

1 **Article title:**

2 Exploration of synergistic action of cell wall-degrading enzymes against *Mycobacterium tuberculosis*

3

4 **Running title:**

5 Cell wall-degrading enzymes against *Mycobacterium tuberculosis*

6

7 **Author names and affiliations:**

8 Loes van Schie ^{a,b}

9 Katlyn Borgers ^{a,b}

10 Gitte Michielsen ^{a,b}

11 Evelyn Plets ^{a,b}

12 Marnik Vuylsteke ^c

13 Petra Tiels ^{a,b}

14 Nele Festjens ^{a,b}

15 Nico Callewaert ^{a,b}

16 ^a UGent Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium

17 ^b VIB-UGent Center for Medical Biotechnology, Ghent, Belgium

18 ^c Gnomixx, Boterbloemstraat 26, 9090 Melle, Belgium

19

20 **Corresponding author**

21 Prof. Dr. Nico Callewaert

22 VIB-UGent Center for Medical Biotechnology

23 Technologiepark-Zwijnaarde 75; 9052 Gent; Belgium

24 Tel: +32 (0)9 224 98 07

25 E-mail: nico.callewaert@vib-ugent.be

26 **Synopsis**

27 **Background**

28 The major global health threat tuberculosis is caused by *Mycobacterium tuberculosis* (Mtb). Mtb has a complex
29 cell envelope – a partially covalently linked composite of polysaccharides, peptidoglycan and lipids, including a
30 mycolic acid layer – which conveys pathogenicity but also protects against antibiotics. Given previous successes
31 in treating gram-positive and -negative infections with cell wall degrading enzymes, we investigated such
32 approach for Mtb.

33 **Objectives**

34 (i) Development of an Mtb microtiter growth inhibition assay that allows undisturbed cell envelope formation, to
35 overcome the invalidation of results by typical clumped Mtb-growth in surfactant-free assays. (ii) Exploring anti-
36 Mtb potency of cell wall layer-degrading enzymes. (iii) Investigation of the concerted action of several such
37 enzymes.

38 **Methods**

39 We inserted a bacterial luciferase-operon in an auxotrophic Mtb strain to develop a microtiter assay that allows
40 proper evaluation of cell wall degrading anti-Mtb enzymes. We assessed growth-inhibition by enzymes
41 (recombinant mycobacteriophage mycolic acid esterase (LysB), fungal α -amylase and human and chicken egg
42 white lysozymes) and combinations thereof, in presence or absence of biopharmaceutically acceptable surfactant.

43 **Results**

44 Our biosafety level-2 assay identified both LysB and lysozymes as potent Mtb-inhibitors, but only in presence of
45 surfactant. Moreover, most potent disruption of the mycolic acid hydrophobic barrier was obtained by the highly
46 synergistic combination of LysB, α -amylase and polysorbate 80.

47 **Conclusions**

48 Synergistically acting cell wall degrading enzymes are potently inhibiting Mtb – which sets the scene for the design
49 of specifically tailored antimycobacterial (fusion) enzymes. Airway delivery of protein therapeutics has already
50 been established and should be studied in animal models for active TB.

51 **Introduction**

52 Pathogens of the genus *Mycobacterium* are the etiological agents of various severe diseases, the most notorious
53 being tuberculosis (TB) caused by *Mycobacterium tuberculosis* (Mtb). It is the most lethal infectious disease
54 worldwide and while it might be surpassed by COVID-19 in 2020, it still poses a major global health threat – and
55 worryingly, multidrug-resistance is on the rise. Treatment success of multi-drug resistant tuberculosis (MDR-TB)
56 is currently only 57% and the very protracted treatment comes with harsh side-effects.¹ Recent advances in drug
57 development have drastically shortened the treatment of MDR-TB and provided more tolerable oral regimens
58 composed of both established TB drugs, novel compounds and repurposed drugs.¹⁻⁵ Still, MDR-TB treatment
59 typically takes 9 to 20 months and the search for more effective and quicker acting drugs is ongoing. Main
60 challenges are the slow growth of Mtb and the relatively impermeable, complex layered cell wall structure of
61 mycobacteria (Figure 1), in which the cell membrane is covered by a layer of peptidoglycan (PG) covalently linked
62 to arabinogalactan. Mycolic acids are esterified to the AG and together with free, intercalating (glyco- and
63 phospho-) lipids and fatty acids, they constitute a near impermeable outer ‘mycomembrane’.⁶⁻⁹ This
64 mycomembrane is surrounded by a capsule comprised mainly of α -glucan.^{10,11}

65 Bacteriophage PG-degrading enzymes (endolysins) are increasingly investigated as antibacterial agents, with
66 several products for topical use against Gram-positive infections already on the market,^{12,13} and progress being
67 made for Gram-negative pathogens.¹⁴⁻¹⁶ Such products are rapidly gaining attention due to the looming antibiotics
68 resistance crisis, together with improved know-how in biopharmaceutical protein production and formulation for
69 nebulization or dry powder inhalation. In the context of respiratory diseases such as TB, it is encouraging that

70 several recombinant biopharmaceutical protein treatments (e.g. dornase alpha to reduce viscosity of airway
71 mucus) have been successfully developed for inhalation.¹⁷ However, due to their distinctive cell wall,
72 bacteriophage-mediated lysis of mycobacteria is more complicated than that of other Gram-positives. In addition
73 to endolysin, mycobacteriophages employ a mycomembrane-targeting mycolylarabinogalactan esterase (LysB) to
74 lyse mycobacteria.¹⁸⁻²⁰

75 Whereas endolysin derived from mycobacteriophage Ms6 has been reported not to inhibit *M. smegmatis* or Mtb
76 growth when added therapeutically,²¹ the smaller hen egg white lysozyme (which also cleaves PG) has long been
77 shown to weakly inhibit both *M. smegmatis* and Mtb.²²⁻²⁵ For *M. smegmatis*, a growth-inhibitory effect of LysB
78 enzymes has been described in presence of surfactant or membrane-destabilizing cationic peptides.^{18-20,26} Hen
79 egg white lysozyme, RipA (an Mtb PG-endopeptidase), RpfE (an Mtb putative transglycosylase) or hydrolase-30
80 (an *M. smegmatis* cell wall hydrolase) had moderate inhibitory effects on the growth of *M. smegmatis*, but this
81 effect was significantly increased if the enzymes were administered in combination with various antibiotics,
82 confirming the role of the mycomembrane as a drug barrier.²⁵ This illustrates how cell wall-weakening enzyme
83 treatments have the potential to significantly shorten the treatment regimens of Mtb chemotherapy.

84 Previous studies on the use of cell wall degrading enzymes against Mycobacteria suffer from two main limitations.
85 First, these studies often use *Mycobacterium smegmatis* as the test organism, a rather distant relative to Mtb,
86 with known differences in cell wall composition.^{27,28} This organism is non-infectious and grows very rapidly, hence
87 its popularity. However, for cell wall degrading antibiotics research the pathogen should be used. Second, Mtb
88 clumps heavily in cultures due to the composition of its cell wall. As this has precluded most high-throughput drug
89 test formats, the surfactant polysorbate 80 is routinely added to Mtb culture medium to support finely dispersed
90 planktonic growth. Polysorbate 80 does not restrict Mtb propagation in cultures that use glycerol as the carbon
91 source.^{29,30} Still, it is known to alter mycobacterial drug susceptibility^{31,32} and to destabilize the outer capsule.¹¹
92 Obviously this could affect the validity of results obtained with cell wall degrading enzymes, and precludes
93 exploration of surface-active components in the enzyme cocktail. In this study, we solve both problems by

94 developing a bioluminescent derivative of a biosafety level 2 triple auxotrophic *Mtb*.³³ The bacterial lux operon
95 used does not require cellular uptake of any cofactor,³⁴ which allows for quantifying metabolic activity in static,
96 clumped cultures.

97 We set out to systematically assess the potency of enzymes that degrade the various layers of the *Mtb* cell wall,
98 using cultivation conditions that keep the *Mtb* cell wall/biofilm intact. Apart from PG and the mycomembrane, we
99 targeted the outer capsule of *Mtb*. Considering that α -glucan is a main constituent of this capsule,¹⁰ we speculated
100 that *Aspergillus oryzae* α -amylase, an α -glucan hydrolyzing enzyme already used in human medicine to treat
101 pancreatic insufficiency, could have a capsule-destabilizing effect and potentially synergise with the known
102 capsule destabilization imparted by polysorbate 80. Furthermore, we hypothesized that the anti-TB potency of
103 cell wall-degrading enzyme treatments would be enhanced by using the enzymes in cocktails, which could
104 potentially ‘peel’ the cell envelope layer-by-layer and synergistically weaken it (Figure 1). Amylase-induced
105 hydrolysis of the capsular layer may, for instance, increase permeability for enzymes such as LysB that degrade
106 the mycomembrane and/or for enzymes such as lysozyme that degrade the PG layer underneath.

107 **Materials and Methods**

108 **Materials**

109 Chicken egg white lysozyme was purchased at Sigma-Aldrich (L6876, $\geq 90\%$ protein), as was human lysozyme
110 recombinant from rice (L1667, $\geq 90\%$ pure) and *Aspergillus oryzae* α -amylase (A8220, ≥ 800 fungal amylase units/g).
111 All were dissolved in phosphate-buffered saline (PBS) and protein concentrations were determined via
112 spectrophotometry at 280 nm. Polysorbate 80 (Sigma-Aldrich) was dissolved at 0.2% in PBS. Antibiotics isoniazid
113 (INH) and rifampicin (RIF) (Sigma-Aldrich) were dissolved as stock solutions of 1 mg/ml (INH) in PBS and 10 mg/ml
114 (RIF) in methanol. All solutions were 0.22 μ m filter-sterilized.

115 *Plasmid construction and enzyme expression*

116 Sequences encoding LysB originating from mycobacteriophages Ms6 and D29 (LysB-Ms6 and LysB-D29, UniProt
117 accession numbers Q9FZR9 and O64205, respectively) were ordered as synthetic DNA in the pUC57 vector
118 (GenScript). Via PCR, the genes were cloned into the pLH36 vector in frame with an N-terminal His6-tag flanked
119 by a murine caspase-3 cleavage site (sequences in Supplementary A). The expression constructs were verified by
120 Sanger sequencing (VIB Genetic Service Facility, Antwerp, Belgium) and transformed to *E. coli* BL21 (DE3). After
121 initial growth at 28 °C in terrific broth medium (Sigma-Aldrich) supplemented with carbenicillin, expression was
122 induced at a culture OD₆₀₀ of 0.6 by the addition of 0.6 mM isopropyl-β-D-thiogalactopyranoside. LysB-Ms6 was
123 expressed overnight at 28 °C and LysB-D29 for 4h at 37°C. Bacteria were harvested by centrifugation (8000xg, 15
124 min at 4 °C).

125 *Purification of LysB enzymes*

126 After resuspension, bacterial pellets were incubated for 30 min in ice-cold lysis buffer (25 mM Tris-HCl pH 8, 5 mM
127 MgCl₂, 0.1% Triton X-100 and 1X cOmplete™ protease inhibitor (Roche)) and lysed by sonication at 70% amplitude
128 using a Qsonica sonicator (4s on, 8s off for 9 min). After 30 min centrifugation (100,000xg) at 4 °C, cleared lysates
129 were 0.22 µm filter sterilized. Enzymes were isolated from the cleared lysates via nickel affinity chromatography
130 (IMAC) using a HisTrap column (GE Healthcare) and size exclusion chromatography (SEC) using a SuperDex 75
131 10/300 or 16/600 SEC column (GE Healthcare) calibrated with 20 mM HEPES pH 7 and 150 mM NaCl. After
132 quantification (BCA assay, Pierce), enzymes were 0.22 µm filter sterilized and aliquots were snap-frozen in liquid
133 nitrogen before storage at -80 °C.

134 *Evaluation of enzyme activity*

135 Lipolytic LysB activity was quantified using an assay adapted from literature.^{18,35} Briefly, LysB was incubated with
136 5 mM *p*-nitrophenol butyrate substrate (pNPB) in 20 mM Tris-HCl pH 8.0, 100 mM NaCl and 0.1% Triton X-100.
137 The release of *p*-nitrophenol after hydrolysis of the pNPB substrate was measured as increase in absorbance at

138 400 nm for 30 minutes, and the $\Delta A_{400\text{nm}}/\text{minute}$ was calculated from the linear region of the blank-corrected values
139 after a lag-phase. The specific enzyme activity was calculated using the micromolar extinction coefficient of
140 *p*-nitrophenol at 400 nm at 37°C of 0.0148. One LysB enzyme unit releases 1 nmol of *p*-nitrophenol per minute at
141 pH 8 at 37 °C using pNPB as substrate.

142 PG-degrading activity of human and hen egg white lysozyme was determined on a fluorescein-labelled
143 *Micrococcus lysodeiticus* cell wall substrate using the EnzChek Lysozyme Assay Kit (ThermoFisher), in which one
144 unit is defined as the amount of enzyme required to produce a 0.001 units per minute change in the absorbance
145 at 450 nm of at pH 6.24 and 25°C, using a suspension of *Micrococcus lysodeikticus* as the substrate.

146 ***Mycobacterium* strain and handling**

147 To enable a bioluminescence-based *Mycobacterium* drug susceptibility assay, we used the pMV306hsp+LuxG13
148 plasmid (a gift from Brian Robertson and Siouxsie Wiles, Addgene #26161) which contains a bacterial luciferase
149 operon enhanced by using the G13 promotor in front of luxC.³⁶ The integrase-free reporter plasmid
150 pMV306DIhsp+LuxG13 (BCCM/GeneCorner accession number LMBP11308) was produced by deleting the int gene
151 from pMV306hsp+LuxG13 via inverted PCR using phosphorylated primers (5'-Pi-GTCCATCTTGTGTCGTAGGTCTG-
152 3' and 5'-Pi-TCTTGTCAAGTACGCGAAGAACAC-3'),³⁷ followed by ligation of the product. The use of an integrase-
153 free reporter plasmid and a separate suicide vector containing integrase (pBlueScript-Integrase, a gift from Peter
154 Sander, Institute of Medical Microbiology, University of Zurich) allowed for temporary integrase activity – to
155 integrate the reporter plasmid – and subsequent selection of integrase-free reporter strains.³⁸ The biosafety level
156 2-approved triple auxotrophic Δ panCD Δ leuCD Δ argB Mtb mc²7902 strain³³ (a gift from W.R. Jacobs Jr.) was co-
157 transformed with pMV306DIhsp+LuxG13 and pBlueScript-Integrase via electroporation (12.5 kV/cm, 25 μ F
158 capacitance, 800 Ω resistance). After selection on kanamycin, the obtained Mtb mc²7902_Lux strain was stored in
159 1 ml aliquots at OD₆₀₀ 1 in 20% glycerol at -80 °C. For each drug testing assay, two Mtb mc²7902_Lux aliquots were
160 thawed, combined and cultured at 37 °C, shaking, in a 60 ml square bottle in 20 ml of Middlebrook 7H9 broth (BD

161 Diagnostics) supplemented with 0.05%_{v/v} polysorbate 80, 10% oleic acid-albumin-dextrose-catalase supplement
162 (OADC; BD Diagnostics), 0.5%_{v/v} glycerol, 1 mM L-arginine, 50 µg/ml L-leucine and 24 µg/ml L-pantothenate. At
163 days 5 and 8 after thawing, bacteria were subcultured by 1/100 and 1/20 dilution, respectively, for use in setting
164 up the antimicrobial assays on day 9. Middlebrook 7H10 agar (BD Diagnostics) supplemented with 10% OADC,
165 0.5%_{v/v} glycerol, 1 mM L-arginine, 50 µg/ml L-leucine and 24 µg/ml L-pantothenate was used for growth of *Mtb*
166 on solid culture; colony counts after incubation at 37 °C for up to 12 weeks were given as colony forming units per
167 ml plated (cfu/ml).

168 *A bioluminescence microtiter assay for mycobacterial growth inhibition*

169 To remove bacterial clumps before setting up the microtiter assay, mycobacteria were passed three times through
170 a 27G needle. A *Mtb* mc²7902_Lux inoculum at an OD₆₀₀ of 0.008 (2·10⁶ cfu/ml) was prepared in assay medium
171 (Middlebrook 7H9 broth supplemented with 10% OADC, 0.5%_{v/v} glycerol, 1 mM L-arginine, 50 µg/ml L-leucine and
172 24 µg/ml L-pantothenate) without any polysorbate 80 unless specifically stated otherwise.

173 Drug susceptibility was tested in a microtiter plate format based on the bioluminescence assay proposed by
174 Andreu *et al* (2012).³⁴ Briefly, duplicate twofold serial dilutions of various compounds were prepared in assay
175 medium in sterile 96-well black opaque plates (CulturPlate-96 Black, PerkinElmer). To allow for synergy testing,
176 horizontal twofold dilution series of one compound were combined with vertical twofold dilution series of another
177 compound in a 'checkerboard' fashion (Supplementary B). Afterwards, the *Mtb* mc²7902_Lux inoculum was added
178 to 2·10⁵ cfu per well. Each plate contained three wells containing inoculum without drugs (positive growth
179 controls), and three wells containing no inoculum (negative controls). All perimeter wells were filled with 200 µl
180 ultrapure water to limit evaporation from sample wells. Assay plates were incubated at 37 °C in an incubator
181 providing 5% CO₂ and 80% humidity, which yielded a higher reproducibility than when plates were placed (in a
182 sealed box or plastic bag) in a regular incubator (data not shown). Bioluminescence was measured after 1, 4, 7, 10

183 and 13 days of incubation in a GloMax® 96 or GloMax Navigator Microplate Luminometer (Promega) with 1.0 s
184 integration per well, and expressed as relative light units (RLU).

185 *Bioluminescence microtiter assay data processing (details on models and synergy evaluation in Supplementary C)*

186 After averaging bioluminescence data of technical duplicate microtiter plates, data of three independent
187 experiments were subjected to fitting of the generalized logistic model and the Gompertz model^{39,40} using GenStat
188 19.1 (VSN International Ltd). The minimal inhibitory concentration (MIC), defined as the intersection of the lower
189 asymptote with the tangent to the inflection point of the curve (Figure 3a), was calculated for the best fitting dose-
190 response curve of each dataset (judged by the percentage of variance accounted for by the fitted curve). If no
191 inhibition was observed, the MIC was set as larger than or equal to the highest concentration tested. If inhibition
192 was observed but no dose-response curve could be fitted, the MIC was set as lower than or equal to the lowest
193 value for which all data points were below 200 RLU (corresponding to the bioluminescence of half the inoculum).

194 For synergy assessment, data were normalized to the means of positive and negative growth controls and
195 evaluated using the Combenefit tool.⁴¹ Subsequently, a linear mixed model was fitted to further assess the
196 significance of the synergy detected as a statistical interaction between compounds.

197 Correlation between cfu/well and RLU/well was assessed using the SciPy Stats package.^{42,43}

198 **Results**

199 *Enzyme production and characterization*

200 Mycobacteriophage Ms6 and D29 mycolic acid esterases (LysB-Ms6 and LysB-D29) were produced in *E. coli* and
201 purified via IMAC and SEC to yields of 3.12 and 1.34 mg/liter *E. coli* culture (i.e. 81 and 44 nmol/l), respectively
202 (Figure 2a-b). Minor low molecular weight bands were observed in purified Lys-Ms6, probably indicating low level
203 protein degradation. Enzymatic activity on a pNPB substrate seemed highly dependent on the bacteriophage from
204 which the enzyme was derived, with LysB-D29 displaying three-fold higher specific activity than LysB-Ms6 (Table

205 1, not significant, $p=0.2$, Mann-Whitney test). Enzymatic activity of commercially available lysozyme was validated
206 using a *Micrococcus* PG degradation assay (Table 1, bottom).

207 *Cell wall degrading enzymes inhibit mycobacterial growth*

208 Lux operon-induced bioluminescence has already been shown to correlate very well with (inhibition of)
209 mycobacterial growth in drug susceptibility assays.^{34,36} We therefore used this bioluminescence to reliably
210 evaluate the antimycobacterial activity of recombinant LysB-Ms6 and LysB-D29 as well as commercially available
211 lysozyme (human and chicken egg white) and α -amylase (*A. oryzae*) and antibiotics isoniazid (INH) and rifampicin
212 (RIF). Bioluminescence was determined after 1, 4, 7, 10 and 14 days of incubation. When modeling dose-response
213 curves, inhibition often appeared incomplete at day 1 (parameter A not zero) and after excluding that time point,
214 the highest percentage of explained variance was consistently obtained at day 4. Therefore, minimal inhibitory
215 concentrations (MICs) were determined at this time point (Table 2 and Figure 3b).

216 We calculated a MIC of INH in the same order of magnitude as described in Andreu *et al* at day 4.³⁴ The MIC we
217 calculated for RIF was approximately ten-fold higher, but it should be noted we used a different strain of *Mtb*
218 (pathogenic H37Rv in literature versus mc²7902 in our study) and our definition of MIC is more stringent than that
219 used in literature (1 log reduction in bioluminescence).

220 Both human and chicken egg white lysozyme were only marginally inhibiting mycobacterial growth by themselves,
221 but become equally effective ($p=0.318$; t-test) in presence of polysorbate 80, with activities enhanced 6 to 8-fold
222 (Figure 3b and Table 2). α -Amylase, on the other hand, did not considerably affect growth in the concentration
223 range tested, neither in the presence nor in the absence of surfactant (MIC $\geq 250 \mu\text{M}$). LysB-D29 and LysB-Ms6
224 could inhibit growth equally effectively in presence of polysorbate 80 (MIC= $0.08 \pm 0.01 \mu\text{M}$ and $0.2 \pm 0.07 \mu\text{M}$,
225 respectively; t-test $p=0.189$). It should be noted that the dose-response curve shapes differ, with LysB-D29
226 showing a sharp dose-dependent effect and stronger polysorbate 80-dependence than LysB-Ms6.

227 To assess viability of growth-inhibited mycobacteria, several conditions at the high and low ends of the LysB-Ms6
228 and human lysozyme inhibition curves were selected for a repeat luminescence assay followed by cfu
229 determination, which demonstrated a strong correlation between RLU and cfu (Figure 3c, Spearman correlation
230 coefficient = 0.93, $p=1.6 \cdot 10^{-5}$). Upon administration of 250 μM human lysozyme in presence of 0.05% PS80,
231 viability was vigorously decreased after 4 days at 37 °C (10^3 cfu/well versus 10^7 cfu/well after sub-MIC treatment)
232 and upon administration of the highest concentrations of LysB-Ms6 with 0.05% PS80, no viable *Mtb* were observed
233 at all (Figure 3c).

234 **Synergy**

235 Considering the layered structure of the mycobacterial cell wall, we hypothesized that cell wall degrading enzymes
236 can display synergy if administered jointly. Using Combefit⁴¹ we analysed various combinations of
237 antimycobacterial compounds in checkerboard assays (Table 3). The three tested compound combinations scoring
238 highest for synergy were selected for in-depth analysis: LysB-Ms6 with human lysozyme and 0.05% polysorbate
239 80, and LysB-Ms6 with α -amylase in presence or absence of 0.05% polysorbate 80. When LysB-Ms6 was combined
240 with either human lysozyme or *A. oryzae* α -amylase, both synergistic and antagonistic regions were observed in
241 the dose-response surface with few significant combinations and an overall neutral effect (Figure 4a-b). However,
242 when 0.05% polysorbate 80 was added to the combination of LysB-Ms6 and *A. oryzae* α -amylase, the shape of the
243 dose-response surface changed drastically, displaying a deep valley of synergy in which 18 out of 36 conditions
244 scored significant for synergy ($p<0.05$ to $p<0.0001$; Figure 4c).

245 The significance of synergy between LysB-Ms6, α -amylase and polysorbate 80 was further assessed by applying a
246 linear mixed model to bioluminescence data of two sets of drug combinations (Figure 4d-e, details in
247 Supplementary E). In presence of 0.05% polysorbate 80, a significant interaction ($p=0.012$ in the mixed model)
248 was identified between a dilution series of LysB-Ms6 and 7.8 μM α -amylase, confirming synergy (Figure 4e). In
249 absence of polysorbate 80, no such significant interaction was observed. In the presence of 3.9 μM α -amylase

250 (Figure 4d) a similar trend was observed but it was of borderline significance ($p=0.058$ in the mixed model). From
251 combined results of bioluminescence assays and synergy analyses, we conclude that the combination of dilution
252 series of LysB-Ms6 and *A. oryzae* α -amylase in the presence of 0.05% polysorbate 80 leads to a strong, synergistic
253 effect on the growth of *Mtb* mc²7902, validating the hypothesis that targeting multiple layers of the cell wall can
254 lead to more effective antimycobacterial activity.

255 **Discussion**

256 The results of this study can be summarized as a methodological improvement in anti-*Mtb* drug screening, and a
257 main discovery with regard to the synergistic antimycobacterial effect of cell wall-degrading enzymes.

258 The methodological improvement pertains to the rather mundane, but vexing problem that *Mtb* grows in clumps
259 when its cell envelope is left unperturbed. While adding surfactants in high-throughput microtiterplate-based
260 drug studies enables spectrophotometry-based readouts of growth, it likely invalidates susceptibility tests of cell
261 wall-targeting enzymes and drugs, as accessibility to the cell wall substrates of such enzymes will be altered –
262 which we confirmed in our studies. Other researchers have deferred to the use of model organism *M. smegmatis*,
263 which clumps less, grows more rapidly than *Mtb* and is non-infectious, allowing work outside highly restricted and
264 expensive biosafety level 3 laboratories. Nevertheless, the cell wall of *M. smegmatis* differs significantly from that
265 of the pathogenic slow-growing mycobacteria and it is questionable whether results can be extrapolated to *Mtb*.
266 For this reason, we resorted to the use of *Mtb* engineered with a bacterial lux operon. In a parallel project, other
267 luciferase systems were also implemented, and whereas higher specific luminescence could be obtained with
268 firefly luciferase, the bacterial lux operon does not require addition of the luciferin cofactor. This is a major
269 advantage, as it eliminates doubts about false results caused by bacterial clumping limiting cofactor diffusion, or
270 cell wall degrading enzyme treatment ‘opening up’ access for such cofactor. Moreover, we combined this system
271 with biosafety convenience by implementing it in a triple auxotrophic *Mtb* derivative generated in and generously

272 provided by the Jacobs lab.³³ The luminescent auxotrophic *Mtb* strain and associated protocols should be useful
273 in a great variety of drug screening studies.

274 Using this strain, we discovered that the combination of LysB-Ms6 and *A. oryzae* α -amylase was highly synergistic
275 in inhibiting mycobacterial growth in presence of polysorbate 80. Remarkably, α -amylase itself has no anti-*Mtb*
276 effect either with or without 0.05% polysorbate 80. The most straightforward explanation is that polysorbate 80
277 and α -amylase collaborate in disrupting the α -glucan capsule (non-essential for *in vitro* *Mtb* growth),¹¹ clearing
278 the way for LysB to hydrolyze the linkage between underlying mycolic acids and the arabinogalactan layer, thus
279 disrupting the mycomembrane. This finding lays the first stone for the creation of specifically tailored
280 antimycobacterial (fusion) enzymes.

281 The anti-*Mtb* potential of LysB-Ms6 itself and its improvement in the presence of polysorbate 80 had already been
282 shown on the *M. smegmatis* model, and it was demonstrated that cell wall hydrolysis was the main mechanism
283 behind inhibitory activity of LysB-Ms6.³¹ We report a similar surfactant-dependent bacteriostatic effect of both
284 LysB-Ms6 and LysB-D29 on *Mtb*.

285 The mycobacterial cell envelope is a complex non-proteinaceous (thus not directly genetically encoded) structure
286 synthesized by an extensive enzyme machinery.⁷ This likely substantially reduces the chance that single
287 spontaneous mutations lead to resistance against enzyme antimicrobials, contrary to small molecule antibiotics,
288 which bind to genetically encoded protein targets. In addition, it has been observed that in treating MDR-TB
289 patients (the main target group for biopharmaceutical enzyme treatment), low-level antibiotics resistance can be
290 overcome by administrating drug doses exceeding the MICs of the resistant strains.⁴⁴ After weakening the
291 *Mycobacterium* envelope with cell-wall degrading enzymes, classic antibiotics could potentially penetrate more
292 readily, increasing the effective drug concentration intracytoplasmatically to levels above the MIC.

293 While promising as antimycobacterials, adequate delivery of the enzyme therapeutics to the site of infection is
294 essential to therapeutic efficacy. We believe our study is timely as several inhaled nebulized enzyme therapeutics

295 are under clinical evaluation, providing evidence that lung delivery of therapeutic enzymes is feasible.^{17,45} As an
296 example, it was calculated that 8.8 ± 1.9 mg of an antibody could be delivered to the alveoli of non-human primates
297 using a novel device for protein inhalation.⁴⁶ Considering a conservative estimate of 70 ml lung lining fluid
298 volume,⁴⁷ this would amount to a dose of 0.13 mg/ml, or 4.3 μ M of a 30-kDa protein, widely surpassing the MICs
299 we found for LysB in presence of surfactant (polysorbate 80, which has been successfully included in inhaled
300 therapeutics).^{17,48} It should however be considered that mucus hypersecretion is a common feature of airway
301 inflammation, possibly lowering the effective therapeutic dose when treating (MDR-)TB patients.^{49,50} While
302 optimizing lung delivery, topical application of antimycobacterial enzyme therapy might already suffice to treat
303 the skin infection Buruli ulcer caused by *Mycobacterium ulcerans*.⁵¹
304 The repeated inhalation of non-human proteins might lead to an immune response, although tolerance is the
305 default response to antigens that come into contact with the mucosa in the deep airways.⁵² If necessary, enzymes
306 could be administered in controlled-release formulations to reduce the number of administration required.
307 Novel drug regimens have already drastically shortened (MDR-)TB therapy but still, duration, complexity and
308 toxicity of (second-line) drug regimens are main challenges in the worldwide fight to end TB.¹ Enhancing or
309 accelerating the effectiveness of conventional antibiotics by adding cell wall-degrading enzymes in two to three
310 rounds of (controlled-release) enzyme administration, could potentially lower the treatment duration critically
311 and help alleviate the immense burden of TB therapy.

312 Acknowledgements

313 We thank the W.R. Jacobs lab for kindly providing the Mtb mc²7902 strain and Dr. B. Robertson, Dr. S. Wiles and
314 Dr P. Sander for expression plasmids used in this study.

315 **Funding**

316 The research was supported by a personal PhD fellowship at Agentschap voor Innovatie door Wetenschap en
317 Technologie (IWT, Strategic Basic Research fellowship no. 131545) and UGent institutional funding. This research
318 formed part of the ERC Consolidator Grant GlycoTarget to Nico Callewaert.

319 **Transparency declarations**

320 None to declare.

321 **References**

- 322 1. World Health Organization (WHO). Global Tuberculosis Report 2020. 2020. Available at: <https://www.who.int/publications/item/9789240013131>.
- 323 2. Diacon AH, Pym A, Grobusch M, *et al*. The Diarylquinoline TMC207 for Multidrug-Resistant Tuberculosis. *N Engl J Med* 2009; **360**: 2397–405.
- 324 3. World Health Organization (WHO). Rapid Communication: Key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). 2018.
- 325 4. Moodley R, Godec TR, STREAM Trial Team. Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. *Eur Respir Rev Off J Eur Respir Soc* 2016; **25**: 29–35.
- 326 5. Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D'Ambrosio L, Migliori G-B. New drugs and perspectives for new anti-tuberculosis regimens. *Pulmonology* 2018; **24**: 86–98.
- 327 6. Brennan PJ, Nikaido H. The envelope of mycobacteria. *Annu Rev Biochem* 1995; **64**: 29–63.
- 328 7. Brennan P. Structure, function, and biogenesis of the cell wall of *Mycobacterium tuberculosis*. *Tuberculosis* 2003; **83**: 91–97.
- 329 8. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. *J Bacteriol* 2008; **190**: 5672–80.
- 330 9. Bansal-Mutalik R, Nikaido H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. *Proc Natl Acad Sci U S A* 2014; 1–6.
- 331 10. Daffé M, Etienne G. The capsule of *Mycobacterium tuberculosis* and its implications for pathogenicity. *Tuber Lung Dis Off J Int Union Tuberc Lung Dis* 1999; **79**: 153–69.
- 332 11. Sani M, Houben ENG, Geurtsen J, *et al*. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. *PLoS Pathog* 2010; **6**: e1000794.
- 333 12. Totté JEE, van Doorn MB, Pasmans SGMA. Successful Treatment of Chronic *Staphylococcus aureus*-Related Dermatoses with the Topical Endolysin Staphefekt SA.100: A Report of 3 Cases. *Case Rep Dermatol* 2017; **9**: 19–25.
- 334 13. Anon. Clinical trial: Safety, Efficacy and Pharmacokinetics of CF-301 vs. Placebo in Addition to Antibacterial Therapy for Treatment of *S. aureus* Bacteremia. Available at: <https://clinicaltrials.gov/ct2/show/NCT03163446>. Accessed March 9, 2019.
- 335 14. Nelson D, Loomis L, Fischetti V a. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. *Proc Natl Acad Sci U S A* 2001; **98**: 4107–12.
- 336 15. Briers Y, Lavigne R. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. *Future Microbiol* 2015; **10**: 377–90.

350 16. Oliveira H, Vilas Boas D, Mesnage S, *et al*. Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad
351 Anti-Gram-Negative Bacterial Activity. *Front Microbiol* 2016; **7**: 208.

352 17. Bodier-Montagutelli E, Mayor A, Vecellio L, Respaud R, Heuzé-Vourc'h N. Designing inhaled protein therapeutics for topical lung
353 delivery: what are the next steps? *Expert Opin Drug Deliv* 2018; **15**: 729–36.

354 18. Payne K, Sun Q, Sacchettini J, Hatfull GF. Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. *Mol Microbiol* 2009;
355 **73**: 367–381.

356 19. Gil F, Grzegorzewicz AE, Catalão MJ, Vital J, McNeil MR, Pimentel M. Mycobacteriophage Ms6 LysB specifically targets the outer
357 membrane of *Mycobacterium smegmatis*. *Microbiol Read Engl* 2010; **156**: 1497–504.

358 20. Gigante AM, Hampton CM, Dillard RS, *et al*. The Ms6 Mycolyl-Arabinogalactan Esterase LysB is Essential for an Efficient
359 Mycobacteriophage-Induced Lysis. *Viruses* 2017; **9**.

360 21. Mahapatra S, Piechota C, Gil F, *et al*. Mycobacteriophage Ms6 LysA: a peptidoglycan amidase and a useful analytical tool. *Appl Environ
361 Microbiol* 2013; **79**: 768–73.

362 22. Kanetsuna F. Effect of Lysozyme on Mycobacteria. *Microbiol Immunol* 1980; **24**: 1151–62.

363 23. Sethi D, Mahajan S, Singh C, *et al*. Lipoprotein Lp1 of *Mycobacterium tuberculosis* Acts as a Lysozyme Inhibitor. *J Biol Chem* 2016; **291**:
364 2938–53.

365 24. Raymond JB, Mahapatra S, Crick DC, Pavelka MS. Identification of the namH gene, encoding the hydroxylase responsible for the N-
366 glycolylation of the mycobacterial peptidoglycan. *J Biol Chem* 2005; **280**: 326–33.

367 25. Gustine JN, Au MB, Haserick JR, *et al*. Cell Wall Hydrolytic Enzymes Enhance Antimicrobial Drug Activity Against Mycobacterium. *Curr
368 Microbiol* 2019. Available at: <https://doi.org/10.1007/s00284-018-1620-z>. Accessed January 4, 2019.

369 26. Abouhmad A, Korany AH, Grey C, Dishisha T, Hatti-Kaul R. Exploring the Enzymatic and Antibacterial Activities of Novel
370 Mycobacteriophage Lysin B Enzymes. *Int J Mol Sci* 2020; **21**. Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7246905/>.
371 Accessed December 17, 2020.

372 27. Reyrat J-M, Kahn D. *Mycobacterium smegmatis*: an absurd model for tuberculosis? *Trends Microbiol* 2001; **9**: 472–3.

373 28. Yamada H, Chikamatsu K, Aono A, *et al*. Can *M. smegmatis* be used as a real alternative for *M. tuberculosis*? *Eur Respir J* 2016; **48**:
374 PA2789.

375 29. Dubos RJ, Middlebrook G. The effect of wetting agents on the growth of tubercle bacilli. *J Exp Med* 1948; **88**: 81–8.

376 30. Lyon RH, Lichstein HC, Hall WH. Effect of Tween 80 on the growth of tubercle bacilli in aerated cultures. *J Bacteriol* 1963; **86**: 280–4.

377 31. Grover N, Paskaleva EE, Mehta KK, Dordick JS, Kane RS. Growth inhibition of *Mycobacterium smegmatis* by mycobacteriophage-derived
378 enzymes. *Enzyme Microb Technol* 2014; **63**: 1–6.

379 32. Yamori S, Tsukamura M. Paradoxical effect of Tween 80 between the susceptibility to rifampicin and streptomycin and the susceptibility
380 to ethambutol and sulfadimethoxine in the *Mycobacterium avium*-*Mycobacterium intracellulare* complex. *Microbiol Immunol* 1991; **35**:
381 921–6.

382 33. Vilchèze C, Copeland J, Keiser TL, *et al*. Rational Design of Biosafety Level 2-Approved, Multidrug-Resistant Strains of *Mycobacterium*
383 tuberculosis through Nutrient Auxotrophy. *mBio* 2018; **9**: e00938-18.

384 34. Andreu N, Fletcher T, Krishnan N, Wiles S, Robertson BD. Rapid measurement of antituberculosis drug activity in vitro and in
385 macrophages using bioluminescence. *J Antimicrob Chemother* 2012; **67**: 404–14.

386 35. Gilham D, Lehner R. Techniques to measure lipase and esterase activity in vitro. *Methods* 2005; **36**: 139–47.

387 36. Andreu N, Zelmer A, Fletcher T, *et al*. Optimisation of Bioluminescent Reporters for Use with Mycobacteria. *PLOS ONE* 2010; **5**: e10777.

388 37. Andreu N, Zelmer A, Sampson SL, *et al*. Rapid in vivo assessment of drug efficacy against *Mycobacterium tuberculosis* using an improved
389 firefly luciferase. *J Antimicrob Chemother* 2013; **68**: 2118–27.

390 38. Springer B, Sander P, Sedlacek L, Ellrott K, Böttger EC. Instability and site-specific excision of integration-proficient mycobacteriophage
391 L5 plasmids: development of stably maintained integrative vectors. *Int J Med Microbiol IJMM* 2001; **290**: 669–75.

392 39. Lambert RJW, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory
393 concentration (NIC) values. *J Appl Microbiol* 2000; **88**: 784–790.

394 40. Mackey B m., Derrick CM. The effect of sublethal injury by heating, freezing, drying and gamma-radiation on the duration of the lag
395 phase of *Salmonella typhimurium*. *J Appl Bacteriol* 1982; **53**: 243–51.

396 41. Veroli D, Y G, Fornari C, et al. Combbenefit: an interactive platform for the analysis and visualization of drug combinations. *Bioinformatics*
397 2016; **32**: 2866–8.

398 42. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat Methods* 2020; **17**:
399 261–72.

400 43. Kokoska S, Zwillinger D. Section 14.7 Spearman’s rank correlation coefficient. In: *CRC Standard Probability and Statistics Tables and*
401 *Formulae*. New York: Chapman & Hall, 2000.

402 44. Deun AV, Chiang C-Y. Shortened multidrug-resistant tuberculosis regimens overcome low-level fluoroquinolone resistance. *Eur Respir J* 2017; **49**: 1700223.

404 45. Monk PD, Marsden RJ, Tear VJ, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-
405 2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet Respir Med* 2020; **0**. Available at: [https://www.thelancet.com/journals/lanres/article/PIIS2213-2600\(20\)30511-7/abstract](https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30511-7/abstract). Accessed December 18, 2020.

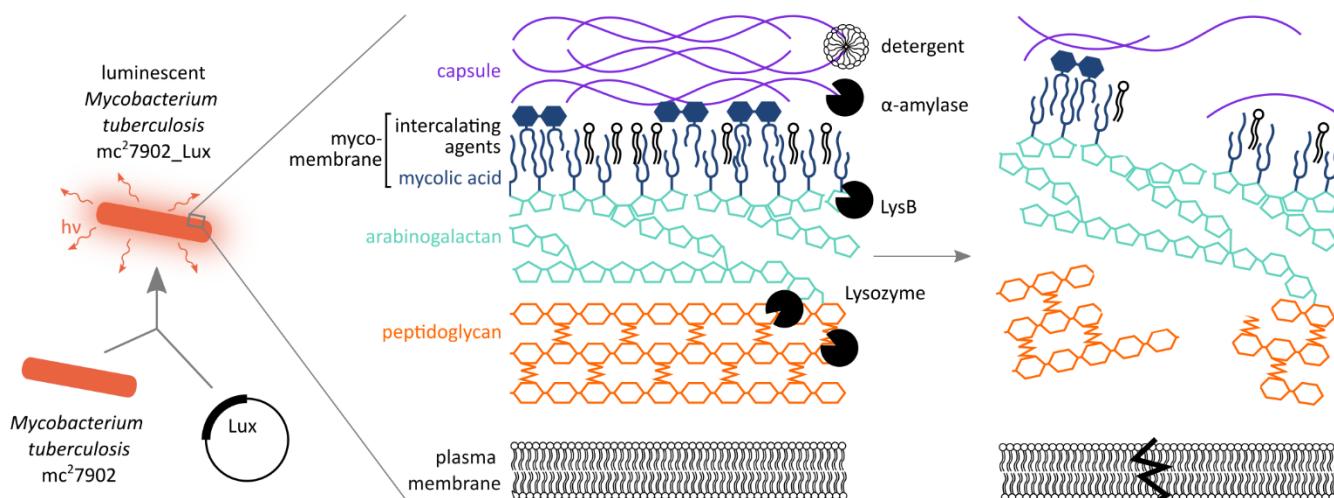
407 46. Respaud R, Marchand D, Pelat T, et al. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal
408 antibody to treat pulmonary intoxication to ricin. *J Control Release Off J Control Release Soc* 2016; **234**: 21–32.

409 47. Fröhlich E, Mercuri A, Wu S, Salar-Behzadi S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled
410 Compounds. *Front Pharmacol* 2016; **7**. Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919356/>. Accessed December 19, 2020.

412 48. FDA/Center for Drug Evaluation and Research. Inactive Ingredient Search for Approved Drug Products. *FDA US Food Drug Adm*. Available
413 at: <https://www.accessdata.fda.gov/scripts/cder/iig/index.Cfm>. Accessed December 19, 2020.

414 49. Shale DJ, Ionescu AA. Mucus hypersecretion: a common symptom, a common mechanism? *Eur Respir J* 2004; **23**: 797–8.

415 50. Karinja MN, Esterhuizen TM, Friedrich SO, Diacon AH. Sputum Volume Predicts Sputum Mycobacterial Load during the First 2 Weeks of
416 Antituberculosis Treatment. *J Clin Microbiol* 2015; **53**: 1087–91.

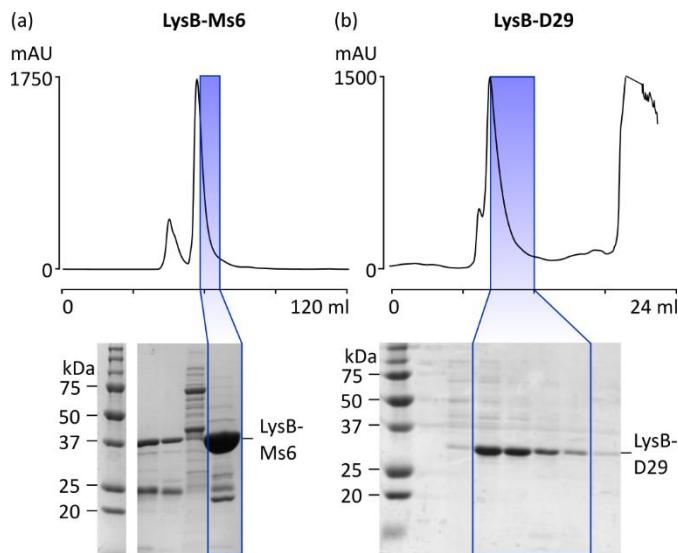

417 51. Fraga AG, Trigo G, Murthy RK, et al. Antimicrobial activity of Mycobacteriophage D29 Lysin B during *Mycobacterium ulcerans* infection.
418 *PLoS Negl Trop Dis* 2019; **13**. Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730932/>. Accessed February 6, 2020.

419 52. Curotto de Lafaille MA, Lafaille JJ, Graça L. Mechanisms of tolerance and allergic sensitization in the airways and the lungs. *Curr Opin*
420 *Immunol* 2010; **22**: 616–22.

421

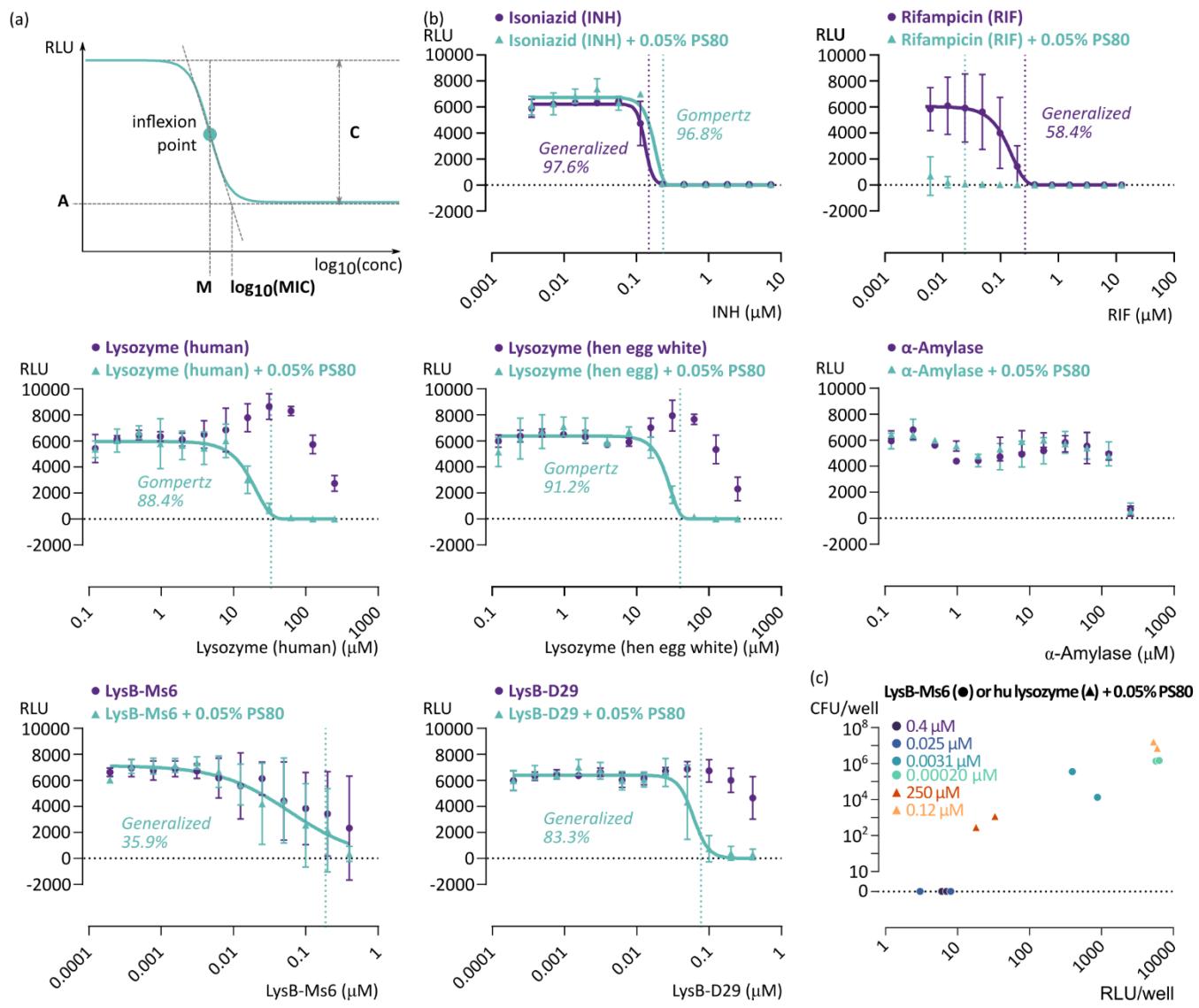
Figures and legends

422



423

Figure 1. Exploring the synergistic action of cell-wall degrading enzymes to permeabilize the *Mycobacterium tuberculosis* cell wall. Strategy: the triple auxotrophic Mtb mc²7902 strain is transformed with a bacterial Lux-operon³⁴ to allow for the use of a bioluminescent assay to test drug sensitivity. Putative cell wall-degrading agents are added alone or in combination in order to destabilize the structural layers of the cell envelope, leading to permeabilization. Polysorbate 80 is a non-ionic surfactant; α-amylase is an α-glucan-hydrolyzing enzyme; LysB is a mycolylarabinogalactan esterase and lysozyme is a peptidoglycan-hydrolyzing enzyme. Intercalating (glyco- and lipo-)proteins in the cell wall layers are not shown to maintain clarity.


428

429

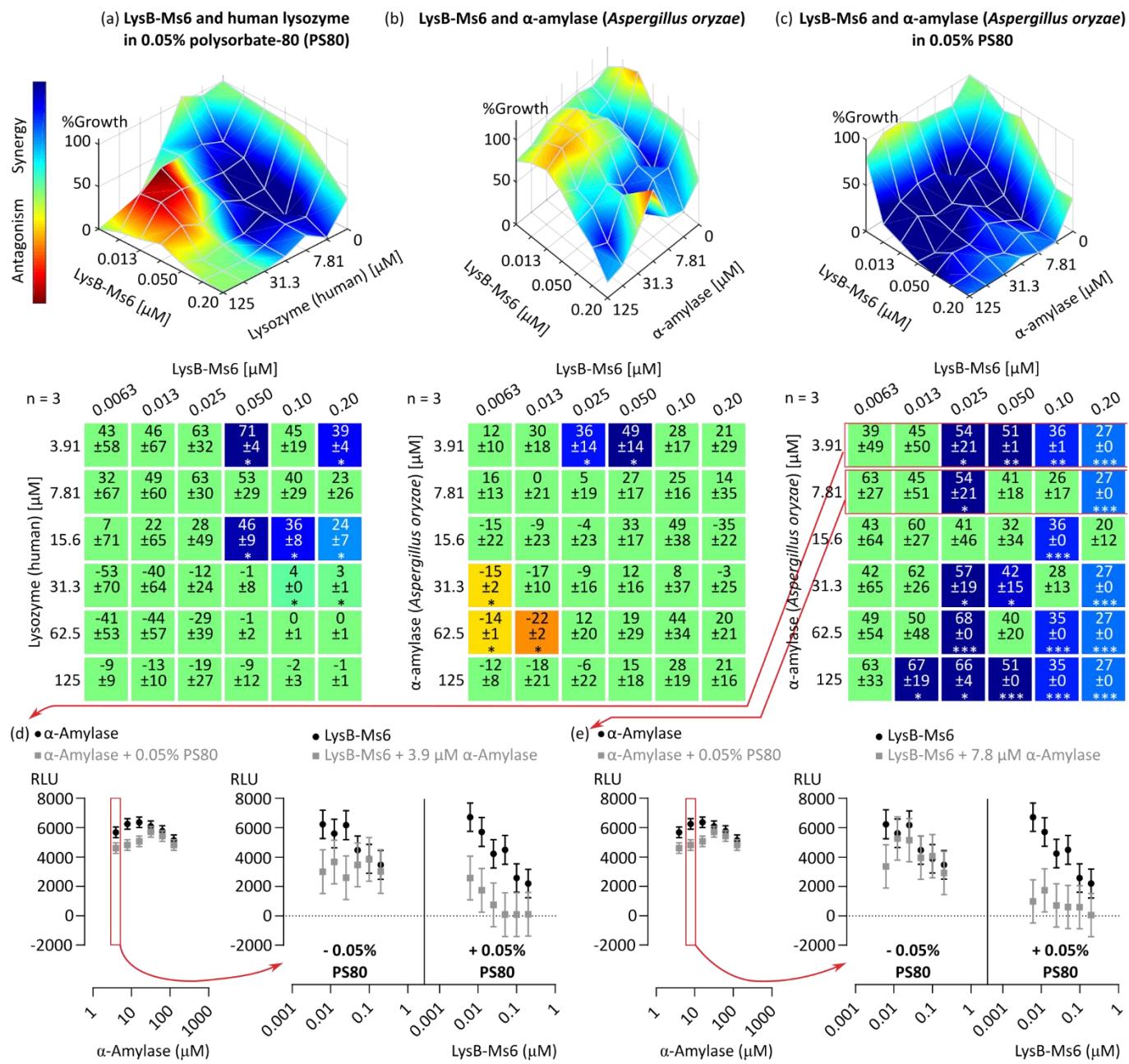

430

Figure 2. Production of (a) LysB-Ms6 and (b) LysB-D29. After expression in *E. coli* BL21 (DE3), proteins were purified via nickel chromatography and size exclusion chromatography (SEC, chromatogram shown). After SEC, peak fractions containing the recombinant protein at highest purity were pooled, indicated in this figure by blue rectangles on SEC chromatograms and Coomassie-stained SDS-PAGE.

433

434
Figure 3. The effect of various antimycobacterial compounds on bioluminescence of *Mtb* mc²7902_Lux. (a) Scheme of the generalized logistic function as
435 applied to a bioluminescence growth assay and its main parameters. **(b)** Effect of antimycobacterial agents in absence (purple circles) and presence (cyan triangles) of 0.05% polysorbate 80 (PS80). Luminescence detected after 4 days of incubation at 37 °C. If data allowed, the generalized logistic model and the
436 Gompertz model were fitted to the luminescence data (the model explaining the highest percentage of variance is shown). The MIC calculated from regression
437 parameters according to Lambert & Pearson (2000)³⁹ is indicated as a dotted vertical line. If no inhibition was observed, the MIC was defined as larger than
438 or equal to the highest concentration tested (not shown in graph). If inhibition was observed but no sigmoid curve could be validly fitted, the MIC was
439 defined as lower than or equal to the lowest value for which all datapoints were lower than 200 RLU (corresponding to half the inoculum). Data shown were
440 derived from three independent experiments, with each data point an average of duplicate plates within a repetition of the experiment. Mean and standard
441 deviation are shown. **(c)** For several conditions from the high and low ends of inhibition curves of LysB-Ms6 (circles) and human lysozyme (triangles), both
442 in presence of 0.05% PS80, viability was determined by cfu plating on solid medium after measuring luminescence. Datapoints shown are averages of
443 technical plating replicates.

Figure 4. (a, b and c) Synergy of various antimycobacterial compounds (Bliss model) mapped to the experimental dose-response curve, and the corresponding synergy and antagonism matrix. Data were derived from a checkerboard bioluminescence drug susceptibility assay of *Mtb mc²7902_Lux*. Bioluminescence was detected after 4 days of incubation at 37 °C. Data shown were derived from 3 independent experiments, each with duplicate technical replicate plates. The synergy score shown in the matrix is the percentage of growth inhibition by the drug combination that is not explained by the Bliss-modeled reference dose-response, as calculated using the Combbenefit⁴¹ tool. Results are coloured according to the obtained synergy score only if the result is significant following a one-sample t-test. *p<0.05 **p<0.001 ***p<0.0001. **(d and e) Mixed model of the synergy of LysB-Ms6 with α -amylase (*A. oryzae*) in the presence or absence of 0.05% polysorbate 80.** A linear mixed model was applied to the bioluminescence data of two sets of drug combinations from (c), to evaluate the separate and combined effects of each component (LysB-Ms6, α -amylase or PS80) on the variance. For each set of drug combinations, the resulted predicted values are plotted: the effect of α -amylase alone or in presence of PS80 (left) and the combined effect of LysB-Ms6 and a set concentration of α -amylase in absence (middle) or presence (right) of PS80.

456

Tables

457
458
459
460

Table 1. *In vitro* activity-testing of potential antimycobacterial enzymes. Lipolytic activity of LysB enzymes was determined *in vitro* on a pNP-butyrate substrate. One LysB enzyme unit (U) will release 1 nmol of p-nitrophenol per minute at pH 8 at 37 °C. Peptidoglycan (PG)-degrading activity of human and hen egg white lysozyme was determined on a fluorescein-labeled *Micrococcus lysodeikticus* cell wall substrate. One lysozyme enzyme unit (U) will produce a 0.001 units per minute change in absorbance at 450 nm of at pH 6.24 and 25°C.

461

Compound	Substrate	<i>In vitro</i> substrate-degrading activity	
		U/nmol	n
LysB-Ms6	pNP-butyrate	338 ± 7.7	3
LysB-D29		1375 ± 173.7	2
Lysozyme (hen egg white)	<i>Micrococcus</i> peptidoglycan	771 ± 26.1	3
Lysozyme (human)		589 ± 13.2	3

462

463
464
465
466

Table 2. MIC values of compounds against *Mtb mc²7902_Lux*. Luminescence drug susceptibility assay (n = 3 with technical duplicates). MIC was determined according to Lambert & Pearson (2000)³⁹. If no inhibition was observed, the MIC was defined as larger than or equal to the highest concentration tested. If inhibition was observed but no sigmoid could be fitted, the MIC was defined as lower than or equal to the lowest value for which all datapoints were lower than 200 RLU (corresponding to half the inoculum).

Compound	MIC (µM) and standard error (s.e.)		MIC fold-decrease
	in assay medium	in assay medium + 0.05% polysorbate 80	
Rifampicin	0.3 ± 0.06	≤ 0.02	≥ 10
Isoniazid	0.1 ± 0.03	0.2 ± 0.03	0.6
α-Amylase (<i>A. oryzae</i>)	≥ 250	≥ 250	N/A
Lysozyme (hen egg white)	≥ 250	40 ± 5	≥ 6
Lysozyme (human)	≥ 250	33 ± 4	≥ 8
LysB-D29	≥ 0.4	0.08 ± 0.01	≥ 5
LysB-Ms6	≥ 0.4	0.2 ± 0.07	≥ 2

467

468
469
470
471
472

Table 3. Synergy and antagonism of antimycobacterial compounds as determined by the Combbenefit⁴¹ tool. Luminescence drug susceptibility assay on *Mtb mc²7902_Lux* (n = 3 with technical duplicates). Compounds were added 'checkerboard'-wise in combined dilution series, of which the highest concentration is indicated. The half maximal inhibitory concentration (IC50) was derived from a Hill equation fit of the data. Synergy and antagonism scores were determined using either the Loewe, Bliss or HSA model. Shading indicates three highest scoring synergy conditions. Lysozyme: human; α-amylase: *Aspergillus oryzae*. If present as compound C, polysorbate 80 is at 0.05%.

Compound	Max conc (µM)	IC50 (µM)		Sum antagonism score			Sum synergy score			
		A	B	A	B	Loewe	Bliss	HSA	Loewe	Bliss
α-Amylase LysB-Ms6 -	125	0.2	125.00	0.13	-11.51	-10.63	-10.37	27.73	33.09	35.10
α-Amylase LysB-Ms6 polysorbate 80	125	0.2	0.04	0.05	0.00	0.00	0.00	117.06	100.37	117.31
Lysozyme LysB-D29 polysorbate 80	125	0.2	14.90	0.04	-34.14	-24.17	-18.05	0.00	1.34	2.93
Lysozyme LysB-Ms6 -	125	0.2	125.00	0.04	-49.85	-48.63	-48.63	7.93	8.71	8.95
Lysozyme LysB-Ms6 polysorbate 80	125	0.2	18.75	0.14	-17.71	-17.88	-17.63	36.78	46.89	53.27

473