empirical and neutral replicates, where p-values
369 were adjusted with a Benjamini-Hochberg correction. We performed a sign test for the median AFC
370 to test if the median AFC per major chromosome is higher than 0, where p-values were adjusted
371 with a Benjamini-Hochberg correction.

372 **Comparisons to other datasets** We qualitatively contrasted our study with two additional E&R
373 studies (Table 1) that are similar in terms of duration and lack inversions but start with hundreds of
374 founder genotypes, and thus heterogeneous starting allele frequencies. To compare studies, we
375 computed the absolute selection coefficient per SNP in one randomly picked replicate; replicate 2 in
376 this study, replicate C from Kelly and Hughes, 2019 (between F0 and F15) and replicate 8 from
377 Barghi et al, 2019 (between F0 and F20) using the same number of SNPs for each study; 248,886
378 (42,386) sampled SNPs for the autosomes (X). The selection coefficient s of each SNP was
379 estimated using the poolSeq::estimateSH R function (Taus et al, 2017) from pseudo-counts; we
380 subtracted (added) a pseudo-count of 1 to fixed (lost) SNPs, as Vlachos et al, 2019. N_e was
381 estimated as described above. We eventually performed pairwise bilateral Wilcoxon-tests between
382 the three s distributions for the autosomes and X, where p-values were adjusted with a Benjamini-
383 Hochberg correction.

384 **ACKNOWLEDGEMENT**

385 We thank all members of the Institut für Populationsgenetik, in particular Anna Maria Langmüller,
386 Neda Barghi and Andreas Futschik for fruitful discussions. We thank Thapasya Vijayan for some
387 preliminary analyses. This work was supported by the Austrian Science Funds (FWF, grant
388 numbers W1225, P29133), and by the European Research Council (ERC) grant “ArchAdapt”.
389 Illumina sequencing was performed at the VBCF NGS Unit (www.viennabiocenter.org/facilities).

390

391 **AUTHORS CONTRIBUTIONS**

392 CS designed the experiment. VN performed experiments, DNA extractions and library preparations.
393 VN, MD, CB performed the bioinformatics analysis. CB performed the statistical analysis. VN,
394 MD, CB, CS provided feedback. CB, CS wrote the manuscript with contributions from VN and
395 MD. All authors approved the final manuscript.

396

397 **DATA AND SCRIPTS AVAILABILITY**

398 All scripts and data of this study will be available upon publication. Sequence data will be deposited
399 at the European Nucleotide Archive (ENA) under the accession number XXX. Population sync files
400 and scripts will be deposited on Dryad Digital Repository XXX.

401

402 **REFERENCES**

403 Baldwin-Brown JG, Long AD, Thornton KR. The Power to Detect Quantitative Trait Loci Using
404 Resequenced, Experimentally Evolved Populations of Diploid, Sexual Organisms. 2014. *Mol Biol Evol.*
405 31(4):1040–1055.

406 Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive
407 selection. 2020. *Nat Rev Genet.* 1-13.

408 Barghi N, Schlötterer C. Distinct Patterns of Selective Sweep and Polygenic Adaptation in Evolve and
409 Resequence Studies. 2020. *Genome Biol Evol.* 12(6):890–904.

410 Barghi N, Tobler R, Nolte V, Jakšić AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, Schlötterer C.
411 Genetic redundancy fuels polygenic adaptation in *Drosophila*. 2019. *PLOS Biol.* 17(2):e3000128–e3000128.

412 Barnes BW. Stabilising selection in *Drosophila melanogaster*. 1968. *Heredity* 23:433–442.

413 Barton NH. A general model for the evolution of recombination. 1995. *Genet Res.* 65(2):123–144.

414 Barton NH, Etheridge AM. Establishment in a new habitat by polygenic adaptation. 2018. *Theor Popul Biol.*
415 122:110–127.

416 Barton N, Hermisson J, Nordborg M. Why structure matters. 2019. *eLife* 8:e45380–e45380.

417 Berg JJ, Coop G. A Population Genetic Signal of Polygenic Adaptation. 2014. *PLOS Genet.*
418 10(8):e1004412–e1004412.

419 Berg JJ, Harpak A, Sinnott-Armstrong N, Joergensen AM, Mostafavi H, Field Y, Boyle EA, Zhang X,
420 Racimo F, Pritchard JK. Reduced signal for polygenic adaptation of height in UK Biobank. 2019. *eLife*
421 8:e39725–e39725.

422 Burke MK, Liti G, Long AD. Standing genetic variation drives repeatable experimental evolution in
423 outcrossing populations of *Saccharomyces cerevisiae*. 2014. *Mol Biol Evol*. 31(12):3228–3239.

424 Burny C, Nolte V, Nouhaud P, Dolezal M, Schlötterer C. Secondary Evolve and Resequencing: An
425 Experimental Confirmation of Putative Selection Targets without Phenotyping. 2020. *Genome Biol Evol*.
426 12(3):151–159.

427 Castro JP, Yancoskie MN, Marchini M, Belohlavy S, Hiramatsu L, Kučka M, Beluch WH, Naumann R,
428 Skuplik I, Cobb J. An integrative genomic analysis of the Longshanks selection experiment for longer limbs
429 in mice. 2019. *eLife* 8:e42014–e42014.

430 Charlesworth B, Coyne JA, Barton NH. The Relative Rates of Evolution of Sex Chromosomes and
431 Autosomes. 1987. *Am Nat*. 130(1):113–146.

432 Charlesworth B. Effective population size and patterns of molecular evolution and variation. 2009. *Nat Rev
433 Genet*. 10(3):195–205.

434 Christodoulaki E, Barghi N, Schlötterer C. Distance to trait optimum is a crucial factor determining the
435 genomic signature of polygenic adaptation. 2019. bioRxiv 721340–721340.

436 Clegg MT, Kidwell JF, Kidwell MG, Daniel NJ. Dynamics of correlated genetic systems. I. Selection in the
437 region of the Glued locus of *Drosophila melanogaster*. 1976. *Genetics* 83(4):793–793.

438 Comeron JM, Ratnappan R, Bailin S. The Many Landscapes of Recombination in *Drosophila melanogaster*.
439 2012. *PLOS Genet*. 8(10):e1002905–e1002905.

440 Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT,
441 Sherry ST. The variant call format and VCFtools. 2011. *Bioinformatics* 27(15):2156–2158.

442 Felsenstein J. The evolutionary advantage of recombination. 1974. *Genetics* 78(2):737–737.

443 Franssen S, Kofler R, Schlötterer C. Uncovering the genetic signature of quantitative trait evolution with
444 replicated time series data. 2017. *Heredity* 118(1):42–51.

445 Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. *arXiv*
446 (1207.3907).

447 Garland T, Rose MR. Experimental evolution: concepts, methods, and applications of selection experiments.
448 2009. Berkeley, CA: University of California Press.

449 Gatti DM, Svenson KL, Shabalina A, Wu L-Y, Valdar W, Simecek P, Goodwin N, Cheng R, Pomp D, Palmer
450 A. Quantitative trait locus mapping methods for diversity outbred mice. 2014. *G3-Genes Genom Genet.*
451 4(9):1623–1633.

452 Gómez-Sánchez D, Schlötterer C. ReadTools: a universal toolkit for handling sequence data from different
453 sequencing platforms. 2018. *Mol Ecol Resour* 18(3):676-680.

454 Gower JC. Some distance properties of latent root and vector methods used in multivariate analysis. 1966.
455 *Biometrika* 53 (3/4): 325-338.

456 Graves Jr JL, Hertweck KL, Phillips MA, Han MV, Cabral LG, Barter TT, Greer LF, Burke MK, Mueller
457 LD, Rose MR. Genomics of Parallel Experimental Evolution in *Drosophila*. 2017. *Mol Biol Evol.*
458 34(4):831–842.

459 Griffin PC, Hangartner SB, Fournier-Level A, Hoffmann AA. Genomic Trajectories to Desiccation
460 Resistance: Convergence and Divergence Among Replicate Selected *Drosophila* Lines. 2017. *Genetics*
461 205(2):871–871.

462 Hardy CM, Burke MK, Everett LJ, Han MV, Lantz KM, Gibbs AG. Genome-Wide Analysis of Starvation-
463 Selected *Drosophila melanogaster*—A Genetic Model of Obesity. 2018. *Mol Biol Evol.* 35(1):50–65.

464 Hartmann MA, Sekelsky J. The absence of crossovers on chromosome 4 in *Drosophila melanogaster*:
465 Imperfection or interesting exception? 2017. *Fly* 11(4):253–259.

466 Hayward LK, Sella G. Polygenic adaptation after a sudden change in environment. 2019. bioRxiv 792952–
467 792952.

468 Heath SC, Bulfield G, Thompson R, Keightley PD. Rates of change of genetic parameters of body weight in
469 selected mouse lines. 1995. *Genet Res.* 66(1):19–25.

470 Hermisson J, Pennings PS. Soft sweeps and beyond: understanding the patterns and probabilities of selection
471 footprints under rapid adaptation. 2017. *Methods Ecol Evol.* 8(6):700–716.

472 Hickey DA, Golding GB. The advantage of recombination when selection is acting at many genetic Loci.
473 2018. *J Theor Biol.* 442:123–128.

474 Hill WG, Robertson A. Linkage disequilibrium in finite populations. 1968. *Theor Appl Genet.* 38(6):226–
475 231.

476 Hoffmann AA. Physiological climatic limits in *Drosophila*: patterns and implications. 2010. *J Exp Biol.*
477 213(6):870–870.

478 Hoffmann AA, Sørensen JG, Loeschke V. Adaptation of *Drosophila* to temperature extremes: bringing
479 together quantitative and molecular approaches. 2003. *J Therm Biol.* 18(3):175–216.

480 Höllinger I, Pennings PS, Hermisson J. Polygenic adaptation: From sweeps to subtle frequency shifts. 2019.
481 *PLOS Genet.* 15(3): e1008035.

482 Kapun M, van Schalkwyk H, McAllister B, Flatt T, Schlötterer C. Inference of chromosomal inversion
483 dynamics from Pool-Seq data in natural and laboratory populations of *Drosophila melanogaster*. 2014. *Mol
484 Ecol.* 23(7):1813–1827.

485 Kearsey MU, Barnes BW. Variation for metrical characters in *Drosophila* populations. II. Natural selection.
486 1970. *Heredity* 25:11–21.

487 Keightley PD, Hardge T, May L, Bulfield G. A Genetic Map of Quantitative Trait Loci for Body Weight in
488 the Mouse. 1996. *Genetics* 142(1):227–227.

489 Kelly JK, Hughes KA. Pervasive Linked Selection and Intermediate-Frequency Alleles Are Implicated in an
490 Evolve-and-Resequencing Experiment of *Drosophila simulans*. 2019. *Genetics* 211(3):943–961.

491 Kessner D, Novembre J. Power Analysis of Artificial Selection Experiments Using Efficient Whole Genome
492 Simulation of Quantitative Traits. 2015. *Genetics* 199(4):991–991.

493 Kimura M. Rare variant alleles in the light of the neutral theory. 1983. *Mol Biol Evol.* 1(1):84–93.

494 Kofler R, Schlötterer C. A Guide for the Design of Evolve and Resequencing Studies. 2013. *Mol Biol Evol.*
495 31(2):474–483.

496 Kosheleva K, Desai MM. Recombination Alters the Dynamics of Adaptation on Standing Variation in
497 Laboratory Yeast Populations. 2018. *Mol Biol Evol.* 35(1):180–201.

498 Langmüller AM, Schlötterer C. Low concordance of short-term and long-term selection responses in
499 experimental *Drosophila* populations. 2020. *Mol Ecol.* 29(18):3466–3475.

500 Láruson ÁJ, Yeaman S, Lotterhos KE. The Importance of Genetic Redundancy in Evolution. 2020. *Trends
501 Ecol Evol.* 35(9):809–822.

502 Li H et al. The sequence alignment/map format and SAMtools. 2009. *Bioinformatics* 25(16):2078–2079.

503 Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population
504 genetical parameter estimation from sequencing data. 2011. *Bioinformatics* 27(21):2987–2993.

505 Lindsley DL, Grell EH. Genetic variations of *Drosophila melanogaster*. 1968. Carnegie Institute of
506 Washington.

507 Long A, Liti G, Luptak A, Tenaillon O. Elucidating the molecular architecture of adaptation via evolve and
508 resequence experiments. 2015. *Nat Rev Genet.* 16(10):567–582.

509 Lou RN, Therkildsen NO, Messer PW. The Effects of Quantitative Trait Architecture on Detection Power in
510 Short-Term Artificial Selection Experiments. 2020. *G3-Genes Genom Genet.* 10(9):3213–3213.

511 Mank JE, Vicoso B, Berlin S, Charlesworth B. Effective population size and the Faster-X effect: Empirical
512 results and their interpretation. 2010. *Evolution* 64(3):663–674.

513 Martins NE, Faria VG, Nolte V, Schlötterer C, Teixeira L, Sucena É, Magalhães S. Host adaptation to
514 viruses relies on few genes with different cross-resistance properties. 2014. *Proc Natl Acad Sci USA.*
515 111(16):5938–5938.

516 Matos M, Simões P, Santos MA, Seabra SG, Faria GS, Vala F, Santos J, Fragata I. History, chance and
517 selection during phenotypic and genomic experimental evolution: replaying the tape of life at different
518 levels. 2015. *Front Genet.* 6:71–71.

519 Mazzucco R, Nolte V, Vijayan T, Schlötterer C. Long-Term Dynamics Among Wolbachia Strains During
520 Thermal Adaptation of Their *Drosophila melanogaster* Hosts. 2020. *Front Genet.* 11:482–482.

521 Meisel RP, Connallon T. The faster-X effect: integrating theory and data. 2013. *Trends Genet.* 29(9):537–
522 544.

523 Michalak P, Kang L, Schou MF, Garner HR, Loeschke V. Genomic signatures of experimental adaptive
524 radiation in *Drosophila*. 2019. *Mol Ecol.* 28(3):600–614.

525 Novembre J, Barton NH. Tread Lightly Interpreting Polygenic Tests of Selection. 2018. *Genetics*
526 208(4):1351–1351.

527 Nuzhdin SV, Keightley PD, Pasyukova EG, Morozova EA. Mapping quantitative trait loci affecting
528 sternopleural bristle number in *Drosophila melanogaster* using changes of marker allele frequencies in
529 divergently selected lines. 1998. *Genet. Res. Camb.* (72):79–91.

530 Ohta T. Slightly deleterious mutant substitutions in evolution. 1973. *Nature* 246(5428):96–98.

531 Otte KA, Nolte V, Mallard F, Schlötterer C. The adaptive architecture is shaped by population ancestry and
532 not by selection regime. 2020. bioRxiv.

533 Otto SP, Lenormand T. Resolving the paradox of sex and recombination. 2002. *Nat Rev Genet.* 3(4):252–
534 261.

535 Phillips MA, Long AD, Greenspan ZS, Greer LF, Burke MK, Villeponteau B, Matsagas KC, Rizza CL,
536 Mueller LD, Rose MR. Genome-wide analysis of long-term evolutionary domestication in *Drosophila*
537 *melanogaster*. 2016. *Sci Rep.* 6(1):39281–39281.

538 Pritchard JK, Di Rienzo A. Adaptation – not by sweeps alone. 2010. *Nat Rev Genet.* 11(10):665–667.

539 Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and
540 polygenic adaptation. 2010. *Curr Biol.* 20(4):R208–R215.

541 R Core Team. R: A language and environment for statistical computing. 2018. R Foundation for Statistical
542 Computing, Vienna, Austria.

543 Rêgo A, Messina FJ, Gompert Z. Dynamics of genomic change during evolutionary rescue in the seed beetle
544 *Callosobruchus maculatus*. 2019. *Mol Ecol.* 28(9):2136–2154.

545 Roze D, Barton NH. The Hill–Robertson Effect and the Evolution of Recombination. 2006. *Genetics*
546 173(3):1793–1793.

547 Sachdeva H, Barton NH. Introgression of a Block of Genome Under Infinitesimal Selection. 2018. *Genetics*
548 209(4):1279–1303.

549 Schlötterer C, Kofler R, Versace E, Tobler R, Franssen SU. Combining experimental evolution with next-
550 generation sequencing: a powerful tool to study adaptation from standing genetic variation. 2015. *Heredity*
551 114(5):431–440.

552 Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals — mining genome-wide
553 polymorphism data without big funding. 2014. *Nat Rev Genet.* 15(11):749–763.

554 Seabra SG, Fragata I, Antunes MA, Faria GS, Santos MA, Sousa VC, Simões P, Matos M. Different
555 Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting History. 2018. *Mol Biol Evol.*
556 35(3):549–563.

557 Sekhon JS. Multivariate and Propensity Score Matching Software with Automated Balance Optimization:
558 The Matching Package for R. 2011. *J Stat Softw.* 42(7):1–52.

559 Sella G, Barton NH. Thinking About the Evolution of Complex Traits in the Era of Genome-Wide
560 Association Studies. 2019. *Annu Rev Genomics Hum Genet.* 20(1):461–493.

561 Sohail M, Maier RM, Ganna A, Bloemendal A, Martin AR, Turchin MC, Chiang CW, Hirschhorn J, Daly
562 MJ, Patterson N. Polygenic adaptation on height is overestimated due to uncorrected stratification in
563 genome-wide association studies. 2019. *eLife* 8:e39702–e39702.

564 Taus T, Futschik A, Schlötterer C. Quantifying Selection with Pool-Seq Time Series Data. 2017. *Mol Biol*
565 *Evol.* 34(11):3023–3034.

566 Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, Matthews BB, Millburn G,
567 Antonazzo G, Trovisco V. FlyBase 2.0: the next generation. 2019. *Nucleic Acids Res.* 47(D1):D759–D765.

568 Turchin MC, Chiang CWK, Palmer CD, Sankararaman S, Reich D, Hirschhorn JN, Consortium GI of AnT
569 (GIANT). Evidence of widespread selection on standing variation in Europe at height-associated SNPs.
570 2012. *Nat Genet.* 44(9):1015–1019.

571 Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. Population-Based Resequencing of
572 Experimentally Evolved Populations Reveals the Genetic Basis of Body Size Variation in *Drosophila*
573 *melanogaster*. 2011. *PLOS Genet.* 7(3):e1001336-.

574 Vlachos C, Burny C, Pelizzola M, Borges R, Futschik A, Kofler R, Schlötterer C. Benchmarking software
575 tools for detecting and quantifying selection in evolve and resequencing studies. 2019. *Genome Biol.*
576 20(1):169–169.

577 Vlachos C, Kofler R. MimicrEE2: Genome-wide forward simulations of Evolve and Resequencing studies.
578 2018. *PLOS Comput Biol.* 14(8):e1006413-.

579 Vlachos C, Kofler R. Optimizing the Power to Identify the Genetic Basis of Complex Traits with Evolve and
580 Resequence Studies. 2019. *Mol Biol Evol.* 36(12):2890–2905.

581 Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. 2016. Springer-Verlag New York.

582 Yeaman S. Local Adaptation by Alleles of Small Effect. 2015. *Am Nat.* 186(S1):S74–S89.